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Preface to the Second Edition

In this second edition of Modern Nuclear Chemistry, we have added new
chapters on nuclear medicine, particle physics, and nuclear forensics. We have
edited and updated all the chapters in the first edition reflecting the substantial
progress that has been made in the past 12 years. We have dropped the chapter
on radiotracer methods. We have tried to remove all the typographical errors
in the first edition, without, we hope, introducing new errors. We continue to
be grateful to the many colleagues and students who have taught us about a
wide range of nuclear chemistry. In addition to our colleagues acknowledged in
the first edition of this book, we gratefully acknowledge the helpful comments
of J. Cerny and L.G. Sobotka on various portions of the book.

Walter D. Loveland
Corvallis, OR
March, 2016

David ]. Morrissey
East Lansing, M1
March, 2016



Preface to the First Edition

There are many fine textbooks of nuclear physics and chemistry in print at this
time. So the question can be raised as to why we would write another textbook,
especially one focusing on the smaller discipline of nuclear chemistry. When
we began this project over five years ago, we felt that we were a unique juncture
in nuclear chemistry and technology and that, immodestly, we had a unique
perspective to offer to students.

Much of the mainstream of nuclear chemistry is now deeply tied to nuclear
physics, in a cooperative endeavor called “nuclear science” At the same time,
there is a large, growing, and vital community of people who use the applica-
tions of nuclear chemistry to tackle wide-ranging set of problems in the phys-
ical, biological, and environmental sciences, medicine, engineering, and so on.
We thought it was important to bring together, in a single volume, a rigorous,
detailed perspective on both the “pure” and “applied” aspects of nuclear chem-
istry. As such, one might find more detail about any particular subject than one
might like. We hope this encourages instructors to summarize the textbook
material and present it in a manner most suitable to a particular audience. The
amount of material contained in this book is too much for a one quarter or one
semester course and a bit too little for a yearlong course. Instructors can pick
and choose which material seems most suitable for their course.

We have attempted to present nuclear chemistry and the associated applica-
tions at a level suitable for an advanced undergraduate or beginning graduate
student. We have assumed that a student has prior or concurrent instruction in
physical chemistry or modern physics and has some skills in handling differen-
tial equations. We have attempted to sprinkle solved problems throughout the
text, as we believe that one learns by working problems. The end-of-the-chapter
homework problems are largely examination questions used at Oregon State
University. They should be considered to be integral part of the textbook as
they are intended to illustrate or amplify the main points of each chapter. We
have taken some pains to use quantum mechanics in a schematic way, that is,
to use the conclusions of such considerations without using or demanding a
rigorous, complete approach. The use of hand-waving quantum mechanics, we



believe, is appropriate for our general audience. We summarize, in the appen-
dices, some salient features of quantum mechanics that may be useful for those
students with limited backgrounds.

Our aim is to convey the essence of the ideas and the blend of theory and
experiment that characterizes nuclear and radiochemistry. We have included
some more advanced material for those who would like a deeper immersion in
the subject. Our hope is that the reader can use this book for an introductory
treatment of the subject of interest and can use the end-of-chapter bibliogra-
phy as a guide to more advanced and detailed presentations. We also hope the
practicing scientist might see this volume as a quick refresher course for the
rudiments of relatively unfamiliar aspects of nuclear and radiochemistry and
as an information booth for directions for more detailed inquiries.

It is with the deep sense of loss and sadness that the junior authors (WDL,
DJM) note the passing of our dear friend, colleague, and coauthor, Prof. Glenn
T. Seaborg, before the completion of this work. Glenn participated in planning
and development of the textbook, wrote some of the text, and reviewed much
of the rest. We deeply miss his guidance and his perspective as we have brought
this project to conclusion. We regret not paying closer attention to his urging
that we work harder and faster as he would remark to us, “You know I'm not
going to live forever” We hope that the thoughts and ideas that he taught us are
reflected in these pages.

We gratefully acknowledge the many colleagues and students who have
taught us about nuclear chemistry and other things. Special thanks are due
to Darrah Thomas and the late Tom Sugihara for pointing out better ways to
discuss some material. We acknowledge the efforts of Einar Hageb who used
an early version of this book in his classes and gave us important feedback.
We gratefully acknowledge the helpful comments of D. Peterson, P. Mantica,
A. Paulenova, and R.A. Schmitt on various portions of the book. One of us
(WDL) wishes to acknowledge the hospitality of the National Superconducting
Cyclotron Laboratory at Michigan State University for their hospitality in the
fall of 1999 during which time a portion of this book was written.

Walter D. Loveland
Corvallis, OR
October, 2004

David ]. Morrissey
East Lansing, M1
October, 2004



Introductory Concepts

1.1 Introduction

Nuclear chemistry consists of a four-pronged endeavor made up of (a) studies
of the chemical and physical properties of the heaviest elements where detec-
tion of radioactive decay is an essential part of the work, (b) studies of nuclear
properties such as structure, reactions, and radioactive decay by people trained
as chemists, (c) studies of macroscopic phenomena (such as geochronology
or astrophysics) where nuclear processes are intimately involved, and (d)
application of measurement techniques based on nuclear phenomena (such
as activation analysis or radiotracers) to study scientific problems in a variety
of fields. The principal activity or “mainstream” of nuclear chemistry involves
those activities listed under (b).

As a branch of chemistry, the activities of nuclear chemists frequently span
several traditional areas of chemistry such as organic, analytical, inorganic, and
physical chemistry. Nuclear chemistry has ties to all branches of chemistry.
For example, nuclear chemists are frequently involved with the synthesis and
preparation of radiolabeled molecules for use in research or medicine. Nuclear
analytical techniques are an important part of the arsenal of the modern analyt-
ical chemist. The study of the actinide and transactinide elements has involved
the joint efforts of nuclear and inorganic chemists in extending knowledge of
the periodic table. Certainly the physical concepts and reasoning at the heart
of modern nuclear chemistry are familiar to physical chemists. In this book we
will touch on many of these interdisciplinary topics and attempt to bring in
familiar chemical concepts.

A frequently asked question is “what are the differences between nuclear
physics and nuclear chemistry?” Clearly, the two endeavors overlap to a large
extent, and in recognition of this overlap, they are collectively referred to by
the catchall phrase “nuclear science” But we believe that there are fundamental,
important distinctions between these two fields. Besides the continuing close
ties to traditional chemistry cited previously, nuclear chemists tend to study
nuclear problems in different ways than nuclear physicists. Much of nuclear



physics is focused on detailed studies of the fundamental interactions oper-
ating between subatomic particles and the basic symmetries governing their
behavior. Nuclear chemists, by contrast, have tended to focus on studies of
more complex phenomena where “statistical behavior” is important. Nuclear
chemists are more likely to be involved in applications of nuclear phenomena
than nuclear physicists, although there is clearly a considerable overlap in their
efforts. Some problems, such as the study of the nuclear fuel cycle in reactors or
the migration of nuclides in the environment, are so inherently chemical that
they involve chemists almost exclusively.

One term that is frequently associated with nuclear chemistry is radio-
chemistry. The term radiochemistry refers to the chemical manipulation of
radioactivity and associated phenomena. All radiochemists are, by definition,
nuclear chemists, but not all nuclear chemists are radiochemists. Many nuclear
chemists use purely nonchemical and therefore physical techniques to study
nuclear phenomena, and thus, their work is not radiochemistry.

1.2 The Excitement and Relevance of
Nuclear Chemistry

What do nuclear chemists do? Why do they do it? Who are the nuclear
chemists? What is exciting and relevant about nuclear chemistry? The answers
to these questions and many more similar questions are what we will discuss
in this book.

Nuclear chemists ask questions about the sizes of things like nuclei and their
constituents. But because nuclear reactions are what makes the stars shine, the
laboratory for many nuclear chemists is the universe with attention focusing on
supernova and neutron stars (the largest known “nuclei”). The size scale for the
nuclear chemistry laboratory ranges from zeptometers (1072! m) to zettameters
(102! m). Nuclear chemists are always trying to make/discover new things about
the natural world. From using radioactivity to measure the temperature of the
planet Earth to tracing the flow of groundwater or the circulation patterns of
the oceans, nuclear chemists explore the natural world. What makes the stars
shine or how do they shine? A nuclear chemist, Ray Davis, won the 2002 Nobel
Prize in Physics for his pioneering work on the neutrinos emitted by the sun
(see Chapter 12).

Speaking of Nobel Prizes, the junior authors (WDL, DJM) would be remiss
not to mention that our coauthor (GTS) won the 1951 Nobel Prize in Chem-
istry for his discoveries in the chemistry of the transuranium elements. In total,
nuclear chemists and physicists have discovered 26 new elements, expanding
the fundamental building blocks of nature by about 30%. The expansion of the
nuclear landscape from the 3000 known nuclei to the 7000 possibly bound



nuclei remains an agenda item for nuclear science. Understanding why only
about 228 of these nuclei are stable is also important.

Understanding the sizes and shapes of nuclei remains an important item.
Shapes such as spherical, oblate, prolate, and hexadecapole are all observed;
sometimes there are coexisting shapes even in the decay products of a single
nucleus, such as *°Po, which decays to spherical, oblate and prolate-shaped
products. Some nuclei like !'Li appear to have spatially extended structures
due to weak binding that make them huge.

The applications of nuclear chemistry to the world around us enrich our lives
in countless ways. One of these ways is the application of nuclear chemistry
to the diagnosis and treatment of disease (nuclear medicine). Over 400 million
nuclear medicine procedures are performed each year for the diagnosis of dis-
ease. The most widely used (over 10 million procedures/year) radionuclide is
9Tc™, which was discovered by one of us (GTS). Positron emission tomogra-
phy (PET) is used in over 1.5 million procedures/year in the United States. In
PET, compounds of short-lived g+ emitters, like 13F, are injected into a patient,
concentrating in particular organs. When the positron emitters decay, the g+
particles contact ordinary electrons, annihilating to produce two 0.511 MeV
photons moving in opposite directions. When enough of these photon pairs are
detected, one can form an image of the location of the decay. Studies of these
images can be used to understand the location of tumors, brain functions, and
so on. Targeted radiopharmaceuticals can be used to deliver a radiation dose to
a specific location in the body.

Nuclear chemistry plays a role in our national security. In the United States,
300 portal monitors detect the possible entry of clandestine nuclear material.
Several of these monitors employ advanced technologies to combat sophis-
ticated schemes to shield the clandestine material. In the event of a nuclear
radioactivity release, such as what occurred at the Fukushima reactor complex
in Japan, simple ray spectroscopy of exposed air filters has proven to be useful.

Nuclear power remains an important source of electricity for several coun-
tries. Nuclear chemists play key roles in waste remediation from nuclear power
plants and providing solutions for nuclear fuel cycle issues. As chemists, they
are also able to contribute to studies of material damage in reactor components.

There is a significant demand for people trained as nuclear chemists and
radiochemists. In the United States, the demand for trained nuclear chemists at
the PhD level exceeds the supply by a factor of 10 and has done so for decades.

1.3 The Atom

Before beginning a discussion of nuclei and their properties, we need to under-
stand the environment in which most nuclei exist, that is, in the center of atoms.
In elementary chemistry, we learn that the atom is the smallest unit a chemical



Figure 1.1 Schematic
representation of the relative
sizes of a lithium atom and its
nucleus. The nucleus is too
small to be represented in the
image of the atom even with
the smallest printable dot.
(See insert for color
representation of the figure.)

3x107m 5x107% m

element can be divided into that retains its chemical properties. As we know
from our study of chemistry, the radii of atoms are ~ 1 to 5 X 1071% m, that is,
1-5 A. At the center of each atom, we find the nucleus, a small object (r ~ 1
to 10 X 10715 m) that contains almost all the mass of the atom (Fig. 1.1). The
atomic nucleus contains Z protons where Z is the atomic number of the ele-
ment under study. Z is equal to the number of protons and thus the number
of positive charges in the nucleus. The chemistry of the element is controlled
by Z in that all nuclei with the same Z will have similar chemical behavior. The
nucleus also contains N neutrons where N is the neutron number. Neutrons
are uncharged particles with masses approximately equal to the mass of a pro-
ton (&1 u). The protons have a positive charge equal to that of an electron. The
overall charge of a nucleus is +Z electronic charge units.

Most of the atom is empty space in which the electrons surround the nucleus.
(Electrons are small, negatively charged particles with a charge of —1 electronic
charge units and a mass of about 1/1840 of the proton mass.) The negatively
charged electrons are bound by an electrostatic (Coulombic) attraction to the
positively charged nucleus. In a neutral atom, the number of electrons in the
atom equals the number of protons in the nucleus.

Quantum mechanics tells us that only certain discrete values of E, the total
electron energy, and /, the angular momentum of the electrons, are allowed.
These discrete states have been depicted in the familiar semiclassical picture of
the atom (Fig. 1.1) as a tiny nucleus with electrons rotating about it in discrete
orbits. In this book, we will examine nuclear structure and will develop a similar
semiclassical picture of the nucleus that will allow us to understand and predict
a large range of nuclear phenomena.

1.4 Atomic Processes

The sizes and energy scales of atomic and nuclear processes are very different.
These differences allow us to consider them separately.



1.4.1 lonization

Suppose one atom collides with another atom. If the collision is inelastic, (the
kinetic energies of the colliding nuclei are not conserved), one of two things
may happen. They are (a) excitation of one or both atoms to an excited state
involving a change in electron configuration or (b) ionization of atoms, that
is, removal of one or more of the atom’s electrons to form a positively charged
ion. For ionization to occur, an atomic electron must receive an energy that is at
least equivalent to its binding energy, which, for the innermost or K electrons,
iS (Zoective/ 137)%(255.5) keV, where Z ... is the effective nuclear charge felt by
the electron (and includes the effects of screening of the nuclear charge by other
electrons). This effective nuclear charge for K electrons can be approximated by
the expression (Z — 0.3). As one can see from these expressions, the energy nec-
essary to cause ionization far exceeds the kinetic energies of gaseous atoms at
room temperature. Thus, atoms must be moving with high speeds (as the result
of nuclear decay processes or acceleration) to eject tightly bound electrons from
other atoms.

1.4.2 X-Ray Emission

The term X-ray refers to the electromagnetic radiation produced when an elec-
tron in an outer atomic electron shell drops down to fill a vacancy in an inner
atomic electron shell (Fig. 1.2), such as going from the M shell to fill a vacancy
in the L shell. The electron loses potential energy in this transition (in going
to a more tightly bound shell) and radiates this energy in the form of X-rays.
(X-rays are not to be confused with generally more energetic y-rays that result
from transitions made by the neutrons and protons in the nucleus of the atom,

Figure 1.2 Schematic
representation to show
X-ray emission to fill vacancy
caused by nuclear decay. An
L shell electron (A) is shown
filling a K shell vacancy (B).
In doing so, it emits a
characteristic K X-ray.

K X-ray
emission




not in the atomic electron shells.) The energy of the X-ray is given by the differ-
ence in the binding energies of the electrons in the two shells, which, in turn,
depends on the atomic number of the element. Thus X-ray energies can be used
to determine the atomic number of the elemental constituents of a material and
are also regarded as conclusive proof of the identification of a new chemical
element.

In X-ray terminology, X-rays due to transitions from the L to K shell are called
K, X-rays; X-rays due to transitions from the M to K shells are called K; X-rays.
In a further refinement, the terms K ; and K, refer to X-rays originating in
different subshells (2p;,, 2p; ;) of the L shell. X-rays from M to L transitions
are L, and so on. For each transition, the changes in orbital angular momentum,
A?, and total angular momentum, Aj, are required to be

Af =+1 (1.1)
Aj=0,+1 (1.2)

The simple Bohr model of the hydrogen-like atom (one electron only) predicts
that the X-ray energy or the transition energy, AE, is given as

1 1
AE = Einitial - Eﬁnal = RoohCZ2 < 2 - 2_) (13)
initial final
where R, /4, ¢, and n denote the Rydberg constant, the Planck constant, the
speed of light, and the principal quantum number for the orbital electron,
respectively. Since the X-ray energy, E,, is actually — AE, we can write (after
substituting values for the physical constants)

E, =13.62* (% - 21 >e\/ (1.4)

nﬁnal initial

where E_ is given in units of electron volts (eV).
For K, X-rays from ions with only one electron,

K _ L _ 1\,
ES=136(; - i)z eV (1.5)
while for L, X-rays, we have
El=136(= - =) Z2ev (1.6)
x T2 32 :

In reality, many electrons will surround the nucleus, and we must replace Z by
Z ogrective 10 reflect the screening of the nuclear charge by these other electrons.
This correction was done by Moseley who showed that the frequencies, v, of

the K, series X-rays could be expressed as

vl72 = const(Z — 1) (1.7)



while for L, series X-rays,
V72 = const(Z — 7.4) (1.8)

Moseley thus demonstrated the X-ray energies (= /#v) depend on the square
of some altered form (due to screening) of the atomic number. Also, the rela-
tive intensities of the K,;, K,,, etc X-rays will be proportional to the number
of possible ways to make the transition. Thus, we expect the K, /K, intensity
ratio to be ~2 as the maximum number of electrons in the 2p; , level is 4 while
the maximum number of electrons in the 2p, , level is 2. The relative intensi-
ties of different X-rays depend on the chemical state of the atom, its oxidation
state, bonding with ligands, and other factors that affect the local electron den-
sity. These relative intensities are, thus, useful in chemical speciation studies.
We should also note, as discussed extensively in Chapters 7-9, that X-ray pro-
duction can accompany radioactive decay. Radioactive decay modes, such as
electron capture (EC) or internal conversion (IC), directly result in vacancies
in the atomic electron shells. The resulting X-rays are signatures that can be
used to characterize the decay modes and/or the decaying species.

1.5 The Nucleus: Nomenclature

A nucleus is said to be composed of nucleons. There are two “kinds” of nucleons,
the neutrons and the protons. A nucleus with a given number of protons and
neutrons is called a nuclide. The atomic number Z is the number of protons in
the nucleus, while N, the neutron number, is used to designate the number of
neutrons in the nucleus. The total number of nucleons in the nucleus is A, the
mass number. Obviously A = N + Z. Note that A, the number of nucleons in
the nucleus, is an integer, while the actual mass of that nucleus, m, is not an
integer.

Nuclides with the same number of protons in the nucleus but with differing
numbers of neutrons are called isotopes. (This word comes from the Greek iso +
topos, meaning “same place” and referring to the position in the periodic table.)
Isotopes have very similar chemical behavior because they have the same elec-
tron configurations. Nuclides with the same number of neutrons in the nucleus,
N, but differing numbers of protons, Z, are referred to as isotones. Isotones
have some nuclear properties that are similar in analogy to the similar chemi-
cal properties of isotopes. Nuclides with the same mass number, A, but differing
numbers of neutrons and protons are referred to as isobars. Isobars are impor-
tant in radioactive decay processes. Finally, the term isomer refers to a nuclide in
an excited nuclear state that has a measurable lifetime (>107° s). These labels
are straightforward, but one of them is frequently misused, that is, the term
isotope. For example, radioactive nuclei (radionuclides) are often incorrectly



referred to as radioisotopes, even though the nuclides being referenced do not
have the same atomic numbers.

The convention for designating a given nuclide (with Z protons, N neutrons)
is to write QChemical Symbol with the relative positions indicating a specific
feature of the nuclide. Thus, the nucleus with 6 protons and 8 neutrons is
?Cg or completely equivalently, "C. (The older literature used the form
NChemical Symbol®, so *C was designated as C!*. This nomenclature
is generally extinct.) Note that sometimes the atomic charge of the entity
containing the nuclide is denoted as an upper right-hand superscript. Thus a
doubly ionized atom containing a Li nucleus with 3 protons and 4 neutrons
and only one electron is designated as "Li2t.

Sample Problem 1.1: Labels

Consider the following nuclei: °™Co, *C, N, 2C, ®N. Which are iso-
topes? isotones? isobars? isomers?

Solution

%0mCo is the isomer, *C and 2C are isotopes of carbon, >N and *N are
isotopes of nitrogen, 1*C and *N are isobars (A = 14), while 2C and >N
are isotones (N = 6).

1.6 Properties of the Nucleus

We can now make an estimate of two important quantities, the size and the
density of a typical nucleus. We can say
_ . Mass A (amu)
p = Density = ~
Volume 4 IR3
3

(1.9)

if we assume that the mass of each nucleon is about 1 u and the nucleus can be
represented as a sphere. It turns out (Chapter 2) that a rule to describe the radii
of stable nuclei is that radius R is

R=12x10"8AY3 cm (1.10)

Thus we have
(A (w) (1.66 x 1072* (g/u))
42 (12x 1078413 em)’

(1.11)

where we have used the value of 1.66 X 1072* g for 1 u (Appendix A). Before
evaluating the density p numerically, we note that the A factor cancels in
the expression, leading us to conclude that all nuclei have approximately the



same density. This is similar to the situation with different sized drops of a
pure liquid. All of the molecules in a drop interact with each other with the
same short-ranged forces, and the overall drop size grows with the number
of molecules. Evaluating this expression and converting to convenient units,
we have

p ~ 200, 000 metric tons/mm?

A cube of nuclear matter that is 1 mm on a side contains a mass of 200,000
tonnes. WOW! Now we can realize what all the excitement about the nuclear
phenomena is about. Think of the tremendous forces that are needed to hold
matter together with this density. Relatively small changes in nuclei (via decay
or reactions) can release large amounts of energy. (From the point of view of the
student doing calculations with nuclear problems, a more useful expression of
the nuclear density is 0.17 nucleons/fm3.)

1.7 Survey of Nuclear Decay Types

Nuclei can emit radiation spontaneously. The general process is called radioac-
tive decay. While this subject will be discussed in detail in Chapters 3, 7, 8, and
9, we need to know a few general ideas about these processes right away (which
we can summarize in the following).

Radioactive decay usually involves one of three basic types of decay, a-decay,
p-decay, or y-decay in which an unstable nuclide spontaneously changes into
a more stable form and emits some radiation. In Table 1.1, we summarize the
basic features of these decay types.

The fact that there were three basic decay processes (and their names) was
discovered by Rutherford. He showed that all three processes occur in a sam-
ple of decaying natural uranium (and its daughters). The emitted radiations
were designated a, f#, and y to denote the penetrating power of the different
radiation types. Further research has shown that in a-decay, a heavy nucleus
spontaneously emits an *He nucleus (an a- particle). The emitted a-particles
are monoenergetic, and as a result of the decay, the parent nucleus loses two
protons and two neutrons and is transformed into a new nuclide. All nuclei
with Z > 83 are unstable with respect to this decay mode.

Nuclear f decay occurs in three ways, f~, f*, and EC. In these decays, a
nuclear neutron (proton) changes into a nuclear proton (neutron) with the ejec-
tion of neutrinos (small neutral particles) and electrons (or positrons). (In EC,
an orbital electron is captured by the nucleus, changing a proton into a neu-
tron with the emission of a neutrino.) The total number of nucleons in the
nucleus, A, does not change in these decays, only the relative number of neu-
trons and protons. In a sense, this process can “correct” or “adjust” an imbalance
between the number of neutrons, and protons in a nucleus. In f* and - decays,



ive Decay.

Typical
Energy of
N AA Emitted Particle Example Oc
2 -4 4<E <10MeV  Z8U->*Thta Z:
1 0 0<E; <2MeV MCoUN+S+V, N/
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1 0 0<E <2MeV e +*7Bi»>*"Pb+y, N/
0  01<E <2MeV ®Ni* >®Ni+y An
0 0.1 <E,<2MeV 8" -1%Sbte”  Ca




the decay energy is shared between the emitted electrons, the neutrinos, and
the recoiling daughter nucleus. Thus, the energy spectrum of the emitted elec-
trons and neutrinos is continuous ranging from zero to the decay energy. In EC
decay, essentially all the decay energy is carried away by the emitted neutrino.
Neutron-rich nuclei decay by g~ decay while proton-rich nuclei decay by g* or
EC decay. f* decay is favored in the light nuclei and requires the decay energy
to be > 1.02 MeV (for reasons to be discussed later), while EC decay is found
mostly in the heavier nuclei.

Nuclear electromagnetic decay occurs in two ways, y-decay and IC. In y-ray
decay a nucleus in an excited state decays by the emission of a photon. In IC the
same excited nucleus transfers its energy radiationlessly to an orbital electron
that is ejected from the atom. In both types of decay, only the excitation energy
of the nucleus is reduced with no change in the number of any of the nucleons.

Sample Problem 1.2: Balancing equations

The conservation of the number of nucleons in the nucleus and conser-
vation of charge during radioactive decay (Table 1.1) makes it relatively
easy to write and balance nuclear decay equations. For example, consider

The f~ decay of *°Sr
The a decay of 22Th
The B+ decay of 2Cu
The EC decay of >*Md

Solution
These decay equations can be written, using Table 1.1, as

. :gSr - §ZY+ +p 4V,
o 22Th — 'Ra+% He
o siCu - gzNi_ + 0+,
° ¢ + ff)?MdJr - i(s)gFm +v,
Besides its qualitative description, radioactive decay has an important quan-
titative description. Radioactive decay can be described as a first-order reac-

tion, that is, the number of decays is proportional to the number of decaying
nuclei present. It is described by the integrated rate law

N = Nye ™ (1.12)

where N is the number of nuclei present at time ¢ while N, is the number
of nuclei present at time ¢ = 0. The decay constant 4, a characteristic of each
nucleus, is related to the half-life ¢, , by



a=1n2 (1.13)

b
The half-life is the time required for the number of nuclei present to decrease by
afactor of 2. The number of decays that occur in a radioactive sample in a given
amount of time is called the activity A of the sample. The activity is equal to the
number of nuclei present, N, multiplied by the probability of decay per nucleus,
A, thatis, A = A N. Therefore, the activity will also decrease exponentially with

time, that is,
A=A (1.14)

where A is the number of disintegrations per unit time at time ¢ and A, is the
activity at time ¢ = 0. The half-lives of nuclei with respect to each decay mode
are often used to identify the nuclei.

Sample Problem 1.3

14C decays to N by = decay with a half-life of 5730 years. If a 1 g sam-
ple of carbon contains 15.0 dis/min, what will be its activity after 10,000
years?

Solution
e A=Ay
__In2 _ 1.210 X 107 /year
5730 years

e A = (15 dis/min) e~(1:210 X 107)(10.000) — 4 5 djs/min

All living things maintain a constant level of *C per gram of carbon
through exchange with their surroundings. When they die, this exchange
stops, and the amount of *C present decreases exponentially with
time. A measurement of the *C content of a dead object can be used
to determine the age of the object. This process and other geologically
important decay processes are discussed in Chapter 3.

1.8 Modern Physical Concepts Needed in
Nuclear Chemistry

While we shall strive to describe nuclear chemistry without using extensive
mathematics and physics, there are several important concepts from modern
physics that we need to review because we will use these concepts in our dis-
cussions.



1.8.1 Elementary Mechanics

Let us recall a few elementary relationships from classical physics that we shall
use. Force can be represented as a vector, F, which describes the rate of change
of the momentum with time:
p= P
dt
where the momentum p = mv and where m is the mass and v is the velocity
of the particle. Neglecting relativistic effects (Section 1.8.2) that are important
for particles whose velocity approaches the speed of light, we can say that the
kinetic energy of a moving body T is given as

(1.15)

T = %mu2 (1.16)

For the situation depicted in Figure 1.3 for the motion of a particle past a fixed
point, we can say that the orbital angular momentum of the particle, £, with
mass m with respect to the point Q is

I=rxp (1.17)

The quantity # is a vector whose magnitude is muvr for circular motion. For
motion past a stationary point, the magnitude is mvb where b is the distance of
closest approach called the impact parameter.

Let us also recall the relationship between the magnitude of a force F(r) that
depends on the distance between two objects, r, and the potential energy, V (r),
that is,
=4

F
dr

(1.18)

Figure 1.3 A particle of z
mass, m, moving with a
velocity, v, has a linear
momentum p = mo.
Relative to point O, the
particle has an angular
momentum of € = rx p,
where r is a vector
connecting point O and the
particle. At the point of
closest approach, r is equal
to impact parameter b. o y

I=rxp




Thus, if the Coulomb potential energy between two charged objects is given as

+k
V= 914>

AT

(1.19)

where r,, is the distance separating charges ¢, and g, (and where k is a con-
stant), we can say ¢ the magnitude of the Coulomb force, F, is

ov &
F.= 29V _ (1.20)
&=

Since forces are usually represented as vectors, it is more convenient when dis-
cussing nuclear interactions to refer to the scalar, potential energy. From the
previous discussion, we should always remember that a discussion of potential
energy V/(r) is also a discussion of force F(r).

1.8.2 Relativistic Mechanics

As Einstein demonstrated, when a particle moves with a velocity approach-
ing that of light, the classical relations (Section 1.8.1) describing its motion in a
stationary system are no longer valid. Nuclear processes frequently involve par-
ticles with such high velocities. Thus we need to understand the basic elements
of relativistic mechanics. According to the special theory of relativity, the mass
of a moving particle changes with speed according to the equation

m* = ym (1.21)
where m* and m,, are the mass of a particle in motion and at rest, respectively.
The Lorentz factor, y, is given as

-1/2
y=(1-5) (1.22)

where f is the speed of the particle, v, relative to the speed of light, ¢, that is,
p = v/c. Thus, as the speed of the particle increases, the mass also increases,
making further increases in speed more difficult. Since the mass m* cannot be
imaginary, no particle can go faster than the speed of light. The total energy of
a particle, E,, is given as

E,, =m"c? (1.23)
Since the total energy equals the kinetic energy plus the rest mass energy, we
can write

Eo =T+ myc* (1.24)
where T is the particle’s kinetic energy. Thus
T =(y — 1) myc* (1.25)

A series of relationships have been derived between the stationary coordinate
system (the scientist in his or her laboratory) and a moving (intrinsic, invariant)



Table 1.2 Comparison of Relativistic and Classical Expressions for a Free
Particle.

Classical Expression Relativistic Expression
At=t,—t, At =yAt

Mass m m = ym, (m, = rest mass)
Momentum p = mv p=ymv

T = kinetic energy =%mv2 T=(@-1)my?

Total energy E, , = E, (free particle) E,, =rmyc*

Energy—momentum relationship E = p*/2m  E2 = p*c* + mic*

coordinate system that can be compared to classical calculations of dynamic
variables (Table 1.2).
Note that for a particle at rest

Ep = myc (1.26)

where m, is the rest mass and c the speed of light. For a massless particle, such
as a photon, we have

E, =pc (1.27)

where p is the momentum of the photon. These equations make it clear why the
units of MeV/c? for mass and MeV/c for momentum are useful. An important
question is when do we use classical expressions and when do we use relativistic
expressions? A convenient but arbitrary criterion for making this decision is to
use the relativistic expression when y > 1.1. This corresponds roughly to a 13%
error in the classical expression. What does this criterion mean, in practice?
In Table 1.3, we indicate the values of the kinetic energy at which y = 1.1 for
different particles. Thus, one should always use the relativistic expressions for
photons, neutrinos, and electrons (when T, > 50 keV) or for nucleons when
the kinetic energy/nucleon exceeds 100 MeV.

Sample Problem 1.4: Relativistic Mechanics

Consider a ?°Ne ion with a kinetic energy of 1 GeV/nucleon. Calculate its
velocity, momentum, and total energy.

Solution

The kinetic energy = 20 X 1 GeV/nucleon = 20 GeV = 20,000 MeV. But
we know the kinetic energy is T = (y — 1)m,c?, and the rest mass is
~ 20 u or (20)(931.5) MeV/c or 18,630 MeV. So we can write



_ T 20000
I me T T T 18,630

L\ 2
y=(1-p)"5p= (1_ﬁ> =0.88

Thus the velocity, v, is 0.88¢ or (0.88)(3.00 X 108 m/s) = 2.6 x 108 m/s.
The momentum is given by

=2.07

= (2.07)(20) (1.67x107% kg) (2.6 x10°)
=1.8x107"7 kg - m/s
or in other units
mcv mc?p
pc = =
V1I-p2  \1-p2
= (20) (931.5) (0.88) (2.07)
=33.9GeV - p =33.9 GeV/c

= mczﬂy

The total energy is given by

E. = T + myc* = ym,c?

= (2.07)(20) (931.5) = 38.6 GeV

1.8.3 de Broglie Wavelength: Wave-Particle Duality

There is no distinction between wave and particle descriptions of matter. It is
simply a matter of convenience, which we choose to use in a given situation.
For example, it is quite natural to describe matter in terms of particles with
values of momenta, kinetic energies, and so on. It is also natural to use a wave

Table 1.3 When Does One Use
Relativistic Expressions?.

Particle T (MeV)wheny=1.1

Y,V 0

e 0.051

7 11
14

p,n 94

d 188

a 373




description for light. However, associated with each material particle, there is a
wave description in which the particle is assigned a wavelength (the de Broglie
wavelength 1) whose magnitude is given as

A== (1.28)

where p is the momentum of the particle and # is Planck’s constant. (Note that
Planck’s constant is extremely small, 6.6 x 1073 J s. Thus the wave length of a
particle is only important when the momentum is small, such as with electrons
whose mass is 9 x 107! kg.) The expression for the de Broglie wavelength may
be written in rationalized units

s (1.29)
p
where 7 is i /2z. The aforementioned expressions are classical and should be
replaced by their relativistic equivalents where appropriate, that is,
i he (1.30)
1/2
[Ek (Ek + 2m0c2)]

We can calculate typical magnitudes of these wavelengths of particles encoun-
tered in nuclear chemistry (Table 1.4). Given typical nuclear dimensions of
10713 ¢m, the data of Table 1.4 indicate the energy at which such particles might
have a wavelength similar or smaller than nuclear dimensions. These particles
can be used as probes of nuclear sizes and shapes. In a similar manner, it is
quite natural to associate a wave description to photons (Table 1.4). Here we

recall that
gz &2 ke (1.31)
v E

14
where v is the frequency associated with the wave of length 4. A convenient
form of this equation is

12397 x 1071

A(cm) = 7 i) (1.32)

Table 1.4 Typical Magnitudes of de Broglie Wavelengths.

Energy (MeV) Photon Electron Proton

0.1 1.2x107° 3.7%x1071°  9.0x 10712
1 12x10710  87x10711  29x 10712
10 12x1071  12x1071  0.9x 10712
100 12x10712  12x10712 28x10713

1000 12x1071  12x107® 0.7x10713




which was used to calculate the values in Table 1.4. But it is often useful to
speak of photons as particles particularly when they are emitted or absorbed
by a nucleus, when we write

E, =hv=pc (1.33)

Sample Problem 1.5: de Broglie Wavelength

Consider the case of a beam of 1 eV neutrons incident on a crystal.
First-order Bragg reflections are observed at 11.8°. What is the spacing
between crystal planes?

Solution
Low-energy neutrons are diffracted like X-rays. The Bragg condition is
that nA = 2d sin 6 where the index n = 1 for first-order diftraction.

A=2dsin 0

y) h/p h/+/2mE,

T 2sinf 2sinf  2sin0

p 6.63 X 1073 Js/4/2 X 1.67 x 102 kg X 1.60 x 1019 ]
h 2 sin(11.8°)
d=70x10""m

1.8.4 Heisenberg Uncertainty Principle

Simply put, the Heisenberg uncertainty principle states that there are limits on
knowing both where something is and how fast it is moving. Formally, we can
write

Ap,-Ax>h
Ap,-Ay=h
Ap,-Az>h

AE-At>h

where Ap,, Ax are the uncertainties in the x-component of the momentum and
the x coordinate, respectively, while At is the lifetime of a particle and AE is the
uncertainty in its total energy. These limits on our knowledge are not due to the
limitations of our measuring instruments. They represent fundamental limits
even with ideal or perfect instruments. It is instructive to consider a practical
example to see the effect of these limits. Consider an electron with a kinetic



energy of 5.0 + 0.05 eV. Its speed can be calculated (nonrelativistically since KE
< myc?):

L (2_Ek>“ : <(2)(5.0)(1.602 x 10719 J/eV)

1/2
=1.3x10°m/
m 9.11 x 1031 kg ) s

(1.34)
The electron’s momentum is then
p=mv=121x10"* kg -m/s (1.35)

The uncertainty in its measured momentum is 0.05/5.0 = 1.0%. The uncertainty
principle then tells us

h 1.06 x 10734 J/s

Ax = — =
T Ap 001x121x 102 kg m/s

=88x10""m (1.36)

which is about 40 atomic diameters. In short, if you know the momentum rel-
atively well, you don’t know where the electron is in space.

1.8.5 Units and Conversion Factors

Every field has its own special units of measure, and nuclear chemistry is no
different. The unit of length is the femtometer (107> m), which is called a fermi.
The unit of mass is the atomic mass unit (amu or u) that has a numerical value
of 1.66 Xx1072* g or expressed in units of MeV/c?; it is 931.5 MeV /c%. The unit of
energy is MeV (10° eV) thatis 1.602 x 10713 ], the energy gained when a proton
is accelerated through a potential of 10° V. Appendix A contains a list of the
exact numerical values of these and other convenient units. Special attention is
called to five very useful quantities:

. Aje =1.43998 MeV fm
7 = 6.58212 X 10722MeV - s

¢ =2.9979 x 10* fm/s = 29.979 cm/ns
7c=197.3 MeV fm

1 year (sidereal) = 3.1558 X107 s & & X 107 s

Problems

1.1 Define or describe the following terms or phenomena: radiochemistry,
isotone, internal conversion.

1.2 In an experiment one observes the characteristic K, X-rays of two ele-
ments at energies of 6.930 and 7.478 eV. The higher energy line is due to
Ni. What element is responsible for the lower energy line?



1.3

1.4

1.5

1.6

1.7

1.8

1.9

Calculate the speed of a particle whose kinetic energy is three times its
rest energy, T/m,c? = 3.

Given the following energies of the K, X-rays for the following elements,
make a Moseley plot of the data:

V 4.952 eV

e Cr5415eV

e Mn 5.899 eV

o Fe 6.404 eV

Predict the mode of decay of the following nuclei: 1*C, 3H, 11C, 233U,
138La.

Write complete, balanced equations for the following decays:
The a decay of 2°Th

The f~ decay of **Zr

The B+ decay of 1F

The EC decay of ?Au

Consider the decay of 28U to 2%°Pb. How many a-particles and
p-particles are emitted in this decay?

If a rock has a ratio of 2°°Pb to 238U of 0.6, what is the age of the rock?

How long will it take for a sample of ***Pu (¢, ;, = 24, 119 years) to decay
to 1/10 its original amount?

If a radioactive sample of *’Fe (¢,, = 44.496 days) has an activity of
1000 dis/min, what weight of *°Fe is present?

The environmental concentration of ***Pu (t, , = 24, 119 years) in a lake
is 3.7 x 107° dis/s/L. What is the molarity of the solution?

%P (¢, = 14.262 days) is a popular tracer in biochemistry. If I need to
have 0.1 x 10° dis/s 60 days from now, how many 32P tracer must I pur-
chase today?

Calculate the speed of a particle whose kinetic energy is three times its
rest energy.

Calculate the speed parameter f and the Lorentz factor y for the follow-
ing particles: an electron with E, = 1 MeV; a proton with E, = 1 MeV;
and a >C nucleus with E; = 12 MeV.



1.20

Consider the following free particles: a 1-eV photon, a 1-MeV electron,
and a 10-MeV proton. Which is moving the fastest? slowest? has the
most momentum? the least momentum?

How much energy is necessary to increase the speed of a proton from
0.2¢ to 0.3¢ from 0.98¢ to 0.99¢?

A nonrelativistic particle is moving five times as fast as a proton. The
ratio of their de Broglie wavelengths is 10. Calculate the mass of the par-
ticle.

What are the wavelengths of a 500-MeV photon, a 500-MeV electron,
and a 500-MeV proton?

What is the wavelength of a “thermal” neutron? Assume that its kinetic
energy is 3/2 kBT and room temperature is 20°C, T=293 K.

Consider a nuclear excited state with a lifetime of 10 ps that decays by the
emission of a 2 MeV y-ray. What is the uncertainty in the y-ray energy?
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2

Nuclear Properties

In this chapter we will turn to a systematic look at the general properties of
nuclei, including their masses and matter distributions. A very large number
of nuclei have been studied over the years, and the general size, shape, mass,
and relative stability of these nuclei follow patterns that can be understood and
interpreted with two complementary models of nuclear structure. The aver-
age size and stability of a nucleus can be described by the average binding of
the nucleons to each other in a macroscopic model, while the detailed energy
levels and decay properties can be understood with a quantum mechanical or
microscopic model. We will consider the average behavior in this chapter and
a detailed description of nuclear structure is given later in Chapter 6.

2.1 Nuclear Masses

One of the most important nuclear properties that can be directly measured
is the mass. Nuclear or atomic masses are usually given in atomic mass units
(amu or u) or their energy equivalent. The mass unit u is defined so that the
mass of one atom of 12C is equal to 12.00000 u. Note we said “atom” For con-
venience, the masses of atoms rather than nuclei are used in all calculations.
When needed, the nuclear mass 7™ can be calculated from the relationship

mnuclc2 — Matomicc2 _ [ZmOCZ +BE(Z)] (21)

where m1, is the rest mass of the electron and B,(Z) is the total binding energy of
all the electrons in the atom. B,(Z) can be estimated using the Thomas—Fermi
uniform density model of the atom with the equation

B,(Z)=15.73Z"/% eV (2.2)

Since the values of the binding energies, B,(Z), are generally small compared to
the masses of the nuclei and electrons, we shall neglect this factor in most cal-
culations. We can make a few simple calculations to illustrate the use of masses



in describing nuclear phenomena. Consider the f~ decay of C:

“C S N* + 8~ +V, + Energy (2.3)
Neglecting the electron binding and the mass of the electron antineutrino, v,
known to be less than an eV, and rearranging we have

Energy = [(m(**C) + 6m,) — (m(*N) + 6m,) + m(p)]c* (2.4)

where m(x) is the mass of only the nucleus x. Substituting in atomic masses as
appropriate and recognizing that the f~ particle is an electron, we get simply

Energy = [M(**C) — M(**N)]c? (2.5)
Let us now consider the related case of the f™-decay of ®**Cu:
%4Cu —»* Ni~ + f* + v, + Energy (2.6)

Rewriting the equation for the energy release in the decay using the nuclear
masses, 71(x), and again ignoring the electron binding energies and the electron
neutrino, we have

Energy = [(m(®*Cu) + 29m,) — (m(®*Ni) + 28m,) — (m,) — m(B*)]c?
(2.7)

Notice the extra electron for the net charge on the nickel leftover after the decay.
Substituting in atomic masses and the fact that the positron mass is exactly
equal to the electron mass, we have

Energy = [M(**Cu) — (M(**Ni) + 2m,)]c? (2.8)

The straightforward bookkeeping for the number of electrons has shown us that
for p*-decay, the difference between the initial and final nuclear masses must
be at least 2m,c? (i.e., 1.022 MeV) for the decay to be energetically possible. This
energy represents the cost of creating the positron antiparticle.

To complete our survey of the energy release in -decay, let us consider the
case of electron capture the process that is important in heavy nuclei or in f
unstable nuclei that do not have the enough decay energy to create an elec-
tron/positron pair. For example, the electron capture decay of 2°7Bi:

e” +2"Bi* -"Pb + v, + Energy (2.9)

Notice that we have separated the initial bismuth atom into an electron and
a positive bismuth ion to indicate that the electron to be captured was in an
atomic level of that atom. For the energy release in the decay, with the same
assumptions as mentioned earlier, we have

Energy = [(m(*”Bi) + 83m,) — (m(**’Pb) + 82m,)]c* (2.10)



Notice that the resulting 2’ Pb atom would be neutral when the bismuth atom
captures one of its orbital electrons. Substituting in atomic masses, we get the
simple relation:

Energy = [M(**"Bi) — M(**’Pb)]c? (2.11)

There are two final points on using atomic masses in nuclear energy calculations
that we should consider. First, the most precise mass measurements possible at
present rely on measuring the masses of singly charged ions in Penning traps.
The masses of these ions will reflect the binding energies of all of the electrons,
except the last one, of course, and the mass of the singly charged ion plus one
electron will be extremely close to that of the neutral atom. Since we are almost
always considering mass differences in nuclear energy calculations, using the
masses of neutral atoms will take into account nearly all of the effects of electron
binding.

Second, the energy change in nuclear reactions is called the Q value of that
reaction, and as we have seen, its value can be obtained by strict bookkeeping
for all the components in the reaction, particularly the electrons. If we consider
the reaction

%Fe + ‘He - Co+'H+ Q (2.12)
Rearranging for the Q value, we get
Q = [M(*°Fe) + M(*He) — M(**Co) — M(*H)]c? (2.13)

Note that the sign convention used in nuclear chemistry and physics assigns
a positive Q value for exoergic reactions, which is (unfortunately) opposite to
that used in chemistry where exoergic reactions have negative values of AH
and AE.

Sample Problem 2.1: Energy Release

Calculate the energy release in the f~ and in f* decay of ®Cu.

Solution

E for *Cu p~ decay = [M(**Cu) — M(**Zn)]c>
= [-65.421 — (=65.999)] MeV
= 0.578 MeV

E for * Cu p* decay = [M(**Cu) — M(**Zn) — 2m,]c>
= [—65.421 — (—67.096) — 1.022)] MeV
= 0.653 MeV



2.2 Terminology

The difference between the actual nuclear mass and the mass of all the individ-
ual nucleons (free protons and neutrons) that must be assembled to make the
nucleus is called the total binding energy, B, (A, Z). This binding energy rep-
resents the energy that would be released if all the nucleons come together to
form the nucleus or the work necessary to dissociate the nucleus into separate
nucleons We can write

B (A, Z) = [ZM('H) + (A — Z)M(n) — M(A, Z)]c (2.14)

where M(A, Z) is the atomic mass of the nuclide with mass number A, and
atomic number Z, M(n), and M('H) are the mass of a neutron and a hydrogen
atom, respectively. Using the mass of a hydrogen atom here brings along the
electron mass. The average binding energy per nucleon, B, (4, Z) is given by

B.(A,Z)
A

In many tabulations of nuclear properties, such as that in Appendix B, the
tabulated quantity is the mass excess rather than the mass. The mass excess,
A, is defined as M(A, Z)-A, usually given in units of the energy equivalent of
mass. Since in most, if not all, nuclear reaction calculations, the number of
nucleons remains constant and the use of mass excesses in the calculations
introduces an arithmetic simplification. Another related term is the mass
defect. The mass defect is defined as M(A, Z)-ZM(*H)-NM(n). Note that the
mass defect is a negative number for all bound nuclei, while the mass excess
could be either a negative or a positive number. Unfortunately sometimes the
terms mass defect and mass excess are incorrectly used as synonyms. Another
term that is sometimes used is the mass excess per nucleon also called the
packing fraction, which is A/A.

The work necessary to remove a neutron, proton, or o particle and others.
from a nucleus is called the (neutron, proton, or a particle) separation energy
and given the symbol S with a subscript to identify the particle. The neutron
separation from the nucleus 4Z:

ave

B,.(A,Z) = (2.15)

S, = [M(A - 1,Z) + M(n) — M(A, Z)]c* (2.16)

Such separation energies can also be expressed in terms of the total binding
energy by

S, =B (A, Z) — B (A—1,2) (2.17)

Sample Problem 2.2: Separation Energies

Calculate the neutron separation energy for 23°U and for ?°U.



Solution

For *°U : §, = [M(*U) + M(n) - M(**U)]c?
= [ACPU) + A(n) — AC*U)]
= 40.914 + 8.071 — 42.441 MeV
= 6.544 MeV

For *U : S, = [M(**U) + M(n) - M(*U)]¢?
= [ACPU) + A(m) — ACPU)]
= 47.304 + 8.071 — 50.596 MeV
=7.779 MeV

Notice that the neutron separation energy of 4Z is the excitation energy
of the nucleus 4Z produced when 471Z captures a neutron with “zero
energy, that is, the reverse reaction. Thus, when the even—odd *3*U
nucleus absorbs a very low-energy neutron, the 2**U is produced at an
excitation energy of 6.5 MeV, while the same process with 28U nuclei
gives an excitation energy of only 4.8 MeV. If it takes 5—-6 MeV to cause
these nuclei to fission, then U would be “fissionable” with zero-energy
neutrons, while 233U would not be.

2.3 Binding Energy Per Nucleon

The binding energy per nucleon is a measure of the relative stability of a nucleus.
The more tightly bound a nucleus is, the larger the binding energy per nucleon
is. The values of the average binding energy per nucleon are shown as function
of the mass number in Figure 2.1. Several features visible in this figure are worth
noting. The highest stability is associated with medium mass nuclei and the
most stable nucleus is ®2Ni. This means that the heaviest nuclei could increase
their (thermodynamic) stability by fissioning into two pieces, while the lightest
nuclei could increase their stability by fusing to make nuclei in the Fe—Ni region.
The most striking feature of Figure 2.1 is probably the nearly constant value of
the average binding energy per nucleon for most nuclei (ranging only from 7.4
to 8.8 MeV except for the lightest nuclei). This small variation is a direct conse-
quence of the short range and saturated character of the nuclear force. Suppose
that the nuclear force was long range and not saturated and further that the
binding energy of one nucleon to every other nucleon was some constant value,
K. In a nucleus with A nucleons, there would be A(A — 1)/2 “bonds” and thus
the total binding energy would be KA(A — 1)/2 with the binding energy per
nucleon being K(A — 1)/2. In other words, one would predict that the average
binding energy per nucleon should increase linearly with mass number A. That
does not happen, of course, as shown in Figure 2.1. Thus, one has to conclude
that the nuclear force is not long range but only extends over a short range.
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Figure 2.1 Average binding energy per nucleon versus mass number A for the stable nuclei
(Valentin (1981). Reproduced with the permission of North-Holland Publishing Company).

One can also observe definite peaks in the average binding energy per
nucleon in Figure 2.1 at certain values of A. This is quite reminiscent of the
variation of the electron ionization potential for atoms and suggests that there
are certain special stable nucleonic configurations similar to the inert gas
structures of atoms. The general decrease of B, at larger values of A is due to
the increasing influence of the Coulomb force, a long-range force, with all the
protons repelling one another.

Sample Problem 2.3: Binding Energies

Contrast the binding energy per nucleon in an O nucleus with the bind-
ing energy per molecule in liquid water.



Solution

Fop 160 « BU6, 8) _ [BM(*H) + 8M(n) — M(16,8)]931.5
16 16
=7.97 MeV
AH ., 40700 J/mol
For water : =
N, 6.02 x 10%3 /mol
_6.76Xx107%]
T 1.602 x 10719 J/eV
=0.42 eV

Notice that these values are constants, but different by ~7 orders of
magnitude!

2.4 Separation Energy Systematics

Figure 2.2 shows the variation of the neutron separation energy for several iso-
topes of lead. Notice that for a given value of Z (i.e., isotopes), S, is larger for
isotopes with an even value of N than that for isotopes with an odd value of
N. Similarly for a given value of N (i.e., isotopes), S, is larger for even values
of Z compared with that for odd values of Z. This difference is caused by that
part of the nuclear force that favors having neutrons paired with neutrons (with
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Figure 2.2 Neutron separation energy S, for a range of lead isotopes.



antiparallel spin) and, at the same time, having protons paired with protons
but favors to a much lesser extent n—p pairing. This nucleon pairing causes
so-called even—even nuclei (Z even, N even) to be more stable than even-odd
or odd-even nuclides, which, in turn, are more stable than odd—odd nuclei.

2.5 Abundance Systematics

In Figure 2.3, we compare the positions of the known stable nuclides of odd
A with those of even A in the chart of the nuclides. Note that as Z increases
the line of stability moves from N = Z to N/Z ~ 1.5 due to the influence of
the Coulomb force. For odd A nuclei, only one stable isobar is found, while
for even A nuclei, there are, in general, very few stable odd—odd nuclei. This is
further demonstrated by the data of Table 2.1 showing the distribution of stable
isotopes.

Neutron number N

20 40 60 80 20 40 60 80
Atomic number Z

Figure 2.3 Positions of the stable odd A and even A nuclei in a Segre chart (Meyerhof 1967).
Reproduced with the permission of McGraw-Hill Book Company).

Table 2.1 Distribution of Stable
Nuclei.

N Even Odd Even Odd
Z Even Even Odd Odd

160 53 49 4




2.6 Semiempirical Mass Equation

C.E. von Weizsicker developed a crude theory of nuclear masses in 1935 that
is still widely used. The theory uses the basic idea that nuclei behave as if they
are incompressible uniformly charged liquid drops. How can we describe the
variation of the total mass of a nuclear drop of incompressible liquid that has
a uniform electric charge? We begin by writing an expression for the mass in
terms of the total binding energy:

M(Z,A)¢ = [ZM(*H) + (A — Z)M(n)]c* — B,(Z, A) (2.18)

The total binding energy is clearly the most important part of Weizséacker’s
equation, and it has evolved into what is called the semiempirical mass
equation, which consists of a parameterization of the total binding energy of a
nucleus with Z, A with five separate parts:

72 (A-22)
CAE TR A
The justification for the five parts of this representation of the total binding
energy of the nucleus is as follows:

B (A, Z)=a,A—aA*® —a B (2.19)

1) Since there are A nucleons in the nucleus and the short-ranged nuclear force
saturates, we expect each nucleon to contribute the same amount to the total
binding energy. Thus, the first term is known as the volume term. The coef-
ficient a,, is the energy by which a nucleon in the interior of the nucleus is
bound to its nearest neighbors and is a parameter to be determined experi-
mentally.

2) Not all nucleons are in the interior, of course. Those nucleons on the sur-
face are less tightly bound because they do not have a full complement of
neighbors. A correction term should be applied to the binding energy pro-
portional to the surface area of the nucleus. The surface area of a spherical
nucleus can be taken to be 4nR?. If, as asserted earlier, the nuclear radius
is given by R = A'/3, then 4nR? x A*/3. (Notice that the volume is (4/3)nR?
that is proportional to A, hence the form of the first term.) The A% fac-
tor is multiplied by another coefficient, a,, that also has to be determined
experimentally.

3) The third term reflects the decrease in binding due to the Coulomb repul-
sion among all of the protons. The Coulomb energy of a uniform sphere can
be written as

E.= 32
5 R

where we have taken

(2.20)

=1 for simplicity. If we again substitute

R = r,A'/3, then we find that the Coulomb energy for a spherical nucleus is
E. =0.72Z%/A'3 MeV. Note that the coefficient a, is usually fitted along



B

with the other parameters, and one usually obtains the slightly smaller
value of 0.6 rather than 0.72.

The fourth term (along with the fifth term) represents quantum mechanical
effects on the binding energy. The fourth term is called the asymmetry cor-
rection and describes a decrease in the binding energy of a nucleus when
N +# Z relative to a nucleus with Z =N = A/2. To determine the general
form of this term, we should recall the quantum mechanical picture with
neutrons and protons occupying orbitals in the nucleus at well-defined ener-
gies and that the neutrons and protons obey the Pauli principle for fermions.
An oversimplified model such as that shown in Figure 2.4 will suffice to iden-
tify the mathematical form of this correction. Assume that the neutron and
proton levels of a nucleus are equidistant with spacing A and that we can
have only one nucleon per level. To build up the neutron-rich nucleus 4Z
(with Z > N) from the neighboring nucleus with N’ = Z’' = A/2, we must
take x = N — N’ protons and transform them into neutrons. Mathemati-
cally we would have Z=A/2 — x and N = A/2 + x and solving for x, x =
(N — Z)/2. Notice that all of the protons must be raised in energy to reach
an unoccupied orbital. The amount of energy increase for the first one is
OE = A, the second one will require 8E = 2A, and so on. The total energy
needed to transform the nucleus with N’ = Z’ into the nucleus with N > Z
is thus AE = £(x8F) « x?A. Notice that we could have made exactly the
same argument for changing neutrons into protons to form a proton-rich
nucleus. Finally, we should note that the energy levels in a bound nucleus
are not equally spaced but bunch closer together as the total number of
nucleons increases so that A o« 1/A. As a final matter of notation, we can
replace (N — Z) by (A — 2Z) to remove the explicit dependence on N in the
final expression.

The last term represents the special stability associated with completely
paired proton and neutron spins in a nucleus called pairing. The pairing

Neutron Proton Figure 2.4 Schematic model

states states of the energy changes when
the nucleus #Z is created
from an N = Z nucleus

I A (Meyerhof 1967).
Reproduced with the
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Book Company).
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Figure 2.5 Relative contribution of the various terms in the semiempirical mass equation to
the average binding energy per nucleon (Meyerhof 1967). Reproduced with the permission
of McGraw-Hill Book Company).

energy term is chosen to be zero for odd A nuclides; select the addi-
tive form for e—e nuclides, and select the subtractive form for o-o
nuclides.

The constants of the semiempirical binding energy equation have been
determined by fitting the measured masses of a wide range of nuclei. A
recent set of values of the coefficients are a, = 15.56 MeV, a, = 17.23 MeV,
a. = 0.7 MeV, a, = 23.285 MeV, and § = 11/A/?2 MeV. The relative con-
tribution of each term to the binding energy per nucleon is shown in
Figure 2.5. As expected, the largest constant contribution to the average
binding energy per nucleon comes from the volume energy. The sur-
face energy correction is most important for the lighter nuclei where the
fraction of nucleons in the surface is greatest. Similarly the Coulomb
energy correction is most important for the heaviest nuclei since it
depends on Z2. The asymmetry energy makes a smaller contribution
that is most important in the heaviest nuclei where the N/Z ratio is the
largest.

Sample Problem 2.4: Semiempirical Mass Equation

Calculate the average binding energy per nucleon of *Fe using the
semi-empirical mass equation.



Solution

Z2 (A —-227)?
— _ 23 _ = g X 2T
B (A, Z)y=a,A—-aA aCA1/3 a— +0
2 58 — 52)?
= 15.56(58) — 17.23(58%/3) — 0728 _ 23.285¥
581/3
LAl
581/2

= 902.48 — 258.17 — 122.25 — 14.45 + 1.44 = 509.05 MeV

and per nucleon:

B(58,26) _ 509.05
A 58
= 8.78 MeV /A

MeV/A

Notice the relative contribution of the various terms of the binding
energy.

Myers and Swiatecki (1966) have proposed a modification of the semiempir-
ical mass equation that gives a better description of the experimental masses.
This modification can be summarized in the following equation:

e e e el

Z? z?
- CBIM + C4I +6

(2.21)

where ¢;=15.677 MeV, ¢,=18.56 MeV, ¢;=0.717 MeV, ¢,=1.211 MeV, k = 1.79,
and 6 = 11/A'/2. Myers and Swiatecki have added an asymmetry energy cor-
rection term (in the square brackets) to the volume and surface energy and also
a correction to the Coulomb energy term (the ¢, term) due to the diffuseness
of the nuclear surface.

We will now look at some of the predictions of the semiempirical mass
equation. The first question we pose is what happens if we hold the mass
number, A, constant and vary the atomic number, Z, (neglecting for a moment
the pairing term). Recall from earlier that the mass is given by

M(Z,A) = [Z * M(*H) + (A — Z)M(n)]c* — B,,,(Z,A) (2.22)
and without pairing
B (Z,A) = a,A —aA*? —a Z?|AY? —a (A -22)*]A (2.23)
we can expand the symmetry term:
a,(A=22) a, A’ —4AZ 42" a,(A-4Z-4Z%)
A A A

(2.24)



Substituting back into the equation for the mass and collecting terms, we have

M= [(Mooe -+ () +a.)

(2.25)
+ ZIM(H)E — M(n)é — 4a)] + 2> <“— %>
2 A3 A

Thus, the mass equation at constant A takes on the form of a parabola (« + fZ +
vZ?) with respect to atomic number. The second term, B, is negative but the
coefficient of Z2, y, is positive and so the parabola goes through a minimum for
some value of Z, which is termed Z,. Note that Z, is not necessarily an integer.
We can now ask ourselves how can we find the value of Z, for a given atomic
mass number, that is, what is the most favored value of Z for a given value of
A? We can evaluate this by minimizing M with respect to Z at constant A, that
is, we need to solve a simple partial differential equation:

oM
(a_z>zA —0=p+2yZ, (2.26)
B M(H) - M(n) - 4
Z, = =B _ _MCD - M) — 44, (2.27)
2'Y 2 ( a. + 4a, >
A3 A

Substituting numerical values for the coefficients from the semiempirical mass
equation, we can write
1 81

Zar (2) 80 + 0.642/3 (2.28)
Thus as A goes to 0, Z, /A becomes equal to 1/2, that is, the most stable light
nuclei are predicted to have Z = N = A /2. As A gets large, the Z, /A becomes
< 1/2, typically taking on a value of about 0.4. The underlying physics behind
this trend is that, in the absence of a Coulomb repulsion between the pro-
tons, equal numbers of neutrons and protons are favored due to the asymmetry
energy term. When Z gets large, the Coulomb energy becomes large. Nuclei
with a larger number of neutrons are more stable among a given set of iso-
topes. Stability results when we have a balance between the Coulomb energy
and the asymmetry energy.

Let us now consider the specific case of A =111. From the previously
mentioned relations, we can calculate Z, = 47.76. The measured masses of the
nuclei with A = 111 are shown in Figure 2.6. Note that the expected parabolic
dependence of the mass on Z is present. The most stable nucleus has Z = 48
(Cd). All of the A = 111 nuclei that have more neutrons than "'Cd can release
energy when they decay by B~ decay, while the nuclei with fewer neutrons than
11 Cd will become more bound by f* or EC decay.

Now let us consider the neighboring case of nuclei with A = 112 (an even
mass number). We calculate that Z, = 48.15. Plotting the measured masses of
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the A = 112 nuclei versus Z (Fig. 2.7) indicates that two parabolas are present,
one for the even—even nuclei and one for the odd—odd nuclei, displaced from
one another by an energy difference of 26, the pairing energy. Since all nuclei
on the upper parabola (the o—o nuclei) can decay to a nucleus on the lower
parabola (the e—e nuclei), we conclude that there should be no stable odd—odd
nuclei. The only known exceptions to this prediction occur in the lightest nuclei
where nuclear structure effects make 2H, °Li, 1°B, and *N stable. Note that
some odd—odd nuclei near stability can thus decay by both p~ and p* emission.
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Figure 2.8 Plot of the nuclear mass excesses versus neutron number N and proton number
Z for the light nuclei showing the nuclear mass surface and the valley of § stability (Halliday
et al. (1992)). Reproduced with the permission of John Wiley & Sons).

Note also that so-called double B decay is energetically possible (1'2Pd —!12
Cd + 2B~ + 2v,). This mode of decay has been observed in a few rare cases such
as '*Te and **Se and the half-lives for this mode of decay are very long (¢, , =
1020 — 10?! years). Active searches are underway for the so-called neutrinoless
double B decay, for example, 1**Xe —136 Ba + 2p~, that would only be possible if
the electron neutrino is its own antiparticle. Notice also that we can have more
than one stable isotope for a given A but all of them will be even—even nuclei.

This parabolic dependence of the nuclear mass upon Z for fixed A can be
used to define an overall nuclear mass surface for all A (Fig. 2.8). The position
of the minimum mass for each A (most bound isobar) defines what is called the
valley of B stability. p Decay is then visualized as moving down the walls of the
valley toward the valley floor.

2.7 Nuclear Sizes and Shapes

We can ask: how big are nuclei? The basic answer is that the radii of all nuclei
have been found to lie in the range of 1-10 fm. Our mathematical answer to this
question begins by assuming the nucleus is spherical with a uniform density
out to some sharp cutoff radius, that is, the nucleus has the shape and density



4 Figure 2.9 Schematic diagram of
a nuclear density model with a
constant density and a sharp
cutoff (or hard edge).
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distribution of a billiard ball. Such a uniform density distribution is shown in
Figure 2.9. One can characterize this distribution by writing that the nuclear
radius R is a simple function of A:

R =r,AY3 (2.29)

where the nuclear radius constant can be taken to be 1.2 fm for the “charge
radius” and 1.4 fm for the “matter radius” What do we mean by this dichotomy?
When one measures the nuclear radius by scattering high-energy electrons
from the nucleus or when one measures the radius by scattering other nuclei
from a given nucleus, one gets slightly different answers for the nuclear size.
The electrons probe the charge distribution via the electromagnetic force, that
is, the distribution of the protons, while other nuclei are sensitive to the matter
distribution (neutrons plus protons) or the region over which the nuclear force
can act. Which value of 7, should one use in calculations? The answer depends
upon the nuclear property being calculated and whether it is sensitive to the
distribution of the nuclear charge or the nuclear matter.

A somewhat more sophisticated approach to the problem of defining the
nuclear size and density is to assume that the nuclear density distribution, p(r),
has a diffuse surface, such as that given by the form of a Fermi distribution,
that is,

Po

Tra e (2.30)

p(r) =
where p, is the density in the interior of the nucleus (one can show that
po = 0.172 nucleons/fm?), the parameter a is a measure of the diffuseness of
the nuclear surface, and R is the half-density radius of the nucleus (Fig. 2.10).
The half-density radius is given by the already familiar expression: R = r,A!/?
with ry = 1.12 fm. The thickness of the nuclear skin, ¢, indicated in Figure 2.10
can be numerically connected to the diffuseness parameter as t = 4a In(3)
~ 4.4a. Most nuclei show a skin thickness, ¢, in the range of 2.4-2.5 fm. A
physical meaning of this value of ¢ can be gained by calculating the faction
of the nucleons that lie in the skin region of the nucleus as a function of the
nuclear size (Table 2.2).



Figure 2.10 Nuclear density (a) A

distribution: (a) in a schematic D
presentation and (b) in an artist’s ! '
conception (Mackintosh Po : '
etal. (2001). Reproduced with the '
permission of The Johns Hopkins P '
University Press). (See insert for Po |« R » '
color representation of the figure.) 2 \

Table 2.2 Fraction of Nucleons in
the Nuclear “Skin”.

Nuclide Fraction in “Skin”
2C 0.90
2Mg 0.79
S6Fe 0.65
107Ag 0.55
139Ba 0.51
208ph 0.46
B8y 0.44

Thus the lighter nuclei are mostly “skin” and the heaviest nuclei still have
substantial “skin” regions. These approximate models for the nuclear size and
density distribution can be compared (favorably) to the measured distributions
for typical nuclei (Fig. 2.11).

Up to this point, we have assumed that all nuclei are spherical in shape. That is
not true. Most nuclei can stretch when they are rapidly rotated, called dynamic
deformation, and there are regions of nuclei that have substantial nuclear defor-
mation in their ground states, for example, the rare earths (150 < A < 180) and



Charge density (e/fm3)

Figure 2.11 Measured nuclear ground state charge distributions for a sample of nuclei from
across the periodic table (From Frois (1983)).

the actinides (220 < A < 260). We shall discuss these cases in more detail later
in this chapter as we discuss the electric moments of nuclei.

Another question we might pose to ourselves is whether the neutron and pro-
ton distributions in nuclei are the same. Modern models for the nuclear poten-
tial predict the nuclear skin region to be neutron rich. The neutron quantum
mechanical well is predicted to extend out to larger radii than the proton poten-
tial. Extreme examples of this behavior are the halo nuclei. A halo nucleus is a
very neutron-rich (or perhaps proton-rich) nucleus (up to now only observed
for small values of A) where the outermost nucleons are very weakly bound. The
density distribution of these weakly bound outermost nucleons extends beyond
the radius expected from the R = A'/3 rule. Proven examples of these nuclei are
1Be, 11Li, and C. The most well-studied case of halo nuclei at present is !*Li.
In this nucleus the two outermost nucleons are so weakly bound (a few hun-
dred keV each) as to make the apparent size of !'Li equal to the size of a 2°8Pb
nucleus (see Fig. 2.12).



Figure 2.12 Artistic representation of the relative sizes of the halo nucleus "Li and *®Pb.
(See insert for color representation of the figure.)

2.8 Quantum Mechanical Properties

2.8.1 Nuclear Angular Momentum

In fact, an essential underlying part of chemical behavior is that the electron
has an intrinsic angular momentum, called spin with a value of 1/2 A. That is,
the electron behaves as if it is rotating or spinning about an internal axis. The
electron spin angular momentum provides an important criterion for assigning
quantum numbers to atomic electrons through the Pauli principle and thus
has far-reaching consequences. The electrons occupy quantum mechanical
states or orbitals that carry two labels: the principal quantum number, N, with
a numerical value of one plus the number of radial nodes in the atomic wave
function and the angular momentum quantum number, #, the number of
angular nodes in the wave function. The electrons distribute themselves among
those states with degenerate energies so that their spin angular momenta, s,
are aligned to the maximal extent (described by Hund’s rules). The atom can be
characterized by a total angular momentum, /, that is made up from the total
orbital motion of all the electrons given the symbol, L, and a total intrinsic
spin given the symbol, S. The values of L and S are obtained by separate vector
couplings of the two types of angular momenta of the electrons. The electrons
in all but the heaviest atoms exhibit such “LS” coupling.

The neutron and the proton also have an intrinsic angular momentum, s =
1/2h, and so each appears as if it is spinning about an internal axis. Thus,
we can expect that a large nucleus, which contains a number of neutrons and
protons, will have a total intrinsic angular momentum, or a nuclear spin from



the combination of the intrinsic spins of the neutrons and protons. Similarly,
we can imagine that neutrons and protons will occupy discrete states in the
nucleus, and some of these states will have orbital angular momenta in a man-
ner similar to the orbital angular momenta of electronic states (£ = 1, p-states,
etc.), and there should be a total angular momentum of the nucleons. While
there are such similarities, the fact that the potential well for nucleons has a
dramatically different shape from the central Coulomb potential for electrons
introduces several important differences in the concepts needed to describe
nuclear states and levels. The detailed discussion of the quantum mechanical
structure of nuclei is presented in Chapter 6. At this point we only need to
address the overall features.

The orbital angular momenta of the nuclear (and atomic) states are all integer
multiples of 7 starting with zero. Individual nucleons exhibit a strong coupling
of their orbital and spin angular momenta such thatj = £ + s is the appropriate
quantum number to describe the orbit of a nucleon. We can immediately see
that the sum of the intrinsic spins of all the nucleons with their orbital motion
in a nucleus will always give half-integer values for the total spin given the label,
I, of any odd A nucleus and will give integer values for any even A nucleus.

odd Anuclei : T=+,3 2 (2.31)
22 2
evenAnuclei : 1=0,1,2,... (2.32)

The numerical value obtained for a specific nucleus will depend on the filling
of the nuclear states with angular momenta j and on the coupling of all of those
angular momenta. At first glance we might expect that a large nucleus could
have a very large intrinsic angular momentum. However, recall that the nuclear
force has a short range and that the nucleons are more strongly bound when
they are in close proximity. Two nucleons will be in the closest proximity when
they are in the same orbital. If the two nucleons in the same orbital are both
neutrons or both are protons, then their spins must be opposed in order to sat-
isfy the Pauli Principle so that each has a unique set of quantum numbers. So we
find that the nuclear force tends to put pairs of nucleons into the same orbitals,
and their orbital angular momenta and intrinsic spins will cancel, summing to
zero. (This behavior is opposite from that of atomic electrons.) Thus, the angu-
lar momenta of the ground states of nuclei tend to be small, even for nuclei with
hundreds of nucleons in states with very high angular momenta. For example,
the ground state nuclear spins of all even—even nuclei are zero!

Parity, as used in nuclear science, refers to the symmetry properties of the
wave function for a particle or a system of particles. If the wave function that
specifies the state of the system is W(r, s) where r represents the position coordi-
nates of the system, for example, (x, y, z), and s represents the spin orientation,
then W(r, s) is said to have positive or even parity when

Y(r,s) = +¥(-r, —s) (2.33)



where the minus signs indicate the sign of the spatial coordinates has been
reversed as well as the direction of the spin. On the other hand, when

Y(r,s) = =¥(-r, —s) (2.34)

the system is said to have negative or odd parity. For a central potential, one in
which the potential energy, V(7), only depends on the distance from the center
and not the spatial orientation, the parity, denoted as x, for a state with angular
momentum, 7, is given by

z= (=1 (2.35)

Thus, s and d orbitals have positive or even parity, while p and f orbitals have
negative parity. The spin and parity of a given nuclear state are usually used as
labels for that state so that a state with j = 7/2 and negative parity is referred
to as a 7/2-state.

2.9 Electricand Magnetic Moments

2.9.1 Magnetic Dipole Moment

The magnetic moment of a nucleus is a measure of the average electric current
in that nucleus, while the electric moment is a measure of the distribution of
electric charge. These are both fundamental properties of the nucleus and can
be used to test models of nuclear structure. Since the magnetic moment may
not be a familiar concept, we will begin by discussing a simple example of a
“classical” magnetic moment that arises from the motion of an electron. An
electron moving with a velocity v in a circular orbit with a radius r as indicated
in Figure 2.13. The magnetic dipole moment of this moving charge is defined as
the product of the area of the loop made by the electron, A, and the current, i.
The area of the circle is nr? and the current i is given by the ratio of the electron
charge to the time to complete a loop or i = ¢/(2zr/v). Combining these parts,
we get for the magnetic moment

s ev evr
|},l| =IiA = <2—m> (TU”Z) = T (236)

The absolute value sign on the magnetic moment is to emphasize that the elec-
tron motion has a direction. Recall that the angular momentum of the electron
moving in a circle, £/ = myur. Substituting for vr,

elh
lul = C— (2.37)

Mo
Notice that e/2m, is a constant, which is called the gyromagnetic ratio, and
given the symbol v, so that |u| = yZh. We can remove the absolute value sign

by recalling that the projection of the angular momentum £7 is m,h, which



4 Figure 2.13 Representation of a moving
system that would generate a classical
dipole moment.

r m, charge e
Velocity v

includes information on the direction of rotation. The usual expression for mag-
netic dipole moment due to the orbital motion of the electron is thus

e
p= <2—mo> myh = mypg (2.38)

where the constants are collected into a single number, i, called the Bohr mag-
neton with the value of 5.78 X 107> eV/Tesla or 9.27 x 102lerg/gauss. Recall
that the electron also has an intrinsic spin, s = 1/2#, and so the electron will have
an intrinsic additional component to its magnetic moment due to this spin.

Extending these ideas to nucleons, we can expect that a proton in a nucleus
will have an intrinsic magnetic moment due to its spin and an additional part
if it has orbital motion. A neutron, on the other hand, will only have the intrin-
sic magnetic moment. We can define a nuclear magneton, p, similar to that
mentioned earlier as yy = ef/2m, that has the numerical value of 3.15 x 107
eV/Teslaor 5.50 X 1072* erg/gauss. Note that the nuclear magneton is smaller
than the Bohr magneton by the ratio of the proton to electron masses of ~1840.
Thus, the magnetic moment of a proton due to orbital motion is

u;roton = m,py (239)

It is traditional to expand the definition of the magnetic moment by including
a constant of proportionality called the gyromagnetic ratio or simply g-factor:

B =8 MsUN (2.40)

By adding a constant of proportionality, we are anticipating that the magnetic
moment for a nucleus will be the net result of a complicated cancellation pro-
cess. For example, we would expect g,=1 for the orbital motion of a proton
due to its charge, but g,=0 for a neutron since it is uncharged. Both neutrons
and protons have intrinsic spins and so, by extension, we can expect additional
contributions to the total magnetic moment with the form

Hs = &M N (2.41)



where the projection m, =1/2 for a proton or neutron. The spin g-factor for
electrons, g, = 2.0023, has been calculated exactly with the relativistic Dirac
equation for electrons and includes known higher-order correction terms. This
value is in excellent agreement with a long series of very precise measurements
of the magnetic moment of electrons. However, the measured values of g, for
both the proton and the neutron are different and surprisingly large:

Proton : g, = 5.5856912(22) (2.42)

Neutron : g, = —3.8260837(18) (2.43)

Thus, if the electron is an “elementary” particle with no internal components,
both the proton and the neutron do not appear to be elementary particles based
on their magnetic moments. Rather they both seem to have internal (mov-
ing) constituents. For example, the neutron that has exactly zero net charge
has a nonzero magnetic moment that is opposite in direction to that of a pro-
ton. It was noted some time ago that the magnetic moment of the proton is
larger than the expected value of “2” and that of the neutron is smaller than its
expected value of “0” by about the same amount of 3.8 units. Older models of
the nuclear force attributed these differences to “clouds” of mesons surrounding
the nucleons. In the modern theory of quantum chromodynamics, the nucleons
are themselves made up from three quarks, each quark with its own magnetic
moment and electronic charge.

Similar to the total angular momentum of a nucleus, the net magnetic
moment of a nucleus will be made up from all of the contributions from the
individual nucleons. As before, a very large fraction of the nucleons will be
paired and the two contributions from the partners will cancel. Thus, the
net magnetic moment of a given nucleus will tend to be small and may be
dominated by a small number of unpaired nucleons.

The presence of a net magnetic dipole moment in nuclei that have an
intrinsic spin has found enormous application in nuclear magnetic resonance
(NMR) and magnetic resonance imaging (MRI). NMR is extensively used in
chemical laboratories to identify the structural and chemical environments of
the nuclei in molecules, whereas MRI uses a tomographic technique to locate
specific molecules on a microscopic scale. Both techniques rely on the splitting
of the energies of the magnetic substates by a (strong) external magnetic field.
NMR measures tiny shifts in the relative energies of the magnetic substates
due to induced magnetization of the local electron density by the nuclear spin
to provide information on the chemical environment. These states have a fine
structure or splitting due to the presence of neighboring magnetic nuclei that
provide information on the structure of the molecule. MRI applies a spatially
varying magnetic field to detect the resonance of a single type of nucleus, orig-
inally the hydrogen nuclei in water and aliphatic compounds, and to measure
the concentration in a three-dimensional space. More recent functional-MRI



or f-MRI uses transitions in specific molecules. Both techniques are nonde-
structive and can be applied to living systems. The concentration of water
molecules varies widely in tissues and other biological media and can easily
provide detailed microscopic images for medical purposes.

Sample Problem 2.5: Magnetic Moment

Make an estimate of the ground state magnetic moment of N if the
nuclear spin, / = 1/2, is due to an unpaired proton in an £ = 0 orbital.

Solution
Since all the nucleons are paired except one proton,

Heor = P[; +
= g;mt’pN +gimpy
= (2 % 0+ 5.5856912 * 1/2)py = +2.792845641y

2.9.2 Electric Quadrupole Moment

Up to this point we have considered nuclei to be spherical with a uniform distri-
bution of electric charge. If the nucleus had a static dipolar charge distribution,
then the distributions of protons would be asymmetric in space—something
that has never been observed. A number of studies have been carried out and
others are underway to determine if static dipolar nuclear charge distributions
are possible. On the other hand, a nucleus could be symmetrically stretched or
squashed, which would give rise to a quadrupolar charge distribution.
Measurements of a nonzero electric quadrupole moment of a nucleus implies
a nonspherical charge distribution. We can use a little calculus to obtain an
expression for the shape of a nucleus in terms of its quadrupole moment. Imag-
ine the nucleus is an extended charged object as sketched in Figure 2.14. Con-
sider trying to calculate the electric potential energy at some point P, which is
at a distance D from the center of this charged object (nucleus). First we can
evaluate the potential, d®, at point P due to a charge at a distance » from the

Nuclear surface

| = (D?>-2Dr cos 0 +r2)"

Figure 2.14 Geometry used for the potential at an external point due to an extended
charged object (Harvey (1969). Reproduced with the permission of Pearson Education).



center of the charge object where the line from the center of the object to the
charge makes an angle  with the line connecting the center of the object with
the point P (cf. Fig. 2.14). If the density of charge in the object as a function of
position is given by the function p(0, ¢, r), then the total charge at point P is
p(r, 0, p)dr or p(r, 0, P)(r*drsin 0d0dd). We can write the potential at P using
the law of cosines for the distance
dd = p(0, ¢, r)dr p0, b, r)dr
4 ~ [D?+r2—2Drcos 0]

Factoring out the distance, D, and substituting the first and second Legendre
polynomials

(2.44)

P, (cos 0) = cos 0,P,(cos 0) = = cos 29— % (2.45)

we get a series expansion for the potentlal

pdr
D

dod = <1 +Lp 1(cos 0) + <D) P,(cos 0) + > (2.46)
This expression can be integrated over the entire volume of the charged object
to get an expression for the total charge:

1 1
V:B[/pdr +E[/prc056dr]
+$[/pr2(icos 0——)d’r+ ]

The first term in the square bracket in this equation is the electric monopole
moment, which is equal to the nuclear charge, Ze. The second term in the
square bracket is the electric dipole moment, while the third term in the square
bracket is the electric quadrupole moment. For a quantum mechanical sys-
tem in a well-defined quantum state, the charge density p is an even function
and because the dipole moment involves the product of an even and an odd
function, the corresponding integral is identically zero. Therefore, there should
be no electric dipole moment for nuclei or any other odd electric moment.
For spherical nuclei, the charge density p does not depend on 6, and thus the
quadrupole moment Q, given by the expression

Q= ///p(r)r2 <§ cos? 6 — %) r*dr sin 0d0d¢ (2.48)

would be exactly zero. However, an axially deformed shape has a dependence
on O (but not ¢), then the quadrupole moment becomes a measure of the
non-sphericity or shape of the nucleus. We can further elaborate on this by
making a simple model (Fig. 2.15) for nonspherical nuclei. We shall assume
such nuclei are ellipsoids with a shape generated by rotating an ellipse
about one of its axes. We can define a semiminor axis of the ellipse, ¢, and a

(2.47)
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Figure 2.15 A sketch of the semimajor, a, and semiminor axis, ¢ in a prolate ellipsoid.

semi-major axis, a. (a is the axis about which the ellipse was rotated.) If a is the
long axis, we have generated a prolate spheroid (the shape of a rugby ball). If
a is the short axis, we have generated an oblate spheroid (a flattened sphere).
The quadrupole moment of these ellipsoids is given by,

Q= %Ze(a2 - (2.49)

and we also know the square of the mean radius R of the spheroid is related to
the two semiaxes by

R = %(az +) = (r,A3) (2.50)

Given a measurement of Q, we can solve the two axes of the spheroid. Thus,
the quadrupole moment gives us a direct measure of the shape of nuclei. Note
further that Q has the dimensions of charge times area. It is common to tab-
ulate Q/e, which has the dimensions only of area. The nuclear dimension of
area is the barn, which is equal to 1072* cm?, hence quadrupole moments are
frequently tabulated in barns. Some of the experimental values of the elec-
tric quadrupole moments are shown in Figure 2.16. Note (Fig. 2.16) that the
rare earth and actinide nuclei have prolate shapes (positive values of Q), while
there are other nuclei with oblate shapes (negative values of Q). The amount
of deformation of nuclei is rather small overall and one often sees exaggerated
depictions of deformed nuclei.

