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FOUNDATIONS FOR PROPER-TIME RELATIVISTIC

QUANTUM THEORY

T. L. GILL, T. MORRIS, AND S. K. KURTZ

Abstract. This paper is a progress report on the foundations for the

canonical proper-time approach to relativistic quantum theory. We first

review the the standard square-root equation of relativistic quantum

theory, followed by a review of the Dirac equation, providing new in-

sights into the physical properties of both. We then introduce the canon-

ical proper-time theory. For completeness, we give a brief outline of

the canonical proper-time approach to electrodynamics and mechanics,

and then introduce the canonical proper-time approach to relativistic

quantum theory. This theory leads to three new relativistic wave equa-

tions. In each case, the canonical generator of proper-time translations is

strictly positive definite, so that each represents a true particle equation.

We show that the canonical proper-time version of the Dirac equation

for Hydrogen gives results that are consistently closer to the experimen-

tal data, when compared to the Dirac equation. However, these results

are not sufficient to account for either the Lamb shift or the anomalous

magnetic moment.
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Introduction

Following Dirac’s quantization of the electromagnetic field in 1927, and

his relativistic electron theory in 1928, the equations for quantum electrody-

namics QED were developed by Heisenberg and Pauli in the years 1929-30.

From the beginning, when researchers attempted to use the straightforward

and physically intuitive time-dependent perturbation expansion to compute

physical observables, a number of divergent expressions appeared. Although

it was known that the same problems also existed in classical electrodynam-

ics, Dirac had shown that, in this case, one could account for the problem of

radiation reaction without directly dealing with the self-energy divergence by

using both advanced and retarded fields and a particular limiting procedure.

Early attempts to develop subtraction procedures for the divergent expres-

sions were very discouraging because they depended on both the gauge and

the Lorentz frame, making them appear ambiguous. These problems were

solved via the fundamental work of Feynman, Schwinger, and Tomonaga. In

recent times, it is generally agreed that quantum electrodynamics (QED) is

an almost perfect theory, which is in excellent agreement with experiment.

The fact that QED is very successful is without doubt. However, there are

still some foundational and technical issues, which require clarification and

which leaves the thoughtful student with a sense of unease in taking this as

the final answer. In light of the tremendous historical success of eigenvalue

analysis in physics and engineering, it is not inappropriate to reinvestigate
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the foundations with an eye towards clearly identifying the physical and

mathematical limitations to our understanding of the hydrogen spectrum as

an eigenvalue problem.

In the first section of this review we take a new look at the square-root

operator and show that it has an analytic representation as a nonlocal com-

posite of three singularities. The particle component has two negative parts

and one (hard core) positive part, while the antiparticle component has two

positive parts and one (hard core) negative part. This effect is confined

within a Compton wavelength such that, at the point of singularity, they

cancel each other providing a finite result. Furthermore, the operator looks

like the identity outside a Compton wavelength.

In the second section, we provide an analytic diagonalization of the Dirac

operator. Our approach leads to a complete split of the particle and an-

tiparticle parts into two non-hemitian components, which are mapped into

each other by the charge conjugation transformation. Thus, the full matrix-

valued operator is Hermitian and shows (as is explained in the text) that the

spinor representation in the Dirac equation hides its time nonlocal property.

We conclude that the Dirac and square-root operator do not represent the

same physics, despite that fact that they are related by a unitary transfor-

mation.

In the third section, we introduce the canonical proper-time approach

to electrodynamics and mechanics. By convention, this approach fixes the
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proper-time of the observed system as the clock of choice for all observers

and explicitly shows that the question of simultaneity is actually a question

of clock conventions. The change in convention produces a new symme-

try group which is distinct from, but closely related to the Lorentz group,

but with a Euclidean representation space. Thus, the new convention also

replaces the standard form of Lorentz covariance by a new one. The advan-

tage is that, this allows us to construct a parallel image of the conventional

Maxwell theory for a charged particle, which is mathematically, but not

physically, equivalent to the conventional form. The new wave equation

contains a gauge independent term, which appears instantaneously along

the direction of motion, but opposing any applied force and is zero other-

wise. This is the near field (i.e., the field at the site of the charged particle).

This shows that the origin of radiation reaction is not the action of a charge

on itself but arises from inertial resistance to changes in motion. We show

that the dissipative term is equivalent to an effective mass so that classical

radiation has both a massless and a massive part. We also discuss solutions

to a number of other problems that are solved with our new convention,

which are either impossible or problematic within the standard framework.

In the forth section, we describe the canonical quantized proper-time the-

ory. We obtain three possible relativistic wave equations, because of new

possibilities, for the manner in which the potential energy may be introduced
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into the theory. Each new equation is generated by a strictly positive defi-

nite canonical Hamiltonian, so that it represents a consistent particle. We

focus on the proper-time extension of the Dirac equation. A basic test of our

proper-time theory is the extent that it compares to the Dirac theory in ac-

counting for the hydrogen spectra. We show that our canonical proper-time

version of the Dirac equation gives results which are consistently closer to

the experimental data, when compared to the Dirac equation. The present

theory has not yet accounted for the Lamb shift or the anomalous magnetic

moment. However, the analysis in sections one, two and three support our

contention that the electron is not a point particle. This non-point nature is

only expected to be important in s-states, where there is a finite probability

of the electron being at the center of the proton. This aspect of our research

is still in progress and will be reported on at a later time.

1. The square-root equation

In the transition to relativistic mechanics, the equation E2 = c2p2+m2c4

leads to the quantum Hamiltonian

H =
√

c2p2 +m2c4.

Thus, it is quite natural to expect that the first choice for a relativistic wave

equation would be:

i~
∂ψ

∂t
=

[
√

c2[p− (e/c)A]2 +m2c4 + V

]

ψ,
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where p = −i~∇. However, no one knew how to directly relate this equation

to physically important problems. Furthermore, this equation is nonlocal,

meaning, in the terminology of the times (1920-30), that it is represented

by a power series in the momentum operator. One was led in this way to

the Gordon-Klein and Dirac equations.

1.1. Background. Since the early work, many investigators have studied

the square-root equation. It is not our intention to provide a detailed his-

tory or to identify the many important contributors to the study of this

problem. In recent times, the works of Silenko (see [1], [2]) are well worth

reading. They also provide a very good list of the important historical stud-

ies. In addition, he has made a number of interesting investigations into the

transformational relationship between the square-root and Dirac equation

([3] is a good starting point). The recent paper by Simulik and Krivsky

[4] offers another interesting approach to the square-root equation and its

relationship to that of Dirac. Closer to our investigation of the square-root

equation is the study by Kowalski and Rembieliński [5] (also known as the

Salpeter equation). They have used it as an alternative of the Klein-Gordon

equation.

In this section, we take a new look at the square-root equation. First,

we investigate the extent that the non-commutativity of p and A affect

our ability to give an unambiguous meaning to the square-root operator.

We show that a unique analytic representation is well defined for suitable
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time-independent A provided we can solve a corresponding equation of the

Schrödinger type. We then investigate a few simple cases of solvable models

in order to get a feeling for the physical interpretation of this operator.

To begin, we start with the equation:

S[ψ] = Hsψ =

{

β

√

c2
(

p− e
cA

)2 − e~cΣ ·B+m2c4
}

ψ.(1.1)

Where β and Σ are the Dirac matrices

β =









I 0

0 −I









, Σ =









σ 0

0 σ









;

I and σ are the identity and Pauli matrices respectively. Under physically

reasonable mathematical conditions, the following operator is a well defined

self-adjoint generator of a strongly continuous unitary group:

H2
s = c2[p− (e/c)A]2 − e~cΣ ·B+m2c4.

From the basic theory of fractional powers of closed linear operators, it can

be shown that

√

H2
s =

(

√

H2
s

)−1
H2
s = H2

s

(

√

H2
s

)−1
.(1.2)

In order to construct an analytic representation for equation (1.1), we as-

sume that B is constant. The general case can be found in [6]. Let

G = −c2
(

p− e
cA

)2
and ω2 = m2c4 − e~cΣ · B, so that ω is also constant.

Using this notation, we can write (1.1) as

S[ψ] =
{

β
√

−G+ ω2
}

ψ.
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Using the analytic theory of fractional powers of closed linear operators and

equation (1.2), we can represent S[ψ] as

S[ψ] =
β

π

∫ ∞

0

[

(λ+ ω2)−G
]−1

(−G+ ω2)
dλ√
λ
[ψ],(1.3)

where
[

(λ+ ω2)−G
]−1

is the resolvent associated with the operator

−G+ ω2. The resolvent can be computed directly if we can find the funda-

mental solution to the equation:

∂Q(x,y; t)/∂t+ (G− ω2)Q(x,y; t) = δ(x− y).

Schulman [7] has shown that the solution to the above equation is

Q =

∫ x(t)

x(0)
D[x(s)] exp

{∫ t

0
V [x(s)]ds + ie

~c

∫ x

y

A[x(s)] · dx(s)
}

where V = c2ω2/i~ and

∫ x(t)=x

x(0)=y

D[x(s)] =

∫ x(t)=x

x(0)=y

D[x(s)] exp

{

−1
4

∫ t

0

∣

∣

∣

∣

dx(s)

ds

∣

∣

∣

∣

2

ds

}

= lim
N→∞

[

1
4πεN

]nN/2
∫Rn

N
∏

k=1

dxj exp







−
N
∑

j=1

[

1
4εN

(xj −xj−1)
2
]







,

and εN = t/N . A rigorous justification for the path integral can be found

in Gill and Zachary [8]. We assume that
∫ x

y
A[x(s)] · dx(s) = Ā · (x − y),

where Ā is the mean value of A. Using this, we have:

[

(λ+ ω2)−G
]−1

f(x) =

∫ ∞

0
e−λt

[
∫

R3

Q(x, t;y, 0)f(y)dy

]

dt
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and

[

(λ+ ω2)−G
]−1

f(x)

=

∫

R3

e

{

ie
~c Ā·(x−y)

} {
∫ ∞

0
exp

[

− (x−y)2

4t − ω2t
~2

− λt
]

dt

(4πt)3/2

}

f(y)dy

Using a table of Laplace transforms, the inner integral can be computed to

get
∫ ∞

0
exp

[

−(x− y)2

4t
− ω2t

~2
− λt

]

dt

(4πt)3/2

=
1

4π

exp
[

−
√

(λ+ µ2) ‖x− y‖
]

‖x− y‖
where µ2 = ω2/~2. Equation (1.3) now becomes

S[ψ](x)

= cβ
4π2

∫ ∞

0

{
∫

R3

e

{

ie
~c Ā·(x−y)

}

e
−
[√

(λ+µ2)‖x−y‖
]

(−G+ω2)
‖x−y‖ ψ(y)dy

}

dλ√
λ
.

Once again, we interchange the order of integration and perform the com-

putations to get

∫ ∞

0







exp
[

−
√

(λ+ µ2) ‖x− y‖
]

‖x− y‖







dλ√
λ
=

4µΓ(32 )

π1/2
K1 [µ ‖x− y‖]

‖x− y‖ .

where K1[z] is the modified Bessel function of the third kind and first order.

Thus, if we set, a = e
~cA and ā = e

~cĀ we get

S[ψ](x) = cβ
2π2

∫

R3

e[iā·(x−y)]µK1 [µ ‖x− y‖]
‖x− y‖ (−G+ ω2)ψ(y)dy

= cβ
2π2 (−G+ ω2)

∫

R3

e[iā·(x−y)]µK1 [µ ‖x− y‖]
‖x− y‖ ψ(y)dy.

(1.4)

Since ∇ · a = 0, we have

−G+ ω2 = ~
2
(

−∆+ 2ia · ∇+ a2 + µ2
)

,
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so that so that (1.4) becomes

S[ψ](x) = ~2cβ
2π2

(

−∆+ 2ia · ∇+ a2 + µ2
)

∫

R3

eiā·(x−y) µK1[µ‖x−y‖]
‖x−y‖ ψ(y)dy.

The operator
(

−∆+ 2ia · ∇+ a2 + µ2
)

acts on x, making the integral sin-

gular. However, this singular representation constructed below, equation

(1.5) has many of the properties observed in experiments. As will be seen,

it represents the confinement of three singularities within a Compton wave-

length. (A full discussion is delayed to the end of this section.)

We omit many of the computational details, which can be found in [9],

but the idea is to consider a ball Bρ(x) of radius ρ about x, so that R
3 =

R
3
ρ ∪ Bρ(x), where R

3
ρ =

(

R
3\Bρ(x)

)

and ∂R3
ρ =

(

∂R3\∂Bρ(x)
)

. We then

restrict all operations to R
3
ρ and only let ρ→ 0 at the end.

1.2. Free Case. The free particle case is the simplest (but still interesting),

with A = 0, so that

S[ψ](x)

= −µ2~2cβ
π2

∫

R3

[

1
‖x−y‖ − 4πδ (x− y)

]{

K0[µ‖x−y‖ ]
‖x−y‖ + 2K1[µ‖x−y‖ ]

µ ‖x−y‖2
}

ψ(y)dy.
(1.5)

If x 6= y, the effective kernel of equation (1.5) is

K0 [µ ‖x− y‖]
‖x− y‖2

+
2K1 [µ ‖x− y‖]
µ‖x− y‖3

.

Recall that the integral of ‖x− y‖−2 over R3 is finite. In order to understand

the physical interpretation of equation (1.5), it will be helpful to review

some properties of the modified Bessel functions K0[u], u−
1
2K1/2[u] and
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u−1K1[u]. We follow Gradshteyn and Ryzhik [10], for 0 < u ≪ 1, we have

that:

K1 [u]

u
= [1 + θ1(u)] u

−2

K1/2 [u]

u1/2
=

√

π
2u

−1

K0 [u] = [1 + θ0(u)] lnu
−1,

where θ0, θ1 → 0 as u → 0. We note that, up to a multiplicative constant,

u−
1
2K1/2[u] is the well-known Yukawa potential [11], conjectured in 1935

to account for the short range of the nuclear interaction. From here, we

see that, near u = 0, the singular term u−1K1[u] is twice as strong as the

Yukawa potential. The singular term K0[u] is actually integrable and so

does not contribute at u = 0. Looking at equation (1.5), we see that the

singular term −8πK1(u)δ(u) acts to cancel the the singular term u−1K1[u]

at u = 0, so that the total integral is well defined.

The behavior of these functions is quite different, when u ≫ 1. In this

case, we have:

K1 [u]

u
=

[

1 + θ′1(u)
] exp {−u}

u3/2

K1/2 [u]

u1/2
=

√

π
2

exp {−u}
u

K0 [u] =
[

1 + θ′0(u)
] exp {−u}

u1/2
.

We see that each term has a exponential cutoff. However, now K0[u] has the

longest range, while u−1K1[u] has the shortest range. Furthermore, inspec-

tion shows that u−1K1[u] is multiplied by the reduced Compton wavelength,

which further shortens its range.
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It is clear that our square-root operator represents an extended object

with an effective extent of about a Compton wavelength.