Sample Problem 2.6: Quadrupole Moment

Calculate the ratio of the semimajor to semiminor axes of the prolate
nucleus '77Hf given Q = +3.0 e-barns.

Solution
Two equations are required. First equation:
2 2_ 2
Q= gZe(a —c%)
_ Q/e  +3.0x107%* cm?
2Z/5 2%72/5
=1.04x 107> cm?

(a* - c*)
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Figure 2.16 Experimental values of the electric quadrupole moment of nuclei. The lines are
drawn through the data to emphasize the (Preston (1962). Reproduced with the permission
of Pearson Education).

Second equation:
R = %(uz +) = (r,AV3)?
(@ + ) = 2pA*? = 2(1.2x 107" em)*(177)*/°
=9.08 X 107% cm?

Add the two results:
@+AH+ @@ -2 =24a>=1.012x10"%* cm?
a=71x10""cm
c=63x10""cm

Notice that the difference between the two axes is only ~12%.

Problems

2.1 Define or describe the following terms or phenomena in your own
words: nuclear surface energy, parity, asymmetry energy, packing
fraction, nuclear magneton, mass defect, and magnetic dipole moment.



2.2

23

24

25

2.6

2.7

2.8

29

2.10

The total nuclear binding energies of ¥’ Mg, 2’ Al, and ¥’Si are 244.2667,
246.8741, and 241.6741 MeV, respectively. Determine the values of the
Coulomb energy and asymmetry energy coefficients of the semiempiri-
cal mass equation using (only) these data.

Explain why we expect that there should not be any stable odd—odd
nuclei. What are the exceptions to this rule?

Explain why in the sequential decay of 233U to 2°Pb by successive o and
B~ decays, one sees one or two successive o decays followed by p~ decays
and others. That is, why are there no §* or EC decays in this chain?

Use the semiempirical mass equation to derive an expression for the
energy released in a decay. For fixed Z, how does the predicted energy
release depend on A?

Assume that a reanalysis of mass data gave the following set of parame-
ters for the semiempirical mass equation: a, = 15.835, a, = 18.33, a, =
23.20 and g, = 0.714. Show that the binding energy per nucleon reaches
a maximum for Z ~ 26 (iron) with the assumption that Z =N = A/2
and neglect pairing.

Some nuclei can decay by either 3~ or f* emission. Use the semiempirical
mass equation to show that such nuclei must have even A and odd N.

Use the semiempirical mass equation to compute, for a given A, a relation
between Z and N for a nucleus that has S, = 0 (i.e., a nucleus on the
neutron “drip-line”). Compute the value of N /Z for the neutron drip line
nucleus with A = 100.

Use the semiempirical mass equation to calculate the percentage con-
tribution to the average binding energy per nucleon of each of (a) the
volume energy, (b) the surface energy, (c) the Coulomb energy, and (d)
the asymmetry energy for *°Fe and 23°U.

The red giant stars, which are cooler than the sun, are thought to produce
energy from reactions such as

’Be+ 'H - °Li+ ‘He + energy

From the masses tabulated in the Appendix B, calculate the energy
release for this reaction and the fraction of the initial mass of the
reactants converted to energy.



2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

The sun yields ~ 2 cal/min-cm? at the surface of the Earth. Assuming
that all the sun’s energy is produced by the reaction,

4'"H - "He + 28" + 2v, + energy.

How much helium does the sun produce per year? The distance of the
Earth from the sun is 1.49 x 10° km.

Consider the three isobaric nuclei °C, ®N, and ®O. Which of these
nuclei is stable? What type(s) of radioactive decay would the other two
undergo? Calculate the binding energy difference between "N and
150. Assuming this difference comes from the Coulomb term in the
semiempirical binding energy equation, estimate the nuclear radius of
these nuclei.

Compute and graph the mass parabola(s) for A = 180. Which isobar or
isobars are stable against radioactive decay? Predict the type(s) of decay
and their energies for the isobars near stability.

Calculate the electric quadrupole moment along the z-axis of a charge
with a magnitude of Ze distributed over a ring of radius R centered on
and perpendicular to that axis.

The ground state quadrupole moment of »?Eu is +3.16 X 10? fm?.
Assuming that it is an ellipsoid, deduce the ratio of semimajor to
semiminor axes for this nucleus.

Find the electric dipole moment and electric quadrupole moment of the
system with two positive point charges with a value of +¢g, both posi-
tioned along the z-axis, one at z = —a/2 and the other at z = —a/2.

Show that the quadrupole moment, Q, of a uniformly charged ellipsoid
about the axis of symmetry is (2/5)Z(b* — a®) where a and b are the
semiaxes, b being along the axis of symmetrical distortion of the sphere.
Show that the quadrupole moment about an axis making an angle f with
respect to the axis of symmetry is [(3/2) cos? p — 1/2]Q.

For ®1Ta, Q/e = 4.20 barns. Calculate the ratio of the semimajor to
semiminor axes of this nucleus.

The quadrupole moments of 17°Lu and '*’I are 7.0 and —0.6 e-barns,
respectively. Assume that 7°Lu and '?’I are ellipsoids of revolution
obtained by deforming (without volume change) a sphere of radius



R = 1.4A'/3 fm. Calculate the ratio of the semimajor to semiminor axes,
a/b for each of these nuclei.

2.20 Calculate the electric monopole, dipole, and quadrupole moments of
the arrangements of charge shown below. Hint: The integrals over the
charges can be replaced by a sum in these systems with discrete charges.

—e
d
Be
+e
d d
o=
-d
—€ 2d

(|)+e

2.21 Suppose that the nuclear density p varies with radial distance r from the
center of the nucleus as shown below. What fraction of the nucleons
would lie in the surface region (taken to be the sloping region) for the
nuclei: 28Si, 1*2Sn, and 2%8Pb if p, = 0.17 nucleons/fm?, ¢ = 1.2 A/3fm,
and a = 2.4 fm?

Po

v

2.22 (a) What regions of the periodic table are characterized by large perma-
nent prolate nuclear deformations? (b) What nuclei in the periodic table
have the highest binding energy per nucleon?
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Radioactive Decay Kinetics

The number of nuclei in a radioactive sample that disintegrate during a given
time interval decreases exponentially with time. Because the nucleus is insu-
lated by the surrounding cloud of electrons, this rate is essentially independent
of pressure, temperature, the mass action law, or any other rate-limiting factors
that commonly effect chemical and physical changes.!

As aresult, this decay rate serves as a very useful means of identifying a given
nuclide. Since radioactive decay represents the transformation of an unstable
radioactive nuclide into a more stable nuclide, which may also be radioactive,
it is an irreversible event for each nuclide.

The unstable nuclei in a radioactive sample do not all decay simultaneously.
Instead the decay of a given nucleus is an entirely random event. Consequently,
studies of radioactive decay events require the use of statistical methods. With
these methods, one may observe a large number of radioactive nuclei and pre-
dict with fair assurance that, after a given length of time, a definite fraction of
them will have disintegrated but not which ones or when.

3.1 Basic Decay Equations

Radioactive decay is what chemists refer to as a first-order reaction; that is, the
rate of radioactive decay is proportional to the number of each type of radioac-
tive nuclei present in a given sample. So if we double the number of a given type
of radioactive nuclei in a sample, we double the number of particles emitted by
the sample per unit time.?

1 In the case of electron capture and internal conversion, the chemical environment of the
electrons involved may affect the decay rate. For L-electron capture in “Be (¢, /2 = 53.3 days), the
Ay
IC decay, a feature of interest in astrophysics.

2 To make this statement completely correct, we should say that as we double the number of
nuclei present, we double the rate of particle emission. This rate is equal to the number of

particles emitted per unit time, provided that the time interval is small.

ratio of ¢ is 1.00084. Similarly, a fully stripped radioactive ion cannot undergo either EC or



This relation may be expressed as follows:

o The rate of particle emission = the rate of disintegration of radioactive nuclei
 the number of radioactive nuclei present

Note that the foregoing statement is only a proportion. By introducing the
decay constant, it is possible to convert this expression into an equation as
follows:

o The rate of disintegration of radioactive nuclei = decay constant X number
of radioactive nuclei present

The decay constant, 4, represents the average probability per nucleus of decay
occurring per unit time. Therefore we are taking the probability of decay per
nucleus, 4, and multiplying it by the number of nuclei present so as to get the
rate of particle emission. The units of rate are (disintegration of nuclei/time)
making the units of the decay constant (1/time), that is, probability/time of
decay.

To convert the preceding word equations to mathematical statements using
symbols, let N represent the number of radioactive nuclei present at time ¢.
Then, using differential calculus, the preceding word equations may be writ-
ten as

dN

22X N 3.1
prie (3.1)
dN

— — = AN 3.2
7 = (3.2)

Note that N is constantly decreasing in magnitude as a function of time. Rear-
rangement of this equation to separate the variables gives

—dN
— = —Adt 3.3
“ (33)
If we say that at time ¢ = 0 we have N, radioactive nuclei present, then integra-
tion of Equation 3.3 gives the radioactive decay law:

N = Nye ™ (3.4)

This equation gives us the number of radioactive nuclei present at time ¢. How-
ever, in many experiments, we want to know the counting rate that we will get
in a detector as a function of time. In other words, we want to know the activity
of our samples.

Still, it is easy to show that the counting rate in one’s radiation detector, C, is
equal to the rate of disintegration of the radioactive nuclei present in a sample,
A, multiplied by a constant related to the efficiency of the radiation measuring
system. Thus,

dN
C=cA= — == ) =€eIN 3.5
€. €( dt) € ( )
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where ¢ is the efficiency. Substituting into Equation 3.4, we get
C=Cpe™ (3.6)

where C is the counting rate at some time ¢ due to a radioactive sample that gave
counting rate C, at time ¢ = 0. Equations 3.4 and 3.6 are the basic equations
governing the number of nuclei present in a radioactive sample and the number
of counts observed in one’s detector as a function of time. Equation 3.6 is shown
graphically in Figure 3.1. As seen in the figure, this exponential curve appears
to flatten out on a linear scale and asymptotically approaches zero. If the same
plot is made on a semilogarithmic scale (Fig. 3.2), the decay curve is a straight
line, with a slope equal to the value of (1/ In(10) ~ 1/2.303).
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Figure 3.3 Example of the relation between half-life and radioactivity.

The half-life (¢,/,) is another representation of the decay constant. The
half-life of a radionuclide is the time required for its activity to decrease by
one-half. Thus after one half-life, 50% of the initial activity remains. After two
half-lives, only 25% of the initial activity remains. After three half-lives, only
12.5% is yet present and so forth. Figure 3.3 shows this relation graphically.

The half-life for a given nuclide can be derived from Equation 3.6 when the
value of the decay constant is known. In accordance with the definition of the
term half-life, when C/C, = 1/2, then ¢ = ¢, ,. Substituting these values into
Equation 3.6 gives

C_1_
~ = = 172 3.7
C, =27 ¢ 3.7)
Hence,
In(2 0.693
bijp = /(1 ) ¥ (3.8)

Note that the value of the expression for ¢, , has the units of 1/4 or dimensions
of (time).

The half-lives for different nuclides range from much <107 s to 10'° years.
The half-life has been measured very precisely for all the commonly used
radionuclides. When an unknown radioactive nuclide is encountered, a deter-
mination of its half-life is normally one of the first steps in its identification.
This determination can be done by preparing a semilog plot of a series of
activity observations made over a period of time. A short-lived nuclide may
be observed as it decays through a complete half-life and the time interval
observed directly (Fig. 3.4).

Sample Problem: 3.1: Simple Decay

Given the data plotted in Figure 3.5 for the decay of a single radionuclide,
determine the decay constant and the half-life of the nuclide.
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Solution
From the data plotted in Figure 3.5, the slope (—4) can be determined as
= 0—-6.06
220 — 0 min
A =0.027/5min’
L = ln% = —006629735 = 25.2 min
What nuclide might this be?



It is difficult to measure the half-life of a very long-lived radionuclide. Here
variation in disintegration rate may not be noticeable within a reasonable length
of time. In this case, the decay constant must be calculated from the abso-
lute decay rate according to Equation 3.2. The absolute number of atoms of the
radioisotope present (N) in a given sample can be calculated according to

6.02 X 10* (Avogadro’s number)

XM f radi lid 3.9
Atomic weight radionuclide ass of radionuchice (39)

The total mass of the radioisotope in the given sample can be determined once
the isotopic composition of the sample is ascertained by such means as mass
spectrometry. When the decay constant is known, the half-life can then be read-
ily calculated. A table for the half-lives of a number of the known nuclei can be
found in Appendix B.

Although the half-life of a given radionuclide is a defined value, the actual
moment of disintegration for a particular atom can be anywhere from the very
beginning of the nuclide’s life to infinity. The average or mean life of a popula-
tion of nuclei can, however, be calculated. The mean life 7 is naturally related to
the decay constant and is, in fact, simply the reciprocal of the decay constant

(3.10)

T =

1
A
or the mean life can be expressed in terms of the half-life:

= (2) ty) ~ 1.443t, (3.11)

One can understand the preceding relationship by recalling that the decay con-
stant, 4, was defined as the average probability of decay per unit time, so the 1/4
is the average time between decays. The concept of average life allows us to cal-
culate the total number of particles emitted during a defined decay period. This
number is essential in determining total radiation dose delivered by a radioiso-
tope sample, as in medical research and therapy. During the time equal to one
mean life, 7, the activity falls to 1/e of its original value. For a sample of N
nuclei with lifetimes ¢;, we can write for the mean life 7

(3.12)




=1 / £ ANt
NO 0

=21 / te Mdt
0

_ [—lt+1]t
- A 0

N =

The average or mean life is also of fundamental physical significance because it
is the time to be substituted in the mathematical statement of the Heisenberg
uncertainty principle, that is,

AE-At>h (3.13)

In this expression relating the uncertainty in energy of a system, AE, to its
lifetime A¢, 7 = At:
h _ 0.658x107'° eV

The quantity AE is called the width I".

The natural unit of radioactivity is disintegrations/time, such as disinte-
gration per second (dps) or disintegrations per minute (dpm) The SI unit of
radioactivity is the becquerel (Bq) where

1Bq = 1 dis/s = 1 decay/s (3.15)

Counting rates in a detection system are usually given in counts per second
(cps), counts per minute (cpm), and so on and differ from the disintegration
rates by a factor representing the detector efficiency, €. Thus,

(dpm)e = (cpm) (3.16)

The historical unit of radioactivity that still finds some use is the curie (Ci). It
is defined as

1Ci=3.7x10""Bq = 3.7 x 10'° dis/s (3.17)

The curie is a usually large unit of radioactivity for laboratory work and
is approximately equal to the activity of 1 g of radium. The inventories of



radioactivity in a nuclear reactor upon shutdown are typically 10° Ci, while
radiation sources used in tracer experiments have activities of uCi, and the
environmental levels of radioactivity are nCi or pCi.

Note also that because radionuclides, in general, have different half-lives, the
number of nuclei per curie will differ from one species to another. For example,
let us calculate how many nuclei are in 1 MBq (~27 uCi) of tritium (3H, ¢, 2=
12.33 years). We know that

_ —dN/dt _ 10°/s

3.18
; - (3.18)
but
j= @ 0.693 = 1.789 x 10~ /5! (3.19)
ti 12.33 years(z X 107 s/year)
Thus,
N=4 __100s 5.59 x 10" nuclei (3:20)
20 17891055 '

The same calculation carried out for "*C (¢, ,) = 5730 years) would give 2.60 X
10" nuclei/MBgq. It is also interesting to calculate the mass associated with
1 MBq of tritium. We have

_ N(atomic weight)  5.59 x 10'*(3.00 g/mol)

= = =278x107°
Avogadro’s number 6.02 x 103 /mol g

(3.21)

In other words, 1 MBq of tritium contains about 3 ng of tritium. Thus an impor-
tant feature of radionuclides becomes apparent—radiochemists routinely work
with extremely small quantities of material. Pure samples of radioisotopes are
called “carrier-free”

Unless a radionuclide is in a carrier-free state, it is mixed homogeneously
with the stable nuclides of the same element. It is therefore desirable to have a
simple expression to show the relative abundances of the radioisotope and the
stable isotopes. This specification is readily accomplished by using the concept
of specific activity, which refers to the amount of radioactivity per given mass or
other similar units of the total sample. The SI unit of specific activity is Bq/kg.
Specific activity can also be expressed in terms of the disintegration rate (Bq
or dpm), counting rate (counts/min, cpm, or counts/s, cps), or curies (or mCi,
uCi) of the specific radionuclide per unit mass of the sample.



3.2 Mixture of Two Independently Decaying
Radionuclides

Where two or more unrelated (see in the following) radioisotopes with differ-
ent half-lives are present in a sample and one does not or cannot distinguish
the particles emitted by each isotope, a composite decay rate will be observed.
The decay curve, in this situation, drawn on a semilogarithmic plot, will not be
a straight line. The decay curves of each of the isotopes present usually can be
resolved by graphic means if their half-lives are sufficiently different and if not
more than three radioactive components are present. In the graphic example
shown in Figure 3.6, line C represents the total observed activity. Only the activ-
ity of the longer-lived component A is observed after the shorter-lived compo-
nent B has become exhausted through decay. Extrapolation of this long-time
portion of the curve back to zero time gives the decay curve for component A
and the activity of component A at £ = 0. The curve for component B is obtained
by subtracting out, point by point, the activity values of component A from the
total activity curve. If the half-lives of the two components in such samples
are not sufficiently different to allow graphic resolution, a differential detection
method may be needed. If the radiation characteristics of the nuclides in the
mixture are suitably distinct, that is, emission of different particles or y-rays, it
may be possible to measure the activity of one component without interference
from the radiation emitted by the other component. A case in point would be
where one nuclide was a pure f-emitter while the other emitted both - and

Figure 3.6 Graphic resolution 1.0
of a two-component decay 09
curve. k

Observed activity (log)

o
e

Time —



Table 3.1 Typical Decay Data.

t(h) A(cpm)
0.1 270
0.5 210
1.0 170
1.5 130
2.0 110
2.5 90
3 80
4 65
5 55
7 44
10 34
15 22

y-rays. In the case where the half-lives of the components are known but are
not sufficiently different to allow graphical resolution of the decay curve, com-
puter techniques that utilize least squares fitting to resolve such a case are also
available.

Sample Problem 3.2: Resolution of Decay Curves

Given the following decay data (Table 3.1 and Fig. 3.7), determine the
half-lives and initial activities of the nuclides (B and C) present.

Solution
From the data in the table and graph, we can determine

t2(B)=8.0h
Ay(B) = 80 cpm
t2(C)=0.8h
Ay(C) =190 cpm

3.3 Radioactive Decay Equilibrium
When a radionuclide decays, it does not disappear but is transformed into a new

nuclear species of lower total energy and often differing Z, A, /, z, and so on. The
equations of radioactive decay discussed so far have focused on the decrease of



Figure 3.7 Radionuclide
mixture decay data.
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the parent radionuclides but have ignored the formation (and possible decay)
of daughter, granddaughter, and so on, species. It is the formation and decay of
these “children” that is the focus of this section.

Let us begin by considering the case when a radionuclide (1) decays with
decay constant 4, forming a daughter nucleus (2), which in turn decays with
decay constant A,. Schematically we have

152>
We can write terms for the production and depletion of 2, that is,

Rate of change of 2 = production rate of 2 — decay rate of 2

dN,
—7 = ANy = AN, (3.22)

where N, and N, are the numbers of (1) and (2) present at time ¢. Rearranging
and collecting similar terms

dN, + A,Nydt = A, N, dt (3.23)
Remembering that

N, = Nle ™! (3.24)
we have

dN, + A,N,dt = A\NYe "'dt (3.25)

This is a first-order linear differential equation and can be solved using the
method of integrating factors, which we show in the following. Multiplying
both sides by e*!, we have

"' dN, + A,Nye*'dt = 3 N2~ dy (3.26)



The left-hand side is now a perfect differential:
d (Nye™t) = A4, NCel)iqy (3.27)
Integrating from ¢t = O to ¢ = ¢, we have

t ﬂlN?e(AZ_’ll)t t

Ll _

N,e . 74— o (3.28)

Aot 0 A 0 (A=A )t
Nye™' —N,) = ——N/ (V™)' - 1) (3.29)
Ay =4
Multiplying by e~*’ and rearranging gives
A
Ny(t) = ——N? (et — e7ht) + Ne ™! (3.30)
Ay =4

where NY is the number of species (2) present at ¢ = 0. The first term in
Equation 3.30 represents the growth of the daughter due to the decay of the
parent, while the second term represents the decay of any daughter nuclei
that were present initially. Remembering that A, = A,N,, we can write an
expression for the activity of (2) as

Aty

A,(t) =
2 Ay — 4

NY (e7ht —e7™t) + AJe™! (3.31)

These two Equations 3.30 and 3.31 are the general expressions for the number
of daughter nuclei and the daughter activity as a function of time, respectively.

The general behavior of the activity of parent and daughter species, as pre-
dicted by Equation 3.31, is shown in Figure 3.8. As one expects qualitatively
for the case with NS = 0, the initial activity of the daughter is zero, rises to a
maximum, and, if one waits long enough, eventually decreases.

Thus there must be a time when the daughter activity is the maximum. We
can calculate this by noting the condition for a maximum in the activity of (2) is

N, _ 0 (3.32)
at ‘
Taking the derivative of Equation 3.31 and simplifying,
e ht = jyeh! (3.33)
Solving for ¢
In(4,/4
e = /) (3.34)
/12 - Al

All of this development may seem like something that would be best handled
by a computer program or just represents a chance to practice one’s skill with
differential equations. But that is not true. It is important to understand the
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mathematical foundation of these expressions to gain insight into practical sit-
uations. Let us consider some cases that illustrate this point.

Consider the special case where 4, = A,. Plugging into Equations 3.30 or 3.31
or a computer program based upon them leads to a division by zero. Does
nature therefore forbid 4, from equaling 4, in a chain of decays? Nonsense! One
simply understands that one must redo the derivation (Equations 3.22 through
3.30) of these equations for this special case (see Sample Problem 3.3).

Let us now consider a number of other special cases of Equations 3.30 or 3.31
that are of practical importance. Suppose the daughter nucleus is stable; A, = 0.

Then we have

dN,

d—tz = AN, (3.35)

dN, = },N,dt = A,N e~ "'dt (3.36)
/lle t

N = 20 s
These relations are shown in Figure 3.9. They represent the typical decay of
many radionuclides prepared by neutron capture reactions, the type of reaction
that commonly occurs in a nuclear reactor.

In Figure 3.10, we show the activity relationships for parent and daughter
(as predicted by Equation 3.31) for four choices of the relative values of the
half-lives of the parent and daughter nuclides.

In the first of the cases shown in the figure, we have ¢, ,(parent) <
t o(daughter), that is, the parent is shorter lived than the daughter. This is
called the no equilibrium case because the daughter buildup (due to the decay
of the parent) is faster than its loss due to decay. Essentially all of the parent
nuclides, are converted to daughter nuclides, and the subsequent activity is

)= N) (1—eht) (3.37)
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due to the decay of the daughters only. Thus the name “no equilibrium” is used.
131 . 210
I, 2°Bi - “ Po, and **Sr

— Y. This situation typically occurs when one is far from stability and the
parent nuclei decay by f-decay toward stability.

A second special case of Equations 3.30 and 3.31 is called transient equi-
librium (Figs. 3.10c and 3.11a). In this case, the parent is significantly (~10x)
longer lived than the daughter and thus controls the decay chain. Here 4, > 4,
so in Equation 3.30, as t — oo

Practical examples of this decay type are *1Te —

e < eM and N e - 0 (3.38)
and we have
j'1
N~ NO et 3.39
AT T (3.59)
Substituting the expression for N,
N, =N} e ™! (3.40)
We get
N A=A
— =21 (3.41)
N, A

At long times, the ratio of daughter-to-parent activity becomes constant, and
both species disappear with the effective half-life of the parent. The classic
examples of this decay equilibrium are the decay of *’Ba (¢, , = 12.8 days) to
'9La (¢,/, = 40 h) or the equilibrium between **’Rn (t,, = 3.8 days) and its
much short-lived decay products.
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A third special case of Equations 3.30 and 3.31 is called secular equilibrium
(Figs. 3.10d and 3.11b). In this case, the parent is very much longer lived
(~10*x) than the daughter, or the parent is constantly being replenished
through some other process. During the time of observation, there is no signif-
icant change in the number of parent nuclei present, although several half-lives
of the daughter may occur. In the previous case of transient equilibrium,
we had

N, Ay—2
L=22_ " (3.42)
N, 4

Since we now also have 4; < 4,, so we can simplify even more to give
N, A
=22 (3.43)
N, A4
MN; = 44N, (3.44)
A=A, (3.45)

In short, the activity of the parent and daughter are the same, and the total
activity of the sample remains effectively constant during the period of obser-
vation. It usually takes about 10 half-lives of the daughter to establish secu-
lar equilibrium.

The naturally occurring heavy element decay chains (see in the following)
where 238U — 206Pb, 235U — 207Pb and 22 Th — 208Pb and the extinct heavy ele-
ment decay series 2’Np — 2Bi are examples of secular equilibrium because
of the long half-lives of the parents. Perhaps the most important cases of secu-
lar equilibrium are the production of radionuclides by a nuclear reaction in an
accelerator, a reactor, a star, or the upper atmosphere. In this cases, we have

Nuclear reaction — (2) — (3.46)

which produces the radionuclide 2 with rate R. If the reaction is simply the
decay of a long-lived nuclide, then R = 4,N; and Nj = 0. Substitution into
Equation 3.30 gives the expression

A

N, =
2 )’2_’%1

NY (e74f —e7™t) (3.47)

If the reaction is slower than the decay or A, < A,, it is most appropriate to say
(since 4; =~ 0)

A
N, =~ /1—le (1—e ) (3.48)
2

or in terms of the activities

Ay =N, =R(1—e*) (3.49)
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Equation 3.49 is known as the activation equation and is shown as a function
of time in Figure 3.12.
Initially the growth of the product radionuclide activity is nearly linear

(due to the behavior of (1 —e~**) for small values of 4, X £), but eventually



1.00 T T T T T Figure 3.12 Growth of the

activity of a primary nuclear
reaction product created
during a constant
0.75 bombardment.
=
2 0.50 .
[&]
<
0.25 i
0.00 : ! - L
0 2 4 6

Time (t42)

the product activity becomes “saturated” or constant, decaying as fast as it is
produced. At an irradiation time of one half-life, half the maximum activity
is formed; after two half-lives, 3/4 of the maximum activity is formed, after
three half-lives, 7/8 of the maximum activity is formed, and so on. This
situation gives rise to the rough rule that irradiations that extend for periods
that are > 3 three times #; , of the desired radionuclide are usually not cost
effective.

Equation 3.31 may be generalized to a chain of decaying nuclei of arbitrary
length in using the Bateman equations (Bateman, 1910). If we assume that at
¢t = 0, none of the daughter nuclei are present, (Ng = Né) =.--N?%=0), we get

1-2-53->---(n)—

N,=Cieh! + Cye™ + Coe™™! + ... C et (3.50)
where

C, = My A Nf

(A = A3 = 4) -~ (4, = 4)
C, = Ady Ay Ng

(4 = )3 = 4y) -+~ (4, = 4y)

Ady -2

C = 142 n—1 NO (3.51)

T =AU A (A = A)

These equations describe the activities produced in new fuel as a nuclear reac-
tor begins to operate. No fission or activation products are present when the
fuel is loaded, and they grow in as the reactions take place.
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Sample Problem 3.3: Application of the Bateman Equations
Consider the decay of a 1 uCi sample of pure ***Rn (¢, ,, = 3.82 days).

Use the Bateman equations to estimate the activity of its daughters **Po,
214pp, 214Bj, and 21*Po) after a decay time of 4 h. The decay sequence is

- o 218 « 214 p-214 p-214 o
Rn—- Po—- Pb—> Bi—> Po-

Solution
A=A, eht = 1 yCi ( e—(ln2)(4)/(24)(3.82))
A =0.97 uCi

B =g (Cie™t + Cre™')

c - AN A
t j'B_/lA B AB_)‘A
AANA? Ay

C, = =
2 da— Ay Ay — Ay

Be i Aoe—AAt N Aoe—ﬂgt
b ’IB - j’A /lA - )’B

0.97 £(-In(2)x4)/(3.1/60)
37.3 -0.021 0.021 —37.3
B =0.97 uCi

(Actually B/A = 1.00056)

B=1373 <



The reader should verify that for C, D, and E, the only significant term
is the term multiplying e~*! as it was for B. Thus for D/A, we have

D Ag Ac Ap

A Ag—d, Ac—Ay Ap—4,

= 1.0091

3.4 Branching Decay

Some nuclides decay by more than one mode. Some nuclei may decay by either
pt-decay or electron capture, others by a-decay or spontaneous fission, still
others by y-ray emission or internal conversion, etc. In these cases, we can char-
acterize each competing mode of decay by a separate decay constant 4, for each
type of decay where the total decay constant, 4, is given by the sum

N
12114_,124_...:2,% (3.52)
i=1

i

Corresponding to each partial decay constant 4;, there is a partial half-life £ P

where
i In(2) . 0.693

12 = Tl & i (3.53)
and the total half-life, ¢, /o0 18 the sum of the reciprocals
111 < 1
¢ t! £ e i
1/2 1/2 1/2 i=1 “1/2

The fraction of decays proceeding by the ith mode is given by the obvious
expression
A; A

=t = 3.55

== (3.55)
By analogy, the energy uncertainty associated with a given state, AE, through
the Heisenberg uncertainty principle can be obtained from the lifetime con-
tributed by each decay mode. If we introduce the definition AE =T, the level
width, then we can express I in terms of the partial widths for each decay mode
I'; such that

N
F=F1+F2+F3+"'=Zri (3.56)
i=1

where
1

T

I =

L

(3.57)



in which 7, is the partial mean life associated with each decay mode. This
approach is especially useful in treating the decay of states formed in nuclear
reactions in which a variety of competing processes such as a, proton neutron
emission, and so on may occur as the nucleus de-excites. In such cases, we can
express the total width as

P=0,+T,+,+ - (3.58)

Sample Problem 3.4: Branching Decay

Consider the nucleus **Cu (¢, , = 12.700 h). **Cu is known to decay by
electron capture (61%) and f~-decay (39%). What are the partial half-lives
for EC and f~-decay? What is the partial width for EC decay?

Solution

In(2
a= @ 6% 102/m!
12.700 h
A= dgc+ Ay = Apc + (39/61) Agc
Apc =3.329x 1072 /i
JEC _ In(2)
1/2 AEC
Ag- = (39/61)Agc = 2.128 X 1072 /h'
pm _ —
t, =(n2)/4; =326h
5 = tffz/ In(2) = 30.0 h = 108131 s
[pe = 1/75C = 6.582 x 10722 MeV s/108131 s
[pe =6.1%x 1077 MeV

=20.8h

3.5 Radiation Dosage

Up to now, we have discussed radioactivity (defined as disintegrations/time.)
To fully discuss radioactivity we must consider the consequences of the inter-
action of radiation with matter. (A full discussion of this subject can be found
in Chapter 16. Here we summarize some aspects of that discussion related to
human health.)

When radiation interacts with matter, the matter is altered by ionization or
atom or nuclear displacement. To characterize this effect, we need to know
the amount of energy absorbed by the matter in question. The modern unit for
absorbed “dose” is the gray (Gy). Formally 1 gray corresponds to the absorption



Table 3.2 Radiation Weighting Factors.

y p Protons a Neutrons
(10 MeV) (14 MeV)  (Thermal)
Radiation weighting factor 1 1 2 20 7.7 5

of 1J/kg = 6.24 x 102 MeV/kg. (This is a large amount of absorbed energy, and
doses are more frequently measured in microGy.)

In living systems, we are concerned with the effect of the absorbed energy,
not just its magnitude. Different types of radiation deposit energy at different
rates as they interact with matter. Radioactive decay a-particles deposit their
energy in ~10™* m in condensed matter. Typical f~-particles are stopped in a
few millimeter of material, while y-rays have an infinite range in matter, and it
is only their intensities that are attenuated exponentially as they pass through
matter. This linear energy transfer (LET), which is approximately dE/dx, can
be used to quantify the biological effects of various types of radiation as they
interact with matter. For example, a-particles deposit their energy in a small
volume compared with y-radiation, and thus a-particles have a greater biolog-
ical effect compared with y-rays when they interact with matter. The differing
biological effects of various types of radiation are expressed in the radiation
weighting factors, w,. The values of w, for various types of radiation are shown
in Table 3.2.

We express the idea of the biological effect of radiation dose by defining a
quantity called the equivalent dose. The equivalent dose is measured in siev-
erts (Sv) where 1 sievert is the dose (Grays) X w,. The sievert (named after the
Swedish medical physicist Rolf Maximilian Sievert) is a large amount of radia-
tion dose for most biological systems. An equivalent dose of 1 Sv carries with
it a 5.5% chance of eventually developing cancer, and doses of >1 Sv delivered
over a short time can lead to serious health consequences. Most radiation expo-
sures are expressed in millisieverts (mSv). The International Commission on
Radiological Protection (ICRP) recommends that radiation exposures be lim-
ited to equivalent doses of <1 mSv/year, excluding medical and other “natural”
exposures.

In the United States, there is an older unit of equivalent dose, the roentgen
equivalent man (rem), that is also used. The relation to the SI unit of sieverts is
that 1 Sv = 100 rem, or in more useful units, 10 pSv = 1 millirem.



3.6 Natural Radioactivity

3.6.1 General Information

There are ~70 naturally occurring radionuclides on earth. Most of them are
heavy element radioactivities present in the natural decay chains, but there
are several important light element activities, such as 3H, *C, ¥K, and so on.
These radioactive species are ubiquitous, occurring in plants, animals, the air
we breathe, the water we drink, the soil, and so on. For example, in the 70 kg
“reference man,” one finds ~4400 Bq of *°K and ~3600 Bq of 1*C, that is, about
8000 dps due to these two radionuclides alone. Imagine that. Every second 8000
nuclei in your body decay. You are “radioactive”” In a typical US diet, one ingests
~1 pCi/day of 28U, 2°Ra, and ?!°Po. The air we breathe contains ~0.15 pCi/l of
222Rn, the water we drink contains >10 pCi/L of 3H, while the earth’s crust con-
tains ~10 and ~4 ppm of the radioelements Th and U, respectively. One should
not forget that the interior heat budget of planet Earth is dominated by the
contributions from the radioactive decay of uranium, thorium, and potassium.

The naturally occurring radionuclides can be classified as (a) primordial,
that is, nuclides that have survived since the time the elements were formed,
(b) cosmogenic, that is, shorter-lived nuclides formed continuously by the
interaction of cosmic rays with matter, and (c) anthropogenic, that is, a wide
variety of nuclides introduced into the environment by the activities of man,
such as nuclear weapons tests, the operation (or mis-operation) of nuclear
power plants, and so on. The primordial radionuclides have half-lives >
10° years or are the decay products of these nuclei. This class includes *°K
(t1), = 1.277 x 107 years) , 28U (¢, , = 4.5 x 10° years) , **U (t, , = 0.74 x 10°
years) , **Th (¢, , = 14.05 X 10° years), and *’Rb (t,, = 47.5 X 10” years) as
its most important members. (Some additional members of this group include
US[p, 123, 138 5 4N, 147Sm, 148Sm, 176y, 174Hf, 187 Re, and '9Pt.)

3.6.2 Primordial Nuclei and the Uranium Decay Series

40K is a f-emitting nuclide that is the predominant radioactive component of
normal foods and human tissue. Due to the 1460 keV y-ray that accompanies
the f~-decay, it is also an important source of background radiation detected by
y-ray spectrometers. The natural concentration in the body contributes about
0.17 mSv/year to the whole body dose. The specific activity of *’K is ~ 855 pCi/g
potassium.

Despite the high specific activity of 3 Rb of ~2400 pCi/g, the low abundance
of rubidium in nature makes its contribution to the overall radioactivity of the
environment small.

There are three naturally occurring decay series. They are the uranium (A =
4n + 2) series in which 2*®U decays through 14 intermediate nuclei to form the
stable nucleus 2°°Pb; the actinium or ***U (A = 4n + 3) series in which 2%°U
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Figure 3.14 Representations of the three naturally occurring decay series.

decays through 11 intermediate nuclei to form stable 2°’Pb; and the thorium
(A = 4n) series in which 232Th decays through a series of 10 intermediates to
stable 28Pb (Fig. 3.14). A little arithmetic will suffice to figure out what the
number of decays and their types are in these series. Take the uranium series
as an example. 238U decays to 2°°Pb. AZ = 10, AA = 32. To change AA by 32
requires eight a-particles be emitted or a change in Z of 16. Note that U to Pb
is a change of only 10 units of Z. To compensate for the observed Z change
requires six f~-decays that would each increase the atomic number by one. So
we expect a combination of eight a-decays and six #~ decays in going from 228U
to 20°Pb.




Because the half-lives of the parent nuclei are so long relative to the other
members of each series, all members of each decay series are in secular equilib-
rium in undisturbed samples, that is, the activities of each member of the chain
are equal at equilibrium if the sample has not been chemically fractionated.
Thus, the activity associated with 233U in secular equilibrium with its daugh-
ters is 14X the activity of the 228U. The notation 4# + 2, 471, 4n + 3 refers to the
fact that the mass number of each member of a given chain is such that it can be
represented by the product 4n, 4n + 2, 4n + 3 where n is an integer. (There is an
additional decay series, the 4n + 1 series, that is extinct because its longest-lived
member, 2”Np, has a half-life of only 2.1 x 10° years, a time that is very short
compared with the time of element formation.)

The uranium series contains two radionuclides of special interest, ***Ra (¢, , =
1600 years) and its daughter, 38 d 222Rn. ?2°Ra and its daughters are responsible
for a major fraction of the radiation dose received from internal radioactivity.
Radium is present in rocks and soils and, as a consequence, in water, food, and
human tissue. The high specific activity and gaseous decay products of radium
also make it difficult to handle in the laboratory.

226Ra decays by a-emission to ?22Rn. This latter nuclide is the principal
culprit in the radiation exposures from indoor radon, although radon is an
inert gas and is not trapped in the body. However, if the decay happens to
decay in the lungs, the short-lived decay products are retained in the body.
Indoor radon contributes about 2 mSv/year (200 mrem/year) to the average
radiation exposure in the United States, that is, about 2/3 of the dose from
natural sources. Under normal circumstances, radon and its daughters attach
to dust particles and are present in their equilibrium amounts. These dust
particles can also deposit in the lungs. It has been estimated that in the United
States, 15,000—22,000 cases annually of lung cancer are due to radon exposure.

3.6.3 Cosmogenic Nuclei

The second class of naturally occurring radionuclides is the cosmogenic nuclei
produced by the interactions of primary and secondary cosmic radiation
with nuclei in the stratosphere. The most important of these nuclei are 3H
(tritium), *C, and 7Be. Less importantly, 1°Be, 22Na, 32P, 3P, %S, and *Cl
are also produced. These nuclei move into the troposphere through normal
exchange processes and are brought to the earth’s surface by rainwater.
Equilibrium is established between the production rate in the primary cosmic
ray interactions and the partition of the radionuclides among the various
terrestrial compartments (atmosphere, surface waters, biosphere, etc.) leading
to an approximately constant specific activity of each nuclide in a particular
compartment when the cosmic ray flux is constant. When an organism dies
after being in equilibrium with the biosphere, the specific activity of the nuclide
in that sample will decrease since it is no longer maintained in equilibrium.



This behavior allows these nuclides to act as tracers for terrestrial processes
and for chronological dating.

e (g /2 = 5730 years) is formed continuously in the upper atmosphere by
cosmic rays that produce neutrons giving the reaction

n(slow) + N = “c+'H

or, in a shorthand notation, "*N(n, p)**C. *C is a soft (low-energy) f~-emitter
(Enax ~ 158 keV). This radiocarbon (**C) reacts with oxygen in the atmosphere
and eventually exchanges with the stable carbon (mostly 12C) in living things. If
the cosmic ray flux is constant, and the terrestrial processes affecting *C incor-
poration into living things are constant, and there are no significant changes in
the stable carbon content of the atmosphere, then a constant level of *C in all
living things is found (corresponding to ~1 atom of *C for every 102 atoms of
12C or about 227 Bq/kg C). When an organism dies, it ceases to exchange its car-
bon atoms with the pool of radiocarbon, and its radiocarbon content decreases
in accord with Equation 3.31. Measurement of the specific activity of an old
object allows one to calculate the age of the object (see in the following).

14C reaches the earth’s surface at the rate of ~2.3 atoms/cm?/s after produc-
tion by cosmic ray interactions in the atmosphere, corresponding to a total
production of ~1.4 X 10'® Bq/year. *C is (was) also formed by the *N(n, p)
reaction from atmospheric tests of nuclear weapons. About 2.2 X 107 Bq were
made in the atmospheric test “spike” of the 1950s and 1960s that has been
primarily transferred to the oceans and the biosphere. This means that *C is
the most significant fallout nuclide from the point of view of population dose.
Nuclear power plants also release *C as part of their normal operation, con-
tributing ~0.1 X 10> Bq/year.

Tritium (3 H) is produced naturally through atmospheric cosmic ray interac-
tions via the reaction

n(fast) + *N = >C +°H

Tritium is also produced in ternary fission and by neutron induced reac-
tions with °Li and °B. Tritium is a very weak B~ emitter with a half-life of
12.33 years. The global inventory of naturally produced tritium is 9.6 X 107 Bq.
Tritium is readily incorporated in water and is removed from the atmosphere
by rain or snow. Its residence time in the stratosphere is 2—3 years; after reach-
ing the troposphere it is removed in 1-2 months. The “natural” concentration
of 3H in streams and freshwater is ~10 pCi/L.

The nuclear weapons tests of late 1950s and early 1960s also injected a huge
spike of tritium into the atmosphere along with the *C. The tritium levels in the
troposphere increased by a factor of 100 at this time. Estimates of 2.4 x 10%° Bq
for this spike have been made. Assuming that there will not be more atmo-
spheric testing of nuclear weapons, the tritium from fallout should decrease
with a half-life of 12.3 years. At present the fallout tritium in surface waters is



Table 3.3 Events Leading to Large Injections of Radionuclides into the Atmosphere.

Important
Source Country Time Radioactivity(Bq)  Nuclides
Hiroshima and Japan 1945 4 x10'° Fission products
Nagasaki and actinides
Atmospheric United States and 1963 2 x10% Fission products
weapons tests USSR and actinides
Windscale United Kingdom 1957 1x10¥ 1811
Chelyabinsk USSR 1957 8 x 101 Fission products
(Kysthym)
Three Mile Island United States 1979 1x10% Noble gases, 1311
Chernobyl Russia 1986 5.2 10 137Cs
Fukashima Japan 2011 3.4-8.0x 10V 187Cs

Source: From Choppin et al. (1995).

approximately equal to that generated by nuclear power plant operation (from
neutron capture on deuterium in water, as a ternary fission product or from
neutron reactions with 1°B). (Nuclear plant operation generates ~10'® Bq/year.)
As a result of all of these developments, the current tritium content of surface
waters is ~10x the “natural” level.

3.6.4 Anthropogenic Nuclei

The third principal component of environmental radioactivity is due to the
activities of man, the anthropogenic radionuclides. This group of nuclides
includes the previously discussed cases of *H and '*C along with the fis-
sion products and the transuranium elements. The primary sources of these
nuclides in the environment are nuclear weapons tests and nuclear power plant
accidents. These events and the gross nuclide releases associated with them
are listed in Table 3.3. Except for *C and ®H, the anthropogenic contributions
from nuclear weapons testing or use (which is the most significant source of
man-made environmental exposure) are negligible compared to other sources
of natural radioactivity. (The principal component of these large releases of
radioactivity was shorter-lived fission products like 13!, which have decayed,
leaving '37Cs, #°Sr, and the Pu isotopes as the nuclides of most concern. For
further descriptions of these events and their environmental consequences,
the reader is referred to the material in Bibliography.)

3.6.5 Health Effects of Natural Radiation

As indicated previously, humans receive radiation doses from radionuclides
in the body, from external exposure to naturally occurring and man-made



Table 3.4 Average Annual Human Exposure to lonizing
Radiation (mSv).

Radiation Source World  United States
Inhalation of air 1.26 2.28

Medical 0.60 3.00
Terrestrial radiation from ground  0.48 0.21

Cosmic radiation 0.39 0.33
Ingestion of food and water 0.29 0.28
Cigarettes, air travel 0.13
Occupational exposure 0.005  0.005
Miscellaneous 0.002  0.003

Total 3.01 6.24

radionuclides in the environment, and from cosmic radiation. The worldwide
average equivalent dose to humans is ~3.0 mSv/year, with significant variations
depending on country. Table 3.4 summarizes the various contributions to this
dose for the world and the United States (where the average annual dose is
~6.2 mSv.).

Inhalation of airborne radon is the principal contribution to the nonan-
thropogenic radiation exposure. The dose varies from country to country and
depends on geology, house construction, and so on. For the United States,
indoor radon is thought to account for 15,000—22,000 lung cancer deaths per
year, second only to smoking.

The global annual radiation exposure due to medical procedures is 0.6 mSv,
with US exposure being about 3.0 mSv/year due to diagnostic procedures. All
other man-made sources of radiation contribute a negligibly small dose.

3.7 Radionuclide Dating

Animportantapplication of the basic radioactive decay law is using the decay of
an activity to estimate the age of the sample called “radonuclide dating” From
Equation 3.4, we know the expression for the number of atoms present as a
function of time if there is no additional source:

N = Nye ™ (3.59)
We can solve this equation for ¢

f= In(N,/N)

- (3.60)



where N, and N are the number of radionuclides present at times ¢t = 0 and
¢t =t and A is the decay constant. The quantity ¢ is the age of the object, and it
can be determined from a knowledge of the nuclear decay constant (In2/, ,)
and the number of radioactive nuclei present in the object now, N, and initially,
N,. Clearly, N can be determined by counting the sample (A = AN), but the
trick is to determine N,,. One obvious approach is to recognize that for a decay
of parent P to daughter D, the total number of nuclei is constant

D(t) + P(t) = P(t)) = P° (3.61)
and
P(t) = PPe™™ (3.62)
so that
t=>ln <1+%> (3.63)
Thus by measuring the current ratio of daughter to parent atoms 2O " one

P(0)
can deduce the age of the sample. (This assumes, of course, that there are no

daughter atoms present at ¢ = 0, that they are all due to the parent decay, and
that none have been lost.)

Sample Problem 3.5: Simple Dating Problem

In a rock, one finds a nuclidic ratio of 2°°Pb to 238U of 0.60. Estimate the
age of the rock.

Solution

1 (1400
t= Aln<1+ P(t))
t= 1 In(1 + 0.60)
In2/(4.5 x 107)

t = 3.1 x 10° years

If we want to relax the condition that no daughter atoms were presentat¢ = 0
(i.e., D(t = 0) # 0), then we need an additional term in the equation

D(t) + P(t) = D° + P° (3.64)

and we need another measured quantity or to make an estimate of D°. Suppose
there is another isotope of the daughter element that is stable, D, and is not
formed in the decay of anything else. We can assume that

D(t) = D? = D, (3.65)
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data can be interpreted as showing that 4.54 billion years ago, all of these rocks had the
same 87Sr/%Sr ratio of 0.7003 (From Wetherill (1975)).

where D, is the number of such stable atoms. Then, dividing by D
D) P(t 0 0
by  Pp&) _D° P

= — (3.66)
DS DS DS DS
Substituting P° = Pe* and rearranging
D@ D°  P@®), ,
=—+ == +1 3.67
b =5t D (367)
Thus, if we plot a set of measurements of % versus %, we will get a straight

s s

line with the intercept %0 and a slope of (e* ~ 1). Figure 3.15 shows such a plot

of a set of meteorite samples using the ¥Rb — St decay as a chronometer
(t,/, = 4.75 x 10" years).

Other geochronometers that can be used in a similar manner involve the
decay of 1.277 x 10° years *’K to **Ar (K/Ar dating) or the decay of %°U or **U
to their 27Pb and 2°°Pb daughters. Each chronometer poses special problems
with regard to the loss of daughter species over geologic time by diffusion, melt-
ing, or chemical processes. The “normalizing” stable nuclide in the case of the
uranium decay series is 2°*Pb, and in the case of K/Ar dating, the normalizing
nuclide is 3°Ar.



Table 3.5 Properties of Nuclidic Pairs Used in Dating.

Parent Daughter Parent Half-life (Gyear) Normalizing Nuclide

235U 207 Pb 0.70 204Pb
0K Y0Ar 1.28 36Ar
238U 206Pb 4.47 204I)b
232'1—1,1 208 Pb 14.1 204Pb
8Rb 87Gr 475 86Gy
Wsm  19Nd 106.0 144Nd

The U-Pb system is one of the most widely used chronometers in geology.
There are two geo chronometers, the 22U-2Pb system and the 22°U-27Pb sys-
tem. If one adopts a primordial ratio of 28U/?*>U of 137.818 + 0.045 for bulk
silicate material, one can use the 207Pb/2%Pb ratio to directly calculate an age.
Uranium-lead dating is often done using the mineral zircon (ZrSiO,) because
this mineral incorporates uranium into its crystal lattice but rejects Pb, elimi-
nating a possible correction.

In Table 3.5, we summarize the various dating methods, describing the parent
nuclide (P) , the daughter nuclide (D), and the “normalizing” nuclide (D,).

The dating methods discussed up to now are been based on the use of
long-lived radionuclides that are present in nature. Dating is also possible
using “extinct radionuclides,” that is, nuclei whose half-lives are so short
that if they existed at the time of formation of our solar system, they would
have decayed away essentially completely by now. The nuclides **°I (¢, =
1.57 x 107 years) and ***Pu (t,,, = 8.08 x 10’ years) are noteworthy examples
of this type of nuclide.

The decay of extinct radionuclides is measured by measuring anomalies in the
isotopic abundance of their stable daughters. For example, 121 decays to 1% Xe,
and its decay will lead to an anomalously high concentration of 12 Xe in the mass
spectrum of Xe isotopes found in a rock system. What is dated is the “forma-
tion age” of the rock, that is, the time interval between the isolation of the solar
system material from galactic nucleosynthesis and the time at which the rock
cooled enough to retain its Xe. Formally this formation age, A, may be calcu-
lated as from the isotopic ratios in a fashion similar to that of Equation 3.67:

129, ,127
C1/7D
A=im_L 2 / — (3.68)
A Xe*/ 1

where 12Xe* is the excess Xe attributed to the decay of %1, 1?71 is the con-
centration of stable, nonradiogenic '?’1, 4 is the decay constant for '?°1, and
(**1/ 127IO) is the ratio of the abundance of the iodine isotopes at the time



of isolation from galactic nucleosynthesis. This latter ratio is derived from
theories of nucleosynthesis and is ~107%.

The decay of extinct 2**Pu is deduced from excess abundances of the nuclides
136Xe, 13*Xe, and 132Xe produced by the spontaneous fission of 2#*Pu. Uncer-
tainties arise because there is no stable isotope of Pu that can be used in the
way that %I is used in Equation 3.68, and the use of other heavy nuclides 234U
or 22Th as “substitutes” leads to difficulties due to differences in primordial
production and chemistry.

By far the most important dating method involves the decay of '*C (¢, , =
5730 years). As indicated previously, 1*C is formed continuously by the cosmic
ray induced *N(n, p)MC reaction in the upper atmosphere. This radiocarbon
(*4C) exchanges with stable carbon (}2C) in living things leading to the exis-
tence of a constant level of *C in living systems as indicated schematically in
Figure 3.16. When an organism dies, it will cease to exchange its carbon atoms
with the pool of radiocarbon, and its radiocarbon will decay. Measurement of
the specific activity of an old object allows the determination of the age. When
organic matter has decayed for 10 or more half-lives of 1*C, it is no longer possi-
ble to directly measure the 1*C radioactivity of an object. In these cases, one can
use accelerator mass spectrometry (AMS) to count the atoms of 1*C directly. An
accelerator, such as a cyclotron or tandem Van de Graaff, is used as a mass spec-
trometer to separate the 1*C atoms from the more prevalent 12C or 13C. Another
difficulty is the separation of *C from the ubiquitous *N isobar and various
molecular ions, so accelerators are used to provide energetic ions that can be
identified with standard nuclear techniques to identify the nuclear charge of
the ion. The advantage of AMS can be realized by the following example. If one
has 1 mg of organic material, a typical *C concentration might be 6 x 107 1*C
nuclei. Using modern AMS techniques, one can collect about 10° *C nuclei /h,
while counting the same sample will result in a count rate of 1 count/h. Using
this technique, it has been possible to determine ages as long as 100,000 years.

As noted earlier, the fundamental assumption in radiocarbon dating is that
the specific activity of 1*C in nature (dpm *C/g!2C) is and has remained con-
stant. This assumes the cosmic ray flux that generates the 1*C has been constant,
and there are no sources of *C or '2C that would change its equilibrium specific
activity. Neither of these assumptions is strictly true, and corrections must be
used to obtain correct ages from radiocarbon dating. Tree-ring data are avail-
able from present to about 12,500 years ago and serve to calibrate carbon dating
in this interval. Recent data from sediments and terrestrial plant microfossils
may help to extend this calibration to 52,500 years ago. The primary cosmic
ray flux changes due to fluctuations in solar activity or the earth’s magnetic
field over time. More importantly, since the Industrial Revolution, the global
carbon cycle is out of balance due to fossil fuel burning (of “old” or “dead”
nonactive fossil carbon). This has caused a 1-3% dilution of the prehistoric
4C/12C ratio. As noted earlier, atmospheric testing of nuclear weapons con-
tributed a spike to the global *C inventory that perturbed the **C/'2C ratio by



Figure 3.16 Artist’s conception of how '#C is generated and incorporated into living things
(Reprinted by permission from Taylor (2000)).

a factor of two in the opposite direction. Continued operation of nuclear power
plants also contributes an amount that is ~10% of the “natural” *C production

rate. Similarly, a dating scheme for water-containing objects, such as wines,

based upon the equilibrium production of tritium (*H) and its decay has been



similarly perturbed by an injection of thousands of times the natural levels due
to atmospheric testing.

Problems

3.1

3.2

33

3.4

35

3.6

3.7

3.8

3.9

3.10

Calculate the expected activity in Bq and in Ci for the following radionu-
clides (see Appendix B for nuclear data): (a) 1.0 g 2**Puy, (b) 1.0 g 1*C, ()
1.0 g 1¥7Cs, (d) spontaneous fission activity for 1.0 g 2>Cf, and () 1 g
226Ra'

Consider the decay sequence **U — 2Np — 2*Pu —
If you start with 1 mCi of initially pure 2**U, what is the activity of **Pu
after (a) 1 day, (b) 1 month, and (c) 1 year?

Calculate the time necessary to reduce the activities of the following
nuclei to 1% of their initial values: (a) 31, (b) 3H, (c) 1*’Cs, (d) *C, and
(e) BPu.

What is the mass (g) of the following activities: (a) 1 uCi ?* Am and (b)
1 pCi 2Pu?

What is the partial half-life for decay by spontaneous fission for 2>>Cf?

If 22Rn is initially purified from its daughters, how long does it take for
them to grow back to 50% of their values at secular equilibrium?

What are the partial half-lives of 2Na for decay by (a) EC and (b) f*
emission?

Calculate the relative mass ratios of 228U, ?2°Ra, and ?*Rn in an old ura-
nium ore.

Consider the decay of 1*°Ba to *°La. At what time does the *°La activity
reach a maximum?

Consider a reactor in which the production rate of 2*U via the 228U (n, )
239U reaction is 10° atoms/s. Calculate the activity of 2*°Pu after an irra-
diation of (a) 1 day, (b) 1 month, and (c) 1 year.

What is the probability of a 22Rn atom decaying in our lungs? The atmo-
spheric concentration of ???Rn may be assumed to be 1 pCi/L. In an
average breath we inhale 0.5 L of air and exhale it 3.5 s later.



3.12

3.13

3.14

3.15

3.16

3.18

3.19

Consider a radionuclide (decay constant A) with activity A Bq at time ¢,.
Calculate the number of nuclei that decay between times ¢, and ¢,.

Consider the following decay scheme shown in the following (from
Evans, 1955): (a) derive expressions for the activity of B and C as a
function of time ifat £ = 0, A = A, B = C = D. (b) What happens when
the cross over transition A; = 0?

If one “milks” a sample of **Mo to remove the daughter nuclide *Tc,
how long does it take before the ®Mo “cow” has an equilibrium amount
of *Tc present?

Consider the case where A - B — C and where A, = A;. Derive an
expression for the activity of B as a function of time. Calculate the
time ¢,,,. when the activity of B reaches a maximum. Show that ¢, ~
(t475)"/? where 1, T are the mean lives for A and B.

A uranium mineral was found to contain the Pb isotopes 2%4Pb, 206Pb,
and 27Pb in the ratio of 1 : 1000 : 400. Estimate the age of this mineral
(From Choppin et al. (1995).).

What was the rate of production of 2*Na in a 30 m reactor irradiation of
BNa if the activity of 2*Na was found to be 1.0 pCi 3 h after the end of
irradiation?

Calculate the heat generated per kilogram of natural uranium by the 233U
and the ?*°U in secular equilibrium with their decay products. Assume
all emitted radiation is absorbed.

Given the following data, determine the age of the rock and the initial
87Sr/%0Sr ratio.



Table 3.6 Rb-Sr Dating Data.

Sample Number  Rb/Sr Weight Ratio  87Sr/26Sr Atom Ratio

1 1.06 0.7597
2 3.51 0.8248
3 6.61 0.9085
4 9.33 0.9796
5 10.67 1.0200

3.20 When counting a radioactive sample, one measures the number
of counts C that occur between two times, ¢, and ¢,. In plotting a
decay curve, one will commonly plot this measurement at the time
t = (¢, + t,)/2 and assign a count rate of C/At where At = t, — t, to this
point. What is the error associated with this procedure?
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4

Nuclear Medicine

4.1 Introduction

The most rapidly expanding area of radionuclide use is in nuclear medicine.
Nuclear medicine deals with the use of radiation and radioactivity to diagnose
and treat disease. The two principal areas of endeavor, diagnosis and ther-
apy, involve different methods and considerations for radioactivity use. (As
an aside, we note that radiolabeled drugs that are given to patients are called
radiopharmaceuticals.) Recent work in this area has focused on developing
combinations of two isotopes in one delivery system: one isotope provides a
therapy function and another isotope provides a diagnostic function, called
theranostics.

In diagnosis (imaging) emitted radiation from injected radionuclides is
detected by special detectors (cameras) to give images of the body. A list of
radionuclides commonly used in diagnosis is shown in Tables 4.1 and 4.2. At
present, most nuclear medicine procedures (>90%) use either *Tc™ or one
of the iodine isotopes. Most diagnostic use of radionuclides is for imaging of
specific organs, bones, or tissue. Typical administered quantities of radionu-
clides are 1-30mCi for adults. Nuclides used for imaging should emit photons
with an energy between 100 and 200 keV, which have small decay branches for
particle emission (to minimize radiation damage) and have a half-life that is
~1.5 times the duration of the test procedure and be inexpensive and readily
available. ®Tc™ is used in more than 80% of nuclear medicine imaging because
its 143 keV y-rays produce excellent images with today’s gamma cameras, and
it has a convenient 6 h half-life. In therapy, radionuclides are injected into the
body and concentrated in the organ of choice and damage the tissue.

Nuclear medicine combines nuclear and radiochemistry, pharmacy,
medicine, and radiation biology in a challenging and satisfying career. Nuclear
medicine is a major employer of today’s nuclear and radiochemists, with
an ever increasing demand for trained people. It can be intellectually and
financially rewarding.



Table 4.1 Commonly Used Diagnostic Radionuclides, Z < 28.

Nuclide Application

uc PET brain scans

e Radiolabeling

BN PET scans

50 PET scans of cerebral blood flow

I8F PET brain scans

2p Bone disease diagnosis

3p Radiolabeling

3 Heart disease diagnosis, nucleic acid labeling
Y7Ca Cell function and bone formation

65¢ Blood flow studies

Y7Ca Cancer diagnosis

SICr Red blood cell survival studies, intestinal blood loss
*IMn Myocardial localizing agent

52Mn PET scans

59Fe Bone marrow scanning, iron metabolism studies
Co Scanning of various organs

%8Co Tracer for pernicious anemia

4.2 Radiopharmaceuticals

Radiopharmaceuticals are radioactive compounds used for diagnosis and ther-
apy. Most (95%) radiopharmaceuticals are presently used for diagnosis. These
compounds must be suitable for administration to humans, that is, they must
be sterile. A radiopharmaceutical generally has two parts, the radionuclide and
the pharmaceutical. The pharmaceutical component allows the compound
to preferentially locate in organs or to participate in some function of the
organ. The radiation from the nuclide must be easily detected and lead to a
controlled dose to the patient. The effective half-life of the radionuclide in the
target organ or the body should be short to minimize unnecessary radiation
exposure. Radiopharmaceuticals used for imaging should involve y-emitting
radionuclides, while those intended for therapy will involve a or § emitters.
Therapy with a emitters is used for small tumors due to the short range of the
a-particles in matter, while the f-emitters are used with larger tumors.

There are a variety of ways that the pharmaceutical can bind to an organ.
Among them are (Saha, 2010) (a) passive diffusion (** Tc™-DTPA in bone imag-
ing), (b) ion exchange (uptake of **Tc™ phosphonate complexes in the bone),



Table 4.2 Commonly Used Diagnostic Radionuclides, Z > 28.

Nuclide  Application

%4Cu PET scans

67Cu Cancer diagnosis

Ga Tumor and inflammatory lesion imaging
%8Ga Thrombosis and atherosclerosis studies
2Se Brain imaging

75Se Protein studies, liver and pancreas imaging
8LKym Lung imaging

82Rb Myocardial localizing agent

88r Measurement of bone metabolism

99 Tem Brain, heart, lung, thyroid, gall bladder, skin, lymph node,
bone, liver, spleen, and kidney imaging; blood flow studies

19¢Cd Cancer detection, pediatric imaging, heart disease diagnostics
a0} Detection of heart transplant rejections,
imaging of abdominal infections, imaging of metastatic melanoma
1231 Thyroid disorders
1251 Osteoporosis detection, tracer for drugs
127X e Lung imaging, neuroimaging for brain disorders
133Xe Lung ventilation studies
169Yb Gastrointestinal tract diagnosis
1pm Cardiovascular angiography

195ptm  Pharmacokinetic studies of antitumor agents

(c) active transport (13! intake of the thyroid), (d) metabolic mechanisms
(*8F-FDG uptake in myocardial and brain tissues), and (e) antigen—antibody
complex formation (*3!I, ''In, and **Tc™ labeled antibodies to attach to
tumors).

There are certain obvious aspects of radiopharmaceuticals worth noting. The
radiopharmaceutical label must be attached stably and easily to the molecule
in question. For metals this frequently means the use of a chelate complex that
hides the metal. DTPA complexes are typical compounds of this type. The size
of the radionuclide complex must be small enough to pass through various nat-
ural filters such as the glomeruli in the kidneys. The pH of blood is 7.4, and the
radiopharmaceutical needs to be compatible with this. The protein binding and
lipid solubility of the radiopharmaceutical will help to determine the in vivo
distribution and localization of the tracer. High lipid solubility will facilitate



diffusion through the cell membrane and concentration in a target organ.
Protein binding will reduce this lipid solubility.

Some general labeling techniques include isotopic exchange (used for 3H, 12°1,
and '*C), use of bifunctional chelating agents (that attach to the radioactive
metal label and a macromolecule involved in localization), biosynthesis, and
chemical synthesis (where a “foreign” radioactive label is attached to a biologi-
cally active molecule).

4.3 Imaging

Most people are familiar with the medical or dental use of x-rays for providing
images of the tissue or bones where an external radiation source is used to do
the imaging. To improve contrast, agents like barium sulfate, which attenuate
the x-rays, are frequently administered to the patient. In the 1970s, a significant
improvement in medical imaging occurred with the advent of computerized
tomography (CT). In this technique, photographic plates are replaced by one
or more radiation detectors, and an apparatus is used to move the source of
imaging radiation relative to the patient with a digital computer system with
appropriate software to provide online images from observed changes in count-
ing rates as the source—patient geometry changes. (Tomography is from the
Greek words “to cut or section” (tomos) and “to write” (graphein)). Tomography
shows slices of the body with typical resolution of <1 mm. A simple conceptual
diagram of such apparatus is shown in Figure 4.1.

Tomography can involve images generated by the transmission of radiation
through the body (Fig. 4.1) or by incorporating radionuclides into the body
and detecting the emitted radiation (emission tomography). For emission
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Figure 4.1 A conceptual diagram of a CT system.



Camera

O

In planar imaging, the
camera records an image
from one perspective

In SPECT imaging, the camera rotates
around the patient, recording multiple
images that are then reconstructed
into a three-dimensional data set by
a computer

Figure 4.2 Schematic overview of planar (left) and SPECT (right) imaging (Reproduced by
permission).

tomography, the imaging techniques can involve (a) planar images where a
two-dimensional view of an organ is obtained (Fig. 4.2-left), (b) single-photon
emission computerized tomography (SPECT) (Fig.4.2-right) where a 3D
computer reconstructed image is obtained, or (c) a two-photon process called
positron emission tomography (PET). In PET, specific positron-emitting
nuclides, such as '8F, 1C, >0, or !N, are introduced into a region to be stud-
ied. The two coincident 0.511 MeV photons produced when a p* annihilates
emerge in exactly opposite directions and define a line passing through the
point where the decay occurred. The two photons are detected in coincidence
by an array of scintillation detectors. After the observation of many decays,
computer techniques are used to reconstruct a 3D image of the area where the
positrons annihilated.

Most imaging is of the planar type in which a stationary y-ray detector is
used. Typically a single picture is taken of the patient’s liver, heart, and so on to
determine the presence and distribution of the radionuclide. Sometimes, mul-
tiple images are taken over a short time to study the dynamic behavior of an
organ through its radionuclide uptake. In SPECT imaging, the camera rotates
around the patient, and the resulting images are woven together to give a 3D
image. SPECT is used mostly for the brain and cardiac imaging with typical
resolutions of 3-5 mm. The radionuclides used, *Tc™, 21 T1, ’Ga, !'In, and
1231, are all single photon emitters.



44 9°Tc™

PTc™ is now the most widely used radionuclide for diagnostic purposes. It is
used in ~ 10 million procedures per year in the United States and 20 million per
year in the world. It was discovered in 1938 by one of us (GTS) and Emilio Segre.
As discussed previously, its single 142.7 keV photon is ideal for imaging, and its
6 h half-life accommodates most procedures without excessive radiation dose
to the patients. Very importantly, this isomer is easily obtained as the daughter
activity from its longer-lived parent, ®Mo in a Mo-Tc generator (a so-called
cow), and thus is available for continuous use at a reasonable cost.

How does a ®Mo/”Tc™ generator work? The parent Mo (which can be
obtained as a fission product or from the **Mo(n, y) reaction) decays to *Tc™
as follows:

99M0 E) gchm IT(142.7keVy) 99TC

The decay of **Mo goes ~ 87.6% of the time to the isomeric state of *Tc.
This state decays by the emission of a single 142.7 keV photon to the ground
state. Mo, as a reaction product, is purified and dissolved in acid media to
form the anionic species molybdate (MoO,>~) and paramolybdate (Mo, O,,*").
The molybdate anions are adsorbed on an aluminum oxide column. This col-
umn can be “milked” at will to extract the [**Tc™0,*"] ion formed by the decay
of ?Mo. The daughter *Tc™ is eluted from the column with 0.9% NaCl. The
%Mo remains bound to the column as it is insoluble in 0.9% NaCl. (See Figs. 4.3
and 4.4.) After elution from the column, the *Tc™ grows in again, and the max-
imum activity is reached ~ 1 day later. Useful activities are available 3—6 h after
a given elution. Typical commercial columns are used for a week and then dis-
carded. After separation from the molybdenum, the technetium is converted
to a suitable complex prior to use in a patient. This is frequently done using
“chemistry kits” where the *Tc™O, is mixed with the contents of the kit to
create the radiopharmaceutical. The kit usually contains a reducing agent that
reduces the ®Tc™ to a lower oxidation state allowing it to bind to a suitable
ligand.

The Mo / Pem system represents a case of transient equilibrium as indi-
cated in Figure 4.5—left. If all of the Mo decayed to **Tc™, then the activity
of ®Tc™ would exceed that of the ®*Mo after equilibrium. Since only 87.6% of
the Mo decays to *Tc™, then there is slightly less **Tc™ than *Mo. We can
use Equations 3.6 and 3.31 to trace out the activity of the Mo and **Tc™ as a
function of time (Fig. 4.5-right) during “milking” of the cow. The *Tc™ activity
grows in after each milking of the cow, with a maximum amount being present
~ 22 h after separation. However Equations 3.6 and 3.31 do not exactly predict
the amount of ® Tc™ available from the cow because the efficiency of the elution
process is typically 80—90% and the elution efficiency changes slightly from one
elution to another.



Figure 4.3 Schematic Production 235 fission %Mo (n,y)
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Figure 4.4 Photograph of the first
9Tc™ generator (From Brookhaven
National Laboratory).




T L ¥ Figure 4.5 (Left) example of
the transient equilibrium
between **Mo and *Tc™ and
(right) how the equilibrium is
affected by multiple milkings.
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In 2014 ®Tc™ came into short supply (the so-called isotope crisis) due
to the combination of safety concerns at the small number of production
reactors. The parent nuclide Mo can be produced in four different ways: (a)
the neutron-induced fission of 23°U in reactors, (b) neutron capture reactions
on ®Mo (*®*Mo(n, y)ggMo) also carried out at reactors, (c) photofission of 233U
(38U(y, ), and (d) charged-particle-or photon-induced reactions on Mo
(*Mo(y, n)” Mo or 100Mo(p, pn)ggMo). The first two reactor-based methods
gave the highest production rates for ® Mo and came to dominate the market.

The nuclear reactors used for Mo production in Canada, Belgium, the
Netherlands, and South Africa were ~50 years old at that time and nearing the
end of their lifetimes. Operation of these reactors is not reliable. The United
States is a large consumer of **Mo, requiring 34,000-46,000 Ci/week. The
United States had no domestic suppliers of ®Mo at that time. (US production



of Mo stopped in 1989 because US suppliers could not compete with
subsidized non-US suppliers).

The most efficient reaction for the production of ®Mo is the neutron-induced
fission of 23°U. The specific activity of the fission generated samples of Mo is
typically a factor of 10-20 times greater than neutron capture generated sam-
ples. The best technique for this reaction involves the use of high enrichment
uranium (HEU, 19.7% 235U). Use of this material poses security problems as
this level of enrichment is involved in nuclear weapons and the waste from this
production method is highly radioactive.

Various solutions to this “isotope crisis” continue to be developed. These
solutions involve the use of low enrichment uranium (LEU) in reactors, neutron
capture using reactors, and accelerator-based methods. It is not clear which
method or methods will be the “winners” in this competition.

As discussed earlier, ®Tc™ is widely used in diagnostic imaging. Common
imaging studies include: (a) whole body bone scans, (b) myocardial perfusion
imaging, (c) cardiac ventriculography, and (d) functional brain imaging. To use
9Tc™ in these applications, the common pertechnetate ion (¥ Tc™O, ") is eluted
from *Mo cows and must be converted to a biologically more useful form. For
example, bone imaging frequently involves the use of ® Tc™-methylene diphos-
phonate (*Tc™-MDP). This radiopharmaceutical is taken up by the cells that
build the bone and serve as a marker of active bone growth making it sensi-
tive to fractures and bone tumors. Imaging can be done with a simple gamma
camera or using the SPECT technique.

4.5 PET

PET is arguably the most powerful imaging technique in nuclear medicine.
Positron-emitting radionuclides (such as ''C (¢, , = 20.3 m), F (¢, , = 109.7
m), **Cu (4 s2 =127 h) are produced in one of several hundred medical
cyclotrons located in hospitals or very close to the delivery site. These rela-
tively short-lived nuclides are incorporated into biologically active molecules,
which, in turn, are injected into patients. The active molecule concentrates in
the organ of interest, and the patient is placed in a three-dimensional scanner.
The positron-emitting radionuclides decay and the resulting positrons annihi-
late when they strike ordinary electrons. The annihilation occurs within ~1-10
mm from the site of the radionuclide. Each annihilation event produces two
0.511 MeV photons, moving in exactly opposite directions from one another.
These two photons are simultaneously detected by an array of scintillation
detectors surrounding the patient. Each pair of 0.511 MeV photons defines
a line passing through the point of annihilation of the positron. Detection
of multiple events provides a three-dimensional image of the emitting
radionuclide distribution. The imaging is shown schematically in Figure 4.6.



Figure 4.6 Basics of PET
imaging, the gamma rays
(red arrow) are
simultaneously detected in
radiation detectors on
opposite sides of the
patient.

Gamma rays

CH,0Ac
o OAc
cO oTf
o AcO CH,OH
HO ° (a) ['8FIKF, MeCN, Ky , », heat ©
= > HO OH
HO (b) Dilute HCI, heat
18F HO
OH 18F

Figure 4.7 (Left) the chemical structure of FDG. (Right) chemical synthesis of FDG.

Approximately 90% of the use of PET at present is in oncology. The approved
clinical radiopharmaceutical for these studies is 2-['®F]fluoro-2-p-glucose
([*8F]FDQG). (See Fig. 4.7-left.) This radiopharmaceutical must be synthesized
rapidly since the half-life of '8F is only 109.7 m. The '®F is produced by proton
bombardment of ¥O-enriched water via the O(p,n)'®F reaction. This reac-
tion produces ®F~ ions in the water. The 8F~ is separated from the solution
by ion exchange and eluted with an acetonitrile solution of 2,2,2-cryptand
and K,CO,. Evaporation of the eluate gives [crypt — 222K]+°F~ salt. The
reaction shown schematically in Figure 4.7-right is then carried out to make
the 8F-FDG. '8F-FDG is an analog of glucose. When it is absorbed in the body,
the fluoroglucose is converted to fluoroglucose-6-phosphate, which cannot
be metabolized further (see Fig. 4.8). Note that ordinary glucose also forms
glucose-6P in the cells, which in turn is destroyed by glycolysis.



Figure 4.8 Chemical pathway for the CH,OH
uptake of '8F-FDG in the body.
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BF_FDG is used to image cancer metabolism by indicating areas of high
glucose use, that is, cancer cell activity; thus, FDG-PET can be used for the diag-
nosis and monitoring of the treatment of cancer. It can also be used to diagnose
Alzheimer’s disease (Fig. 4.9).

Among the more fascinating uses of PET is real-time imaging of brain
functions. By using the PET nuclides ''C, 1°0, 13N, and '®F, scientists at the
Brookhaven National Laboratory have made a number of pioneering studies of
the brain chemistry of substance abuse, the acute effects of cocaine and Ritalin,
and the chronic effects of cocaine and tobacco smoke on the human brain (see
Fig. 4.10). The “addiction circuitry” of the human brain has been studied. The
effects of alcohol and sleep deprivation have also been assessed using PET.

4.6 OtherImaging Techniques

201T] in the form of thallous chloride is used in perfusion imaging of the heart.
Imaging is performed under resting and stress conditions (Fig. 4.11) using
SPECT/CT methods. A redistribution image is also measured some 3-4 h
after the stress images. In panel (a) of Figure 4.11, one sees the response of
a normal heart to stress and redistribution with uptake of the tracer in all
sections of the heart. (ii) In subjects with ischemia (b), there are areas of the
heart where there is no uptake during stress, but uptake is present during
redistribution. (iii) In patients with an infarct (c), there is no uptake of the
tracer during stress or redistribution, reflecting permanent heart damage.
Tumors have distinctive characteristics, such as increased metabolic activ-
ity and blood flow, high vascular permeability, and the presence of tumor
associated antigens. These characteristics can be used with a variety of
radiopharmaceuticals to form images of the tumors. F-FDG is the most
effective, widely used radiopharmaceutical for general tumor imaging in that
it can be used to image brain tumors, breast cancer, lung tumors, head and



Figure 4.9 Amyvid-PET
images are shown for three
subjects where red in the
highest standard uptake
value ratio (SUVr). Top row,
normal subject with no
B-amyloid plaques, middle
row moderate load of
B-amyloid plaques
associated with early stage
Alzheimer’s disease, and
bottom row high load of
B-amyloid plaques
associated with late stage
Alzheimer’s disease (From
Butler Hospital). (See insert
for color representation of
the figure.)

neck cancer, esophageal cancer, melanoma, colorectal cancer, lymphoma, and
thyroid follicular cancer.

4.7 Some Random Observations about the Physics of
Imaging

Itis beyond the scope of our discussion of imaging to discuss in detail the physi-
cal principles at work in imaging. However, there are certain short observations
that we believe can inform the reader about the nature of some of the prob-
lems encountered in nuclear medical imaging. In Figure 4.12, we show a more
detailed schematic view of a gamma camera. (These cameras are also referred
to as “Anger cameras” after a developer of this device.) One notices two impor-
tant features of the gamma camera that would not be present if the detector
were an ordinary Nal(TI) scintillation detector. The first is an imagining colli-
mator, typically a lead plate with holes drilled in it, that restricts which photons
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Figure 4.10 Pharmacokinetics of cocaine and methamphetamine in the human brain. (a)
Axial brain scans (b) Time activity curves. The fast brain uptake of the drugs corresponds to
the user “high”. Reproduced with permission from Annu. Rev. Pharmcol. Toxicol. 52, 321
(2012). (See insert for color representation of the figure.)

are detected by the scintillator. This collimator is crucial in forming an image
if a large, coarsely segmented scintillator is used. Without it, one would have
a jumbled set of photon trajectories at every point on the scintillator. The sec-
ond feature is the use of an array of phototubes to view the light output of the
scintillator. This allows the determination of the X and Y coordinates associ-
ated with the detection of a single photon. Such gamma cameras can be used
for either static or dynamic imaging depending on the computer routines for
signal processing.



Figure 4.11 Images from 2Tl
Stress Redist cardiac imaging (Saha (2010).
Reproduced with the permission
of Springer). (See insert for color
representation of the figure.)
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A feature that medical uses of radioactivity share with ordinary radiotracer
studies is an appropriate treatment of background activity. While one hopes
an injected radionuclide will concentrate in a particular organ, it will also be
taken up by surrounding tissue, giving rise to a radioactive “background” for
an attempts at imaging. The usual rules about proper counting of sample and
background and estimation of the total uncertainty in a result must take this
into account.

In our simple picture of PET imaging, we indicated that the intersection of
several straight-line trajectories of 0.511 MeV photon pairs would clearly define
the three-dimensional image of the emitting source. In reality, there are a num-
ber of complications or problems with that simple picture. For example, the
positrons generally travel a (small) distance before annihilating, creating a dis-
persion of emitting points. The emitted photons may be scattered by surround-
ing material, and random coincidences can occur that will further distort the
reconstructed image.

Most SPECT and PET scanners are combined in hybrid imaging systems that
also involve X-ray or MRI computer tomography. X-ray or MRI tomography has
superior resolution (~1 mm) compared with SPECT and PET. Typically these
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hybrid systems that involve both types of tomography, PET/CT or SPECT/CT,
generally are a single machine to minimize patient time in the machine and
facilitate accurate combination of the images.

In assessing the dose given to patients during imaging, one must account for
both the physical and biological half-lives of the nuclides involved. For example,
imagine we are dealing with a radionuclide that is instantaneously taken up in
the body with no excretion. Then we would have the simple radioactive decay

A(t) = Aje™ (4.1)

where A(¢) is the activity of the radionuclide as a function of time and A, is the
amount taken up. We can then define the “accumulated activity” of the radio-
pharmaceutical as

Aaccum = AO/ e_Mdt (4.2)
0

where A is the familiar decay constant of the radionuclide. Now let’s consider
the case where there is both physical decay of the radionuclide and elimination
of the radionuclide by biological processes. The effective decay constant is the



sum of the two contributions for the disappearance of the nuclide:

}”eff = xdecay + xbiol (43)
If we prefer to use the effective half-life of the radionuclide as tiifz, we can
write:
1 1 1
eff = tdecay + tbiol (44)
1/2 1/2 1/2
decay  biol
t t
off 12 ‘172
tl/z - tdecay tblol (45)
1/2 1/2
In(2)
Mett = — (4.6)
Ly

If we want to calculate the dose associated with this radionuclide, we
must also account for the energy deposit associated with the activity. We
can define the energy emitted per unit of accumulated dose as A; where
A; =1.6%x 10713 N.E, (Gy-kg/Bq-s) where E, is the average energy of the
emitted particles and N, is the number of particles emitted per disintegration.
Similarly we can define ¢, as the fraction of the emitted radiation i that is
absorbed in the tissue, we can write for the total absorbed energy, A,...m®; A
and the dose is then given by the expression

D _ dccum 4.7
0% = Mass Z(I) (47)

4.8 Therapy

The therapeutic uses of radiation and radioactivity are no less important than
the diagnostic uses. Radiotherapy plays an important role in the treatment of
cancer. More than half the patients with localized tumors are treated using
radiotherapy. The challenge with radiotherapy is similar to that encountered in
chemotherapy, how to kill the diseased cells without killing so many (nearby)
normal cells that the organism does not survive. A problem that must be over-
come is that cancer cells are less oxygenated than normal cells and are thus
more radiation resistant.

One approach to this problem is to use an internal source of radiation in
the form of a physically or chemically implanted radionuclide. One common
example is the treatment of hyperthyroidism. The therapeutic agent is 3L
lodine in general and thus 13!1 is accumulated in the thyroid, and when it
decays it irradiates the nearby tissue with - and y-rays. About 90% of the



damage is done by the p-particles. The thyroid gland resides in the throat and
that is somewhat removed from other organs. The treatment has proven to be
highly successful.