1.3. Constant A Case. When A 6= 0 is constant, ∇ · A = 0 and B =

∇×A = 0, so that we get (ā = a):

S[ψ](x) =

−µ2~2cβ
π2

∫

R3

eia·(x−y)
[

1
‖x−y‖ − 4πδ (x− y)

]{

K0[µ‖x−y‖ ]
‖x−y‖ + 2K1[µ‖x−y‖ ]

µ ‖x−y‖2
}

ψ(y)dy.

1.4. The Constant Field Case. IfB 6= 0 is constant, thenA(z) = 1
2z×B.

Let a(z) = e
2~cz×B and F = −a · (x−y). In this case A(z) ·dz = 0, so we

can write the final result as:

S[ψ] = −~2µ2cβ
π2

{∫

R3

[

1
‖x−y‖ −

4πδ(x−y)
1+iF

]

[1 + iF ] K2[µ‖x−y‖]
‖x−y‖ ψ(y)dy

}

+ ~2µ2cβ
π2

∫

R3

a2
K1[µ‖x−y‖]

‖x−y‖ ψ(y)dy,

(1.6)

where

K2 [µ ‖x− y‖]
‖x− y‖ =

K0 [µ ‖x− y‖]
‖x− y‖ +

2K1 [µ ‖x− y‖]
µ‖x− y‖2

.(1.7)

From equations (1.6) and (1.7), we see that a constant magnetic field makes

a real difference compared to either the A = 0 or A 6= 0 cases, producing

two extra terms, in addition to the free particle term. The first new term is

purely imaginary and singular at x = y (like the Yukawa term). Physically,

we interpret this term as representing particle absorption and emission (see

Mott and Massey [12]) . The second term is real, repulsive and nonsingular.
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In addition, the effective mass µ is constant but matrix-valued with complex

components, µ2 = m2c2
/

~
2 − e

~cΣ ·B. Since

Σ =









σ 0

0 σ









; σ1 =









0 1

1 0









, σ2 =









0 −i

i 0









, σ3 =









1 0

0 −1









,

µ2 =









(m
2c2

~2
− e

~cB3)I2
ie
~c(B2 − iB1)I2

−ie
~c (B2 − iB1)I2 (m

2c2

~2
+ e

~cB3)I2









.

From known properties of Bessel functions for nonintegral ν, we can repre-

sent Kν [u] as

(2/π)Kν [u] =
I−ν(u)− Iν(u)

sinπν
=
ei/2(πν)J−ν(iu)− e−i/2(πν)Jν(iu)

sinπν
.

In the limit as ν approaches an integer, the above takes the indeterminate

form 0/0 and is defined via L’Hôpital’s rule. However, for our purposes,

we assume that ν is close to an integer and u = u1 + iu2, u2 6= 0. In this

case, Kν [u] acquires some of the oscillatory behavior of Jν [u]. Thus, we can

interpret equation (1.6) as representing a pulsating mass (extended object

of variable mass) with mean value ~/c ‖µ‖, where ‖µ‖ = [µ∗µ]1/2 and µ∗ is

the Hermitian conjugate of µ, with the square root being computed using

elementary spectral theory. If B is very large, we see that the effective mass

can also be large. However, the operator still looks (almost) like the identity

outside a Compton wavelength.

In closing, we should say a few additional words about the interesting

work of Kowalski and Rembieliński [5]. They solve the Salpeter equation



FOUNDATIONS FOR PROPER-TIME RELATIVISTIC QUANTUM THEORY15

(β = I) and construct a number of examples. This work represents an

original contribution to our understanding of the square-root equation. They

approach the problem using the method of Fourier transforms and get the

correct solution for x 6= y. However, this approach misses the the x = y

term, giving the impression that their equation is not defined at that point.

This minor defect can be easily fixed, by adding our delta term, which

makes their solutions well-defined for all x. More important, is to note

that replacing the indentity operator by the (general) β matrix provides a

generalization of their solutions for all spin-values.

1.5. Conclusions. From our analysis, we have the following conclusions

concerning the square-root operator:

(1) In the simplest case, A = 0, the square-root operator has a repre-

sentation as a nonlocal composite of three singularities. The particle

component has two negative parts and one (hard core) positive part,

while the antiparticle component has two positive parts and one

(hard core) negative part. This effect is confined within a Compton

wavelength such that, at the point of singularity, they cancel each

other providing a finite result. Furthermore, the operator looks like

the identity outside a Compton wavelength. (Recall that the ex-

perimental observation of three singularities in proton and neutron

scattering experiments led to the quark model.)
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(2) A constant magnetic field induces changes in both the mass and

the shape of this extended object. It also increases the number of

singularities. This suggests that the square-root operator represents

a charge/mass density, for otherwise it could not be affected by a

constant magnetic field.

(3) The square-root operator is not physically the same as the Dirac

operator despite the fact that they are related by a unitary trans-

formation. (We will discuss this point further in the next section.)

2. The Dirac Equation

The first successful attempt to resolve the question of how best to handle

the square-root equation was made by Dirac in 1926 [13]. Dirac noticed that

the Pauli matrices could be used to write c2p2 +m2c4 as
[

cα · p+mc2β
]2
.

The matrix α is defined by α = (α1, α2, α3), where

αi =









0 σi

σi 0









, σ1 =









0 1

1 0









, σ2 =









0 −i

i 0









, σ3 =









1 0

0 −1









.

Thus, Dirac [13] showed that an alternative representation of the square-root

equation could be taken as:

i~
∂Ψ

∂t
=

[

cα · p+mc2β
]

Ψ.(2.1)

In this case, Ψ must be viewed as a vector-valued function or spinor. To be

more precise, Ψ ∈ L2
(

R
3,C4

)

= L2
(

R
3
)

⊗ C
4 is a four-component column
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vector Ψ = (ψ1, ψ2, ϕ1, ϕ2)
t. In this representation, ψ = (ψ1, ψ2)

t repre-

sents the particle (positive energy) component, and ϕ = (ϕ1, ϕ2) represents

the antiparticle (negative energy) component of the theory (for details, see

Thaller [14]).

A fair understanding of the Dirac equation can only be claimed in recent

times, and, as pointed out by D. Finkelstein, “Dirac introduced a Lorentz-

invariant Clifford algebra into the complex algebra of observables of the

electron”. (See, in particular, Biedenharn [15] or deVries [16] and Hestenes

[17].) Despite successes, both practical and theoretical, there still remain

a number of conceptual, interpretational, and technical misunderstandings

about this equation. It is generally believed that it is not possible to separate

the particle and antiparticle components directly without approximations

(when interactions are present). The various approximations found in the

literature may have led to this belief. In addition, the historically important

algebraic approaches of Foldy-Wouthuysen [18], Pauli [19], and Feynman

and Gell-Mann [20] have no doubt further supported such ideas.

In this section we show that it is possible to directly separate the particle

and antiparticle components of the Dirac equation without approximations,

even when scalar and vector potentials of quite general character are present

(see [9]). We show that the square root operator cannot be considered

physically equivalent to the Dirac operator from another point of view. In

addition, we offer another interpretation of the zitterbewegung and the fact
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that the expected value of a velocity measurement of a Dirac particle at any

instant of time is ±c.

2.1. Complete Separation. It turns out that a direct analytic separation

is actually quite simple and provides additional insight into the particle

and antiparticle components. In order to see this, let A(x, t) and V (x) be

given vector and scalar potentials and, after adding V (x) and making the

transformation p → π = p− e/cA, write (2.1) in two-component form as:

i~
∂ψ

∂t
= (V +mc2)ψ + c(σ · π)ϕ

i~
∂ϕ

∂t
= (V −mc2)ϕ+ c(σ · π)ψ.

(2.2)

We write the second equation as:

[

∂

∂t
+ iB1

]

ϕ = −iDψ, B1 =
1
~
(V −mc2) and D = 1

~
c(σ · π).

In this form, we see that from an analytical point of view equation (2.2) is

a first order inhomogeneous partial differential equation. This equation can

be solved via the Green’s function method if we first solve

[

∂

∂t
+ iB1

]

u(t) = δ(t).

It is easy to see that the solution to this equation is

u(t) = θ(t) exp{−iB1t}, θ(t) =















1, t > 0

0, t < 0

,

so that

ϕ(t) =

∫ t

−∞
c exp{−iB1(t− τ)} [(σ · π)/i~]ψ(τ)dτ .
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It now follows via convolution that:

i~
∂ψ

∂t
= (V +mc2)ψ

+
[

c2(σ · π)
/

i~
]

∫ t

−∞
exp{−iB1(t− τ)}(σ · π)ψ(τ)dτ .

(2.3)

In a similar manner, we obtain the complete equation for ϕ:

~
∂ϕ

∂t
= (V −mc2)ϕ

+
[

c2(σ · π)
/

i~
]

∫ t

−∞
exp{−iB2(t− τ)}(σ · π)ϕ(τ)dτ ,

(2.4)

where

v(t) = θ(t) exp{−iB2t}, θ(t) =















1, t > 0

0, t < 0

,

B2 =
1
~
(V +mc2).

Thus, we have decomposed L2
(

R
3,C4

)

as L2
(

R
3,C4

)

= L2
(

R
3,C2

)

⊕

L2
(

R
3,C2

)

. One copy of L2
(

R
3,C2

)

contains the particle (positive energy)

wave component, while the other copy contains the antiparticle (negative

energy) wave component. Which of these copies corresponds to the compo-

nents ψ = (ψ1, ψ2)
t and which to the components ϕ = (ϕ1, ϕ2)

t depends,

to some extent, on the properties of the scalar potential V . It may have

been noticed that equations (2.3) and (2.4) are non-hermitian. It is shown

in [9] that they are mapped into each other by the charge conjugation op-

erator, so that the full matrix representation is hermitian. An unsettled

issue is the definition of the appropriate inner product for the two sub-

spaces, which will account for the quantum constraint that the total prob-

ability integral is normalized. We can satisfy this requirement if we set
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(ψ, χ) = ψ1χ̄1 + ψ2χ̄2, (ψ, χ)1 = (A1ψ, A1χ) and (ϕ, η)2 = (A2ϕ, A2η),

where A1ψ = cu(t) ∗ [(σ · π)/i~]ψ(t) and A2ϕ = cv(t) ∗ [(σ · π)/i~]ϕ(t). We

can now define the particle and antiparticle inner products by:

〈ψ , χ〉p =
∫

R3

[(ψ, χ) + (ψ, χ)1] dx

〈ϕ , η〉ap =
∫

R3

[(ϕ, η) + (ϕ, η)2] dx,

(2.5)

so that the normalized probability densities satisfy:

ρψ = |ψ|2 +
∣

∣

∣

∣

∫ t

−∞
c exp{−iB(t− τ)} [(σ · π)/i~]ψ(τ)dτ

∣

∣

∣

∣

2

ρϕ = |ϕ|2 +
∣

∣

∣

∣

∫ t

−∞
c exp{−iB′(t− τ)} [(σ · π)/i~]ϕ(τ)dτ

∣

∣

∣

∣

2

.

(2.6)

2.1.1. Interpretations. Writing the Dirac equation and the direct separation

in two-component matrix form, we have:

i~
∂

∂t









ψ

ϕ









=









(V +mc2) c(σ · π)

c(σ · π) (V −mc2)

















ψ

ϕ









and

i~
∂

∂t









ψ

ϕ









=



























(V +mc2)

+
[

c2(σ · π)
/

i~
]

[u ∗ (σ · π)]
0

0

(V −mc2)

+
[

c2(σ · π)
/

i~
]

[v ∗ (σ · π)]



































ψ

ϕ









We call the latter equation the analytic diagonalization of the Dirac equation

because the wave function has not changed.

The standard approach to the diagonalization of the Dirac equation (with-

out an external potential V ) is via the Foldy-Wouthuysen representation
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[18]. Assuming that A does not depend on t, the following generalization

can be found in deVries [16]:

i~
∂

∂t









Φ1

Φ2









=









√

c2π2 − ec~(Σ · B) +m2c4 0

0 −
√

c2π2 − ec~(Σ · B) +m2c4

















Φ1

Φ2









where

Σ =









σ 0

0 σ









.

In this case,

[

Φ1 Φ2

]t

= UFW

[

ψ ϕ

]t

and our square-root operator

S = UFWHDU
−1
FW .

From equation (2.2), we conclude that the coupling of the particle and

antiparticle wave functions in the first-order form of the Dirac equation hides

the second order nonlocal time nature of the equation. We know that the

square-root operator is nonlocal in space. Thus, the implicit time nonlocality

of the Dirac equation is mapped into the explicit spatial nonlocality of the

square-root equation by the Foldy-Wouthuysen transformation. This is a

mathematical relationship, which is not physically equivalent.

The time nonlocal behavior raises questions about the zitterbewegung.

The physically reasonable interpretation of the zitterbewegung and the fact

that the expected value of a velocity measurement (of a Dirac particle) at

any instant in time ±c are reflections of the fact that the Dirac equation

makes a spatially extended particle appear as a point in the present by

forcing it to oscillate between the past and future at speed ±c.



22 GILL, MORRIS, AND KURTZ

3. Classical Proper-time Theory

In this section, we briefly review the classical theory. The theory was first

introduced in 2001 [21] and further discussed in [22]. However, the theory

has its roots in the foundations of quantum electrodynamics as developed

by Feynman and Dyson.

3.1. Background. Following the suggestions of Feynman and Dyson, our

program began with the development of a mathematical theory for Feyn-

man’s time-ordered operator calculus, where time is accorded its natural

role as the director of physical processes. Briefly, our theory is construc-

tive in that operators acting at different times actually commute (in the

mathematical sense). This approach allows us to develop a general pertur-

bation theory for all theories generated by unitary evolutions. We are also

able to reformulate our theory as a physically motivated sum over paths as

suggested by Feynman. Our purpose was to prove the last two remaining

conjectures of Dyson concerning the mathematical foundations for QED (see

[23]). (A. Salam confirmed Dyson’s first conjecture [24], while S. Weinberg

[25] confirmed his second one.) In particular, we showed that:

(1) The renormalized perturbation series of quantum electrodynamics is

at most asymptotic. (We also provided the remainder so that, in the

mathematical sense, the expansion is exact.)
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(2) The ultraviolet divergence of quantum electrodynamics is caused by

a violation of the time-energy uncertainty relations (at each point in

time).

As a special case, our approach also provided the first rigorous mathematical

foundation for the Feynman path integral formulation of quantum mechanics

(see [8]).

In the Feynman world-view the universe is a three-dimensional motion

picture in which more and more of the future appears as time evolves. Time

is a physically defined variable with properties distinct from those of the

three spacial variables. This view is inconsistent with the Minkowski world-

view, in which time is an additional coordinate for space-time geometry.