A promising development in radiotherapy is the development of monoclonal
antibodies that seek out particular cancer cells and bind to them. If one can
radiolabel these antibodies with nuclides such as the a-emitting 2!'At or
B-emitters like 1311, 186188Re, 1251, or Y, then one can deliver a large dose to
the cancer cells with reduced damage to the normal tissue.

The spread of cancer to the bone results in severe pain. Relief of this pain
improves the quality of life. 3*P-orthophosphate has been used for some time
in this manner. The drug localizes mostly in the hydroxyapatite crystals in the
bone. The high-energy p-particle from 32P decay (Egm = 1.7 MeV) provides the
dose.

An alternative approach, using external radiation, is to deposit, by various
means, a large amount of energy into the tumor cell with as little loss of energy
elsewhere as possible. One straightforward way to do this is to deposit a
radiation absorbing compound preferentially in the cancer cell and to irradiate
the organism, thus localizing the dose. One such material is boron, which
can undergo the 1°B(n, a) reaction, splitting into two large fragments (*He
and “Li ) with short ranges (5-9 pm) in tissue. Two boron compounds have
been utilized, Sodium borocaptate (BSH) and boronophenylalanine (BPA);
epithermal neutrons (0.5 eV< E, < 10 keV) are used for the °B(n, o) reaction
as a compromise between a larger cross section (thermal neutrons) and the
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Figure 4.13 Comparison of the Bragg curves of several therapy agents.



ability of higher-energy neutrons to penetrate tissue. This technique is referred
to as boron neutron capture therapy (BNCT). While clinical trials of BNCT
have been pursued for some time in connection with treatment of brain, neck,
and head cancers, it has not been widely adopted at present because the boron
delivery agents have not met the criteria of low toxicity, normal tissue uptake,
high tumor uptake, and rapid clearance from the body.

The most common form of radiotherapy is irradiation of the cancerous tissue
with ionizing radiation, that is, photons or charged particles. Figure 4.13 shows
the dose associated with various types of ionizing radiation as a function of
depth of penetration in tissue. The X-rays and y-rays generally deliver a contin-
uously decreasing dose as they penetrate matter. (High-energy photons show
an initial increase in dose and then a decrease, due to forward scattered Comp-
ton electrons.) This continuous slowly varying dose at all depths means that the
radiation damage delivered by the photons is not concentrated in a tumor but
occurs in healthy tissue as well. Only the charged particles (protons or heavy
ions) show an energy deposition pattern that has a maximum near the end of
its range in matter (the Bragg peak). In theory, carefully choosing the incident
energy would allow one to localize the radiation damage to the tumor. Further-
more, the higher linear energy transfer associated with heavy ions compared to
photons results in more severe DNA damage. This enhanced relative biological
effect of the heavy-ion radiation allows greater tumor destruction.

Problems

4.1 Compute the amount of a radionuclide necessary to perform an experi-
ment with a sample count rate of 1000 cpm, a detector efficiency of 33%,
and a sample aliquot for counting consisting of 10% of the total isolated
sample and where the percent incorporation of the nuclide into the total
isolated sample was 0.5%.

4.2 Isotope X, with a half-life of 5 days, is to be used in an experiment that
includes the following factors: (a) sample count rate of 100 cpm, (b)
detector efficiency of 10%, (c) assume the sample with the lowest count
rate will represent a 0.5% incorporation, and (d) assume all samples will
represent only 5% of the total isotope administered. What amount of X
must be used?

4.3 Three tracers, 90-year *!Sm (0.076 MeV f~, 100% of the disintegrations
and 0.022 MeV X-ray, 4%), 244.3 days ®°Zn (0.33 MeV B~, 1.7% of disin-
tegrations and 0.511 MeV y-rays, 3.45), and 14.3 days 32P (1.71 MeV 7,
100% of the disintegrations) will be used simultaneously in a multi-tracer



4.4

4.5

4.6

4.7

4.8

4.9

experiment. Suppose you wish to measure the uptake of these three ele-
ments in the blood of a rat and the loss of these elements to the rest of the
rat’s organs and tissue from the blood. What levels of the tracer will you
inject into the rat? Why? (Assume that you will withdraw 0.1 mL blood
volumes every hour for 24 h. The total blood volume of an adult rat is
about 15 mL.)

A 10-mL sample of blood is withdrawn from a patient, and the red cells
are labeled with ®'Cr, a 27-day y-emitter. One milliliter of the labeled
blood diluted to 15 mL with water gave a net counting rate of 33,000 cpm
(background corrected). The remaining labeled blood is injected back
into the patient, and after several hours 10 mL of blood is withdrawn
and counted as before. The net counting rate (background corrected)
was 500 cpm. What is the total volume of the patient’s blood?

Compound X, molecular weight of 150 (specific activity 1.0
mCi/mmole), was checked for purity by carefully weighing 1.5 mg
of the radiochemical, mixing with 1000 mg of unlabeled compound X,
and recrystallizing until a constant specific activity. Radioassay gave a
value of 2500 dpm/mg. What was the purity of the radiochemical in
percent?

A sample of ® Tc™ is labeled “100 kBq/mL at 09:00”” What volume should
be withdrawn to prepare an injection for a patient of 50 kBq at 16:00?

Consider two radiopharmaceuticals, A and B. Radiopharmaceutical A
generates contrast in imaging by enhanced uptake in the organ of interest
by uptake in this organ that is 10 times the uptake in the surrounding
tissue. Radiopharmaceutical B generates contrast in imaging the same
organ by reducing the uptake in the surrounding tissue by a factor of 10.
Assume the organ to be imaged has a volume of 1 cm3, while the total
tissue affected has a volume of 10 cm3. Assume the background counting
rate in the tissue is 10 cpm/cm3. Which is the better choice for imaging,
A or B and why?

What is the specific activity of *Tc” in Bq/g? Ci/g?

What is the accumulated activity in the liver if 50 MBq of *Tc™ is
injected in the body, assuming 50% is trapped by the liver and remains
there? The accumulated activity is a measure of the total number of
decays occurring in the organ during the time radioactivity is present in
the organ.



4.10 What is the activity in the lungs after 8 h if 50 MBq of *Tc™ is injected
into the patient? Assume the biological half-life is 30 min.

4.11 A radionuclide decays by emitting 0.695 MeV f-particles. Its physical
half-life is 14.5 days. Assume its biological half-life is 7.1 days. What is
the total energy deposited per kilogram in the body in one week from
the absorption of 250 MBq?

4.12 A Mo-Tc cow is measured to contain 3.2 Ci of Mo (in equilibrium with
9Tc™) at 08:00 on Monday. What is the total  Tc™ activity that could be
eluted from this cow at 12:00 on Wednesday?
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5

Particle Physics and the Nuclear Force

5.1 Particle Physics

Elementary particle physicists (also known as “high-energy physicists”) study
the fundamental particles of nature and the symmetries found in their interac-
tions. The study of elementary particle physics is an important endeavor in its
own right and well beyond the scope of this book. Here we will introduce some
of the basic concepts of this area of physics that are needed for our discussion
of nuclei.

The particles that make up all matter can be classified as either fermions or
bosons. Fermions obey the Pauli exclusion principle, have antisymmetric wave
functions, and half-integer spins. For example, neutrons, protons, and electrons
are all fermions. Bosons do not obey the Pauli exclusion principle and have
symmetric wave functions and integer spins. Photons are the most common
example of bosons.

The two groups of particles can also be further divided into the hadrons (such
as the neutron and proton) and the leptons (such as the electron). The hadrons
can interact via the nuclear or strong interaction, while the leptons do not. Both
the hadrons and leptons can, however, interact via other forces, such as the elec-
tromagnetic force. Figure 5.1 contains an artist’s conception of the standard
model, a theory that describes these fundamental particles and their interac-
tions. Among the hadrons, a large fraction of nuclear physics can be described
only considering the familiar neutron and proton. On the other hand, the lep-
tons play an important role in the nuclear force and in f decay, and we need to
look a little into their properties. Note that each of these particles has a corre-
sponding antiparticle. Similarly, only the antiparticle of the electron, called the
positron, plus the antiparticle of the electron neutrino play an important role
in nuclear physics.

There are six different kinds of leptons (Table 5.1), and they are arranged in
three pairs. The electron (e), the mu lepton (p or muon), and the tau lepton (z)
each carry a charge of —1 e and each has an associated neutrino: the electron
and the electron neutrino (v,), the muon and the muon neutrino (v,), and the
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Figure 5.1 An artist’s conception of the standard model of particle physics.

Table 5.1 Leptons in Standard Model.

Mass Electric
Flavor GeV/c? Charge
v,, electron neutrino <1 x 107! 0
e, electron 0.000511 -1
v,, muon neutrino <0.0002 0
1, muon 0.106 -1
v,, tau neutrino <0.02 0

7, tau 1.7771 -1




tau lepton and the tau neutrino (v,). All of these neutrinos are electrically neu-
tral and have very small rest masses that have not been determined at present.
Determining the masses of the neutrinos is a subject of current research (see
Chapter 12). The first experimental evidence for neutrinos (the electron neu-
trino) came from nuclear p decay, while the existence of the other neutrinos
was demonstrated in higher energy processes.

One important aspect of leptons is that their total number is conserved by
type in nuclear processes. Consider, for example, the decay of a free neutron:

n—opt+e +v,
where the line over the symbol for a given particle, for example, v,, indicates
the antimatter version of that particle, here the electron antineutrino. In this
equation, the number of leptons on the left hand side is zero (only one hadron),
so that number of leptons on the right hand side must also be zero. This
equivalence can only be true if we assign a lepton number of +1 to electron (by

convention) and —1 to the antineutrino (being antimatter). Consider on the
other hand, a scattering reaction used to observe the presence of antineutrinos:

V.+pt—>e"+n

Here the lepton number is —1 on both sides of the equation again using the con-
vention of lepton numbers of +1 for every lepton and —1 for every antilepton
(the positron, e*, is an anti-lepton, of course). Finally, in contrast, the putative
reaction to observe a neutrino

v.+pt#et+n

would conserve hadron number and electrical charge but not lepton number.
Note that lepton conservation applies separately to the pairs of electrons,
muons, and taus, so many other combinations would also be disallowed.

Sample Problem 5.1: Lepton Conservation

Is the reaction p~ — €™ + v, + v, allowed?

Solution
Check lepton number conservation: 1 =1—-1+1

Thus the reaction would be allowed, and based on the masses of the
particles, the reaction should be exothermic as written.

If we return our focus to neutrons and protons (the nucleons), we note
that they have similar masses (~1 u). We also should note that the neutron
is slightly more massive than the proton with the mass difference being 1.29
MeV (~0.14%, Appendix A). This small energy difference causes/allows all free
neutrons to decay into protons with a half-life of ~10 min. As remarked earlier,



the neutron has no net electric charge, while the proton has a positive charge
exactly equal to the negative charge on the electron. The electric charge on the
proton appears to be uniformly and symmetrically distributed about the center
of the proton with a charge radius of about 0.8 fm (again, this is an active area
of research at present). The neutron, although electrically neutral, appears
to have an extended charge distribution with a net positive charge near the
center being canceled by a net negative charge at larger radii. The values of the
magnetic dipole moment of the neutron and proton indicate their complex
(inner) structure (see Chapter 2). The neutrons and protons respond equally
to the nuclear or strong force, (the “charge independence” of the nuclear force)
and are regarded collectively as “nucleons” The nucleons can be treated as a
single hadron type with a mass of 938 MeV/c?. By extension, the nucleon can
have excited states such as the particle identified with a mass of 1232 MeV/c?,
which is called the A resonance.

The fermionic hadrons are called baryons and according to the standard
model are made up of three fundamental fermions called quarks. There are six
different kinds (or so-called flavors) of quarks: u (up), d (down), s (strange),
¢ (charm), t (top), and b (bottom). The masses and charges of the quarks are
given in Table 5.2. The size of each quark is thought to be <107'® m. The
lightest two quarks, the u and d quarks, are thought to combine in groups
of three to make up a nucleon. The proton is an “uud” combination with a
net charge of (2/3+2/3 — 1/3)e, while the neutron is an “udd” combination
with a net charge of (2/3 — 1/3 — 1/3)e. The effective diameter of the proton
consistent with scattering reactions is about 1 fm. The up and down quarks are
both light (m ~ 5 — 10 MeV/c?) and point-like. The quarks account for ~2% of
the mass of the proton. The remainder of the mass comes from “gluons,” which
bind the quarks together. The most massive of the quarks is the top quark with
a mass approximately equivalent to that of a 1’ Au nucleus and a short lifetime
(~1072%s),

Table 5.2 Quarks in Standard Model.

Approx. Mass  Electric

Flavor GeV/c? Charge
u, up 0.003 +2/3
d, down 0.006 -1/3
¢, charm 1.3 +2/3
s, strange 0.1 -1/3
t, top 175 +2/3

b, bottom 4.3 -1/3




Similar to the leptons, the number of baryons is conserved in a nuclear reac-
tion. Each baryon, such as the neutron or proton, is assigned the value +1 and
—1 to each antibaryon (such as the antiproton) in exact analogy to the lepton
number. The total baryon number must be conserved in any nuclear process.
As well as binding three quarks (or antiquarks) together to make baryons (or
antibaryons), the nuclear or strong interaction can bind a quark—antiquark pair
(g, q) together to form unstable particles called mesons. The 7" and 7~ mesons
(ud, du) are especially important to describe the nuclear force. Notice that the
quark/antiquark pairs will always couple to have zero spin, and thus the mesons
are bosons. For example, consider the proton scattering reaction:

pt+pt—-op"+n+nt

The number of baryons on the left side of the equation is 2, and the number on
the right hand side is also 2 because the mesons (a z* in this case) as we just
saw are leptons.

5.2 The Nuclear Force

There are four forces of nature: the electromagnetic, the strong (nuclear), the
weak, and the gravitational force. In dealing with the structure, reactions, and
decay of nuclei, we have to consider the electromagnetic, strong, and weak
interactions. The principal force we shall concern ourselves with is the strong
or nuclear force. In this chapter, we shall summarize some important features
of the nuclear force and some underlying concepts building on some of the
high-energy physics concepts we just introduced.

One basic characteristics of all the fundamental forces is their so-called
exchange character. The forces are said to operate through the virtual
exchange of particles that act as force carriers. First of all, the force carriers (or
“exchange”) particles are all bosons. Second, what do we mean by this term
virtual? We mean that the particles that are exchanged or passed back and
forth only exist for a very short time and cannot be observed externally. The
time limit for their existence comes from the Heisenberg uncertainty principle.
How is this possible? Consider the familiar electromagnetic interaction. Two
charged particles can be imagined to interact electromagnetically by the
emission of virtual photons that are continuously emitted and absorbed by the
particles (i.e., exchanged) as long as the photons are absorbed (and disappear)
before the clock runs out. The Heisenberg uncertainty principle tells us for a
given system that

AE-At>h

where AE represents the uncertainty of the total energy of that system, and At is
the uncertainty in the time that system exists in that state. Thus, we can “violate”



the law of conservation of energy by exchanging a photon with an amount of
energy AE for a length of time At given by

_ h

T AE

Recall that 7 is a very, very small number, but also notice that if the energy of
the photon is smaller, the length of time is longer. Since photons travel at the
speed of light, the virtual photon could travel a distance R:

R=cAr~ D€ _ he
AE E

v

At

where E, is the kinetic energy of the photon, which has a rest mass of zero. If

the exchanged particle is not a photon but has a rest mass i, the total energy is

the rest mass plus the kinetic energy, but the minimum energy is its rest mass
2

mc?, so

hc n
At AE > Rs mc

The exchange particles for the four forces are the graviton for the gravitational
force, the pi-meson or pion for the strong interaction between nucleons,
the photon for the electromagnetic force, and the W, and Z bosons for the
weak interaction. The mass of the graviton is unknown but must be nearly
zero because the gravitational force appears to have an infinite range. The
exchange particles for the electromagnetic force, the photons, have a zero
rest mass, which allows the range of the force to be infinite. However, In the
case of the strong interaction between nucleons, the range of the force is
<1.5 fm, SO Mgychange = 140 MeV/c. In the case of the weak interaction, the
exchange particles called the W, and Z bosons have masses m ~ 90GeV/c?,
so R ~ 103 fm.

Sample Problem 5.2: Virtual Particle Range

Show that the maximum range of the virtual exchange of a pi meson is
1.4 fm.

Solution

There are three pi-mesons, one positively charged, n*, one negatively
charged, -, and one neutral, °. Their masses are 139.57, 139.57, and
134.98 MeV, respectively. Taking the lowest mass to get the longest range

R< n _ hc
M@  M(r0)c?
197.327 MeV fm

13498 MeV

<146fm




When dealing with atoms and molecules and their interactions, one is almost
always dealing primarily with the electromagnetic interaction, which is well
described theoretically. In principle, the problems of atomic and molecular
structure are exactly soluble, albeit sometimes with a great deal of mathemati-
cal complexity. The case for the nuclear or strong interaction is different. While
we have gained much information about nucleons and their interactions, there
are some features of the nuclear force that are poorly understood even today,
and there is no complete theory of nuclear interactions. Since the nucleon is a
composite particle, it is not surprising that the interaction between nucleons is
complicated. Nonetheless, an exploration of some of the features of the nuclear
force will greatly aid us in understanding nuclear phenomena.

5.3 Characteristics of the Strong Force

As discussed earlier, the range of the nuclear force R is thought to be short
with R <1.4 fm. What evidence do we have for this? The fact that the strong
force plays no role in atomic or molecular structure restricts its range to less
than the nuclear radius. In our discussion of the semiempirical binding energy
equation, we showed that nuclear forces “saturate” and that nucleons only inter-
act with their nearest neighbor. Thus, the range of the nucleon—nucleon inter-
action must be of the order of the size of a nucleon, that is, a few femtometers
(107> m).

We also know that the nuclear force is strongly attractive, binding nucleons
together to form a densely packed nucleus. We also know that the nucleons
take up some volume because the nucleus does not collapse down to a point.
Experiments based on the scattering of high-energy particles (protons or neu-
trons) from nuclei have shown the nuclear force also has a repulsive core below
a femtometer or so. That is, below some value of the separation between nucle-
ons (~0.5 fm), the nuclear force becomes repulsive instead of attractive. This
feature, due to the quark substructure of the nucleon, is required to keep the
nucleus from collapsing on itself.

The simplest bound nuclear system, the deuteron, consists of a neutron and
a proton. The deuteron is known to have a quadrupole moment, 0.00286 barns,
which tells us that the deuteron is not perfectly spherical and that the force
between two nucleons is not spherically symmetric. Formally, we say the force
between two nucleons has two components, a spherically symmetric central
force and an asymmetric tensor force that depends on the angle between the
spin axis of each nucleon and the line connecting each pair.

The deuteron has only one bound state, a triplet angular momentum state, in
which the intrinsic spins of the neutron and proton are parallel, adding to make
al = 1 state. The singlet I = 0 state in which the nucleon spins are antiparallel
is unbound, and if the deuteron is excited into this state, it simply comes apart.
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Thus, the nuclear force is spin dependent. Also we shall see that the nuclear
force depends on the coupling of the nucleon spin and nucleon orbital angu-
lar momentum. The ground state of the deuteron has the neutron and proton
primarily in an L = 0 state (an S state). The deuteron magnetic dipole moment,
0.857 nuclear magnetons, is close to the sum of the neutron (—1.913) and pro-
ton magnetic moments (2.793). Detailed studies show a small portion (~4%) of
the time the neutron and proton are in a *D-state (L=2,8=1,1=1) rather
than ground-state °s configuration (L =0,S=1,1=1).

Using the relationship between force and potential energy discussed earlier,
we can represent the nuclear force in terms of a simple graph of the nuclear
potential energy as a function of distance to the center (Fig. 5.2). Since
low-energy particles cannot probe the interior of nucleons or the nucleus, we
can usually ignore the repulsive core in most problems involving low-energy
nuclear structure and just use a square well potential with a sharp edge
(V(r) ==V, forr <R, V(r) = 0 for r > R). Occasionally the so-called Yukawa
form of the potential is used where V(r) = -V exp(—r/R)/(r/R) or the
Woods—Saxon form where V = —V, /(1 + exp((r — R)/a)). The typical values
of the constant R for these potentials are 1.5-2 fm with V; =30-60 MeV. Other
important components of the nuclear force are discussed as they become
important in our subsequent discussions of nuclear structure.

5.4 Charge Independence of Nuclear Forces

The nuclear force between two nucleons has been found to be charge
independent. By this we mean that the strong interaction between (a) two



Table 5.3 Distribution of Stable Nuclei.

Total Binding  Coulomb Net Nuclear
A Nuclide Energy (MeV) Energy (MeV) Binding Energy (MeV)

3 *H —8.49 0 —-8.49
*He =7.72 0.83 —-8.55
13 1BC -97.10 7.66 —104.76
BN -94.10 10.72 —104.82
23 2Na —186.54 23.21 —209.75
BMg —181.67 27.85 —209.52
41 *Ca —350.53 66.12 —416.65
43¢ —343.79 73.08 —416.87

protons or (b) two neutrons, or (c) a neutron and a proton is the same. Of
course, the electromagnetic force will be acting at the same time in these pairs
of nucleons, and the total resulting force will be slightly different in these three
cases. The nuclear force is much stronger than the electromagnetic force,
and the different resulting forces will only be slightly different. Evidence for
the charge independence of nuclear forces can be found in nucleon—nucleon
scattering and in the binding energies of light mirror nuclei shown. (Mirror
nuclei are isobars where the number of protons in one nucleus is equal to
the number of neutrons in the other nucleus and vice versa.) Table 5.3 lists
the total nuclear binding energy of some light mirror nuclei, the difference in
Coulomb energy between the nuclei, and the resulting net “nuclear” binding
energy. Notice that the net nuclear binding energy is remarkably similar for
these mirror nuclei, supporting the idea of charge independence of nuclear
forces.

The simple relation of the masses of mirror nuclei suggests that the nuclear
force between two neutrons, two protons, or a proton and a neutron is the same.
This equivalence leads naturally to imagining that the neutron and the proton
are two states of the same particle, the nucleon. (A similar situation holds for
the © meson that we just encountered, where the n° n*, and =~ mesons are
three states of a single particle, the pion, that all show the same strong force
behavior.) To solidify this idea, we say there is a new quantum number T for
the nucleon (or the © meson) called its isotopic spin or isospin. In analogy to
the nucleon angular momentum called spin, we say that for the nucleon T =
1/2 and in this hypothetical isospin space, there are two valid projections of T,
T, = +1/2 (the proton) and T, = —1/2 (the neutron). (An alternate notation
system refers to the isospin projection as T;.) For a system with isospin T, there
are 27 + 1 members of the isospin multiplet, thus the pion has 7' = 1 with three
members. In a nucleus of N neutrons and Z protons: 7, = (Z — N)/2,anumber



that can be quite large in heavy nuclei. For even nuclei, 0 < T < A/2, while for
odd nuclei, 1/2 < T <A/2.
Sample Problem 5.3: Charge Independence

Consider the mirror nuclei Mg and > Al. What is the energy difference
between their ground states?

Solution
Note the “conversion” of neutral Mg into *°Al will require the change
of one neutron into one proton plus an electron. The neutron and proton
have slightly different masses, of course. The extra proton will interact
electromagnetically with the other 12 protons giving a second part to the
energy difference:
AE = AE. — (m, — my)c*
2
= 6?; — (8.071 — 7.289 MeV)
_ 6x12x1.44 MeV fm
5% 1.2 X (25)/3 fm
= 5.128 MeV
We can check this with the total mass change (count electrons) or sim-
ply the difference in mass defects from the appendix:
AE =BEA,Z+1) - BEA,Z) = A(4,Z + 1) — A(Z, A)
= —8.916 — (—=13.934 MeV) = +5.018 MeV

These results are quite close so we have the ground state of Al to be
~5 MeV above the ground state of 2’ Mg.

—0.782 MeV

Isospin is a useful concept in that it is conserved in processes involving the
strong interaction between hadrons. The use of isospin can help us to under-
stand the structure of nuclei and forms the basis for some selection rules for
nuclear reactions and nuclear decay processes. While a detailed discussion of
the effects of isospin upon nuclear structure, decay, and reactions is reserved
for later chapters, a few simple examples will suffice to demonstrate the utility
of this concept.

Consider the A = 14 isobars, 1*C, N, and 0. 1*C and O are mirror nuclei,
and their ground states should have very similar nuclear properties and can
be labeled with T, = +1 and —1, respectively. As such they must be part of an
isospin triplet with T'=1(T, = 0, —1). Thus, in the T, = 0 nucleus, *N, there
must be a state with 7' =1, T, = 0, that is, the isobaric analog of the T, =0
ground states of *C and 1*O and also have very similar nuclear properties.
(See problems for further details.) We also expect the three members of this
multiplet to have approximately the same energy levels after correction for the
Coulomb effect.



Y8 (p,n). /i

‘-
0.391
threshold

3 1 0.588
threshold

Number of neutrons per 100 xC (x1000)

4.25 4.50 4.75 5.00 5.25 5.50
Incident proton energy (MeV)

Figure 5.3 Neutron yields versus proton energy for the (p,n) charge-exchange reactions on
¥y and *sr (Fox et al. (1964). Reproduced with the permission of American Physical Society).

In heavy nuclei, the Coulomb energy shift between members of an isospin
multiplet can be large due to the large number of protons in the nucleus. Thus,
the isobaric analog of the ground state of one member of an isospin multi-
plet can have an excitation energy of several MeV. Some years ago when Fox
et al. (1964, 198) were doing routine excitation function measurements of the
89Y(p,n)*Zr reaction, a net charge-exchange reaction that essentially converts
the incident proton into a neutron and vice versa in the target nucleus, and they
observed two sharp peaks in the neutron yields near E, = 5 MeV, as shown in
Figure 5.3. This observation was unexpected at the time, since the reaction was
populating levels in the *°Zr compound nucleus at an excitation energy of ~10
MeV where the spacing between levels was small, and no states were known
that would produce a large resonances (see later discussion of nuclear reac-
tions). Angular distributions quickly showed that the spin and parity of these
states were 2~ and 3~. It was pointed out that the ground and first excited state
of °°Y had spins and parities of 2~ and 3~ and were separated by only ~200 keV.
Calculations of the Coulomb energies showed these resonances in the com-
pound nucleus *°Zr corresponded to the isobaric analogs of the ground state
and first excited state of *°Y. The yield of the reaction was enhanced because



the intermediate state represents a particularly simple nuclear configuration in
contrast to the nearby states found at excitation energies of 10 MeV.

Problems

5.1

5.2

53

5.4

5.5

5.6

5.7

5.8

Calculate the Q value for the reaction p~ — e~ + 1, + v, in the sample
problem.

Define or describe the following terms or phenomena: quark, lepton,
hadron conservation, and pi meson.

What is the quark composition of the antiproton and the antineutron?

Which of the following decays are NOT allowed by conservation laws
and why: (@) pt et +y,(b)p" > n" +vy,()n—-p*+y,(d) pt+n—
pt+pt+n and(e) pt+p" > pt+pt+p"+p +

Make a table similar to Table 5.3 showing the total binding energy, the
Coulomb energy, and the net nuclear binding energy for the ground
states of '*C and *O and the 2.31 MeV excited state of 1*N.

If the difference in energy of the ground state of **C and the T' = 1 analog
of the 1*C ground state in 1*N of 2.31 MeV is due to the Coulomb energy
difference between the nuclei, calculate an average nuclear radius R for
these two A = 14 nuclei.

For a Yukawa nuclear potential with V; = 40 MeV and R = 1.5 fm, cal-
culate the ratio between the nuclear and Coulomb potential for at the
values of r = 1,2,4,8, and 16 fm for the reaction of a proton with ¥Y
nucleus.

Fox et al. (1964, 198, Fig. 5.3) also observed a large resonance in
the 88Sr(p,n) reaction at ~5.05 MeV. What is the nuclear product of
thisreaction? (For practice, what is the Q value of this reaction?) Whatis
the isospin, T, and isospin projection, T, of the target nucleus? What
is the isospin, T, of the strong resonance in the reaction and in what
nucleus does it occur?
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6

Nuclear Structure

6.1 Introduction

Nuclei have been shown to have a very regular structure with many general
and simple properties that are predicted by quantum mechanical treatment of
particles (nucleons) moving in a potential well. The nuclear structure is very
similar to the structure of electrons in the atomic potential energy well created
by the Coulomb force; however the shape of the potential well is substantially
different from the atomic case to the nuclear force. The previous chapter con-
tained an introduction to the basic properties of the nuclear force and how
we have been able to determine its important features. In summary, the exact
form of the nuclear force is unknown at present, but the force is known to be
short ranged (~1 fm) with a repulsive core, and it saturates. That is, the force
acts primarily between nearest neighbors to hold them together without letting
them penetrate into one another. We use these features to form the basis of our
description of nuclear structure.

We can also learn a great deal about the basic features of nuclear structure
and the nature of the force that holds the nucleus together if we simply carefully
analyze the properties of the lightest stable and unstable nuclei. The building
blocks of nuclei are the nucleons, protons, and neutrons, of course. The proton
is stable and is usually found as a hydrogen atom bound to a single electron.
The mass of the electron is small compared with that of the proton (511 keV/
938,232 keV ~ 1/1800), and the binding energy of the electron in a hydrogen
atom is even smaller (13 eV/ 938,232,000 eV ~ 107%). The electrons are almost
always carried along by the nuclei, so it is most convenient to imagine build-
ing nuclides up from hydrogen atoms, 'H, rather than bare protons. On the
other hand, the free neutron is unstable and decays with a half-life of ~10 min
into a proton, an electron, and an antineutrino. Thus, imagining that we will
construct nuclei from these constituents, we should not expect to be able to
make arbitrary heavy isotopes of any given chemical element because eventu-
ally if there are too many neutrons, they will be able to decay as if they were
independent.



If we now bring together two nucleons, we find a rather important and inter-
esting fact: only one combination produces a stable (bound) nucleus. One pro-
ton and one neutron will combine to form a deuteron, or one hydrogen atom
plus one neutron will form a deuterium atom with its atomic electron. Both
of the other combinations, two protons that can be labeled ?He and two neu-
trons, are unbound and come apart almost as rapidly as the constituents come
together. It is easy to see that the diproton or *He is more unstable than the
dineutron due to the Coulomb repulsion between the two positively charged
protons. Thus, we find a preference for equal numbers of neutrons and protons
even in the smallest nucleus.

If we look more carefully at the deuteron, we expect that there should be two
possible combinations of the spins of the two nucleons. Both the proton and
neutron have § = 1/2, and we can have the parallel combination §, + S, =1
and the antiparallel combination S, + S, = 0. Both of these states exist in a
deuterium nucleus, the S = 1 state is the ground state (lowest energy), and the
S = 0 state is an excited state and is, in fact, unbound. Therefore, the align-
ment of the spins of the two unlike nucleons has an important effect on the
total binding energy. This provides part of the explanation as to why the dineu-
tron is unbound. Notice that the intrinsic spins of two neutrons in a # = 0 or
s-state must be paired (antiparallel, according to the Pauli principle). However,
the nuclear force prefers the parallel alignment. In order to align the spins in the
same direction in a dineutron, the neutrons have to be in an # = 1 or p-state,
which requires more relative energy. In addition, the fact that the deuteron has
an intrinsic electric quadrupole moment and is thus not spherical tells us that
there is a noncentral component of the nuclear force.

We can continue our survey of the lightest nuclei with A = 3. Only the com-
binations of two protons and one neutron, *He, and one proton with two neu-
trons, 3H, are bound, while the combinations of three protons, 3Li, and three
neutrons are unbound. Again we see a balance between the numbers of neu-
trons and protons with the extreme cases being unbound. The nuclear spins
of both bound A = 3 nuclei are 1/2 indicative of two paired nucleons plus one
unpaired nucleon; three unpaired nucleons would have had a total spin of 3/2.
In the A = 3 system the more neutron-rich nucleus, tritium, *H, is very slightly
less stable than 3He, and it decays by p~ emission with a 12.3 year half-life.

Only one combination of four nucleons is bound, *He, with two protons and
two neutrons. All other combinations of four nucleons are unbound. More-
over, *He, or the « particle, is especially stable (very strongly bound), and the
nucleons are paired to give a total spin S = 0. Interestingly, if we add a nucleon
to the a particle of either type, we produce an unbound nucleus! Thus, there
are no stable nuclei with A =5 as both He and °Li break apart very rapidly
after formation. This creates a gap in the stable masses and poses a problem
for the building up of the elements in stars that is discussed in Chapter 12.
Going on, there are two bound nuclei with A = 6, °He and °Li, with the helium



isotope decaying into the lithium isotope by p~ decay with a half-life of only
0.801 s. The other combinations are unbound. Continuing further, there are no
stable isotopes with A = 8 since ®Be very rapidly decays into *He nuclei, which
also complicates the production of heavier nuclei in stellar environments. Then
between mass 9 and 209, all mass numbers have at least one stable nucleus.
There is generally one stable nucleus for each odd mass number, and in heavy
nuclei there are often two stable nuclei for each even mass number. There are
at most three stable isobars for a given A.

We can summarize our observations about light nuclei and the nuclear force
as follows; the nuclear force acts between nucleons in a uniform way; protons
have an additional Coulomb repulsion that can destabilize proton-rich nuclei,
but very neutron-rich nuclei are also unstable. The symmetric nuclei with equal
numbers of neutrons and protons are favored (at least in light nuclei), and finally
the nuclear force depends on the spin alignment of the nucleons. Because the
underlying nature of the nuclear force is unknown at present, several parame-
terizations of an effective force have been developed. A detailed discussion of
these effective forces or equivalently the nucleon potentials is beyond the scope
of this book. Now imagine the complexity of describing a nucleus in which each
nucleon is interacting with its nearest neighbors through the nuclear force and
at the same time all the protons are pushing on each other with the Coulomb
force! This problem and the closely related problem of molecular motion in a
liquid drop have not been solved in detail yet, and so we will present models of
the average behavior of the nucleons in effective energy potentials.

6.2 Nuclear Potentials

The combined interactions of the neutrons and protons can be described in
terms of a “nuclear potential well” Since the protons are charged particles,
we generally treat the neutrons and protons as if they move inside separate
potential wells (superimposed on one another). It is useful to imagine in a very
schematic and simple way the forces that would act on a neutron as it is brought
up to a nucleus. At large distances (>few fm), there will be no force (no change
in the potential energy); when the neutron reaches the surface of the nucleus
(or more precisely comes within the range of the nuclear force ~1 fm from the
“edge”), there will be an attraction from the nearest neighbor nucleons, and the
neutron will be pulled into the nucleus. This attraction will increase rapidly in
the surface region as the nucleon comes in contact with other nucleons until it
is surrounded by nucleons and is in the interior of the nucleus. The potential
energy will stay approximately constant if the neutron moves inside the nucleus
and is not near the edge. This behavior is summarized in the potential energy
function shown as a function of distance from the center of the nucleus shown
on the left side of Figure 6.1.
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Figure 6.1 Schematic representations of a general neutron-nucleus potential (left side) and
a proton-nucleus potential (right side) as a function of radius.

On the other hand, if we bring a proton up to the same nucleus, we will have
a slightly different behavior. At first, the nucleus will repel the proton due to the
long-range Coulomb force, and then as we bring the proton very near to the sur-
face, the same nuclear attraction that the neutron felt will begin to overcome
the Coulomb repulsion. The nuclear attraction will again increase until the pro-
ton is surrounded by nucleons as in the neutron case, but there will always be
a net repulsion from the other protons. The Coulomb repulsion decreases the
overall attraction, and the proton potential energy well will not be as deep as
the neutron potential well. The models that we will describe later in this chapter
will rely on the ideas behind these simple schematic potentials.

Before going on to describe the models of nuclear structure in detail, it is
useful to make a short comparison of the characteristics of the atomic and
the nuclear potential energies. The atomic potential is, in some sense, easier
to describe because it is created by an extremely small central nucleus that can
be ignored in many atomic calculations. The nucleus supplies the overall attrac-
tion that gets stronger as the electron approaches it, but the nucleus does not
interact with the electrons. In the nuclear case the potential is created by the
nucleons themselves, and if we disturb the nucleons (add or subtract one), then
the overall potential will have to be readjusted. Fortunately, the changes in the
potential energy for a large nucleus are often relatively small, and the general
behavior of the whole nucleus remains the same. There can be, of course, major
changes that cannot be described with a simple potential energy.



6.3 Schematic Shell Model

With a general understanding of the form of nuclear potentials, we can begin to
solve the problem of the calculation of the properties of the quantum mechan-
ical states that will “fill” the energy well. One might imagine that the nucleons
will have certain finite energy levels and exist in stationary states or orbitals in
the nuclear well, similar to the electrons in the atomic potential well. This inter-
pretation is quite valid and forms the basis of the “shell model” of the nucleus.
The potential well for nucleons has a very different shape from that for atomic
electrons, and so we should expect that the energy levels and their filling pat-
terns will be different.

As avery first approximation, we could model the nucleus as a rigid spherical
container (also called a square-well potential). The potential energy is assumed
to be exactly zero when the particle is inside the walls of the container, and
the walls are so strong and high that the particle can never get out. An anal-
ogy would be a gaseous atom inside a very small spherical balloon. We could
compare these energy levels to the known nuclei, but this potential is so unreal-
istic that we cannot expect to have much success. For example, notice that this
potential goes to infinity at the edge of the nucleus, but the nuclear potential
felt by a neutron goes to zero at the edge.

A much more useful potential is the harmonic oscillator potential, which has
a parabolic shape. As indicated in Figure 6.2, this potential also has steep sides
that continue upward and will be useful only for the low-lying energy levels
in nuclei. The harmonic oscillator potential has the feature of equally spaced
energy levels. This potential does not “saturate,” rather it has a rounded bottom
and so will not be very good for large nuclei with large central volumes. Never-
theless, the harmonic oscillator potential is used extensively for light nuclei, and
harmonic oscillator wave functions are often used in reaction calculations. The
harmonic oscillator states are labeled by their total angular momentum starting
at 0. Each principal quantum number level is said to form a shell of orbitals. The
energy gap between each shell will be exactly the same in the harmonic oscil-
lator potential, and all the sublevels with a given principal quantum number
will be degenerate. The number of orbitals is given by the expression 2N + 1
where N =0,1,2,.... The Pauli principle states that the number of nucleons
(fermions) needed to fill each orbital is 2, as for electrons in atomic orbitals,
so the number of nucleons needed to fill the shells are 2[2N + 1] = 2,6,12, ....
This filling agrees with the enhanced stability of the lightest nuclei (*He, 1°0),
taking the neutrons and protons in separate orbits, but does not agree with that
of heavier nuclei.

A dramatic improvement was made to the simple harmonic oscillator poten-
tial by the addition of a spin—orbit correlation. It is known that relativistic
particles have a tendency to align their orbital and intrinsic angular momenta
(spins). This alignment is the basis of the familiar change in the chemistry of
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the bottom-row elements in the periodic table. For example, thallium favors
the 1* oxidation state even though thallium is the heaviest member of group
13 (IIIA). This preference for a low oxidation state comes about because
the three atomic p-states separate (or split apart) into two groups in energy
according to the alignment of the orbital (¢ = 1) and intrinsic spin (s = 1/2)
angular momentum. The p,,, state with the spin and angular momentum
coupled in opposite directions comes lower in energy and holds two elec-
trons, while the third electron lies in the higher-lying p,, state and is easily
ionized.

The addition of the spin—orbit term to the nuclear harmonic oscillator
potential causes a separation or removal of the degeneracy of the energy
levels according to their total angular momentum (j = £ + ). In the nuclear
case, the states with the parallel coupling and larger total angular momentum
values are favored and move lower in energy than those with smaller total
spin values for a given combination. The ordering of the energy levels from
a spin—orbit/harmonic oscillator shell model is shown in Figure 6.3 with
their spectroscopic notation. Each total angular momentum state has 2j + 1
suborbitals or projections of the angular momentum (m; = —j...0--- +))
just like the ¢ values of atomic electrons. Recall that we always have separate
neutron states and proton states and the Pauli principle will put a maximum
of two neutrons or protons into each orbital.

Let us consider placing nucleons into these shell model states. The lowest
level is called the 1s, 5, s for # =0, and j = £ +s = 1/2. This level has only
27 + 1 = 1 m-value and can hold only two protons in the proton well and two
neutrons in the neutron well. Going up the scale, the next levels are the 1p; ,
and 1p, ;, pair in the next highest shell (N = 1®). Thus, “He represents the
smallest nucleus with exact filling of both N = 0 harmonic oscillator levels for
neutrons and protons and thus might be expected to have an enhanced sta-
bility. The next shell filling occurs when the N = 0fiw and N = 1A shells are
filled. This requires eight protons and eight neutrons, so O should be the
next especially stable nucleus. The other shell closures occur at 20, 28, 50, 82,
and 126 nucleons. These values correspond to places in the chart of nuclides
with unusually large numbers of isotopes and isotones due to their enhanced
stability. A few stable nuclei have both closed neutron and proton shells and
are very strongly bound (relative to their neighbors), such as *He, 10, %Ca,
48Ca, and 2%8Pb. A few doubly closed shell nuclei have been produced out-
side the range of stable nuclei like >®Ni, 1°°Sn, and 132Sn, and others that are
more exotic have been sought like 1°He and 20O but have been shown to be
unbound.

Sample Problem 6.1: Shell Model Filling

Describe the configurations of the nucleons in ’Li expected in the
Shell Model.
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Figure 6.3 The energy level pattern and spectroscopic labeling of states from the schematic
shell model. The angular momentum coupling is indicated at the left side, and the numbers
of nucleons needed to fill each orbital and each shell are shown on the right side.

Solution

1) Place the three protons into the lowest available orbitals. The protons
in the 1s, , state must be paired according to the Pauli principle, so we
have a configuration of (1s, ;,)*(1p; )"



2) Place the four neutrons into their lowest available orbitals. The neu-
trons should be paired in the partially filled orbital (this is in contrast to
the case for atomic electrons), giving a configuration of (1s, /,)*(1p; ;)

Prediction: All nucleons are paired except for the 1p; , proton. Therefore,
the spins and angular momenta of the nucleons will cancel except for this
proton. The nuclear spin should be 3/2, and the nuclear parity should be
negative, corresponding to the parity of a p-state (odd = value).

Further question: What would this model predict for an excited state of
’Li? Two possibilities should be apparent. We could promote the p, /2 Pro-
ton to the p; /, state or we could uncouple the p;,, neutrons, giving three
unpaired neutrons in the p; , level. Experimentally it has been found that
’Li has only one bound excited state and it corresponds to promotion
P3/2 = P1j, of the proton. The breaking of pairs has a significant energy
cost and causes the nucleus to become unbound.

Notice that the light nuclei are extremely fragile due to the large level spac-
ing and relatively small number of levels. The small numbers of nucleons are
very sensitive to small changes in the configurations and have relatively few
excited states. Heavy nuclei are much more “resilient” due to the large number
of nearby energy levels with slightly different configurations, and these nuclei
almost always have very large numbers of bound excited states.

The reality of this scheme of assigning nucleons to various simple shell model
states can be checked very directly by nuclear reactions that give or take a
nucleon from the nucleus. The (p, 2p) reaction is such a reaction that removes a
single proton from the nucleus. The energy required to remove a given proton
is thus a measure of the energy of the corresponding nuclear state. In Figure 6.4,

ARo/dES (b/MeV/6or)

60

40

160 L=1
0=38.7° p3 P2
19 MeV 12.4 MeV

2 e

P32

43 MeV $ Ei E Si2

50 30 10
Energy (MeV)

Figure 6.4 Energy spectrum of emitted protons from the '®O(p, 2p) reaction, showing the
single particle states (Tyrén et al. (1958). Reproduced with the permission of Elsevier.).



we show the results of such a study of the 1°O(p, 2p) reaction. Three peaks are
seen corresponding to the removal of protons from the 1p, /, 1p;/,, and 1s, ,
orbitals.

The energy level diagram for the schematic shell model, shown in Figure 6.3,
allows us to make a large number of predictions about the ground states of
broad ranges of nuclei. First, the strong pairing of nucleons in the individual
orbitals tells us immediately that the (net) spin of all nuclei with both even num-
bers of protons and even numbers of neutrons will be zero. Also the parities of the
wave functions of all these nuclei will be positive. Thus, the ground state spin and
parity of all even—even nuclei is 0*. These predictions are exactly correct, and
the fact that all even—even nuclei have no net nuclear spin is the reason why
relatively few nuclei can be used in NMR studies. Second, we expect that the
ground states of odd A nuclei, those with an even number of one kind of nucleon
and an odd number of the other kind, will be described by the spin and parity of
that single odd nucleon. These predictions are often correct, particularly if we
recognize that single vacancies or holes in subshells will give the same angular
momentum and parity as a single particle in the same subshell. This equiva-
lence of “particles” and “holes” can be shown by detailed angular momentum
coupling calculations that we will not go into here. However, recall that a com-
pletely filled subshell will couple to a spin of 0, so by symmetry if we add one
particle to get a given j-value, we should expect to get the same spin value when
we take one particle from the completely full subshell.

The shell model can also be used to predict the ground state spins and par-
ities of odd-proton/odd-neutron nuclei by combining the individual jx values
of the two unpaired particles. Notice that two combinations will always be pos-
sible and we will need a way to decide which of the two alignments of the total
nucleon angular momenta will be lower in energy (i.e., be the ground state).
The ground state of the deuteron with its single proton and single neutron pro-
vides the key to this selection. The spin angular momenta of the neutron and
proton are aligned in the deuteron ground state; thus for the ground state of
an odd—odd nucleus, we should couple the total j-values so that the intrinsic
spins of the odd particles are aligned. We can do this by inspection of the angu-
lar momenta or by applying a set of rules based on the systematics of the shell
model orbitals. Brennan and Bernstein have summarized these data in the form
of three rules. When the odd nucleons are both particles or both holes in their
respective subshells, Rule 1 states that when j, =¢, +1/2 and j, =%, ¥1/2,
thenJ = |j; —j,|. Rule 2 states that when j, = £, +1/2and j, = £, + 1/2, then
J = |j; = Jj,|. Rule 3 states that for configurations in which the odd nucleons are
a combination of particles and holes, such as 3¢Cl, ] = j, +j, — 1.

Sample Problem 6.2: Shell Model Coupling

Consider the odd—odd nuclei, 33Cl, 26Al, and >°Co. Predict the ground
state spin and parity for these nuclei.



Solution

a) **Cl has 17 protons and 21 neutrons. The last proton is in a d , level,
while the last neutron is in a f; , level (see Fig. 6.3).

Jolds) =2-1/2, ju(,) =3+1/2
J=17/2-3/2| =2
T =(+1)(-1) = —

b) 2°Alhas 13 protons and 13 neutrons. The last proton and the last neu-
tron are in d; , hole states, that is, j, = j, =2 +1/2:

J=15/2+5/2| =5
=+ =+

¢) *°Co has 27 protons and 29 neutrons. The last proton is in a f, , hole
state, and the last neutron is in a p, /> state (1+1/2):

J=7/2+3/2-1=4
= (-D(-1) =+

The simple shell model is very robust and is even successful in describing
nuclei at the limits of stability. For example, ' Li is the heaviest bound lithium
isotope. The shell model diagram for this nucleus is indicated in Figure 6.5.
Notice the prediction of two filled neutron shells. The binding energy is only
300 keV for the whole nucleus, so it is very fragile, and we expect it to rapidly
decay toward the stable isobar ' B. It is also known that 1°Li that does not have
a filled p-shell is unbound. This again emphasizes the importance of pairing in
nuclei. The two neutrons in the highest energy level in !'Li, a level that is very
close to zero, are alone in a p; , state, and the empty d; , state is very close in
energy. This nucleus has an unusually large interaction radius (or size) and a
high probability to dissociate into °Li + 2n that have been attributed to a large
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Figure 6.5 The energy level pattern and filling for the exotic nucleus ''Li in the schematic
shell model.



physical extent of the very weakly bound neutrons in the highest energy level.
In fact, there is some debate in the current literature as to the relative ordering
of the s- and p-states.

In addition to the spin and parity, another fundamental nuclear parameter
that can be determined experimentally that depends on nuclear structure is
the magnetic dipole moment. The magnetic moment of a nucleus is a mea-
sure of the response of that nucleus to an external magnetic field and is made
up from the net effect of the motion of the protons plus the intrinsic spins of
both the protons and neutrons. The magnetic moment p; of one particle can be
written as

= &L; + &S, (6.1)
where L, is the angular momentum and §; is the intrinsic spin of particle i. The
gyromagnetic ratios g, and g, are

g, = Mo, & = 5.5845p,, for protons (6.2)
and

g, =0,g, = —3.8263}, for neutrons (6.3)

where p, is the nuclear magneton p, = ef1/2m,c. Due to the large cancellation
of the spins and angular momenta due to the strong coupling of nucleons in
matching orbitals and the pairing of spins, we should expect that the magnetic
moments will be small and strongly dependent on the number and orbits of
any unpaired particles. A relatively simple formula for the magnetic moments
of nuclei with single unpaired nucleons, called the Schmidt limits, depends on
the relative orientation of the angular momentum and the spin:

Forj=f+s:u=gf(j—%)+é (6.4)
iGN
Fo”_f_s'”_< G+D )g" <<2<j+1))>gs (63

The measured magnetic moments of the odd-mass nuclei are similar in mag-
nitude to the Schmidt limits as shown in Figure 6.6. Notice that the measured
values fall into two groups at ~60% of the predicted values. The fact that the
magnetic moments are less than those expected for single particles indicates
that the nuclear wave function is not completely dominated by one particle. (If
we were to show only the magnetic moments of nuclei that have one particle
more than a closed shell configuration, we would see better agreement with
the Schmidt limits). Also there is a large amount of variation in the magnetic
moments that indicates the complexity of the underlying structure and that the
cancellation effect of paired particles is not as complete as we might hope.

Up to this point we have concentrated on the properties of the ground states
of nuclei predicted by the schematic shell model. However, we can use these
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Figure 6.6 The magnetic moments of the odd-proton (A) and of the odd-neutron nuclei
plotted as a function of the nuclear spin j. The Schmidt limits are shown by the solid lines.
The data generally fall inside the limits and are better reproduced as 60% of the limits.




energy levels to construct excited states by the promotion of particles and the
appropriate coupling of odd (unpaired) particles. First of all, the shell model
has already shown that odd—odd nuclei always have two possible couplings of
the angular momenta of the odd particles. One coupling leads to a high spin
J =j; +j, and other a low total spin ] = j; — j,. We have already described how
to decide which state will lie lower in energy, but notice that the state will always
be present. This state will be an isomeric state that will decay to the ground
state by y-ray emission (usually with a relatively long half-life due to the large
change in angular momentum between the states). The relative energy splitting
of the two levels decreases as the mass increases due to the dilution effect of
more and more nucleon—nucleon interactions. Examples of isomeric pairs of
levels and excited states in the simple shell model are given in the accompanying
examples.

Sample Problem 6.3: Shell Model Isomers

Identify the shell model isomeric spin states in *Aland "*Au.

Solution

a) “°Alisa nucleus with 13 protons and 13 neutrons, and filling the shell
model energy level diagram from the bottom, we find the following
configurations:

Protons (151/2)2(1p3/2)4 (1p1/2)2(1d5/2)5
Neutrons (1s, ;,)*(1ps5)* (1p, /5)*(1d5,)°

Recall thata 1d; , level is filled by six particles. Therefore, the net con-
figuration contains a proton hole coupled to a neutron hole in 1d; ,
states. This is written as n(1d;/,)™" @ v(1ds/,)". Coupling the pro-
ton and neutron angular momenta, we expect,, + j, = O and 5 for the
nuclear spins. The Brennan—Bernstein rules predict that the high spin
isomer has the lower energy for identical orbitals, in agreement with
observation. The parities of both orbitals are positive, so the parities
of both coupled states are positive.

b) %8 Auis a nucleus with 79 protons and 119 neutrons, and filling in the
shell model energy level diagram, we find that the highest partially
filled or valence orbitals are

Valence : n(1h,,,)° and v(1i,3,,) (6.8)

both of which are partially filled subshells near major shell closures.
If we make the simplest assumption that all the neutrons and pro-
tons are paired except the last odd particles, then we would expect a
configuration of n(14,, ,) @ v(1i}3/,) with j, +j, = 1 and 12 for the
nuclear spins. The parities of these orbitals are negative and positive,



respectively, making the product negative. Notice that we could add
or remove a pair of neutrons from this configuration, making 2°°Au
and 1°Au, and we would leave an odd neutron in the same orbital.
Therefore, we would make the same predictions for the ground and
isomeric states of these nearby nuclei.

An interesting subset of nuclei is those nuclear pairs in which the numbers of
protons and neutrons are interchanged, for example, 3He and 3H. These sets of
nuclei are called mirror pairs, and the schematic shell model predicts that they
will have identical ground and excited states, after correcting for the (small)
upward shift of the proton levels by the Coulomb force and the difference in
mass of a neutron and a proton. This shift caused by increasing the nuclear
charge by one unit while keeping the mass constant can be readily calculated
from the Coulomb energy inside a uniformly charged sphere:

_3ze
75 R
where Z is the atomic number and R is the radius. The Coulomb energy dif-

ference between a mirror pair, where Z refers to the higher atomic number, is
then

(6.9)

2
AE. = %% (22— (Z-1))

3¢
=3% 0z-1
SR( )

_zé
“ R

This estimate of the Coulomb shift is an overestimate as it assumes that the
nuclei are rigid spheres, but, nonetheless, it is straightforward to calculate.
A large number of mirror pairs have been studied, and the agreement between
the energy levels after compensating for the Coulomb shift in the mirrors is
dramatic. An example of the energy level matching in the mirror pair ’F, 170
is shown in Figure 6.7. The agreement of the levels is quite remarkable and can
be taken as strong evidence for the charge independence of the nuclear force,
that is, the protons and neutrons move in essentially identical but separate
orbitals in the nucleus.

After all these successes of the very simple shell model, we should be careful
to note that there are a number of other well-established and simple properties
of nuclei that it cannot describe. For example, the energy levels of essentially
all nuclei, and particularly the even—even nuclei with all paired particles, have
series of states that are arranged in groups (or bands) with energy spacings and
state-to-state transitions that are characteristic of a collective vibration and/or
rotation of the entire nucleus. Specifically, even—even nuclei have low-lying
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Figure 6.7 The energy levels of the ground state and first few excited states of the mirror
pair 'F, 170 are shown. The states are labeled by their intrinsic spin and parity. The matching
of these mirror states is remarkable and strongly supports the idea of the neutrons and
protons moving in identical orbitals.

2% and 47 excited states that are very strongly related to the 0" ground state
that, once excited, cascades rapidly back to the ground state by y-ray emission.
Examples of such collective states are shown in Figure 6.8. These states cor-
respond to macroscopic vibration of the entire nucleus around the spherical
ground state shape.

Another example of collective motion that is outside the shell model is
found in the rare earth and actinide elements. These nuclei lie between the
major shell closures in the shell model and the filling of the mid-shell high
spin orbitals that cause the nuclei to be deformed (stretched like a rugby ball)
in the ground state. The orbitals that are being filled in these regions have
relatively large £-values, for example, g and 4 states. The angular part of these
orbitals is relatively concentrated in space (due to the large number of angular
nodes in the wave function), and each suborbital is relatively planar. Recall
that s orbitals are spherically symmetric and orbitals with larger #-values are
divided by more and more planar nodes. Thus, the mid-shell nucleons in this
region fill relatively nonspherical suborbitals. As we have already discussed,
the simple shell model was developed with a spherically symmetric potential.
We should expect that the energy levels would shift if the shape of the potential
was changed. We will consider the effects of just such a change later in this
chapter.

Recent studies of nuclei far from stability, such as !'Li, 3'Na, ** Mg, *Si, and
48Ca, have shown orderings of single particle levels that are different from that
predicted by the shell model. The positions of the single particle levels that
define the relevant shell gap are inverted relative to their normal position. The
regions where this occurs are referred to as “islands of inversion.”
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Figure 6.8 (a) The energy level diagram showing the first (lowest energy) 2* and 4* states in
50Ni. The high spin ground state, 5%, of ©°Co B decays primarily to the 4* state and initiates a
well-known y-ray cascade to the 2* state and then the 0* ground state. (b) For comparison,
the energy level diagram showing the first (lowest energy) 2+ and 4+ states in ““Mo. The
high spin ground state, 6, of **Nb also primarily feeds the 4* state initiating a y-ray cascade.

6.4 Independent Particle Model

A more detailed model can be constructed for the nucleons in terms of a cen-
tral potential that holds all the nucleons together plus a “residual potential”
or “residual interaction” that lumps together all of the other nucleon—nucleon
interactions. Other such important one-on-one interactions align the spins of
unlike nucleons (p—n) and cause the pairing of like nucleons (p—p, n—n). The



nucleons are then allowed to move independently in these potentials, that is,
the Schrodinger equation is solved for the combined interaction to provide the
energy levels and wave functions for the individual particles. Once again there
will be a large amount of cancellation of the effects of the independent nucle-
ons, and the overall properties of the nucleus are again determined by the last
(few) unpaired nucleons or holes.

The central potential can be a simple harmonic oscillator potential f(r) ~
kr* or more complicated such as the Yukawa function f(r) ~ (e /r)~! or the
Woods—Saxon function that has a flat bottom and goes smoothly to zero at the
nuclear surface. The complete Woods—Saxon potential has two parts:

uer) = 0 +ﬂli< L 73
1+expl(r—Ry)/al ry rdr \1+expl(r—R,)/al

(6.10)

where the first term is the overall potential and the second term is the
spin—orbit contribution with R, = r,A'/3, with r, = 1.27 fm and a = 0.67 fm,
and strength of the contributions are given by

U, = (=51 + 33(N — Z)/A) MeV and U,, = —0.441, (6.11)

The spin—orbit strength (second term) is peaked on the nuclear surface as
shown in Figure 6.9.

A residual interaction that is also quite simple has been developed and
applied with good results. Recall that the nucleon—nucleon force is attractive
and very short ranged, so one might imagine that the nucleons must be in
contact to interact. Thus, the simplest residual interaction is an attractive
force that only acts when the nucleons touch or a delta interaction (in the
sense of a Kronecker delta from quantum mechanics). This can be written
as V(ry,ry) = ad,, where a is the strength of the interaction and the delta
function only allows the force to be positive when the nucleons are at exactly
the same point in space. In practice the strength of the potential must be

4 Figure 6.9 Radial dependence of the strength
—! of the spin-orbit potential compared with a
Woods-Saxon potential well.
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determined by comparison to experimental data. Notice, however, that such
models have a very small number of parameters to be adjusted to give an
overall or average agreement with the data. The “best-fit” values are then used
to calculate the properties of other nuclei and their excited states.

6.5 Collective Model

As we have seen the nucleons reside in well-defined orbitals in the nucleus that
can be understood in a relatively simple quantum mechanical model, the shell
model. In this model, the properties of the nucleus are dominated by the wave
functions of one or two unpaired nucleons. Notice that the bulk of the nucleons,
which may even number in the hundreds, only contribute to the overall central
potential. These core nucleons cannot be ignored in reality, and they give rise to
large-scale macroscopic behavior of the nucleus that may be very different from
the behavior of single particles. There are two important collective motions of
the nucleus that we have already mentioned that we should address: collective
or overall rotation of deformed nuclei and vibrations of the nuclear shape about
a spherical ground-state shape.

Rotational motion is characteristic of nonspherical nuclei, and the deforma-
tion can be permanent (i.e., the ground state remains deformed), or it can be
induced by centrifugal stretching of a nucleus under rapid rotation. The nuclei
with masses in the region 150 < A < 190 and 220 < A lie between the major
shells and generally have permanent deformations in their ground states. An
example of the regular spacing of the energy levels of deformed nucleus are
shown in Figure 6.10. On the other hand, the rapid rotation of a nucleus can
be dynamically induced by nuclear reactions. It is common to create rapidly
rotating nuclei in compound nuclear reactions that decay by y-ray emission,
eventually slowing down to form spherical ground states.

The deformation can be very complicated to describe in a single particle
framework, but a good understanding of the basic behavior can be obtained
with an overall parameterization of the shape of the whole nucleus in terms of
quadrupole distortions with ellipsoidal symmetries. If we start from a (solid)
spherical nucleus, then there are two axially symmetric quadrupole deforma-
tions to consider. The deformations are indicated schematically in Figure 6.11
and give the nuclei ellipsoidal shapes (an ellipsoid is a three-dimensional
object formed by the rotation of an ellipse around one of its two major axes).
The prolate deformation in which one axis is longer relative to the other two
produces a shape that is similar to that of a rugby ball but more round on the
ends. The oblate shape with one axis shorter than the other two becomes a
pancake shape in the limit of extremely large deformations.

The surface of the ellipsoid can be written in terms of the expansion

RO, ) = Ryyepage |1+ BYo0(6, d)] (6.12)



16*

14*

12+

10*

8+

6+

4+

2+

o+

4143 Figure 6.10 The low-lying energy levels of '°2Gd that clearly
fit the pattern of a rotational band. The rotational constant
n?/2J = 57.3 keV can be extracted from the separation of

3499 the 2* to 0* states. The energy units are MeV.

2.884

2.300

1.747

1.227

0.755

0.344

Figure 6.11 Schematic representations of
prolate and oblate deformations of a
uniform sphere. A prolate deformation
Oblate nucleus corresponds to the stretching of the
Quadrupole moment <0  distribution along only one axis, while the
distribution shrinks equally along the
other two axes. An oblate deformation
corresponds to the compression of the
distribution along one axis with increases
along the other two axes. Note that
nuclear deformations are much smaller
Spherical nucleus than those displayed here.

Quadrupole moment = 0

Prolate nucleus
Quadrupole moment > 0



where R,,q is the average radius of the two major axes, f is the dimension-
less measure of the deformation, and Y, is the spherical harmonic function.

Formally,

4 nb—a
=—4/= 6.13
p 3\£ng (6.13)

where b and a are the semi-major and semi-minor axes of the ellipsoid and
R, is the average radius, R}, = (a” + b*)/2. The deformation parameter can
be positive (prolate shapes) or negative (oblate shapes) and is generally a small
number. For example, the superdeformed prolate shape with an axis ratio of 2 :
1 hasp ~ 0.6.

The energy levels from the quantum mechanical solution of the rotation of a
rigid body have the characteristic feature of increasing separation with angular

momentum. The energy levels are given by the expression

_JU+Dn?
rot — 2.7
where J is the rotational quantum number describing the amount of rotation
and J is the moment of inertia of the rigid body. For reference, the moment
of inertia of a solid sphere with mass, m, is J,q = 2mR*/5. Substituting in
constants and using R = 1.2A'/2 fm, we find that the rotational energy levels
of a sphere at E,,, = 36.29/(J + 1)/A%/®> MeV for ] in h units. Note the large
power of A in the denominator, which causes the expression for the rotational
constant, 72/2J, to be on the order of keV-s. This expression is called the
rigid-body limit, and spherical rigid-body values for rotational energies are gen-
erally smaller than those observed, meaning that the real nuclear moment of
inertia is smaller. The spherical moment of inertia expression can be readily
extended to nuclei with static or rigid deformations by substituting the appro-
priate moment of inertia; thus, J = ZmRivg /5(1 + 0.31P). The result is similar
in that the deformed rigid-body estimate of the moment of inertia is too large
and the rotational energy is too small.

We have already seen that nuclei have some properties that are similar to
those of a liquid drop; in fact, the overall binding energy is well represented
in these terms. The moment of inertia for the rotation of the liquid in a rigid
deformed container, for example, a large water balloon with a negligible
mass wall, is J,,, = (9/8m)mR*p?. This moment of inertia is smaller than that
of a rigid body because the liquid can “flow” inside the container to follow
the motion of the walls, and the moment of inertia goes to zero at f = 0 as
expected by symmetry. This rotational behavior is called irrotational flow. The
irrotational flow moment of inertia gives a value that is usually smaller than
the experimental value, leading to rotational energies that are larger than the
experimental data. Thus, we have the general situation that

'~7irro < Jexp < '—7rigid (615)

E (6.14)



which allows us to bracket the experimental value with predicted numerical
estimates.

Sample Problem 6.4: Rotational Constant

The ground-state rotational band of '>Gdisshownin Figure 6.10. Use the
energy separation between the 2* and 0" levels to estimate the rotational
constant in keV and the moment of inertia in amu-fm?, and then compare
your result to that obtained to the rigid body result with a deformation
parameter of § = 0.2. Finally, evaluate the irrotational flow moment of
inertia for this nucleus.

Solution
1 2
EI‘Ot = ](] + )h
2J
— 0)h?
AE (2—-0) = u = 344.3 keV
27

2
h =57.3keV: J = 364.7 amu-fm>
2J

2
Tigia = nggvg(l +0.31p)

Trigia = 2494 amu-fm®(1 + 0.31(0.2)) = 2648 amu-fm’

Tieo = o mR2p?
87
Tire = 2232 amu-fm?>(0.2)? = 89.3 amu-fm”

Different rotational bands in a given nucleus can have differing effective
moments of inertia. This could reflect a larger deformation or a change in the
number of paired nucleons or a different alignment of a pair of nucleons of
high spin. The result is that each band can have a different pattern of energy
versus spin (Fig. 6.12, left). If one plots 2,7 /A2 versus the rotational frequency
h?®? for a given nucleus, then one observes a kink or “backbend” in the plot
corresponding to the region where the two bands cross (Fig. 6.12, right).
A special class of quantum rotors are the superdeformed nuclei. The moments
of inertia, after scaling by A%/, are all similar due to the fact that the shape
of these nuclei is largely independent of mass. All these nuclei have similar
shapes with an axis ratio of 2 : 1 due to shell stabilization effects discussed in
the succeeding text.

Another interesting case of nuclear rotation occurs in the spherical nuclei.
Ordinarily equally spaced y-ray transitions imploy collective rotation, but such
bands have been observed in the nearly spherical 1°Pb. It has been suggested
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Figure 6.12 (Left) Schematic picture of two intersecting bands with different moments of
inertia, J; and J;. (Right) The backbending plot corresponding to the intersecting bands
(From Heyde (1999)).

that these bands arise by another type of nuclear rotation called the “shears
mechanism.” A few valence neutron and proton holes couple to form to large or
“long” angular momenta, j, and ji,, which couple to give the total spin j. By vary-
ing the angle between these two “blades of the shears,” states of differing spin
are created. This gives rise to a magnetic moment, and the radiation associated
with the y-ray transition is M1.

The other important macroscopic motions of nuclei are the vibrations of
the nuclear volume around the spherical ground state. Recall that the great
majority of nuclei have spherical ground states, but they also can behave
like liquid drops, so we might imagine that the surface of the nucleus could
be caused to vibrate harmonically, back and forth, around the spherical
ground state. In this picture we could parameterize the shape vibrations, also
called surface oscillations, in terms of the spherical harmonic functions with
their characteristic multipolarities. We should also be careful to differentiate
between the characteristic motion labeled by the multipolarity or “shape sym-
metry” of the mode and the number of quanta or phonons in each vibrational
mode. We will label the multipolarity of the mode by A and use integers for the
number of quanta. One might imagine multiple excitation of a single mode,
single excitation of several modes simultaneously, or any other combination of
modes and excitations.

The lowest-order vibration is a swelling/compression of the whole nucleus
with A = 0. This is sometimes called the “breathing” mode. The next macro-
scopic vibration, labeled A = 1, is a dipole motion. However, the motion of the
entire surface, first in one direction and then back in the other, imply corre-
sponds to translation of the nucleus and not internal vibration. This motion
would have to be caused by a “restoring force” that was outside the nucleus
(e.g., an alternating electric field), and so there cannot be an intrinsic dipole
motion of a (whole) nucleus. The next-order vibration, labeled A = 2, is the



quadrupole motion in which the nucleus symmetrically stretches out and then
in without moving its center or mass. This is clearly a vibrational motion with
a “restoring force” generated by the nuclear potential. The third-order vibra-
tion, labeled A = 3, is the octupole motion in which the nucleus asymmetrically
expands on one end while pinching in on the other. This vibration creates pair
shaped figures and requires significantly more energy to excite compared with
the more symmetric quadrupole shapes.

Recall that the energy levels of the quantum mechanical harmonic oscilla-
tor are all equally spaced having energies E,, = (N + 1/2)hwy, N =0, 1,2, (see
Fig. 6.13). The fundamental frequency of the oscillation @, is equal to the square
root of the force constant divided by the effective mass. Considering even—even
nuclei with 0 ground states, single excitation of quadrupole motion with A = 2
will require an N = 2 state as N = 1 is not allowed because it would break the
symmetry of the nuclear wave function. This N = 2 excitation gives rise to a
2% state with two h, units of energy. We would expect that the subsequent
multiple excitation of this mode would create a 4* state with twice the excita-
tion energy and so on. Because there are three ways to couple two quadrupole
phonons together (Jn = 4%, 2+, and 0%), the two-phonon state is triply degen-
erate. The three phonon state at an energy of three hw, will include 6%, 4*, 3%,
2%, and 0" states. From a global perspective, the observed ratios of the energy
of the 4* to 27 states in even—even nuclei are ~2 : 1 in good agreement with this
model, but there are two strong deviations. First, the deformed rotational nuclei
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Figure 6.13 Schematic vibrational energy level diagrams of medium-mass even-even
nuclei (Eichler (1964). Reproduced with the permission of American Physical Society).
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have 4+ /2% ratios of 10 : 3 as discussed previously. And, second, when the num-
ber of neutrons or protons are close to the magic numbers for closed spherical
shells, the nucleus becomes more resistant to oscillation, and the energies of
the 2% and 4+ states increase dramatically as well as their ratio.

It is interesting to note that the vibrational model of the nucleus predicts that
each nucleus will be continuously undergoing zero-point motion in all of its
modes. This zero-point motion of a quantum mechanical harmonic oscillator is
a formal consequence of the Heisenberg uncertainty principle and can be seen
in the fact that the lowest-energy state N = 0 has the finite energy of hw/2.
From another standpoint, the superposition of all of these shape oscillations
can be viewed as a natural basis for the diffuseness of the nuclear surface.

The energy of rotational states built on vibrations is given by

n .. 2
E=— +1)-K 6.16
27 U+ D =K (6.16)
where K is the projection of J on the nuclear symmetry axis. For so-called
f vibrations (A = 2, K = 0), Jr = 0%, 2%, 4*; for so-called y vibrations (A = 2,
K =2),Jr = 2% 3%, 4%, A typical sequence of states is shown in Figure 6.14.

6.6 Nilsson Model

Up to now, we have discussed two extremes of nuclear structure, those aspects
that can be explained by the properties of single or individual particles moving
in a spherically symmetric central potential and those aspects corresponding
to large-scale collective motions of groups of nucleons away from spherical
symmetry. Additional insight into the structure of nuclei can be obtained
by considering the states of single particles moving in a deformed nuclear
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Figure 6.15 Variation of the single particle levels of a deformed harmonic oscillator as a
function of the deformation of the potential. The ratios of the semi-major to semi-minor
axes of the oscillator are also shown for reference.

potential. S.G. Nilsson extensively studied this problem, and the resulting
model of nuclear structure is referred to as the Nilsson model.

Using a deformed harmonic oscillator potential, one can make several use-
ful observations about the nuclear structure of deformed nuclei. In Figure 6.15,
we show the variation of the energies of single particle states of such a poten-
tial as a function of the deformation of the potential. At spherical symmetry,
one observes the gaps in the level spacings corresponding to the major har-
monic oscillator shells that we have already discussed. But as the deformation
changes, the levels move in energy, and new magic numbers (shell gaps) occur
when the ratio of the semi-major and semi-minor axes of the nucleus equals a
simple whole number. Thus, nuclei with axes ratios of 2 : 1 have special stability
(the superdeformed nuclei). In addition, each spherical shell model state, for
example, a f; , state, is split into (2j + 1)/2 levels labeled with a new quantum
number Q defined as the projection of the single particle angular momentum
on the nuclear symmetry axis (Fig. 6.16). For prolate deformation, states of
highest Q lie the highest in energy.



Q Q

1/2 712
3/2 5/2
5/2 3/2
712 1/2
< 0 (oblate) B> 0 (prolate)

»
>

=0

Figure 6.16 Schematic variation of the energies of the f7/2 spherical shell model substates
as the potential deforms. Positive deformations correspond to prolate shapes, while
negative deformations correspond to oblate shapes.

The angular momentum of an odd A deformed nucleus, /, is the vector sum of
the angular momentum of the last unpaired nucleon and the rotational angu-
lar momentum, R, of the core of remaining nucleons as shown schematically
in Figure 6.17. The projection of the total nuclear angular momentum J upon
the nuclear symmetry axis is again given the symbol K. For axially symmetric
nuclei, the direction of R is perpendicular to the symmetry axisand ] = Q = K.
Each Nilsson single particle level may be the ground state of a rotational band.
For the ground state of such bands, /] = Q = K. When J = 3/2 or greater, the
allowed nuclear spins of the members of the band are J, J, + 1, J, + 2, etc. The
energies of the members of the band are given as

2
E() = 3= 10+ 1=y + 1) 617)

The Nilsson model is also able to predict the ground state and low-lying states
of deformed odd A nuclei. Figure 6.18 presents a more detailed picture of how
the energies of the Nilsson levels vary as a function of the deformation param-
eter B, for the first 20 nucleons in the nucleus. Let us consider the nuclei °F,

Figure 6.17 Schematic display of
the addition of angular momenta in
a deformed odd A nucleus. Q is the
projection of the total angular
momentum of the odd nucleon. It is
added vectorially to the rotational
angular momentum of the core R to
give the total angular momentum /
whose projection on the symmetry
axisis K.

0.
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Figure 6.18 Variation of the energy of a single nucleon in a deformed potential as a
function of deformation parameter €. This diagram pertains to either Z < 20 or N < 20.
Each state can accept two (spin-paired) nucleons, as usual.

19Ne, 2'Ne, and 2*Na. According to the simple shell model (Fig. 6.3), the last
odd nucleon in these nuclei should be in a d;, state, giving rise to a ground
state spin and parity /x of 5/2*. One observes Jx for these four nuclei to be
1/2%,1/2%, 3/2%, and 3/2%, respectively. None of them are 5/2*. The Nilsson
model allows us to understand these observations. The quadrupole moments of
these nuclei are all ~0.1 barns, from which we can deduce that § = 0.1. Thus,
from the variation of the ds,, levels with deformation shown in Figure 6.18,
we expect the 9th particle to be in the substate with Jx = 1/2%, while the 11th
particle will have /& = 3/2* in agreement with the observations. The low-lying
excited states of many nuclei can also be explained by considering the filling of
sublevels with small deformations in the Nilsson diagrams.

6.7 Fermi Gas Model

The preceding discussion of nuclear structure and models was mostly aimed
at explaining the detailed properties of the ground states and small excitations
of nuclei. These nuclei are produced and take part in nuclear reactions that
are usually very complicated dynamical situations compared with the (simple)



situation of nucleons confined in a static central potential. Detailed calcula-
tions with wave functions in dynamical potentials associated with scattering
and absorption have only been carried out in a very few specific cases. On the
other hand, a very wide variety of nuclear reactions have been studied exper-
imentally and often exhibit amazing simplicity. Models have been developed
that treat the average behavior of the large number of nucleons in a nucleus
on a statistical basis. An important statistical model developed to describe the
average behavior of medium and large nuclei, particularly useful in reactions,
treats the nucleus as a gas of fermions. This approximation, called the Fermi gas
model, uses the now familiar concept of confining the nucleons to a fixed spher-
ical shape with a central potential, but in this case the nucleons are assumed
to be all equivalent and independent. This situation loosely corresponds to an
ideal gas confined to a fixed volume with the addition of Fermi-Dirac statistics
and Pauli blocking to prevent spatial overlap of the particles.

An important feature of the Fermi gas model is that it allows us to describe
the average behavior of a nucleus with thermodynamical functions. The fact
that the energy levels in a (large) nucleus with a finite excitation energy are so
closely spaced allows us to use entropy to predict the evolution of the system.
(This idea is somewhat opposite to the ground-state situation that is dominated
by the wave functions of individual particles.) The concept of thermodynamic
entropy is closely linked to a thermodynamic nuclear temperature. Nuclear
reactions are often described in terms of the imagined temperature of the inter-
nal particles, and excited nuclei emit light particles and y-rays as they lose their
excitation energy and “cool” as they approach the ground state.

The first step in developing the Fermi gas model is to determine the high-
est level that is occupied by nucleons. Next the average energies and momenta
can be calculated because we will assume that all the lower levels are exactly
filled. In this model the nucleons are confined to a fixed total volume and are
assumed to have a uniform density. When quantum mechanical particles are
confined in a rigid container, then they occupy fixed states that can be labeled
with appropriate quantum numbers, that is, #,, n,, n, for a rectangular box with
three dimensions, L,, Ly, L,. The particle will have a specific momentum in each
state, so, alternatively, we could label the states by their momenta, p,, Py Py OF
by their wave numbers, k,, k, k,, where k; = (n;n/L; = p;/h), which explicitly
incorporates the dimensions of the box. We would like to know what is the
highest quantum number # or the largest momentum p; or the wave number
k; of the highest filled level, called the Fermi level. The number of states for a
particle to move with momentum in the range of p to p + dp in a volume Q is
given by the expression

Q
sttates = W‘anzdp (618)



which can be integrated from zero up to the maximum momentum value to
give the number of states up to that momentum:

Py Q Pt 470
N = dN. = "= dnp’dp = 3 6.19
states A states = ()3 /0 Tp-ap 3(2nh)3pf ( )
Remember that the Pauli principle allows us to put particles with two spins
(up/down) into each state, and if the nucleons are all in their lowest possible
states, the number of filled states can be assumed to be equal to the number of
each type of nucleon:

3% n

1/3
Q particles
nparticles = 2Nstates = %pi - pf = <T> h (620)

Thus, the Fermi wave number for protons is

( ) <3n22>1/ i N sz \ e (9TZ\ B
rotons) = = _— = <_> —
PP Q (4/3)nr2A 44 ) 7,

(6.21)

and similarly for neutrons where we have taken the volume to be that of a sphere
Q = (4/3)nR® and the nuclear radius, R = r,A'/3. Notice that we have obtained
an expression that depends only on Z/A (or N/A) and the radius constant r,
so the value of the Fermi energy will be similar for most nuclei because the
variation of Z /A is small for stable nuclei and only varies with the cube root. The
Fermi energy for nucleons in those nuclei with Z/A = 1/2 taking r, = 1.2 fm is

pZ
E; = —~ ~ 32 MeV (6.22)
2m

If the number of neutrons is greater than the number of protons, as in heavy
nuclei, then the Fermi energies will be slightly different for the two kinds of
particles. An approximate representation of the Fermi energy for protons and
neutrons is

EProtons =53 Z 2/3 MeV 6.23

prov=ss () Me (022
_ 2/3

E?eutrons =53 (A T Z) MeV (624)

The average kinetic energy of the nucleons in the well can be shown to be 3/5 E;
or ~20 MeV. Notice that the nucleons are moving rapidly inside the potential
well but not extremely fast.



Sample Problem 6.5: Fermi Energy

What is the de Broglie wavelength of a neutron moving with the average
kinetic energy in a 2®Pb nucleus according to the Fermi gas model? You
can assume that the neutron is nonrelativistic and use r, = 1.2 fm.

Solution
(neutrons) = <M>1/3 h
Py 2A o
1/3
k=2t = (M) 11353 fm™
n 4A Ty
2
p kh)*  (1.353 X 197.3)?
Efz—fz(f)=( )=38Me\/
2m 2m 2 X939
Eg = 3 E; =23 MeV
5
wn= 22 64t
V4 kg

Notice that this wavelength is slightly smaller than the lead radius R =
1.24Y3 =71 fm.

A schematic version of the Fermi gas potential energy well for a large nucleus
is shown in Figure 6.19. Recall that nucleons are bound by ~8 MeV, on average,
so the uppermost filled energy level (Fermi level) should be approximately at
—8 MeV. The lowest level is then ~32 MeV below this, which makes the Fermi
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Figure 6.19 A schematic version of the potential energy well derived from the Fermi gas
model. The highest filled energy levels reach up to the Fermi level of ~32 MeV. The nucleons
are bound by ~8 MeV, so the potential energy minimum is relatively shallow.



gas potential energy well relatively shallow. The levels between the Fermi level
and zero potential energy are assumed to be completely empty in the ground
state and become occupied when the nucleus absorbs excitation energy.

As a nucleus absorbs energy, nucleons are promoted from the filled levels
into the unfilled region between the Fermi level and zero potential energy. Each
promotion leads to a specific excitation energy, and combinations of multiple
excitations can lead to the same or similar energies. At high excitations the
number of combinations of different possible promotions for a specific exci-
tation energy grows dramatically. The tremendous growth of the number of
energy states with excitation energy is one of the interesting features of nuclei.
The number of levels is so large that we can describe the system by an average
level density, p(E*, N), which is simply the number of levels per unit excitation
energy, E*, for a fixed number of nucleons, N. The fact that excited nuclei, even
with a finite number of particles, have very dense and nearly continuous dis-
tributions of levels is the feature that allows us to describe their de-excitation
with statistical techniques.

The connection between the microscopic description of any system in
terms of individual states and its macroscopic thermodynamical behavior was
provided by Boltzmann through statistical mechanics. The key connection for
nuclei is that the entropy of a system is proportional to the natural logarithm
of the number of levels available to the system, thus

S(E,N) = kg InT(E, N) = kg In[p(E, N)AE] (6.25)

where I' is this total number of levels. The entropy of an excited nucleus is thus
proportional to the level density in some energy interval, AE, and goes to zero as
the excitation energy goes to zero. (Recall that there is only one nuclear ground
state.) The thermodynamic temperature can be calculated from the entropy
with the expression

1 _9SE.N) _ olnp(E’,N)
T o B oE

In statistical mechanics the Boltzmann constant k; with dimensions of energy
per degree is included in expressions so that the temperatures can be given in
degrees Kelvin. The numerical values of nuclear temperatures in Kelvin are very
large, for example, 10° K, so the product of k; and T is usually quoted in energy
units (MeV), and the Boltzmann factor is often not written explicitly.

At this point we have not distinguished between nuclear systems and macro-
scopic systems. There is, however, at least one important difference between the
two types of systems. The difference is the way the entropy S(£*, N) can be eval-
uated. In statistical mechanics one has different physical situations (ensembles)
for evaluating thermodynamic quantities: (a) fixed energy and particle number
(called the micro-canonical ensemble), (b) fixed temperature and particle num-
ber (the canonical ensemble), and (c) fixed temperature and chemical potential

(6.26)



(the grand canonical ensemble). In the evaluation of thermodynamic quanti-
ties for macroscopic systems, each of these approaches provides essentially the
same result so that the entropy may be evaluated by calculating any of the fol-
lOWil’lgI Smicro—canonical’ Scanonical’ or Sgrand canonical * This is not the case fOI‘ nuclear
systems because only the micro-canonical ensemble with a fixed energy and
particle number can be evaluated for an isolated nucleus. Thus, the fundamen-
tal definition of nuclear temperature should be written as

l — 0Smicro—canonical(E*’ N) (6 27)

T OE '
and it is not correct to substitute an entropy obtained with a different ensemble
into this expression.

Standard procedures are available to evaluate the entropy of a Fermi gas
under the conditions of a grand canonical ensemble, which we will have
to adjust to obtain the useful micro-canonical entropy. For low excitation
energies, E*, the entropy is

S

%
grand canonical (E

,N) = 2VaE* (6.28)

where a is a constant proportional both to the number of particles and to the
density of the single particle levels of the Fermi gas at the Fermi energy E;. If
Srand canonical 18 used to replace S, canonicar ON€ Obtains T' = (E/a)'/? as the
link between temperature and excitation energy. This result is appropriate for
macroscopic systems, but as we said it must be modified for isolated nuclear

systems. For small systems with a fixed small number of particles
Smicro—canonical = Sgrand canonical +AS (629)

where AS becomes vanishingly small compared with S, .4 canonicar @5 the num-
ber of particles or the excitation energy becomes large. An approximate expres-

sion for AS for a Fermi gas at relatively low energy is
AS = —yIn(E") (6.30)

with y being a number of the order of unity, ranging from 1 to 2 depending on
whether isospin and angular momentum are explicitly considered in the label-
ing of the states. When the appropriate S, ;.;o—canonicar 1S Used to evaluate the
nuclear temperature, one finds

1 _ a‘S‘grand canonical (E*7 N) 0AS

T oE * oE

For the moderately low energies, this provides

%z\/g_%) (6.32)

(6.31)



as the link between excitation energy and nuclear temperature. For large exci-
tation energies, £*, and large particle number, the correction term proportional
to v becomes small, and one can write E* ~ aT?.

The density of nuclear states can be written

a
(aE*)
The factor a that appears here and in the previous text is called the level density
parameter and is adjusted to correspond to level densities measured at low exci-
tation energies. The analyses of data over a broad mass range suggest that a is
proportional to the mass of the nuclear system A with a value of ~4/8.5 MeV~L.
The level densities can be corrected for the effect of angular momentum on
the thermal excitation energy by including pre-exponential statistical factors
and subtracting the collective energy that is involved in rotation. The rota-
tional energy is often included with an effective moment of inertia, a parameter
adjusted to match experimental spectra and yields.

We can extend the Fermi gas level density analysis to predict the relative prob-
ability of various decay modes of excited nuclei if we make the assumption that
the nuclei are in full thermal equilibrium. That is, we assume that all of the
energy levels corresponding to a given excitation energy are fully populated. It
is not possible for a single nucleus to be in many states simultaneously, that is,
it can only be in one. So the thermal equilibrium that we require can only be
used to describe a set of nuclei created in many (identical) reactions. This is, of
course, how chemical reactions take place when Avogadro’s number of atoms
or molecules with various kinetic energies but one temperature follows a path
from reactant to products based on a specific reaction mechanism. Nuclear
reactions are usually detected by producing large numbers of nuclei, > 10?, and
then observing various reaction products and determining the probabilities of
each process.

Excited nuclei that have attained statistical equilibrium will decay into dif-
ferent products in proportion to the number of states available to the whole
system after the decay. The different decays are often called reaction channels
or exit channels, and we speak of the probability to decay into a given channel.
A very schematic representation of the energy levels and the energies involved
in the decay of an excited nucleus into various channels is shown in Figure 6.20.
The total sum of the probabilities for decay into all channels is, of course, one.
We can simply count the number of states available for a decay channel and
obtain a general expression for the relative probability, P(e, n), for an excited
nucleus to emit a portion with size #, requiring an energy €. The expression is

Ple,n) xT'(e,n) XxI'(E —e,N — n) (6.34)

p(E")

exp (2 aE*) (6.33)

where I'(E, N) is the number of states in the vicinity of energy E for a system
of mass number N. The first factor on the right hand side is contributed by the



Figure 6.20 A

representation of the

branching decays from a |C__N|

highly excited compound o o
nucleus. In the statistical

model, the relative

probability for the excited

nucleus to decay into a

specific channel is

proportional to the

number of possibilities or

statistical weight of that

channel divided by the

sum of all of the statistical

weights of all of the Sy
channels.

states in the emitted object, and the second is contributed by the states in the
(large) residual nucleus. The number of internal states can be taken to be the log
of the level densities used to define the entropy, shown previously, and we will
need to include a term for the kinetic energy of the emitted object. However,
we need to integrate the emission rates over the whole course of the nuclear
reaction to obtain the total yields that can be measured in the laboratory.
Focusing on comparisons to measurable quantities, the relative probability of

a reaction (exit) channel can be written as the ratio of the cross section for that
channel, o;, to the total reaction cross section, o1. The ratios are labeled as the
relative decay widths, I';, in a notation, that is, unfortunately, easy to confuse
with the number of states discussed previously. The sum of the decay widths
is the total width of the state and can be used to calculate the lifetime of the
excited state. Thus,

o_h (6.35)

or Iy
and notice that the ratio of the relative probability of two decay channels i and
j does not depend on the total reaction cross section:

o, I}
Zio i (6.36)
o I

The width for the emission of a particle with a binding energy of B, that has no
internal states (i.e., proton, neutron, deuteron, alpha) has been shown to have
the form

E-B,
I' « I'(E, N)/ ep(E — B; — e)de (6.37)
0

with E as the excitation of the excited parent nucleus. Therefore, the relative
intensities of the channels change because the binding energies of the emitted



particles change the density of states through the exponential dependence of
the level density. This approach can be extended to the case of fission decay
leading, in the simplest approximation, to a slightly different integral:

E-E
I, « I'(E,N) / p(E — E; — e)de (6.38)
0

in terms of the fission barrier E;. The ratio I', /T'; is very important in determin-
ing the survival of the heaviest elements when they are synthesized in nuclear
reactions. Notice that if the nucleus emits a neutron to remove excitation, it
retains its large atomic number; however, if it fissions then it is converted into
two nuclei with much smaller atomic numbers. The integrals in the previous
expressions can be evaluated in the Fermi gas approximation with the following
approximate result (Vandenbosch and Huizenga, 1973):

I, 27423  [(E-B)
— exp
I, K, T

(6.39)

where K, = h*/2mr] ~ 15MeV and T is the nuclear temperature created by
the initial reaction. The exponential function contains the difference between
the fission barrier and the neutron separation energy. Therefore, this ratio is
only near unity when these two values are nearly equal. If there is a large dif-
ference between the fission barrier and the separation energy, then the overall
ratio will be very large or very small.

Sample Problem 6.6: Nuclear Temperature

In a certain nuclear reaction, a beam of 80 was combined with 233U
nuclei to form a compound nucleus of 2**Fm. The nuclei were produced
with an excitation energy of 95 MeV. Calculate the nuclear temperature
assuming thaty = 1, and then calculate the relative probability of neutron
to fission decay of the excited system.

Solution
1 a\? 1
7~(#) -&
witha = A/8.5 =256/8.5 =30.1 MeV!
1/2
l = <ﬂ> —i - T ~ 1.8 MeV
T 95 95

We need to find the neutron separation energy and the fission barrier for
this nucleus in order to evaluate the ratio. The neutron separation energy
is 6.38 MeV, and the fission barrier is 5.90 MeV.



I, 2TAY3 [(Ef—Bn)]
~ exp

I, K, T
I, 2x8x256%3 (5.90 — 6.38)
— exp
T, 15 18
Fn
— = 9.68 exp[—0.266] = 7.4
Iy
Problems

6.1 Predict the ground state spins and parities for *'K, **Ca, and ®Co.

6.2 An odd A nucleus has a Jt = 7/2* ground state. (a) What are J, K for
the first two excited states? (b) If the energy of the first excited state is
100 keV, what is the energy of the second excited state?

6.3 Define or describe the following terms or phenomena: nuclear iso-
merism, spin—orbit coupling, -vibration, Schmidt limits, and Nilsson
diagram.

6.4 The a decay of **! Am (¢, , = 420 years, Jx = 5/2*) populates members
of at least two rotational bands (4 and B) in 2>’ Np shown in Table 6.1. (a)
Using the collective model, predict the energies of the 9/2*, 9/27, and
11/2" levels. (b) Calculate the effective moment of inertia of 23’ Np.

Table 6.1 Energy Levels in 2>’Np.
Band J =& E (keV)
B 11/2- ?
B 9/ ?
B 7/2- 103
A 9/2+ 2
B 5/2~ 596
A 7/2¢ 332
A 5/2¢ 0
6.5 Whatis the energy of the 2* — 0" y-ray transition in '7?Hf assuming that

172Hf is a perfect rigid rotor with a moment of inertia, .J = (2/5)mR*?



6.6 Calculate the energy of the 4%, 6%, 8%, and 10" members of the
ground-state rotational band of an even—even nucleus if the energy of
the 2* member of the band is 0.044 MeV above the ground state.

6.7 An odd A nucleus has levels at 0, 33, 60, 75.5, 127 and 189 keV. Which
of these levels are likely to be part of a ground state rotational band built
on the 5/27 ground state?

6.8 Identify the single particle makeup of the following levels in the
odd-odd B!'Tm nucleus using the collective and Nilsson models if

= 0.25 (Table 6.2).

Table 6.2 Energy Levels in '31Tm.

Jn E (keV)
7/2° 425
7/2t 129
5/2 117
3/2* 5
1/2% 0

6.9 Identify the single particle makeup of the following levels in the

even—even 2*Mg nucleus using the collective and Nilsson models if
f = 0 (Table 6.3).

Table 6.3 Energy Levels in 2*Mg.

J,m  E(MeV)
4+ 6.000
3+ 5.220
A 4.230
4+ 4.113
2% 1.369
o+ 0

6.10 A deformed even—even nuclide has energy levels characterized by the
following values of spin, parity, and K value. You will note that not
all of the information is given for each level. Fill in the blanks with



6.11

6.12

6.13

6.14

6.15

Table 6.4 Energy Levelsin
Even-Even Nuclide.

E(keV) Jm® K

400 1~ 0
376 3* ?
? 4+ 0
349 6t 0
310 2+ 2
? 2% 0
200 ot 0
166 4+ ?
0 o+ 0

the required values. In the appropriate space, assign each of the levels to
a particular mode of excitation, for example, vibrational or rotational.
Assume all bands are characterized by the same value of the moment of
inertia (Table 6.4).

Using the shell model calculate the ground state spins, parities, and mag-
netic moments for 32§, 33S, and *'K.

Predict the following characteristics of the ground states of Mg and
93 Cu: the state of the odd nucleon, the total nuclear angular momentum,
the nuclear magnetic dipole moment, the sign of the nuclear quadrupole
moment, and the parity. Explain the probable cause of any important
discrepancies between your predictions and the following measured
values: Mg, [ = 5.2, p = —0.96, Q = (=) and #Cu, I = 3/2, p = +2.22,
Q=-0.1.

The energies (in MeV) of the lowest excited states of '82W for ] = 2,4, 6
are E = 0.100, 0.329, and 0.680, respectively. Do these values agree with
a rotational model?

For the nucleus 2°U at an excitation energy of 30 MeV, (a) what is the
nuclear temperature at this energy and (b) what is the ratio of I',, to I'; at
this excitation energy if the fission barrier B; = 6 MeV?

2Bk is known to have the following level scheme. Fill in the missing
energies and J, «t value (Table 6.5).



Table 6.5 Energy Levels in 24°Bk.

E (keV) J,m
1540 4+
1415 ?
1318 2+
656 2t
0 or

6.16 Given the shell model state k;;,, show qualitatively how it might split as
a function of increasing prolate deformation. (a) How many fermions are
needed to fill this orbital. Label each state as to its 2 value and indicate
the maximum number of particles in each Q state.

6.17 Show that the Brennan—Bernstein rules forbid the existence of odd-mass
nuclei with ground states spin/parity of 0* or 1~. Can you find excep-
tions?

6.18 21Sb has a spin of 5/2 and a magnetic moment of 3.36 nm. What is the
shell model state of the 51st proton? What would the shell model predict
for the spin?
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7

a-Decay

7.1 Introduction

In a series of seminal experiments, Ernest Rutherford and his collaborators
established the important features of a decay. The behavior of the radiations
from natural sources of uranium and thorium and their daughters was studied
in magnetic and electric fields. The least penetrating particles, labeled “a-rays”
because they were the first to be absorbed, were found to be positively charged
and quite massive in comparison with the more penetrating negatively charged
“B-rays” and the most penetrating neutral “y-rays” In a subsequent experiment
the a-rays from a needle-like source were collected in a very small concen-
tric discharge tube, and the emission spectrum of helium was observed in the
trapped volume. Thus, o rays were proven to be energetic helium nuclei. The
a-particles are the most ionizing radiation emitted by natural sources (with
the extremely rare exception of the spontaneous fission of uranium) and are
stopped by as little as a sheet of paper or a few centimeters of air. The particles
are quite energetic (E, = 4—12 MeV) but interact very strongly with electrons
as they penetrate into material and stop within 100 pm in most materials.

Understanding these features of a-decay allowed early researchers to use the
emitted a-particles to probe the structure of nuclei in scattering experiments
and later, by reaction with beryllium, to produce neutrons. In an interesting
dichotomy, the a-particles from the decay of natural isotopes of uranium,
radium, and their daughters have sufficient kinetic energies to overcome the
Coulomb barriers of light elements and induce nuclear reactions but are not
energetic enough to induce reactions in the heaviest elements.

a particles played an important role in nuclear physics before the invention of
charged particle accelerators and were extensively used in research. Therefore,
the basic features of a decay have been known for some time. The process of
o decay is a nuclear reaction that can be written as

A A4 - 4 +
Dy =, (D, +,He) +Q, (7.1)



where we have chosen to write out all of the superscripts and subscripts. Thus
238 .
the a-decay of * U can be written as

U 5 PR +'Her +Q (7.2)

The Q, value is positive (exothermic) for spontaneous a decay. The helium
nucleus emerges with a substantial velocity and is fully ionized, and the atomic
electrons on the daughter are disrupted by the sudden change, but the whole
process conserves electrical charge. We can rewrite the equation in terms of
the masses of the neutral atoms:

A A-
7 Dy = Z_;L Dn-p + :He2 +Q, (7.3)

and then calculate the Q, value because the net change in the atomic bind-
ing energies (~65.3Z7/° — 80Z%/> V) is very small compared with the nuclear
decay energy.

What causes a-decay? (Or what causes Q, to be positive?) In the language
of the semiempirical mass equation, the emission of an a-particle lowers
the Coulomb energy of the nucleus, which increases the stability of heavy
nuclei while not affecting the overall binding energy per nucleon very much
because the tightly bound a-particle has approximately the same binding
energy/nucleon as the original nucleus.

Two important features of a decay are that the energies of the a particles
are known to generally increase with the atomic number of the parent but the
kinetic energy of the emitted particle is less than that of the Coulomb bar-
rier in the reverse reaction between the a-particle and the daughter nucleus.
In addition, all nuclei with mass numbers greater than A ~ 150 are thermo-
dynamically unstable against o emission (Q,, is positive), but o emission is the
dominant decay process only for the heaviest nuclei, A > 210. The energies of
the emitted a-particles can range from 1.8 MeV (1*Nd) to 11.6 MeV (?!2Po™)
with the half-life of *Nd being 5 x 10® times as long as that of >'*Po™. Typical
heavy element o decay energies are typically in the range from 4 to 9 MeV, as
noted earlier.

In general, @ decay leads to the ground state of the daughter nucleus so that
the emitted particle carries away as much energy as possible and as little angu-
lar momentum as possible. The ground state spins of even—even parents and
daughters (including the o particle, of course) are zero, which makes ¢ = 0 «
particle emission the most likely process for these nuclei. Small branches are
seen to higher excited states, but such processes are strongly suppressed. Some
decays of odd A heavy nuclei populate low-lying excited states that match the
spin of the parent so that the orbital angular momentum of the a-particle can
be zero. For example, the strongest branch (83%) of the a decay of >**Cf goes to
the ninth excited state of °Cm because this is the lowest-lying state with the
same spin and parity as that of the parent. @ Decay to several different excited
states of a daughter nucleus is called fine structure; a-decay from an excited



state of a parent nucleus to the ground state of the daughter nucleus is said
to be long-range o emission because these o-particles are more energetic and
thus have longer ranges in matter than ground state to ground-state-emission.
A famous case of long-range a-emission is that of *2pom where a 45 s isomeric
level at 2.922 MeV decays to the ground state of %pp, by emitting a 11.65 MeV
a-particle.

We will consider the general features of « emission, and then we will describe
them in terms of a simple quantum mechanical model. It turns out that o emis-
sion is a beautiful example of the quantum mechanical process of tunneling
through a barrier that is forbidden in classical mechanics.

7.2 Energetics of a Decay

As we have seen in the overview of the nuclear mass surface in Chapter 2,
the o particle, or “He nucleus, is an especially strongly bound particle. This,
combined with the fact that the binding energy per nucleon has a maximum
value near A ~ 56 and systematically decreases for heavier nuclei, creates the
situation that nuclei with A > 150 have positive Q, values for the emission of
a particles. This behavior can be seen in Figure 7.1. For example, one of the

Binding energy (MeV)

0 50 - 10 150 200 250
Nucleon number, A

Figure 7.1 The variation of the o particle separation energy as a function of mass number is
shown in comparison to the average nuclear binding energy (Valentin (1981). Reproduced
with the permission of North- Holland Publishing Company).



heaviest naturally occurring isotopes, 238U (with a mass excess, A, of +47.3070
MeV), decays by o emission to “Th (A = +40.612 MeV), giving a Q, value of

Q, = 47.3070 — (40.612 + 2.4249) = 4.270 MeV (7.4)

Note that the decay energy will be divided between the a-particle and the heavy
recoiling daughter so that the kinetic energy of the a-particle will be slightly less
than the Q value. (The kinetic energy of the recoiling **Th nucleus produced

in the decay of % is ~0.070 MeV.) Conservation of momentum and energy in
this reaction requires that the kinetic energy of the a-particle, T, is

T, = %Qa — 4.198 MeV (7.5)
The kinetic energies of the emitted o particles can be measured very precisely,
so we should be careful to distinguish between the Q, value and the kinetic
energy T,. The very small recoil energy of the heavy daughter is very difficult
to measure, but it is still large compared to chemical bond energies and can
lead to interesting chemistry. For example, the daughter nuclei may recoil out
of the original a-source. This can cause serious contamination problems if the
daughters are themselves radioactive.
The Q, values generally increase with increasing atomic number, but the
variation in the mass surface due to shell effects can overwhelm the systematic
increase (Fig.7.2). The sharp peaks near A = 214 are due to the effects of

the N = 126 shell. When **Po decays by a-emission, the daughter nucleus
is doubly magic *%pp (very stable) with a large energy release. The a-decay

of neighboring *'Pb and **Po will not lead to such a large Q, because the
products are not doubly magic. Similarly, the presence of the 82 neutron closed
shell in the rare earth region causes an increase in Q,, allowing observable
a-decay half-lives for several of these nuclei (with N = 84). Also one has

observed short-lived a-emitters near doubly magic %g, including " Te,

%Te, and "' Xe. And, in addition, o emitters have been identified along the

proton dripline above A = 100. For a set of isotopes (nuclei with a constant
atomic number), the decay energy generally decreases with increasing mass.
These effects can be seen in Figure 7.2. For example, the kinetic energy of a
particles from the decay of uranium isotopes is typically 4—5 MeV, those for
californium isotopes are >6 MeV, and those for rutherfordium isotopes are
>8 MeV. However, recall that the kinetic energy from the decay of *Po to the

doubly magic *®pp daughter is 8.78 MeV, showing the dramatic effect of the
underlying nuclear structure.

The generally smooth variation of Q, with Z, A of the emitting nucleus and
the two body nature of o decay can be used to deduce masses of unknown
nuclei. One tool in this effort is the concept of closed decay cycles (Fig. 7.3).
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Figure 7.3 Decay cycles for part of the 4n + 1 family. Modes of decay are indicated over the
arrows; the numbers indicate total decay energies in MeV.

Consider the a- and f-decays connecting §§7Np, iile, ziju, and 227U. By con-
servation of energy, one can state that the sum of the decay energies around the
cycle connecting these nuclei must be zero (within experimental uncertainty).
In those cases where experimental data or reliable estimates are available for
three branches of the cycle, the fourth can be calculated by difference.



Even though the energies released by the decay of a heavy nucleus into an o
particle and a lighter daughter nucleus are quite substantial, the energies are
paradoxically small compared to the energy necessary to bring the o particle
back into nuclear contact with the daughter. The electrostatic potential energy
between the two positively charged nuclei, called the Coulomb potential, can
be written as

_2Z e

== 7.6
€7 R 4me 7.6)

where Z is the atomic number of the daughter and R is the separation
2

between the centers of the two nuclei. (As pointed out in Chapter 1, ﬁ is
0

1.440 MeV-fm.) To obtain a rough estimate of the Coulomb energy, we can

take R to be 1.2(A'/3 + 41/3) fm, where A is the mass number of the daughter.
238

For the decay of " U, we get

_ (2)(90)(1.440 MeV fm) _ 259 MeV fm
€7 1223413 +413 fm  93fm

= 28 MeV (7.7)

which is 6-7 times the decay energy. This factor is typical of the ratio of the
Coulomb barrier to the Q value for a decay. If we accept for the moment the
large difference between the Coulomb barrier and the observed decay energy,
then we can attribute the two general features of increasing decay energy with
increasing atomic number, Z, and decreasing kinetic energy with increasing
mass among a set of isotopes to the Coulomb potential. The higher nuclear
charge accelerates the products apart, and the larger mass allows the daughter
and a particle to start further apart.

Sample Problem 7.1: « Decay Energies

Calculate the Q, value; kinetic energy, T,; and Coulomb barrier, V, for
the primary branch of the o decay of *2Po to the ground state of %pp,

Solution
Using tabulated mass excesses we have
Q, = —10.381 — (—21.759 + 2.4249) = 8.953 MeV

= 28— 8784 Mev
212

_(2)(82)(1.440 MeV fm)

= ~ 26 MeV
€7 1.2(2081/3 + 41/3) fm

212 . .
The ” “Po parent also decays with a 1% branch to the first excited state of

*®Ph at an excitation energy of 2.6146 MeV. What is the kinetic energy of
this o particle?



Figure 7.4 Mass parabolas
for some members of the
4n + 3 natural decay series.
The main decay path is
shown by a solid line, while
a weak branch is indicated
by a dashed line.

Mass defect (MeV)
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Ql, =8.953 — 2.6146 MeV = 6.338 MeV

T = %Q; = 6.22 MeV

As discussed previously, many heavy nuclei (A > 150) are unstable with
respect to a-decay. Some of them also undergo p~ decay. In Chapter 3, we
discussed the natural decay series in which heavy nuclei undergo a sequence of
B~ and a-decays until they form one of the stable isotopes of lead or bismuth,
20620729y or *Bi. We are now in a position to understand why a particular
sequence occurs. Figure 7.4 shows a series of mass parabolas (calculated using
the semiempirical mass equation) for some members of the 4n + 3 series,
beginning with *U. Each of the mass parabolas can be thought of as a cut
231
Th

then decays to **Ipa by p~decay. This nucleus, being near the bottom of the
mass parabola, cannot undergo further f~ decay but decays by a-emission to
**’ Ac. This nucleus decays by B~ emission to *"Th, which must a-decay to

Ra, drop etc.

through the nuclear mass surface at constant A. U decays to “Hh,

7.3 Theory of a Decay

The allowed emission of « particles could not be understood in classical pic-
tures of the nucleus. This fact can be appreciated by considering the schematic
potential energy diagram for U shown in Figure 7.5. Using simple estimates
we have drawn a one dimensional potential energy curve for this system as
a function of radius. At the smallest distances, inside the parent nucleus, we
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Figure 7.5 A (reasonably accurate) one-dimensional potential energy diagram for 8y

indicating the energy and calculated distances for a decay into 2*Th. Fermi energy ~30
MeV, Coulomb barrier ~28 MeV at 9.3 fm, Q, = 4.2 MeV, distance of closest approach 62 fm.

have drawn a flat-bottomed potential with a depth of ~30 MeV (as discussed
in Chapter 6). The potential rapidly rises at the nuclear radius and comes to
the Coulomb barrier height of V. ~ +28 MeV at 9.3 fm. At larger distances the
potential falls as % according to Coulomb’s law.

Starting from a separated o particle and the daughter nucleus, we can deter-
mine that the distance of closest approach during the scattering of a 4.2 MeV o
particle will be ~62 fm. This is the distance at which the a particle stops mov-
ing toward the daughter and turns around because its kinetic energy has been
converted into potential energy of repulsion. Now the paradox should be clear:
the a particle should not get even remotely close to the nucleus, or from the
decay standpoint, the a particle should be trapped behind a potential energy
barrier that it cannot get over. The solution to this paradox was found in quan-
tum mechanics. A general property of quantum mechanical wave functions
is that they are only completely confined by potential energy barriers that are
infinitely high. Whenever the barrier has a finite size, the wave function solu-
tion will have its main component inside the potential well plus a small but finite
part inside the barrier (generally exponentially decreasing with distance) and
another finite piece outside the barrier. This phenomenon is called tunneling
because the classically trapped particle has a component of its wave function
outside the potential barrier and has some probability to go through the barrier
to the outside. The details of these calculations are discussed in Appendix E and
in many quantum mechanics textbooks. Some features of tunneling should be
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Figure 7.6 A Geiger-Nuttall plot of the logarithm of the half-life (s) versus the square root of
the Q, value (MeV).

obvious: the closer the energy of the particle to the top of the barrier, the more
likely that the particle will get out. Also, the more energetic the particle is rela-
tive to a given barrier height, the more frequently the particle will “assault” the
barrier, and the more likely that the particle will escape.

It has been known for some time that half-life for a-decay, £, 5, can be written
in terms of the square root of the « particle decay energy, Q,, as follows:

B
logy(t1p) =A+ —— (7.8)

o

where the constants A and B have a Z dependence. This relationship, shown
in Figure 7.6, is known as the Geiger—Nuttall law of a-decay (Geiger and Nut-
tall, 1911, 1912) due to the fact that they found a linear relationship between
the logarithm of the decay constant and the logarithm of the range of o par-
ticles from a given natural radioactive decay series. This simple relationship
describes the data on a-decay, which span over 20 orders of magnitude in decay
constant or half-life. Note that a 1 MeV change in a-decay energy results in a
change of 10° in the half-life. A modern representation of this relationship due
to Parkhomenko and Sobiczewski has the form

log,, (t1/2(5)) =aZ (Qa(MeV) - Ecl)_l/2

where a = 1.5372, b = —0.1607, ¢ = —36.573, and E; = 0 for e—e nuclei; 0.0113
MeV for o—e nuclei; 0.171 MeV for e—o nuclei; and 0.284 MeV for o—o nuclei.
Z refers to the parent nuclide. The effect of the E; term is to account for the
excitation energy of the daughter.

This modern relationship is useful for predicting the expected a-decay
half-lives for unknown nuclei.

+bZ+c (7.9)



The theoretical description of a emission relies on calculating the rate in
terms of two factors. The overall rate of emission consists of the product of
the rate at which an o particle appears at the inside wall of the nucleus times
the (independent) probability that the o particle tunnels through the barrier.
Thus, the rate of emission, or the partial decay constant A, is written as the
product of a frequency factor, f, and a transmission coefficient, T, through the
barrier:

Ay =T (7.10)

Some investigators have suggested that this expression should be multiplied by
an additional factor to describe the probability of preformation of an « parti-
cle inside the parent nucleus. Unfortunately, there is no clear way to calculate
such a factor, but empirical estimates have been made. As we will see in the
following text, the theoretical estimates of the emission rates are higher than
the observed rates, and the preformation factor can be estimated for each mea-
sured case. However, there are other uncertainties in the theoretical estimates
that contribute to the differences.

The frequency with which an a particle reaches the edge of a nucleus can be
estimated as the velocity divided by the distance across the nucleus. We can
take the distance to be twice the radius (something of a maximum value), but
the velocity requires a more subtle estimate. A lower limit for the velocity could
be obtained from the kinetic energy of emitted a particle, but the particle is
moving inside a potential energy well, and its velocity should be larger and cor-
respond to the well depth plus the external energy. Therefore, the frequency
can be written as:

_ i _ \/ 2(V0+Qot)/p' (7 11)

S=%= 2R '

where we have assumed that the o particle is nonrelativistic, V;, is the well depth
indicated in Figure 7.5 of ~30 MeV, p is the reduced mass, and R is the radius of
the daughter nucleus (because the a-particle needs only to reach this distance
before it is emitted). We use the reduced mass because the o particle is moving
inside the nucleus, and the total momentum of the nucleus must be zero. The
frequency of assaults on the barrier is quite large, usually on the order of 102! /s.

The quantum mechanical transmission coefficient for an a-particle to pass
through a barrier is derived in Appendix E. Generalizing the results summa-
rized in the Appendix to a three-dimensional barrier shown in Figure 7.5, we
have

T =e2% (7.12)

where the Gamow factor (2G) can be written as

2 (V] (ZZee 12
2G == / op (== -, )| ar (7.13)
hJg r



where the classical distance of closest approach, b, is given as a function

of Q, by

b ZZ4e*

Qq

In these equations, € = 1.440 MeV-fm, Q, is given in MeV, and Z,, Z, are the
atomic numbers of the a-particle and daughter nucleus, respectively. Rearrang-
ing we get

2 — ["(b_\"
R

That can be integrated to give

2G = =— 2b VZuQ (arccos(\[) Vyl - y) (7.16)

with y = R/b. Substltutmg back and collecting terms,

2G = 1/ h2Q (Z,Z,€%) (arccos(\/_) vyl —J’)) (7.17)

For thick barriers where R/b < 1 or (Q,/V < 1, we can approximate the arc-
cos as

R s R
arccos (\/%) N \/; (7.18)

(7.14)

so that we get
_ 2
26 =2 th (Z,Zqe )( ) (7.19)
with an “effective” Coulomb barrier of
Z.7.e*
B=2x4 (7.20)
ry + Ry

Typically, the Gamow factor is large (2G ~ 60-120), which makes the transmis-
sion coefficient T extremely small (~10~>° to 107%"). Combining the various
equations, we get a prediction for the half-life of

In2 In2 In2
VU T v g
2R ¢
which has the form
log t,, =a+ b 72

<
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Figure 7.7 Plot of the ratio of the calculated partial a-decay half-life for ground-state £ = 0
transitions of even—even nuclei to the measured half-lives. The calculations were made
using the simple theory of a-decay.

that is, we get the Geiger—Nuttall law of a-decay, where a + b are constants,
which depend on Z and A.

This simple estimate tracks the general behavior of the observed emission
rates over the very large range in nature. The calculated emission rate is
typically one order of magnitude larger than that observed, meaning that the
observed half-lives are longer than predicted. This has led some researchers
to suggest that the probability to find a “preformed” a particle inside a heavy
nucleus is on the order of 107! or less. One estimate of the “preformation
factor” can be obtained from a plot of the ratio of the calculated half-life to the
measured half-life for even—even nuclei undergoing # = 0 decay. Such a plot
can be seen in Figure 7.7. The average preformation factor is ~1072 from this
analysis.

Sample Problem 7.2: o Particle Emission Rate

Calculate the emission rate and half-life for **U decay from the simple
theory of a decay. Compare this to the observed half-life.



Solution

)= fT
V2(Vy+ Q)/p

2R

R=r, (Ajj/3 +A}/3) = 1.2(2341% + 41/%) = 9.3 fm

Note: We previously estimated 5> 62 fm for this decay; R/b = 8.63/
62<1.

p =4 x 234/238 = 3.933 amu

¢X /2 (30 +4.2)/(3.933 x 931.5)
f= 2%9.3
We know that T = 729, where

9 172
wGr2(2) 2z Eo0y/Q
nQ, 2 B

5 2 _2<(2)(3.933)(931.5)
n2Q, ) (197.3)2(4.27)

=2.20x 10*' /s

) = 0.420 (MeV fm)™

Z,Z€* = (2)(90)(1.440) MeV fm

T =e°=568x107%8

A =fT = (2.26 x 10*!)(5.43 x 107%) = 1.23 x 107 /s

tyy = h‘TZ =5.53x10" s = 1.8 x 10° years

Note that the observed half-life of ***U is 4.47 x 10° years, which is a
factor of ~25 times longer than this calculated value. Be aware of the
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qualitative aspects of this calculation; the a-particle must hit the border
of the parent nucleus ~10?® times before it can escape and the extreme
sensitivity of this calculation to details of the nuclear radius. A 2% change
in R changes A by a factor of 2. In our example, we approximated R as
Ry, + R, Inreality, the a-particle has not fully separated from the daugh-
ter nucleus when it enters the barrier. One could attempt to correct for
this by approximating R ~ 1.44'/3,

The theory presented previously neglects the effects of angular momentum in
that it assumes the a-particle carries off no orbital angular momentum (7 = 0).
If a-decay takes place to or from an excited state, some angular momentum may
be carried off by the a-particle with a resulting change in the decay constant. In
a quantum mechanical sense, we say that the a-particle has to tunnel through
a barrier that is larger by an amount called the centrifugal potential:

L+ DR

= 7.23
= (7.23)

where ¢ is the orbital angular momentum of the a-particle, p is the reduced
mass, and R is the appropriate radius. This centrifugal potential must be added
to the potential energy V(r), resulting in a thicker and higher barrier and
increasing the half-life (Fig. 7.8).

One can evaluate the effect of this centrifugal potential upon o-decay
half-lives by simply adding this energy to the Coulomb barrier height. If we
define the ratio of barrier heights, o,

_ Centrifugal barrier height

7.24
Coulomb barrier height (7.24)
Then substituting in the expressions from the preceding text:
1)h? 1)h?
=f(f+ w* R C(C+Dh (7.25)

uR2  Z Z,  2uRZ.,Z,



Then all we need to do is to replace all occurrences of B by B (1 + o) in the
expression for the half-life. A simple pocket formula that results from such a
substation is

Apso & hgg exp[—2.0276(¢ + 1)Z7/2ATH6] (7.26)

This centrifugal barrier correction is a very small effect compared to the effect
of Q, or R upon the decay rate.

We should also note that conservation of angular momentum and parity dur-
ing the a-decay process places some constraints on the daughter states that
can be populated. Since the a-particle has no intrinsic spin, the total angular
momentum of the emitted a-particle must equal its orbital angular momentum
¢, and the a-particle parity must be (—1)”. Since parity is conserved in a-decay,
the final states are restricted. If the parent nucleus has /& = 0%, then the allowed
values of Jn of the daughter nucleus are 07(¢ = 0), 17 (£ = 1), 2*(¢ = 2), etc.
These rules only specify the required spin and parity of the state in the daugh-
ter, while the energy of the state is a separate quantity. Recall from Chapter
6 that the heaviest elements are strongly deformed and are good rotors. The
low-lying excited states of even—even nuclei form a low-lying rotational band
with spins of 2, 4, 6, etc., while odd angular momenta states tend to lie higher
in energy. Because of the decrease in the energy of the emitted a-particle when
populating these states, decay to these higher-lying states will be inhibited. Thus
the lower available energy suppresses these decays more strongly than the cen-
trifugal barrier.

Sample Problem 7.3: Angular Momentum in o Decay

*Amisa long-lived a emitter that is used extensively as an ionization
source in smoke detectors. The parent state has a spin and parity of
5/27 and cannot decay to the 5/2% ground state of 237Np because
that would violate parity conservation. Rather it decays primarily to
a 5/2 excited state (85.2%, E* = 59.5 keV) and to a 7/2~ higher-lying
excited state (12.8%, E* = 102.9 keV). Estimate these branching ratios
using the theoretical equations, and compare them to the observed
values.

Solution
Q,(5/27) = 5.578 MeV ; Q,(7/27) = 5.535 MeV
f(5/27)=224x10*"/s;  f(7/27) =2.24x10*"/s
G(5/27) =33.91; G(7/27) = 34.21

M5/27)=7.9%x1077/s; M7/27) =4.3x1077/s



Assuming that the branches to other states are small and do not con-
tribute to the sum of the partial half-lives, we can write

M5/27) B
M5/27) +M7/27)
Note that the observed half-life of 433 years is again significantly longer
than the predicted half-life of ~3 years. This difference is attributed to the
combined effects of the preformation factor and the hindrance effect of
the odd proton in the americium parent (Z = 95), discussed in the fol-
lowing text.

Branching ratio(5/27) = 0.65

7.4 Hindrance Factors

The one-body theory of a-decay applies strictly to e—e o emitters only. The odd
nucleon a-emitters, especially in ground-state transitions, decay at a slower
rate than that suggested by the simple one-body formulation as applied to e—e
nuclei. Consider the data shown in Figure 7.9 showing the a-decay half-lives
of the e—e and odd A uranium isotopes. The odd A nuclei have substantially
longer half-lives than their e—e neighbors.

The decays of the odd A nuclei are referred to as “hindered decays,” and the
“hindrance factor” is defined as the ratio of the measured partial half-life for
a given o-transition to the half-life that would be calculated from the simple
one-body theory applied to e—e nuclides. In general, these hindrances for odd
A nuclei may be divided into five classes:

1) Ifthe hindrance factor is between 1 and 4, the transition is called a “favored”
transition. In such decays, the emitted o particle is assembled from two
low-lying pairs of nucleons in the parent nucleus, leaving the odd nucleon

1012 _ , Figure 7.9 The a-decay
| | half-lives of the e-e (squares)
L | and odd A (circles) isotopes
109 _ of uranium. The measured
L i values are connected by the
. + g solid line; the estimates from
2 1061 - the one-body theory of
g r 1  adecayis shown by the
= 103 i 1 dashed line.
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in its initial orbital. To form an a-particle within a nucleus, two protons
and two neutrons must come together with their spins coupled to zero and
with zero orbital angular momentum relative to the center of mass of the
a-particle. These four nucleons are likely to come from the highest occu-
pied levels of the nucleus. In odd A nuclei, because of the odd particle and
the difficulty of getting a “partner” for it, one pair of nucleons is drawn from
a lower-lying level, causing the daughter nucleus to be formed in an excited
state.

2) A hindrance factor of 4-10 indicates a mixing or favorable overlap between
the initial and final nuclear states involved in the transition.

3) Factors of 10-100 indicate that spin projections of the initial and final states
are parallel, but the wave function overlap is not favorable.

4) Factors of 100-1000 indicate transitions with a change in parity but with
projections of initial and final states being parallel.

5) Hindrance factors >1000 indicate that the transition involves a parity
change and a spin flip, that is, the spin projections of the initial and final
states are antiparallel, which requires substantial reorganization of the
nucleon in the parent when the a-particle is emitted.

7.5 Heavy Particle Radioactivity

As an academic exercise one can calculate the Q values for the emission of
heavier nuclei than o particles and show that it is energetically possible for a
large range of heavy nuclei to emit other light nuclei. For example, contours
of the Q values for carbon ion emission by a large range of nuclei are shown in
Figure 7.10 calculated with the smooth liquid drop mass equation without shell
corrections. Recall that the binding energy steadily decreases with increasing
mass (above A ~ 60), and several light nuclei have large binding energies rela-
tive to their neighbors similar to the o particle. As can be seen in Figure 7.10,
there are several nuclei with positive Q values for carbon ion emission. Such
emission processes or heavy particle radioactivity have been called “heavy clus-
ter emission”

We should also note that the double shell closures at Z = 82 and N = 126
lead to especially large positive Q values, as already shown in Figure 7.2. Thus,
the emission of other heavy nuclei, particularly "C, has been predicted or at

least anticipated for a long time. Notice also that C is an even—even nucleus,
and s-wave emission without a centrifugal barrier is possible. However, the
Coulomb barrier will be significantly larger for higher Z nuclei than that for
a particles.
We can use the simple theory of o decay to make an estimate of the relative
. . o 12 o 220
branching ratios for a emission and ~C emission from " Ra, a very favor-

able parent that leads to the doubly magic *%pp daughter. In this case we find
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Figure 7.10 Contours of
the Q value for the
emission of a °C nucleus as
a function of neutron and
proton numbers calculated
with the liquid drop model
mass formula. The contour
lines are separated by

10 MeV. The dotted curve
indicates the line of

f stability.
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Q, = 7.59 MeV and Q. = 32.02 MeV. Using the simple theory and ignoring dif-
ferences in the preformation factor, the predicted half-life for "C emission is
only longer than that for a emission by a factor of 40!

220

Ra — “°Rn + "He, Q = 7.59, A, = 9.1 X 103/s (7.27)

calc

220

Ra — “®Pb+ °C,Q = 32.02, A, = 2.1 X 10%/s (7.28)

calc

The encouraging results from simple calculations like this have spurred many
searches for this form of radioactivity.

It was relatively recently that heavy cluster emission was observed at a level
enormously lower than these estimates. Even so, an additional twist in the
process was discovered when the radiation from a *»’Ra source was measured

. L . o 14
directly in a silicon surface barrier telescope. The emission of ~C was observed

at the rate of ~107? times the a emission rate, and 12C was not observed. Thus,
the very large neutron excess of the heavy elements favors the emission of
neutron-rich light products. The fact that the emission probability is so much
smaller than the simple barrier penetration estimate can be attributed to the
very small probability to “preform” a "C residue inside the heavy nucleus.
This first observation has been confirmed in subsequent measurements with
magnetic spectrographs. The more rare emission of other larger neutron-rich
light nuclei have been reported in very sensitive studies with nuclear track
detectors.



7.6 Proton Radioactivity

For very neutron-deficient (i.e., proton-rich) nuclei, the Q value for proton
emission, Q,, becomes positive. One estimate, based on the semiempirical
mass equation, of the line that describes the locus of the nuclei where Q,
becomes positive for ground state decay is shown in Figure 7.11. This line is
known as the proton drip line. Our ability to know the position of this line is a
measure of our ability to describe the forces holding nuclei together. Nuclei to
the right of the proton dripline in Figure 7.11 can decay by proton emission.

Proton decay should be a simple extension of a-decay with the same ideas of
barrier penetration being involved. A simplification with proton decay relative
to a-decay is that there should be no preformation factor for the proton. The
situation is shown in Figure 7.12 for the case of the known proton emitter
"Lu. One can see certain important features/complications from this case.
The proton energies, even for the heavier nuclei, are low (E, ~ 1-2 MeV). As
a consequence, the barriers to be penetrated are quite thick (R ,, = 80 fm),
and one is particularly sensitive to the proton energy, angular momentum
changes, etc.

The measurements of proton decay are challenging due to the low ener-
gies and short half-lives involved. Frequently there are interfering o-decays
(Fig. 7.13). To produce nuclei near the proton dripline from nuclei near the
valley of p-stability requires forming nuclei with high excitation energies that
emit neutrons relative to protons and a-particles to move toward this proton
dripline. This, along with difficulties in studying low-energy proton emitters,
means that the known proton emitters are mostly in the medium to high mass

Figure 7.11 Locus of Limits of nuclear stability
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Figure 7.12 Proton-nucleus potential
for the semiclassical calculation of the
151Lu partial proton half-life (From
Hofmann (1996), Copyright 1996 by
IOP Publishing, reprinted by
permission of IOP Publishing).

BTLu(11/27) — '¥0Yb(0*)

nuclei. Single proton decay occurs in odd Z nuclei beyond the proton dripline.
About 40 cases of this decay mode, ranging from %I to !%Bi, have been
identified. Two proton decay has also been observed. Recent review articles
by Hofmann (1996) and Pfutzner and Karny (2012) summarize the details of
proton decay.

Problems

7.1 Using the conservation of momentum and energy, derive a relationship
between Q, and 7.

7.2 Allnuclei with A > 210 are a-emitters yet very few emit protons sponta-
neously. Yet both decays lower the Coulomb energy of the nucleus. Why
isn’t proton decay more common?

7.3 Use the Geiger—Nuttall rule to estimate the expected a-decay half-lives
148 ., | 226 238 252 262

of the following nuclei: © Gd, ™ Ra, ™ U, " Cf,and " "Sg.
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Figure 7.13 (a) Energy spectrum obtained during the irradiation of a *Ru target with
261 MeV **Ni projectiles. (b) Expanded part of the spectrum showing the proton line from

151

Lu decay (From Hofmann (1996), Copyright 1996 by IOP Publishing, reprinted by

permission of IOP Publishing).

7.4

7.5

Use the one-body theory of a-decay to estimate the half-life of **'Ra for
decay by emission of a *C ion or a "He ion. The measured half-life for
the “C decay mode is 107 relative to the “He decay mode. Estimate the

relative preformation factors for the a-particle and "C nucleus in the
parent nuclide.

*2pom and **’Ds both decay by the emission of high-energy o-particles
(E, = 11.6 and 11.1 MeYV, respectively). Calculate the expected lifetime
of these nuclei using the one-body theory of a-decay. The observed



7.6

7.7

7.8

7.9

7.10

7.11

7.12

713

7.14

half-lives are 45.1 s and 170 ps, respectively. Comment on any difference
between the observed and calculated half-lives.

. . - 238
What is the wavelength of an a-particle confined inside a ™ U nucleus?

*Be decays into two a-particles with Q, = 0.094 MeV. Calculate the
expected half-life of *Be using one-body theory, and compare this
estimate to the measured half-life of 2.6 x 1077 s.

Calculate the kinetic energy and velocity of the recoiling daughter atom
in the a-decay of 2t

Calculate the hindrance factor for the a-decay of **BK to the ground
state of >’ Am. The half-life of ***Bk is 4.35 h, the decay is 99.994% EC
and 0.006% a-decay. Further, only 0.0231% of the a-decays lead to the
ground state of *Am. Q, for the ground state decay is 6.874 MeV.

Calculate Q, for gold. Why don’t we see a-decay from gold nuclei?

The natural decay series starting with *Th has the sequence ofPa. Show
why this is the case by plotting the mass parabolas (or portions thereof
for A = 232, 228, and 224).

Using the semiempirical mass equation, verify that Q, becomes positive
for A > 150.

Calculate the heights of the centrifugal barrier for the emission of
a-particles carrying away two units of angular momentum in the decay
of **Cm. Assume R, = 1x 103 cm. What fraction of the Coulomb
barrier height does this represent?

Use one-body theory to calculate the expected half-life for the proton
decay of '%p;,
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8

p-Decay

8.1 Introduction

We have seen that many thousands of nuclei can be produced and studied in the
lab. However, only <300 of these nuclei are stable; the rest are radioactive. We
have also seen that the degree of instability grows with the “distance” a given
nuclide is from the stable nuclide with the same mass number. In the previ-
ous chapter we considered the process of a decay in which heavy nuclei emit o
particles to reduce their mass and move toward stability. The Coulomb barrier
limits this process to those regions where the Q value provides sufficient energy
to tunnel through the barrier. The vast majority of unstable nuclei lie in regions
in which a— decay is not important and the nuclei undergo one or another form
of B decay in order to become more stable. In a certain sense, the stable nuclei
have a balance between the numbers of neutrons and protons. Nuclei are said
to be unstable with respect to f decay when these numbers are “out of balance”
In a very qualitative way,  decay “converts” a neutron into a proton (or vice
versa) inside a nucleus, which becomes more stable while maintaining a con-
stant mass number. The  decay process is more complicated than o emission,
and we will provide an overview and a discussion of its basic features in this
chapter.

B decay is named for the second most ionizing rays that were found to
emanate from uranium samples. The naturally occurring fp rays were identified
as fast-moving (negative) electrons relatively easily, but it took many years
to obtain a full understanding of the emission process. The difficulty lies in
the fact that two particles are “created” during the decay as compared to the
“disruption” of a heavy nucleus in o decay. In contrast to a decay, angular
momentum plays a crucial role in understanding the  decay process. Let us
consider the simplest form of p decay to illustrate the difficulties. The proton
and the neutron are the two possible isobars for A = 1. We know that the
neutron has a larger mass than the proton and is thus unstable with respect
to the combination of a proton and an electron. A free neutron will undergo
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B decay with a half-life of approximately 10.2 min. We might expect to write
the decay equation as

(l)n N ip+ + _10e‘ + Q[3 (Incomplete Equation) (8.1)

However, all three particles in this equation are fermions with intrinsic spins
S = 1/2h. Therefore, we cannot balance the angular momentum in the reaction
as written. The spins of the proton and the electron can be coupled to 0 or
17 and can also have relative angular momenta with any integral value from
the emission process. This simple spin algebra will never yield the half-integral
value on the left-hand side of the equation. Another fermion must be present
among the products.

Another feature of f decay that was puzzling at first but really pointed to the
incompleteness of the previous equation is that the p rays have a continuous
energy distribution. That is, electrons are emitted from a source with a distri-
bution of energies that extends from a maximum at the Q value all the way down
to zero. Recall that if there are only two products from a reaction, then they will
precisely share the decay energy according to conservation of momentum. We
have clearly seen such sharp energy spectra in o decay. (Note: the continuous
energy distribution is not an instrumental artifact nor does it come from elec-
tron scattering.) Quite dramatic pictures of the tracks of charged particles from
B decay show events in which the two ionizing particles do not move in exactly
opposite directions also in clear violation of conservation of linear momentum.
The way out of this mounting paradox with violations of very strongly held con-
servation laws is to recognize that another unseen particle must be created and
emitted and introduce an additional conservation law. The conservation law is
conservation of the number of “particles” in a reaction, and the unseen particle
must be an antiparticle to cancel the creation of the electron particle. This new
beast is called the neutrino, literally the little neutral one in Italian, because it
had a small mass and is electrically neutral.

8.2 Neutrino Hypothesis

Enrico Fermi on his voyage to the new world postulated that a third particle
was needed to balance the emission of the electron in  decay. However, the
existing conservation laws also had to be satisfied, so there were a number of
constraints on the properties of this new particle. Focusing on the decay of a
neutron as the simplest example, the reaction is already balanced with respect
to electric charge, so any additional particle must be neutral. The electrons were
observed with energies up to the maximum allowed by the decay Q value, so
the mass of the particle must be smaller than the instrumental uncertainties
in these measurements. Initially this limit was <1 keV, but this value has been
reduced to <10 eV in more recent work. Recent experiments have shown that



the neutrinos have mass (see Chapter 12). The third constraint on the neutrino
from the decay is that it must be an “antiparticle” in order to cancel or compen-
sate for the creation of the electron, a “particle” The fourth constraint is that
the neutrino must have half-integral spin and be a fermion in order to couple
the total final angular momentum to the initial spin of 1/2#.

Combining all of these constraints, we can now rewrite the previous equation
properly as

1 1 0 _ 0—
o0 = P e+ U+ Qg (8.2)

where we have used the notation of placing a bar over the Greek character nu
to indicate that the neutrino is an antiparticle and a subscript indicating the
neutrino is an electron—neutrino (see Chapter 5). As indicated in Chapter 5,
the existence of antiparticles and antimatter extends quite generally, and we
can produce and observe the decays of antielectrons (usually called positrons),
antiprotons, antineutrons, and so on and even combine positrons and antipro-
tons to make antihydrogen!

The spins of all of the final products in the neutron decay equation can be
combined in two ways and still couple to the initial spin of the neutron. Focus-
ing on the spins of the created particles, they can vector couple to S; = 1 in a
parallel alignment or to Sy = 0 in an antiparallel alignment. Both of these can
combine with § = 1/2 of the proton for a resultant vector of 1/2. The two pos-
sible relative alignments of the “created” spins are labeled as Fermi (F) (S = 0)
and Gamow-Teller (GT) (S; = 1) decay modes after the people that initially
described the spin alignment in the decay mode. Both modes are often pos-
sible, and a radioactive source can produce a mixture of relative spins. How-
ever, in some cases, particularly the decay of even—even nuclei with N = Z (the
so-called mirror nuclei), the neutron and protons are in the same orbitals so
that 0% to 0" decay can only take place by a Fermi transition. In heavy nuclei
with protons and neutrons in very different orbitals (shells), the GT mode dom-
inates. In complex nuclei, the rate of decay will depend on the overlap of the
wave functions of the ground state of the parent and the state of the daughter.
The final state in the daughter depends on the decay mode. Notice that in the
example of neutron decay, the difference between the two modes is solely the
orientation of the spin of the bare proton relative to the spins of the other prod-
ucts. The decay constant can be calculated if these wave functions are known.
Alternatively, the observed rate gives some indication of the quantum mechan-
ical overlap of the initial and final state wave functions.

The general form of B~ decay of a heavy parent nucleus, 47, can be written as

Zy -2+ D re U+ Qp (8.3)

where we have written out the charges on the products explicitly. Notice that
the electron can be combined with the positive ion to create a neutral atom



(with the release of a relatively small atomic binding energy). This allows us to
use the masses of the neutral atoms to calculate the Q value, again assuming
that the mass of the antineutrino is very small. Thus,

Qp =M["Z1 - M["(Z + 1) (8.4)

Up to this point we have concentrated on the  decay process in which a neutron
is converted into a proton. There are a large number of unstable nuclei that
have more protons in the nucleus than the stable isobar and so will decay in
the opposite direction by converting a proton into a neutron. We can write an
equation for B* decay that is exactly analogous to the previous equation:

Zy - NZ - Dy, re Qe (8.5)
where we have replaced both the electron and the electron antineutrino with
their respective antiparticles, the positron and the electron—neutrino. Note in
this case, in contrast to p~ decay, the charge on the daughter ion is negative.
This means that there is an extra electron present in the reaction compared
with writing the reaction with a neutral daughter atom. Thus, the Q value must
reflect this difference:

Q. = M['Z] - <M[A(Z DI+ 2mecz> (8.6)

where m, is the electron mass. Recall that particles and antiparticles
have identical masses. This equation shows that spontaneous Pt decay
requires that the mass difference between the parent and daughter atoms be
>2m,c* = 1.022 MeV. Nature takes this to be an undue restriction and has
found an alternative process for the conversion of a proton into a neutron
(in an atomic nucleus). The process is the capture of an orbital electron by
a proton in the nucleus. This process, called electron capture is particularly
important for heavy nuclei. The reaction is written as

AZN -4z~ Dysr + Ve + Qe (8.7)
where all of the electrons are implicitly understood to be present on the atoms.
This process also has the property that the final state has only two products, so
conservation of momentum will cause the neutrino to be emitted with a precise
energy depending on the binding energy of the captured electron and the final
state of the daughter nucleus.

To summarize, there are three types of decay, all known as  decay. They are
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indicating - decay of neutron-rich nuclei, p* decay of proton-rich nuclei, and
the electron capture decay of proton-rich nuclei, respectively. Neglecting the
electron binding energies in computing the decay energetics, we have

Qﬁ* =(Mp - MD)C2

Qpr = My — Mp)c* — 2m,c?

Qpc = (Mp — Mp)c®
where M is the atomic mass of the nuclide involved and m, is the electron mass.
Typical values of Q;- are ~0.5-2 MeV, Qy.~2-4 MeV, and Qp-~0.2-2 MeV.

As a final point in the general discussion of § decay, it is interesting to

note that the analogous process of positron capture by neutron-excessive
nuclei should be possible in principle. However, such captures are hindered
by two important facts: first, the number of positrons available for capture is
vanishingly small in nature, and second, both the nucleus and the positron are
positively charged and will repel one another. Compare this to the situation for
electron capture in which the nucleus is surrounded by (negative) electrons

that are attracted to the nucleus, of course, and the most probable position to
find the electrons in an “s” atomic orbital is at the nucleus (r = 0).

Sample Problem 8.1: Equation Balancing

Write the balanced equation for positron capture on the B unstable
nucleus, **Na. Calculate the Q value for this process.

Solution

On the left-hand side of the equation, we assume that we have a *Na
nuclide (with 11 electrons) and a single positron, which is an antilepton.
The conservation rules imply that the mass number of the product will be
24, the atomic number willbe Z = 11 + 1, the 11 electrons will carry over,
and an antilepton has to be created to conserve lepton number. Thus,

*Na+e* > “*Mg* + v + Qpc

We must be careful about the numbers of electrons on both sides of the
equation when we calculate the Q value. If we use mass excesses rather
than the masses and assume a zero mass neutrino, then

Qpc = <A(24Na) + mecz) - (A(MMg) - mecz>
or, rearranging,
Qe = (AC"Na) + 2m,¢*) = AC*M)
Qpc = (—8.417 4+ 1.022) — (—=13.933) = +4.494 MeV



8.3 Derivation of the Spectral Shape

B decay is clearly a process that follows first-order kinetics, and the rate of decay
should be described by a single decay constant. Experimentally, § decay has
been observed with a huge range of half-lives, from a few milliseconds (and no
shorter) to ~10¢ years. This large range is reminiscent of the range of half-lives
for o decay, and we should expect that the nuclear structure of the parent,
the ground state, and the available daughter states will play important roles in
determining the half-life. We should also recognize that the calculation of the
rate will require a full quantum mechanical approach because the decay pro-
cess involves the creation of two particles and the kinetic energy spectrum is
continuous for the relativistic electron because Q, ~ m,c>.

Enrico Fermi developed a quantum mechanical theory of  decay building
on the foundation of the theory for the spontaneous emission of photons by
atomic and molecular systems in excited states. At first blush these may seem
unrelated, but in both cases a system in a very well-defined single quantum
mechanical state that has excess energy releases the energy spontaneously by
the creation of a particle (or particles). The decay constant for the emission of
a photon was shown in the appendix to be given by the general expression:

2 *
A= %”/ leinalvplPinitial dT|ZP(Ef) (8.8)

which is also called Fermi’s golden rule. The wave functions, W, represent the
complete initial and final states of the entire system, and V/, is a (very) small per-
turbative interaction that stimulates the transition. The form and the strength
of the perturbation will have to be determined. Fermi assumed that the inter-
action responsible for f decay is different from the gravitational, Coulomb, and
nuclear forces. This interaction between the nucleons, electron, and neutrino
is called the weak interaction, and a new constant expressing its strength, like
e’ /4ne, and G, had to be defined. This constant, g, has the numerical value
of 0.88 x 10~* MeV/fm?, which is ~1072 of the electromagnetic force constant.
The last factor, p(E;), is the density of quantum mechanical states that are avail-
able to the system after the transition and is often written as dn/dE where n is
the number of states per unit energy interval. In this case the final energy is
the decay Q value. The initial wave function contains only the parent nucleus,
whereas the final wave function will have contributions for all of the resultant
particles. Specifically for § decay W,y = $g(*Z), the complete wave function
for the parent in its ground state. The final wave function will have three parts,
P = (I)JTk (“Z)¢p*(e)dp*(v), with a part for the daughter nucleus in the appropri-
ate final state j, a part for the traveling wave of the electron, and a part for the
corresponding traveling wave of the neutrino, all of which must be coupled so
that energy and angular momentum is conserved.



The quantum mechanical problem can be separated into two parts, the deter-
mination of p(E;) and the matrix element | [ & Volinisiad@t]?, to make the
calculation tractable. The determination of the density of final states, dn/dE, is
done using quantum statistical mechanics. It is basically the problem of count-
ing the number of ways the decay energy can be divided between the electron
and the neutrino, neglecting, for the moment, the recoiling daughter nucleus.

Classically, the number of states of a free electron with momentum between p,
V47tp dp,

and p, + dp, in a volume V is . (This is the volume of a spherical shell in
phase space where the volume of a unit cell is #3.) Similarly for the neutrino, the
number of states of the free neutrino with momentum between pvand p, + dp,

in a volume V is M . The total number of states is the product of these two
factors:
1612V 2p2p2dp d,
d]’l= T pepu pe pIJ (8.9)
16
If we assume the neutrino has zero rest mass, then
T, -T
m=J=Q . (8.10)
¢ c
d
dp, = aQ (8.11)
c
substituting back, we get
16n2V?
dn = T (Q—T.) pidp.dQ (8.12)
dn _ 16n*V? )
— = T.) p:d, 8.13
0° we (Q~-T.) pidp. (8.13)

(One must understand this equation expresses the variation of the number of
final states with changes in the Q value of the decay and does not represent
differentiation with respect to a constant Q.) The electron and neutrino wave
functions can be written as radial plane waves

o.(r) = Ak = Le"’%’ (8.14)
\/V

(y(r) = Ber = —L_eihr (8.15)
V

where we have to apply a normalization condition to determine the constants
A and B. We can expand the exponentials around 7 ~ 0 (the nuclear volume) as



e =1+ikr+---~1 (8.16)

1
~0)~ = 8.17
G(r ~ 0) v (8.17)
The probability of emitting an electron with a momentum p, between p, and

dp. becomes

Mpodp, = 5 M '*(Q — TP pdp, (819
where |Mj;| is a nuclear matrix element representing the overlap between the
initial and final nuclear states. This matrix element must be evaluated with the
detailed nuclear wave functions, for example, those available from the shell
model.

Collecting all constants for a given decay, the probability of a decay as a func-
tion of the electron momentum is

Mp,)dp, = (constants)(Q — T,)*p2dp, (8.19)

This form (even though it is mixed with a momentum part and an energy part
for the electron) clearly goes to zero at p, = 0 and also at 7, = Q and has a
maximum in between. The shape of this function is shown in Figure 8.1. This
function is often called the statistical or phase space factor for the decay.

We should be sure to note that we have made a big approximation in ignoring
the charge on the emitted electron. Positively charged p particles (positrons)
will be repelled by the nucleus and shifted to higher energies, while negatively
charged p particles (electrons) will be attracted and slowed down. These effects
were incorporated by Fermi by using Coulomb-distorted wave functions and
are contained in a spectrum distortion expression called the Fermi function,
F(Zy, p.), where Z, is the atomic number of the daughter nucleus. The more
accurate P spectrum thus has the form

Mp,)dp, = (constants)F(Zy, p.)(Q — T.)*pdp, (8.20)

The effects of the Coulomb distortion can be seen in the measured spectra from
the decay of **Cu shown in Figure 8.2. This odd—odd nucleus undergoes both
B~ and B* decay to its even—even neighbors with very similar Q values, thus
providing a relatively clear indication of the distortion. The restriction that the
neutrino rest mass is zero can be removed and provides the slightly more com-
plicated expression (Heyde, 2005):

| M|
2m3h7 3

2,4
m;c

Mp)dp, = e
(p)dp. Q=T

1/2
F(Zyp)(Q~T.) <1 ) Pdp, (8.21)
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8.4 Kurie Plots

We have seen that the § spectrum has an endpoint at the Q value, but the form
of equation for the spectrum does not allow us to easily identify the endpoint
because it slowly drops toward zero. Notice that with a little rearrangement,
this spectrum can be represented as

A 1/2
( %) & (Q— TOIM (8.22)
e d>Fe

If the nuclear matrix element does not depend on the electron kinetic energy,
as we have assumed so far, then a plot of the reduced spectral intensity, the
left-hand side, versus the electron kinetic energy will be a straight line that
intercepts the abscissa at the Q value. Such a graph is called a Kurie plot and
an example is shown in Figure 8.3. This procedure applies to allowed transi-
tions (see following text). There are correction terms that need to be taken into
account for forbidden transitions.
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Figure 8.2 The momentum and kinetic energy (left and right) spectra from the decay of

¥ Cu for f~ and p* decay (top and bottom, respectively). The Q values for these decays are
0.5782 and 0.6529 MeV, respectively.

8.5 p Decay Rate Constant

The differential form of the p decay spectrum can be integrated over all elec-
tron momenta to obtain the total decay constant. The expression, for a constant
nuclear matrix element, to be integrated is

3= EIMil* /pm F(Z,.p)p2(Q - T.)d (8.23)
I3 h7 3 o d>Pe)Pe e) 4P, .

Note that an appropriate relativistic substitution for 7 in terms of the momen-
tum is still needed. This integral has been shown to only depend on the atomic
number of the daughter and the maximum electron momentum. The integral,
called the Fermi integral, f(Z,, Q), as distinct from the Fermi function, F, is
complicated, but numerical expressions or tables of the solutions are available.
Note that the differential Fermi function, F(Z;, p,), contains the momentum,
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a Kurie plot (Camp and
Langer (1963). -
Reproduced with the
permission of American
Physical Society).
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whereas the Fermi integral, f(Z;, Q), contains the Q value. The Fermi inte-
gral is a constant for a given p decay and has been presented in many forms.
For example, curves of the Fermi function are shown in the nomograph in
Figure 8.4.

The decay constant is now reduced to an expression with the nuclear matrix
element, here written simply as M (= |My,|), and the strength parameter, g, writ-
ten as

2302
M
M=o e e Q (8.24)
or in terms of the half-life of the parent, ¢, ,:
3573
Stip=In2 2n e 1 (8.25)

LM EIMP
The left-hand side of this equation is called the comparative half-life, or “
value,” because this value can be readily measured in experiments and should
only depend on the nuclear matrix element and the p decay strength constant.
Recall that § decay half-lives span many orders of magnitude so the f values will
span a similarly large range. It is therefore convenient to use the common log-
arithm of the f value (with ¢, , in seconds) to characterize observed  decays.
Values of log(ft) may be calculated from the nomograph and curves in
Figure 8.4, which are due to Moszkowski (1951). Log(ft) values can be calcu-
lated for -, p*, and EC decay. These ft values roughly fall into groups, which
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Figure 8.4 Nomograph for the rapid determination of log,,(ft) values. This figure provides
information for the rapid calculation of log,,(ft) for a given type of decay, given energy,
branching ratio, and so on. Notation: E, for B+ emission is the maximum kinetic energy of
the particles in MeV; E; for K electron capture is the Q value in MeV. When a * emission and
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Figure 8.4 (Continued) K electron capture go from and to the same level, E; for the K
capture = E, for f* emission plus 1.022 MeV. Z is the atomic number of the parent, t is the
total half-life, and p is the percentage of decay occurring in the mode under consideration.
When no branching occurs, p = 100. To obtain log;,(ft), find log(f,t) using part (a). Read off
log(C) from parts (b), (c), and (d) for =, p*, and K, respectively. Get A log(ft) from part (e) if
p < 100. For p = 100, A log(ft) = 0. Finally, log(ft) = log(f,t) + log(C) + A log(ft).
Moszkowski (1951). Reproduced with the permission of American Physical Society.

can be correlated with the spin and parity change in the decay (see following
text) and can, then, be used to assign spins and parities in nuclei whose
structure is not known. However, there is significant overlap between the ft
groups, and caution must be exercised in using the ft values to characterize
transitions.

Sample Problem 8.2: Log ft Values

Using the graph of the Fermi integral in Figure 8.4, estimate the log(ft)
value for the decay of “p (t,, = 14.28 days).

Solution
This is a neutron-rich nucleus and undergoes p~ decay, thus

Q- =M("P)—M(”S) = AC’P) - A(’S)
Q- = (~24.305) — (26.015) MeV = +1.710 MeV

From the figure with Z =15 Q=1.710MeV, log(ft) = log(fyt) +
log(C) =7.8+0.2 =8.0.

The creation of relative angular momentum in f decay is even more difficult
than that in o decay due to the lighter masses of ejecta and causes more severe



Figure 8.5 Summary of the
experimental values of
log(ft). The shading indicates
the transition type (Singh

et al. (1998). Reproduced
with the permission of
Elsevier.)
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“hindrance” for each unit of relative angular momentum. The difficulty is easy to
see with a simple calculation. We can write the relative angular momentum for
two bodies as the cross product L = r X p where r is the radius of emission and
p is the momentum. Taking a typical nuclear radius of 5 fm and a typical p decay
energy of 1 MeV, we find the maximum of the cross product to be L = 5 fm X
(1.4 MeV /c) = 7.90 MeV-fm/c or L = 0.0357 units. Log(ft) values increase by
an average of 3.5 units for each unit of orbital angular momentum, also called
the “degree of forbiddenness” Each unit of angular momentum, that is, each
degree of forbiddenness, leads to an increase in the lifetime (or a hindrance)
of ~3 x 107, There is a large spread in the values, however, due to the strong
effect of the nuclear overlap on each decay. The overall variation of log(ft) in
B decay is shown in Figure 8.5.

The quantum mechanical selection rules for p decay with no relative angu-
lar momentum in the exit channel (Z = 0) are Al = 0,1 and An = 0. The two



Table 8.1 Representative Allowed 3 Decays.

Parent Daughter Half-Life (s) Q[, (MeV) Log(ft) Character
'n/2t) 'p(1/2t gs) 612 0.7824 —0.27 Mixed

°He (o) SLi (1%, gs) 0.808 3.5097 2.42 Gamow-Teller
"0 (0*) “N(0+,2313) 711 1.180 281 Fermi

"0 (0%) YN (1%, gs) 1.16 x 10* 4.123 7.36 Gamow-Teller

values for the spin change come directly from the two possible couplings of the
spins of the electron and neutrino as discussed previously. Some representative
“allowed” B decays are described in Table 8.1 along with their log(ft) values and
the character of the decay.

The decay of "0 to the 0* excited state of "N can only take place by a Fermi
decay where the created spins couple to zero. This parent nucleus also has a
weak branch to the 1 ground state that takes place by a Gamow-Teller tran-
sition. In contrast, the decay of °He to the ground state of °Li must take place
by a Gamow-Teller transition in order to couple the total resultant angular
momentum to zero.

As mentioned earlier, the decay of the neutron into a proton can take place
with no change in angular momentum between the spin 1/2 particles. (The
angular momentum coupling rules allow both decay modes.) The decay of the
neutron into the proton is an important example of decay between mirror
nuclei. In the B decay of mirror nuclei, the transformed nucleons (neutron
— proton or proton — neutron) must be in the same shell and have very
similar wave functions. This gives rise to a large matrix element |M;;|* and
a very small log(ft) value. For the p decay of mirror nuclei to their partners,
log(ft) values are about 3, which is unusually small. Such transitions are called
“super-allowed” transitions.

When the initial and final states in  decay have opposite parities, decay by an
“allowed” transition cannot occur. However such decays can occur, albeit with
reduced probability compared with the “allowed” transition. Such transitions
are called “forbidden” transitions even though they do occur. The forbidden
transitions can be classified by the spin and parity changes (and the correspond-
ing observed values of log(ft)) as in Table 8.2. Remember that in p decay

Jo=Tp+Ls+5y, (8.26)
Tp = T (= 1) (8.27)

where the subscripts P and D refer to the parent and daughter, L is the orbital
angular momentum carried away by the emitted electron, and S, is the coupled



Table 8.2 Classification of p Decay Transitions.

Transition Type Log(ft) Ly Az Fermi AJ Gamow-Teller AJ
Super-allowed 2.9-3.7 0 No 0 0

Allowed 4.4-6.0 0 No 0 0,1

First forbidden 6-10 1 Yes 0,1 0,1,2

Second forbidden 10-13 2 No 1,2 1,2,3

Third forbidden >15 3 Yes 2,3 2,3,4

spin of the electron—neutrino pair (S, = 0 fora Fermi transitionand Sy, = 1 for
a Gamow-Teller transition).

8.6 Electron Capture Decay

When the decay energy is <1.022 MeV (2m,c?) but larger than 0, the p decay of
a proton-rich nucleus to its daughter must take place by electron capture (EC).
For decay energies >1.022 MeV, EC, and p* decay compete. In EC decay, only
one particle, the neutrino, is emitted from the nucleus with a kinetic energy
(Mp — My)c? — B, where B, is the atomic binding energy of the captured elec-
tron. The decay constant for electron capture can be written, again assuming a
zero neutrino rest mass, as
M PT?
B = om0k (8.28)
where we have assumed that the capture of an atomic 1s (or K) electron will
occur because the electron density at the nucleus is the greatest for the K elec-
trons. The K electron wave function in this expression can be written as

1 [ Zm,e 3/2
Gr(0) = ﬁ <4n€0h2> (8.29)

Thus, on substitution

273\ M. |2 T?
Mg_pc = g—l ul 1 (8.30)
constants

Comparison of the decay constants for EC and * decay leads to the ratio

A Z3T?
K-EC — constants ———%— (8.31)

. 1(Z0 Q)

Thus EC decay is favored for high-Z nuclei. Of course, the decay energy must
be >1.022 MeV for * decay to even occur, a situation found mostly in low-Z




nuclei where the slope of the wall of the valley of B stability is large (see Fig. 2.8)
and decay energies >1.022 MeV are common. Note that electron capture decay
produces a vacancy in the atomic electron configuration and secondary pro-
cesses that lead to filling that vacancy by the emission of X-rays and Auger
electrons occur. These X-rays permit the detection of EC decay to the ground
state of the daughter that would otherwise be difficult to detect.

8.7 Parity Nonconservation

In Chapter 1, we introduced the concept of parity as a measure of the response
of the wave function to an operation in which the signs of the spatial coordinates
were reversed. As we indicated in our discussion of « decay, parity conservation
provides an important selection rule for o decay. Emission of an o particle of
orbital angular momentum # carries a parity change (—1)* so that 1* — 0* or
27 — 0" a decays are forbidden. In general, we find that parity is conserved in
strong and electromagnetic interactions.

In the late 1950s, it was found (Wu et al., 1957) that parity was not conserved
in weak interaction processes such as nuclear § decay. Wu et al. (1957) mea-
sured the spatial distribution of the p~ particles emitted in the decay of a set
of polarized ®Co nuclei (see Fig. 8.6). When the nuclei decay, the intensities
of electrons emitted in two directions, I; and I,, were measured. As shown in
Figure 8.6, application of the parity operator will not change the direction of

V7 §.

P+ P2
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Figure 8.6 Schematic diagram of the Wu et al. (1957) apparatus. A polarized nucleus emits
electrons with momenta p; and p, that are detected with intensities /; and /,. The left figure
shows the “normal” situation, while the right figure shows what would be expected after
applying the parity operator. Parity conservation implies the two situations cannot be
distinguished experimentally (which was not the case) (Frauenfelder and Henley (1991).
Reproduced with the permission of Pearson Prentice-Hall).
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the nuclear spins but will reverse the electron momenta and intensities, I; and
I,. If parity is conserved, we should not be able to tell the difference between
the “normal” and “parity reversed” situations, that is, I; = I,. However, Wu
etal. (1957) found that I; # I,, that is, the B-particles were preferentially emit-
ted along the direction opposite to the spin of the “Co nucleus. (God is “left
handed)

8.8 Neutrinos Again

A number of studies have been undertaken of the interaction of neutrinos with
nuclei, to determine the neutrino mass and to show that neutrinos and antineu-
trinos are produced in p* and B~ decay, respectively. Neutrinos also provide
important information about stellar nuclear reactions because they have a very
low probability for interacting with matter and come directly out from the stel-
lar interior. Starting with the simple equation for the p~ decay of the neutron
and the B* decay of the proton, we can write two closely related reactions that
are induced by neutrinos:

V,+pton+et (8.32)

Vo+n—opt+e (8.33)

These reactions, called inverse  decay, were obtained by adding the antiparti-
cle of the electron in the normal f decay equation to both sides of the reaction.
When we did this we also canceled (or annihilated) the antiparticle/particle
pair. Notice that other neutrino-induced reactions such as v, +n — pt + e~
would not conserve lepton number because an antilepton, v,, is converted into a
lepton, e™. Proving that this reaction does not take place, for example, provides
evidence that there is a difference between neutrinos and antineutrinos. One
difficulty with studying these reactions is that the cross sections are extremely
small, on the order of 10~!° barns, compared with typical nuclear reaction cross
sections, on the order of 1 barn (recall 1 barn = 10~**cm?).

The combination of two studies of inverse B decay clearly showed that
the neutrinos emitted in f~ and p* decay were different. Both used nuclear
reactors to provide strong sources of antineutrinos. Recall that nuclear
fission produces very neutron-rich products that undergo a series of
rapid B decays emitting antineutrinos. In the first experiment, performed
by Reines and Cowan (1953), a large volume of liquid scintillator was
irradiated, and protons in the organic solution were reacted into a neu-
tron and a positron. The positron rapidly annihilated with an electron in
the liquid providing the first signal of an interaction. The neutron was
captured within a few microseconds by Cd nuclei that were added to the



scintillator and provided a second correlated signal. The flux of neutrinos from
the reactor was sufficient to produce a few events per hour in a 1 m® volume of
scintillator.

In the second study, Ray Davis and coworkers irradiated a large volume of
liquid carbon tetrachloride (CCl,) with antineutrinos from a reactor. The puta-
tive reaction, v, + “Cl > 7 Ar + e, could be detected by periodic purging of
the liquid, collection of the noble gas, and then detection of the induced activ-
ity (*" Ar is unstable, of course). The reaction was not observed to occur. Thus,
they concluded that the reactor emits antineutrinos and that lepton number is
conserved in the reactions.

Sample Problem 8.3: Antineutrino Flux

Estimate the flux of antineutrinos from an operating nuclear power reac-
tor. For this estimate assume the power plant produces 1 GW of thermal
power, given that fission produces 200 MeV per event and that there are
~6 rapid B~ decays per fission.

Solution
There is one antineutrino per f~ decay, of course, so this is simply a prob-
lem in dimensional analysis.

Rate = 1 GW(10°J/s)/GW(1 fission/200 MeV)
x (1 MeV/1.602 x 1073J /MeV)(6v, /fission)
Rate = 2 x 107y, /s

8.9 p-Delayed Radioactivities

The central feature of f decay is that, for example, in the p~ direction, the decay
converts a neutron into a proton at a constant mass number. This conversion
will clearly change the number of pairs of like nucleons in the nucleus, and we
have already seen that unpaired nucleons influence the overall stability. p decay
in even mass chains will convert odd—odd nuclei into the even—even isobar with
potentially large Q values due to a gain of twice the pairing energy. The large Q
values lead to high-energy p particles and rapid decays, but the relative stability
of the daughter may be less than that of the parent. The large Q values also allow
the population of higher lying states in the daughter. If the nuclei are far from
the (most) stable isobar, the decay may have sufficient energy to populate states
in the daughter that are above the neutron binding energy.



X5y provides an important example of a change in relative stability follow-
ing B decay. This even—even parent is an important fission product that has a
29-year half-life. It decays to the odd—odd Y, which subsequently decays to
the stable isobar *"Zr with a half-life of only 64 h. Thus, a pure preparation
of *’Sr will come into equilibrium with its daughter after about a week, and
the observed activity will be the sum of the two decays. A chemical separa-
tion can be used to strip out the daughter activity and repurify the preparation.
The daughter will decay away in the separated sample and will grow back into
the parent sample. There are several examples of these parent/daughter pairs
that provide convenient sources of short-lived activities. For example, the 66-h
*Mo decays predominantly to a 6-h excited state in *Tc because the decay to

ground state would require a very large spin change. The daughter PTemisused
extensively in nuclear medicine. Current estimates are that 40 million medical
procedures are carried out with #Tc each year.

The natural decay chains have several examples of short-lived o activities that
are “delayed” by a longer-lived parent. In fact, the existence of these activities
on earth is possible by the fact that the “head” of the chain has a half-life on the
order of the age of the earth. Another more practical example near the end of
the 4n chain is >*Pb with a half-life of 10.6 h that decays to *Bi. The daugh-
ter rapidly decays by a or f emission. The lead nucleus is also preceded by a
short-lived and gaseous Rn parent, which can produce very thin sources of a
particles by emanation of the gas and collection of the nongaseous daughters.

The P decay of nuclei far from the bottom of the valley of f stability can feed
unbound states and lead to direct nucleon emission. This process was first rec-
ognized during the discovery of fission by the fact that virtually all the neutrons
are emitted promptly but on the order of 1% are delayed with respect to the fis-
sion event. These delayed neutrons play a very important role in the control
of nuclear reactors. The fission products are very neutron rich and have large
decay energies. For example, “Bris produced in nuclear fission and decays with
a half-life of 55 s to * Kr with a Q value of 6.5 MeV. The decay populates some

high-lying states in the krypton daughter; notice that *Kr has 51 neutrons,
one more than the magic number 50, and the neutron separation energy of
5.1 MeV is less than the Q value. Thus,  decays that lead to excited states that lie
above the neutron separation energy will be able to rapidly emit a neutron and
form “Kr.

Sample Problem 8.4: § Delayed Neutron Emission

An important delayed neutron emitter in nuclear fission is 71 This
nuclide decays with a half-life of 25 s and emits neutrons with an average
energy of 0.56 MeV and a total probability of ~6%. Estimate the energy
of an excited state in ' Xe that would emit a 0.56 MeV neutron.



Solution

First obtain the Q value for the neutron emission reaction. This is the
minimum amount of energy necessary to “unbind” the 83rd neutron and
should be negative, of course:

137Xe — 1n + 136Xe +Q,
Q, = A(*¥"Xe) — [A('n) + A(**Xe]
Q, = —82.218 — [8.0174 + —86.425] = —3.864 MeV

The average energy of the excited state will be Q, plus the kinetic ener-
gies of the particles, that is, the neutron plus the energy of the recoil. In
this case the recoil energy is very small and could have been ignored. The
recoil energy is obtained by conservation of momentum in the two-body
decay:
L
137
Now as a check, obtain the Q value for the  decay, and verify that it is
more than the excitation energy:

137

E'=-Q+T,+T, ( ) = 3.864 + 0.56 + 0.01 = 4.43 MeV

1> " Xet +e +7,+Q,
Q= ACTD - AV Xe) = ~76.72 — —82.21 = 5.49 MeV

The population of high-lying unbound states by  decay is an important feature
of nuclei near the drip lines. p-delayed proton emission and p-delayed neutron
emission have been studied extensively and provide important insight into the
structure of exotic nuclei.

8.10 Double f Decay

The periodic variation of the mass surface caused by the pairing energy also
causes a large number of even—even nuclei near the bottom of the valley of
stability to be unstable with respect to two successive p decays. This process is
called double B decay, and extensive searches have been carried out for it. The
difficulty is that the probability of a double transition is extremely low. A gross
estimate can be made by squaring the rate constant obtained previously for a
single decay; one finds that the number of decays from even large samples is at
best one per day and at worst a few per year.