With this inconsistency in mind, we began to investigate the possibility

that an alternative formulation of both classical and quantum theory could

exist, which encodes the Feynman world-view. We discovered the canonical

proper-time approach to classical electrodynamics, in which the proper-time

of the observed system is used as opposed to the proper-time of the observer.

3.2. Maxwell’s equations. For the local-time version of Maxwell’s equa-

tions, it is convenient to start with the standard definition of proper-time:

dτ2 = dt2 − 1

c2
dx2 = dt2

[

1− w2

c2

]

, w =
dx

dt
.(3.1)

Motivated by geometry and the philosophy of the times, Minkowski sug-

gested that we use the proper-time to define a metric for the space-time



24 GILL, MORRIS, AND KURTZ

implementation of the special theory of relativity. Physically, it is well-

known that dτ is not an exact one-form because a particle can traverse

many different paths (in space) during any given τ interval. This reflects

the fact that the distance traveled in a given τ interval depends on the forces

acting on the particle. This also implies that the clock of the source carries

additional physical information about the acting forces. In order to see this,

rewrite equation (3.1) as:

dt2 = dτ2 +
1

c2
dx2 = dτ2

[

1 +
u2

c2

]

, u =
dx

dτ
.(3.2)

For any other observer, we have:

dt′2 = dτ2 +
1

c2
dx′2 = dτ2

[

1 +
u′2

c2

]

, u′ =
dx′

dτ
.(3.3)

It follows that observers can use one unique clock to discuss all events as-

sociated with the source (simultaneity). We also note that, the phase space

variables remain unchanged because the momentum p = mw = m0u, where

m = γm0.

From equations (3.2) and (3.3) we see explicitly that, the new metric for

each observer is exact, while the representation space is now Euclidean. In

order to clearly see that we have a change in the clock convention, assume

that we are observing a particle moving with constant velocity relative to

our unprimed (inertial) frame. In this case, we can integrate equation (3.2)

obtaining:

t =

(

√

1 + u2

c2

)

τ.
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The inverse relationship is

τ =

(

√

1 + u2

c2

)−1

t =

(

√

1− w2

c2

)

t,

where w = dx
dt

. Now, t and τ differ by a scale factor, so that either may be

used (a convention). The advantage of the τ representation is that the same

τ is also available to our prime observer in her frame:

τ =

(
√

1 + u′2

c2

)−1

t′ =

(
√

1− w′2

c2

)

t′.

The important point of our theory is that, this convention is available in

the non constant velocity case. (In order to show that general case does not

complicate matters, in Section 3.3 we construct the transformation group

for all cases.)

In our new formalism, the natural definition of velocity is no longer w =

dx/dt but u = dx/dτ . This suggests that there may be a certain duality

in the relationship between t, τ and w, u. To see that this is indeed

the case, recall that u = w
/√

1−
(

w2
/

c2
)

. Solving for w, we get that

w = u
/√

1 +
(

u2
/

c2
)

. If we set b =
√
c2 + u2, this relationship can be

written as

w

c
=

u

b
.(3.4)
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For reasons to be clear momentarily, we call b the collaborative speed of

light. Indeed, we see that

1

c

∂

∂t
=

1

c

∂τ

∂t

∂

∂τ
=

1

c

1
√

1 +
(

u2
/

c2
)

∂

∂τ
=

1

b

∂

∂τ
.(3.5)

For our prime observer, it is easy to see that the corresponding result will

be:

w′

c
=

u′

b′
,

1

c

∂

∂t′
=

1

b′
∂

∂τ
.(3.6)

From equations (3.5) (and (3.6)) we see that the non-invariance of t, (t′) and

the invariance of c on the left is replaced by the non-invariance of b, (b′) and

the invariance of τ on the right. These equations represent mathematically

equivalent relations. Thus, wherever they are used consistently as replace-

ments for each other, they can’t change the mathematical relationships. In

order to see their impact on Maxwell’s equations, in c.g.s. units, we have:

∇ ·B = 0, ∇ ·E = 4πρ,

∇×E = −1

c

∂B

∂t
, ∇×B =

1

c

[

∂E

∂t
+ 4πρw

]

.

(3.7)

Using equations (3.1) and (3.2) in (3.3), we have the mathematically identical

representation for Maxwell’s equations:

∇ ·B = 0, ∇ · E = 4πρ,

∇×E = −1

b

∂B

∂τ
, ∇×B =

1

b

[

∂E

∂τ
+ 4πρu

]

.

Thus, Maxwell’s equations are equally valid when the local time of the par-

ticle is used to describe the fields. This leads to the following conclusions:
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(1) There are two distinct clocks to use in the representation of

Maxwell’s equations. (The choice of clocks is a convention.)

(2) Since the two representations are mathematically equivalent, math-

ematical equivalence is not the same as physical equivalence.

(3) When the proper-time is used, the constant speed of light c is re-

placed by the effective speed of light b, which depends on the motion

of the system (i.e., b =
√
c2 + u2). Thus, we have a natural varying

speed of light theory (VSL), as opposed to a postulated one ( see

Magueijo [26] or Moffat [27]).

Let us now derive the corresponding wave equations in the local-time vari-

able. Taking the curl of the last two equations Maxwell equations (above),

and using standard vector identities, we get:

1

b2
∂2B

∂τ2
− u · a

b4

[

∂B

∂τ

]

−∇2 ·B =
1

b
[4π∇× (ρu)] ,

1

b2
∂2E

∂τ2
− u · a

b4

[

∂E

∂τ

]

−∇2 · E = −∇(4πρ)− 1

b

∂

∂τ

[

4π(ρu)

b

]

.

(3.8)

where a = du/dτ is the effective acceleration. The new (gauge independent)

term appears instantaneously along the direction of motion, but opposing

any applied force and is zero otherwise. This is the near field (i.e., the field

at the site of the charged particle). This is exactly what one expects of the

back reaction caused by the inertial resistance of a particle to accelerated

motion and, according to Wheeler and Feynman [28], is precisely what is

meant by radiation reaction. Thus, the collaborative use of the observer’s co-

ordinate system and the local clock of the observed system provides intrinsic
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information about the local field dynamics not available in the conventional

formulation of Maxwell’s theory. It is shown in [22], that the theory does

not require point particles, self-energy divergence, mass renormalization or

the Lorentz Dirac equation.

It is also shown in [21] that, for a closed system of interacting charged

particles, the proper-time of the center of mass corresponds to the historical

clock of Horwitz, Piron, and Fanchi (see [29] and [30]). In this case, b = c and

the corresponding Maxwell equations represent the far field (only retarded

potentials). It was further shown that, from this vantage point, the particle

interactions appear as the delayed action-at-a-distance type. This verifies

the Wheeler-Feynman conjecture that field theory and delayed action-at-a-

distance are complimentary manifestations of the same physics (see [28]).

The requirement of total conservation of momentum, angular momentum

and energy allowed us to prove the complete absorption of radiation by all

particles in the system. (Recall that, this was an assumption in the Wheeler

and Feynman approach and the center-fold of their theory.)

If we make a scale transformation (at fixed position) with E → (b/c)1/2E

and B → (b/c)1/2B, the equations in (3.4) transform to

1

b2
∂2B

∂τ2
− ∇2 ·B+

[

b̈

2b3
− 3ḃ2

4b4

]

B =
c1/2

b3/2
[4π∇× (ρu)] ,

1

b2
∂2E

∂τ2
− ∇2 ·E+

[

b̈

2b3
− 3ḃ2

4b4

]

E = −c
1/2

b1/2
∇(4πρ)− c1/2

b3/2
∂

∂τ

[

4π(ρu)

b

]

.