Two reactions have been studied as possible candidates for double f decay.
The first reaction is simply two times the normal § decay process where the four
particles are emitted simultaneously:

17 5MNZ-2) +2e + 20, (8.34)



and thus follows the usual conservation laws. A second, more exotic reaction
has been proposed as a test of weak interaction theory and proceeds without
creation of neutrinos:

47 s MNZ=2) +2e” (8.35)

which does not appear to follow the lepton conservation law. The speculation is
that if the neutrino is its own antiparticle then the second, neutrinoless double
B decay would be possible. Instrumental searches for this latter neutrinoless
process have been made, but there is no strong evidence for its existence at
present. The former two neutrino decay has been observed with a variety of
techniques that were carefully tuned to detect the rare products.

As an example of the energetics of the double decay process, the **Kr nucleus
just mentioned previously in delayed neutron emission is stable with respect to
single B~ decay to *Rb having a Q value of —0.526 MeV. However, $°Kr is unsta-

ble with respect to the double p decay to *Srasithasa Q value of +1.249 MeV.
In this case decay to the intermediate state is energetically forbidden, and only
the simultaneous emission of two 3 particles can take place to reach strontium.
To obtain the gross estimate, we can rewrite the aforementioned expression for
the decay constant as

m,c? |M|*mic* ,
() (1, ) o

The first term is the constant 8 X 10%°/s, while the second term reflects the
nuclear structure details of the decay. Using the value of |M| = \/E for the
Fermi decay from the 0% ground state to the 0" ground state of the daughter,
the second term becomes 1.5 X 1072°f. For this Fermi decay case, log(f)~1.5
then taking the first term times the square of the second term with the nuclear
structure factors for double p decay, we get A~1072¢ /s or ~1071?/year! If we had
a mole of this gas with ~10?* atoms, we expect about one double decay every
few minutes in the entire sample.

The techniques used to observe double [} decay fall into three general cate-
gories: geochemical, radiochemical, and instrumental. The geochemical studies
rely on assumptions that are similar to those used in geochemical dating (see
Chapter 3). A sample of an ore containing the parent nuclide is processed; the
daughter atoms are chemically extracted and then assayed, for example, with
a mass spectrometer. The number of daughter atoms is then compared to the
number of parent atoms, and with an estimate of the lifetime of the ore, the
double P decay half-life can be calculated. Difficulties with this technique are
discussed in Chapter 3. The radiochemical searches for double p decay relied



on chemically separating and identifying a radioactive daughter of the process
in a previously purified sample. Such cases are relatively rare, but the decay

238

238

U — ""Puwas observed by chemically separating a uranium ore and observ-

ing the characteristic a decay of the plutonium isotope. The successful instru-
mental searches for double § decay up to this point have used time projection
chambers in which sample of the parent was introduced into the active volume
of the detector. The tracks of the two coincident j particles can be observed
providing a clear signal for the exotic process.

Problems

8.1

8.2

8.3

The B~ decay of ™ Ce is shown schematically in the following:

O+

14400

0.134

< 0.081

0.034

vVvY 0
144Pr

e What log(ft) value should we expect for the p~ decay to the 1~ level of
141
Pr?

e Why is there no f} decay observed to the 2* level?

Sketch quantitatively the shape of the neutrino energy spectrum for the
following types of decay. Label all axes carefully and indicate the types of
neutrinos involved:

o The electron capture decay of 7B, Qpc = 2.40 MeV.

e The p* decay of 22Na, Q[3 = 2.842 MeV.
e The f~ decay of 14Na, Q[3 = 0.156 MeV.

Consider the p decay scheme shown in the accompanying figure for
the decay of a pair of isomers into three excited states A, B, and C of
the daughter nucleus. List the spins and parities of the three levels A,
B, and C:



1/2-
9/2*

p, logft=6

logft=9

8.4 Suppose a state in a bismuth isotope decays by EC to the 27 state of an
even—even Pb nucleus in which the three lowest states have spins/parities
of 0%, 2%, and 4%, with Erc = 1.0 MeV. Assume that Qpc = 4.0 MeV, ¢, , =
4.0 s, and calculate /= for the initial state of the bismuth nucleus.

8.5 The results of some measurements with a f ray spectrometer of the radia-
tion coming from a newly discovered radionuclide are shown in the figure
later. The two sharp peaks were labeled “K” and “L” by the experimenter.
Explain what the labels K and L mean. Which peak is the K peak and why?

Number of electrons

Magnetic field strength

8.6 A 1™ excited state of a lutetium isotope decays to a 0" state of a ytterbium
isotope with a maximum B* energy of 4.6 MeV. Estimate the half-life for
the transition. Do not neglect electron capture.
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9

v-Ray Decay

9.1 Introduction

y-Ray decay occurs when a nucleus in an excited state releases its excess energy
by emission of electromagnetic radiation, that is, a photon. Thus we have

AR S 9.1)

where the symbol * indicates an excited state of the nucleus. Note that there
is no change in Z or A during this type of decay, only the release of energy.
One can also get y-ray emission from a high lying excited state to a lower-lying
excited state of the same nucleus. Thus, y-ray transitions do not have to go to
the ground state of the nucleus. Figure 9.1 depicts a hypothetical situation in
which a series of y rays de-excite the evenly spaced levels of a nucleus with
so-called “crossover transitions” also occurring (e.g., from top to bottom). Also
note that the y-ray energy spectrum shows discrete, sharp lines corresponding
to each transition. The energies of the y rays can vary from a few keV to many
MeV. Any nucleus from deuterium to the heaviest one can emit y rays if suitably
excited.

In some unusual cases a nucleus can have two configurations of nucleons that
have very similar low-lying energy states that have very different total angular
momenta. One of these states will lie lower in energy, but the transition between
the two states will be strongly hindered due to the fact that the photon will
have to balance the large change in angular momentum. This hindered decay
is similar to the hindrance of the decay of triplet states in atomic and molecu-
lar systems to lower-lying singlet states. The long-lived nuclear states are called
isomeric states or isomers, since the only difference between the states is struc-
tural, and their y-ray decay is called an isomeric transition or simply IT decay.
An example of an isomeric state is shown in Figure 9.2 for “Zn. The ground
state of the zinc nucleus is unstable with respect to f decay with a half-life of 56
min. The lowest excited state of this nucleus has an energy of only 439 keV, but
it has a much larger spin and opposite parity compared with the ground state.
The transition from the excited state to the ground state is hindered by the large
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Figure 9.1 Schematic diagram of the y-ray transitions among the evenly spaced levels of a
hypothetical nucleus (left) and the resulting y-ray energy spectrum (right).

Figure 9.2 Decay scheme for the
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change in angular momentum, 47, combined with a change in parity (discussed
in the following text), which leads to an IT half-life of 14 h. The p decay of the
isomeric state is slower than the IT decay in this case.

9.2 Energetics of y-Ray Decay

Imagine a y transition between two nuclear states. Applying the law of conser-
vation of energy, we have

Myc® = Moc* + E, + T, (9.2)



where E,is the photon energy, 7, is the kinetic energy of the recoiling nucleus
after y-ray emission, and M; and M, are the masses of the higher and lower
nuclear states, respectively. Applying the law of conservation of momentum,
we have only two bodies in the final state so that

py+p =0 (9.3)

where p, and p, are the momenta of the photon and recoiling nucleus, respec-
tively. The kinetic energy of the recoil is so small that nonrelativistic mechanics
can be used for it but not for the photon. Hence we have

2
7. =2 (9.4)
2M
where M is the mass of the recoiling nucleus. Since p} = (—p,)* = p}:
2
by
= 9.5
Y, (9.5)
further E, = p>c* so that
EZ
T, =—— (9.6)
2M,c?

For example, if Ey = 2 MeV (arelatively large value for nuclei) and A = 50, then
the recoil energy is about 40 eV, which is larger than typical molecular bond
energies but negligible for nuclei except for Mossbauer studies (discussed later
in this chapter).

Sample Problem 9.1: y-Ray Recoil Energies

Calculate the recoil energy for the IT decay of “7Zn™ to the ground state
of ®Zn and the recoil energy from the emission of a 15.1 MeV photon by
an excited ~C nucleus. Recall that the mass excess of _C is exactly zero
so that the mass of °C is 12 amu.

Solution
Using the energy of the excited state from Figure 9.2, we have

(M — M,) ¢ = E, = 0.439 MeV

Recall that Myc? = amu * 931.5 MeV/amu. Using the mass excess of

68.418 MeV found in the wallet cards for 692n, the mass is 68.927 amu.
(This is obtained by 69 amu + (—68.418 MeV/931.5 MeV/amu) = 69 amu
+0.073 amu = 68.927 amu.)

- E; _ (0.439 MeV)?
"7 2Myc®  2(68.927 X 931.5 MeVc?

=1.5%x107° MeV



The recoil energy from the emission of the 15.1 MeV photon from an
excited '>C nucleus is

- E; __ (151MeVy
T2Myc? 2(12 % 931.5) MeVc?
T.=1.02% 1072 MeV = 10.2 keV

9.3 Classification of Decay Types

The conservation of angular momentum plays a controlling role in the y-ray
decay process and has provided an enormous amount of information on the
structure of nuclei. From a schematic viewpoint, a stationary nucleus in a defi-
nite quantum mechanical state makes a transition to a lower-energy state dur-
ing v decay and emits a single photon. Both the initial and final states of the
nucleus will have definite angular momentum and parity, and so the photon
must connect the two states and conserve both parity and angular momentum.
Photons each carry an exact integer number of angular momentum units (%),
and each has a definite parity. The conservation of angular momentum and par-
ity are different, of course, and conservation of each has a different effect on the
possible properties of the emitted photon.

The angular momenta of the initial and final states of final nucleus can be
labeled as I,/ and I; 71, and the change in the intrinsic nuclear angular momen-
tum, Al is, of course, £ = Al = (I; — I,)h. A photon must carry at least one
unit of angular momentum so that Al = 0 is forbidden for single photon emis-
sion. The emitted photon should have a minimum intrinsic spin of £# units to
connect the two nuclear states. However, the standard coupling rules for angu-
lar momenta allow the photon to carry away up to a maximum of (I; + I,)h
units. Therefore, given known values of the spins of initial and final states of
the nucleus, the angular momentum carried by the photon can take any value
in the range:

;= <€ < U+ 1) (9.7)

The multipolarity of the photon is a label for the amount of angular momen-
tum carried by the photon. The nomenclature is that a photon with # units of
angular momentum is called a 2 -pole photon. (The nomenclature comes from
the classical radiation patterns of electromagnetic radiation and the design of
the antennas used to create those patterns.) For example, a photon with Z = 1
is called a dipole photon, # = 2 a quadrupole photon, and so on as indicated in
Table 9.1. The transition rate, discussed in the following text, depends strongly
on the angular momentum change so that the smallest value of ¢ = |(/; — I,)| 2
is usually observed although conservation of parity plays an important role.



Table 9.1 y-Ray Selection Rules and Multipolarities.

Radiation Type  Name ?=Al Amxn

El Electric dipole 1 (Yes)
M1 Magnetic dipole 1 (No)
E2 Electric quadrupole 2 (No)
M2 Magnetic quadrupole 2 (Yes)
E3 Electric octupole 3 (Yes)
M3 Magnetic octupole 3 (No)
E4 Electric hexadecapole 4 (No)
M4 Magnetic hexadecapole 4 (Yes)

Transitions with the maximum change in the angular momentum of the nuclear
states are called stretched transitions.

To understand the parity of electromagnetic transitions, we need to recall
that each of the initial and final states of the nucleus undergoing the transition
can be viewed as having a definite distribution of matter and charge. When
the excited nucleus makes a transition from the excited state to a lower-energy
state, the distribution of matter and charge will change in some way. For
example, a nucleus that is spinning with a certain value of angular momentum
will slow down as it de-excites and reaches the ground state. Thus, the emission
of the photon can be associated with the change in the overall distribution
of neutrons and protons, but we can identify two different changes that are
analogous to classical antennas. A shift in the distribution of charge (e.g.,
the transition of a proton from one orbital to another) will give rise to an
electric field, but a shift in the distribution of current in the nucleus (e.g., the
shift of the direction of a proton orbital) will give rise to a magnetic field.
The parity of the photon depends on both the angular momentum and the
type (electric or magnetic) of transition indicated in Table 9.1. Notice that
electric and magnetic radiation with a given multipole character has opposite
parities.

With the list of properties of photons, we can generalize the procedure to
identify the probable type of photon for a given transition between nuclear
states. First the parity of the photon will be given by the difference in parities
of the two nuclear states. Then the angular momentum of the photon will be
limited to be in the range of |I; — I;| to I; + I;. The combination of allowed angu-
lar momenta and parity will determine the character of the electromagnetic
radiation. For example, the first excited state in "Li has spin and parity 1/2~
and the ground state is 3/27. Possible electromagnetic transitions between the
two states must have Ar = noand 1 < # < 2. Consulting Table 9.1, we find that
the only candidates are M1(# = 1, Anr = no) and E2 (£ = 2, Ax = no) while the



other potential angular momentum combinations of E1 and M2 are ruled out by
the lack of a parity change. As we will see in the next section, all of the allowed
radiation types will be emitted but at substantially different rates so that the
overall radiation usually has one predominant character.

Sample Problem 9.2: Application of Selection Rules

Use the electromagnetic selection rules to identity the character of all
of the traglsitions that could link the second excited state at 2.080 MeV
(7/2%) in *Na with the ground state (3/2%).

Solution
First, we should note that Ax = no. Then
- Ll <& <L +]
2| < <5

so the allowed transitions are

¢ Am  Type
2 No E2
3 No M3
4 No E4
5 No M5

As a final point on the topic of selection rules, we noted that AZ = 0 is for-
bidden for the emission of a single photon. The electric monopole distribution
(EO) corresponds to the static distribution of charge in the nucleus and is con-
stant. Similarly the MO distribution corresponds to the nonexistent magnetic
monopole moment. Nonetheless there are a few examples of even—even nuclei
that have first excited and ground states that are both 0*. Once populated, these
excited states decay by internal conversion processes in which the atomic elec-
trons, particularly s electrons with significant penetration into the nucleus, are
directly emitted from the atom or by direct pair production if the energy dif-
ference is >1.022 MeV.

Sample Problem 9.3: Wavelength Calculation

Calculate the ratio of the wavelength of the 439 keV IT photon emitted
when the isomeric state of ®Zn™ to the ground state of this nucleus.



Solution

Recall for a photon
E, =hv
wW=c

he  (6.626x 10734 Js) (2.998 x 10° m/s)

E,  (439x10°eV)(1.602x 101 J/eV)

A=282x10""2m

thus
A 2.82x 1072 m
2R 2x1.2%(69)/3x10"1* m
A nucleus is not an effective antenna due to its small size compared to
the wavelength of the radiation. y-Rays are in the long-wavelength limit

and are not very sensitive to the detailed internal structure of the emitting
nucleus.

= 287

9.4 Electromagnetic Transition Rates

Determining the rate at which an excited state will decay by the emission of a
photon is a very general quantum mechanical problem that is not limited to
the world of nuclei. The detailed derivation of the transition rate is beyond the
scope of this text, and we will only sketch out the results. The decay constant
for the emission of a photon by a very well-defined single state that has excess
energy is shown in the Appendix E to be given by the general expression

2 %
A= %”/(bf'ma] Vp®iniciardv]*p(Er) (9.8)

which is also called Fermi’s golden rule. The wave functions, ¢, represent the
complete initial and final states of the entire system, and V} is a (very) small
perturbative interaction between the nuclear and electric fields that stimulates
the transition. The form and the strength of the perturbation will depend on
the multipolarity of the transition. The last factor, p(E;), is the product of the
density of nuclear and electromagnetic states that are available to the system
after the transition. The initial wave function contains only the nuclear excited
state, whereas the final wave function will have parts for the electromagnetic
wave and the daughter nuclear state.



After some extensive calculus and input from the theory of electromag-
netism, we come to an expression for the electromagnetic decay rate, one can
write

(@ +1) Kk¥+!
2+ DI h

ME I, — I, ) = B¢, I, n — I;,m) (9.9)
where k is the photon wave number (k = ’) The symbol !! calls for the double
factorial of its argument, which for the case of # = 2 and (2¢ + 1) = 5 would
be the product of the odd integers: 5!! =5 % 3 % 1 = 15. The reduced transi-
tion probability, B(Z, I, ® — I;, ), is the matrix element for the reduced nuclear
wave functions (i.e., summed over magnetic orientations) using the multipole
operator (either electric or magnetic in character)

B(. L. m ~ I.7) = (1:E[O, 1) (9.10)

2 +1
in which the symbols & in the nuclear wave functions are meant to represent
all the other relevant quantum numbers. (As an aside we should note that the
two “types” of electric and magnetic radiation are only different in terms of
their parity and in the orientation of their plane of polarization.) This expres-
sion is still somewhat complicated and is difficult to evaluate. Victor Weis-
skopf derived a general expression for the reduced transition probability with
the assumption that the transition results from the change of a single parti-
cle/proton inside a nucleus with a uniform density with the familiar radius
function, R = r,A'/3. His expression for electric multipole radiation, called the
Weisskopf single particle limit, is

2
3 2 420/3,2 £ 26
By(E,.¢) = [(f+3)] (r)Y A% /3¢* fm (9.11)

Similarly, the single particle limit for magnetic multipole radiation obtained by
assuming that the change in current is due to a single nucleon is

2
B,(M.?) = % % i 3)] (1) 2AR D32 2 (9.12)
One of the nagging features of these expressions is that the radial integral from
the multipole expansion introduces a factor of r**, and thus the dimensions of
B(E,?) and B, (E,?) depend on 7.

Either of the single particle limits for the reduced electric or magnetic tran-
sition, probability can be substituted into the expression for the transition rate
to obtain numerical estimates of the de-excitation rates under the assumption
that one particle was responsible for the change in electric charge or electric
current associated with the change in nuclear states. The transition rates vary
over an enormous range as shown in Figure 9.3 depending most strongly on
the value of 7. Electric transitions are faster than magnetic transitions by about



14
12 A=220
10 A=130
A=220 - A=50
s =
AllA A=220
6
A=130
=220 4
A=50
2 A=220 A=130 A=220
o =2 A=50
A=130
=220
A=220
A=220 A=130
A=220
A=220 A=130
M ase0
1=4
-16 A=50
-18 A=130
A=50
-20 A=20
2 a0
» 1=5
24 A=130
26 A=50
o8 A=20
0 10.0 0.01 0.1
E, (MeV) E, (MeV)

pf single particle estimates of the transition rates for ¢
ultipoles (b) (Condon and Odishaw (1967). Reproduce
aw-Hill Book Company, Inc.).



two orders of magnitude. Looking back to the discussion of the fact that several
different types of photons can be associated with a given nuclear transition, we
now see that we expect the rates of emission to favor the lowest multipolarity.
This fact can be simply demonstrated by evaluating the expressions for the tran-
sition rate for electric dipole, £ = 1, and electric quadrupole, £ = 2, radiation
with a typical nuclear radius parameter of r, = 1.2 fm. Combining the expres-
sions for the transition rate and the reduced transition probability for an E1
transition, we get

MEODZ sy DIE R 4 [@+D)

Substituting in ¢ = 1,

) 013
[(B!M? 7~ 4 L4
Recall that 7ic = 197 MeV-fm and e? /4me = 1.44 MeV-fm, so that

20+1 2
B 1[ 3 ](ro)”A%’/sez fm* (9.13)

A (ED) =

2
] (ry) 2 A3 m? (9.14)

3
16n [ E,MeV) 1.44 fm 312
A (El) = 15T H 1.2 fm)?A%/3 /5!
B =5 <197.3Me\/fm amn la) (2 TAT/s
(9.15)
Ap(E1) = 1.03 x 10" E3 A*/3 /5! (9.16)

Similar substitution into the expression for A,(E£) with £ =2 for electric
quadrupole radiation will eventually yield

A (E2) = 7.28 x 107 E; A* /5! (9.17)

So we see that the rates depend very strongly on the energy of the photon and
on the size (mass number) of the emitting nucleus. If we consider the specific
hypothetical case of a 1 MeV transition in a medium mass nucleus, A = 100,
the ratio of transition rates is

Ap(ED)  1.03x 10ME3A%3

= =1.41 x 10°E, 2472/ 9.18

hp(E2) ~ 1.03 X 10E342/3 v (9.18)
Ap(ED)

P = 6.54 % 10* (9.19)
hp(E2)

The formulas for the Weisskopf transition rates are summarized in Table 9.2
for the lowest five multipoles of each character. The transition rates always
increase with a high power of the y-ray energy so that low-energy transitions,
say below 100 keV, are much slower than high-energy transitions, say above
1 MeV. The table also shows that in some cases, particularly in heavy nuclei,
an £ + 1 electric transition can compete favorably with an # magnetic transi-
tion. The Weisskopf estimates are usually good to within a factor of 10, which



Table 9.2 Weisskopf Single Particle Transition Rates (EV in MeV).

Multipolarity EY me¢

¢ AMs™") Ms™")

1 1.0 x 10" A>E} 3.1x 10°E}

2 7.4 % 107 A4/31—:§ 2.2 % 107 A2/3E§
3 35x 10" A’E] L1x10' A*E?
4 1.1x 107 A8/3Ej 3.3x107° AE}

5 2.4 x 10712 A1°/3Ey“ 7.4x10713 A8/3l—13

is remarkable given the large number of orders of magnitude that they span,
and provide important references for comparison to the observed transition
rates. Notice that if a transition occurs more rapidly than the single particle
rate, then the transition is more collective, that is, more particles participate
in the change. If the transition is significantly slower than the Weisskopf esti-
mate, then the nuclear matrix element must be smaller than the single particle
limit, that is, the overlap of the initial and final states must be smaller. The ratio
of the observed decay rate to the Weisskopf estimated rate is often quoted in
the literature as the transition rate in Weisskopf units (W.u.).

Sample Problem 9.4: Weisskopf Transition Rate

Use the electromagnetic selection rules to identity the character of the
isomeric transition from the first excited state at 0.439 MeV (9/2%) in

®7n™ with the ground state (1/27). Then calculate the Weisskopf single
particle rates for the allowed transitions.

Solution
First, we should note that Am = yes. Then, recall from the previous
discussion:

| —L| <¢ <L +]
4| < ¢ <5
Thus, only M4 and E5 transitions are allowed. Using the expressions in
Table 9.2,
Ap(M4) =3.3x107° E)A?/s!
Ap(M4) =9.5x 107 /s
and
Ap(ES) = 2.4 x 107 E}T A0/ /5!
AH(E5) = 3.8 1071%/s!



so we expect that the transition will be predominantly M4 in character
due to its higher decay rate. The observed transition occurs almost twice
as fast as the single particle estimate since

Aexo = In(2)/(14h X 3600 s/h) = 1.4 x 107 /s*

expt

indicating that a change in the “current” from more than one particle con-
tributes to the magnetic transition.

It should be noted that E2 transitions are often enhanced by an order of mag-
nitude compared to the single particle estimates. This enhancement of these
specific transitions stems from collective nuclear motion, and the enhance-
ment is particularly strong for nuclei that lie in between major shell closures. An
example of a set of E2 transitions to the ground state of 16oDy and the first three
excited (collective) states are shown in Figure 9.4. The excited nucleus cascades
down from the 6* level in a series of three E2 transitions with no crossover tran-
sitions. The lifetimes of the states, indicated in the figure, were used to calculate
the transition rates in Weisskopf units, also indicated in the figure. Notice that
the rate of emission in this case ranges from 200 to 1100 times the single par-
ticle rate. If we take a closer look at the transition rate for electric quadrupole
transitions, then we would find that the reduced transition probability could be
written in terms of the quadrupole moment, Q,:

BE2,J, > ;) = li&tezaéui,lc 2,01/, K)? (9.20)

in which the last term is a Clebsch—Gordan coefficient, which is a very gen-
eral normalization coefficient for the values of the spins and the spin projec-
tions. In the present case of transitions between the states of a rotational band,
K =0,J; =/,and J; =] — 2, the normalization coefficient only contains values
of J:

30-1)

1., K,2,0|J,K)* = (J,0,2,0|(J — 2),0)* = ————— 9.21

( oK = ,0.2,010 2,00 = - Zo—s - (021)
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so that the reduced transition probability is

N _£2 2 ](]_1)
BE2)i =T =D =3¢ Qo)

Thus, the experimental transition rate provides a measurement of the
quadrupole moment of the nucleus, and we should not be surprised that a
strongly deformed nucleus with a large quadrupole moment will have a larger
E2 transition rate because the whole nucleus can participate in the transition
compared to a single particle.

The single particle estimates of y-ray decay presume a single nucleon inter-
acts with a photon. This means there is an isospin selection rule (AT = 0 or 1)
for y-ray decay between two pure isospin states. Further, E1 y-ray transitions
cannot occur when AT = 0 in a self-conjugate or mirror nucleus (N = Z).

(9.22)

9.5 Internal Conversion

Internal conversion is a competing process to y-ray decay that can occur when
an excited nucleus interacts electromagnetically with an orbital electron and
ejects it. This transfer of the nuclear excitation energy to the electron occurs
radiationlessly without the emission of a photon. The energy of the internal
conversion electron, E ., is given by the expression

E.=E -E

electron binding energy

(9.23)

For example, if a nuclear transition with E,,, o = 0.412 MeV, one would
expect to see a spectrum of emitted internal conversion electrons indicated
in Figure 9.5. Note that the conversion electrons are superimposed on the
continuous spectrum of p particles (also electrons!) and the different lines
corresponding to the ejection of electrons from the K, L, and M shells.
The nucleus will interact more readily with the K electrons than with the L
electrons, than with the M electrons, and so on because the K electrons spend
more time in the nucleus than the L electrons, than the M electrons, and so on.

To characterize this decay process and its competition with y-ray emission,
we define the internal conversion coefficient, ., by the relationship

ransition

Number of internal conversion decays A

o (9.24)

total = Number of y-ray decays A,

where the coefficient, a, can take on values from zero to infinity. Note further
that

M=, +he = A1+ (9.25)

One can define an internal conversion coefficient for electrons only from the
K shell or for electrons only from the M shell, and so on, giving rise to oy, o,



Figure 9.5 The kinetic energy spectrum of internal conversion electrons for a 412-keV
nuclear transition in 198Hg. Superimposed on this spectrum is the accompanying spectrum
of B~ particles from the § decay that feeds the excited state. The peaks labeled K, L, and

M represent conversion of electrons with principal quantum numbers of 1, 2, or 3,
respectively (Marmier and Sheldon (1969). Reproduced with the permission of Elsevier).

o, and so on. Since the total probability of decay must equal the sum of the
probabilities of decay via various paths, we have

Oyl = O + 0 + 0+ -+ (9.26)

The internal conversion coefficient depends primarily on the density of the
atomic electrons at the center of the nucleus, and thus it can be calculated using
principles from atomic physics. Large tables and nomographs of internal con-
version coefficients exist, such as those shown in Figure 9.6.

Rough approximate formulas for the internal conversion coefficients are

wen =2 (F5) (52 o 2m e\
T w3 \L+ 1/ \ dre, he E

3 ) 4 o 2\ L2
oM. L) =% (¢ MeC
n3 \ 4me, he E
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Figure 9.6 Calculated internal conversion coefficients for (a) electric transitions and
(b) magnetic transitions (Preston (1962). Reproduced with the permission of Pearson
Education).

where Z is the atomic number of the atom in which the conversion is taking
place, # is the principal quantum number of the bound electron being ejected,
and e? /4me hc is the fine structure constant and is ~1/137. Note that the inter-
nal conversion coefficient, @, increases approximately as Z3, making internal
conversion most important for heavy nuclei. The last factor in the equations
gives the energy and multipolarity dependence with internal conversion
increasing for low energies and higher transition multipolarities. Notice that
the ratio of oy to oy is ~8 due to the #3 factor.

Sample Problem 9.5: Internal Conversion Coefficients

Use a standard reference such as the Table of Isotopes, 8th Ed., to deter-
mine the internal conversion coefficients for each shell for the transition
from the first excited state at 0.08679 keV (2*) in 160Dy to the ground state
(0%). Then calculate the decay rates for internal conversion and for y-ray
emission.

Solution
First, this transition can be identified as an E2 photon using Appendix F
in the Table of Isotopes, 8th Ed. Interpolation in a graph gives

ag (B2, Z ~ 65, 0.090 MeV) = 1.5
(B2, Z ~ 65, 0.090 MeV) = 0.1



o (B2, Z ~ 65, 0.090 MeV) = 5.
o 5(B2, Z ~ 65, 0.090 MeV) = 2.5

Ooal = O + Oy + 05+ 0y =9.1

A=1n(2)/2.02x 107 s = 3.34 X 10° s = M1 + 000
_ A

! (1 + (xtotal)

Me=A—2%, =3x10°s""

=34x10"s7!

Note that internal conversion occurs ~10 times FASTER than y-ray emis-
sion for this transition in this (heavy) nucleus.

9.6 Angular Correlations

One part of the derivation of the emission rate for y rays that we glossed over is
that the angular distribution of the emitted radiation from a single state must
be isotropic. The isotropy comes from the fact that the nuclei are oriented at
random, and the process sums over all the internal magnetic substates and thus
includes all possible angular distributions. We used this fact in the derivation
by using the “reduced (or double-barred) matrix elements.” Anisotropic angu-
lar distributions can only be observed when a preferred direction or nuclear
orientation is established prior to the emission of the photon. There are several
techniques to establish such preferred orientations that rely on observing an
angular correlation with either an external magnetic field or another particle
or photon emitted in “cascade” from the same nucleus. All of these techniques
rely on unequal populations of the magnetic substates of the observed emitting
nuclear state. Two of these techniques are shown schematically in Figure 9.7.
Another important application of angular correlations is to determine the mul-
tipolarity of the electromagnetic transition. We have seen that the selection
rules often provide a range of possibilities for the spin change and the lifetimes
of the states depend on the nuclear matrix elements as well as the multipo-
larity. To reliably identify the multipolarity, we have to measure the angular
distribution of the radiation; however, as just noted, we need a reference axis.

The conceptually simplest technique to observe an angular correlation is to
measure the angular distribution of radiation from an excited nucleus relative
to an external, applied magnetic field. The magnetic substates of nuclear excited
states that have angular momenta, I, greater than 0 will split in proportion to
the strength of the external magnetic field, B,,,, and the magnetic field pro-
vides the reference axis. This substate splitting provides the basis for NMR and
MRI techniques, of course. The difficulty with this correlation technique is that
the (Zeeman) splitting of the nuclear spin substates, AE, given by the simple
expression

AE, = gIB.1, (9.27)
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Figure 9.7 Schematic examples of two techniques to prepare a nuclear state with unequal
populations of the internal magnetic substates: (a) correlating the sequential emission of
two y rays and (b) correlating the emission of a p-particle with a subsequent y-ray (de Shalit
and Feshbach (1974). Reproduced with the permission of John Wiley & Sons, Inc.).
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is a very small energy. In this expression “g” is the gyromagnetic ratio or g factor
for the state, and p, = e/ 2mp62 is the nuclear magneton. We should note that
this energy splitting is much too small compared with the energy of a nuclear
transition so we could not expect to directly observe different energy transitions
with different angular distributions. Rather we can obtain unequal populations
of the substates through the Boltzmann distribution of thermal energy when
the sample is cooled to a temperature where kT is small compared to the
energy splitting. The typical temperature to maintain nuclear orientation in
an external magnetic field is on the order of 10 mK. Cooling small samples to
such low temperatures is possible, but it requires special techniques such as
*He dilution refrigeration.

Sample Problem 9.6: Boltzmann Distribution and Nuclear
Orientation

Determine the temperature at which kz 7' is equal to the energy level split-
ting for the metastable state of "% Te at 247.6 keV in an external magnetic
field of 4.0 Tesla. This state / = 11/2 decays by (M4) IT to the ground
state 1/2 with a half-life of 119.7 days. The gyromagnetic ratio or g-factor
for this state is 0.1685.

Solution

AEm =gIBextun = kBT

— gIBext '“I'n

T
kg

T = (0.1685)(11/2)(4.0T)(5.05080 x 10727] /T /
1.380066 x 107%] /K
T=14x102K



A much more common technique for observing angular correlations relies
on detecting the direction of radiation from a process that feeds the excited
state and then observing the angular distribution relative to that direction. As
indicated in Figure 9.7, this process could be a y-ray transition from a higher
lying excited state, or it could be a - or a-particle emitted by a parent nucleus
prior to the y-ray transition. The first particle provides the reference axis, but
it must also introduce an unequal population of the magnetic substates of the
intermediate state in order for the second transition to have an anisotropic
angular distribution.

The angular distribution of the intensity of electromagnetic radiation is given
by specific analytic functions written in terms of an angle, W (8, m,), relative to
the quantization axis, Z, and the magnetic quantum number, 1,. The patterns
depend on the order of the multipole (dipole, quadrupole, etc.), but they are the
same for electric and magnetic transitions with the same order. For example, the
angular distributions for dipole radiation are

3 .
Wiaipole (0, m1; = 0) = o sin® 0
3
Wiipole 0; 11y = +1) = ﬁ(l + cos? 0)
3
Wdipole(e’ my = - = ﬁ(l + COS2 0)

A schematic representation of the dipole angular distributions is shown in
Figure 9.8. First we should notice that these functions depend on only one
angle, and thus they are cylindrically symmetric. Therefore, we will not find
any asymmetry in radiation from systems with only two states, that is, / = 1/2,
m; = +£1/2. Notice also that the intensity of m =0 for dipole radiation is
exactly zero along the Z axis because the sine function becomes zero, whereas
the m = %1 distributions have nonzero minima perpendicular to the Z axis.

(a) (b) Figure 9.8 The angular
distribution of dipole
radiation for Am = 0 (left)
and Am = +1 (right)
(Marmier and

Sheldon (1969).
Reproduced with the
permission of Elsevier).
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Figure 9.9 Schematic diagram of how angular correlations occur. The magnetic substates
populated in a y,y, cascade from a state with J; = 0to J; = 1to J, = 0. When v, defines the
Z axis, then the m, = 0 state cannot be fed, and one has only Am, = +1and Am, = 1,
causing v, to have an anisotropic distribution relative to y, (Marmier and Sheldon (1969).
Reproduced with the permission of Elsevier).

Let us consider the specific case of the cascade of two electromagnetic dipoles
from nuclear states with J, =0 to J; = 1 to J, = I, = 0 as a specific example
of the creation of an aligned system by a y-ray cascade, shown in Figures 9.9
and 9.10. The energy level diagram is shown in Figure 9.9. The radiation pattern
of the second photon will have the (1 + cos? 0) form relative to the direction of
the first photon in this case. The fact that the radiation will not be isotropic
can be seen from a classical as well as from a quantum mechanical standpoint.
The simple definition that the Z axis is the direction of this first photon forces
the observed photon to have m; = +1 because Wy ,,.(0,7;, =0)=0at 6 =0
and such a photon will not be observed along the Z axis. The first dipole tran-
sition from J, = 0 to J; = 1 will carry away one unit of angular momentum,
and the angular momentum of the residual nucleus must be oriented in such
a way as to be equal and opposite to that of the photon. Then to conserve
angular momentum in the second transition, the next photon must also have
m; = ¥1 and will follow the (1 + cos? 0) distribution relative to the first photon
emitted along the Z axis. From a quantum mechanical standpoint, the argu-
ment depends simply on spin algebra. The only allowed magnetic substates
for the initial and final states are m, = m, = 0 (because J, = J, = 0). The only
allowed value for the multipolarity of both photons, #; = ¢,, is one by the rela-
tion |0 — 1| < Z < (0 + 1). The coupling of the angular momentum of the pho-
ton with that of the initial state to create the intermediate state requires that



Figure 9.10 Schematic diagram of how angular correlations occur. The anisotropic
distribution of y, relative to v, in the cascade shown in Figure 9.9 (Marmier and
Sheldon (1969). Reproduced with the permission of Elsevier).

only allowed magnetic substate of J; = 1 be m; = +1. Thus, both photons must
have m = +1 and follow the (1 + cos? 0) distribution.

The angular distributions for y-ray cascades have been worked out, but each
case requires substantial and sophisticated algebra that will not be presented
here. The general result is that the angular distributions can be written in terms
of a sum of Legendre polynomials that depends on the multipolarities of the
photons, 7}, 7,, and the spin of the intervening state. It is common to analyze
the observed angular correlations in terms of a power series of cos that is
normalized with W(0 = 90°) = 1 so that

W) = (1 +a,cos® 0+ a, cos* O+ agcos® O+ +ay cos? 0)
(9.28)

where the coefficients, a,, a,, and so on are fitted to the data and can be com-
pared to predicted values for assumed values of J, J;, /5, and ¢, and ¢,. The
number of radiation patterns or angular distributions may seem extensive with
these five variables, but there are certain rules that simplify the situation. The
highest even power of the cosine function, 2L, is determined by the smallest
value of 2/;, 27,, and 27, and is one unit less than the smallest value if the
smallest of these three numbers is an odd number. For example, when J; =0
or 1/2 then 2L = 0 and W(B) = 1 (a,, etc. = 0); when J; = 1 then 2L = 2 and
(1 + a, cos? 0). The theoretical coefficients for a few types of pure dipole and
pure quadrupole transitions are given in Table 9.3.



Table 9.3 Angular Correlation Coefficients
for Some y-y Cascades with Pure
Multipolarities.

Jo(&)i ,(2,)i J, a, a,
0(1); 1(1); 0 1 0
1(1); 1(1); 0 -1/3 0
1(2); 1(1); 0 -1/3 0
2(1); 1(1); 0 1/13 0
3(2); 1(1); 0 —-3/29 0
0(2); 2(2); 0 -3 4
1(2); 2(2); 0 -1/3 0
2(2);2(2); 0 3/7 0
3(2); 2(2); 0 -15/13 16/13
4(2); 2(2); 0 1/8 1/24

Source: From (Evans (1955).

The third technique for establishing a reference axis for angular correlations
can be applied to nuclear reactions when the direction of a particle involved
in the reaction is detected. This direction provides a reference axis that can be
related to the angular momentum axis, but each nuclear reaction has its own
peculiarities and constraints on the angular momentum vector. For example,
the direction of an o particle from a decay process that feeds an excited state
can be detected as indicated in Figure 9.7, but, as is discussed in Chapter 7,
the energetics of a decay are such that decay to excited states or decays with
large orbital angular momenta are hindered and not very common. On the
other hand, nuclear reactions can produce nuclei with large amounts of angu-
lar momenta with characteristic distributions. The motion of the center of mass
provides a good reference that coincides with the direction of the initial beam
for the usual case of a target at rest in the lab system. The angular momen-
tum vector must lie in the plane perpendicular to the beam direction in com-
pound nuclear reactions. The angular momentum vector is further confined in
two-body scattering reactions to be normal to the plane containing the beam
(or center or mass vector) and the two particles. The effects of angular momen-
tum on nuclear reactions are discussed further in Chapter 10.

At this point we have established techniques to identify the multipolarity of
a transition through its angular distribution. We still have the ambiguity of
the parity of the electromagnetic wave, that is, whether it was produced by
an electric or a magnetic transition in the nucleus. The parity of the radiation
corresponds to the plane of polarization of the electromagnetic radiation. The
polarization of the wave can be determined from knowledge of the direction



of the plane of the electric vector of the photons relative to the plane con-
taining two coincident photons. The direction of the electron emitted in the
Compton scattering process is sensitive to the direction of the electric vector of
the incoming photon and has been used to determine the parity of electromag-
netic transitions. Alternatively the number and type of conversion electrons
emitted in the decay is also sensitive to the electric or magnetic nature of the
radiation. Measurements of the conversion coefficients are also used to estab-
lish the character of the radiation.

9.7 Mossbauer Effect

We could imagine that the inverse of y-ray emission from an excited nuclear
state to the ground state might be possible if a nucleus in its ground state
was bathed in sufficient photons that exactly correspond to the transition. A
large difficulty with causing this absorption to take place is the relatively large
amount of energy associated with individual nuclear transitions (MeV) com-
pared with the amount of available (terrestrial) thermal energies (10~° MeV).
This inverse process can occur in two situations: (a) in nuclear reactions called
Coulomb excitation that take place when heavy ions pass very near to large
target nuclei (cf. Chapter 10) and (b) when there is a resonant absorption of a
y-ray emitted by nuclear de-excitation in another identical nucleus. The latter
process is called the Méssbauer Effect, and the process requires some special
conditions in order to take place. The energies of the nuclear states are very
precise so that the resonant absorption or energy matching is very sensitive to
the chemical environment of the nucleus. As we will see there are relatively
few nuclei that are suitable for Mossbauer studies due to the requirements of a
half-life that allows a high specific activity with a reasonable useful period and
a single y-ray transition, and the absorbing nucleus must be a stable isotope

. . . . 57
of an important/practical chemical element. The important examples are " Fe,

191hr, and 198Hg.

The first nucleus in which the resonant absorption of photons was observed
191 . .
was ~ Ir. The excited states of this nucleus are fed by the electron capture decay

of "”'Pt, one of which decays by a 129.43 keV M1 transition to the ground state.
Now we can ask what will happen if we shine y rays from a radioactive source of
Pt onto a set of stable ' Ir nuclei? We could use an iridium foil because irid-
ium only has two stable isotopes 191 (37.3%) and 193 (72.7%). Without careful
preparation, the answer is that very few photons will be absorbed by the Py
nuclei! The difficulty comes from the fact that in order to be absorbed, the y ray
will have to exactly match the energy of the transition. Remember that quantum
mechanics dictates that the absorption of the y ray will move the nucleus from
its ground state to a single and specific excited state that has an exact energy.
A single nucleus cannot absorb a random amount of energy. Several impor-
tant effects shift the energy of the emitted photon, but first we could ask how



accurately do we have to match the energy of the state in order to be absorbed?
This corresponds to the natural width of the state.

The measured half-life of the state is 89.4 ps, which corresponds to an energy
width, I', or AE, due to the Heisenberg uncertainty principle of

h In(2)  4.6x107'°(eVs)

== =nh=hx (9:29)
T

L Ly (5)

where 7 is the mean life or the reciprocal of the decay constant A = In(2)/¢ ,.
In this case the energy width of the excited state is only the tiny amount of
5.1 x 107 eV, a factor of 2 X 1071 less than the energy of the state. Such nar-
row widths are a general property of nuclear excited states that decay by y-ray
emission. Thus, the energy matching of the nuclear state and photon energy has
to be incredibly exact for significant absorption to take place.

The linewidth of an observed transition is broadened by the random thermal
motion of the nuclei that emit the photon. That is, the energies of photons emit-
ted along the direction of thermal motion of the atom will be slightly higher
than the average and vice versa for those emitted opposite. The value of the
energy of a photon emitted by a moving source is shifted according to the
expression:

E, = E 1+, (9.30)

where E , is the energy of the transition and B, = v, /c is the familiar ratio of
the velocity along the photon direction to the speed of light. As an upper limit,
we could use the kinetic theory of gases and the Maxwell-Boltzmann velocity
distribution to estimate the width of the velocity distribution for gaseous iron
nuclei. (The motion of atoms in liquids and the vibrations of atoms in solids are
smaller but not zero.) The Boltzmann (thermal) probability distribution for the
kinetic energy of an atom, P(KE), is always a decreasing exponential function,
P(KE) « e™’/?%T and it applies to the total kinetic energy and to the kinetic
energy along one coordinate of a normal gas in a closed container. Solving the
Doppler expression for v, in terms of E}

El
vx:c[1¢<—y>] (9.31)
E,

and substituting that expression into the Boltzmann probability, we get
P(E)) « ¢ " IWFE/EQT /2T (9.32)
Y .

Selecting one sign for the direction, multiplying through, and collecting
constants, we find

P(E)) o 7 B /CEk D (9.33)



This expression shows that the distribution of emitted y-ray energies follows a
Gaussian distribution with a variance something like

E2ky T

o’ ~
mc?

(9.34)

In the present example of !Ir excitation at room temperature, kg 7' = 0.025 eV,
E,, = 0.1294 MeV, and mc* = 191 * 931.5 MeV which, when combined, give
6 ~ 7 x 1072 eV, which, although small and an upper limit for gaseous atoms,
is still six orders of magnitude larger than the natural linewidth of the state.
Therefore, it is not very easy to be able to actually observe the natural linewidth
of a y-ray emitting state. However, this broadening works in favor of the absorp-
tion of a photon because it allows the thermal motion to help match the energy
of the whole system, nucleus in the atom, to the photon energy.

In addition, as we have already discussed, the emission of a photon induces
a recoil by the nucleus in order to conserve momentum. The energy of the
photon is less than the energy of the nuclear transition by the amount T, =
Ey?/(2mc?). Notice that to conserve energy and momentum in the reverse pro-
cess of y-ray absorption, a nucleus initially at rest will recoil with the same value
of the recoil energy after absorbing a photon. In the present example of n,
the recoil energy is T, = 4.7 X 1072 eV and is a similar magnitude to the thermal
Doppler shift for a gas. We probably can expect the radioactive platinum atoms
to be in a metal lattice so their motion would correspond to lattice vibrational
motion and be somewhat less than that in a gas. The relative energy distribu-
tions expected for the emitted and absorbed photons are shown schematically
in Figure 9.11 using the estimate of the thermal widths. Notice that the recoil
energy moves the peaks apart and the thermal width provides only a partial
overlap. It is these photons in the overlap region that have the proper energy to
be absorbed; they must encounter a nucleus, of course, in order to actually be
absorbed.

We might imagine that we could prepare a system that physically moves
the source of the radiation toward the absorbing nuclei with sufficient speed
that the Doppler shift compensates for the energy difference. Restricting the
motion to the approaching direction, we can rearrange the previous expression
to obtain the velocity in terms of the Doppler shift:

! U.X
AE = (E, —Eq) =E, (7) (9.35)

The necessary velocity that would create a Doppler shift corresponding to twice
the recoil energy is

AE=2T = 20 _p (U)
Y7 R LA
Ux_EYO

(9.36)

c mc?
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Figure 9.11 A schematic indication of the position and widths of the emitted and absorbed
radiation corresponding to the 412 keV transition in 198Hg (Krane (1988). Reproduced with
the permission of John Wiley & Sons).

For the example of 198I—[g, in Figure 9.11, , = 2.2 X 107° or v, = 670 m/s and
corresponds to a kinetic energy of 0.92 eV. The magnitude of this difference is
visible in Figure 9.11 as the separation between the two peaks and is about twice
the thermal width. Such a high velocity is difficult to attain with any macro-
scopic, that is, physical radioactive source.

The Méossbauer effect relies on a very different technique for overcoming
the energy mismatch of twice the recoil energy between nuclear emission and
nuclear absorption. Notice that the recoil energies that we have calculated are
small fractions of an electron volt per atom. You might recall that chemical
bonds have energies on the order of a few electron volts per bond and may be
stronger in some sense than the recoil effect from y-ray emission in some cases.
Méssbauer showed that the resonant emission/absorption of photons could
be strongly enhanced by binding both the emitting atoms and the absorbing
atoms into crystal lattices. In practice the emitter is produced by a p decay
of a parent nuclide, that is, a different chemical element from the absorber;
thus, two separate crystals are used. Due to the chemical bonds or the lattice
energy of the crystal, the atom that absorbs the photon is held in place and the
entire macroscopic, lattice “recoils” to conserve momentum. The mass of the
entire lattice should be used to calculate the recoil velocity, but this mass is
on the order of Avogadro’s number larger than that of an atom so that there is
effectively no recoil. One analogy is to compare the difference that you would
feel if you hit a single stone with a bat compared with that you would feel if
you hit the same stone if it were part of a cement wall in a concrete building.



The actual difference in the atomic case is orders of magnitude larger. Thus,
with the atoms bound into the crystal lattice, the Doppler motion is limited to
the vibrational motion of the atoms, and the linewidth shrinks essentially to
the natural width of the state. In this case the energy of the emitted photon
and the energy absorbed in the nuclear excitation overlap. The Mdssbauer
experiment is then to remove the overlap between the photon energies by
moving one crystal lattice with respect to the other. The relative velocity is
on the order of cm/s, which is, of course, much smaller than that necessary
to compensate for the nuclear recoil. The resonance is then seen as a prefer-
ential absorption as a function of relative velocity between the emitter and
absorber.

Notice that the Mossbauer effect is very sensitive to the energy of the nuclear
state; changes on the order of 107° eV are readily detected. This is the level at
which atomic orbitals can shift nuclear states through the penetration of elec-
tron density into the nucleus. As a first approximation we could imagine that
the interaction of the electron wave function with the nucleus will depend on
the size, that is, radius, of the nuclear wave function. The nuclear wave function
for the excited state will be (slightly) different, and thus the penetration of the
electrons into the excited nucleus will be slightly different. Thus, the transition
energy will be different, albeit by a very small amount, from the pure nuclear
transition that would occur in a bare nucleus (no electrons). When the chem-
ical state or environment of both the absorber and the emitter are the same,
the transition will occur at a definite but different energy, but one could not
perform the measurement of the pure nuclear transition (without electrons).
Finally, when the chemical environment of the emitter and absorber is differ-
ent, then the transition will occur at a new energy. The shift of the energy of
the resonance between the identical environments and different environments
is called the chemical shift in analogy to NMR work. In practice, the chemical
shift in the Mdssbauer resonance lines provides a probe for the overall chemical
environment of the absorbing nuclei.

The most extensively used nuclide for Mossbauer studies at present is *Fe
due to the very low energy of the nuclear transition. Let us consider the
low-lying excited states of *"Fe shown in Figure 9.12. The first excited state in
*"Fe lies at only 14.4125 keV, and it decays to the ground state with a half-life of

98 ns. As shown in Figure 9.12, the P decay of the parent nucleus, *'Co, feeds
this excited state of the daughter nucleus so that we can imagine producing a
strong source of the low-energy y rays. As shown in the example calculation in
the following text, the energy of this transition is so low that the recoil energy
is also quite low and comparable with the thermal energy. Thus, studies can be
performed with the source bound in a crystal lattice, but the absorber can be
in solution.



Figure 9.12 Energy level diagram of two 57Co(271 day) decay scheme

members of the A = 57 mass chain. > Co 271 day
decays to excited states of *"Fe, which 7/2- 0
result in the M1 transition from the 3/2~ 57
state at 14.41 keV to the 1/2~ ground Q=836.1 27 Co
state. (See insert for color representation of
the figure.
gure) 5/2~ 7067641 _0.174%
I | I
&
[SE32) I8
a2- | o 5 ¥ ‘1? «V__366.89
52- | © ¥ | I~ 13647, 998%
S 9 @
=~ 8 o
3/2- § [ 14.41
1/2- | * j
Stable 26 Fe

Sample Problem 9.7: Mossbauer Linewidth and Velocity

Calculate the natural linewidth of the state at 14.4 keV in * Fe given that
£/, = 98 ns. Then calculate the velocity of the source lattice that would
correspond to twice the natural width and would lie outside the Mdss-
bauer resonance effect.

Solution
AE=T=h/t=h <1“(2)>
1/2
-15
AE=T = 4.135%X 107 eVs In(2)
2n 98 x 109 s

AE=T=465x10"°eV

The velocity that would correspond to twice this energy can be found
from the nonrelativistic expression for the kinetic energy:

KE = %mvﬁ =2

\/ \/ 4%4.65% 109 eV
mc? 57 X 931.5 x 106 eV

=592x10"" = v, =0.178 m/s

o & e |>ec



Problems

9.1

9.2

9.3

9.4

Pt has a ground-state spin and parity of 1/27, with excited states at
0.029 MeV (3/27) and 0.130 MeV (5/27). Would you expect the 5/2 level
decay primarily to the 3/2 level or to the 1/2™ level? Why? What is the
transition multipolarity?

The 1/2~ isomeric state of *Nb decays to the 9/2% ground state by
means of an M4 transition. The half-life of the isomeric state is 90 h,
while the half-life of the ground state is 35 days (., = 4.5). Calculate
the partial half-life for the y-ray decay of the isomeric state.

Consider the following decay scheme for ®Com shown schematically in
the following:

60Co™ t;/,=10.5 m

2+ Y IC
/ 0.059 MeV
ﬁ,
(0.028%)
5+
5 0.0 MeV
A =

ayloy foyg = 14/3/1

o Classify the most likely multipolarity for the y-ray decay of “com,

o Calculate the partial decay constants for 7, internal conversion, and
y-ray decay.

e What is the width of *’Co in eV?

*’Mn has an excited state at 0.377 MeV above the ground state. This
excited state decays to the ground state with ¢; , = 21.1 min. The /= val-
ues of initial excited state and the ground state are 2* and 6%, respec-
tively. (a) What is the lowest multipole order that can contribute to the
transition? Calculate the decay constant and compare it to the exper-
imental value. (b) Suppose we wanted to check whether, in the initial
state, there was any mixture of other angular momenta than 2. Set a
rough upper limit to the amplitude of a ] = 1 component of the initial



9.5

9.6

9.7

9.8

state, using as data only the measured half-life and transition energy.
Assume parity conservation.

Consider '°B. The ground state has Jr = 3%, and the excited states, in
order of increasing excitation energy, are 17,07, 1%,2%,3+,27,2% ... (a)
Explain why "B is stable even though it is an odd—odd nucleus. (b)
The first excited state is at 0.72 MeV, and the second excited state is at
1.74 MeV. What are the energies, multipolarities, and relative intensities
of the y rays that are emitted in the de-excitation of the second excited
state?

A 64 disomer of an even Z, odd A nucleus with A ~ 90 occurs at 105 keV
above the ground state. The isomeric state decays 10% by EC and 90%
by IT. If the internal conversion coefficient a,,,,, = 50, what is the y-ray
lifetime and the most likely multipolarity of the isomeric transition? If
this is a magnetic transition and the isomeric state has /Jr = 1/27, what
is the Jx of the ground state?

*'V has a ground-state spin and parity of 7/2~ with excited states at
0.3198 MeV (5/27) and at 0.930 MeV (3/27). What is the energy and
multipolarity of the principal y-ray that de-excites each excited state?

The ground state of *'Ni has Jx = 3/2". *Co (t;/, = 1.65 h) decays by
B~ emission with E_,, = 1.24 MeV to a 0.067 MeV excited state of *INi.
The 0.067 MeV transition has a = 0.10, a /o = 8. The branching ratio
for the transition from *'Co to the *'Ni ground state is 107%. What is
Jx for the ground state of ®'Co and the first excited state (0.067 MeV)
of *'Ni?
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10

Nuclear Reactions

10.1 Introduction

The study of nuclear reactions is important for a number of reasons. Progress in
the understanding of nuclear reactions has occurred at a faster pace, and gen-
erally a higher level of sophistication has been achieved, compared with similar
studies of chemical reactions. Individual nuclear reactions can be observed in
the laboratory and the energy balance, and the effects of conservation laws can
be clearly visible. The approaches used to understand nuclear reactions are of
value to any chemist who wishes a deeper insight into chemical reactions. There
are certain nuclear reactions that play a preeminent role in the affairs of man
and our understanding of the natural world in which we live. For example, life
on earth would not be possible without the energy provided to us by the sun.
The sun’s energy is released in the nuclear reactions that build up helium from
hydrogen. Other astrophysical systems and explosions build up the heavier ele-
ments. For better or worse, the nuclear reactions, fission and fusion, are the
basis for nuclear weapons, which have shaped much of the geopolitical dialog
for the last 75 years. Apart from the intrinsically interesting nature of these
dynamic processes, their practical importance would be enough to justify their
study. In this chapter we will focus on nuclear reactions that occur between
a projectile and a target; in the following chapter, we will focus on the fission
process.

For an efficient and effective discussion of nuclear reactions, we must under-
stand the notation or jargon that is widely used to describe them. Let us begin
by considering one of the first nuclear reactions to be studied:

‘He+ "N - "0+'H+0Q (10.1)

Here, an a particle reacts with a nitrogen nucleus-producing oxygen, a proton,
and some energy, Q. Most nuclear reactions are studied by inducing a collision
between two nuclei where the heavier reacting nucleus is at rest (the target
nucleus) while the other nucleus (the projectile nucleus) is in motion, and this
is called “normal kinematics” Exceptions to this normal situation occur both



in nature and in the laboratory where both the colliding nuclei are in motion
relative to one another before the collision, but let us stick to the scenario of a
moving projectile and a stationary target nucleus for the present. Such nuclear
reactions might be described generically as

Projectile P 4+ Target T — Emitted particle(s) X + Residual nucleus R + Energy
(10.2)

- . . .14

For example, the reaction introduced earlier might occur by bombarding = N

gas with a particles to generate an emitted particle, a proton, and a residual
14 L

nucleus  O. A shorthand way to denote such reactions is, for the general case

T(P,x)R (10.3)
or for the specific example discussed earlier:
“N(*He, '"H)'’0 (10.4)

In a nuclear reaction moderated by the strong force in contrast to the weak
force, there is conservation of the number of protons and neutrons (and thus
the number of nucleons). Thus the total number of neutrons (protons) on the
left and right sides of the equations must be equal. There is also conservation
of energy, momentum, angular momentum, and parity, which will be discussed
later.

Sample Problem 10.1: Balancing Nuclear Reactions

Consider the reaction 59Co(p, n). What is the product of this reaction?

1 59 1 Y
IHO + 27C032 - Onl + ZZN

Solution

On the left side of the equation, we have 27 + 1 protons. On the right
side we have 0 + Z protons where Z is atomic number of the product.
Obviously Z = 28 or the element Ni. On the left hand side, we have 59 +
1 nucleons, and on the right side, we must have 1 + Y nucleons so that
Y = 59. Thus, the product of this nuclear reaction is 59Ni.

10.2 Energetics of Nuclear Reactions

Consider the T(P,x)R reaction with only two products. Neglecting electron
binding energies, we have, for the energy balance in the reaction,

mpc® + Tp + myc® = mpc® + Ty + mc* + T, (10.5)



where T; is the kinetic energy of the i-th particle and m; represents the mass
energy of the i-th species. Note that since R and x may be complex nuclei, they
could be formed in excited states so that the values of m may be different than
the ground state masses. The Q value of the reaction is defined as the difference
in mass energies of the product and reactants, that s,

Q= [mp+my—m—my| =T+ Ty —Tp (10.6)

Note that if Q is positive, the reaction is exoergic, while if Q is negative, the
reaction is endoergic. Thus the sign convention for Q is exactly the opposite
of the familiar AH used in chemical reactions. Note that a necessary but not
sufficient condition for the occurrence of a nuclear reaction is that

Q+T,>0 (10.7)

Qis an important quantity for nuclear reactions. If the masses of both the prod-
ucts and reactants are known (see, e.g., the Appendices), the Q value can be
calculated using the mass excess as

Q = A(Projectile) + A(Target) — £ A(Products) (10.8)

The Q value can be measured by measuring the masses or kinetic energies of
the reactants and products in a nuclear reaction. However, we can show, using
conservation of momentum, that only T, and the angle 6 of x with respect to the
direction of motion of P suffice to determine Q if there are only two products
in a so-called two-body reaction.

In the laboratory system, a typical two-body nuclear collision can be depicted
as shown in Figure 10.1. Note that all of the reactants and products from this
type of reaction lie in one plane. Conserving momentum in the horizontal
direction parallel to vp, we can write

mpUp = M, U, c0s 0 + mpuy cos P (10.9)

Figure 10.1 Schematic
diagram of the kinematics in
a two-body nuclear
reaction.




Applying conservation of momentum in the vertical direction (perpendicular
to vp), we have

0 =-m,v, sin® + myug sin P (10.10)

where m; and v, are the mass and velocity of the i-th species. If we remember
that the momentum p = mv = 2m;E;)!/?, we can substitute in the earlier
equation and get

(mpTp)/* — (m T )? cos® = (my T)"? cos b

(m T)Y?sin0 = (my Tg)"* sin ¢ (10.11)
Squaring and adding the equations, we have

mpTp — 2mpTpm, T, )? cos O + m, T, = myp T (10.12)

Previously we had said that Q = T, — T, — Ty. Plugging in this definition of Q
and the value of T we have just calculated, we get what is called the Q-value
equation

Q=T, <1 - ﬁ) - Tp <1 - @> -2 (I’}’IPTPWIXTX)I/ZCOSG

mg mg mg
(10.13)

What does the Q-value equation say? It says that if we measure the kinetic
energy of the emitted particle x and the angle at which it is emitted in a
two-body reaction and we know the identities of the reactants and products
of the reactions, then we can determine the Q value of the reaction. In short,
we can measure the energy release for any two-body reaction by measuring
the properties of one of the products. If we calculate the Q value of a reaction
using a mass table, then we can turn this equation around to calculate the
energy of the emitted particle using the equation

T2 _
(mpm, Tp)/? cos 0 + {mpmxTP cos? 19+(mR+mx)[mRQ+(mR—mP)TP]}1/2

I’I’IR-I-Wlx
(10.14)

For additional insight, let us now consider the same reaction as described
in the center of mass (CM) coordinate system. In the CM system the total
momentum of the particles is zero, before and after the collision. The
reaction as viewed in both the laboratory and CM system is shown in
Figure 10.2.

The kinetic energy of the cm is Tey = (mp + mp)vl,, /2 where vy =
vpmp [/(mp + my) is the speed of the cm. Then substituting in the earlier
equation, we find that
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Figure 10.2 Schematic diagram of the kinematics in a two-body nuclear reaction as seen in
the laboratory and center of mass systems.

1 Upi
Ty = 5(mP+MT) [ PP

m
7"] (10.15)
WIP + WIT

mp
= Tlab
mp + mr

where T}, is the kinetic energy in the lab system before the reaction, that is,

Tp = %mpvf, (10.16)

L 2
———| =Zmplp
mp + My 2

The kinetic energy carried in by the projectile, T},,, is not fully available to be
dissipated in the reaction. Instead, an amount, T, must be carried away by
the motion of the CM. Thus, the available energy to be used (dissipated) in the
collision is only T,y — Ty = T = [my/(myp + mp)1T,,,. The energy available
for the nuclear reaction is Q + T;,. To make an endothermic reaction go, the sum
Q + T, must be >0. Rearranging a few terms in the equation, the condition for
having the reaction occur is that

mp + Mt

Ty > —Q (10.17)

my
This minimum kinetic energy that the projectile must have to make the reaction
go forward is called the threshold energy for the reaction.



Sample Problem 10.2: Threshold Energy
What is the threshold energy for the “N(a, p) reaction?

4 14 1 17
He, + N7—> P, + 09+Q
Solution

Q=(my+myy_y—(m, + ml7_o))c2
Q=40,+Ay N~ (Ap +A17_0)
Q=12.425+2.863 —7.289 — (—0.809) MeV = —1.19 MeV

T, = —(~1.19 MeV) x £0026 £ 140031 _ , o5 jey
14.0031

10.3 Reaction Types and Mechanisms

Nuclear reactions, like chemical reactions, can occur via different reaction
mechanisms. Weisskopf has presented a simple conceptual model (Fig. 10.3)
for illustrating the relationships between the various nuclear reaction
mechanisms.

Consider a general nuclear reaction of the type A (a, b) B where the projectile
is limited to a nucleon (p or n), and also bear in mind that for some cases,
the product nuclei b and B could be identical to a and A. As the projectile
nucleon a moves near the target nucleus A, it will have a certain probability
of interacting via the nuclear force field of A, causing it to change direction
but not to lose any energy: Q = 0. This reaction mechanism is labeled shape
elastic scattering in Figure 10.3. If shape elastic scattering does not occur, then
the projectile nucleon may interact further with A via a two-body collision
between the projectile and some nucleon inside A, raising the nucleon in
A to an unfilled level: Q < 0. If the struck nucleon leaves the nucleus and
the projectile is captured, a direct reaction is said to have occurred. If the
struck nucleon does not leave the nucleus but the projectile does, then
compound elastic and inelastic scattering occurred, the name depending
on the Q value. Further two-body collisions may occur, and eventually the
entire kinetic energy of the projectile nucleus may be distributed among the a
+ A nucleons, leading to the formation of a compound nucleus (CN) with an
excitation energy given by the combination of the Q value and kinetic energy of
the projectile above the threshold energy (discussed earlier). The complicated
set of interactions leading to the formation of the CN that occur inside the
CN cannot be followed in detail, and, loosely speaking, the CN “forgets” its
mode of formation, and its subsequent breakup or decay only depends on the
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Figure 10.3 Conceptual view of the stages of a nuclear reaction (Weisskopf (1959).
Reproduced with the permission of American Physical Society).

excitation energy, angular momentum, and so on, of CN and not on the nature
of the projectile and target nuclei. The CN may decay into various reaction
products that are unlike the projectile and target nuclei. We shall spend much
of this chapter discussing these reaction mechanisms and some others not yet
mentioned. But before doing so, let us see what general properties of nuclear
reactions we can deduce from relatively simple arguments about the sizes
of nuclei.

10.4 Nuclear Reaction Cross Sections

Consider the situation illustrated in Figure 10.4 where a beam of projectile
nuclei of intensity @, particles per second is incident upon a thin foil of target
nuclei with the result that the beam is attenuated by reactions in the foil such
that the transmitted intensity is @ particles per second.

We can ask what fraction of the incident particles disappear from the beam,
that is, in some way react, in passing through the foil. Let us assume the beam
intersects an area A (cm?) on the foil. We can then assert that the fraction of
beam particles that is blocked (reacts) by the nuclei is the fraction of the area
A that is covered by the target nuclei.

If the foil contains p, atoms/cm?, where the foil thickness is dx(cm), then the
area that is covered by nuclei is p, atoms/cm? X dx(cm) X A(cm?)X (the effec-
tive area subtended by one atom) (cm?/atom).



Area, A,
occupied by

Figure 10.4 Schematic diagram showing the attenuation of an incident projectile beam in a
thin foil by scattering centers.

This latter term, the effective area subtended by one atom, is called the cross
section, o, for the reaction under study. Then the fraction of the area A that is
blocked is p, dxc. If we say the number of projectile nuclei incident on the foil
is the flux @ and the number absorbed per unit time is A®, then we have

AD = —Dp, dxc (10.18)

where the minus sign indicates that the beam intensity is decreasing as the
beam propagates through the foil. Expressing the earlier equation as a differ-
ential, we get

—-d® = &p,dxc (10.19)
% = —p,0dx (10.20)

This simple differential equation can be solved by integration:

(I)lmns — x
/ —do =—p,C / dx
@ % 0

0

< q>lram >
In{ —— | =—p,0%
@,

thrans = (DOe—PnGx
which is the familiar exponential attenuation of the incident projectile beam
(and have thus derived a form of the Lambert—Beer law). The number of reac-
tions that are occurring is the difference between the initial and transmitted
flux, that is,

(Pinitiat — Po) = Py (1 — exp™™) (10.21)
The foregoing discussion relied only on the attenuation of the incident beam
and thus refers to all reactions and is called the total reaction cross section. In
many cases, we are interested in only one of several reactions that may be taking



Figure 10.5 Schematic
diagram of a typical
experimental setup in the
laboratory frame.

Before After

place. We can measure and refer to the cross section for that particular reaction,
which will be some fraction of the total reaction cross section. In addition, we
may be interested in not only a specific product but also a particular product
moving in a particular direction relative to the direction of the projectile beam
(see Fig. 10.5 for a sketch of a typical experimental measurement). In this case,
we can speak of a differential cross section or the cross section per unit solid
angle do /dQ. For a thin target, we have

dN do
= il .
= Qp, < ) dx (10.22)

where dN /dQ is the number of particles detected moving in a particular direc-

tion per unit solid angle, dQ. The total cross section, o, is given by integration
over all space, which, written in terms of spherical coordinates, is

2n T
do .
c= /0 /o ) sin0 d6 d¢ (10.23)

Be aware of the distinction between the flux ® earlier and the azimuthal angle
¢ in this expression.

The description given earlier is appropriate for work at accelerators, where
one has a beam of particles that is generally smaller in diameter than the target.
In this case, the beam intensity @ is given in particles per second, and the areal
target density p, is given in atoms per square centimeter. In a nuclear reactor,
we immerse a small target in a sea of neutrons. In this case, the neutron flux ®
represents the number of neutrons passing through the target per square cen-
timeter per second, and N is the total number of atoms in the target. Otherwise
the arithmetic is the same. For charged particles from an accelerator, the beam



intensity is usually measured as a current. Thus, for a beam of protons with a
current of 1 pA, we have

10 C 1 prot
®=1pA /s proton (10.24)
LA 1602 10 C

= 6.24 x 10" protons/s

For a beam of some other ion with charge ¢, one simply divides by the charge
on the ion to get the projectile beam intensity. Thus, for a beam of 4 pA of
Ar'7* ions, we have

) = 1.47 x 10 ions/s

107¢C i
<1>=4pA< /S>< L ion

HA 17 x 1.602 X 10-1° C
(10.25)

To put the intensities of beams of differing charge states on the common
footing of particles/s, it is common to quote charged-particle beam intensities
in units of particle microamperes or particle nanoamperes where, for example,
1 particle microampere = 6.24 X 10'? ions/s.

Itis easy to calculate the number of product nuclei produced during an irradi-
ation, N. If we assume the product nuclei are stable, then the number of nuclei
produced is simply the rate of production, R, times the length of the irradia-
tion, . For a thick target irradiation, we have

N = ®(1 — exp ™) ¢ (10.26)
For a thin target and Ax is small, we can expand the exponential function to get
N = ¢ (—p,0dx) t (10.27)

But, what if the products are radioactive? Then some of the product nuclei will
decay during the irradiation. In this case, we can set up the familiar differential
equations

62—];[ = (Rate of production) — (Rate of decay)
‘;—f — (®p,0A%) — WN
dN
(®p,06Ax) — AN

Multiplying by A to get a decay rate and rearranging

dA(\N) .
m = —\dt (10.28)



On integration one gets
In(AN — (®p,cAx)[) = -\t
AN — (®p, cAx) _

—(®p,0Ax)
A = AN = (®p,cAx)(1 — exp™)

-\

where A is the disintegration rate of product nuclei (i.e., the activity) at the end
of the irradiation. The number of product nuclei, N, present at the end of the
irradiation is A /A or

N= %"Tm (1-exp™) (10.29)
The variation of this function with time is shown in Figure 10.6. Note that in
the limit of an infinitely long irradiation, e™ — 0, and thus the activity present
becomes ®p,cAx, which is called the saturation activity. Note also that for
very short times (compared with the half-life of the product nuclei), e™ —
1 — At + - - -. Thus, the activity increases approximately linearly with time at the
beginning. In general, we note that we achieve one-half of the saturation activity
after an irradiation of one half-life, three-quarters of the saturation activity after
irradiating two half-lives, seven-eighths of the saturation activity after irradi-
ating three half-lives, and so on. Thus, it does not generally pay to make the
irradiation longer than 2-3 half-lives. (This effect can be used to find the opti-
mal length of an irradiation to maximize the yield of the product of interest
relative to the other reaction products that might be present.)

Saturation activity
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Figure 10.6 Temporal variation of the product activity during a constant irradiation.



Sample Problem 10.3: Radioactive Product of Reaction

Calculate the activity of **No (t;/, = 555) produced in a 1-min irradia-

*®pp, by **Ca. Assume the ***Pb target thickness is 0.5 mg/cm?;

208, 48
Pb( Ca,

tion of

the “°Ca beam current is 0.5 particle microamperes, and the
2n) reaction cross section is 3.0 pb.

Solution

A =®No(l —e™)
0.5% 1076 C/s
~ 1.602 x 1019 C/ion
6.02 x 102 /mol
208 g/mol
6=3x10"°bx102*cm?/b =3 x 107 cm?

In(2
t=60s, A=%D _196%107 /s
55s

=3.12 x 10" ions/s

N = (0.5 % 1073 g/cm?) =1.44x 10" /cm?

A=72/s

Let us consider what else we can learn about cross sections from other general
considerations. Consider the reaction of a neutron (an uncharged particle) with
a nucleus as shown in Figure 10.7. When the neutron makes a grazing collision
with the nucleus, the impact parameter b can be taken as the sum of the radii
of the neutron and the target nucleus. Thus, the geometrical cross section can
be written as

o~ aR+7) =2l + A3 (10.30)

where 1’ is the radius of the neutron. Using classical mechanics to describe this
problem, we can write the orbital angular momentum £ as

14 =rxXp=R+r)p=bp (10.31)

classical

Figure 10.7 Schematic diagram of a grazing collision of a neutron with a nucleus.



Figure 10.8 Schematic bull's-eye view of
the target nucleus in terms of the reduced
de Broglie wavelength of a neutron
projectile.

=3

Whereas if quantum mechanics is used to describe the same problem, we know
that £,icq — £7 and from de Broglie that the momentum is connected to the
wavelength A (unfortunately the same symbol as the mean lifetime) through the
expression

h _h
=—-== 10.32
p=y== (10.32)
And then write the quantized angular momentum £ as
tn=lspvy (10.33)

This expression is not quite right because ¢ is quantized whereas b is not. We
can get around this by associating each b with a certain ring or zone on the
target. Figure 10.8 shows this concept with a head-on collision (£ = 0), asso-
ciated with the range of b is from 0 to X, while # = 1 collisions range from &
to 2%. Thus, the cross section grows with impact parameter, and larger impact
parameters are associated with larger angular momenta. We can write the cross
section for a specific value of £ as the difference between two circular areas:

6, =n(f + 1) x> —n(£) &> (10.34)
o, =nk’ (> +20 +1-¢?) (10.35)
o, =nk*(Q2¢ +1) (10.36)

The total reaction cross section is obtained by summing over all # values up to
the grazing trajectory as

fmax

Cpotat = 2,0 = . K20 +1) = 1K (L oy + 1)° (10.37)
3 =0



where the maximum angular momentum 7., is determined by the grazing
distance

bmax R+ 7'

. = = 10.38
max x 7\_/ ( )

b % R+7+%
l  +1= === 10.39
max x 7: x ( )

Thus for the total cross section in terms of radii

o =% (R+7 + )" =7 (R + 7)° (10.40)

The total cross section is proportional to the size of the target nucleus and the
“size” of the projectile nucleus (+' + %). Since the reduced wavelength of the
projectile, 7, goes to infinity as the projectile momentum or kinetic energy goes
to zero, the cross sections should increase dramatically at the lowest energies.
This is true for neutrons, and their reaction cross sections at low energies can
be very large; however, reactions at low energies between two charged particles
are suppressed by the Coulomb barrier (discussed later). Note that the discus-
sion earlier relies on classical mechanics. We should indicate how the problem
would look if we used quantum mechanics to treat it. In quantum mechanics,
we can write a similar expression for the total reaction cross section:

Ot = TA> Y (27 + 1)T, (10.41)
=0

where the transmission coefficient T, varies between 0 and 1. The transmission
coefficient expresses the probability that a given angular momentum value ¢
will contribute to the reaction. At high neutron energies, T, =1 for £ < ¢,
and T, = 0 for £ > £,,,,. At the lowest neutron energies, T, = €'/ for # =0
and T, = 0 for £ > 0, where € is the neutron kinetic energy. Thus, at very low
energies, the total neutron interaction cross section is

2

h 1
O X T2V € T <%> Ve « ﬁ (10.42)

Such behavior of the cross sections for low-energy neutron-induced reactions
is referred to as “1/v” behavior.

Now let us consider the interaction of a charged particle with a nucleus as
shown in Figure 10.9. As the projectile approaches the target nucleus, it feels
the long-range Coulomb force and begins to be deflected. As a consequence, the
range of possible collisions where the nuclei will come into contact corresponds
to a smaller range of impact parameters than in neutron-induced reactions. If
the incident projectile has an energy € at an infinite separation from the target
nucleus, it will have a kinetic energy of e — V; where V}; is the Coulomb barrier



Figure 10.9 Schematic side view of a charged-particle-induced reaction.

at the distance of closest approach R. Numerically, the Coulomb barrier is given
by the expression
_Z,Z,e
- R

At the distance of closest approach, the momentum p of the projectile will be
(2mT)Y2. Thus, we can write

Vi (10.43)

p = mT)Y?* = 2u)2(e — Vy)¥? = 2pe)/2(1 — Vi /e)V/? (10.44)

where p is the reduced mass of the system and p = A, A,/(A; + A,). Classically
we can write the orbital angular momentum

Z’ﬂclassical =7 X]; (1045)

max = R/ 2me (1= Vi /e) (10.46)

Quantum mechanically, again we have ¢, ... = £ B, so

Orotat = T2 (2o + 1) m 27262, (10.47)
~ ﬁz%(l—\// )= ﬁRZi(l—V/) (10.48)

Ototal ~ T ) B/€) =T PO B/€ .

Oorat A TR (1 — Vi /€) (10.49)

Note this last classical expression is valid only when € > V};. The combined gen-
eral properties of cross sections for charged and uncharged particles (neutrons)
are shown in Figure 10.10.

Sample Problem 10.4: Charged-particle-induced

reaction cross sections

Calculate the energy dependence of the total reaction cross section for
the *°Ca + “**Pb reaction above the Coulomb barrier.
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Figure 10.10 Schematic variation of the near threshold cross sections for neutron and
charged-particle-induced reactions (Ehmann and Vance (1993). Reproduced with the
permission of John Wiley & Sons, Inc.).

Solution

Gporal TR (1 — Vi /e€)
R = Rp, + R¢, = 1.2(208'/3 + 481/3) = 11.47 fm
Vg = Z,Z,6*/R = (82)(20)(1.44MeV — fm)/11.47 fm = 205.9 MeV
€ = energy of the projectile in the CM system

€(MeV) o, (mb)

208 41.7
210 80.7
220 264.9
230 433.1
240 587.2
250 729.1

Aside on Barriers

In our semiclassical treatment of the properties of charged-particle-induced
reaction cross sections, we have equated the reaction barrier Vj to the
Coulomb barrier. That is, in reality, a simplification that is applicable to many
but not all charged-particle-induced reactions.
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Figure 10.11 The nuclear Coulomb and total potentials for the interaction of '°0 with **Pb

for several values of the orbital angular momentum. (See insert for color representation of the
figure.)

The force (negative derivative of the potential energy) felt by an incoming
projectile results from the sum of the nuclear, Coulomb and centrifugal forces
(Fig. 10.11). The Coulomb potential V.(r) is approximated as the potential
between a point charge Z,e and a homogeneous charged sphere with charge
Z,e at aradius R as

Z.Z
Vel(r) = 1r 2 for r > Re. (10.50)
Z,Z,\ (3 (*/R%)
V(r)=< L 2) 2 forr < R (10.51)
¢ R: 2 2 ¢

The nuclear potential is frequently represented by a Woods—Saxon potential
(see Chapter 5) that is written as
Vo

pprps—— (10.52)

Vnucl(r) =

where the strength of the potential is on the order of 40 MeV but must be
adjusted for each reaction. The centrifugal potential has the standard form of
nee+1)
2p 12

where £ 7 is the orbital angular momentum of the incident projectile. The
total potential V., (7) is the sum of the three contributions: V.(r) + V,(r) +
Veent (). An example of the different strengths and radial variation of these
potentials is shown in Figure 10.11 using the 0 + *Pb reaction as an

Veen (1) = (10.53)



example with entrance channel angular momenta of # =0, 10, and 100%.
Note that for the highest angular momentum, £ = 100#, the total potential is
repulsive at all distances, that is, the ions are not predicted to fuse with such a
large angular momenta.

The actual interaction barrier is the value of V., (r) at the point when the
colliding nuclei touch. Note that is a slightly different value from that of V.(r)
atr = R, the Coulomb barrier due to the nuclear contribution.

10.5 Reaction Observables

What do we typically measure when we study a nuclear reaction? We might
measure Gy, the total reaction cross section. This might be measured by a beam
attenuation method (D, mitted VS Pincident) ©F DY summing up the cross sections
for all possible exit channels for a reaction, which could be written as

b+B

Op = Z o,(b, B) (10.54)

but this is problematic because we would need to know beforehand what are
all the possible combinations of products. Instead, we might measure the cross
section for producing particular isotopic products at the end of the reaction,
0(Z,A), by measuring the radioactivity of the reaction products. We might, as
discussed previously, measure the products emerging in a particular angular
range, do(0, ¢)/dQ. This measurement is especially important for experiments
with charged-particle-induced reactions where the incident beam provides
a reference axis for 0 and ¢. The energy spectra of the emitted particles can
be measured as the differential cross section do/dE, or more likely we might
observe the products emerging at a particular angle and with a particular
energy and obtain a double differential cross section, d’c/dEdQ. As a bit
of jargon, if the cross section for only one product is measured at a time,
then it is called an “inclusive” cross section because it includes all possible
pathways to the single product. If the cross section for the production of two
or more simultaneously generated products is measured, then this is called an
“exclusive” cross section.

10.6 Rutherford Scattering

One of the probable outcomes of the collision of a charged particle with a
nucleus at large impact parameters is Rutherford or Coulomb scattering. The
incident charged particle feels the long-range Coulomb force of the positively
charged nucleus and is deflected from its path along a so-called Coulomb
trajectory. A particle on a trajectory where the nuclei do not interact, as in



Figure 10.12 Schematic
diagram of the kinematics in
Rutherford scattering
(Satchler (1990). Reproduced
with the permission of
Springer).

Figure 10.12, is “elastic scattering” in that the kinetic energy of motion is
conserved. The Coulomb potential energy between a projectile of charge Z,e
and a target nucleus with charge Z,e was given earlier as

_Z,Z,e

v
¢ r

(10.55)
where r is the distance between the projectile and target nuclei. The Coulomb
force is the negative derivative of the potential energy and thus
d VAV Ao

F.= ~ Ve=-— =
The force is repulsive between two nuclei that have the same (positive) charge,
that is, it acts in the opposite direction to r. In the case that the target nucleus
is much heavier than the projectile nucleus, we can neglect the recoil of the
target nucleus in the interaction. The projectile will follow a hyperbolic orbit, as
shown in Figure 10.12 where b is the impact parameter, 7, is the kinetic energy
of the projectile, and d is the distance of closest approach. We can connect the
hyperbola with the initial collision variables by beginning at infinitely far apart
where the projectile velocity is v. At the distance of closest approach r = d, the
projectile velocity will become v,. Conservation of energy for a projectile with
mass, m, gives

(10.56)

Z,Z,e?
lle2 = lmvg + 1;

10.57
3 5 (10.57)




Rearranging, we find that
Vg \2 a
(—0) —1-20 (10.58)
v
where the reduced distance of closest approach, d,), is
22,2,8  Z,Z,¢
T T2 T,

(10.59)

If we now invoke the conservation of angular momentum in the process, the
product of linear momentum and distance must be conserved:

mv b =mv,d (10.60)
Uy \2
b = (—) & = d(d - dy) (10.61)
v
Recall that one of the properties of the hyperbola shown in Figure 10.12 is that
d = bcot (%) (10.62)
Again rearranging and substituting for d from earlier,
tana = 2 (10.63)
dy

The angles in Figure 10.12 are such that 6 = & — 2a, and thus the scattering
angle for Rutherford scattering is directly connected to the initial impact
parameter b and the reduced distance of approach that contains the informa-
tion on the Coulomb potential:

cot (g) - % (10.64)

Figure 10.13 shows the expected orbits of the projectile nuclei after undergoing
Rutherford scattering for a typical case. Note that the most probable trajectories
(large values of b) result in the projectile being scattered to forward angles but
that nearly head-on collisions (b almost zero) result in large-angle scattering.
It was these latter large-angle scattering events that led Ernest Rutherford to
conclude that there was a massive object at the center of the atom.

We can make the observations about elastic scattering more quantitative by
considering the situation where a flux of I, particles/unit area is incident on a
plane normal to the beam direction. The flux of particles passing through a ring
with a differential width db and with impact parameters between b and b + db
is given as

Flux
Unit area

dl = ( ) (Area of ring) = I,(2 b db) (10.65)



Figure 10.13 Diagram showing some representative projectile orbits for the interaction of
130 MeV '°0 with **®Pb (Satchler (1990). Reproduced with the permission of Springer).

Substituting for the impact parameter from earlier, we get the differential
equation for the angular distribution of intensity:

cos(6/2)

— 10.66
sin(0/2) ( )

T 2
d1=110d0

If we want to calculate the number of projectile nuclei that undergo Rutherford
scattering into a solid angle dQ at a plane angle of 0, we can write

do _dl 1 _ <d_>; (10.67)
aQ I, dQ 4 sin*(0/2) .

2
do ZIZ262 1
as _ 10.68
dQ < 4TM | sin*(0/2) ( )

in which we have also used the definition of the solid angle in spherical coordi-
nates after integration over the azimuth dQ2 = 2z sin6 d0 to convert from 40
to dQ.

Note the strong dependence of the Rutherford scattering cross section upon
scattering angle. Remember that Rutherford scattering is not a nuclear reaction,
as it does not involve the nuclear force, only the Coulomb force between the
charged nuclei. Remember also that Rutherford scattering will occur to some
extent in all studies of charged-particle-induced reactions and will furnish a
“background” of scattered particles at forward angles due to so-called distant
collisions.



Sample Problem 10.5: Rutherford Scattering

Calculate the differential Rutherford scattering cross section for the reac-
tion of 215 MeV (lab energy) “Cawith**Pbatan angle of 20°. Note that
this is close to the Coulomb barrier and a relatively small angle.

Solution
2
do _ VAV AN 1
dQ 4T™ | sin*(0/2)
oM 208
TN =215 MeV x (5= ) = 1747 MeV
208 + 48
do _ (20x82x144MeVim\’ 1
dQ 4 174.7 MeV sin*(20/2)
49 _ 19562 fm? = 125.6 b
dQ

10.7 Elastic (Diffractive) Scattering

Suppose we picture the interaction of the incident projectile nucleus with
the target nucleus as it undergoes shape elastic scattering. It is convenient to
think of this interaction as that of a plane wave with the nucleus as depicted
in Figure 10.14. Imagine further that all interactions take place on the nuclear
surface. If only points A and B in Figure 10.14 on the nuclear surface scatter
particles and all other points absorb them, then an interference will occur
between (particle) waves going around the two sides of the nucleus. To get

Figure 10.14 Schematic diagram of the interaction of a plane wave with a nucleus
(Meyerhof (1967). Reproduced with the permission of McGraw-Hill Book Company).



constructive interference between the incoming and outgoing wave, we must
fulfill the condition that the distances from C to B plus from B to D must be an
integral number of wavelengths, or

CB + BD = n\ (10.69)

where A is the wavelength of the incident particle and # is an integer.
From simple geometry, peaks should occur in the scattering cross section
when

nh =2 X 2R X sin(0/2) (10.70)

In Figure 10.15, we show the angular distribution for the elastic scattering of
800 MeV protons from *®pb. The de Broglie wavelength of the projectile is
0.85 fm, while the nuclear radius R is about 7.6 fm (1.28(208)'/3). We expect
peaks in the cross section at (n = 2, 3,4, ...) with a spacing between them, A9,
of approximately 3.2° while one observes a spacing of 3.5°. (This example was
taken from Bertsch and Kashy, 1993.)
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Figure 10.15 Angular distribution of 800 MeV protons that have been elastically scattered
from *®*Pb Blanpied et al. (1978). Reproduced with the permission of American Physical
Society).



10.8 Aside on the Optical Model

The optical model is an important tool to understand and parameterize studies
of nuclear scattering. It likens the interaction of projectile and target nucleus
with that of a beam of light interacting with a glass ball. To simulate the occur-
rence of both elastic scattering and absorption (reactions) in the interaction,
the glass ball is imagined to be somewhat cloudy.

In formal terms, the nucleus is represented by a nuclear potential that has a
real and an imaginary part:

U, (1) = V() +iW(Q) (10.71)

where the imaginary potential W(r) describes absorption (reactions) as the
depletion of the total flux by that going into nonelastic channels and the real
potential V(r) describes the elastic scattering. Frequently the nuclear potential
is taken to have the Woods—Saxon form:

U@ = =Vo()f (r, Ry, ap) — Wy f(r,R;, a;) (10.72)

f(r,R,a) =

1+ exp(%)] (10.73)

The complete nuclear potential thus has six parameters, the potential depths
Vo, W the radii Ry, R;; and the surface diffusenesses ay, 4;. By solving the
Schroédinger equation with this nuclear potential (along with the Coulomb
and centrifugal potentials), one can predict the cross section for elastic
scattering, the angular distribution for elastic scattering, and the total reaction
cross section given the values of these six parameters. Alternatively, one can
measure the elastic scattering cross sections and use the data to determine
the parameters. It has been shown that the six parameters are not linearly
independent, so extracting the parameters from the data can be ambiguous.
The meaning of the imaginary potential depth W can be understood by noting
that the mean free path of a nucleon in the nucleus, A, can be written as

A= vh
2 W,

where v is the relative velocity. By fitting measured elastic scattering
cross sections and angular distributions over a wide range of projectiles,
targets, and beam energies, one might hope to find a universal set of
parameters to describe elastic scattering (and the nuclear potential). That
hope is only partially realized because only the tail of the nuclear poten-
tial affects elastic scattering, and there are families of parameters that fit
the data equally well, as long as they agree in the exterior regions of the
nucleus.

(10.74)



Figure 10.16 Sketch of a
(d, p) reaction and the
associated linear
momentum triangle in
terms of the wave
numbers, k.

10.9 Direct Reactions

As we recall from our general description of nuclear reactions, a direct reac-
tion is said to occur if one of the participants in the initial two-body interac-
tion involving the incident projectile leaves the nucleus. This definition is too
restrictive. Generally speaking, these direct reactions are said to occur when the
interaction between the projective and the target occurs in one step and only a
single particle or one pair of particles is involved in the reaction. As such, direct
reactions can be divided into two classes, stripping reactions in which part of
the incident projectile is “stripped away” and is captured by the target nucleus
and pickup reactions in which the outgoing emitted particle is a combination of
the incident projectile plus a nucleon (or perhaps two) target nucleon(s) picked
up as it went by.

Let us consider stripping reactions first and in particular, the most commonly
encountered stripping reaction, the (d, p) reaction. Formally the result of a (d, p)
reaction is to introduce a neutron into the target nucleus, and thus this reac-
tion should bear some resemblance to the simple neutron capture reaction. But
because of the generally higher angular momenta associated with the larger
kinetic energy necessary to get over the Coulomb barrier in the (d, p) reaction,
there can be differences between the two reactions. Consider the A (d, p) B*
reaction where the recoiling nucleus B = A + # is produced in an excited state
B*. We sketch out a simple picture of this reaction and the momentum relations
in Figure 10.16.

The momentum diagram for the reaction shown in Figure 10.16 writes the
momentum of the incident deuteron as k;, the momentum of the emitted pro-
ton as k,, while &, as the momentum of the stripped neutron. From conserva-
tion of momentum, we have

ki = ki + k2 — 2kk, cos© (10.75)



If the neutron is captured at impact parameter R, the orbital angular momen-
tum transferred to the nucleus, £, #, is given by

£ h=Fxp=Rk, h (10.76)
¢, =Rk, (10.77)

Since we have previously shown that &, is a function of the angle 6, we can
now associate each orbital angular momentum transfer in the reaction with a
given angle 0 corresponding to the direction of motion of the outgoing proton.
Thus the (d, p) reaction becomes a very powerful spectroscopic tool to measure
angular momentum transfer. By measuring the energy of the outgoing proton,
we can deduce the Q value of the reaction and thus the energy of any excited
state of the residual nucleus that is formed. From the direction of motion of
the proton, we can deduce the orbital angular momentum transfer in the reac-
tion Z,. If we know the ground state spin and parity of the residual nucleus, we
can deduce information about the spin and parity of the excited states of the
residual nucleus using the rules

=601 = 31 < Ty ST+ 6+ 2 (10.78)

Ty g = (=) (10.79)

Other stripping reactions have been used with greater or lesser success such as
(a, 2), (o, d), and so on, but the more complex the projectile and ejectile nuclei,
the more complicated the transfer process. Typical pickup reactions that have
been studied include (p, d), (p, t), (o, °Li), and so on.

Sample Problem 10.6: Direct Reactions

Calculate the angle at which the (d, p) cross section has a maximum for
¢ =0,1,2,3 and 4h. Assume a deuteron kinetic energy of 7 MeV and a
proton energy of 13 MeV with R = 6 fm.

Solution
kg =0.82/fm
k, =0.79/fm
k, = It—;

Thus for £ = 0,1,2,3,4, k, = 0,0.17, 0.33, 0.50, 0.67/fm*. Then from the
momentum triangle in each case

-k + kI + k,

10.80
2kq k, ( )

cosO =



0=0°12°24°,36°,49° for £ = 0,1, 2, 3, 4, respectively (10.81)

Note that a somewhat more correct expression would be kR =

V& +1).

10.10 Compound Nuclear Reactions

A compound nucleus (CN) is a relatively long-lived reaction intermediate that
is the result of a complicated set of two-body interactions in which the energy
of the projectile is distributed (thermalized) among all of the nucleons of the
composite system. How long does the CN live? From our definition earlier, we
can say the CN must live for at least several times the time it would take a
nucleon to traverse the nucleus (~ 10722 s). Thus, the time scale of compound
nuclear reactions should be on the order of 1078 to 1071° 5. Lifetimes as long as
107'* s have been observed, all of which are clearly long times compared with
the typical time scale of a direct reaction of 10722 s.

Another important feature of CN reactions is the mode of decay of the CN
is independent of its mode of formation (the Bohr independence hypothesis or
the amnesia assumption). While this lack of memory of the entrance channel
is not true in general, it remains a useful tool for understanding certain fea-
tures of compound nuclear reactions. For example, consider the classical work
of Ghoshal (1950) who formed the CN **Zn in two ways, that is, by bombarding
%Cu with protons and by bombarding “Ni with a particles. He examined the

relative amounts of 62Cu, 62Zn, and *Zn found in the two bombardments, and
within his experimental uncertainty of 10%, he found the amounts of the prod-
ucts were the same in both bombardments. (Later experiments have shown
smaller scale deviations from the independence hypothesis.)

Because of the long time scale of the reaction and the “amnesia” of the CN
as to its mode of formation, one can show that the angular distribution of the
products must be symmetric about 90° (in the frame of the moving CN).

The cross section for a compound nuclear reaction can be written as the prod-
uct of two factors, the probability of forming the CN and the probability that
the CN decays in a given way. As described earlier, the probability of forming
the CN can be written as

oon=mt> ) 20 +1) T, (10.82)

£=0
The probability of decay of the CN, P, into a given set of products, , can be
written as

T’
) ] (10.83)

PP)= | ——
D [z T/(E)



y  T/D>>1 Figure 10.17 Schematic view of the exponential increase in the
number of levels in a nucleus with excitation energy.

] I'/D << 1

where T/ is the transmission coefficient for CN decay into products i with
some energy E;. We have encountered the fact that nuclei can exist in various
excited states, but it turns out the arrangements of nucleons become increas-
ingly numerous as the amount of internal energy increases. Figure 10.17 shows
aschematic view of the energy levels of a typical nucleus, which would include a
CN formed in a reaction. The number of levels in the CN excitation energy actu-
ally increases exponentially. Quantitatively, the Fermi gas model of the nucleus
predicts that the number of levels per mega-electron volt of excitation energy,

E*, increases approximately exponentially with \/l? It should not be surpris-
ing that the complexity of the deexcitation of a CN grows with its excitation
energy due to the increasing number of excited states at that energy.

Compound nuclear reactions can be grouped by the ratio of the width of the
CN level, I', which is formed to the average spacing between compound nuclear
levels, D. Recall from the Heisenberg uncertainty principle that I' © > &, where
T is the mean life of that quantum mechanical level. The categories are (a) the
lowest energies where I'/D « 1, that is, the CN has isolated nonoverlapping
levels and (b) I'/D > 1, that is, the CN is formed in a region with many over-
lapping levels. Intuitively the excited CN in category (a) will only be able to
decay in relatively few ways, whereas those in CN category (b) will be able to
follow many decay paths.

Let us first consider the case of I'/D <« 1. In this case, generally only low
excitation energies and individual levels of the CN can be produced in the
reaction (i.e., when the excitation energy exactly matches the energy of a given
CN level). During a scan of the bombarding energy, there will be a sharp rise
or resonance in the reaction cross section at that specific energy akin to the
absorption of infrared radiation by a molecule when the radiation frequency
equals one of the natural oscillation frequencies. The formula for the cross
section of a resonance (called the Breit—Wigner single level formula) for the
reactiona+A — (CN) - b+ Bis

o = il < 2Jn+1D > Foalyp
@I, +1D)(2),+1)) (e —€y)?> +I/2)?

(10.84)



where J; is the spin of i-th nucleus and I, Iz, and I" are the partial widths
for the formation of the CN, the decay of the CN into b + B, and total width
for the all the decays of the CN, respectively. The symbols € and ¢, refer to the
CM energy of the projectile nucleus and the exact CM projectile energy that
corresponds to the excitation of a single isolated level. Applying this formula to
the case of (u, y) reactions gives

= ni? e +1) Ly (10.85)
B ), +1(?2) ) (e —ep)? + (/2)? ‘

An example of the energy variation of an isolated resonance in a
neutron-capture reaction is shown in Figure 10.18. Resonances are seen
in the energy spectra of low-energy neutron-induced reactions where levels
in the CN are populated at excitation energies on the order of the neutron
binding energy (roughly 8 MeV) with a spacing between levels on the order
of an electronvolt. Notice that for neutron energies much smaller than e,
the (e —€y)” term becomes a constant at approximately €}, and the cross
section for the (n,y) reaction will be governed by the energy variation of the
wavelength and the width for formation of the CN. Recall that # = #/mv and
the width for neutron capture I', « v at low energies, while the width for y-ray
decay does not depend on the bombarding energy since it is a property of the
CN state so that 6 « 1/v, as indicated earlier.

Let us now consider the case where I'/D > 1, that is, many overlapping
levels of the CN are populated in a reaction. We do not need a large range
of compound nuclear excitation energies, rather we need a high energy with
many levels, some number of which have short lifetimes and large widths.
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Figure 10.18 (left) The cross section for an isolated resonance in the energy spectrum of a
(n,y) reaction. (right) The variation of the neutron capture cross section at low energies for

"Bcd showing resonant behavior with a 1/v dependence at low energies.



In this case the cross section for the same reactiona + A - (CN) — b + B can
be written as

Oy = Ocn(@A) Y| Pey(bB) (10.86)

where o\ (aA) is the cross section for the formation of the CN and Py (bB)
describes the probabilities that the CN will decay to form b + B in various ways.
Here we will not evaluate all of the contributions of their individual resonances
(there could be a very large number) but rather consider the average behavior.
Now let us consider in a little more detail the probability that emitted particle b
has an energy €, in the exit channel. First, we can write down that the maximum
energy that b can have is the difference between the excitation energy of the
CN and the separation energy of b from the CN, E’\ — S,.. Notice that b can be
emitted with a range of kinetic energies less than the maximum with the result
that the nucleus B will be left in a corresponding range of excited states. The
number of excited states in B grows exponentially, and so the CN will strike
a balance between kinetic energy of b and internal excitation of B. By using
the arguments of detailed balance from statistical mechanics (see Lefort (1968),
FKMM), we can write for the probability of the CN emitting a particle b with
an energy €, < €., and leaving the nucleus B at an excitation energy E}, as

(2J, + 1)u€ - p(Ep)
2 3 bVinv P(EEN)

W, (e;)de, = de, (10.87)

In this equation, p is the familiar reduced mass of the system, and o, is the
cross section for the inverse process in which the particle b is captured by the
nucleus B and b has a (CM) kinetic energy, €,. The symbols p(E;) and p(E()
refer to the level density in the nucleus B with an excitation energy Ej; and the
level density in the CN with an excitation energy, E(.. The inverse cross section
can be calculated using the same formulas used to calculate the compound
nucleus formation cross sections. Using the Fermi gas model of a nucleus, we

find that the level densities of the excited nucleus are given by the expression

p(E*) = C exp(2VaE®) (10.88)

where C is a constant scaling factor and the level density parameter, a, depends
on the mass number of the nucleus and generally falls in the range of A/12
to A/8. One can also define a nuclear temperature, T, in the Fermi gas model
based on the statistical mechanical definition that the temperature is related to
the derivative of the level density of a system:

E =al?>-T (10.89)

Often an excited CN will be able to emit different particles, and the relative
amounts will be determined by the separation energies and the level density in
the (excited) daughter nucleus, B, after the particle is emitted. If we consider



the ratio of emission widths for two kinds of emitted particles, x and y, then
some terms cancel in the ratio, leaving
L _&hRia [2(a,R)"? - 2(a,R )"/?] (10.90)
Iy &#uR,a,
where g; is the spin factor 2J; + 1, or statistical weight of each channel; p; the
reduced mass of each channel with a;; and E? the level density parameter and
maximum excitation energy for the residual nucleus that results from the emis-
sion of the i-th particle. E* is formally equal to E* — S, — €, where ¢, is the
threshold for the emission of a charged particle (¢, = 0 for neutrons).
When the emitted particles are neutrons, the emitted neutron energy spec-
trum has the form

N(e)de = % exp~/T de (10.91)

As shown in Figure 10.19.

The neutrons are emitted with a Maxwellian energy distribution, and the
most probable energy is T" while the average energy is twice the nuclear tem-
perature. Thus, the CN can be thought of as “evaporating” particles similar to
molecules leaving the surface of a hot liquid. We can measure the energy spec-
trum of the particles emitted in a compound nuclear reaction and use it as a
“nuclear thermometer” in that

d _ -1
- In(N(e)de) = — (10.92)

Charged particles can be evaporated from excited nuclei except that the mini-
mum kinetic energy is not zero as it is for neutrons. Rather there is a threshold
for each type of charged particle, €,, (which is approximately the Coulomb bar-
rier) that determines its minimum energy (see Fig. 10.10). The energy spectrum
of evaporated charged particles is then

€—¢€
Lexp™©/T de (10.93)

N(e)de = T2

What can be said about the distribution in space of the reaction products? We
might think that because the CN has “forgotten” its mode of formation, there
would be no preferential direction for the emission of the decay products. Thus,
we might expect that all angles of emission of the particles, 6, to be equally
probable and that P(0), the probability of emitting a particle at an angle 6, would
be a constant. Then we would expect that do/d€2(0) would be simply

do do
— = [ PO)— 10.94
dQ / ( )dQ ( )
This expression assumes that we are making the measurement of the angular
distribution in the frame of the moving CN. In the laboratory frame, there will
appear to be more particles emitted in the forward direction (with higher ener-
gies) than are emitted in the backward direction due to the motion of the cm.
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We should realize that this picture of uniform emission of evaporated parti-
cles is too simplistic. The CN will form a range of angular momenta due to the
orbital motion in the entrance channel. This angular momenta will have to be
conserved during the decay of excited states, and it will tend to focus the par-
ticles into the plane perpendicular to the emission axis. However, the affect of
angular momentum will depend strongly on the particle emitted.

The energy variation of the cross section (the so-called excitation function)
for processes involving evaporation is fairly distinctive as can be seen in
Figure 10.20, where the excitation function for the 209Bi(oc, xn) reaction is
shown. Starting from the overall threshold for the a-induced reaction, the
cross section rises with increasing energy because the formation cross section
for the CN is increasing for the reasons discussed earlier. Initially the P At
nucleus only has enough energy to emit one neutron as the thresholds for
emitting charged particles like protons, or a particles are relatively high. Even-
tually the excitation energy of the CN becomes large enough that emission
of two neutrons is energetically possible. At this stage, the “2n out” process
will dominate the “1n out” process because the sequential emission of two
neutrons has a higher probability than the emission of a single high-energy
neutron due to the effect of the level density of the daughter nucleus. We
expect subsequent peaks for the individual “xn out” processes to occur at
approximately (S,; +27T), (S,; + S, +4T), (S, +S,, +S,3 + 6T), and so on,
where we have neglected the decrease in T during the emission process.

Let us review what we have said about compound nuclear reactions. CN
reactions are nuclear reactions with a long-lived reaction intermediate that is
formed by a complex and variable set of two-body interactions. We developed
a set of equations that describe the overall compound nuclear cross section. We
have shown how this general formula simplifies for specific cases, the case of
exciting a single level of the CN with spikes or resonances in the cross section
as a function of energy and the case of higher excitation energies where the CN
behaves like a hot liquid, evaporating particles to remove excitation energy.
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Figure 10.20 Excitation function for the 209 Bi(at, xn) reaction showing the contributions of
the first three individual neutron evaporation channels to the total cross section for
compound nucleus formation.

At all excitation energies, the angular distribution of the reaction products
is symmetric with respect to a plane perpendicular to the incident particle
direction.

10.11 Photonuclear Reactions

Photonuclear reactions are nuclear reactions in which the incident projectile
is a photon and the emitted particles are either charged particles or neutrons.
Examples of such reactions include (y, p), (v, n), (y, ®), and so on. The energetic
photons needed to induce these reactions can be furnished from the annihila-
tion of positrons in flight (producing monoenergetic photons), more commonly
by the energetic bremsstrahlung from slowing down high-energy electrons (pro-
ducing a continuous distribution of photon energies), and the related technique
of coincident detection of the scattered electron (producing a narrow energy
beam). Most recently the technique of Compton backscattering laser light from
monoenergetic electrons stored in a ring (producing a tunable energy photon
beam) has been used. These sources produce electric dipole (E1) photons. Thus,
the reactions that have been studied involve the absorption of an E1 photon and
have been carried out on stable nuclei. The absorption of an E1 photon would
create a spin change of +1 and a parity change. Thus, a photonuclear reaction



with an even—even nucleus would produce excited states with a spin/parity of
1~ that had a large nuclear overlap with the ground state.

The incident photon can interact with individual protons in the nucleus or
simultaneously with all of the protons. An interesting and unusual feature of
the excitation function for photonuclear reactions is the appearance of a large
enhancement of the cross section at ~25 MeV for reactions with low mass tar-
gets, for example, "0, which is present in the cross sections for all nuclei, but
the energy slowly decreases with mass number until it reaches ~15 MeV for
*®Pb. An example of the total photonuclear cross section for a heavy nucleus
is shown in Figure 10.21.

The large bump in the total photonuclear cross section, common to all nuclei,
is called the giant dipole resonance or GDR. Goldhaber and Teller provided the
first description of this reaction in which they ascribed the GDR to the col-
lective vibration of all the neutrons against all the protons. Their model was
based on the oscillation of the density of a proton fluid against a neutron fluid
inside the nucleus. Their model suggested the energy of the GDR should vary
as A™Y/%, in fair agreement with the observed variation. As a confirmation of
the giant oscillation, it was found that the GDR in deformed nuclei splits into
two components with different energies, corresponding to oscillation along the
major and minor nuclear axes of the deformed ellipsoidal nuclei. One further
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Figure 10.21 The photonuclear total reaction cross section of " Au (Fultz et al. (1962).
Reproduced with the permission of American Physical Society).



fact about photonuclear reactions and the GDR should be noted. The sum of
the absorption cross section for dipole photons (summed over all energies) is
approximately constant, that s,

/o Ous(E,) dE, o NTZ ~ 0.058% MeV barns (10.95)
This expression is called the dipole sum rule.

Sample Problem 10.7: Giant Dipole Resonance

Calculate the ratio of the wavelength of the GDR E1 photon to the nuclear
diameter for °O that occurs with 25 MeV photons and for *®Pb with
15 MeV photons.

Solution
16
- @ _ 197.3 MeV fm —79fm
E, 25 MeV
Diameter = 2 X 1.2(16)1/3 fm=6.0fm
Ratio= — = 22fm _ ;4
Diameter 6.0 fm
2085

A =13.1 fm ;diameter = 14.1 fm ;ratio = 1.1

10.12 Heavy-lon Reactions

Heavy-ion-induced reactions are usually taken as reactions induced by projec-
tiles heavier than an a particle. The span of projectiles studied is large, spanning
essentially all of the stable elements in the periodic table from the light ions, C,
O, and Ne to the medium mass ions, such as S, Ar, Ca, and Kr to the heavy
projectiles, Au, Bi, and even U. Reactions induced by heavy ions have certain
unique characteristics that distinguish them from other nuclear reactions. First
of all, the Coulomb barrier between the beam and target nucleus always puts a
significant threshold on their reaction. Second, the de Broglie wavelength of
a heavy ion at an energy of 5 MeV/nucleon (above the barrier) or higher is
small compared to the dimensions of the ion. As a result, the interactions of
these ions can be described semiclassically. In addition, the small wavelengths
allow relatively large angular momentum in these collisions. For example, we
can write

V
Z’ﬂma\x = B 1- k (1096)
x Eou



As an example, for the near-barrier reaction of 226 MeV (lab) “Ar + 165Ho,
we calculate 7, = 163%. This value is relatively large compared to the angular
momenta involved in nucleon-induced reactions. Lastly, quite often the prod-
uct of the atomic numbers of the projectile and target is quite large (>1000),
indicating the presence of large Coulomb forces acting in these collisions.

The study of heavy-ion-induced reactions is a forefront area of nuclear
research at present. By using heavy-ion-induced reactions to make unusual
nuclear species, one can explore various aspects of nuclear structure and
dynamics “at its limits” and thus gain insight into nuclear structure and
reactions not possible with stable nuclei. Another major thrust is to study the
dynamics and thermodynamics of the colliding nuclei. The bombarding energy
plays a very important role in determining the course of heavy-ion reactions.
The vast majority of work has been carried out with bombarding energies near
the interaction barrier and much of the discussion later relates to so-called
low-energy reactions.

In Figure 10.22, we show a cartoon of the various impact parameters and tra-
jectories one might see in a heavy-ion reaction. The most distant collisions lead
to elastic scattering and Coulomb excitation. Coulomb excitation is the trans-
fer of energy to the target nucleus via the long-range Coulomb interaction that
excites levels above the ground state in the target or the projectile nucleus (or
both). Grazing collisions lead to inelastic scattering and the onset of nucleon
exchange through the short-ranged nuclear force. Head-on or near head-on
collisions at low kinetic energy can lead to fusion of the reacting nuclei and to

Elastic scattering
direct reactions

Elastic (Rutherford) scattering
Coulomb excitations

Figure 10.22 Classification scheme of near-barrier heavy-ion induced collisions based upon
impact parameter (Hodgson et al. (1997). Reproduced with the permission of American
Physical Society).



the formation of a CN, particularly if the reaction partners have very different
masses. On the other hand, a “quasi-fusion” reaction in which there is substan-
tial mass and energy exchange between large projectile and target nuclei with-
out the “true amnesia” characteristic of CN formation can take place. At high
incident kinetic energies, the complete disruption of both the target and pro-
jectile nuclei can occur in central collisions. For impact parameters between the
grazing and head-on collisions, one observes an unusual type of nuclear reac-
tion mechanism called deep inelastic scattering. In deep inelastic scattering,
the colliding nuclei touch, partially amalgamate, exchange substantial amounts
of energy and mass, continue to rotate due to the large angular momenta as a
binuclear complex, and then reseparate primarily due to their mutual Coulomb
repulsion.

The same range of reaction mechanisms can be depicted in terms of the
angular momentum of the reaction in the entrance channel since we have
already seen that £ « b. An example of the schematic assignment of ranges
of £ to reaction mechanisms is shown in Figure 10.23. The most peripheral
collisions lead to elastic scattering and thus the highest values of the angular
momentum transfer, £. The grazing collisions lead to inelastic scattering and
nucleon exchange reactions, which are lumped together as “quasi-elastic”
reactions in this picture. Solid-contact collisions lead to deep inelastic
collisions, corresponding to intermediate values of #. The most head-on
collisions correspond to CN formation and thus the lowest values of the
angular momenta. Slightly more peripheral collisions lead to the fusion-like or
quasi-fusion reactions.

Figure 10.23 Schematic
illustration of the
dependence of the partial
cross sections for
compound nucleus (CN),
fusion-like (FL), deep
inelastic (D), quasi-elastic
(QE), Coulomb excitation
(CE), and elastic (EL)
processes on the entrance
channel angular momenta
(Schréder and Huizenga
(1984, 242. Reproduced
with the permission of
Springer).




10.12.1 Coulomb Excitation

The potential energy due to the Coulomb interaction between a heavy-ion pro-
jectile and a target nucleus can be written as

o Z,Z,e* N 122,Z,

CM R Al/3

Because of the strong, long-range electric field between projectile and target
nuclei, it is possible for the incident heavy ion to excite the target nucleus elec-
tromagnetically. This is called Coulomb excitation or Coulex for short. Rota-
tional bands in deformed target nuclei may be excited by the absorption of
so-called virtual photons created by the strongly varying electric field as the
nuclei move past one another. This excitation technique is useful for studying
the energy levels of nuclei. Since the cross sections for these reactions can be
very large (involving long-range interactions with the nucleus at large impact
parameters), the reactions are especially suitable for studying the structure of
exotic nuclei with radioactive beams where the intensities are low. At relativis-
tic energies, the strongly and rapidly varying electric fields can lead to large
excitations of the nuclei that lead to particle emission or fission of the heaviest
nuclei (electromagnetic dissociation).

MeV (10.97)

10.12.2 Elastic Scattering

In Figure 10.24, the results for the angular distributions from the elastic
scattering of two light nuclei can be contrasted with that observed in the
collision involving a light ion with a much heavier target nucleus. Collisions
between the light nuclei show the characteristic Fraunhofer diffraction pattern
discussed earlier for nucleon scattering. The large Coulomb force associated
with the heavier nucleus acts as diverging lens, causing the diffraction pattern
to be that of Fresnel diffraction. For the case of Fresnel diffraction, special
emphasis is given to the point in the angular distribution of the scattered
particle where the cross section is 1/4 that of the Rutherford scattering cross
section. This “quarter-point angle” corresponds to the classical grazing angle.
Note that the elastic scattering cross section equals the Rutherford scattering
cross section at scattering angles significantly less than the quarter point angle.
Since the Rutherford scattering cross section is calculable, this fact allows
experimentalists to measure the number of elastically scattered particles at
angles less than the quarter point angle to deduce/monitor the beam intensity
in heavy-ion-induced reaction studies.

10.12.3 Fusion Reactions

In Figure 10.25, we show another representation of the difference between the
various near-barrier reaction mechanisms in terms of the energy needed to
induce the reactions. From a very abstract view, in the entrance channel there
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Figure 10.24 Angular distribution for € + %0 elastic scattering reaction showing a

Fraunhofer diffraction pattern and the elastic scattering of "°0 with *®*Pb showing a Fresnel
diffraction pattern (Valentin et al. (1981). Reproduced with the permission of Elsevier).
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Figure 10.25 Schematic illustration of the three critical energies and the four types of
near-barrier heavy-ion-induced nuclear reactions (Schroeder and Huizenga (1984).
Reproduced with the permission of Springer).



are two distinct nuclei in their ground states with some relative kinetic energy.
If the system fuses then the product is a CN then two separate nuclei have to
undergo a large transition in shape and character to form one (approximately)
spherical nucleus. From the kinetic energy standpoint, there is the minimum
energy needed to bring the ions in contact and thus interact, the interaction
barrier V(R,,,). Bass has formally shown that the reaction cross section can be
expressed in terms of this interaction barrier as

V(R
op=nR |1- Y Rin) (10.98)
" ECMS

where the interaction radius is given by Bass as

Ry =R +R,+32fm (10.99)
and the radius of each nucleus is

R;=1.124° —0.9447" fm (10.100)

and the Bass interaction barrier is given by the expression

2,2, RiR,
Viass Rin) = 1.44 MeV (R_> -b <m> (10.101)
where b ~ 1 MeV/fm. The energy necessary to cause the ions to interpenetrate
where the ions have not fully merged and leading to quasi-fusion is called the
extra-push energy in this framework. The higher energy necessary to cause
the ions to truly fuse and forget their mode of formation is referred to as the
extra—extra push energy.

The probability of fusion is also a sensitive function of the product of the
atomic numbers of the colliding ions due to the large influence of Coulomb
repulsion between two heavy ions. The abrupt decline of the fusion cross
section observed in the formation of the heaviest nuclei as the Coulomb
force between the ions increases leads to the emergence of the deep inelastic
reaction mechanism. This decline and other features of the fusion cross
section can be explained in terms of the potential energy surface on which
the colliding ions move. As before with nucleon projectiles, this potential has
of three contributions, the Coulomb potential, the nuclear potential, and the
centrifugal potential. The variation of this potential as a function of the angular
momentum £ is shown in Figure 10.26 for the reaction of 0 with '*’Sn. One
can image that the projectile approaches from the right side of the figure and
slows down as it rides up the potential energy curve. Note that at small values
of the angular momentum, there is a pocket in the potential. Fusion occurs
when the ions get trapped in this pocket. If they do not get trapped they do not
fuse. With high values of the Coulomb potential, there are few or no pockets
in the potential for any value of Z, thus no fusion occurs. For a given projectile
energy and Coulomb potential, there is a value of the angular momentum

int
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above which there are no pockets in the potential (the critical value of the
angular momentum), and thus no fusion occurs for trajectories with these
angular momenta.

Most of the stable nuclei are spherical, and one can construct an #-dependent
barrier to fusion that is the sum of the nuclear, Coulomb, and centrifugal
potentials for these nuclei. However, this barrier is a sensitive function of the
relative distance between the nuclei and thus would depend on the orientation
of deformed nuclei. The cross section is a very steeply rising function of energy
near the interaction barrier, and a small change in the Coulomb energy due
to the orientation of a deformed nucleus would change the cross section. In
Figure 10.27, the excitation function for fusion of O with various isotopes
of Sm is shown. Samarium is an even-Z element with many stable isotopes
having neutron numbers that range from the closed shell at N = 82 into the
region of nuclei with deformed ground states. One would have a significantly
lower threshold and enhanced cross section for fusion where the '°O ion
interacts with a deformed '**Sm nucleus compared with the reaction with a
near-spherical *Sm nucleus. This enhancement is the result of the lowering
of the fusion barrier for the collision with the deformed nucleus due to the fact
that the ions can come into contact at a larger value of, R resulting in a lower
Coulomb component of the potential.

Let us now consider what happens after the formation of a CN in a heavy-ion
fusion reaction. In Figure 10.28, we show the predictions for the decay of the
compound nuclei formed in the reaction of 147 MeV “Ar with "**Sn to form

"*Er at an excitation energy of 53.8 MeV. The probability distribution is shown
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as a function of the angular momentum and the excitation energy of the CN.
The angular momentum distribution in the CN populates states with £ = 0 to
607. The excitation energy is such that the preferred reaction channel is the
evaporation of four neutrons from the CN with lesser amounts of three and
five neutron emission. As the CN evaporates neutrons, the angular momentum
does not change much since each neutron removes a relatively small amount of
angular momentum. Eventually the yrast line restricts the population of states
in the E*-I plane. The yrast line is the locus of the excitation energy of the lowest
lying state of a given angular momentum in a nucleus (and thus depends on
the moment of inertia). Below the yrast line for a given spin, there cannot be
any excited states in that nucleus. (The word yrast is from the Old Norse for
the “dizziest”) When the system reaches the yrast line, it must decay by y-ray
emission to remove both excitation energy and angular momentum. Heavy-ion
fusion reactions are thus a tool to excite the highest spins in nuclei allowing the
study of nuclear structure at high angular momentum.

10.12.4 Incomplete Fusion

In the course of the fusion of the projectile and target nuclei, it is possible that
one of the reaction partners will emit a single nucleon or a nucleonic cluster
prior to the formation of a completely fused system. Such processes are referred
to as pre-equilibrium emission (in the case of nucleon emission) or incomplete
fusion (in the case of cluster emission). This process is particularly important
for reactions induced by the a-cluster nuclei such as ¢, 1°0, and “Ne. As the
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projectile energy increases above the interaction barrier, these processes can
become more important and can dominate complete fusion at projectile ener-
gies above 20 MeV/nucleon. As a consequence of these processes where some
part of the projectile is emitted with a high kinetic energy, the resulting product
nucleus (close in mass to the CN) will have a momentum that is reduced rela-
tive to that for complete fusion. Measurement of the cross section as a function
of momentum transfer in the collision provides a measure of the mass loss and
the probability of these phenomena. A high energy component added to the
expected evaporation distribution in the spectra of emitted particles is another
signature or pre-equilibrium emission.

10.12.5 Deep-Inelastic Scattering

Now let us turn our attention to the case of deep inelastic scattering that pri-
marily occurs between heavy-ion projectiles and heavy targets. In the early



1970s, as part of a quest to form superheavy elements by the fusion of Ar, Ca,
and even Kr ions with the heaviest target nuclei, a new nuclear reaction mecha-
nism was discovered called deep-inelastic scattering. For example, studies of the
reaction of * Krwith *Bi (some results are shown in Fig. 10.29) did not observe
the fission products of the completely fused nuclei (Zqy = 119, Aqy = 293),
rather projectile-like and target-like nuclei were produced with velocities close
to those of the projectile and target along with a new and unexpected group
of fragments with masses similar to those of the target and projectile at rel-
atively low kinetic energies. These nuclei appeared to have undergone a very
inelastic process that had resulted in the conversion of a large amount of the
incident projectile kinetic energy into internal excitation energy of the two frag-
ments. Further measurements revealed this to be a general phenomenon in
heavy-ion reactions where the product of the atomic numbers of the collid-
ing ions was very large (e.g., >2000). As indicated earlier, the colliding heavy
ions come together, interpenetrate slightly, exchange neutrons and protons,
dissipate kinetic energy in a diffusion process, and then reseparate under the
influence of their mutual Coulomb repulsion. In this case the Coulomb and
centrifugal energies are so large that the system never proceeds to a single
CN but retains a di-nuclear character. The initial projectile energy is said to be

Figure 10.29 Distributions of the cross sections as a function of kinetic energy (CMS) and
mass number from the reaction of **Kr with *’Bi. The contours are in mb and the solid
arrows indicate the projectile and target masses; the dashed arrow and the solid triangle
indicate the expected position of mass-symmetric fission products (Lefort et al. (1973).
Reproduced with the permission of Elsevier).



“damped” into the excitation energy of the projectile-like and target-like frag-
ments. These excited fragments undergo deexcitation cascades, evaporating
particles, and eventually y rays. As a consequence, the larger the kinetic energy
loss in the collision process, the broader the distribution of the final products.

10.13 High-Energy Nuclear Reactions

A nuclear reaction is said to be a low energy reaction if the projectile energy is
close to the interaction barrier, for example, E/A < 10 MeV/nucleon. A nuclear
reaction is termed a high-energy reaction if the projectile energy is much higher
and beginning to approach the rest mass, for example, >250 MeV/nucleon.
(Not surprisingly the reactions induced by 20-250 MeV/nucleon heavy-ion
projectiles are called intermediate energy reactions.)

What distinguishes low and high-energy reactions? In low energy nuclear
collisions, the nucleons of the projectile interact with the average or mean
nuclear force field associated with the entire target nucleus. In a high-energy
reaction, the nucleons of the projectile generally interact with the nucleons of
the target nucleus individually, as nucleon—nucleon collisions. To see why this
might occur, we should compare the de Broglie wavelength of a 10 MeV proton
with that of a 1000 MeV proton. We get A(10 MeV )= 9.0 fm and A(1000 MeV)=
0.73 fm. The average spacing between nucleons in a nucleus is ~1.2 fm. Thus,
we conclude that at low energies, a projectile nucleon will interact with the
nucleus as a whole, while at high energies, collisions can occur between the
incident nucleon and individual nucleons in the nucleus.

10.13.1 Spallation/Fragmentation Reactions

At high incident energies we must deal with nucleon—nucleon collisions and
we should not expect any significant amount of CN formation. Instead most
reactions should be reactions taking place on a short time scale that leave the
target and projectile in very excited states. If we limit the incident particle to
protons (as was true from a historical standpoint) after the collision, we would
be left with one of a set of target nuclei in a variety of excited states depend-
ing on the number of struck target nucleons. In Figure 10.30, we show a typical
distribution of the masses of the residual nuclei from the interaction of protons
at energies near 1 GeV with the heavy nucleus, *Bi. One observes a contin-
uous distribution of product masses ranging from the target mass to very low
masses at the highest incident energies. Three regions can be readily identified
in the yield distributions. One region is centered around one-half of the target
mass (A = 50-140) and consists of the products of the fission of a target-like
nucleus. There is a region with larger masses (A, > (2/3)A ;) that are the
products from a fast knockout reaction process called spallation. The incident



Figure 10.30 Distributions of the cross sections as a function of mass number from the
reaction of high energy protons with *9Bj (Miller and Hudis (1959). Reproduced with the
permission of Annual Reviews).

proton knocks out several nucleons in a series of two-body collisions, leaving
behind a highly excited heavy nucleus (see following text). This highly excited
nucleus goes on to decay by the evaporation of charged particles and neutrons,
forming a continuous distribution of products ranging downward in mass from
that of the target. The spread of the distribution in mass is correlated with the
incident energy. The term “spallation” was given to this phenomenon by one of
us (GTS) after consultation with a professor of English who assured him that
the verb “to spall” was a very appropriate term for this phenomenon. In the
region of the lowest mass fragments (A4 ,, < (1/3)A,,,4¢), One observes another
group of fragments that are called “intermediate mass fragments (IMF).” These
lightest fragments are thought to arise from the extremely excited remnants of
the most head-on collisions that decay by either long chains of sequential par-
ticle emission or nuclear shattering with simultaneous explosive disintegration
of the remnant.

Looking at spallation in a little more detail, the course of these reactions at
high energies is significantly different than that occurring at lower energies.
As mentioned earlier, high-energy collisions occur between pairs of nucleons



rather than having the incident nucleon (or nucleus) interact with the nucleus
as a whole. The cross section for nucleon—nucleon scattering varies inversely
with projectile energy. At the highest energies, this cross section may become
so small that some nucleons will pass through the nucleus without undergoing
any collisions, that is, the nucleus appears to be transparent. In this regard, a
useful quantitative measure of the number of collisions a nucleon undergoes in
traversing the nucleus is the mean free path A. Formally we have

A= L (10.102)

po
where o is the average nucleon—nucleon scattering cross section (~30 mb at
high energies) and p is the nuclear density (~ 1.5 X 103 nucleons/cm3 or ~0.15
nucleons/fm?). Thus, the mean free path of a high-energy nucleon in a nucleus
is ~3 X 107" c¢m or ~3 fm, which is about 1/4 the diameter of a large nucleus.
In each collision, the kinetic energy imparted to the struck nucleon is ~25 MeV
and thus the struck nucleon may collide with other nucleons depending on
its initial position in the nucleus, generating a cascade of struck particles (see
Fig. 10.31). If the energy of the incident nucleon exceeds ~300 MeV, then it
is possible to generate m-mesons in the nucleon—nucleon collisions, which, in
turn, can interact with other nucleons. A typical time scale for the fast cascade
is the time for the particles to propagate across the target nucleus or ~1072% s,
The result of this intranuclear cascade is an extremely excited (if not disrupted)

Nucleus

Figure 10.31 Schematic view of an intranuclear cascade in a large nucleus induced by a
high energy proton. Note that the size and localization of the nucleons are exaggerated and
small relative to the nucleus (Lieser (1997). Reproduced with the permission of VCH).



nucleus, which may decay by pre-equilibrium emission of particles, evapora-
tion of nucleons or heavier nuclei (alphas, etc.) or even disintegration into mul-
tiple fragments. The spallation products are produced nearly at rest in the target
frame and most remain in the target. Most of these products are radioactive,
and this mechanism provides an important technique for making radioactive
nuclei for study and is the basis of the isotope separator online (ISOL) facilities.
The difficulty is extracting the activity of interest from the target material in a
timely manner.

The Bevalac accelerator complex was constructed in the mid-1970s at
Berkeley to provide heavy-ion beams at relativistic energies for the first
time. This initiated the study of heavy-ion reactions at very high energies
(0.250-2.1 GeV/nucleon), which were qualitatively different from low-energy
heavy-ion reactions and even high-energy proton-induced reactions. At these
high projectile energies, the distributions of observed products (extremely
high-energy protons and neutrons along with significant residues of the target
and projectile) that were interpreted in terms of a simple geometric model
referred to as the abrasion—ablation or fireball model. The geometrical or
so-called macroscopic view of these collisions is outlined in Figure 10.32. In
the abrasion—ablation model, part of the incoming projectile is rapidly sheared
off and itself shears off a sector of the target (corresponding to the geometrical

Figure 10.32 Schematic views of the abrasion-ablation model of high energy
nucleus—-nucleus collisions: (@) emphasis on the formation of the target and projectile
fragments by the geometrical overlap of the densities; (b) emphasis on the formation of a
hot fireball of nuclear matter in the region of geometrical overlap of the two nuclei.



overlap region of the projectile and target nuclei—the “abrasion” step). The
nonoverlapping regions of the target and projectile nuclei were assumed to
be left essentially undisturbed and unheated because the projectile and target
move past one another before the unstruck nucleons can react, the so-called
spectators to the collision. The overlap region consists of high-excited nuclear
matter (the “participants” in the collision) that form a “fireball” that decays
explosively into nucleons and the lightest fragments. The distorted target and
projectile nuclei were expected to have a region of extra surface area exposed
by the cuts through them. Associated with this extra surface area is a relatively
small excitation energy; the surface area term of the semiempirical mass
equation indicates about 1 MeV per excess fm? of surface area. As the nucleus
relaxes, this excess surface energy becomes available as excitation energy and
results in the normal emission of nucleons and fragments (the “ablation” step).
This surface energy was found to be too small to explain the distribution of
products, and various other mechanisms were developed to deliver more
energy into the spectators.

The use of this simple model for high-energy nucleus—nucleus collisions has
resulted in a general categorization of energetic nucleus—nucleus collisions
as either “peripheral” or “central” The peripheral reactions take place at
large impact parameters with large residues of the target and projectile that
have small momentum transfer and relatively low excitation energies. Such
reactions that produce significantly large, surviving spectators are referred
to as fragmentation reactions. Notice that the projectile fragment from these
reactions will be moving close to the (vector) velocity of the beam. Most
of these fragments are radioactive nuclei, and some of the them have never
been studied because they are very exotic. The projectile fragments leave
the target very rapidly (less than a nanosecond) without undergoing any
chemical reactions. Various devices have been developed to collect and use the
projectile fragments. Modern radioactive beam facilities can accelerate heavy
nuclei and collide them with light targets such as beryllium to produce beams
of the most exotic nuclei for study and to induce secondary reactions (see
following text).

10.13.2 Reactions Induced by Radioactive Projectiles

There are <300 stable nuclei but several thousand nuclei that are radioactive
and have experimentally accessible lifetimes. In the recent past, one of the
fastest growing areas of research in nuclear science has been the study of
nuclear reactions induced by radioactive projectiles. Both the ISOL and
projectile-fragmentation (PF) techniques discussed in Chapter 14 have been
used to produce several hundred new radioactive nuclear beams for study of
the ions themselves or to induce secondary reactions. One of the principal
attractions in these studies is the ability to form reaction products or reaction



intermediates with very unusual N /Z ratios that are not possible by combining
the stable isotopes. The high-energy reaction of stable nuclei that are either
very proton-rich or very neutron-rich can produce radioactive nuclei through
fragmentation in regions of nuclei cannot be reached in direct or fusion
reactions. At higher energies, the isospin of the intermediate species may be
unusual, allowing one to determine the effect of isospin on the properties of
highly excited nuclear matter. Occasionally the radioactive beams themselves
have unusual structure, that is, ''Li, and their properties and reactions are of
interest.

10.13.3 Multifragmentation

In central collisions of high energy, heavy ions take place at the smallest impact
parameters and transfer the largest amount of energy and momentum from the
projectile motion into the participants. In central nucleus—nucleus collisions
at intermediate energies (~20—-200 MeV/nucleon), large values of the nuclear
excitation energy (>1000 MeV) and temperature (>10 MeV) may be achieved
for short periods of time (10722 s). Nuclei at these high excitation energies can
decay by the emission of small nuclei also called IMF. Colloquially, an IMF
is defined as a reaction product whose mass is >4 and less than that of a fis-
sion fragment. Multifragmentation occurs when several IMFs are produced in
a reaction. This could be the result of sequential binary processes, “statistical”
decay into many fragments (described by passage through a transition state or
the establishment of statistical equilibrium among fragments in a critical vol-
ume), or dynamical process in which the system evolves into regions of volume
and surface instabilities leading to simultaneous fragment production.

To investigate these phenomena, it is necessary to simultaneously measure
as many of the emitted fragments and particles from a reaction as possible.
As a result, various multidetector arrays have been constructed specifically
to study these reactions. Quite often these arrays consist of several hundred
individual detectors to detect the emitted IMFs, light charged particles,
sometimes neutrons, and even products from the target. As a consequence of
the high granularity of these detectors, the analysis of the experimental data is
time consuming and difficult. Nonetheless, several interesting developments
have occurred in recent years. One theory to describe multifragmentation
postulates the formation of a hot nuclear vapor during the reaction, which sub-
sequently condenses into droplets of liquid nuclear matter (IMFs) somewhere
near the critical temperature. First postulated to occur in the interaction of
giga-electron volt protons with xenon nuclei, recent experiments with heavy
ions have resulted in the deduction of the variation of the temperatures and
excitation energies (Fig. 10.33) that resemble that expected for a liquid- to
gas-phase transition. This “caloric curve” shows an initial rise in temperature
with excitation energy typical of heating a liquid, followed by a flat region (the
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Figure 10.33 Example of the comparison of the calculated caloric curve indicating a nuclear
phase transition in a multifragmentation model (left) and the results of the measurement of
the light products from several nuclear reactions (right).



phase transition), and followed by a region corresponding to heating a vapor.
There has been an extended debate and much discussion of the relative role
of statistical and dynamical factors in multifragmentation. The debate has
focussed on the observation that the data from several reactions indicate that
the probability of emitting multiple fragments, P, could be expressed in a form,
P x exp(—B/T), where B is constant and T is a nuclear temperature extracted
from the data. This variation suggests that the fragment emission probabilities
depend on a single fragment emission barrier, B, a feature that is consistent
with a statistical decay. Others have criticized this observation by focussing on
the details of the correlation and evidence for dynamic effects in the reactions.

10.13.4 Quark-Gluon Plasma

An important thrust in studies of central collisions at ultra-relativistic energies
(>5 GeV/nucleon) is to create and observe a new form of matter called the
quark-gluon plasma (QGP). The modern theory of the strong interaction,
quantum chromodynamics, predicts that while quarks and gluons will be
confined within a nucleon or colloquially a “nucleonic bag” under normal
conditions, they can become deconfined at sufficiently high thermal energies
and densities. A phase transition from normal nuclear matter to the QGP
is predicted to occur at energy densities of 1-3 GeV/fm3, which is thought
to be achievable in central collisions of large nuclei at CMS energies of
17 GeV/nucleon.

The experimental signatures of a phase transition include (a) suppression of
production of the heavy vector mesons such as the J/¥ and ¥’ resonance and
the upsilon states, (b) the creation of a large number of ss strange quark-strange
antiquark pairs, and (c) the momentum spectra, abundance, and direction of
emission of pairs of leptons (so-called di-lepton pairs). The first phase experi-
ments in this field have been carried out, and it is believed that energy densities
of ~2 GeV/fm3 were created. Strong / /¥ suppression has been observed rela-
tive to that observed in proton—nucleus collisions along with an increase in
strangeness production.

Problems

10.1 Consider the reaction of °O with *Ni at a CMS energy of 48 MeV.
What is the lab kinetic energy of the '°0 ? What is the Coulomb bar-
rier for the reaction? What is the total reaction cross section at this
energy? What is the maximum angular momentum brought in by the
0 projectile at this energy?
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One reaction proposed for the synthesis of Darmstadtium (Z = 110)
is the reaction of  Co with *”Bi at a laboratory energy of 300 MeV.
Calculate the expected total reaction cross section for this reaction.

Define or describe the following terms or phenomena: direct reaction,
compound nucleus, and stripping reaction.

A piece of gold metal that is 1.0 mm thick is bombarded for 15 h
by a slow neutron beam of intensity 10%/s. How many disintegra-
tions per second of " Au are present in this sample 24 h after the
end of the bombardment? o(n,y) =98.8b at this neutron energy,
t,(***Au) = 2.7 days.

What was the rate of production, in atoms per second, of | during a
constant 1 h cyclotron (induced neutron) irradiation of a pure iodine
sample if the sample was found to contain 2.00 mCi of 2 activity at
15 min after end of the irradiation?

What is the excitation energy of the 1ogh compound nuclei formed by
the bombardment of ' Rh with 50 MeV °C ions?

Recall that neutrons evaporated from a compound nucleus are known
to have an average kinetic energy of 2T, where T is the nuclear temper-
ature of the residual nucleus. What is the optimum bombarding energy
for the production of ®*Ga via the ®*Cu(a, 3#) reaction if the average
nuclear temperature is 1.6 MeV?

What is the number of *Co atoms produced in a 10 mg sample of cobalt
metal exposed for 2.0 min to a thermal neutron flux of 2 x 10'3 n/cm? /s
in areactor? The cross section for producing 10.5 min ®Co™is 16 barns,
while the cross section for producing 5.3 y “Co ground state is 20 barns.
What is the disintegration rate of the cobalt sample 4 h after the end of
the irradiation?

Consider the **Ca + ***Cm reaction where the lab energy of the “Ca
is 300 MeV. What is the excitation energy of the putative compound
nucleus *°116? What is the expected total reaction cross section at this
energy?

A 100 mg/cm? thick natural zirconium target was bombarded with a
beam of 11 MeV protons for 1 h (beam current = 25pA). The >Nb™
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from the reaction *®Zr(p, 2n) was isolated chemically (with a 100%
yield), and the k-X-rays resulting from the internal conversion decay
of ®*Nb™ were counted. In a 2-h long count beginning 20 h after the
end of bombardment, 1000 counts were observed in the Nb Ka-X-ray
peak. Given the *Nb decay scheme shown below and the data given
below, calculate the cross section for the *°Zr(p, 2n)*Nb™ reaction.
Fluorescence yield = 0.7 and efficiency of detection of the K-X-ray is
1073, o = 2.21.

Consider the reaction of 10 MeV/nucleon X e with 2*U. What is the

kinetic energy of the elastically scattered »Xe detected at 10° in the
lab system?

Consider the 40Ca(d, p) reaction. What would be the most probable
angle to detect the protons leading to the first excited state (3/27) of
*'Ca? What would be the proton kinetic energy at this angle if the
energy of the incident deuteron beam was 21.0 MeV?

Consider you want to make ' F for use in PET studies. What would be
the maximum specific activity (dpm/g F) of the "F made by irradiat-
ing 1.0 g of KF in a flux of 10'° fast neutrons/cm?/s. You may assume
the 19F(n, 2n) cross section is 300 mb. Imagine you want to produce
the "°F carrier-free (i-e., with no stable fluorine present). Devise a syn-
thetic scheme for producing the carrier-free "*E. Defend your choice of
nuclear reaction.

Consider the nuclide *Tc” that is the daughter of *Mo. Most diag-
nostic procedures involving radioactivity in the United States involve
P, Explain how you would produce Mo (the 66.0 h parent of 6.0 h

9 . . . 99
Tc™). Compare and contrast two possible choices, production of Mo
. . 98 .
as a fission product or via the " Mo(n,y) reaction.

Calculate the activity of **No (t; /o = 55 s) present 5.0 min after a

10 min irradiation of a 0.0010 in thick ***Pb foil by “Ca projectiles
(® = 6.28 x 10'2 particles/s). Assume c(*¥Ca, 2n) is 3 x 1073° cm?.

Consider the reaction '>C(a, n) where the laboratory energy of the inci-
dent o particle is 14.6 MeV. What is the excitation energy of the com-
pound nucleus? The reaction cross section is 25 mb. Assuming a carbon
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target thickness of 0.10 mg/cm? and a beam current of 25 pnA, com-
pute the O activity after a 4.0 min irradiation.

The cross section for the 6ONi(oc, pn) reaction is 0.9 barn for 32 MeV
a-particles. Calculate the number of disintegrations per minute of “cu

at 15 min after a 15 min bombardment of a 50 mg/cm? foil of “Ni with
10 ppA of 32 MeV a-particles.

Consider the reaction 29Si(wO,pZn) that populates the metastable and

ground states of “se. Using the decay scheme shown later, and the fact
that at EOB one observed 1000 photons/s at an energy of 271.2 keV
and 1000 photons/s at an energy of 1157.0 keV, calculate the ratio of
the cross section for the production of 44SC’”, o, to the cross section

for the production of “se, o, Neglect any decay of “Semto e during
the irradiation and assume the length of the irradiation was 6 h.

6* 271.2 keV t, =2.44d

44gom

86.6%

t,=3.93h

12
44SC

B+, EC
2 1157.0 keV
0* 99.89%

o+ 0

4Ca
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11

Fission

11.1 Introduction

Fission has a unique importance among nuclear reactions. Apart from the
nuclear reactions that drive the sun, no other nuclear reaction has had such
a profound impact on the affairs of man. The discovery of fission and the
developments that proceeded from it have altered the world forever and have
impinged on the consciousness of every literate human being. The exploitation
of nuclear energy that followed the discovery of fission, particularly in weapons
of mass destruction, has been of profound importance to humankind.

Chemists have played an important role in the study of fission. Fission was
discovered by the chemists Otto Hahn and Fritz Strassmann in 1938 (cf. trans-
lation by Graetzer (1964)). By painstakingly difficult chemical separations, they
were able to show the neutron irradiation of uranium led not to many new ele-
ments as had been thought but to products like barium, lanthanum, and so
on. The uranium nucleus had not increased in size by adding a neutron but
had been split! That conclusion caused Hahn and Strassmann much concern as
they wrote “As ‘nuclear chemists’ working very close to the field of physics, we
cannot bring ourselves yet to take such a drastic step (to conclude that uranium
had fissioned), which goes against all previous experience in nuclear physics”
(Am. J. Phys. 32, (1964), 15). Nuclear chemists have continued their role in
studying fission, first using chemical techniques and, more recently, using phys-
ical techniques.

Knowledge of fission and its consequences is important for the nuclear power
industry and the related fields of nuclear waste management and environmen-
tal cleanup. From the point of view of basic research, fission continues to be
interesting in its own right as an example of large-scale collective motion of
the nucleus, as an important exit channel for many nuclear reactions, and as a
source of neutron-rich nuclei for nuclear structure studies and use as radioac-
tive beams.

The reader should be cautioned that understanding the fission process
represents a very difficult problem. Some of the best minds in chemistry and



physics have worked on the problem since the discovery of fission. Yet while
we understand many aspects of the fission process, there is no overall theo-
retical framework that gives a satisfactory account of the basic observations.
Figure 11.1 presents a schematic view of the fission process. A nucleus with
some small equilibrium (ground-state) deformation absorbs energy through
some process, becomes excited, and deforms into a configuration known as
the “transition-state” or “saddle point” configuration. As the nucleus deforms,
the nuclear Coulomb energy decreases (as the average distance between the
protons in the excited nucleus increases), while the nuclear surface energy
increases (as the nuclear surface area increases). At the saddle point, the rate
of change of the Coulomb energy is equal to the rate of change of the nuclear
surface energy. The formation and decay of this transition state of the nucleus is
the rate-determining step in the fission process and corresponds to the passage
over an activation energy barrier to the reaction. If the nucleus deforms beyond
this point, it is irretrievably committed to fission. When the nucleus crosses
the transition state, then in a very short time, the neck between the nascent
fragments disappears (ruptures) and the nucleus divides into two fragments
at the “scission point” At the scission point, one has two highly charged,
deformed nuclear fragments in contact with each other. The large Coulomb
repulsion between the two fragments accelerates them to ~90% of their final
kinetic energy within ~1072° s. As these accelerated primary fragments move
away from one another, they contract to more spherical shapes, converting the
potential energy of deformation into internal excitation energy, that is, they
become “hotter” This excitation energy is removed by the emission of so-called
prompt neutrons emitted from the fully accelerated fragments, and then, in
increasing competition with the last neutrons to be emitted, the nucleus emits
y-rays. Finally, on a longer time scale, the neutron-rich fragments emit f~ parti-
cles. Occasionally one of these -decays populates a high-lying excited state of
a daughter that is unstable with respect to neutron emission, and the daughter
nucleus can emit a neutron long after the fission event. These few neutrons are
called “delayed” neutrons and provide the basis for controlled fission reactors.
Note that this schematic view conflicts with some presentations of fission in
elementary textbooks. For example, since the neutrons are mostly emitted
primarily from the fully accelerated fragments, their spatial distribution is
concentrated along the direction of motion of the fragments. The neutrons do
not emerge randomly from the fissioning nucleus as many artists’ conceptions
of fission depict. Also note that the energy release in fission is primarily in the
form of the kinetic energies of the fragments, not in the neutrons, photons, or
other emitted particles. This energy is the “mass—energy” released in fission
due to the increased stability of the fission fragments.

Because of the large amount of experimental information available about fis-
sion, it is beyond the scope of this chapter to present a complete treatment of
fission research. We shall attempt to emphasize the fundamental aspects of the
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Figure 11.1 Schematic overview of the nuclear fission process (Gindler and Huizenga

(1964). Reproduced with the permission of Elsevier).

subject. The reader is referred to one of the excellent monographs or reviews of
fission Hoffman et al., 1996; Oganessian and Lazarev, 1985; Vandenbosch and
Huizenga, 1973; Wagemans, 1991 for further information.



11.2 Probability of Fission

11.2.1 Liquid Drop Model

Figure 11.1 suggests that fission proceeds in three steps, the ascent to the sad-
dle point, the critical passage over the saddle point, and the descent through
the scission point. We shall present our discussion of fission from this point of
view where we concentrate on the first two steps. We shall assert that like chem-
ical reactions, the reaction probability is determined by the passage through the
transition state. We shall also assert, perhaps more controversially, that the dis-
tribution of fission product energies, masses, and so on is determined at or near
the scission point.

Let us begin with a discussion of the probability of fission. For the first approx-
imation to the estimation of the fission barrier, we shall use the liquid drop
model (Chapter 2). We can parameterize the small nonequilibrium deforma-
tions, that is, elongations, of the nuclear surface as

R(©) = Ry[1 + a, Py(cos0)] (11.1)

where «, is the quadrupole distortion parameter (=4/5/4nf,) and P, is the
second-order Legendre polynomial. For small distortions of a sphere, the sur-
face, Eg, and Coulomb, E, energies are given by

2
Eg=E (1 + 50(5) (11.2)

1
Ec=E(1- go@) (11.3)

where EJ and E. are the surface and Coulomb energies of the undistorted spher-
ical drops, respectively. When the changes in the Coulomb and surface energies
(AE. = EY. — Ec, AEg = Eg — EY) are equal, the nucleus becomes spontaneously
unstable with respect to fission. At that point we find that

E°

C
< - 11.4
2E] (L4

Thus it is natural to express the fissionability of nuclei in terms of a parameter
x, that is, this energy ratio and is called the fissionability parameter. Thus

_ E} _ 1 Coulomb energy of a charged sphere (11.5)
v 2E) "~ 2 Surface energy of that sphere '




and will be a constant for a given nucleus. We can approximate the Coulomb
and surface energies of a uniformly charged sphere by the following expres-

sions:
o _ § 2262 _ ZZ
E. = 5—r0A1/3 =\ 15 (11.6)
EY — 4nriSAY? = a A3 (11.7)

where a- = 3€?/5r,, S is the surface tension per unit area (~ 1 MeV /fm?), and
ag = 4nr}S. Then the equation for x becomes
a 2 Z*]A
ve (XN (2 24 (11.8)
2“5 A (22 /A)Critical
where the ratio of the constants (a./2ag) ! is referred to as (Z%/A) iiical- The fis-
sility of a given nucleus thus is viewed relative to the value of (Z%/A),,;iica- More
sophisticated treatments of the fissionability of nuclei show that (Z?/A) ica

varies slightly from nucleus to nucleus (due to the isospin asymmetry) and
should be given by the expression

Vi _ N-2)\°
<K>critical = 50.883 ll —1.7826 <T> ] (11.9)

The parameters Z2 /A and x provide measures of the relative fissionability of
nuclei. The greater the value of these parameters, the more “fissionable” the
nuclei are, although the scale is rather compressed. Very fissionable nuclei like
*’Pu have 22 /A values of 36.97, while less fissionable nuclei like *Bi have
Z?/A values of 32.96. Recall that the Z?/A factor is simply proportional to
the ratio of the disruptive Coulomb energy («xZ?/A'/?) to the cohesive surface
(nuclear) energy (xA?/3).

Note that the parameter (Z?/A) ;. 1S the ratio of two empirical constants
related to the strength of the Coulomb and surface (nuclear) forces. If we take
the view that the limit to the size of the periodic table is given by the point at

which the heaviest nuclei spontaneously undergo fission
E
< (11.10)
2E

We can rearrange these equations to find the value of the atomic number Z
at which this occurs. Thus, Z,,.;; is given by the expression

a
Zl2imit =2 <_S> Alimit (11.11)
ac

If we remember that the neutron/proton ratio in heavy nuclei is about 1.5,
then Z; ., will be about 5(ag/a.). Thus, we can set the upper bound to the
periodic table from the ratio of two constants relating to the strength of the



fundamental nuclear and Coulomb forces. The ratio ag/a is about 20-25, and
so we can expect a fundamental limit of about 100—125 chemical elements!
For all stable nuclei, x must be < 1, and the total deformation energy of nuclei
undergoing fission will increase by an amount (1/ 5)0(%(2E(S) - Eg), as the nucleus
deforms toward fission. This increase in potential energy can be thought of as
an activation energy barrier for the reaction. Eventually if the deformation pro-
ceeds far enough, the decrease in Coulomb energy will overwhelm the increase
in surface energy, and the deformation energy will decrease. (In this case, the
simple deformation energy formulas used so far in our discussion become inac-
curate, and more complicated formulas must be used.) One can appreciate the
difficulty of these calculations by a simple example. The liquid drop fission bar-
rier for U is 4.8 MeV. Equating this to (1/5)a3(2E9 — E2) and using the values

of 983 MeV for E. and 695 MeV for EY for ?**U, one can estimate that the value
of the deformation parameter a, is 0.243, which requires changes in the surface
and Coulomb energies (AEJ and AEY) of 16.4 and 11.6 MeV, respectively. Thus,
one sees that the resulting fission barrier heights are small differences between
two larger numbers that may be difficult to determine. Modern calculations
of the potential energy of deformation for the liquid drop model involve many
deformation coordinates (as many as five or six at present, not just the a, used
previously) and represent major computational tasks.

11.2.2 Shell Corrections

Figure 11.2 illustrates how some of the basic features of nuclei combine to give
an overall fission barrier. The fission barriers are estimated with the liquid drop
model for a range of actinide nuclei along with a qualitative estimate of the
variation of the nuclear shells with deformation. Focusing on the upper part
of the figure, the fission barrier height decreases, and the maximum (saddle
point) moves to smaller deformations as Z?/A increases. In the lighter nuclei
the saddle point and scission point configurations are more similar, that is, have
a similar deformation, than in the heavier nuclei.

As we learned in Chapter 2, it is necessary to include shell effects in the liq-
uid drop model if we want to get reasonable agreement of the predictions with
nuclear masses. Similarly we must devise a way to include shell effects with
the liquid drop model description of the effect of deforming nuclei. Strutinsky
(1967) proposed such a method to calculate these “shell corrections” (and also
corrections for nuclear pairing) with the framework of the liquid drop model.
In this method, the total energy of the nucleus is taken as the sum of a liquid
drop model energy, E; ), and the shell (8S) and pairing (8P) corrections to this
energy:

E=Eqpy+ ) (85+5P) (11.12)

p:n



Figure 11.2 Qualitative features of
the fission barriers for some
actinide nuclei as a function of
deformation (Britt (1982).
Reproduced with the permission of
Pergammon Press, Ltd.).
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The shell corrections, just like the liquid drop energy, are functions of the
nuclear deformation. The shell corrections tend to lower the ground-state
masses of spherical nuclei with magic or near-magic numbers of neutrons and
protons. They also tend to lower the ground-state mass of mid-shell nuclei
at various finite deformations (e.g., f, = 0.3), thus accounting for deformed
nature of the actinides. Large shell correction energies are found when the
ratios of the major/minor nuclear axes are in the ratio of small whole numbers,
as 3 : 2 or 2 : 1 (corresponding to bunching up of the single particle levels).
The result of combining these deformation-dependent shell corrections with
the liquid drop barriers is shown schematically in Figure 11.2. The stable
ground-state shapes of the actinide nuclei in the figure are predicted to have
some finite deformation (B, ~ 0.2) rather than zero deformation (a sphere),
and a secondary minimum in the barrier appears at p, ~ 0.6 (axes ratio of
2 : 1). In the heaviest nuclei (Z > 106), where the liquid drop fission barriers
are very small or nonexistent, the observed fission barrier heights are due
primarily to a lowering of the ground-state mass by shell corrections. Without
these shell effects, the heaviest nuclei could not be observed as they would
decay by spontaneous fission on a time scale much shorter than we can observe

(t1/5 < ps).



Notice that this combination of macroscopic (LD) and microscopic (shell)
effects predicts a double-humped fission barrier with equal barrier heights, and
a deep secondary minimum will occur for nuclei in the uranium-plutonium
region. For heavier nuclei, like californium, the first barrier is predicted to
be much larger than the second barrier, and passage over this first barrier is
rate determining. In effect, these heavy nuclei (Z > 100) behave as though
they have a high, thin single barrier to fission. The predicted barrier shape
is triple-humped in many cases for lighter nuclei (radium, thorium). The
reader should be aware that the situation is even more complicated than this;
cursory description would indicate as the variability of nuclear shapes should
make it clear that the real fission barriers are multidimensional in character
with a complicated dependence on asymmetric and symmetric deformations.
In general, there is ample experimental and theoretical evidence that the
lowest-energy path in the fission process corresponds to having the nucleus,
initially in an axially symmetric and mass (reflection) symmetric shape, pass
over the first maximum in the fission barrier with an axially asymmetric but
mass symmetric shape and then pass over the second maximum in the barrier
with an axially symmetric but mass (reflection) asymmetric shape. Because of
the complicated multidimensional character of the fission process, there are
no simple formulas for the fission barrier heights. However, the reader can find
(Vandenbosch and Huizenga, 1973; Wagemans, 1991) extensive tabulations of
experimental characterizations of the fission barrier heights for various nuclei.

Nuclei can be trapped in the secondary minimum of the fission barrier. Such
trapped nuclei will experience a significant hindrance of their y-ray decay
back to the ground state (because of the large shape change involved) and
an enhancement of their decay by spontaneous fission (due to the “thinner”
barrier, they would have to penetrate). Such nuclei are called spontaneously
fissioning isomers, and they were first observed in 1962 and are discussed
in the succeeding text. They are members of a general class of nuclei, called
super-deformed nuclei that have shapes with axes ratios of 2 : 1. These nuclei
are all trapped in a pocket in the potential energy surface due to a shell effect
at this deformation.

11.2.3 Spontaneous Fission

In 1940 Petrzhak and Flerov discovered that ***U could decay by spontaneously
fissioning into two large fragments (with a probability that was 5x 1077 of
that of undergoing a-decay). Over 100 examples of this decay mode have
been found since then. Spontaneous fission is a rare decay mode in the light
actinides and increases in importance with increasing atomic number until it
is a stability-limiting mode for nuclei with Z > 98. The spontaneous fission
half-lives change by a factor of 10* in going from the longest-lived uranium
nuclei to the short-lived isotopes of fermium.



It is clear from these basic facts and our picture of fission that spontaneous
fission is a barrier penetration phenomenon similar to a or proton decay. The
nucleus “tunnels” from its ground state through the fission barrier to the scis-
sion point. Therefore we would expect the spontaneous fission half-life to have
the form

SF = lnﬁ

1/2 ﬂ)
where f is the frequency of assaults on the fission barrier in the first minimum
(~10%/s) and P is the barrier penetrability. As in a or proton decay, the
penetrability factor is the most important term. The calculation of the barrier
penetrability is complicated by the double-or triple-humped shape of the
multi-dimensional barrier. A simple model for the barrier (near its top) is
that of an inverted harmonic oscillator potential (a parabola) as indicated in
Figure 11.3. The Hill-Wheeler formula describes the transmission coefficient
for penetration of such a barrier as

P=(1+ 2n(B) B
= exp = (11.14)

where By is the fission barrier height and 7o is the barrier curvature (spacing
between the levels in the corresponding “normal” harmonic oscillator poten-
tial). Large values of A imply tall, thin barriers with high penetrabilities; low
values of 7w imply short, thick barriers with low penetrabilities. Combining
equations gives

(11.13)

2n B
£}, ~ 277 X107 exp < hmf> s (11.15)

As an exercise, we can compare the spontaneous fission half-lives of two nuclei
with barrier heights of 5 and 6 MeV, respectively, and barrier curvatures of

Figure 11.3 A simple parabolic
fission barrier (Vandenbosch and
Huizenga (1973). Reproduced
with the permission of Elsevier).




Figure 11.4 Spontaneous fission
half-lives of even-even (solid
L points) and even—odd nuclides
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0.5 MeV. One quickly finds that the spontaneous fission half-lives of these two
nuclei differ by a factor of 3 x 10°. The barrier heights and curvatures in this
example are similar to those in the actinides and illustrate the exponential
nature of barrier penetration in that a 1 MeV uncertainty in the fission barrier
height corresponds to a factor of 10° in the spontaneous fission half-life.

In our previous discussion, we showed that the fission barrier heights depend
on Z? /A and thus so should the spontaneous fission half-lives. The dependence
of the known spontaneous fission half-lives on x, the fissionability parameter,
is shown in Figure 11.4. There is an overall decrease in spontaneous fission
half-life with increasing x, but clearly the spontaneous fission half-life does not
depend solely on Z2/A. One also observes that the odd A nuclei have abnor-
mally long half-lives relative to the even—even nuclei. In addition, the sponta-
neous fission half-lives of the heaviest nuclei (Z > 104) are roughly similar with
values of milliseconds.

Similar observations were made in the discussion of o decay. Swiatecki has
shown that there is a correlation between the deviations of the spontaneous
fission half-lives from the smooth trend with Z?/A and the deviations of
the ground-state masses from those expected from the liquid drop model.
(These deviations are exactly the shell and pairing corrections discussed
previously.) Following the prescription developed by Swiatecki, we can plot
the function log(?,,) + 56m versus x, where dm represents the deviation of
the ground-state mass from the liquid drop model. The correlation, shown in
Figure 11.5, becomes much better, indicating we have perhaps identified the



Figure 11.5 Spontaneous fission
half-lives, corrected according to
the method of Swiatecki, versus
fissionability parameter x
(Vandenbosch and Huizenga
(1973). Reproduced with the
permission of Elsevier).
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essence of the phenomenon. However, we should note that the half-lives of
the odd A nuclei are still significantly longer than those of the neighboring
even—even nuclei even though we have corrected the effect of the ground-state
masses. We can parameterize this difference with a hindrance factor similar
to that used in o decay systematics. In the present case, the hindrance factor
is defined as the log of the ratio of the observed half-life for an odd A nucleus
to that of the neighboring even—even nuclei. For the odd A nuclei, typical
hindrance factors of 5 are observed, that is, the odd A half-lives are ~10° times
longer than those of their even—even neighbors (Hoffman et al., 1996).

11.2.4 Spontaneously Fissioning Isomers

Since the discovery of the first spontaneously fissioning isomer, a number of
other examples have been found. The positions of these nuclei in the chart of
nuclides are shown in Figure 11.6. These isomers range from thorium to berke-
lium, forming an island with a point of maximum stability near *2Am. y-ray
decay back to the ground-state limits the number of isomers with lower Z and
N than those in this island, while spontaneous fission decay limits the number
of cases with high Z and N. The half-lives range from 10~ to 1073 s, whereas the
ground-state half-lives of the same nuclei are ~10%° to 10%° times longer. The
typical excitation energy of these isomers is 2—3 MeV. Spectroscopic studies of
the transitions between the states in the second minimum has established that
the moments of inertia associated with the rotational bands of these excited
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Figure 11.6 The positions of the known spontaneously fissioning isomers in the high mass
end of the chart of nuclides. The dark-colored boxes indicate one isomeric state, while the
light-colored boxes indicate two isomeric states (Vandenbosch and Huizenga (1973).
Reproduced with the permission of Elsevier). (See insert for color representation of the figure.)

nuclei are those expected for an object with an axes ratio of 2 : 1, a result con-
firmed in other quadrupole moment studies.

11.2.5 The Transition Nucleus

In analogy to chemical reactions, we might expect the probability of fission as
expressed in terms of the fission width, I';(= /) to be given by the expression

B,
I, = Aexp <T> (11.16)

where B; is the fission barrier height. It turns out that this approach is an over-
simplification, but it has certain pedagogical uses. For example, in an early
paper describing fission, Bohr and Wheeler were able to use this idea to show
that a rare odd A isotope of uranium, 235U, was responsible for the fission of
natural uranium by thermal neutrons, not the more abundant even—even iso-
tope 0. The ability to cause odd A actinide nuclei to undergo fission when
bombarded with thermal neutrons is of great practical importance. Because
of the large cross sections associated with thermal neutrons due to their long
wavelengths, the fission cross sections for these odd A nuclei are very large.
For the “big three” nuclei, 3y, U, and *’Pu, of which significant quanti-
ties can be produced, the thermal neutron-induced fission cross sections are
530, 586, and 752 barns, respectively. These three actinides are the basis for
the fuel in nuclear reactors and nuclear weapons utilizing fission by thermal
neutrons.



Sample Problem 11.1: Fission Barriers and Excitation Energy

Why do thermal neutrons whose kinetic energy is 0.025 eV cause Uto
fission, but not > U?

Solution
Let us calculate the energy released when a neutron is captured by y

and U .. (This will be equivalent to the binding energy of the last neutron

in **°U and 239U.)

For 235U

B = [M(235) + M(n) — M(236)]c>
— 40.913 + 8.071 — 42.440 = 6.544 MeV

For 238U

EXS = [M(238) + M(n) — M(239)]c>
= 47.305 + 8.071 — 50.570 = 4.806 MeV

The fission barrier in 23>238U is ~5.7 MeV. Thus, for **°U + n, we exceed
the fission barrier even with “zero kinetic energy” neutrons, while for
28U + n, we will need ~1 MeV neutrons to get over the fission barrier.
In fact, this example suggests 23U would fission even if we bombarded it
with “negative kinetic energy” neutrons. Where would we find such neu-
trons? Consider the reaction 2*>U(d,p). The Q value for this reaction is
negative, and it is equivalent to adding a neutron to the nucleus and can
even correspond, at low bombarding energies, to the addition of “negative
kinetic energy” neutrons to the nucleus, allowing studies of near-barrier
phenomena in this and other odd A actinides.

We should note that once again, the probability of fission is more complicated
than what the simple relation given previously would indicate. In a paper writ-
ten shortly after the discovery of fission, Bohr and Wheeler showed that fission
has to compete with other modes of nuclear de-excitation. They showed that
I'; should be written as

Ny
Ffz
N;+N,+N,+ N,

(11.17)

where N, is a measure of the number of ways (open channels) to accomplish
each possible de-excitation process (N; = 2zI';/D). When evaluating Ny, one
must evaluate p;, the density of levels in the transition-state nucleus that lead
to fission. N,, is the principal term in this equation for heavy nuclei (i.e., it
is the most likely decay channel) and is taken as the number of final states
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of the daughter nucleus (after emitting a neutron) times the neutron kinetic
energy. N, is the number of states decaying by y-ray emission to a lower-lying
level (small but important below the neutron separation energy), and N, is
the number of states decaying by charged-particle emission (negligibly small).
Bohr and Wheeler’s predictions of the probability of fission in 233U as a function
of excitation energy are shown in Figure 11.7.

In nuclear reactors one has neutrons with energies ranging from thermal
energies (0.025 eV) to several MeV. There are a series of sharp peaks in the
cross section for neutron-induced reactions with energies between 0.2 and
3000 eV that are called “resonances”” (See discussion in Chapter 10.) These
resonances correspond to exciting specific isolated level in the compound
nucleus (CN) that can decay by fission. The situation is particularly interesting
for the neutron irradiation of even—even nuclei, like 24OPu at subthreshold
energies as shown in Figure 11.8. The resonances associated with fission
appear to cluster in bunches, but not all resonances in the CN lead to fission.
We can understand this situation with the help of Figure 11.9. The normal
resonances correspond to excitation of levels in the CN, which are levels in
the first minimum shown schematically in Figure 11.9. When one of these
metastable levels exactly corresponds to a level in the second minimum, then
there will be enhanced tunneling through the fission barrier and an enhanced
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Figure 11.8 The neutron total reaction cross sections (above) and sub-barrier fission cross
sections (below) of 24°Pu as a function of neutron energy between 0.5 and 3 keV (Wagemans
(1991). Reproduced with the permission of CRC Press).

fission cross section. The state in the second minimum can have a significant
width due to a short lifetime and could overlap with several states in the
ground state well, giving rise to the clusters of states.