(3.9)
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This is the Klein-Gordon equation with an effective mass µ given by

µ =

{

~
2

c2

[

b̈

2b3
− 3ḃ2

4b4

]}1/2

=

{

~
2

c2

[

u · ü+ u̇2

2b4
− 5 (u · u̇)2

4b6

]}1/2

.(3.10)

Remark 3.1. We note that, when b is constant, a = 0, µ = 0 and t = b
cτ

(also t′ = b′

c τ), so that the local time theory is both mathematically and

physically equivalent to the standard theory. However, when b is not constant

µ 6= 0 and the two approaches are not physically equivalent.

For additional insight, let (x(τ), τ) represent the field position and

(x̄(τ ′), τ ′) the retarded position of a source charge e, with r = x − x̄. If

we set r = |x− x̄|, s = r − ( (r·u)b ), and ru = r − r
bu, then we were able to

compute the E and B fields directly in [21] to obtain:

E(x, τ) =
e
[

ru(1− u2
/

b2)
]

s3
+
e [r× (ru × a)]

b2s3
+
e(u · a) [r× (u× r)]

b4s3

and

B(x, τ) =
e
[

(r× ru)(1 − u2
/

b2)
]

rs3
+
er× [r× (ru × a)]

rb2s3
+
er(u · a)(r× u)

b4s3
.

(It is easy to see that B is orthogonal to E.) The first two terms in the

above equations are standard, in the (x(t),w(t)) variables. The third part

of both equations is new and arises because of the dissipative term in our

wave equation. (Once again, this term is zero when b is constant.) It is

easy to see that r× (u × r) = r2u− (u · r)r, so we get a component along

the direction of motion. (Thus, the E field has a longitudinal part.) This

confirms our claim that the new dissipative term is equivalent to an effective
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mass that arises due to the collaborative acceleration of the particle. This

means that the cause for radiation reaction comes directly from the use of

the local clock to formulate Maxwell’s equations. It follows that, in this

approach there is no need to assume advanced potentials, self-interaction,

mass renormalization and the Lorentz-Dirac equation in order to account

for it (radiation reaction), as is required when the observer clock is used.

Furthermore, no assumptions about the structure of the source are needed.

3.3. Proper-time Lorentz Group. We now identify the new transfor-

mation group that preserves the first postulate of the special theory. The

standard (Lorentz) time transformations between two inertial observers can

be written as

t′ = γ(v)
[

t− x · v
/

c2
]

, t = γ(v)
[

t′ + x′ · v
/

c2
]

.(3.11)

We want to replace t, t′ by τ . To do this, use the relationship between dt

and dτ to get:

t = 1
c

∫ τ

0
b(s)ds = 1

c b̄τ, t′ = 1
c

∫ τ

0
b′(s)ds = 1

c b̄
′τ,(3.12)

where we have used the mean value theorem of calculus to obtain the end re-

sult, so that both b̄ and b̄′ represent an earlier τ -value of b and b′ respectively.

Note that, as b and b′ depend on τ , the transformations (3.8) represent ex-

plicit nonlinear relationships between t, t′ and τ (during interaction). This

is to be expected in the general case when the system is acted on by external

forces. However, if b is constant (so is b′), then t, t′ and τ differ by a scale
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transformation, which means they are physically equivalent, in addition to

their natural mathematical equivalence.

If we set

d∗ = d/γ(v)− (1− γ(v))
[

(v · d)
/

(γ(v)v2)
]

v,

we can write the transformations that fix τ as:

x′ = γ(v)
[

x∗ − (v/c)b̄τ
]

, x = γ(v)
[

x′∗ + (v/c)b̄′τ
]

,

u′ = γ(v) [u∗ − (v/c)b] , u = γ(v)
[

u′∗ + (v/c)b′
]

,

a′ = γ(v) {a∗ − v [(u · a)/(bc)]} , a = γ(v)
{

a′∗ + v
[

(u′ · a′)
/

(b′c)
]}

.

(3.13)

If we put equation (3.8) in (3.7), differentiate with respect to τ and cancel

the extra factor of c, we get the transformations between b and b′:

b′(τ) = γ(v) [b(τ)− u · v/c] , b(τ) = γ(v)
[

b′(τ) + u′ · v
/

c
]

.(3.14)

From these results, it follows that, at the local level, during interaction,

equations (3.9) and (3.10) provide a nonlinear and nonlocal representation

of the Lorentz group. We call it the proper-time Lorentz group.

3.4. Proper-Time Particle Theory. We now investigate the correspond-

ing particle theory. The key concept to our approach may be seen by exam-

ining the time evolution of a dynamical parameterW (x,p), via the standard

formulation of classical mechanics, described in terms of the Poisson brack-

ets:

dW

dt
= {H,W} .(3.15)
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We can also represent the dynamics via the proper time by using the repre-

sentation dτ = (1/γ)dt = (mc2
/

H)dt, so that:

dW

dτ
=
dt

dτ

dW

dt
=

H

mc2
{H,W} .

Assuming a well-defined (invariant) rest energy (mc2) for the particle, we

determine the canonical proper-time Hamiltonian K such that:

{K,W } =
H

mc2
{H,W} , K|p=0 = H|p=0 = mc2.

Using

{K,W } =

[

H

mc2
∂H

∂p

]

∂W

∂x
−

[

H

mc2
∂H

∂x

]

∂W

∂p

=
∂

∂p

[

H2

2mc2
+ a

]

∂W

∂x
− ∂

∂x

[

H2

2mc2
+ a′

]

∂W

∂p
,

we get that a = a′ = 1
2mc

2, so that (assuming no explicit time dependence)

K =
H2

2mc2
+
mc2

2
, and

dW

dτ
= {K,W } .

Since τ is invariant during interaction (minimal coupling), we make the

natural assumption that (the form of) K also remains invariant. Thus, if

√

c2p2 +m2c4 →
√
c2π2 +m2c4 + V , where A a vector potential, V is a

potential energy term and π = p− e
cA. In this case, K becomes:

K =
π
2

2m
+mc2 +

V 2

2mc2
+
V
√
c2π2 +m2c4

mc2
.

If we set H0 =
√
c2π2 +m2c4, use standard vector identities with H0 =

mcb− V , ∇× π = − e
cB, and compute Hamilton’s equations, we get:

u =
dx

dτ
=

[

1 +
V

H0

]

π

m
=

[

mbc

mbc− V

]

π

m
⇒ π = mu− V

bc
u
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and

dp

dτ
= −

[

(π · ∇)π + e
cπ ×B

]

m

[

1 +
V

H0

]

−∇V H0

mc2

[

1 +
V

H0

]

= e
c (u · ∇)A+ e

cu×B−∇V b
c

[

1 +
V

mcb

]

.

(3.16)

Further reduction, using the definition of E, with V = eΦ, we have:

c

b

[

dp

dτ
− e

c

dA

dτ

]

= −e
b

∂A

∂τ
+ e

bu×B− e∇Φ

[

1 +
V

mcb

]

= eE+ e
bu×B− e∇Φ

V

mcb
.

(3.17)

It is clear that the additional term in equation (3.7) acts to oppose the force

imposed by the charged particle part of the E field (i.e., −∇V ). In order

to see the physical meaning of the term, assume an interaction between a

proton and an electron, where A = 0 and V is the Coulomb interaction, so

that (3.7) becomes:

c

b

dp

dτ
= −∇V −∇V V

mcb
.(3.18)

Using H0 ≈ mc2, we see that limr→r0 u = 0 and limr→r0 a = 0, so that:

0 = −∇V −∇V V

mc2
(3.19)

and the classical electron radius, r0, is a critical point (i.e., −∇V −

∇V (V/mc2) = 0). Thus, for 0 < r < r0, the force becomes repulsive.

We interpret this as a fixed region of repulsion, so that the singularity r = 0

is impossible to reach at the classical level. The neglected terms are attrac-

tive but of lower order. This makes the critical point less than r0. Thus, in

general, the electron experiences a strongly repulsive force when it gets too
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close to the proton. This means that the classical principle of impenetra-

bility, namely that no two particles can occupy the same space at the same

time occurs naturally. It is this additional term that leads us to suspect that

the electron may not act like a point particle in the s-states of hydrogen,

where it has a finite probability of being at the center of the proton.

The above observation also implies that, two electrons will experience an

attraction if they can come close enough together as for example, at very

low energies (temperatures).

The Lagrangian representation reveals the close relationship to the non-

relativistic case. If we solve for p, we get

p = mu− V u

cb
+
e

c
A.

Using this in K along with b2 = u2 + c2, we have

K =

(

mu− V u
bc

)2

2m
+mc2 +

V 2

2mc2
+
V (mcb− V )

mc2

= 1
2mu

2 − V u2

bc
+

V 2u2

2mb2c2
+mc2 − V 2

2mc2
+
V b

c
.

From Ldτ = p · dx−Kdτ , we can write L as

L =

[

mu− V u

bc

]

· u+ e
cA · u

−
{

1
2mu

2 − V u2

bc
+

V 2u2

2mb2c2
+mc2 +

V b

c
− V 2

2mc2

}

= 1
2mu

2 + e
cA · u−mc2 − V b

c
+

V 2

2mc2

[

1− u2

b2

]

.

From this representation, it is clear that the neglect of second order terms

gives us the non-relativistic theory.
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4. Relativistic Quantum Theory

The Klein-Gordon and Dirac equations were first discovered in early at-

tempts to make quantum mechanics compatible with the Minkowski for-

mulation of special theory of relativity. Both were partially successful but

could no longer be interpreted as particle equations and a complete theory

required quantum fields and the associated problems. For a recent discussion

of other problems, one can consult [9] (see also [6]).

In this section we introduce the canonical extension of the Dirac and

square-root equations. Let A(x, t) and V (x) be given vector and scalar

potentials and, after adding V (x) and making the transformation p → π =

p− e
cA.

To quantize our theory, we follow the standard procedure leading to the

equation:

i~
∂Φ

∂τ
= KΦ =

[

H2

2mc2
+
mc2

2

]

Φ.

However, in addition to the Dirac Hamiltonian, there are two other possible

Hamiltonians, depending on the way the potential appears with the square-

root operator:

β
√

c2π2 − ec~Σ ·B+m2c4 + V

and

β

√

c2π2 − ec~Σ ·B+ (mc2 + βV )2.
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We have identified three possible canonical proper-time particle equations

for spin-12 particles. (We also note that, these equations can be modified to

apply to particles of any spin, by a minor change in the β matrix.)

(1) The canonical proper-time version of the Dirac equation:

i~
∂Ψ

∂τ
=

{

π
2

2m
+ βV +mc2 − e~Σ ·B

2mc

+
V α · π
mc

− i~α · ∇V
2mc

+
V 2

2mc2

}

Ψ.

(4.1)

(2) The canonical proper-time version of the square-root equation, using

the first possibility:

i~
∂Ψ

∂τ
=

{

π
2

2m
− e~Σ ·B

2mc
+mc2 +

V 2

2mc2

}

Ψ

+
V β

√
c2π2 − ec~Σ ·B+m2c4

2mc2
Ψ+

β
√
c2π2 − ec~Σ ·B+m2c4

2mc2
VΨ.

(4.2)

(3) The canonical proper-time version of the square-root equation, using

the second possibility:

i~
∂Ψ

∂τ
=

π
2

2m
+ βV +mc2 − e~Σ ·B

2mc
+

V 2

2mc2
.(4.3)

If V = 0, all equations reduce to:

i~
∂Ψ

∂τ
=

{

π
2

2m
+mc2 − e~Σ ·B

2mc

}

Ψ.

The close relationship to the Schrödinger operator, makes it easy to see that,

in all cases, K is positive definite. In mathematical terms, the lower order

terms are relatively bounded with respect to π
2/2m. It follows that, unlike

the Dirac and Klein-Gordon approach, we can interpret (4.1)-(4.3) as true

particle equations. In the above equations, we have assumed that V is time
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independent. (However, since A(x, t) can have general time-dependence,

√
c2π2 − ec~Σ ·B+m2c4 need not be related to the Dirac operator by a

Foldy-Wouthuysen type transformation.)

We plan to investigate the last two equations at a later time. In the next

section, we focus on the canonical proper-time Dirac extension.

4.1. The Dirac Theory. Since the Dirac equation forms the basis for QED,

an important test of our proper-time extension is how well it compares to the

Dirac equation in its description of the hydrogen spectrum. In this section,

we compare the Dirac equation with the canonical proper-time extension for

the Hydrogen atom problem.

If we let A = 0, V0 = − e2

r and consider the standard Dirac Hydrogen

atom eigenvalue problem,

λnΨn = HDΨn,

where λn is the n-th eigenvalue and Ψn is the corresponding eigenfunction.

For this case, if j is the total angular momentum and α is the fine structure

constant, we have

λn = mc2











1 +
α2

[

n−
∣

∣j + 1
2

∣

∣+

√

(

j + 1
2

)2 − α2

]2











−1/2

.

For the proper-time extension, with the same eigenfunction, we have

EnΨn =

[

H2
D

2mc2
+
mc2

2

]

Ψn =

[

λ2n
2mc2

+
mc2

2

]

Ψn.
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In order to compare the two expressions to order O(α8), we begin with the

following approximations:

(1) (1 + x)−1 ≃ 1 + x+ x2 +O(x3)

(2) (1 + x)−1/2 ≃ 1− 1
2x+ 3

8x
2 +O(x3)

(3) (1− x)1/2 ≃ 1− 1
2x− 1

8x
2 +O(x3).

Let κ = j + 1
2 , then our proper time extension can be written as:

En =

[

λ2n
2mc2

+
mc2

2

]

=
mc2

2

{

1 +

[

1 + α2

(n−|κ|+
√
κ2−α2)

2

]−1
}

≃ mc2

2

{

1 +

[

1− α2

(n−|κ|+
√
κ2−α2)

2 + α4

(n−|κ|+
√
κ2−α2)

4

]}

=
mc2

2

[

2− α2

(n−|κ|+
√
κ2−α2)

2 + α4

(n−|κ|+
√
κ2−α2)

4

]

.

(4.4)

Using (2), we have:

λn ≃ mc2
[

1 + α2

(n−|κ|+
√
κ2−α2)

2

]−1/2

≃ mc2
[

1− α2

2(n−|κ|+
√
κ2−α2)

2 + 3α4

8(n−|κ|+
√
κ2−α2)

4

]

.