When higher-energy (E > 1 MeV) neutrons interact with nuclei like 2y
where the fission barrier height is greater than the neutron separation energy, a
stairstep pattern is observed in the excitation function. The excitation function
is the variation of the cross section with energy as seen in Figure 11.10. The
first rise and plateau is due to the occurrence of the (#, f) reaction. The second
rise and plateau is due to the (n, nf) reaction called “second-chance fission”
where one neutron is emitted and the daughter is still highly excited and
undergoes fission. The third rise and plateau is due to the (1, 2nf) reaction and
called “third-chance fission” For nuclei with B, < B, a similar pattern occurs
but riding on top of a rapidly decreasing cross section at low energies due to
1/v absorption of neutrons.

How do we estimate the factors determining the fission probability when the
excitation energy of the fissioning system is 10 MeV or more? (How do we cal-
culate the various widths?) At these excitation energies, we have reached the
point where the statistical model of nuclear reactions can be used. The most
important terms in the branching ratio are only I', and I';. Some experimen-
tal data on the ratio of I', to I'; at excitation energies of 5-25 MeV is shown
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Figure 11.10 Fission excitation function for n + 238U for incident neutron kinetic energies
between 1 and 22 MeV.

in Figure 11.11. One notes the general trend in I', /T, with increasing Z and A
(consistent with the qualitative dependence on Z%/A for fission). For this lim-
ited range of energies, the ratio I', /T’y can be parameterized as

I, 2TA%3 [(Bf - Bn)]
= X —_—

oo AT 1118
T, 10Mev© T (11.18)
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Figure 11.11 Values of theratio I, /T, as a function of the mass number of the fissioning
system (Vandenbosch and Huizenga (1973). Reproduced with the permission of Elsevier).

where Bf, B,, and the nuclear temperature T = 1/8E* /A refer to the fission-
ing system. A more rigorous expression that can be used over a wider range of
excitation energies is

r, gwy 4A*Pa (E* - B,)

o m, [2@- 1]
X exp [2m — 2y fa (E - Bf)] (11.19)

where a,, is the level density parameter of the residual nucleus after emission
of a neutron and 4, is that of the deformed transition-state nucleus. Note that
I, /T is related to the difference (B, — B,) as shown in Figure 11.12.

Sample Problem 11.2: Fission Probability

Consider the bombardment of ***U with 42 MeV a-particles. What frac-
tion of the initial nuclei undergoes first-chance fission?

Solution
First evaluate the excitation energy of the compound nucleus *py, E*
and the neutron binding energy B, and use the figure to estimate I', /I’;.



Then recall that the branching ratio is the ratio of one channel to the sum
of all channels:

238
E* =42 (—)
2a2) " Qow

Qcy = [M(PBU) + M, — M(***Puw)]c?
Qcx = 47.305 + 2,425 — 54.712 = —4.982 MeV
E* = 36.3 MeV

The neutron binding energy in ***Pu is 6.3 MeV and B; = 5.3 MeV. From
Figure 11.12, T, /T, = 3. Assuming that only neutron emission and fission
are the important decay channels, I';/T", + I, = 1/(3 + 1) = 0.25. Thus,
~25% of the nuclei are expected to undergo nuclear fission before emit-
ting a neutron.
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Figure 11.12 Excitation energy dependence of the ratio I, /T, for different values of
(B; — B,)). Note that the figure uses the symbol E; for the fission barrier (Vandenbosch and
Huizenga (1973). Reproduced with the permission of Elsevier).



For reactions induced by heavy ions or high-energy charged particles,
these expressions should be corrected for the effect of angular momentum.
For example, there will be excitation energy tied up in rotation, which is
unavailable for fission (Vandenbosch and Huizenga, 1973), and the fission
barriers are lower for rotating nuclei. For reactions involving less fissionable
nuclei (¥ < 0.7), especially at higher energies, one frequently sees that the
primary reaction products first decay by sequential emission of neutrons or
charged particles and then as Z2 /A increases, fission occurs at the last stages
of the evaporation chains.

11.3 Dynamical Properties of Fission Fragments

One of the properties of fission fragments that can be exploited is the angular
distribution. Fission is generally considered to be a “slow” process, in which
the fissioning nucleus stays in statistical equilibrium. The angular distribution
of the fission fragments will, therefore, be symmetric with respect to a plane
perpendicular to the direction of motion of the fissioning system, that is, the
fragment angular distributions will be symmetric about 90° in the frame of the
fissioning system.

A typical fission fragment angular distribution for a heavy-in-induced fission
reaction is shown in Figure 11.13. As one can see, the fragments are emitted
preferentially forward and backward with respect to the direction of motion of
the fissioning system. In this case involving a reaction that produces a fissioning
system has a significant amount of angular momentum (~36%); the distribution
closely resembles the function 1/ sin(). To understand these distributions, one
needs to consider the fissioning transition-state nucleus. Figure 11.14 presents
a coordinate system for describing this nucleus in terms of the quantum num-
bers, J, the total angular momentum; M, the projection of J on a space-fixed
axis, usually taken to be the direction of motion of the fissioning system; and
K, the projection of J on the nuclear symmetry axis.

In low-energy nuclear fusion reactions, the angular momentum vectors, /,
will be concentrated in a plane perpendicular to the beam direction (M = 0).
In this case, we can easily see a relation among the orientation of /, K and
the fission fragment angular distribution. For example, the case with J = K,
the nuclear symmetry axis is perpendicular to the beam, and the fragments
emerge sideways to the beam. Similarly, for K = 0, the symmetry axis of the
nucleus is oriented perpendicular to /, that is, along the beam direction, and the
fragments are emitted preferentially forward and backward. It is this extreme
that leads to the 1/sin(0) form of the angular distribution. (If ] is perpendicular
to the beam, and the vectors describing the possible directions of the nuclear
symmetry axis are uniformly distributed over the surface of a sphere, then the
probability of having a symmetry axis at an angle 0 with respect to the beam
will go as 1/sin(6).)
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For the general case, Wheeler (1963) showed that the probability of emit-
ting a fragment at an angle 0 from a transition nucleus characterized by /, K,
and M is

27R2 sin 0 dO
P, ©) =@/ +1) <T> |, K(e)| (11.20)
where the first term represents a statistical weighting factor, the second term a
solid angle factor for the probability of getting the angle 6, and the third term a
symmetric top wave function.

In low-energy fission and in photofission, one can populate individual states
of the fissioning transition-state nucleus, and one can observe fragment angu-
lar distributions that change from forward to sidewise peaked and back again
as a function of the J, K, and M of the transition nucleus (Vandenbosch and
Huizenga, 1973). At higher energies (E* > 10 MeV), one can describe the states
of the transitioning nucleus using a statistical model. Assuming that there is a
Gaussian distribution of K values for the transition nucleus,

-K?
K ex
p(K) o p( e

0

p(K) =0for K >J (11.22)

> for K<J (11.21)

where the modified Gaussian width parameter, K2, is the root mean square pro-
jection of J on the nuclear symmetry axis. In statistical thermal equilibrium the
so-called spin cutoff parameter is given by

JeaT
h2
where J.4 is the effective moment of inertia of the transitioning nucleus with a

temperature 7. The fission fragment angular distributions, W(0), can be then
written as

K= (11.23)

@ =1 |4, —01<(9)| exp(=K /2K2)

W(0) 2(2/ +1) T, Z ;

(11.24)
K=—] K=—] exp(—](/ZKg

where T} is the transmission coefficient for forming the fissioning nucleus with
total angular momentum /. Under the assumption that M = 0, we get the handy
“pocket formula”

W (0) i

A 1)2 T, exp[—(J +0.5)2 sin> 0 /4K, [i(J + 0.5)? sin’ 0/4K?]
erf[(J + 0.5)/(2K2)\/?]

(11.25)



where J, is the zero order Bessel function with imaginary argument and erf[(J +
0.5)/(2K)"/? is the error function defined as

erf(x) = (2/n'/?) / ’ exp(—t2)dt (11.26)
0

If one can estimate K? from the moment of inertia and temperature, then the
fission angular distributions can be used to measure the spin J, or vice versa.

One other aspect of the spatial distribution of the fission fragments that
has proven to be a useful tool in studying nuclear reactions is the angular
correlation between the two fission fragments. When a fission event occurs,
the two fragments emerge with an angle of 180° between them (to conserve
angular momentum). If the fissioning nucleus is in motion, then the initial
linear momentum of the fissioning system must be shared between the two
fragments to give the final (laboratory system) fragment momenta. Complete
fusion events can thus be differentiated from incomplete fusion events by
observing the mean angle between coincident fission fragments. This angle is
colloquially called the fission fragment folding-angle, since the CMS angle of
180° is decreased or folded by the motion of the CMS.

Sample Problem 11.3: Fission Folding Angle

Consider the case of 240 MeV 32§ interacting with 8! Ta, producing a CN
that fissions. What would be the laboratory correlation angle between the
fragments if the full linear momentum of the projectile was transferred
to the fissioning system?

SZS + 181Ta N 213AC

Solution
The momentum of the CN is given by

Pex = 1/2mT, = /2 x 32 x 240 = 123.9 V/MeV — amu

leaving the momentum in unusual units. For the total kinetic energy
(TKE) of the symmetric fission of P Ac, we expect

_(89/2)* 1.44 MeV fm

TKE =
1.8(213/2)13 x 2 fm

=167 MeV

The momentum of each fragment in the moving frame is then

py = /2mT; = /2% (213/2) X (167/2) = 133.4 VMeV — amu



Constructing a right triangle from the three momenta with p perpen-
dicular to py,

133.4
(123.9/2)

And finally, the correlation angle would be 26 = 130°.

0 = arctan [ ] =65°

11.4 Fission Product Distributions

Up to this point, we have focused on describing the factors that control the
probability of fission to occur. Now we will focus our attention on the distri-
butions of the products in mass, energy, charge, and so on. In doing so, we
will mostly be discussing “scission point” or “post-fission” phenomena. Our
treatment of these phenomena is, of necessity, somewhat superficial, and the
reader is referred to the excellent monograph of Vandenbosch and Huizenga
for a more authoritative account.

11.4.1 Total Kinetic Energy (TKE) Release

To a first approximation, one can assume that the kinetic energies of the fis-
sion fragments are the result of the Coulomb repulsion of the fragments after
scission. A handy pocket formula that gives the TKE is

Z,Z,e*

TKE= — 22
1.8(4,"° + A%

MeV (11.27)

where Z;, A;, Z,, and A, refer to the atomic and mass numbers of the two
fragments. The factor of 1.8 (instead of the usual value for r, of 1.2) results
from the fact that the fragments at scission have unusually large deformations.
More detailed empirical prescriptions for the TKE are available (Viola et al.,
1985), but the previous formula seems to work quite well over a range of excita-
tion energies and fissioning nuclei. The most significant deviations from these
formulas appear in the very heavy actinides, 2829Em and 260Md, where the
observed kinetic energies are evidence (Hoffman et al., 1996) for an unusually

compact scission configuration.

11.4.2 Fission Product Mass Distribution

One of the first big surprises in early studies of fission was the fission product
mass distribution. Investigations of the thermal neutron-induced fission of
uranium and plutonium nuclides (and later the spontaneous fission of 252Cf)
showed that the most probable division of mass was asymmetric (Myeayy /My ighe
=1.3-1.5). The liquid drop model would predict that the greatest energy release
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and, therefore, the most probable mass split would be a symmetric one, that
i8, Myjeavy/Myjgne = 1.0. This situation is shown in Figure 11.15 where the
mass distributions for the thermal neutron-induced fission of the “big three
nuclides” 233U, 2%°U, and %3?Pu are shown. Symmetric fission is suppressed by
at least two orders of magnitude relative to asymmetric fission. Note also that
the peak-to-valley ratio of the distributions decrease with increasing mass of
the fissioning nucleus.

An important key to understanding the preference for asymmetric mass dis-
tributions in the fission of the light actinides is contained in Figures 11.15 and
11.16. In these figures, one can see that the position of the heavy peak in the
fission mass distribution remains constant, while the position of the light peak
increases with increasing fissioning system mass. This observation, along with
the realization that the lower edge of the heavy fragment peak is anchored at
A = 132, has suggested that the preference for asymmetric fission is due to the
special stability of having one fragment being close to Z = 50, N = 82, a doubly
magic spherical nucleus. The lighter fragment makes up the difference in mass
and charge.
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function of the mass of the fissioning system (Flynn et al. (1972). Reproduced with the
permission of American Physical Society).

Further evidence for this influence of “magic” (shell model) configurations on
the fission mass distributions is found in the fragment mass distributions for
spontaneous fission (Fig. 11.17) and low-energy-induced fission of the “preac-
tinides” (Fig. 11.18). One observes, in the case of spontaneous fission, a sharp
transition between asymmetric fission and symmetric fission as one goes from
257Fm to 28Fm. The addition of a single neutron to the nucleus causes a large
change in the fission product mass distribution. Similarly, a shift of two pro-
tons in going from 2%*Ac to ??’Pa causes the mass distribution to shift from
purely symmetric to dominantly asymmetric. These changes occur at neutron
and proton numbers that are not the so-called magic numbers for spherical
nuclei. The key to remember is that the fissioning system and its fragments
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are quite deformed near the scission point. Thus, the relevant “magic num-
bers,” that is, configurations of special stability, are those expected for deformed
nuclei and as shown in Chapter 6, the actual configurations change with defor-
mation. A detailed theory of fission scission point properties based on these
ideas developed by Wilkins et al. (1976) has been quite successful in describing
the observed trends.

Qualitatively, if these explanations of the fission mass distributions for
low-energy induced fission are correct, one might expect, as the excitation
energy of the fissioning system were raised, the influence of the ground-state
shell structure of the nascent fragments would decrease, and the fission
mass distributions would show a greater amount of symmetric fission. That
is exactly what happens, and at high energy all nuclei fission symmetrically
(Fig. 11.19).

11.4.3 Fission Product Charge Distributions

If one were to plot the yield of fission fragments as a function of their atomic
numbers (as in Fig. 11.20), the result would look very much like the distribu-
tion as a function of mass number. Nuclear matter is not very polarizable, and,
to first order, the protons will divide like the neutrons. The primary fission
fragments thus have neutron/proton ratios very close to that of the fissioning
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Reproduced with the permission of World Scientific).
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system and thus lie on the neutron-rich side of p stability. Enhanced yields for
even Z nuclides relative to odd Z nuclides are observed (e.g., Fig. 11.20) due to
the stabilization from proton pairing.
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25U (Metropolis et al.

5 (1987). Reproduced with
20 . gy - the permission of Elsevier).
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The yield of any given nuclide in fission is called independent yield. It can
be shown that the independent yield or probability, P(Z, A), of an isobar from
fission has a Gaussian form:

1 [ —(Z - Zzﬂ)z ]
P(Z,A) =c(A) exp (11.28)
\/& c

where the width parameter ¢ has an average value of 0.80 + 0.14 for low-energy
fission and Z, is the most probable primary fragment atomic number
(non-integer) for that isobar. The width parameter is related to the more
common Gaussian width, ¢, by Sheppard’s relation: ¢ = 2(¢* + 1/12). (Also
be aware of the distinction in this context of the difference between the
Gaussian width parameter ¢ and the isobaric yield 6(A4).) Large tables of Z,
exist for common fissioning systems (Wahl, 1988). One consequence of this
small value of c is that, for a given A, only a few isobars will have significant
yields. Two effects tend to favor the observed narrow charge distributions:
(a) the high-energetic cost of unfavorable charge splits and (b) the existence of
ground-state correlations between neutrons and protons in the fragments.

In discussions of fission, one frequently hears the terms cumulative yield as
opposed to the independent yield just introduced. The independent yield of a
nuclide is just what it appears, the yield of that nucleus as a primary fission
product. Because the fission products are essentially all B~ emitters, they will



decay toward the bottom of the valley of p-stability, generally passing through
several sequential members of an isobaric series, as, for example, with A = 140
fragments:

405, 140 g 140y o 1400 (11.29)

p— p- p— p-

The yield of each member of the isobaric series integrates, by virtue of the inter-
vening f-decay, the yields of its precursors depending on the time allowed for
decay since the fission event. Such integrated (and time-dependent) yields are
referred to as cumulative yields. For example, the cumulative yield of the mass
140 chain in the thermal neutron-induced fission of *U is 6.25% of the total
fission yield.

Sample Problem 11.4: Fission Yield
What is the independent yield of "**Ba from the thermal neutron-induced
fission of *°U, and what is its cumulative yield?

Solution
The fractional independent yield is given by the expression

—(Z -2 )
Pz.A) = 24 exp l “-2) ]

cn ¢

For the mass 140 chain, Z, = 54.55 from Wahl's summary mentioned
in the text. Notice that this value of Z,/A(= 54.55/140) is very close to
that of the fissioning system, 92/236, that is, the N /Z ratio of the frag-
ments is approximately that of the fissioning system. This idea is called
the unchanged charge distribution (UCD) prescription. Substituting,

5(140) [ (56 — 54.55)>
0.81 0.8

The text indicates that the fractional yield of A = 140 is 6.25% in this sys-
tem, so in terms of fractional yield

P(56,140) = 0.0625 x 0.0456 = 2.85 x 1073

P(56,140) = ] =4.56 X 1072

The cumulative yield of an isotope in terms of fractions, called the frac-
tional cumulative yield or FCY, is

Z+1/2 —7Z )
FCY(Z,A) = o) exp l—u] dn

C J -0
Evaluating the integral in this case gives FCY = 0.9978, which is the frac-
tion of the isobaric yield that would pass through "Ba during the entire
production and subsequent decay process.



11.5 Excitation Energy of Fission Fragments

The excitation energy of the fission fragments is equal to the difference between
the total energy release, Q, and the TKE of the fragments. The excitation energy
should be calculated for each mass split because the Q value depends on the
exact nuclides in the split. Here we will do an average accounting to see where
the energy goes. For the thermal neutron-induced fission of *°U, the amount
of excitation energy corresponds to ~200—172 MeV or about ~28 MeV for the
two fragments (~14% of the total energy release), averaged overall mass splits.
The average number of emitted prompt neutrons is ~2.4, and each neutron has
a kinetic energy of 2 MeV, while the emitting fragments have average neutron
binding energies of = 5.5 MeV. Thus, roughly 18 MeV (= 2.4 X (2 + 5.5)) of the
fragment excitation energy is carried away by the prompt neutrons. Prompt
photon emission carries away =7.5 MeV, which leaves about 2.5 MeV, in this
crude accounting, to be emitted in the form of f particles, neutrinos, delayed
neutrons, and so on.

As noted earlier, the prompt neutrons are emitted from the fully accelerated
fragments after scission. The variation of the average number of these neutrons,
V,orar (= 2.4 in the previous example), as a function of the mass of the fissioning
system is shown in Figure 11.21. The general increase in v,,,,, with mass of the
fissioning system is due to the increase in fragment excitation energy. For very

' T T ' T ' Figure 11.21 The average
total number of neutrons, v,
as a function of the mass
number of the fissioning
system for spontaneous and
| thermal neutron-induced
fission. The values for thermal
neutron-induced fission have
i been corrected to zero
excitation energy
(spontaneous fission)

i assuming dv/dE* = 0.12
MeV-! (Vandenbosch and
Huizenga (1973). Reproduced
R with the permission of
Elsevier).

o
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o—Thermal neutron fission, corrected
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Figure 11.22 The dependence of v(A) on fission fragment mass number A for some actinide
nuclei.

heavy systems (Z ~ 114), v,,,,, is predicted to be almost 7, allowing the critical
mass for a self-sustaining fission reaction to be quite small.

The average neutron kinetic energy is ~2 MeV. In the frame of the
moving fragment, the distribution of fragment energies is Maxwellian,
P(E,) = E, exp(—E,/T). Transforming this spectrum into the laboratory frame
gives a spectrum of the Watt form, that is,

—E,\ . . [4EE\'’
P(E,) = exp <T> smh( T2 > (11.30)

where E, and E; are the laboratory system energies of the neutron and fission
fragment (in MeV/nucleon) and T is the nuclear temperature. The mean kinetic
energy of each neutron is ~ 27, and a typical temperature in low-energy fission
is ~1 MeV.

Another important aspect of neutron emission is the variation of the num-
ber of emitted neutrons as a function of the fragment mass v(4) as indicated in
Figure 11.22. The striking features of these data are the nearly universal depen-
dence of v(A4) on A, independent of fissioning system for these actinide nuclei
(which again suggests that the role of fragment shell structure is important in
determining this property). Notice also the sawtooth dependence of v(A) with
a correlation of low values of v(A) with those fragments whose structure is that
of a “magic” nucleus, that is, a nucleus of special stability. These fragments are
expected to have low excitation energies due to shell effects and will have higher
kinetic energies (Wilkins et al., 1976).

Prompt y-ray emission only competes with or follows the last stages of
prompt neutron emission. These photons are emitted in times from 1071° to
1077 s. Typical y-ray multiplicities of 7-10 photons per fission are observed.
These photons, as indicated earlier, carry away a total of ~ 7.5 MeV. This y-ray




yield is considerably larger than one would predict if y-ray emission followed
neutron emission instead of competing with it. Because of the significant
angular momentum of the fission fragments (~7-10#) even in spontaneous
fission, photon emission can compete with neutron emission because the
neutrons cannot efficiently remove angular momentum from a nucleus. The
emitted y-rays are mostly dipole radiation with some significant admixture of
quadrupole radiation, due to the so-called stretched E2 transitions (J/; = J; — 2).
Because of the large number of possible neutron-rich fragments produced
in fission, the study of the y-rays emitted by the fragments can lead to useful
information about the nuclear structure of these exotic, short-lived nuclei far
from stability.

Sample Problem 11.5: Fission Neutrons

Justify the estimate for v, for the fission of %114 in the text earlier
assuming that this nucleus fissions symmetrically.

Solution

First, the total energy released can be found using a modern mass formula
to be 311 MeV for (exactly) symmetric fission. Second, the TKE of the
fragments can be calculated as

_ (57)(57)1.44 MeV fm
T 1.8(149)1/3 x 2

This leaves a total fragment excitation energy of 311 — 245 = 66 MeV.
Since the y-rays and decay are only emitted after the neutrons, we will
assume that the amount of this energy is the same as in ***U(ny,, f), which
is ~10 MeV. The excitation energy carried away by the neutrons becomes
66 — 10 = 56 MeV. The mean kinetic energy of each neutron is ~2T or
2 MeV, and the neutron binding energy in a typical fission fragment is
about 6 MeV (a little lower than that in a stable nucleus). Thus, finally we
getthatv,,,; =56/(6+2)="7.

TKE = 245 MeV

Asjust indicated in our discussion of prompt y-ray emission, the fission frag-
ments have a significant amount of angular momentum. There are two origins
for this angular momentum: (a) the existence of random off-axis torques given
to the fragments during the scission process and (b) the excitation of bending
and wriggling modes of the nascent fragments against one another at the saddle
point, which persist to scission and are amplified by the off-axis torques.

After neutron and y emission “cools” the fission fragments, the final excita-
tion energy of the fragments is emitted in  decay of the fragments, resulting in
the emission of B-particles, antineutrinos, and delayed neutrons. The time scale
of this emission is of the order of seconds to minutes to hours to days to years.
In nuclear reactors, this emission continues after the reactor is shut down. This



energy release is referred to as “decay heat” and amounts to about 6-7% of the
full power of the reactor immediately after shutdown.

A final dynamical scission point phenomenon to be considered here is the
violent snapping of the neck between the nascent fragments, which can result
in the creation of particles into the region between the fragments. The phe-
nomenon is rare, occurring in about 1 in 300 to 1 in 1000 of the fission events
creating a-particles and with a lesser frequency for heavier charged particles.
(Neutrons can be emitted by this same mechanism in a few percent of all fis-
sion events.) The charged particles, being born in the region between the frag-
ments, are strongly focused by the Coulomb field of the fragments and emerge
at 90° with respect to the direction of motion of the separating fragments, with
energies (~15 MeV for a-particles) characteristic of the Coulomb fields of the
separating fragments.

Problems
11.1  Why is ?*°Pu not fissionable by thermal neutrons, but **Pu is?

11.2  What is the expected total kinetic energy release in the fission of 272110
assuming fission occurs symmetrically?

11.3  What is the meaning of the terms “prompt” and “delayed” with respect
to the fission neutrons?

11.4 Sketch the fission excitation function for the reaction of 3Th with neu-
trons. The fission barrier is ~6.5 MeV, and the binding energy of the last
neutron in 2?Th and ?**Th are 6.90 and 4.93 MeV, respectively.

11.5 What are the values of the fissionability parameter x for 2°Bi, 2%°Ra,
232Th, 242Pu, and 252Cf?

11.6 What is the fraction of fission neutrons with energies > 2 MeV from the
thermal neutron fission of 2°U (in the laboratory frame)?

11.7 What is the independent yield of Mo in the thermal neutron-induced
fission of 2?Pu? Z, is 39.921 and the yield of the A = 99 chain is 6.15%
for this fission process.

11.8  Whatis the value of I', /T'; for a *'°Po nucleus produced in the bombard-
ment of **Bi with 10.5 MeV protons? B, = 20.4 MeV.



Bibliography

H.C. Britt, “Fission properties of the Actinides”, in Actinides in Perspective, N.M.
Edelstein, Ed. (Pergamon, Oxford, 1982), p. 245.

K.E. Flynn, E.P. Horwitz, C.A.A. Bloomquist, R.F. Barnes, R.K. Sjoblom, P.R.
Fields, and L.E. Glendenin, Phys. Rev. C5, 1725 (1972).

J. Gindler and J.R. Huizenga, “Nuclear Fission,” in Nuclear Chemistry, Volume II,
L. Yaffe, Ed. (Academic Press, New York, 1964), p. 1.

O. Hahn and F. Strassmann, Naturwiss 26, 756 (1938); see translation by
H. Graetzer, Am. J. Phys. 32, 15 (1964).

D.C. Hoffman, T.M. Hamilton, and M.R. Lane, “Spontaneous Fission,” in Nuclear
Decay Modes, D.N. Poenaru, Ed. (IOP, Bristol, 1996), pp. 393-432.

S. Liran and N. Zeldes, At. Data Nucl. Data Tables 17, 431 (1976).

Y.T. Oganessian and Y.A. Lazarev, “Heavy Ions and Nuclear Fission,” in Treatise on
Heavy-Ion Nuclear Science, Volume 4, D.A. Bromley, Ed. (Plenum, New York,
1985), pp. 1-254. A review article with significant insight.

K.-H. Schmidt, et al., “Electromagnetic-induced fission of short-lived nuclei”, in
Heavy Ion Physics, Y.T. Oganessian and R. Kalpakchieva, Eds. (World,
Singapore, 1998), p. 667.

G.T. Seaborg and W. Loveland, The Elements Beyond Uranium (John Wiley &
Sons, Inc., New York, 1990).

V.M. Strutinsky, Nucl. Phys. A95, 420 (1967).

R. Vandenbosch and J.R. Huizenga, Nuclear Fission (Academic, New York, 1973).
The bible of basic information and insight into the fission process.

V.E. Viola, Jr., K. Kwiatkowski, and M. Walker, Phys. Rev. C31, 1550 (1985).

C. Wagemans, The Nuclear Fission Process (CRC Press, Boca Raton, 1991).
Summary of developments since Vandenbosch and Huizenga (1973) was
written.

A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988).

J.A. Wheeler, “Channel analysis of fission”, in Fast Neutron Physics, ].B. Marion
and J.L. Fowler, Eds. (John Wiley & Sons, Inc., New York, 1963).

B.D. Wilkins, E.P. Steinberg, and R.R. Chasman, Phys. Rev. C14, 1832 (1976).



12

Nuclear Astrophysics

12.1 Introduction

An important mystery that is still unfolding today is how did the chemical ele-
ments that we have here on earth come into existence? We know that the readily
available, stable chemical elements are restricted in number to 81 and that they
are essentially immutable by chemical reactions. The large-scale nuclear reac-
tions that are taking place on earth are those induced by (external) cosmic rays
and radioactive decay; nuclear reactions induced by people, such as fission, take
place on a tiny scale by comparison. Thus, the vast bulk of chemical elements
that we have today on earth are those that were present when the solar system
was formed. The elements have undergone an enormous range of geochem-
ical, geological, and biochemical processes, but all such processes retain the
integrity of each nucleus. Thus, the origin of the elements is certainly extrater-
restrial, but questions remain as to where and how they were formed.

The answers to these questions lie in the field of Nuclear Astrophysics, an
area concerned with the connection of fundamental information on the prop-
erties of nuclei and their reactions to the perceived and postulated properties
of astrological objects and processes that occur in space. The universe is com-
posed of a large variety of massive objects distributed in an enormous volume.
Most of the volume is very empty (<1 x 10718 kg/m?) and very cold (~3 K). On
the other hand, the massive objects, stars and such, are very dense (sun’s core
density ~1.5 X 10° kg/m?) and very hot (sun’s core temperature ~1.6 x 107 K).
These temperatures and densities are such that the light elements are ionized
and thermal velocities sufficient to occasionally induce a nuclear reaction. Thus,
in contrast to the earth, the elemental makeup of stars is not static. The general
understanding of the synthesis of the heavier elements is that they were cre-
ated by a variety of nuclear processes in massive stellar systems. These massive
objects exert large gravitational forces, and so one might expect the new mate-
rials to remain in the stars. The stellar processing systems often explode at some
point and disperse the heavier elements, which later form new stars and solar
systems again due to gravity. When we look at the details of the distribution of



isotopes here on earth, we will find that some number of explosive cycles must
have taken place before the earth was formed!

In this chapter we will first consider the underlying information on the ele-
mental and isotopic abundances and some of the implications of these abun-
dances. Then we will consider the nuclear processes that must have taken place
to produce the primordial elements and those that processed the primordial
light elements into the ones that we have here on earth.

12.2 Elemental and Isotopic Abundances

Many students of chemistry have given little thought to the relative abundances
of the chemical elements. Everyone realizes that some elements and their com-
pounds are more common than others. The oxygen in water, for example, must
be plentiful compared to mercury or gold. But what if we compare elements that
are closer in the periodic table, for example, what is the amount of lead (Z = 82)
compared with mercury (Z = 80) or what is the amount of iron (Z = 26) com-
pared with copper (Z = 27)? Oddly enough, the answer one gets depends on
what material is sampled. The relative abundances of the first forty elements
are shown in Figure 12.1 as a percentage by mass in the earth’s crust and also as
a percentage by mass in our solar system. Notice that the scale is logarithmic
and the data spans almost 11 orders of magnitude. The earth is predominantly
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Figure 12.1 The abundances of the first 40 elements as a percentage by mass of the earth'’s
crust (filled circles) and in the solar system (open squares) (Reproduced with the permission
of Haynes et al. (1994)). (See insert for color representation of the figure.)



oxygen, silicon, aluminum, iron, and calcium, which comprise more than 90%
of the earth’s crust. On the other hand, the mass of the solar system is dom-
inated by mass of the sun so that the solar system is mostly hydrogen, with
some helium, and everything else is present at the trace level. The differences
between the solar system abundances and those on the earth are due to astro-
physical, geophysical, and geochemical processing of the solar material. In this
Chapter we will concentrate on understanding the solar system abundances
that reflect nuclear processes. The abundances of the isotopes and the elements
are the basic factual information that we have to test theories of nucleosynthe-
sis. We have data from the earth, moon, and meteorites, from spectroscopic
measurements of the sun, and recently from spectroscopic measurements of
distant stars. Many studies have characterized and then attempted to explain
the similarities and differences from what we observe in the solar system.

The solar abundances of all of the chemical elements are shown in
Figure 12.2. These abundances are derived primarily from knowledge of the
elemental abundances in carbonaceous chondritic meteorites (CI) and stellar
spectra. The scale is logarithmic so that ~99% of the mass resides in hydrogen
and helium. Notice that there is a general logarithmic decline in the elemental
abundance with atomic number with the exceptions of a large dip at beryllium
(Z = 4) and of peaks at carbon and oxygen (Z = 6, 8), iron (Z ~ 26), and the
platinum (Z = 78) to lead (Z = 82) region. Also notice that there is a strong
odd—even staggering and that all the even Z elements with Z > 6 are more
abundant than their odd atomic number neighbors. We have already encoun-
tered an explanation for this effect, that is, recall from earlier discussions of
nuclear stability that there are many more stable nuclei for elements with an

Log abundance (%)
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Figure 12.2 The abundances of all of the elements as a percentage by mass of the solar
system (Reproduced with the permission of Haynes et al. (1994)).



Number abundance (Si = 10°)

Mass number A

Figure 12.3 The abundances of the nuclides in the solar system (lliadis (2007). Reproduced
with the permission of Wiley).

even number of protons than there are for elements with an odd number of
protons simply because there are very few stable odd—odd nuclei. Thus, the
simple number of stable product nuclei, whatever the production mechanism,
will have an effect on the observed populations because nearly all radioactive
decay will have taken place since the astrophysical production, leaving (only)
the stable products. There are exceptions, of course, and contemporary
research searches out recently produced radioactive nuclei in the cosmos.

Given what we know about nuclear structure, it is reasonable to consider
the isotopic distribution rather than the (integrated) elemental distribution.
An example of the isotopic abundances of the-top-row elements is shown in
Figure 12.3. Once again a very strong staggering is seen, and the depression
of masses between 5 and 10 is more apparent. This mass region has gaps (no
stable nuclei with A = 5 or 8), and the remaining nuclei are all relatively frag-
ile and have small binding energies. For the lightest nuclei, the nuclei whose
mass numbers are a multiple of 4 have the highest abundances. Again, simple
nuclear stability considerations affect the amount of beryllium we find relative
to the amount of carbon or oxygen, but the many orders of magnitude differ-
ence in the abundance of elements like beryllium and carbon must be due to
the production mechanisms.

The sun is a typical star (discussed later), and in the past the solar abundances
were used to represent the elemental abundances in the universe (the “cos-
mic” abundances). More recently spectroscopic analysis of individual stars has
shown that the sun is relatively metal rich compared to most stars. It will turn



Figure 12.4 The atomic
abundances of the
elements in the solar
system and the major
nucleosynthetic processes
responsible for the
observed abundances
(Burbridge et al. (1957).
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permission of American
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out that several nucleosynthetic processes are necessary to explain the details
of the observed solar system abundances. In Figure 12.4, we jump ahead of our
discussion to show a rough association between the elemental abundances and
the nucleosynthetic processes that created them. Figure 12.4 is based upon a
pioneering paper by Burbidge, Burbidge, Fowler, and Hoyle (colloquially called
B?FH) (1957) and an independent analysis by Cameron (1957). These works
have served as a framework for the discussion of nucleosynthesis since their
publication in the 1950s, and we will follow a similar route in our discussion.

12.3 Primordial Nucleosynthesis

The universe is between 10 and 20 billion years old, with the best estimate of its
age being 14 + 1 X 10° years old. The universe is thought to have begun with a
cataclysmic explosion called the big bang. Since the big bang, the universe has
been expanding with a decrease of temperature and density.

One important piece of evidence to support the idea of the big bang is the
2.7 K microwave radiation background in the universe. This blackbody radia-
tion was discovered by Penzias and Wilson in 1965 and represents the thermal
remnants of the electromagnetic radiation that existed shortly after the big



bang. Weinberg (1977) tells how Penzias and Wilson found a microwave noise
at 7.35 cm that was independent of direction using a radio antenna at the Bell
Telephone Laboratories in New Jersey. After ruling out a number of sources for
this noise, they noted a pair of pigeons had been roosting in the antenna. The
pigeons were caught, shipped to a new site, reappeared, were caught again, and
were then “discouraged by more decisive means” The pigeons, it was noted,
had coated the antenna with a “white dielectric material.” After removal of this
material, the microwave background was still there. It was soon realized that
this 7.35 cm radiation corresponded to an equivalent temperature of the noise
of about 3.5 K, which was eventually recognized as the remnants of the big
bang. (Subsequent measurements have characterized this radiation as having
a temperature of 2.7 K with a photon density of ~400 photons/cm? in the
universe.)

A pictorial representation of some of the important events in the “thermal
cooling” history of the universe is shown in Figure 12.5. The description of
the evolution of the universe begins at 107% s after the big bang, the so-called
Planck time. The universe at that time had a temperature of 1032 K (kg7 ~
10'° GeV) and a volume that was ~1073! of its current volume. (To convert
temperature in K to energy kT in electron volts, note that kz T (eV) = 8.6 X
10™> T (K).) Matter existed in a state more or less unknown to us, a plasma
of quarks and gluons. All particles were present and in statistical equilibrium,
where each particle had a production rate equal to the rate at which it was
destroyed. As the universe expanded, it cooled and some species fell out of
statistical equilibrium. At a time of 107 s (T ~ 10! K), the photons from the
blackbody radiation could not sustain the production of the massive particles
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Figure 12.5 An outline of the events in the universe due to thermal cooling since the big
bang (Rolfs and Rodney (1988). Reproduced with the permission of Chicago University
Press).



and the hadronic matter condensed into a gas of nucleons and mesons. At this
point, the universe consisted of nucleons, mesons, neutrinos (and antineutri-
nos), photons, and electrons (and positrons). The ratio of baryons to photons
was ~107° so that most of the universe was pure energy.

At a time of 10725 (T ~ 10! K), the density of the universe dropped to ~4 X
10° kg/m?. In this photon-dominated era, the temperature T (K) was given by
the relation

10
T(K) = L2 X107 12.1)

Vit(s)
where ¢t is the age in seconds. During this period, the neutrons and protons
interconvert by the weak interactions

V,+pee+n (12.2)
Vo+nep+e” (12.3)

(Note that we are following the convention in astrophysics of not indicating
the atomic charges in equations resulting in an apparent, but not real, lack of
conservation of charge.) One can neglect the free decay of the neutron to the
proton because the half-life for that decay (10.3 m) is too long to be relevant.
The neutron—proton ratio, n:p, was determined by a Boltzmann factor contain-
ing the mass difference between the two particles, that is,

n : p=exp(—Amc*/kyT) (12.4)

where Amc? in the n—p mass difference of 1.29 MeV. At T = 10'? K, n:p~1; at
T = 10" K n:p drops to ~0.86, and so on. At T = 10''K, no complex nuclei
were formed because the temperature was too high to allow deuterons to form.
When the temperature fell to T = 10'° K (¢ ~ 1 s), the creation of e* /e pairs
(by pair production) ceased because kT dropped below 1.022 MeV where the
n:p ratio was ~17 : 83. At a time of 225 s, this ratio was 13 : 87, the temper-
ature was T ~ 10° K, and the density was ~2 x 10* kg/m®, and the first nucle-
osynthetic reactions could begin.

The primordial nucleosynthesis reactions began with the production of deu-
terium by the simple radiative capture process

n+p—->d+y (12.5)

Notice that the deuteron can be destroyed by the absorption of a high-energy
photon in the reverse process. At this time, the deuteron could survive long
enough to allow the subsequent reactions

p+d— He+y (12.6)
and

n+d— H+y (12.7)



®Hand °He are more strongly bound than deuterium allowing further reactions
that produce the very strongly bound o particles

H+ p— “He + Y (12.8)
*He +n — 'He +7v (12.9)
*H+d— ‘He+n (12.10)
d+d— "He+y (12.11)

Further reactions to produce the A = 5 nuclei could not occur because there
are no stable nuclei with A = 5 (or subsequently A = 8). A small amount of "Li
is produced in the reactions

‘He + °H — 7Li+y
“He + °He — "Be + Y
Be+e - Li+y, (12.12)

where the last step is an electron capture decay, but the "Liis also very weakly
bound and is rapidly destroyed by (p, ) or (y, a) reactions. Thus, the synthesis
of larger nuclei was blocked. After about 30 m of expansion, nucleosynthesis
ceased. The temperature was ~3 x 10® K and the density was ~30 kg/m®. (For
reference, recall that water vapor at 1 atm has a density of ~1 kg/m® and liq-
uid water has a density of ~10° kg/m>.) Nuclear matter at this point was 76%
by mass protons, 24% o particles with traces of deuterium, *He, and Li. The

y:p:n ratios were 10°:87:13. The relative ratios of p:4He:d:3He:7Li are a sensi-
tive function of the baryon density of the universe as shown in Figure 12.6, a
fact that can be used to constrain models of the big bang. The cross sections
for the reactions that convert one product to another are generally known, and
complex network calculations of the reaction rates can be performed as a func-
tion of temperature and density. The resulting abundances can be compared to
estimates from observations of stellar matter. Chemistry began about 10° years
later, when the temperature has fallen to 2000 K and the electrons and protons
(and the helium and lithium) could combine to form hydrogen (and the other)
atoms. Further nucleosynthesis that can produce heavier elements continues
to occur in the interiors of stars.

Sample Problem 12.1: Temperatures and Velocities

Stellar temperatures are often given in units labeled T,, which is the tem-

perature in billion degrees kelvin, that is, T in kelvin divided by 1 x 10°.
What is the average velocity of protons in a stellar environment with
Ty =1.5?
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Solution

First let us recall that the mean kinetic energy of a free particle in thermal
equilibrium is 3/2 kT, and then use the fact that the (nonrelativistic)
velocity of a thermal particle is 1/2muv?:

Efpermal = ngT = %(1.38 x 1072)(1.5 x 10%)
=(3.10x 1071]) = 194 keV
2F
Ethermal = %mUZ > V= Zthermal
m

b= 2% 0.194 MezV — 0.0203 ¢
938 MeV/c

v=6.10x%10"m/s

12.3.1 Stellar Evolution

As discussed previously, nucleosynthesis occurred in two steps, the primordial
nucleosynthesis that occurred in the big bang forming only the lightest nuclei



and later processes, beginning ~10° years after the big bang, and then nucle-
osynthesis shifted to the stars. Big bang nucleosynthesis produced hydrogen,
helium, and traces of 'Li, while the rest of the elements are the result of stel-
lar nucleosynthesis. For example, recent observations of stellar spectral lines
showing the presence of 2 x 10° y. *Tc that indicates ongoing stellar nucle-
osynthesis. To understand the nuclear reactions that make the stars shine and
generate the bulk of the elements, one needs to understand how stars work.
That is the focus of this section.

After the big bang explosion, the material of the universe was dispersed. Inho-
mogeneities that developed evolved under the influence of gravity to form the
galaxies. Within these galaxies, clouds of hydrogen and helium gas can further
collapse under the influence of gravity. At first, the internal heat of this col-
lapse can be radiated away. As the gas becomes denser, however, the opacity
increases, and the gravitational energy associated with the collapse is stored
in thermal motion in the interior rather than being radiated into space. Even-
tually a radiative equilibrium is established with the development of a pro-
tostar. The protostar continues to shrink under the influence of gravity with
continued heating of the stellar interior. When the interior temperature reaches
~107 K, thermonuclear reactions between the hydrogen nuclei (protons) can
begin because some of the particles have sufficient kinetic energies to overcome
the Coulomb repulsion between them.

The first generation of stars that formed in this way is called Population III
stars. They consisted of hydrogen and helium, were massive, had relatively short
lifetimes, and are now extinct. The debris from these stars has been dispersed
by explosions and was incorporated into later generation stars.

The second generation of stars is called Population II stars, or called as
“metal-poor” stars, which consist of hydrogen, helium, and about 1% of the
heavier elements like carbon and oxygen. Finally, there is a third generation of
stars, like our sun, called Population I stars. These stars consist of hydrogen,
helium, and 2—5% of the heavier elements.

Our sun, typical for Population I star, has a mass of 2.0 x 10%° kg, a radius of
7.0 X 10° m, an average density of 1.41 x 10 kg/m?, a surface temperature of
~6000 K, and a luminosity of 3.83 x 10?° W. Our sun is 4.5 X 10° years old.

The Danish astronomer Ejnar Hertzsprung and the American astronomer
Henry Norris Russell independently observed a very well-defined correlation
between the luminosity and surface temperature (color) of stars. That correla-
tion is shown in Figure 12.7 and is called a Hertzsprung—Russell or H-R dia-
gram. Most stars, like our sun, fall in a narrow band on this diagram called
the main sequence. Stars in the main sequence have luminosities, L, that are
approximately proportional to Tsifface, or in terms of their mass, M, L o M>°.
Stars radiate energy, of course, and decrease in temperature. The length of time
that a star stays on the main sequence depends on its mass, which, in turn, is
related to the reaction rates in its interior.
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Figure 12.7 A schematic representation of a Hertzsprung-Russell diagram. The spectral
class related to the historical grouping by color (Rolfs and Rodney (1988). Reproduced with
the permission of Chicago University Press).

In the upper right area of the H-R diagram, one sees a group of stars, the red
glants or super giants, with large radii that are relatively cool (3000-4000 K).
Stars on the main sequence move to this region when the nuclear energy liber-
ated in the nuclear reactions occurring in the star is not enough to sustain main
sequence luminosity values.

Our sun is expected to spend ~7 X 10° more years on the main sequence
before becoming a red giant. In the slightly shorter time of 1.1-1.5 x 10° years,
the sun will increase slowly in luminosity by ~10%, probably leading to a ces-
sation of life on earth. (In short, terrestrial life has used up ~3/4 of its allotted
time, since its formation ~3.5 X 10° years ago.)

In the lower left area of the H-R diagram, one sees a group of small dense,
bright stars (T > 10* K) called white dwarfs. The white dwarfs represent the
evolutionary outcome for the red giants with masses between 0.1 and 1.4 solar
masses. A red giant is a helium-burning star (discussed previously), and after
the helium is gone, the star becomes unstable, and if there is not sufficient mass
to burn higher mass elements, it ejects the envelope, creates a planetary nebula,
and moves across the main sequence on the H-R diagram to become a white
dwarf. (See Fig. 12.8 for a schematic view of this evolution.)

For massive red giants (M > 8 solar masses), one finds they undergo a more
spectacular death spiral, with contractions, increases in temperature leading to
carbon burning, carbon—oxygen burning, silicon burning, and so on, with the



Figure 12.8 Schematic diagram of the evolution of: (a) a star with a mass near that of the
sun and (b) a much more massive star (Rolfs and Rodney (1988). Reproduced with the
permission of Chicago University Press).

production of the elements extending up to iron, followed by an explosive end
(see Fig. 12.8).

The explosive end for main sequence stars can lead to the formation of novae
and supernovae. The name “nova” means “new” and connotes a star that under-
goes a sudden increase in brightness, followed by fading—a characteristic of an
explosion. In this process, the outer part of the star, containing perhaps only
~1073 of the stellar mass, is ejected with the release of ~10% ergs. (For histori-
cal reasons the energy output of novae is usually given in ergs and not joules.)
Supernovae are spectacular stellar explosions in which the stellar brightness
increases by a factor of 10°~10°, releasing ~10°! ergs on a time scale of seconds.
We have observed about 10 nova/year but only 2-3 supernova per century.
Supernovae are classified as type I (low hydrogen, high “heavy” elements, such
as oxygen through iron) and type II (primarily hydrogen, with lesser amounts



of the “heavy” elements). Some supernovae lead to the formation of neutron
stars, which are giant nuclei of essentially pure neutronic matter.

12.4 Thermonuclear Reaction Rates

Before discussing the nuclear reactions involved in stellar nucleosynthesis, we
need to discuss the rates of reactions, which take place in a “thermal soup” as
opposed to reactions studied one at a time in the laboratory. The rates of the first
kind will tell us what reactions are most important in nucleosynthesis. When we
speak of thermonuclear reactions, we mean nuclear reactions where the energy
of the colliding nuclei is the thermal energy of the particles in a hot gas. Both
reacting nuclei are moving, and thus it is their relative velocity (in the center
of mass) that is important. In ordinary nuclear reactions in the laboratory, we
write for the rate of the reaction, R,

R = No{ (12.13)

where the reaction rate, R, is in reactions/seconds, ¢ is the reaction cross section
(cm?), ¢ is the incident particle flux in particles/seconds, and N is the number
of target atoms/square centimeter. For astrophysical reactions, we write

R= NxNy/ c(v)vdv = NxNy<GV> (12.14)
0

where v is the relative velocity between nuclei x and y, each present in a concen-
tration of N, particles/cm?, and the quantity (ov) is the temperature-averaged
reaction rate per particle pair. To ensure that double counting of collisions
between identical particles does not occuy, it is conventional to express the
previous equation as

_ N,N,(cv)

12.15
1+56,, (1219

where 6, is the Kronecker delta (which is O when x # y and 1 whenx = ). Note
the mean lifetime of component x is then 1/(N, (cv)).
In a hot gas the velocity distribution of each component will be given by a

Maxwell-Boltzmann function:

3/2 )
(" _ _mv 2
P(v) = <2nkBT> exp ( ZkBT> 4rvidy (12.16)

where m is the particle mass, k; is Boltzmann’s constant, and T is the gas tem-
perature. Integrating over all velocities for the reacting particles, x and y, gives

s\ 1 ® E



where p is the reduced mass (1, X my)/(mx + m,). Since the rates, R, of stellar
nuclear reactions are directly proportional to (ov), they directly depend on the
gas temperature 7.

For slow neutron-induced reactions that do not involve resonances, we know
(from Chapter 10) that 6(E) « 1/v,, so that (cv) should be a constant at the low-
est energies. For charged particle reactions, however, one must overcome the
repulsive Coulomb force between the positively charged nuclei. For the sim-
plest reaction, p + p, the Coulomb barrier is 550 keV. But, in a typical star
like the sun, kz T is only 1.3 keV, that is, the nuclear reactions that occur are
very much sub-barrier, and any observed reactions are the result of barrier
penetration. (At a proton—proton center of mass energy of 1 keV, the barrier
penetration probability is ~2 x 10719). At these extreme sub-barrier energies,
the barrier penetration factor, P, can be approximated as

p= 22,2, _ 31.297,7 (” )1/2 (12.18)
= exp o = exp 292,72, ¢ .
where E is in keV and g in amu. This tunneling probability is referred to as the
Gamow factor. The cross section (see also Chapter 10) is proportional to t4*
%. Thus, the cross section for nonresonant charged particle-induced reactions

can be written as
1 T 1/2
o(E) = 3 exp ( ~31.29Z,2, <E) S(E) (12.19)

where the function S(E), the so-called astrophysical S factor, contains all the
constants and terms related to the nuclei involved in the reaction. Substituting
this expression into the equation for (cv), we have

1/2 -
_(& 1 __Et _ b
(ov) = <7W> Ty /0 S(E) exp[ T El/z] dE (12.20)

where b is 0.989Z,Z,u'/2(MeV)Y/2. This equation represents the overlap
between the Maxwell-Boltzmann distribution, which is peaked at low ener-
gies and the Gamow barrier penetration factor that increases with increasing
energy. The product of these two terms produces a peak in the overlap region
of these two functions called the Gamow peak (see Fig. 12.9). This peak occurs
at an energy E; = (bky T /2)*/°.

For reactions involving isolated single resonances or broad resonances, it is
possible to derive a different formula for 6(E) using the Breit—Wigner form,
that is,

r,,r
in~ out (12’21)

l"2
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o(E) = ni* [

where J,, /,, and J, are the spins of the interacting particles and the resonance
whileI", , T, and T, ,, are the partial widths of the entrance and exit channels

in?

and the total width, respectively.



Figure 12.9 Schematic
representation of the relative Maxwell-Boltzmann
probability of a non-resonant
stellar nuclear reaction as a
function of temperature. The
Gamow peak is shown by the
solid black area (Wong (1998).
Reproduced with the permission
of John Wiley & Sons).
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12.5 Stellar Nucleosynthesis

12.5.1 Introduction

After big bang nucleosynthesis is over, we have a compact universe that is ~75%
hydrogen and ~25% helium with a trace of “Li. The synthesis of the chem-
ical elements that we have in the present universe took place by processing
this material in stars. Beginning ~10° years after the big bang, as described
in Section 12.4, the sequence of gravitational collapse of material into a star
causes an increasing temperature that allows the onset of nuclear fusion reac-
tions, releasing energy (primarily in the form of kinetic energy of motion of the
products) that works against the collapse. Starting from hydrogen and helium, a
new set of fusion reactions that operate at lower temperatures and over longer
times scales than the big bang produce the nuclei up to the maximum in the
nuclear binding energy curve at A ~ 60. The temperature of these reactions
starts at about 5 x 107 K or kz T ~2 keV and builds up due to continued gravi-
tational collapse. A rough outline of the nuclear reactions involved is given in
Table 12.1.

The products from these reactions are distributed into the galaxies by slow
emission from the red giants and by the catastrophic explosions of novae and
supernovae. This dispersed material condenses in the Population II and later
the Population I stars where additional nuclear reactions (see in the following
text) create the odd A nuclei and sources of free neutrons. These neutrons allow
us to get slow neutron capture reactions (s-process) synthesizing many of the
nuclei with A > 60. High-temperature photonuclear reactions and rapid neu-
tron capture reactions in supernovae complete the bulk of the nucleosynthesis
reactions.

12.5.2 Hydrogen Burning

The first stage of stellar nucleosynthesis, which is still occurring in stars like our
sun, is hydrogen burning. In hydrogen burning, protons are converted to “He



Table 12.1 Nuclear Reactions Involved in Stellar Nucleosynthesis.

Primary T kT Primary

Fuel (K) (MeV) Products

'H 5x 107 0.002 *He

‘He 2x 108 0.02 12C, 160, 2Ne
2c 8 x 108 0.07 160, 0'Ne, Mg
160 2% 10° 0.2 20Ne, 28Si, 328
20Ne 1.5 % 10° 0.13 160, 2t Mg

BSi 3.5%x10° 0.3 A <60

nuclei. Since there are no free neutrons present, the reactions differ from those
of big bang nucleosynthesis. The first reaction that occurs is

ptp—d+et+u, (12.22)
Q = 0.42 MeV (12.23)

which is a weak interaction and involves the production of a positron and a
neutrino. Most of the released energy is shared between the two leptons and not
the deuteron due to its relatively high mass. In our sun, 7' ~ 15 X 10° K (or kg 7'
~1 keV). Since the proton-proton (pp) burning is a weak interaction process, it
has a very small cross section, ~10~*” cm?, compared with strong interactions at
these energies. The resulting reaction rate is 5 X 1078 reactions/proton/second
is only observed due to the extremely large number of protons in the sun.

There is an improbable (0.4%) three-body competitor to this reaction, called
the PEP process, that also leads to deuteron production. The reaction can be
written as

pte +p—->d+u, (12.24)
Q = 1.42 MeV (12.25)

This relatively rare reaction is important because it is a source of energetic neu-
trinos that are emitted by the sun.

Once a significant number of deuterons are created, nuclear reactions take
over, and the next reaction in the sequence is

d+p— He+y (12.26)
Q = 5.49 MeV (12.27)

leading to the synthesis of *He. The rate of this strong interaction is ~10'° times
greater than the weak interaction-moderated p + p reaction. At this point the



Figure 12.10 A highly schematic view of the ppl chain. The open, unlabeled circles are
meant to represent protons, but their relative number would be much greater in the sun
(Rolfs and Rodney (1988). Reproduced with the permission of Chicago University Press).

product ®He can undergo two possible reactions. In ~86% of the cases in our
sun (Bahcall), the reaction is

*He + "He — ‘He +2p (12.28)
Q = 12.86 MeV (12.29)

Notice that the net reaction for the combination of this with the two previous
reactions (p + p and d + p) corresponds to an overall reaction of

4p — *He + 2¢* + 2y, (12.30)

Q = 24.7 MeV (12.31)

This sequence of reactions is called the ppI chain, with the first step being the
rate-limiting step and is responsible for 91% of the sun’s energy. A schematic
view of this reaction is shown in Figure 12.10.

Approximately 14% of the time(Bahcall), the *He product undergoes a reac-
tion with an a particle:

He + ‘“He — 'Be + v, (12.32)
and the "Be subsequently undergoes an electron capture decay:

e+ Be— Li+v, (12.33)

Qgc = 0.86 MeV (12.34)

Note that this EC decay process does not involve capture of the orbital electron
of the 7Be since it is fully ionized in a star but rather involves capture of a free



continuum electron. As a consequence, the mean life of this decay is ~120 days
rather than the terrestrial mean life of only 77 days. The resulting ’Li undergoes
proton capture to form two helium nuclei

p+ Li—2'He (12.35)

and terminates the process. This sequence of reactions (p + p, d + p, *He + *He,
"Be EC, "Li(p, @)) constitutes the pplI process, which accounts for ~7% of the
sun’s energy and again involves weak interactions.

A small fraction of the 'Be produced by the ®He + “He reaction can undergo
proton capture and follow a different pathway to two helium nuclei:

"Be + p— °B + Y
*B - *Be+et +v,
*Be — 2'He (12.36)

The chain is terminated since the “Be nucleus is unbound and decays in
~1071¢ s into the two helium nuclei. This sequence (p+p, p+d, *He + *He,
"Be(p, v), °B -8 Be — 24He) constitutes the pplIl chain (which provides only
about 0.015% of the sun’s energy). In each of the pp-processes, some fraction
of the energy is carried away by the emitted neutrinos. Quantitatively, in the
ppl process, the neutrino fraction is 2%, in the ppll process 4%, and 28.3% in
the ppllI process. The large neutrino fraction in the ppllI process is due to the
production of the neutrino in the energetic  decay of ’B. The overall path and
branchings of the pp chains are shown schematically in Figure 12.11.

In Population II and Population I stars, “heavy” elements like carbon, nitro-
gen, and oxygen are present at trace levels, leading to the occurrence of another
set of nuclear reactions whose net effect is the conversion 4p — “He™ + 2e* +
2v,. The “heavy” nuclei act as catalytic intermediates for this reaction. The basic
catalytic cycle consists of the following reaction sequence:

PCtp-CN+y

PN - 13C+e++ve
13C+p—>MN+y
14N+p—>150+y

0 - 15N+e++ve
15N+p—> C + "He

This group of reactions is referred to as the CNO cycle and is favored at higher
temperatures where the Coulomb barrier for these reactions can be more easily
overcome. In our sun, 98% of the energy comes from the pp chain and only 2%
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Figure 12.11 The three branching chains of nuclear reactions that constitute hydrogen
burning in the sun(Bahcall). The net reaction converts four protons into an *He nucleus. The
rate-limiting step in all reactions is the first reaction that relies on the weak interaction to
create the deuterium nucleus.

Figure 12.12 A graphical representation of the catalytic CNO cycle including the side chain
reactions (Wong (1998). Reproduced with the permission of John Wiley & Sons).

from the CNO cycle. Several side chains of this reaction cycle are possible, as
illustrated in Figure 12.12.

12.5.3 Helium Burning

Eventually the hydrogen fuel in the star will be exhausted, and further gravi-
tational collapse will occur. This will give rise to a temperature increase up to



~1 — 2 x 10® K (with a density of ~10® kg/m?). When the star reaches this stage,
it becomes a red giant and helium burning can commence.
One might think the first reaction in this situation is

‘He + ‘He - *Be +y (12.37)
Q = —0.0191 MeV (12.38)

but "Beis essentially unstable (¢, , = 6.7 X 107" s), and thus that process is hin-
dered by the short lifetime and low transient population of the beryllium nuclei.
Instead one gets the so-called 3a process

3*He » *C+y (12.39)
Q = 7.37 MeV (12.40)

Three body reactions are usually rare, but the reaction proceeds through a res-
onance in C at 7.65 MeV corresponding to the second excited state of e

(Jm = 0%). This excited state has a more favorable configuration than the 2c
ground state for allowing the reaction to occur. The difference in the relative
reaction rates can be seen in Figure 12.13 by comparing the curve for the reso-
nant reaction with the curve for the nonresonant one. (In a triumph for nuclear
astrophysics, the existence of this state, now called the Hoyle State, was postu-
lated by astrophysicists to explain nucleosynthetic rates before it was found in
the laboratory.)

After a significant amount of "C is formed, one gets the follow-on a capture
reactions

‘He + "C = "0 +y (12.41)

Q=7.16 MeV (12.42)
and

‘He + '°0 = *Ne + y (12.43)

Q = 4.73 MeV (12.44)

Notice that these reactions will require higher and higher average kinetic ener-
gies to overcome the Coulomb barriers for the successively heavier nuclei. Such
higher energies will occur deeper and deeper inside the star due to the increas-
ing pressure from the gravitational force. Thus, the star will develop a series of
layers where different nuclear reactions are occurring.

If the temperature is high enough, then reverse reactions are possible and the
neon will become part of an equilibrium:

Ne+vy - "0+ ‘He (12.45)
Q = —4.73 MeV (12.46)
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with a breakout reaction to form magnesium:

‘He + Ne — Mg + 7 (12.47)

Q =+49.32 MeV (12.48)

with the latter reaction requiring an even higher average kinetic energy in the
entrance channel. The relative rates of these and related processes are shown
in Figure 12.13.

12.5.4 Synthesis of Nuclei with A < 60

Eventually the helium of the star will be exhausted, leading to further gravita-
tional collapse with a temperature increase to ~6 X 108 — 2 x 10°K (kT ~100 —
200 keV). At this point the fusion reactions of the “a cluster” nuclei formed in
the o burning reactions are possible. For example, carbon and oxygen burning
occurs in charged particle reactions such as

20420 5 ®Ne + *He
Pc+”C - PNa+p
12C + 12C - 23Mg +n



Pc+2C > "Ne+y

16O + 16O - 24Mg + 2"He
0 +'°0 - **si+ *He
16O+ 160 5 31P+p
*0+"0 > s +n
16O+ 160 = BZS +’Y

with the production of *Sj and 328 being the most important branches of the
oxygen-burning reactions so that the proportion of protons and neutrons will
be low. Again, all of these reactions have substantial Coulomb barriers but are
exothermic. The energy release will create thermal motion that acts against
the gravitational pressure until the fuel runs out. Further rises in temperature
up to ~5x 10° K result in a series of silicon burning reactions involving an
equilibrium between photodisintegration at the high temperature and radiative
capture processes such as

®Si+y - *Mg+ 'He (12.49)

“He +°Si » S +y (12.50)

Various nuclei up to A ~60 are produced in sets of equilibrium reactions. In
such equilibrium processes, the final yields of various nuclei are directly related
to their nuclear stability (binding energies) with the more stable nuclei hav-
ing higher yields. One observes greater yields of even—even nuclei than odd A
nuclei (due to the pairing term in the mass formula), and even N isotopes are
more abundant than odd N isotopes of an element.

The relative time scales of the various reactions leading to nuclei with A < 60
are shown in Table 12.2. Note these time scales are inversely proportional to
the reaction rates. Note also that these processes have to end with nuclei in
the region of A < 60 because such nuclei have the highest binding energies per
nucleon.

12.5.5 Synthesis of Nuclei with A > 60

The binding energy per nucleon curve peaks near A ~ 60 and decreases slowly
as A increases beyond 60. This indicates that fusion reactions using charged
particles are not generally energetically favorable to make heavier nuclei. How-
ever, another possible nuclear reaction is neutron capture, that is, (n, y), if there
are free neutrons available. These reactions have no Coulomb barriers, and the
rates are then governed by the Maxwell-Boltzmann distribution of velocities
in a hot gas and the availability of free neutrons. We have already seen that the
cross section for (n, y) reactions is proportional to 1/velocity at low energies,
so that the reaction rate N, (ov) is largely governed by N, , the neutron density.



Table 12.2 Time Scales of Nucleosynthetic Process in a
One Solar-mass Star.

Process Time Scale
Hydrogen burning 6 x 10° years
Helium burning 0.5 x 10° years
Carbon burning 200 years
Neon burning 1 year

Oxygen burning Few months
Silicon burning Day

Two main types of neutron capture processes have been identified for nucle-
osynthesis that depend on the relative numbers of free neutrons and thus on the
reaction rate. The first of these is slow neutron capture, the so-called s-process,
where the time scale of the neutron capture process is much slower than the
P decay lifetimes of the nuclei involved (7,¢,c(ion > 75)- In the s-process, each
neutron capture proceeds in competition with = decay. Note that the reaction
rates are so low that the process winds its way close to and including the stable
nuclei. For example, consider the stable nucleus *°Fe that might be present at
the end of the charged particle burning processes (such nuclei are called seed
nuclei). If this nuclide is in a neutron flux, the following reactions can occur:

Fe4+n — 57Fe(stable) +y (12.51)
Fe+n — 58Fe(stable) +v (12.52)
*Fe+n — “Fe(t,, = 44.5 days) +7 (12.53)

The 44.5 days lifetime of *Fe is short enough that it will undergo p~ decay
before another neutron is captured, that is,

Fe - 59Co(stable) +e +v, (12.54)

and further captures will continue with *’Co. The mean times of neutron cap-
ture reactions 7,.,.o, = In2/rate = In2/N,(ov). If N, ~ 10" /m3, 6, = 0.1 b,
and E, ~ 50 keV, then 7 ~ 10° years under typical stellar conditions. Then neu-
tron capture will be possible by all stable nuclei and many of the long-lived
nuclei. A typical s-process path of nucleosynthesis for the nuclei in the region of
Z = 45-60 is shown in Figure 12.14. The production of nuclei follows a zigzag
path through the chart of nuclides, with increases in mass when a neutron is
captured and increases in atomic number when p-decay precedes the next neu-
tron capture.



136
P
) 130 132 134
P P s
133
(n,7) 5%
124 126 128 129 130 131 132
[ P srs  srosr
127
sr
120 122 123 124 125 126 128 130
P s s s srosr T r
121 123
s v
112 114 115 116 117 118 119 120 122 124
o PP S srosrosrosr v v
113 115
P sr
M0 111 112 113 114 116
S srtosrostosr '
109
s
107 108 110
s sr . s-Process
T, =7x10°%y
65 70 75

Number of neutrons N

138

138

P
135 136 137

s

s

134
'

80

s

tion of the chart of nuclides showing the s-process pz
rocess proceeds through nuclei far to the right of the
1988). Reproduced with the permission of Chicago Ut



The s-process terminates at *®Bi because the cyclic a-production sequence
*Bin, 1) "Bi = *’Po - *Pb(n, )(n, y)(n, )" Pb — ““Bi  (12.55)

cannot proceed to higher mass nuclei. The s-process also has branching points
as it proceeds toward higher masses when it encounters an unstable nuclide
with a half-life on the order or the reaction lifetime. These branching points
are very important for identifying the rate of neutron capture.

The source of the neutrons for the s-process is (®, n) reactions on
neutron-rich nuclei such as 'C or ~'Ne, with the latter being the most
important. In Population II and Population I stars, one can get side reactions
in the hydrogen burning process like

**Ne(p,y)"'Na (12.56)

“'Na - “'Ne +e* + v, (12.57)

that produce small amounts of the target nuclei for the (o, n) reactions.

For the slow neutron capture process, there is an equilibrium between the
production and loss of adjacent nuclei. Stable nuclei are only destroyed by neu-
tron capture. For such equilibria, we can write for the rate of change of a nucleus
with mass number A:

dN,

7 = GA—INA—I - GANA (1258)
where o, and N; are the capture cross sections and number of nuclei (abun-
dance) for nucleus i, respectively. At equilibrium the derivative is zero, of

course, and
041Ny = 04Ny (12.59)

This relationship between the abundances of neighboring stable nuclei in pro-
portion to their neutron capture cross sections is a signature for the s-process
production of these nuclei.

If the time scale of neutron capture reactions is very much less than p~ decay
lifetimes, then rapid neutron capture or the r-process will occur. For r-process
nucleosynthesis, one needs large neutron densities, ~10?® /m3, which lead to
capture times of the order of fractions of a second. (Note that the neutron flux
in a small research nuclear reactor is ~10'7 /m?/s.) The astrophysical environ-
ment where such processes can occur is now thought to be in supernovae but
is still uncertain. In the r-process, a large number of sequential captures will
occur until the process is terminated by neutron emission or, in the case of the
heavy elements, fission or $-delayed fission. The lighter “seed” nuclei capture
neutrons until they reach the point where f~ decay lifetimes have decreased
and B~ decay will compete with neutron capture. The r-process is responsible
for the synthesis of all nuclei with A > 209 and many lower mass nuclei. In a
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Figure 12.15 Neutron capture paths are shown for the s-process and a typical r-process.
The s-process path runs through well-known nuclei, but the nuclei in the r-process path are
mostly unknown at present (Rolfs and Rodney (1988). Reproduced with the permission of
Chicago University Press).

plot of abundances versus mass number A (Fig. 12.4), one sees two peaks in
the abundance distributions near each magic (high) neutron number (N = 50,
82, 126). The lower mass peak at each value is due to the r-process, which
reaches the magic number of neutrons at a lower Z value than the s-process.
The products then decay back to stability. The peaks occur because of the rela-
tive stability of N = 50, 82 and 126 nuclei against neutron capture compared to
their neighbors with just one or two more neutrons. A typical r-process path is
shown in Figure 12.15. Notice that the path climbs up in atomic number along
the neutron magic numbers. The nuclei in each climbing region are the places
of maxima in the isotopic yields after decay. Notice that the r-process creates
nuclei that are very far from the valley of stability. The nuclear properties of
these nuclei such as half-life and p-delayed neutron emission are needed for an
accurate prediction of the r-process. However, only a few nuclei along the pre-
dicted r-process path are known at present, and the astrophysical models must
rely on theoretical nuclear models. In addition, it seems unlikely that there is
only one r-process with a fixed value of the neutron flux in nature, which con-
tributes to the uncertainty of the predictions. Study of the nuclei involved in
the r-process is an active field of research at present.

Another important process leading to the synthesis of some specific
proton-rich nuclei with 70 < A < 200 is the so-called p-process. The p-process
consists of a series of photonuclear reactions (y, p), (y,a), (y, n) on “seed”
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Figure 12.16 A section of the heavy element chart of the nuclides showing the relative
paths of the s-, r- and p-processes in nucleosynthesis. Note that certain nuclei are not
accessible by the s-process and must be formed in other ways (Truan (1984). Reproduced
with the permission of Annual Reviews, Inc.).

nuclei from the s-process that produce these nuclei. (Originally it was believed
that proton capture processes during supernovae were responsible for these
nuclei, but it was found that the calculated proton densities are too small
to explain the observed abundances.) The temperature during a supernovae
explosion is ~3 x 10° K, producing blackbody radiation that can cause these
photonuclear reactions. The p-process contribution to the abundances of
most elements is very small, but there are some nuclei (lgoPt, 168Yb) that seem
to have been exclusively made by this process. Putting all three reactions
together, the relative importance of s-, r-, and p-processes in nucleosynthesis
in a given region is shown in Figure 12.16. Thus, it is clear that the distri-
bution of isotopes in our solar is relatively complex with contribution from
several, if not many, stellar processes. The material is highly processed and
mixed.

A process that is related to the p-process is that it can produce proton-rich
nuclei that are not accessible to the s- or r-processes is the rp-process, the rapid
proton capture process. This process makes proton-rich nuclei with Z < 50
because it encounters a process terminating cycle near tin. The rp-process
involves a set of (p, y) and p* decays that run near the proton dripline and
populate the most proton-rich nuclei. The process is thought to be explosive



Figure 12.17 The path of the rp-process is shown relative to the line of p stability for the
temperature and density conditions as indicated.

with a high flux of energetic protons and starts through a “breakout” from the
CNO cycle through a side chain of the CNO cycle that produces the p-rich
nuclei *'Na and *Ne. These “seed” nuclei form the basis for further proton

captures that do not cycle back to "C but rather lead to the nucleosynthetic
path shown in Figure 12.17. Note this process, while starting close to the line
of P stability, approaches the proton dripline as the nuclei become heavier. The
rp-process creates a small number of characteristic nuclei with A < 100 that
are outside the s-process path. At present, the source of the protons for this
process are thought to be certain binary stars where a more dense neutron star
is able to accrete hydrogen from a “normal” hydrogen-burning star.

12.6 Solar Neutrino Problem

12.6.1 Introduction

Many of the nuclear reactions that provide the energy of the stars also
result in the emission of neutrinos. Because of the small absorption cross



Table 12.3 Solar Neutrino Fluxes on Earth from the

Standard Solar Model.

Reaction Source Flux (particles/s/cm?)
pp 5.94 x 10%°

pep 1.40 x 10®

hep 7.88 x 10°

"Be 4.86 x 107

8B 5.82 x 10°

BN 5.71 x 108

50 5.03 x 108

I7F 5.91 x 10°

Source: From Bacall and Pena-Garay (2004).

sections for neutrinos interacting with matter (o, ~ 10™*cm?), these neu-
trinos are not absorbed in the sun or other stars. (This loss of neutrinos
corresponds to the emission of ~2% of the energy of our sun.) Because of
penetrating power, the neutrinos provide a window into the stellar interior.
At the same time the small absorption cross sections also make neutrinos
difficult to detect with almost all neutrinos passing through the earth without
interacting.

Recently, a good deal of attention has been given to the “solar neutrino prob-
lem” and its important solution. The 2002 Nobel Prize in physics was awarded
to Ray Davis and Masatoshi Koshiba for their pioneering work on this problem.
Of special interest here is the important role of nuclear and radiochemistry
in this work as Davis was a nuclear chemist. The definition and solution of
this problem is thought to be one of the major scientific advances of recent
years.

12.6.2 Expected Solar Neutrino Sources, Energies, and Fluxes

The sun is a major source of neutrinos reaching the surface of the earth due
to its close proximity and number of neutrinos from hydrogen burning. The
sun emits ~1.8 X 103 neutrinos/s, which, after the ~8 m transit time, reach the
surface of the earth at the rate of 6.4 X 10'° neutrinos/s/cm?. The predictions
of the standard solar model, based on all of the reactions discussed previously,
for the neutrino fluxes at the surface of the earth due to various nuclear reac-
tions are shown in Table 12.3. The contributions from the various processes
are thought to be relatively reliable because the results must be consistent with
many independent measurements of the sun’s properties and the number of
possible nuclear reactions is limited.
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Figure 12.18 Log-log plot of predicted neutrino fluxes from most important solar nuclear
reactions. At the top the energy regions to which several neutrino detectors are sensitive are
shown (Bahcall, Reproduced with the permission of Bahcall website).

The predicted energy distributions of the neutrinos can be compared in
Figure 12.18. Recall that each nuclear reaction will have a characteristic
neutrino energy distribution due to the energetics and kinematics of the
reaction.

The source labeled “pp” in Table 12.3 and Figure 12.18 refers to the reaction

p+p—od+et+v, (12.60)
and is the most important reaction, producing one neutrino for each “He

nucleus; note that this is a three-body final state and gives a continuous
neutrino energy distribution. The “pep” source is the reaction

p+p+e —d+v, (12.61)

which produces monoenergetic neutrinos due to the two-body final state, while
the “hep” source is another three body reaction

p+3He - ‘He + et +v, (12.62)

This latter reaction produces the highest energy neutrinos with a maximum
energy of 18.77 MeV due to the high reaction Q value. The intensity of the hep
source is about 107 times less than the pp source. The “’Be” source refers to the
electron capture decay reaction that is part of the pp chain

e+ Be— Li+v, (12.63)



that produces two groups of neutrinos, one in which the ground state of "Liis
populated (90% branching ratio) and one that populates the 0.477 MeV excited
state (10% branch). The source “*B” refers to the positron decay

*B = Be" +e" +, (12.64)

in which the first excited state of *Be (at 3.040 MeV) is populated. The other

weak sources “13N,” “150,” and “""F” refer to B* decays that occur in the CNO
cycle, that s,

N o PCtet o, (12.65)

"0 - PN+et +u, (12.66)
and

"Fo"0+et 4y, (12.67)

Looking back at all of these reactions, it is important to note that only electron
neutrinos (v,) are emitted in ALL of these reactions. The nuclear reactions have
to convert protons into neutrons in order to form helium nuclei. The reactions
that do this conversion are essentially the inverse of neutron p decay that creates
a positron and an electron neutrino.

12.6.3 Detection of Solar Neutrinos

As indicated previously, the detection of the weakly interacting solar neutrinos
is difficult because of the extremely low absorption cross sections. Two main
classes of detectors were used to overcome this obstacle, radiochemical detec-
tors, and Cherenkov detectors. Radiochemical detectors rely on detecting the
products of neutrino-induced nuclear reactions, whereas the Cherenkov detec-
tors observe light from the scattering of neutrinos. The most famous radio-
chemical detector was that constructed by Davis and coworkers in the Homes-
take Gold Mine in South Dakota. They mounted a massive detector, consisting
of 100,000 gallons of a cleaning fluid, C,Cl,, in a cavern about 1500 m below
the surface of the earth. The cleaning fluid weighed 610 tons and corresponded
to the volume of 10 railway tanker cars. The nuclear reaction occurring in the
detector was

v+ 7Cl - YAr+e (12.68)

The ¥’ Ar product nucleus decays by electron capture back to chlorine with a
35-day half-life. First the cleaning fluid was purged of all gases. After the fluid
was irradiated by solar neutrinos for a period of time, the individual 7 Ar prod-
uct nuclides were flushed from the detector with a stream of helium gas and
put into a proportional counter where the 2.8 keV Auger electrons from the EC



decay were detected with a high efficiency. The detection reaction has a thresh-
old of 0.813 MeV making it sensitive to the °B, hep, pep, and "Be (ground-state
decay) neutrinos with the °B being the most important. Typically ~3 atoms

of ”Ar are produced per week and must be isolated from the ~103° atoms of
cleaning fluid in the tank, a radiochemical tour de force. The detector was placed
deep underground to shield against background reactions induced by cosmic
rays.

The Davis- or chlorine-based detector first identified that there was a
“solar neutrino problem” in that only a fraction of the expected neutrons
were observed. This observation led researchers to build other radiochemical
detectors to confirm the problem. These detectors, GALLEX constructed in
Italy and SAGE in Russia, were based on the similar reaction

v+ 'Ga— 'Ge+e (12.69)

These detectors have a much lower threshold at 0.232 MeV and can be used to
directly detect the dominant pp neutrinos from the sun. The gallium is present
as a solution of GaCl,. The "'Ge is collected by sweeping the detector solution
with N, and converting the Ge to GeH, before counting. These detectors uti-
lized 30-100 tons of gallium and contained a significant fraction of the world’s
yearly gallium production at the time.

The Cherenkov detectors involve the scattering of neutrinos by charged parti-
cles where the scattered charged particles then emit Cherenkov radiation when
they travel in a condensed medium (water) that can be detected by scintillation
detectors. The first of these detectors was placed in a mine at Kamioka, Japan.
The largest version of the detectors at Kamioka is called Super-Kamiokande
and consists of 50,000 tons of high purity water. The detection reaction in this
case is a scattering reaction

v+e s v+e (12.70)

and the detection threshold is about 8 MeV, allowing one to observe the 8B
neutrinos. The detector is instrumented with literally thousands of very large
photomultiplier tubes that are used to create an image of the scattering track.

A related detector, called the Sudbury Neutrino Observatory (SNO), was
located at Sudbury, Ontario, Canada, and consisted of 1000 tons of heavy water
(D,0) mounted ~2 km below the surface in the Sudbury nickel mine. In addi-
tion to neutrino—electron scattering, this detector can also observe two nuclear
reactions involving deuterium:

v,+d—>2p+e” (12.71)
and

v+d—-n+p+v (12.72)



where the reaction can occur with all three types of neutrinos, v,, v, and v,.
The former reaction of the previous pair is sensitive to electron neutrinos only.
These different types of reactions can be exploited to look for neutrino oscil-
lations (see in the following text). In the latter reaction, the emitted neutron is
detected by a subsequent (n, y) reaction in which the y-ray is detected by scintil-
lation detectors. (The heavy water of the detector is surrounded by 7000 tons of
ordinary water to shield against neutrons from radioactivity in the rock walls
of the mine.) This detector also poses radiochemical challenges as the water
purity must be such that there are <10 uranium or thorium atoms per 10'
water molecules.

12.6.4 The Solar Neutrino Problem

The solar neutrino “problem” was defined by the first results of Davis et al.
using the chlorine detector at the Homestake Mine. Davis et al. observed only
~1/3 of the expected solar neutrino flux as predicted by standard models of
the sun, which assume 98.5% of the energy is produced by the pp chain and
1.5% of the energy by the CNO cycle. (The final result of the chlorine detec-
tor experiment is that the observed solar neutrino flux is 2.1+0.3 SNU com-
pared with the predicted 7.9+2.4 SNU, where the solar neutrino unit (SNU)
is defined as 1073 neutrino captures/target atom/second.) The GALLEX and
SAGE detectors subsequently reported solar neutrino fluxes of 77+10 SNU
and 69+13 SNU, which are to be compared with the standard solar model pre-
diction of 127 SNU for the neutrinos detected by these reactions. Such large
discrepancies clearly indicated that either the models of the sun were wrong or
something fundamental was wrong in our ideas of the nuclear physics involved.

12.6.5 Solution to the Problem: Neutrino Oscillations

The solution to the solar neutrino problem was found in the previous ideas of
the fundamental structure of matter, the so-called Standard Model of particle
physics. This difficulty comes from the fact that neutrinos do not retain their
individual identities but rather oscillate between forms! The standard model
predicts that the three types of neutrinos are massless and that once created,
they retain their identity for all time. The basic idea is that as neutrinos
come from the sun, they “oscillate;” that is, they change from being electron
neutrinos to being muon neutrinos and back etc. This oscillation is possible
if the neutrinos have a mass and if there is a mass difference between the
electron and muon neutrinos. These neutrino oscillations are enhanced by
neutrino—electron interactions in the sun.

The direct observational evidence for the occurrence of neutrino oscillations
came from observations with the Cherenkov detectors. The SNO detector
found 1/3 the expected number of electron neutrinos coming from the sun
in agreement with previous work with the radiochemical detectors. The
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Figure 12.19 A summary of the comparison between standard solar model predictions and
experimental measurements emphasizing the effects of neutrino oscillations in detector
systems that are sensitive to only one form of neutrino (Bahcall, Reproduced with the
permission of Bahcall website). (See insert for color representation of the figure.)

Super-Kamiokande detector that is primarily sensitive to electron neutrinos
but has some sensitivity to other neutrino types found ~1/2 the neutrino flux
predicted by the standard solar models. If all neutrino types behaved similarly,
the SNO and Super-Kamiokande detectors should have detected the same
fraction of neutrinos. Further experiments with the SNO detector operating in
a mode to simultaneously detect all types of neutrinos found neutrino fluxes
in agreement with the solar models. The results for various experiments as
they stood in 2000 are summarized in Figure 12.19.