Using (3), we can approximate
√
κ2 − α2 to get

√

κ2 − α2 ≃ |κ|
(

1− α2

2κ2 − α4

8κ4

)

= |κ| − α2

2|κ| ⇒

n− |κ|+
√

κ2 − α2 ≃ n− α2

2|κ| ⇒

α2
[

n− |κ|+
√

κ2 − α2
]−2

≃ α2

n2

[

(

1− α2

2n|κ|

)2
]−1

≃ α2

n2

[

1 + α2

n|κ| −
α4

4n2|κ|3
]

=
α2

n2
+

α4

n3 |κ| −
α6

4n4|κ|3
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and

α4
[

n− |κ|+
√

κ2 − α2
]−4

≃ α4

n4

[

(

1− α2

2n|κ|

)4
]−1

≃ α4

n4

[

1 + 2α2

n|κ|

]

.

With the last result, we now have:

λn ≃ mc2
{

1− α2

2n2

[

1 +
α2

n |κ| −
α4

4n|κ|3
]

+
3α4

8n4

[

1 +
α2

n |κ|

]}

= mc2
{[

1− α2

2n2
− α4

2n4

(

n

|κ| −
3

4

)]

+
α6

8n5|κ|

(

n2

|κ|2
+ 3

)}

.

(4.5)

For En, we have

En ≃ mc2

2

{

2−
[

α2

n2
+

α4

n3 |κ| −
α6

4n4|κ|2
]

+
α4

n4

[

1 +
2α2

n |κ|

]}

= mc2
{[

1− α2

2n2
− α4

2n4

(

n

|κ| − 1

)]

+
α6

4n5 |κ|

(

n

|κ| + 8

)}

.

(4.6)

It is now easy to see that, to order α4, λn−En = −α4

8n4 , so that the En values

are systematically lower than the λn values.

Table 1 below provides a relative comparison between the Dirac and

proper-time extension compared with the experimental data for s-states,

compiled by National Institute for Standards and Technology (NIST) of the

US government.

Table 1: Comparison with NIST data for s-states

State Dirac Proper-time Nist ∆-DNIST ∆-PTNIST

2s 10.20439429 10.20422448 10.19881008 .00558421 .00541440

3s 12.09411035 12.09393146 12.08749443 .00661592 .00643603

4s 12.75550914 12.75532871 12.74853244 .00697670 .00679627

5s 13.06164150 13.06146066 13.05449789 .00714361 .00696277
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As can be seen from the last two columns, the proper-time extension

consistently provides results that a closer to the experimental data for all

cases. (We could not compare the two 1s-states with experiment, because

of the NIST normalization for this state.)

In Table 2, we see the same comparative results for the p, d and f-states.

Table 2: Comparison with NIST data for p, d and f-states

State Dirac Proper-time Nist ∆-DNIST ∆-PTNIST

2p (j=1/2) 10.20439429 10.20422448 10.19880553 0.005588760 0.005418952

2p (j=3/2) 10.20443957 10.20426976 10.19885089 0.005588681 0.005418870

3p (j=1/2) 12.09411035 12.09393146 12.08749292 0.006617431 0.006438537

3p (j=3/2) 12.09412377 12.09394488 12.08750636 0.006617407 0.006438512

3d (j=3/2) 12.09412377 12.09394488 12.08750634 0.006617430 0.006438535

3d (j=5/2) 12.09412824 12.09394935 12.08751082 0.006617422 0.006438528

4p (j=1/2) 12.75550914 12.75532871 12.74853167 0.006977467 0.006797044

4f (j=7/2) 12.75551763 12.75533720 12.74854038 0.006976250 0.006796820

Thus, in all cases, the canonical proper-time extension of the Dirac equa-

tion provides a closer approximation to the known experimental data for the

Hydrogen spectra compared to the Dirac equation. In all cases, the changes

are in the forth decimal place. This is insufficient to account for either the

Lamb shift or the anomalous magnetic moment.

4.2. Future Direction. In what follows, let V = V0 = −e2
r . Based on

our analysis of the square-root operator in the first section and the Dirac



FOUNDATIONS FOR PROPER-TIME RELATIVISTIC QUANTUM THEORY41

operator in the second section, we are in the process of investigating the

possibility that in s-states, the potential energy takes on the form:

V = −e
2
√
M2c4 − ec~Σ ·B+ c2π2

Mc2r
= −e

2

r

(

1− e~Σ·B
M2c3

+ π2

M2c2

)

√

1− e~Σ·B
M2c3

+ π2

M2c2

≃ V0 +
r0
r

e~Σ ·B
2Mc

− r0
r

π2

2M
,

(4.7)

where r0 = e2/Mc2. There are three possible choices for M :

(1) The electron cannot be treated as a point particle in s-states of

hydrogen, so that M = m, the mass of the electron and r0 is the

classical electron radius.

(2) Neither the electron nor the proton can be treated as point particles

in s-states of hydrogen, so that M = µ, the reduced mass and r0 is

the classical mixed reduced radius.

(3) The electron can be treated as a point particle in s-states of hydro-

gen, but the proton cannot so that M = mp, the mass of the proton

and r0 is the classical reduced proton radius.

It is clear that, at the zero-th order, we recover the Coulomb potential and

the second term in (4.7) is a first order approximation. Assuming the first

case, our eigenvalue problem becomes:

EΨ =

{

π
2

2m
+ βV +mc2 − e~Σ ·B

2mc

+
V α · π
mc

− i~α · ∇V
2mc

+
V 2

2mc2

}

Ψ.

(4.8)
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As a first try, we set V = V0 for the terms containing α, use our first order

approximation in the second term and V itself in the last term, so that

βV ≃ βV0 + β
r0
r

e~Σ ·B
2mc

− β
r0
r

π2

2m
.

For the last term, we use the approximation:

V 2

2mc2
=

1

2

{

V0
mc2

√

1− e~Σ ·B
m2c3

+
π2

m2c2
V0
mc2

√

1− e~Σ ·B
m2c3

+
π2

m2c2

}

≃ 1

2

{

[

V0
mc2

]2 [

1− e~Σ ·B
m2c3

+
π2

m2c2

]

}

+
V0
mc2

p2 [V0]

2m2c2

√

1− e~Σ ·B
m2c3

+
π2

m2c2

≃ 1

2

{

[

V0
mc2

]2 [

1− e~Σ ·B
m2c3

+
π2

m2c2

]

}

+
V0
mc2

p2 [V0]

2m2c2

=
1

2

{

[

V0
mc2

]2 [

1− e~Σ ·B
m2c3

+
π2

m2c2

]

}

− V0
mc2

2π~2

m2c2
δ (r) .

Using these terms, we have:

EΨ =

{

1− β
r0
r

+
r20
r2

}

π2

2m
Ψ+

[

1 + β
r0
r

− r20
r2

]

e~Σ ·B
2mc

Ψ+mc2Ψ

+βV0 +
V0α · π
mc

Ψ− i~α · ∇V0
2mc

Ψ+
V 2
0

2mc2
Ψ+

r0
r

2π~2

mc2
δ (r)Ψ

=

{

π2

2m
+ βV0 −

e~Σ ·B
2mc

+mc2 +
V0α · π
mc

− i~α · ∇V0
2mc

+
V 2
0

2mc2

}

Ψ

+

{[

r20
r2

− β
r0
r

]

π2

2m
−

[

r20
r2

− β
r0
r

]

e~Σ ·B
2mc

+
r0
r

2π~2

m2c2
δ (r)

}

Ψ

= E0Ψ+K ′Ψ,

where

K ′ =

[

r20
r2

− β
r0
r

]

π2

2m
−

[

r20
r2

− β
r0
r

]

e~Σ ·B
2mc

+
r0
r

2π~2

m2c2
δ (r).

In conclusion, if this approach is as successful as we believe, we will still

need to justify our approximation methods.
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