Subsequent experiments have been performed to observed neutrino oscil-
lations from other strong sources of neutrinos. For example, nuclear reactors
such as the Chinese complex at Daya Bay provide a strong source of electron
neutrinos, and large detectors have been placed at different distances from
the complex to monitor the flux. The Super-Kamiokande detector was used
to observe the day/night variation of tau and electron neutrinos produced in
the atmosphere.

Current work has provided information on the mass differences among the
neutrinos but not the absolute scale. There are two orderings of the relative
masses, the so-called normal hierarchy with two lower masses separated by



Figure 12.20 Example of the energy spectrum of
GCR (Audouze and Vauclair (1980). Reproduced

with the permission of An Introduction to Nuclear
Astrophysics). 10-6

CR Flux (particles/m2/s/eV/Sr)

10710

107"

107 108 10° 1019101 1012

~7 % 1075 eV? that lie below the third mass by ~2 x 10~% eV? or the inverted
hierarchy where the single mass lies below the pair of nearby masses.

12.7 Synthesis of Li, Be, and B

Big bang nucleosynthesis is responsible for the synthesis of hydrogen and
helium and some of the "Li. (Stellar nucleosynthesis in main sequence stars
transforms about 7% of the hydrogen into “He.) However, neither stellar
nucleosynthesis nor big bang nucleosynthesis can produce significant amounts
of Li, Be, and B nuclei. For example, the abundances of Li, Be, and B are
suppressed by a factor of 10° relative to the abundances of the neighboring
elements. (cf., Fig. 12.2)

The extremely low abundance is the result of two factors, the relative fragility
of the isotopes of Li, Be, and B and the high binding energy of *He, which
makes the isotopes of Li, Be, and B generally unstable with respect to various
decay/reactions that lead to “He. For example, the nuclei °Li, Li, "Be, ''B, and

B are destroyed by stellar proton irradiation at the temperatures of 2.0, 2.5,
3.5, 5.0, and 5.3 x 10° K, respectively. Thus, these nuclei can’t survive the stel-
lar environment since the temperature in the center of the sun is ~1.5 x 107 K.



Figure 12.21 The relative elemental
abundances in the solar system and
cosmic rays (Rolfs and Rodney (1988).
Reproduced with the permission of
Chicago University Press).
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(Only the rapid cooling following the big bang allows the survival of the few

lithium products of primordial nucleosynthesis.)

Li, Be, and B are believed to be produced in spallation reactions in which the
interstellar °Cand '*O are fragmented by energetic protons in the galactic cos-
mic rays (GCR). The most likely processes are medium energy reactions with
thresholds of 10-20 MeV. The measured energy spectrum of GCR is shown in
Figure 12.20. Typical cross sections for these spallation reactions are ~1-100
mb for high-energy protons E, > 100 MeV. The time scale of the irradiation is
~101% years. The product nuclei are not subject to high temperatures after syn-
thesis due to the low densities and temperatures in interstellar space, so they
can survive. Further support for this mechanism is the relative abundances of
the elements in the GCR relative to the solar abundances (Fig. 12.21), which
shows enhanced amounts of Li, Be, and B in the GCR. This pattern is similar to
the yield distributions of the fragments from the reactions of high-energy pro-
jectiles. However it is clear that at most 30% of the solar system, Li is produced
by the big bang and cosmic spallation. Core collapse supernovae can account



for at most another 20% that means that 50% must come from other sources.
This is known as the “lithium problem?”

Problems

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9

12.10

12.11

Assume an absorption cross section of 10™** cm? for solar neutrinos
interacting with matter. Calculate the probability of a neutrino inter-
acting as it passes through the earth.

What is the most probable kinetic energy of a proton in the interior of
the sun (T = 1.5 x 107 K)? What fraction of these protons has an energy
> 0.5 MeV?

. 4 .1 16 .
If we want to study the reaction of He with O under stellar condi-

tions, what laboratory energy would we use for the “He?

If the earth was a neutron star, estimate its radius and density from its
mass.

If the interior temperature of the sun is 1.5 X 107 K, what is the peak
14 15 .
energy of thep+ N — O + y reaction?

Which nucleosynthetic processes are responsible for the following

.70, 12 20 56 84 96 114 124 209,. 238
nuclei: 'Li, "C, Ne, Fe, Sr,” Zr, Sn, ~Sn,” Bi,  U?

Outline how you would construct a radiochemical neutrino detector
based upon "In.

Estimate the Coulomb barrier height for the following pairs of nuclei:
(@) p+p(b) O+ °O (c) *Si + **si.

Calculate the rate of fusion reactions in the sun. Be sure to correct for
the energy loss due to neutrino emission.

Assuming the sun will continue to shine at its present rate, calculate
how long the sun will shine.

From the data given on the Davis detector and the assumption that the
7 Ar production rate is 0.5 atoms/day, calculate the neutrino capture

rate in SNU. Assume the effective cross section for the 8B, neutrinos is
10~% cm?.



12.12 Calculate the evolution of the n/p ratio in the primordial universe from
the information given as the temporal dependence of the temperature.

12.13 Make an estimate of the neutron to proton ratio in the center of the
sun if the only source of neutrons is thermal equilibrium of the weak
interactions.

12.14 Using the information on the r-process and the s-process paths in
Figures 12.14 and 12.15, make estimates of the average atomic numbers
of the nuclei in the peaks for N = Z in the mass abundance curves. Do
the masses of these nuclei correspond to the peaks in Figure 12.4?
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13

Reactors and Accelerators

13.1 Introduction

Radioactive decay of primordial nuclides is the most important nuclear trans-
formation that commonly takes place on Earth along with reactions induced by
cosmic rays. The reasons that other nuclear reactions do not normally occur on
Eartharesimple: nuclearreactionsthatareinduced by protonsorheavier charged
particles have large activation barriers and require energetic charged particles
that are only present in space and the highest regions of the atmosphere. On the
other hand, nuclear reactionsinduced by neutrons do not have an activation bar-
rier, but neutrons are unstable, decaying by -decay into protons with a half-life
of ~10 min. Thus, neutrons cannot be stored very long and have to be produced
in other nuclear reactions to use them in subsequent nuclear reactions.

Protons and all nuclei are positively charged and strongly repel one another
through the Coulomb force. Colliding nuclei must have kinetic energies that
are far in excess of the thermal energies available on Earth to reach distances
that are short enough for the nuclear force to be effective (~1 fm). We must
accelerate one of the particles until it has sufficient kinetic energy to get over
the Coulomb barrier for the nuclei to react.

Sample Problem 13.1: Temperatures and Velocities
A very simple and potentially useful fusion reaction combines two deu-
terium nuclei, forming ®He and a neutron:

H+°H — *He+'n+Q
Estimate the Coulomb barrier for this reaction and the temperature of
deuterium gas that would give such an average energy.

Solution
The Coulomb barrier, discussed in Chapter 10, is given by

_ Z,Z,¢  [1(1) 1.439 MeV — fm]
€T r 7 (1.93+1.93)fm

= 0.373 MeV



Setting the kinetic energy equal to the Coulomb barrier as would be
appropriate when all the particles are moving (in a gas) and using the
thermal energy of an ideal gas,

1 3
Ve=KE. = Emu2 = EkBT

T 2V _ 2(0.373 MeV)1.602 X 10~ J/MeV
3k, 3(1.38 x 1023 J/K)
T=3x10°K

This extraordinary temperature is characteristic of the interiors of stars,
as discussed in Chapter 12, and not of terrestrial objects.

The fact that neutrons can be absorbed by nuclei without overcom-
ing a threshold (£ =0 or s-wave reactions) makes neutrons extremely
effective nuclear “reactants” Neutron-induced reactions are the energy
source for present-day commercial nuclear power (fission reactors), while
charged-particle-induced reactions remain under study as power sources
(fusion reactors). In this chapter we will consider the general features of
nuclear fission reactors, followed by the general features of charged-particle
accelerators, magnetic spectrometers, and the production of beams of
radioactive nuclei.

13.2 Nuclear Reactors

13.2.1 Neutron-Induced Reaction

Nuclear fission reactors (“nuclear power reactors”) are devices that use con-
trolled neutron-induced fission to generate energy. The primary form of the
generated energy is heat that is converted into electrical energy. While a com-
plete description of the design of these devices is beyond the scope of this book,
there are certain basic principles related to nuclear reactors that are worth
studying and that can be described and understood with a moderate effort.
Let us begin by reminding ourselves about the energy dependence of the
cross section for neutron-induced reactions. In Figure 13.1, we show the (n,f)
cross section for "U and >°U as a function of neutron energy. By examining

Figure 13.1, one can see that the highest cross section for fission of U occurs
at very low energies, so-called thermal energies where E, < 1 eV. Thermal neu-
trons are neutrons that have come into thermal equilibrium with the environ-
ment. As discussed in Chapter 10, the cross section varies approximately as 1 /v
for the lowest neutron energies.

Two other important features of Figure 13.1 deserve further comment. The
first of these features is the large difference between the excitation functions for
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Figure 13.1 Neutron-induced fission cross section for 25U and ***U as function of the

neutron energy, £, (Hughes and Schwartz (1958). Reproduced with the permission of
Brookhaven National Laboratory Report).

(n,f) reactions with U and ***U. We can understand this difference by noting
the Q values for neutron capture by these nuclides:

U +'n o PU + 654 Mev
U+ 'n o U+ 4.80 MeV

Note the Q value for the 1+ U reaction is 1.7 MeV larger than that
for the other reaction. The reaction with the lighter isotope converts an
even—odd nucleus into an even—even nucleus, while the other reaction
converts an even—even nucleus into an even—odd product. Thus, we would
then expect the Q values for these reactions to roughly differ by twice the
neutron pairing energy. Since the fission barriers for U and **U are about
the same (B, ~ 6.2 MeV), capture of neutrons with any kinetic energy can

cause U to fission, while it takes ~1.4 MeV neutrons to cause ~ U to fission.
The “thermally fissionable” nuclei are thus all even—odd nuclei where the
energy release in neutron capture is greater than the fission barrier. The most

important of these nuclei from a practical point of view are the “big three;

U, U, and *’Pu, one that is available and the other two readily produced.

The other feature of Figure 13.1 worthy of comment is the variation of the
cross sections in the different regions of neutron energy. Neutrons with ener-
gies <1 eV exhibit the 1/v behavior, and this region is referred to as the “ther-
mal” region. Epithermal neutrons have energies from 1 to 100 eV, and their
reactions are characterized by large resonances in the cross section caused by
neutron capture into specific states in the compound nucleus. In the neutron



energy region from ~ 100 eV to 1 MeV, the energy levels of the excited states
in the compound nucleus overlap, and there are no discrete (or separate) res-
onances. Neutrons with energies > 1 MeV are generally referred to as “fast”
neutrons, and they can even cause 2*U to fission.

As discussed in Chapter 10, there are other reaction mechanisms besides fis-
sion when neutrons interact with heavy nuclei that include:

(a) elastic scattering where Q = 0 and kinetic energy is conserved. However,
the target nucleus recoils in these events, and the elastically scattered neu-
tron loses some kinetic energy. (For a collision of a neutron of energy E with
a nucleus containing A nucleons, the neutron kinetic energy after the col-
lision will be (j:rl;E. Note that the maximum neutron energy loss occurs
when A = 1 and the neutron energy is halved in each collision.)

(b) inelastic scattering where the neutron gives up some of its kinetic energy in
addition to the recoil energy, leaving the struck nucleus in an excited state.
The threshold energy for this process in the center-of-mass system will be
the energy of the first excited state of the struck nucleus. For *Uand 'y,
these energies are 14 and 44 keV, respectively.

(c) radiative capture, that is, the (n, y) reaction in which part of the energy
released by the capture of the neutron is carried away by the emitted
photon.

The total cross section, 6, is the sum of the cross sections for these pro-
cesses, that is,

Ototal = Oelas + Ginel + Gn,y + O¢ (131)

The distance neutrons travel between interactions in a medium, called the mean
free path A, is given as

1
OtotalP

where p is the number density of nuclei. For uranium, p = 4.8 X 102 /m3, and
if we assume 6,,,; = 7 barns, then A = 0.03 m. If the average neutron energy
is 2 MeV, then the time between interactions will be ~1078 s. The mean free
path places a constraint on the size of a self-sustaining assembly of fissionable
material.

A= (13.2)

Sample Problem 13.2: Neutron Wavelengths

What is the velocity and de Broglie wavelength of a thermal neutron?

Solution
The Maxwell-Boltzmann velocity distribution for the random motion of
a thermally equilibrated neutron gas is

m 3/2
n(v) = 4nv* e T
®) [anBT]



where we have normalized the function so that /0oo n(v)dv = 1. The most
probable velocity can be found from the derivative as

2, T\
Ump = -

If T = 20°C, then

(2138 x 107 J/K)293K 2
MP 1.675 x 10-27 kg
Upp = 2200 m/s

This velocity, 2200 m/s, is taken as the characteristic velocity of thermal
neutrons, and the cross section for neutrons at a velocity of 2200 m/s
(E, =1/2muv? = 0.0253 eV) is referred to as the “thermal” cross section.
The wavelength at this velocity is
N _h_ 6.626 X 1073 J/s
deBroglic ™ ,, ™ (1.675 x 10-%7 kg)(2200 m/s)
Mdebrogie = 1.80 X 107" m

Notice that the de Broglie wavelength of thermal neutrons is much larger
than the size of a typical nucleus (r ~ 1 to 10 X 107 ) and similar to
the size of a typical atom. Reaction cross sections for thermal neutrons
generally exceed the geometrical area of the nucleus.

13.2.2 Neutron-Induced Fission

Let us review some aspects of fission discussed in Chapter 11. Consider the
case of the thermal neutron-induced fission of **°U, that is,

U= U = X+ Y (13.3)
The two fission fragments X and Y will have a total kinetic energy of ~168 MeV
due to their mutual Coulomb repulsion at scission with the lighter fragment
carrying away the larger energy. The most probable mass split is asymmet-
ric with Ay, /Ajghe ~1.3—1.4. Following scission, the deformed fragments will
contract to a more spherical shape, heating up in the process. The fragments
will get rid of this excess energy by the emission of neutrons, emitting ~2.5
neutrons per fission event. These neutrons have a “Watt” spectrum with a broad
peak centered below 1 MeV with an energy distribution of the form

N(E) = 0.453¢7 9% sinh(1/2.29E) (13.4)

The total energy carried away by these neutrons is ~5 MeV. In competition with
the last stages of neutron emission and when the excitation energies of the fis-
sion fragments are less than the neutron binding energy, the fragments will
de-excite by y-ray emission (so-called “prompt” y-rays) with the energy carried



away by these y-rays being ~8 MeV. Following prompt y-ray emission, one will
be left with neutron-rich fragments that will decay by - and y-ray emission
toward stability. Approximately 8 and 7 MeV will be emitted in the form of
- particles and y-rays, respectively. Approximately 12 MeV will appear in the
form of electron antineutrinos emitted during the p- decay, but these neutri-
nos will escape any practical reactor assembly. During this p- and y-decay, the
residual nucleus following a small number of §- decays will be excited to an
energy greater than the neutron binding energy. Such nuclei can decay by emis-
sion of neutrons (so-called beta-delayed neutrons) on a time scale of seconds
to minutes rather than the time scale of prompt neutron emission (~ 1071° s).
While the energy carried away by these delayed neutrons is insignificant in the
fission energy balance, these neutrons are very important for controlling the
chain reaction in reactors.

For the thermal neutron-induced fission of **U, the total recoverable energy

release is ~195 MeV/fission, and it is ~202 MeV/fission for > Pu. These energy
releases can be transformed into nonnuclear units by noting that 200 MeV =
3.2x 10711 J. One gram of U contains about 3 x 102! atoms, corresponding
to an energy release of ~(3.2 x 1071)(3 x 10?!) = 1 MW/day. (For reference the
burning of 1 ton (10° g) of coal releases about 0.36 MW-day, so that 1 g of pure
**U has an energy content of about 3 x 10® more energy than 1 g of coal.)

13.2.3 Neutron Inventory

A reactor designer must pay special attention to the inventory of neutrons in
the reactor. Each fission event in the thermal neutron-induced fission of *>>U
produces ~2.5 fast neutrons. From the data shown in Figure 13.1, we can imag-
ine that the energy of these neutrons could be reduced to thermal energies
to induce further fissions. Thus, we could imagine placing lumps of the ura-
nium fuel in a moderator to slow down the fission neutrons to thermal energies.
Previously we have demonstrated that neutrons are most effectively slowed by
elastic collisions with the lightest nuclei. In addition, the ideal moderator will
contain light nuclei whose neutron capture cross sections are low. Graphite is
an appropriate solid material as is beryllium or liquid deuterated water (2H2O).

The hydrogen in ordinary water (IHZO) has an (n,y) cross section of 0.33 b
for thermal neutrons, making it unsuitable as a moderator unless the fuel is
enriched in *>’U. The number of collisions necessary to thermalize the fast neu-

trons from fission is 14.5 for 'H, 92 for "°C, and 1730 for > U.

Some of the fast neutrons produced in fission will be “moderated” to ther-
mal energies and will induce other fission reactions, while others will be “lost”
The ratio of the number of neutrons in the next generation to that in the pre-
vious generation is called the multiplication factor, k. If the value of k < 1 than
one then the reactor is subcritical and the fission process is not self-sustaining.



If the value of k > 1 than one then the number of fissions will accelerate with
time and the reactor is supercritical. The goal of reactor operation is to maintain
the system in the critical state with k = 1. The extreme upper limit for the mul-
tiplication factor would correspond to the mean number of neutrons per fission
in the case where each neutron produces a secondary fission. This scenario is
impossible to attain, and, in fact, the neutron inventory must be carefully mon-
itored in order to maintain a critical reactor.

Given that the number of neutrons emitted per fission event v = 2.5 for the
fission of °U, one would think that designing a system with k = 1 would be
easy; however there are many ways in which neutrons can be lost. First of all,
the core of the reactor that contains the fuel must be finite. Therefore, there
will be a limit or surface of the core from which some neutrons can escape. The
escaped neutrons can be “reflected” back into the core by a layer of material
such as graphite (low absorption cross section and higher mass) surrounding
the core, but the reflection is not complete.

A second unavoidable source of neutron loss occurs in the fuel itself.
Consider for the moment a hypothetical reactor core made of uranium
metal. There are two unavoidable absorption reactions with uranium nuclei,

235U(n,y)236U, 64 = 98.3 b and 238U(n,y)239U, 6y, = 2.7 b, that compete with

the **U(n, f), 64 = 583 b reaction. As an aside, one should remember that

these cross sections for radiative capture and fission, like all nuclear reactions,
are energy dependent. For the present discussion we will concentrate on
thermal energy (E, = 0.0253 eV) cross sections. Let us define a parameter 1 as
the average number of fission neutrons per thermal neutron absorbed in the

fuel. For a pure U sample,

n_o _ 1

(13.5)

v o, l+a

where o = 6, /0 and 6, = 6, + o;. For a material like uranium metal that con-
. 235 238
tains both " "Uand ™'U,

n x6,(235)

- = (13.6)
v x06,(235)+ (1 - x)c,(238)

. ) . , 235 235 .
where x is the atomic fraction (mole fraction) of “"U. For ~ U in natural ura-

nium, n = 1.3. If the 235U content of the fuel is greater than the natural abun-
dance, n will be larger.

The multiplication factor for an infinite-sized reactor core is given by the
so-called four-factor formula:

K = nfpe (13.7)

where p is the fraction of fission neutrons that are thermalized (without being
captured), f is the fraction of thermal neutrons that are captured in the fuel,



and e is the so-called fast fission enhancement factor that expresses the fact that
some fission events are due to fast neutrons. (For a typical thermal reactor, n =
1.65, p = 0.87,f = 0.71, and € = 1.02. Because of a leakage of ~4% of neutrons
in a finite reactor, kK = 1.00.)

For safe operation of the reactor, k must be exactly unity. That is difficult to
achieve in practice. In fact, if the mean time between generations of neutrons is
7, the multiplication factor is k, and N is the number of neutrons at time ¢, then
there will be kN neutrons at ¢ + 7, k>N neutrons at ¢ + 27, etc. This relation can
be expressed as

AN = (kN - )Y (13.8)
T
or
N(t) = N, e/t (13.9)

Suppose in one case k = 1.01 and T = 10~3s; then N(1 s) = 22,000 X N,, a dan-
gerous rate of change. The neutron inventory in a reactor is regulated by insert-
ing control rods that contain a neutron-absorbing material such as cadmium
or boron in the fissioning assembly. But mechanical regulation of a large sys-
tem cannot take place on the millisecond time scale. Fortunately, about 0.65%
of the fission neutrons are “delayed neutrons” emitted on a time scale of sec-
onds to minutes, mentioned earlier. The resulting average time constant for the
“prompt + delayed” neutrons t is ~0.1 s, instead of 102 s, which allows control
of the reactor.

As mentioned earlier, reactor control is achieved using control rods contain-
1ng Becd (6,., = 20,000 barns) or g (o, wy = 3800 barns). Another important
aspect of reactor control is the fact that certain fission products have very
high neutron capture cross sections and thus depress the neutron inventory.
Foremost among these nuclei, known as poisons, are Xe (6,, =2.65X 10°

barns) and "Sm (6,, =4.1X% 10* barns). These nuclei lower both the values
of f and k. In an ordinary reactor, the amount of these fission product nuclei
is regulated by their decay and their destruction by neutron capture although
their presence does affect the neutron inventory.

13.2.4 Light Water Reactors

A large number of light water-cooled nuclear reactors have been constructed
around the world. All of the reactors rely on the thermal fission of enriched ura-
nium and on normal or “light” water for neutron moderation and heat transfer.
These machines fall into two major categories of research reactors and power
reactors. We have described the principles that underlie the construction and
operation of these machines, but the implementation is different. All nuclear
reactors can be categorized by the thermal generating power of the core, usu-
ally given in megawatts. Power reactors are also categorized by the electrical



generating power of the plant in giga- or megawatts. Note that ratio of the
electrical power to the thermal power of a power plant is the efficiency of the
conversion process (a number always < 1; see following text).

Generally speaking, the research reactors are small, on the order of 1 MW
of thermal power, and are optimized to provide intense neutron fluxes for the
irradiation of samples. These reactors are usually fueled with a few kilograms
of enriched uranium (20-90% 235U) in fuel rods that are clad with a zirconium
alloy or with aluminum. The entire core assembly of a 1 MW research reac-
tor is on the order of 1 m® and can produce an internal neutron flux on the
order of 10!3/cm?/s. The two largest research reactors reach internal fluxes of
1 x 10*®/cm? /s (ILL, Grenoble, France) and 3 X 10'® /cm? /s (HFIR, Oak Ridge,
TN). The small reactors are usually submerged in a pool of water and are cooled
by convection. The water layer is designed to be deep enough to provide suf-
ficient radiation shielding so that a person can look through the water and
observe the operating reactor. The heat generated by the core of a research
reactor is dissipated in the large pool of water.

Nuclear power reactors are generally much larger, on the order of 2 GW of
thermal power, and are designed to produce electricity by the adiabatic expan-
sion of steam in a turbine. There are two competing designs in Western coun-
tries for nuclear power reactors that differ in the primary coolant loop. In one
case the water is allowed to boil (boiling water reactor (BWR)), and in the other
design superheated water is held in the liquid phase under pressure (pressur-
ized water reactor (PWR)) (cf. Fig. 13.2). We will briefly consider the two types
of power reactors.

BWRs are characterized by having only two coolant loops. The water in the
primary coolant loop circulates through the reactor core and boils at ~ 1 atm
pressure and is heated to ~300°C. The steam is passed to a turbine system
to generate electricity, is condensed, and is cycled back to the core. A second
coolant loop is used to maintain a constant output temperature at the exit of
the turbines; this loop removes the so-called waste heat at the end of the ther-
modynamic cycle. Such coolant loops are commonly included in machines that
use adiabatic expansion to do work, for example, the radiators are connected
to gasoline engines in cars. The waste heat loop in a nuclear power plant is usu-
ally an external open loop. The waste heat is released into in the atmosphere
in large evaporative cooling towers, or released into rivers, lakes, or the ocean.
The primary coolant is also the neutron moderator and is subject to intense
irradiation in the core. It will contain radioactivities from impurities extracted
from the walls, etc., and as a result the turbines will become contaminated.
Thus, the important feature of the BWR design with the primary coolant circu-
lating through the turbines necessitates placing them inside the containment
shielding.

In the other design, PWRs have two closed loops of water circulating in the
plant plus a third external loop to remove the waste heat. Water is pumped



Figure 13.2 Schematic diagram of boiling water (top) and pressurized water reactors
(bottom) (Krane (1988). Reproduced with the permission of Wiley).

through the reactor core in the primary coolant loop to moderate the neutrons
and to remove the heat from the core as in the BWR. However, the reactor ves-
sel is pressurized so that the water does not boil. Steam is necessary to run the
turbines, so the primary loop transfers the heat to a secondary loop. The water
in the secondary loop is allowed to boil, producing steam that is isolated from
both the core and the outside. The water in the primary loop usually contains
boron (as boric acid H;BO,; ~0.025 M) to control the reactivity of the reactor.
The steam in the secondary loop is allowed to expand and cool through a set
of turbines as in the BWR; the cold steam condenses and is returned to the



primary heat exchanger. A third loop of water is used to maintain the low tem-
perature end of the expansion near room temperature and remove the “waste”
heat.

The PWR is more expensive to build because the reactor vessel must be
stronger to withstand the higher water pressure, and there is a secondary
coolant loop with pumps. The BWR, while less expensive to build, is more
complicated to service since the turbines are part of the primary coolant loop.
The details of the core design are different as well. Approximately twice as
many PWRs have been constructed as BWRs.

A limit on the efficiency of the electrical energy conduction can be obtained
by applying the second law of thermodynamics to the secondary loop. The max-
imum thermal efficiency, €y, is given in terms of the input and output heats:

€y =——""" 13.10
h . (13.10)
Note that the output heat is the waste heat. In the limit that the machine oper-
ates in a Carnot cycle that can be characterized by constant temperatures at the
input and output, then the maximum efficiency is given by the expression
€carnot = (Tm — Tout)
T,

in

(13.11)

The output temperature is given by the ambient temperature of the waste heat
loop and can be taken to be 30°C for purposes of estimation. The input tem-
perature of the steam is limited by physical constraints on the reactor primary
cooland loop to be about 300°C. Therefore, the maximum Carnot efficiency is
approximately €, = (673 K — 303 K)/573 K = 0.47, whereas the actual effi-
ciency is typically €,,. = 0.35 when measured as electrical power outside the
plant to total thermal power in the core. For comparison, a coal-powered plant

might have values of e, = 0.65, €,1.. = 0.5 due to higher steam temperatures.

Sample Problem 13.3: Neutron Reactions in Water

One of the interesting side reactions that occurs in water-moderated
. . 16 . .
nuclear reactors is the (n, p) reaction on = O, which occurs with a cross

section of 0.017 mb. The '°N product rapidly decays back to "0 with a
half-life of 7.13 s; thus, the net reaction can be called a catalysis of the
neutron beta decay:

YO+'n-""N+'H+Q,,
6 6 o —
N 0+p + v+ Qg
Net Reaction : 'n — 1H+[3_+\/_e+Q

Make an estimate of the equilibrium activity per liter of cooling water due
6.1 .
to '°N in a reactor that has an internal flux of 10'3 neutrons/cm?/s.



Solution
Recall that the equilibrium activity, also called the saturation activity,
occurs when the rate of production is equal to the rate of decay and
requires that the sample be irradiated for more than three half-lives, or
~22 s for "°N. Also, 1 mb is 1 X 107% c¢cm?; thus,
Activity = A = rate of production = Nyo¢
A =N, (1013%> (0.017 x 10" cm?)
cm?s
A 1 kg N, 0.9976 16O/mol water
“\ L 0.010 kg / mol water

A =(3.34%x10%/L)-0.017 x 107**/s = 5.68 x 10° Bq/L

) 0.017 x 107 /s

At this point it is appropriate to mention the three most significant accidents
that have occurred at nuclear power plants. In these cases the seriousness of
the accidents was dramatically increased by human error. In these cases the
difficulties were caused by chemical reactions and not by nuclear fission.

An accident occurred at the Three Mile Island PWR in Pennsylvania in 1979
in which the water stopped flowing due to a mechanical failure in the primary
coolant loop. Subsequent actions by the operators caused the water level in
the core to drop, uncovering the upper part of the fuel rods. The nuclear fis-
sion process rapidly ceased due to the loss of the water moderator, but the fuel
continued to generate heat due to the decay of fission products from prior oper-
ation. This residual decay heat is a general feature of all nuclear reactors. Parts of
fuel rods melted, which indicates that the local temperature reached 3000°C.
As part of the accident, contaminated water from the primary coolant loop
was released inside the containment building and soaked into the concrete.
The noble gas fission products and a fraction of the iodine fission products
were released into the environment. The difficulty of melted fuel notwithstand-
ing, the extreme heating of the zirconium alloy that is used to clad the fuel
opened the door to an exothermic chemical reaction with steam that produces
hydrogen:

Zrg + 2H)0 = 4ZrOy, + 2H,y, (13.12)

An important concern during the accident was the potential chemical explo-
sion of this hydrogen gas with the oxygen in the air inside the containment
building. The cleanup process necessary inside the building continued for many
years, and the perception that nuclear power is somehow very dangerous has
not subsided after more than 40 years.

A much more serious accident occurred at the Chernobyl power station
near Kiev in 1986 that was entirely the result of human error. This reactor
relied on a large amount of graphite to moderate the neutrons with water-filled
tubes to remove the heat and generate steam. This general reactor design that



also incorporates large amounts of uranium was used in the United States
to produce plutonium during the cold war era but were not used for power
generation. The accident in Chernobyl occurred when the operators manually
removed the control rods from the reactor during a “test” The chain reaction
accelerated due to the core design, and the system became very hot. The
cooling water was suddenly vaporized and the core exploded. The nuclear
fission stopped due to the loss of the moderator by explosion, but the graphite
was ignited (since it was open to air) and continued to burn for some time,
spewing radioactivity into the air. Approximately 10% of the graphite and
large fractions of the radioactive fission products were volatilized, the fraction
depending on their chemical nature, all of which was spread across western
Europe by the wind. The burning facility was too dangerous to approach, and
the fire was extinguished by dropping sand, clay, lead, and boron onto the fire
from helicopters. What was left of the reactor was buried in concrete, and a
massive cleanup was necessary. The inherent difficulties in the design of this
reactor continue to exist in numerous other reactor facilities in the former
Soviet Union.

In March 2011, there was a nuclear accident at the Fukushima nuclear power
plant in Japan (near the Pacific sea coast). This facility consisted of six BWR
reactors, three of which were operating (1-3) and three of which (4-6) were
shutdown. The accident was triggered by a magnitude 7.4 earthquake followed
by a 13 m tsunami that struck the plant 50 minutes after the earthquake. Imme-
diately after the earthquake, reactors 1-3 shutdown, but had to use emergency
diesel generators to run the reactor coolant systems. When the tsunami struck
the plant, the emergency pumps failed and the reactor cores suffered a melt-
down. Hydrogen-water chemical explosions occurred in reactors 1-4 a few days
later. (Reactors 4-6 were shutdown at the time of the accident, but spent fuel was
stored in reactor cooling ponds that required cooling water to be furnished con-
tinuously). 18,500 people died due to the earthquake/tsunami. No short-term
deaths linked to radiation occurred at the power plant. There was extensive
release of radioactive material due to the explosions and core meltdowns that
are expected to result in 130—640 people dying prematurely in the future. The
Fukushima radioactivity release was ~10-40% of the release in the Chernobyl

accident. The power plant operator, TEPCO, estimated that 540 PBq of B

134 137 . .
Cs, and "' Cs were released into the atmosphere and the ocean with most

of the release being 1311. Subsequent investigations of the accident fault the
power company and the civil authorities for poor planning and preparedness
and a poor response to the accident.

13.2.5 The Oklo Phenomenon

We should not leave our discussion of nuclear reactors without mentioning
“the Oklo phenomenon” In 1972, French scientists analyzing uranium ore from
the Oklo uranium mine in Gabon found ore that was depleted in *>U. Further



investigation showed the presence of high abundances of certain Nd isotopes,
which are formed as fission products. The relative isotopic abundances of these
isotopes were very different from natural abundance patterns. The conclusion
was that a natural uranium chain reaction had occurred ~1.8 billion years ago.

At that time, the isotopic abundance of U would have been different than
today, due to the differing half-lives of U and U . At £t =1.9%10° years

ago, the isotopic abundance of 235U was ~3%, a number characteristic of the
fuels of nuclear reactors. Water apparently entered the ore deposit, acted as a
moderator, and initiated chain reactions. These chain reactions appear to have
lasted for ~10° years, ebbing and flowing as the water boiled away and returned.
The power level was <10 kW. Some attention has been paid to the fact that
these fission product deposits remained stable for more than 10° years, possibly
supporting the notion of geologic storage of nuclear waste.

13.3 Neutron Sources

Occasionally one may need to use a radionuclide neutron source. For example,
in geological applications, one may need to have a portable neutron source.
Radionuclide neutron sources are generally based on either the (a, #) reaction
or spontaneous fission. Older (o, n) sources utilized the 5.3 MeV a-particles

210 . ) . 238
from 138 d ~ Po to react with beryllium, but modern sources utilize = Pu,

*Am, or **Cm alloyed with beryllium. The a-particles emitted from these

nuclei interact with ~Be nuclei to produce neutrons via the (o, n) reaction.
The resulting neutron spectrum is broad, usually ranging from a few MeV
to >10 MeV. The yield of these sources and the accompanying y-radiation is
shown in Table 13.1. 2°2Cf is probably the most important pure radionuclide
neutron source because it can be produced in high-flux nuclear reactors and
3.2% of its decays are by spontaneous fission, each yielding 3.76 neutrons
per fission. The neutron emission rate/Ci of material is quite high, and #2cf
sources have found widespread use.

13.4 Neutron Generators

Commercial neutron generators are compact charged-particle accelerators
designed to produce a beam of neutrons by an appropriate nuclear reaction.
The most commonly used nuclear reactions are

H(d,n) Q = 3.25 MeV

H(d,n) Q =17.6 MeV

Li(p,n) Q = —1.646 MeV
(

3
7
’Be(d,n) Q =3.79 MeV



Table 13.1 Properties of Radionuclide Neutron Sources.

Neutron Yield vy Radiation

Radionuclide  Half-Life (n/Ci) (mR/h at 1 m/Ci)
%po/Be 138days 2.5 x 10° -

*pu/Be 87.8 years  2.2X 10 <1

* Am/Be 433 years 2.2 x 10° <25

*2Cm/Be 163days 2.5 x 10° 2.5

2cf 2.65years 4.3 % 10° 300

The most common sources are based on the 3H(d, n) reaction. Deuterons are
accelerated to ~150 keV with currents ~2.5 mA and strike a tritium target. The
small accelerators produce ~ 2 X 10! 14 MeV neutrons/s under these condi-
tions. The neutrons produced are widely used in fast neutron activation analysis
for the determination of light elements. The tritium targets are typically met-
als like Ti, which have been loaded with titanium tritide. The accelerators are
usually small Cockcroft—Walton machines or small sealed-tube devices where
the ion source and accelerator structure are combined to produce a less expen-
sive device with neutron yields ~108/s.

The 7Li(p,n) reaction is used commonly to produce approximately monoen-
ergetic fast neutrons. The protons are accelerated to an energy of a few MeV
by a small Van de Graaff accelerator and strike a cooled rotating lithium target.
Thick-target neutron yields are >10° n/s/pA. The energy of the neutrons can be
obtained from the Q-value equation (see Chapter 10), which can be expressed
(for 0° neutrons) as

8T, — 6T, — 2T, T,)"* = —11.522 (13.13)

where T, and T), are the kinetic energies of the neutron and proton in MeV.

The ultimate in accelerator-based neutron sources is the spallation neutron
sources. Neutrons are generated by the spallation reaction that occurs when
high-energy (~1 GeV) protons interact with heavy nuclei, like mercury, releas-
ing 20—30 neutrons/reacting proton. The proton beams (and the resulting neu-
trons) are pulsed, allowing the use of time-of-flight techniques to measure the
energies of the neutrons. Expressed as a thermal neutron flux, yields of 107
n/cm?/s are possible, exceeding the neutron yields of reactors by orders of mag-
nitude. These high intensity neutron fluxes can be used for neutron scattering
experiments in materials science and biology.

13.5 Accelerators

As we have already indicated, positively charged particles must be accelerated
to kinetic energies on the order of millions of electron volts (MeV) in order to



overcome the Coulomb repulsion of another nucleus and induce a nuclear reac-
tion. The Coulomb potential grows with the inverse of the radial separation, r,
between the two nuclei:

Ve =2Z,Z,e*r (13.14)

The Coulomb barrier is defined as the value of this potential energy for the two
bare nuclei at a separation that corresponds to the sum of their radii. Recall
that the nuclei are extremely small compared to atomic dimensions and the
electrons do not screen the nuclear charges except in extremely low-energy col-
lisions. The kinetic energy necessary for a moving projectile with mass number
A, to react with a stationary target with mass number A, is

KEthreshold = VC(AI +A2)/A2 (1315)

Note that the actual threshold is larger than the Coulomb barrier to accommo-
date the recoil due to conservation of momentum.

High kinetic energies can be obtained by producing an ion with charge g on a
high-voltage platform held at a static potential E and simply allowing the ion to
move (fall) toward ground potential. The kinetic energy gain will be equal to the
loss of potential energy; thus, KE = gE. The earliest accelerators were exactly of
this type, but physical breakdown of the insulating materials surrounding the
platform limits the maximum electrostatic potential. Modern accelerators use
electrode structures with alternating electric fields to accelerate charged ions.
We will consider the general features of accelerators for heavy charged particles.
(The acceleration of electrons is a special case due to the relative ease of produc-
tion, the very large charge-to-mass (m/q) ratio, and that fact that energetic elec-
trons are relativistic and travel with essentially the same velocity, v = c.) We will
start with consideration of ion sources and then consider the various machines
for accelerating charged particles roughly in order of increasing final energy.

13.5.1 lon Sources

All accelerators operate by the manipulation of charged ions in vacuum. Such
particles do not exist naturally and must be produced in ion sources. Positive
ions of all chemical elements can be produced, in principle, by electron-impact
ionization of atoms already in the vapor phase. The difficulty of producing an
ion depends dramatically on the chemical species. A few elements have an
exothermic electron affinity and can be produced as singly charged negative
ions. As a result only a few accelerators utilize negative heavy ions. Here we
will consider three classes of ion sources that are used to produce positively
charged ions.

The simplest ion sources create positive ions by bombardment of the
residual gas inside a vacuum chamber by electrons emitted from a hot filament
(cf. Fig. 13.3). The electrons can be accelerated to a few hundred volts, and the
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Figure 13.3 Schematic diagram of a hot filament ion source (Choppin et al. (2002).
Reproduced with the permission of Elsevier).

electron impact on atoms and small molecules can easily create singly charged
positive ions. Filament ion sources work well for producing hydrogen and
helium ion beams and low charge states of other gaseous elements that can be
bled into the ionization region. These sources can have long lifetimes as the
electrodes are not directly damaged by the ionization process and the ions are
produced from the feed material.

The energy of the electron beam can be increased in ion sources that are based
on the features of a Penning ion gauge (PIG), a vacuum gauge that was devel-
oped to measure low pressures. A high-voltage electron arc is created between
two electrodes and is confined by an external magnetic field. The arc vaporizes
the electrode material and ionizes any residual gas in its path. A PIG source can
produce electrons on the order of a few thousand volts and can remove substan-
tial fractions of the electrons from the top-row elements. These sources have
erratic and relatively short lifetimes (10 h or less). The electrodes are worn out
as they are vaporized by the arc, which also tends to produce metal coating on
insulators, leading to short circuits.

Very highly charged ions are produced by modern ion sources that rely on
magnetically confined plasmas such as the electron cyclotron resonance ion
source (ECRIS or ECR) and the electron beam ion source (EBIS). An ECRIS
uses the superposition of axially symmetric magnetic fields with an electric
field from end cap electrodes to trap electrons in a magnetic bottle. The elec-
trons are forced to oscillate with radiofrequency radiation that corresponds



to the oscillation frequency in the magnetic field (see the following discus-
sion about cyclotrons). The electrons remain in the plasma for a long time and
collide with the residual gas, creating positive ions and more electrons. The pos-
itive ions drift toward the extraction electrode and do not absorb the rf power
that is tuned to the m/q ratio of the electron. Under optimal conditions, the
plasma in an ECRIS can remove even the inner most electrons from second-row
elements.

An EBIS ion source relies on passing an extremely intense electron beam
(hundreds of amps) at high potential (tens of kilovolts) through a vacuum
chamber to ionize the residual gas. The vacuum chamber is surrounded by
a coaxial solenoidal magnetic field that compresses the electron beam to a
radius of a few microns that produces an extremely intense current density.
EBIS ion sources can produce bare nuclei, depending on electron beam kinetic
energy, for further acceleration.

All of these ion sources emit beams of positive ions at very low velocities;
the ions drift or are pulled out from the ionization region with relatively small
electrostatic potentials (U ~ 20 kV). These beams of charged particles can be
focused and transported in vacuum to the main accelerating machines.

13.5.2 Electrostatic Machines

An ion source that is held at a large and stable positive electrostatic potential,
V, will accelerate positive ions to a kinetic energy of KE = gV. The maximum
potential is limited by the ability to sustain the high voltage without breaking
down the intervening dielectric material (sparking). The formula for the electric
field E at the surface of a sphere with a radius, r, carrying a total charge, Q, sur-
rounded by a medium with a dielectric constant, ¢, is E = Q/er?, which leads to
several common features of electrostatic accelerators. The high-voltage termi-
nal should be as large a sphere as possible without any sharp points (the ends of
sharp points have very small radii), and the terminal should be surrounded by
a material with a large dielectric constant. A large carefully prepared terminal
can be held at a maximum voltage of % + 750 kV in dry air. The kinetic ener-
gies of ions from such systems are (only) sufficient to induce nuclear reactions
among the lightest elements and are often used to generate neutrons via the
d 4+t - o+ nreaction.

The breakdown voltages of various gases were studied as a function of pres-
sure in the 19th century by Paschen, and he showed, not surprisingly, that pure
gases have higher breakdown potentials than air and that the breakdown poten-
tial increases with gas pressure. Thus, higher electrostatic potentials can be
maintained by insulating the platform with an inert gas such as N, or SF; at
high pressure. An important distinguishing feature of electrostatic accelerators
is that the beam is emitted “continuously” from the ion source and is literally
a “DC” beam of particles. This feature can be good or bad depending on the
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Figure 13.4 A schematic diagram of a Cockcroft-Walton accelerator system on the left and
the electronic circuit used to provide the high voltage (Segre (1977). Reproduced with the
permission of International Atomic Energy Agency).

application, but a DC beam can be chopped, switched, or bunched to produce
an alternating current (AC) beam.

An important principle for production of high voltages is that the leakage
current should be as small as possible, microamps or less, so that the dissi-
pated power remains low: 1 MV X 1 pA = 1 W. The techniques developed for
the production of the very high voltages necessary for electrostatic accelera-
tors fall into two categories: direct and mechanical production. Direct produc-
tion relies on electronic circuits, whereas mechanical production relies on the
mechanical transportation of charge to the platform. A schematic drawing of
the voltage multiplication circuit for the direct production of very high voltages
developed by Cockcroft and Walton is shown in Figure 13.4.

An AC is applied to the transformer at the bottom of the Cockcroft—Walton
circuit, which is rectified and multiplied by the stack to produce the high volt-
age. The resulting voltage depends on the number of elements in the stack
and on the input voltage. The high voltage is not precisely constant in that
it has a small variation or ripple in proportion to the input frequency. The
Cockcroft—Walton design continues to be used in small machines to generate
neutrons via the d + t reaction and to provide the bias voltages for ion sources
used at large accelerator complexes.

An important feature of all electrostatic machines is that the beam is acceler-
ated down to ground potential by a series of electrodes at intermediate poten-
tials. The electrodes can be shaped to provide a weak focusing effect that causes
the beam particles to move toward the center of the tube. The focusing is due
to the cylindrically symmetric shape of the electric field combined with the fact
that the particle spends more time in the focusing region (first half of the gap



where the field lines move toward the center) than in the defocusing region
(second half of the gap) due to acceleration. Note that the Cockcroft—Walton
circuit automatically provides these potentials at the intermediate stages in the
stacked circuit as shown in Figure 13.4.

Mechanical production of high voltages for ion acceleration is the basis of
the class of larger machines called Van de Graaff accelerators. These machines
rely on the principle from electrostatics that if a charge is placed inside a hollow
conducting sphere, then the charge will migrate to the outer surface regardless
of the amount of charge already on the sphere. Thus, a Van de Graaff uses the
mechanical transportation of positive charges on an insulting belt from ground
potential up to a contact on the inside of a large hollow electrode as indicated
in Figure 13.5.

The mechanical generation of a few thousand volts is relatively easy, and
many, many variations have been developed. You may be familiar with
classroom demonstrations that use a small Van de Graaftf machine to charge
up a metal sphere (radius ~ 10 cm) that can make a person’s hair stand on end.
Large-scale generators that can produce moderately high potentials, a few
MYV, have been constructed on a large scale and have been used in spectacular
displays of artificial lighting. The electrostatic potential can be written in terms
of the capacitance with respect to ground of the terminal, V = Q/C, and is
limited by the designed breakdown at intermediate points along the insulating
support column that provide fixed potentials for focusing or by leakage in the
surrounding gas. In practice, the system reaches an equilibrium in which the
added charge just compensates for the charge leaking down the column from
the terminal. Rapid discharges or sparks need to be avoided because they can
damage the components by vaporization of the metal. An important feature
of Van de Graaff high-voltage generators is that the terminal voltage can be
extremely stable and ripple-free.

To be used as an accelerator, an ion source for positive ions must be mounted
inside the high-voltage terminal, and an insulating vacuum tube is needed to
allow the ions to be accelerated to ground potential. The positive ions will be
accelerated toward ground potential as in the Cockcroft—Walton machines.
The terminal, accelerating column, and charging system are usually placed
inside a pressurized chamber that is filled with an insulating gas such as pure
N, or SF, at several atmospheres. Constraints on the size and operating power
of the ion source inside the terminal generally limit the charge on the ions to
be 1+ or 2+ and thus directly limit the energy of the accelerated beam. Even
though technically challenging, many so-called single-ended Van de Graaff
accelerators were produced in the 1960s and early 1970s and used for detailed
studies of low-energy nuclear reactions. Note that the beam itself provides a
drain on the terminal voltage and its intensity is therefore limited to be on the
order of micro-amperes or less. A number of advances in the technology of
the construction of the belt system, the vacuum tube, and electrode structure



Figure 13.5 A highly schematic view of the
important components in a Van de Graaff
accelerator. Positive ions created by a corona
discharge near ground potential are swept upward
by a moving belt to a similar corona contact
attached to the inside of the high-voltage terminal.
The positive ions then evenly distribute
themselves on the surface of the terminal (Krane
(1988). Reproduced with the permission of John
Wiley & Sons).
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have been made so that a modern accelerator terminal can routinely sustain
25 MV. For example, the high-voltage generator for the tandem accelerator at
Oak Ridge National Laboratory is located inside a 100 ft high, 33 ft diameter
pressure vessel that is filled with SF at a pressure of ~75 psig (P, ~ 6 atm).
An important improvement of the single-ended Van de Graaff accelerators
came through the replacement of the positive ion source inside the high-voltage
terminal with an external negative ion source (Fig. 13.6). Negative ions are
accelerated toward the high potential in one vacuum column and then strike
a very thin foil or a thin layer of gas placed at the center of the terminal. Elec-
trons are readily stripped from the energetic negative ions, and the positive ions
are then accelerated away from the high-voltage terminal in a second accel-
erating column. The final kinetic energy of the ions is the combination of the
initial acceleration of the negative ion plus the final acceleration of the (multiply
charged) positive ion. The charge state of the positive ion is usually much larger
than unity and mostly defines the final beam energy. These devices are called
tandem Van de Graaff accelerators, or simply tandems. Even though there are
serious limits to the number of chemical elements that can be used to pro-
duce negative ions, the significantly higher-energy beams from tandems and
the relocation of the ion source away from the terminal have generally out-
weighed the limitations. Tandem accelerators have been used extensively to
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Figure 13.6 A schematic diagram of a two-stage tandem Van de Graaff accelerator (Van de
Graaff (1960). Reproduced with the permission of Elsevier).

study low-energy nuclear reactions, particularly direct reactions induced by
the lightest ions and fusion reactions induced by elements in the top row of
the periodic table. The kinetic energy of the beam can be very precisely con-
trolled and is very stable; however, the total energy is still limited by the terminal
voltage. Attaining significantly higher kinetic energies requires a booster accel-
erator that uses alternating electric fields.

13.5.3 Linear Accelerators

The production of very-high-energy beams that are necessary for the pro-
duction and study of new and exotic sub-nucleonic particles would require
electrostatic acceleration from a high-voltage platform at potentials that are
unattainable in a steady state. However, one can imagine that a group of
particles can be accelerated in small steps along a series of electrodes if the
potential on each electrode is synchronized with the motion of the particles
(cf. Fig. 13.7).

For example, positively charged particles are repelled by positive electrodes
and attracted to negatively charged electrodes, gaining kinetic energy as they
cross the gap between the two. From a simple standpoint each pair of electrodes
acts like an instantaneous electrostatic terminal and ground. The particles will
slowly gain energy as they synchronously cross each successive gap.

The synchronization of the arrival of the particles at the electrode gaps with
an accelerating electric field can be accomplished with an alternating electric
field on a hollow electrode having the polarity that will first attract a set of par-
ticles toward it and then later repel the same particles after they have passed
through the electrode. The potential difference would follow a sine function:
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Figure 13.7 (a) Basic design of a linear accelerator. (b) Electric field in the gap between two
drift tubes. (c) Phase stability in a linear accelerator. (Krane (1988). Reproduced with the
permission of John Wiley & Sons).

V = V, sin(wt), where Vj is the peak voltage and o is the frequency. An impor-
tant ingredient in such a simple linear accelerator is that the beam particles pass
through the center of each collinear electrode tube. The beam will be acceler-
ated across the gap between the electrodes by the electric field, but the beam
will drift while in the field-free region inside the tubular electrodes (hence the
electrodes are called drift tubes). The alternating power supply can change the
polarity while the beam pulse is inside a drift tube. Notice that the amount of
time that the pulse of beam particles spends inside the drift tubes must be held
constant to provide a uniform acceleration. The particles should reach the next
gap atatime 7 = 2n/w. Thus, the length of each drift tube must increase along



the path of the beam in proportion to the velocity, L = v,T/2 where v, is the
velocity inside the ith drift tube. The physical dimensions of the drift tubes will
have a finite acceptance range in velocity, and so linear accelerators, so-called
linacs, have to be designed for specific velocity ranges. In practice, linacs are
used as energy boosters that accept beams, usually from an electrostatic injec-
tor, started with significant initial velocities.

The phasing of the arrival of the particles with respect to the RF has two
effects, one good and one bad. At first glance, one might think that the arrival
of the particles should coincide with the maximum accelerating voltage. How-
ever, this point in time coincides with the top of the sine wave, and particles
that arrive slightly earlier (faster particles) or slightly later (slower particles)
will receive lower accelerations, and the bunch will spread out in velocity, arriv-
ing at the next electrode at different times. If the center of the pulse arrives at
the electrode gap while the voltage is increasing somewhat linearly, then the
faster particles will receive a lower acceleration than that applied to the average
particles and the slower particles will receive a larger acceleration. These small
differences in accelerations will tend to compress the velocity distribution of
the beam pulse. This feature is called phase stability and is a good feature of
linacs that works with nonrelativistic particles. Tuning the arrival of the beam
pulse to coincide with the increasing portion of the accelerating field has the
bad feature that the electric field across the gap sensed by a moving beam par-
ticle is asymmetric. A symmetric potential provides the weak focusing in the
accelerating columns of electrostatic machines, mentioned earlier. When the
potential is asymmetric, then the particle will not be focused toward the cen-
ter of the drift tube. Phase stability is more important than the weak focusing
effect, and linacs include additional components inside the drift tubes to focus
the beam.

A classical linac (the Widerde design) with fixed-length drift tubes connected
to an external oscillator has a rather limited velocity acceptance and therefore
would be used in specific applications. A much more flexible linac design (the
Alvarez linac) relies on creating either a standing electromagnetic wave in a
resonant cavity or a traveling wave in a waveguide. Most booster accelerators
used to accelerate heavy ions (nuclides more massive than helium) utilize res-
onant cavities to provide the accelerating voltages. Various shapes have been
used to create the accelerating gaps and the drift tube regions. Early designs
used copper surfaces to define the distribution, but significant power was still
dissipated in the walls. Recent designs have used superconducting niobium or
lead surfaces that have a much lower dissipation. Recall that the velocity of all
relativistic particles is essentially constant. Thus, accelerating structures for the
highest-energy particles generally rely on standing wave cavities with constant
drift tube lengths, L = ¢T' /2. Electrons become relativistic at comparatively low
energies (recall that m, = 0.511 MeV), and so electron accelerators have sim-
pler designs than heavy-ion accelerators.



The number of drift tubes in a linac has to be relatively large because the
acceleration per gap is usually modest. A typical value of the effective accelerat-
ing electric field in a superconducting cavity is 1-2 MV/q/m of cavity. Booster
accelerators for heavy-ion beams can be 50 m long, and the electron linac at
Stanford (SLAC) is two miles long. Linacs have the obvious difficulty that the
drift tubes have to increase in length as the velocity of the particle grows. For
example, the drift tube length for a relativistic particle is inversely proportional
to the AC frequency: L = ¢(2n/2m) = cn/w. A typical value for the frequency
in such an electron accelerator is 300 MHz, so that L ~ 3 m. The accelerator
has to lie in a straight line, and thus space, alignment, and construction costs
are important concerns. Notice that a given pulse of particles will only pass
through the accelerating structures one time. The beam from a linac will arrive
in pulses that follow the time structure of the oscillations applied to the accel-
erating gaps. The frequency for heavy ions is usually in the tens of megahertz
(radio wave region of the spectrum) so that the pulses are usually separated
by tens of nanoseconds. The time structure on this scale is usually called the
beam miicrostructure. From a practical standpoint, a beam with such a small
time separation appears to be continuous. The beam from a linac with stand-
ing wave cavities is usually pulsed on the millisecond time scale to allow time
to dissipate heat in the walls and reduce energy consumption. Such pulsing
puts a macrostructure on the beam and has a large effect on experimental mea-
surements because the particles do not arrive continuously at the target. The
fraction of time that the macrostructure of alinac is “on” is called the duty factor.
The operating principles of linear accelerators were established in 1930, but the
compact design of cyclotrons that use a magnetic field to “reuse” the acceler-
ating electrodes then overtook linac development for low-energy nuclear reac-
tions.

13.5.4 Cyclotrons, Synchrotrons, and Rings

It is well known that when a charged particle moves through a magnetic field,
it will experience the Lorentz force that acts perpendicular to the direction of
motion. Thus, a moving charged particle can be made to move in a circular orbit
by placing it in a suitably large and uniform magnetic field. Essentially all of the
accelerators that have been developed to produce very-high-energy beams use
a magnetic field to cause the particles to circle through accelerating structures.
The first device to rely on a magnetic field was the cyclotron, invented in 1929
by E.O. Lawrence.

The original cyclotron had a pancake-shaped vacuum chamber that was
placed between the north and south poles of an electromagnet. Figure 13.8
shows a schematic cyclotron with two large electrodes placed inside the
vacuum chamber to provide one acceleration gap and two drift regions. Each
electrode was a hollow cavity in the shape of the letter “D” and was fitted, back



Figure 13.8 A schematic view of
the components of a cyclotron.

A pulse of beam particles starts in
the center of the machine and is
accelerated across the gap, circles
through the drift space inside the
D electrode, and is accelerated
again when it returns to the gap.
Eventually the beam reaches the
edge of the machine and can be
extracted along a tangent. (Krane
(1988). Reproduced with the
permission of Elsevier).

Electromagnet

to back, inside the vacuum chamber with the acceleration gap between the
straight sides of the two D’s. The ions to be accelerated, in the first case H2*,
were created at the center of the circle and were accelerated across the gap and
enter the drift space. Thus, the moving particles experience the Lorentz force,
move on a circular path, and return to the accelerating gap! As the particles
drift around, the phase of the accelerating voltage is switched to the opposite
polarity as in a linac. When the particles arrive at the gap, they are accelerated
again, gain energy, and move into the drift region.

For many years, filament and PIG ion sources were placed in the center of
the cyclotrons to provide the ions. However, the development of more compli-
cated and powerful ion sources such as the ECR sources required more space
than was available at the center of the machines. Present-day cyclotrons gen-
erally have external ion sources, and a low-energy beam from an electrostatic
injector is threaded into the center via an axial channel and inflector or via a
radial channel in separated-sector machines (described in the following text).

The developers of the cyclotron recognized that the frequency of the circular
motion of the particle is constant. Consider the Lorentz force acting on a mov-
ing charged particle, F ..., = B X qv, where B is the (vector) magnetic field,
q is the charge, and v is the (vector) velocity. The cross product follows the
“right-hand rule” so that the force is perpendicular to the motion. The radius
of the motion, r, can be found by setting the Lorentz force equal to the mass
times the centripetal acceleration:
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solving for the radius:
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The time, £, that it will take a particle to complete one orbit is the circumfer-
ence divided by the velocity:
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and is independent of the velocity of the ion for a given value of the magnetic
field. The constant time for a charged particle to orbit in a magnetic field is usu-
ally stated as a frequency called the cyclotron resonance frequency of that parti-
cle. As an aside, the circular or cyclotron motion forms the basis of present-day
mass measurements in ion cyclotron resonance (ICR) mass spectrometers. As
long as the particles are nonrelativistic, all the beam particles in a cyclotron will
drift through the D’s in the same amount of time and arrive at the accelerating
gaps in phase, that is, the orbits are isochronous. Notice also that we can use
the concept of phase stability from linear accelerators to maintain the bunch
structure of the initial beam pulse. The orbital radii will increase as the velocity
of the particle increases as they cross each gap so that the particles will appear
to spiral out from the center of the cyclotron. The maximum velocity will occur
when the particles reach the maximum physical radius, p,,,,, of the vacuum
chamber and D’s. Solving for the maximum kinetic energy, T, ., assuming a
nonrelativistic beam,
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(13.19)

Notice that the maximum kinetic energy depends on the two machine parame-
ters, Band p,,,, times a ratio of the square of the charge to the mass ratio of the
beam particles. The first term in the expression for the maximum beam energy,
(Bpoma)?/2, is often called the “K” value of the cyclotron (because it is constant
that depends on the machine design) and is given in units of MeV. The oscilla-
tion frequency of the D’s can be tuned over a limited range (e.g., 15-30 MHz) in
present-day cyclotrons to provide beams with different values of (g/m) at vari-
ous energies. Small cyclotrons used to produce specific isotopes for radiophar-
maceuticals have K ~ 30 MeV and can provide 30 MeV protons (42/m = 1).
The highest-energy cyclotron is presently in Japan with K = 2600 MeV that
boosts the heaviest ions up to E/A = 350 MeV (q?/m ~ m/4) due to limitations
in the vertical focusing and the relativistic mass increase of the beam.

The beam has to make many revolutions in a cyclotron in order to be acceler-
ated up to the full energy. For example, a typical accelerating gap might have
a potential difference of 100 kV so that a proton beam with total energy of
30 MeV that crosses the gap twice per revolution still requires on the order of



Aearns ~ Eiota/(2qV) = 30/(2 X 1 % 0.100) = 150 turns. It is important that ver-
tical focusing be applied to the beam so that it remains, at least on average,
on the central plane of the cyclotron. There are two main techniques for ver-
tical focusing in cyclotrons. A weak focusing effect occurs in the simple case
in which the magnetic field of the cyclotron runs between flat, uniform, and
finite-sized pole faces of an electromagnet. The magnetic field between flat pole
faces will only be exactly perpendicular in the center and will increasingly bow
out as one moves toward the edge. The curved shape of the magnetic field
will provide a weak restoring force for particles that leave the median plane.
A stronger focusing effect can be produced by dividing the flat pole face into
sections that are higher (hills) and lower (valleys). As indicated in Figure 13.9,
the average magnetic field should remain the same as that obtained with a flat
pole face, but the local magnetic field is higher between the hills and lower
between the valleys. The magnetic field will bow out from the hill region into
the valley region along the path of the beam particles and provide a restor-
ing force toward the median plane each time a particle crosses the transition.
The vertical focusing can be increased by using a spiraled pole sector rather
than a straight-edged sector. Such cyclotrons are usually called sector-focused
cyclotrons and are extensively used to provide moderate and high-energy beams
of charged particles. Another technique to produce strong focusing is to make
the hill regions from separate wedge-shaped electromagnets and to leave the
valley regions open. There has to be common vacuum chamber for the par-
ticles to circulate and to house the D’s. The complexity of running four large
individual magnets is compensated by the very large variation in the magnetic
field between the hills and valleys (called the flutter), leading to a large verti-
cal focusing effect. In addition, it is easier to install and service all the auxiliary
equipment needed to inject, accelerate, and extract the beam. Such machines
are called separated-sector cyclotrons.

An important limitation on the maximum beam energy available from
cyclotrons comes from the relativistic increase of the mass of a particle
with velocity. We have seen elsewhere that m = m,/(1 — (v/c)*)'/?; thus,
m = 1.02m, for v = 0.2¢. Notice that the ratio of the magnetic field to mass,
B/m, occurs in all of the cyclotron equations given earlier. There are two classes
of isochronous cyclotrons that deal with this variation in mass: low-energy
machines where the mass increase is small enough to be ignored, for example,
Umay/€ < 0.2, and medium-energy machines in which the increasing mass is
compensated by increasing the strength of the magnetic field with radius.
The magnetic field is usually increased by adding extra concentric coils to the
magnet pole pieces that are called trim coils. The field could also be increased
by decreasing the gap between the pole faces. The field lines in a cyclotron
with a magnetic field that increases with radius will bow in toward the middle
(opposite to that described earlier), a feature that will produce a weak vertical



Figure 13.9 A top view of the sectors, or the hills and valleys, in a sector-focused cyclotron.
In (a), the concept of strong vertical focusing at the transition regions, edges, of the sectors

is shown for straight sectors. A larger focusing effect is obtained by spiraling the sectors as
shown in (b). Note that the particles travel counterclockwise in this figure.

defocusing effect! Thus, fixed-frequency cyclotrons cannot be used to produce
extremely high-energy beams.

A large number of cyclotrons have been constructed over the years and
special-purpose machines continue to be built. For the most part, they have
been spiral sector-focused machines with trim coils. The “K” values range
from 30 to 150 MeV for electromagnets with normal conducting (or resistive)
coils. A number sector-focused cyclotrons have been constructed with super-
conducting coils based on designs developed at Michigan State University that
have “K” values of 500, and the largest machine has K = 1200. Several large
separated-sector, normally conducting cyclotrons were constructed at the end
of the 20th century at GANIL in France (K = 440) and at RIKEN in Japan
(K = 540). A recently completed project at RIKEN includes a separated-sector
machine using superconducting coils that is the largest cyclotron in the world.
The beams from cyclotrons will have a microstructure on the tens of nanosec-
ond time scale, similar to that from a linac, and will appear to be continuous
in most applications. A cyclotron beam will not have a macrostructure unless
one is applied to the beam from the ion source for specific experimental
reasons. The acceleration of the beam from a cyclotron can be rapidly stopped
by simply shifting the relative phases of the D’s.

A number of attempts were made to develop cyclotrons that could acceler-
ate protons up to energies on the order of a GeV (the proton rest mass). For
example, the resonant frequency of the cyclotron could be decreased in pro-
portion to the mass increase. Such a frequency-modulated (FM) cyclotron, or
synchrocyclotron, could accelerate a single pulse of particles up to high energy
but would have to be reset to start the next pulse and thus would have a low
duty factor. In addition, the size of the magnet becomes extremely large and
costly. The largest cyclotron magnet ever constructed was a 184 in. diameter



machine at LBL in Berkeley, originally designed to provide 100 MeV protons,
but was redeveloped in 1946 as a synchrocyclotron.

The successful acceleration of protons and heavier nuclei to relativistic ener-
gies was realized through the compensation of the increasing mass of the par-
ticle by increasing the magnetic field. The early machines were fixed-frequency
cyclotrons in which the acceleration process was synchronized by changing the
magnetic field produced by a very large electromagnet. The mechanical design
was changed later to be just a ring of individual magnets where the particles
follow the same circular path. Simple geometry indicates that the set of indi-
vidual magnets necessary to construct a ring requires much, much less iron
than that of a single large cyclotron magnet. This synchrotron design has proven
to be extremely robust and is used in all of the machines built to produce the
highest-energy charged-particle beams.

Synchrotrons use the concept that the particles are confined to move in a
circular orbit with a constant average radius, that is, a ring, regardless of the
energy of the particles. Thus, synchrotrons must be pulsed machines that oper-
ate on a cycle in which a modest energy beam is injected into ring, the beam is
accelerated, the high-energy beam is extracted, and the magnetic field and ring
is returned to the injection state. A low magnetic field is necessary to confine
the low-energy particles at injection. After a sufficiently large number of parti-
cles have been fed into the ring, one or more accelerating structures (originally
drift tubes, now resonant cavities) are turned on, and the beam begins to gain
energy as they circulate around the ring. The energy gain per turn is usually low
(~100 kV), and during the acceleration process the magnetic field is ramped up
toward the maximum value that the magnets can provide. If the synchrotron
starts with nonrelativistic particles, then the revolution frequency of the parti-
cles will increase as the velocity increases (as the radius of the orbit is constant)
so that the frequency of the accelerating structure has to increase as well. Thus,
both the magnetic field and the acceleration have to be synchronized with the
energy of the particles. The full-energy particles are extracted from the ring,
providing a single macrocycle beam pulse. The magnetic field is then returned
to the initial low value. The highest-energy synchrotrons accept particles that
are already relativistic (from prior acceleration in booster synchrotrons), and
the revolution frequency remains essentially constant. The time necessary for a
single macrocycle is usually on the order of seconds and is dictated by the max-
imum rate of change of the magnetic field. Modern rapid cycling synchrotrons
run at 1 or 2 Hz, while the original machines from the 1960s typically ran at
1/5 Hz.

The principle of phase stability is also used in synchrotrons to maintain
a narrow energy distribution of the beam bunches during acceleration. The
problem of vertical focusing in cyclotrons is also present in synchrotrons. The
original machines relied on weak focusing in the ring magnets with flat pole
faces. A variation of the strong focusing obtained with hills and valleys in



sector-focused cyclotrons can be obtained in synchrotrons. Rather than hills
and valleys, though, the ring is divided into sectors in which the gaps between
the pole pieces of the magnets are wedge shaped. The thinner side of the wedge
is alternately on the inside or the outside of the ring. As in the cyclotron, the
average field is set for an isochronous orbit. When the beam circles around
the ring, it encounters a vertical focusing region (thin edge inside), and a
vertical defocusing region (thin edge outside) which produces a net vertical
restoring force. Dipole magnets that have pole pieces that are shaped (tilted)
to provide focusing are called combined function magnets as they are meant to
perform two tasks, and synchrotrons that use this version of strong focusing
are called alternating gradient machines. Modern synchrotrons do not use
combined function magnets but rather use dipole magnets to bend the beam
and quadrupole doublet magnets (discussed in the following text) to focus the
beam in straight sections between the dipoles. Such independent function
magnets are easier to construct and allow more flexible tuning.

Synchrotrons are used to accelerate protons and heavy nuclei to the high-
est energies, presently 14 TeV protons in the Large Hadron Collider (LHC)
at CERN and 100 GeV/nucleon heavy ions (including 7 Au nuclei at almost
20 TeV) in RHIC at Brookhaven National Lab (BNL). The maximum energy of
the beam is proportional to Bp,,, as in a cyclotron, and the value for the ring
is usually given in Tesla-meters or T-m. Even after extensive development, the
maximum field strengths in large electromagnets are on the order of a few Tesla;
however, the radius of the ring of magnets is constrained by cost. For example,
the booster or intermediate-energy synchrotron for the RHIC system is ~20 m
radius and provides 1 GeV protons. The main ring of the alternating gradient
synchrotron (AGS) at BNL is a 100 T-m system consisting of 240 combined
function magnets in a radius of ~85 m. The main rings of the RHIC system are
839.5 T-m and contain 1740 separated function superconducting magnets in a
3.834 km circumference.

A similar but bigger and very versatile combination of big accelerators has
been established at CERN in Europe. The complex includes several high-energy
injectors for protons, electrons, and heavy ions; a booster synchrotron, the PS,
that can accelerate pulses of these ions (e.g., 26 GeV protons); a high-energy
synchrotron, the SPS, that can also accelerate the ions (e.g., 400 GeV protons,
170 GeV/nucleon heavy ions in a 1.1 km radius ring); and another ring system,
LEP, for electrons and positrons (90 GeV electrons in 4.3 km radius) that was
retired. The LEP tunnel was used to house the LHCs, with two rings that is able
to accelerate and collide all of these particles (e.g., 7 TeV protons and 1.1 PeV
2%pp, nuclei, counter-circulating in the LEP tunnel).

There are two important features of nuclear collisions that we have not yet
considered in our discussion of particle accelerators. First, conservation of
momentum in the collision dictates that a large fraction of the energy that goes
into a collision in the laboratory between a moving particle and a resting target



nucleus will go into kinematic motion of the products and will not be available
for excitation of the products or for new particle production. Perhaps more
surprisingly, the second feature is that after all the effort to produce a beam of
high-energy particles, the huge majority of the beam particles will pass through
the target material, interacting with the electrons and slowing down, and not
collide with another nucleus! Both of these problems can be resolved if we
create counterrotating beams of particles that are circulating at constant orbits
in synchrotron rings held at their maximum magnetic fields. The beams can be
directed to cross one another at specific points or interaction regions. Circular
systems of magnets have also been developed without accelerating structures
called storage rings where the beams coast from interaction point to interaction
point. Notice that the net momentum of particles that collide head on in the
laboratory is zero so that all of the energy is available for excitation of the prod-
ucts. It is much more cost effective to build two storage rings for a synchrotron
accelerator and gain a factor of two in energy than to double the radius of the
synchrotron. If the counterrotating particles miss during one crossing, as is the
most likely event, then they simply continue on their orbit and literally come
back around for another try. These features, particularly the higher available
energy, lie at the heart of all of the modern high-energy accelerator complexes.
All of the modern high-energy synchrotrons mentioned earlier include storage
rings and rely on colliding counterrotating beams, for example, the Tevatron
collides protons and antiprotons, LEP collides electrons and positrons, and
RHIC and the LHC collide heavy-ion beams from separate rings.

13.6 Charged-Particle Beam Transport and Analysis

The goal of accelerating particles is to induce nuclear reactions with target
nuclei. Most nuclear targets are pure elemental foils, and the earliest experi-
ments were performed by placing a metal foil in the path of the beam at the
end of the acceleration process. For example, a metal foil could be placed at the
largest radius of a cyclotron or at the end of a linear accelerator. As we have just
discussed, these reactions can also be made to occur between counterrotating
beams in storage rings. It is very difficult to perform experiments directly in
the accelerator for a number of reasons including the high radiation environ-
ment caused by beam loss during acceleration and physical constraints on the
available space. Thus, beam transport techniques were developed to bring fully
accelerated beams to remote and shielded vaults. These beam handling tech-
niques are directly analogous to optical techniques based on glass prisms and
lenses used to transport beams of photons.

In optical systems the light rays are diffracted when they make a transition
between two media with different indices of refraction. Prisms use converging
flat surfaces to chromatically disperse the light, and lenses use curved surfaces



(spherical lenses are most common) to focus or defocus the light rays.
Charged-particle beams are similarly affected by magnetic and electric fields.
A beam of charged particles will be deflected as it travels through a uniform
magnetic field created between two surfaces and can be focused or defocused
as it travels through the radially increasing field created by two, four, six, or
more concentric surfaces. The fields are usually labeled as dipole, quadrupole,
hexadecapole, and so on. The multipole fields can be created by electrostatic
plates or electromagnet poles. The forces acting on the moving particles are
different in electrostatic and magnetic systems, of course. Magnetic systems
have the most widespread applications primarily for technical reasons since
superconducting wire technology provides a means to create extremely large
magnetic fields in compact devices, whereas the maximum attainable electric
fields are small by comparison.

We have already seen that a moving charged particle will experience a force
perpendicular to its direction of motion when it is moving in a magnetic field.
The Lorentz force causes the particle to curve with a radius, p = Bg/muv, that
depends on the charge-to-mass ratio (g/m) of the ion. Thus, a simple magnetic
dipole can be used to change the direction of a beam of particles. For example,
consider the path of a beam that enters the magnetic field in the region between
the poles of wedge-shaped magnet as indicated in Figure 13.10. Such magnets
are commonly called magnetic sectors or sector magnets and are characterized
by their magnetic field, B, their bend radius, p, and their bend angle, 6. The
beam will follow the path from O to E along an arc with a radius p and turn
through an angle 0, as indicated in the figure. The path of the beam need not be
perpendicular to the straight edges of the sector. These angles are labeled o; and
a, in Figure 13.10. If all the particles are on exactly parallel trajectories when
they enter the magnetic field, they will all turn through the angle 0 and emerge
in a parallel bunch. If, on the other hand, the particles enter the magnetic field
in a diverging bunch, then the sector will focus the beam in the horizontal and
vertical directions with focal lengths given by

p
f horiz =

(13.20)
[sin(e)(l — tan(a,) tan(a,)) — cos(B)(tan(a,) + tan((xz))]

and
p
[(tan((xl) + tan(a,)) — O(tan(a,) tan((xz))]

Sert = (13.21)
Notice that the focal lengths are different in the two dimensions. If the beam
enters and exits along a normal to each face, o; = a, =0, the horizontal
focal length becomes f; ., = p/sin(0) and all of the vertical focusing is
removed, f,,,, = o. Thus, if a perfectly round beam is deflected by a dipole
magnet, it will often lose its symmetry due to the different focal lengths
of the dipole magnet. Subsequent ion optical focusing elements have to be



Figure 13.10 A schematic view of
the bending of a charged-particle
beam in a wedge-shaped dipole
magnet with straight edges. The
beam will be bent through an
angle 6; the angles a; and a, are
used to describe the angles of
incidence relative to the straight
edges and are important in
determining the weak focusing of
the magnet due to the fringing
field. (Harvey (1964). Reproduced
with the permission of Elsevier).

Figure 13.11 A schematic
design of a quadrupole
magnet. The arrangement
of the four poles will
provide x focusing in the
usual right-handed
coordinate system with the
z-axis emerging from the
page (Segre (1977). From
0. Chamberlin, Ann. Rev.
Nucl. Sci. 10, 161 (1960)).

O Copper coll

O Iron yoke

set to compensate for this difference to produce a round beam at the target
position. It is important to remember that the bending radius, p, is propor-
tional to the charge-to-momentum ratio of the beam (g/mv) so that the field
strengths of all of the magnets will have to be set for each beam particle and
energy.

Magnetic focusing of a charged-particle beam can be produced by a collinear
solenoidal field or by a pair of magnetic quadrupoles. In both cases the mag-
nets create a fringing field or fields that cause diverging particles to be returned
to the optical axis. If we define the z axis along the path of the beam, a single
solenoid will focus in both x and y directions. A magnetic quadrupole can be
constructed by arranging four equal-strength poles on a circle at 90° from one
another with polarities that alternate between north and south. An example
of a quadrupole magnet is shown in Figure 13.11. If we examine the magnetic
field from such a quadrupole device, we will find that the field along the central



axis is exactly zero and increases linearly to a maximum value at each pole face.
(The pole tips should be hyperbolic surfaces to conform to the shape of the
magnetic field although cylindrical pole tips are often used for ease of man-
ufacture.) Quadrupole magnets are thus characterized by the gradient of the
magnetic field, dB/dr, where r is a radial coordinate and by their length, Z,
along the beam direction. A particle that moves along the central axis stays in a
region of zero magnetic field and goes straight through, while particles that are
off-axis will encounter an increasing magnetic field that acts like the fringing
field at the edge of a dipole magnet. Notice, however, that the fringing fields will
only focus off-axis particles in one direction (e.g., x in Fig. 13.11) and defocus
them in the orthogonal direction (e.g., ¥ in Fig. 13.11). If we define the constant
k* = (q/mv) * dB/dr, then the focal length of one quadrupole with a length #
(called a singlet) is

1

= 13.22
Jrori k sin(k?) (1322)

At first glance the fact that a singlet is both focusing and defocusing at the
same time might imply that uniform focusing of a beam is not possible. How-
ever, it is known from light optics that the combination of a converging lens
with a diverging lens has a net focusing effect as is indicated in Figure 13.12.
Therefore, focusing magnet packages are most often made by combining an x
focusing quadrupole with a y focusing quadrupole of equal lengths into a “dou-
blet” Three quadrupoles (y,x,y) with lengths (£, 2¢,¢) are sometimes com-
bined into “triplets,” which provide more flexibility in manipulating the beam
shape.

Modern accelerator complexes rely on a large combination of magnetic
dipoles and quadrupoles to transport fully accelerated beams for large dis-
tances without loss. Solenoidal magnets are only used occasionally when
point-to-point foci are needed as quadrupoles are more efficient and allow the
two coordinates to be tuned independently. Higher order magnetic multipoles,
sextupoles, and octupoles, are used to correct aberrations in high resolution
applications such as spectrometers and fragment separators.

Sample Problem 13.4: Magnetic Focal Lengths

A dipole magnet deflects charged-particle beams through an angle of
22.5° with a radius of 2.0 m. For ease of construction the magnet has rect-
angular pole pieces (0.5 X 1.5 m long). The beam enters normally at the
center of one of the 0.5 m faces and exits at an angle from the opposite
0.5 m edge. What are the focal lengths of this magnet?

Solution
We need to evaluate the angles a; and a, in order to solve this problem.
From the problem definition and consulting Figure 13.10, we know that



a, = 0. A little geometry will show that in this case the exit angle is equal
to the bend angle:

p
Snoriz [sin(0)(1 — tan(a,) tan(a,)) — cos(0)(tan(a, ) + tan(a,))]
3 2.0m
Jiors = (22571 — tan(0) tan(225°)) — cos(22.5°)(tan(0) + tan(22.5°)]
_ 2.0m
Jrere = [5in@2.59)(1 — 0) = cos(2259)(0 + tan(225°)]
fl'mrt'z = 20m = 20

[0.38268 — 0.92388(0.41421)] 0

ﬁmrt'z =com

For the vertical focal length we have

p
Juert = [(tan(ay) + tan(a,)) — B(tan(a,) tan(a,))]
foo= 2.0 m
" [(tan(0) + tan(22.5°)) — 22.5°(21/180°)(tan(0) tan(22.5°))]
_ 2.0 m
Joert = [tan(22.5°) — 0]
2.0 m
Joert =g a1ap7 = 483 m

Such different focal lengths seen in this situation, a weak focus in vertical
compared with no focus in the horizontal, are a common occurrence in
beam transport systems.

The transport and control of charged-particle beams with electrostatic
elements has the nice feature that the equations of motion do not depend

Focusing  Defocusing

Figure 13.12 The net focusing effect on a diverging charged-particle beam from the
combination of a converging and a diverging magnetic quadrupole lens. The key feature of
the doublet is that the particles move along paths that are closer to the optical axis in the
defocusing element of the pair (Harvey (1964). Reproduced with the permission of Elsevier).



on the mass of the particle. The force felt by a charged particle in an electric
field is simply F, = gE where q is the electric charge and E is the electric field
strength. When a positively charged particle enters the region between two
parallel plates with a separation d at a voltage V, the particle will feel the
electric force pulling it toward the electrode at the lower potential, F, = gV /d,
and will move on a circular orbit with a radius, p = mv*(d/qV). Such a device
can thus change the direction of the incident beam. (The beam will undergo a
weak focusing from the fringing field at the entrance and exit of the device as
discussed earlier.) Strong focusing of a beam of charged particles can be pro-
duced by an einzel lens (cylindrical focusing from a set of three sequential ring
electrodes) and by a quadrupolar arrangement of electrodes. An electrostatic
mirror can be produced by an electrode at a potential energy that is greater
than the kinetic energy divided by the charge of the particle. The bending and
focusing power of electrostatic systems is limited by the maximum electric
fields that can be applied across the electrodes. Extensive electrostatic systems
have been constructed for the transport of low-energy beams, KE < 50 keV,
for example, beams extracted from ion sources are usually transported with
electrostatic elements.

13.7 Radioactive lon Beams

Unstable nuclei with modestly short half-lives have been produced and
separated into very-low-energy beams for some time. Recently, techniques
have been developed to provide much more energetic beams of nuclei with
half-lives as short as a few milliseconds with sufficient energy to induce
secondary nuclear reactions. The production techniques usually rely on the
creation of exotic nuclei in high-energy reactions followed by the collection
and separation of a specific exotic nucleus. The physical techniques differ
in that the products are either the residues of target (nearly at rest in the
laboratory) or of projectile nuclei (moving with nearly the beam velocity), but
in both reactions a large nucleus is fragmented into various components. The
difference in the initial velocity of the product has large consequences for the
physical separation techniques and re-acceleration but no consequences for
the reaction mechanism. Thus, the same residues can and have been produced
for study in each rest frame. Very energetic proton beams (E,, ~ m,c?)
from synchrotrons were used extensively in the 1960s to irradiate various
targets, and the process of target fragmentation was rapidly exploited for the
production of exotic nuclei. The residual nuclei left in the target after a beam
pulse were thermalized and then ionized for separation. This technique is
usually called the ISOL technique (Fig. 13.13). This is an acronym for isotope
separator online. Today it may be more precise to associate ISOL with ion
source online to more clearly distinguish these devices from in-flight devices
used to separate projectile fragments. The proton beam interacts with a target,
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Figure 13.13 Schematic view of the projectile fragmentation (PF) and isotope-separator
online (ISOL) techniques for generating radioactive beams.

usually a refractory metal, that is heated to several thousand degrees. The
target itself can be quite thick, even thick enough to stop the beam, but it
should be thin to allow rapid release of the reaction products. This apparent
paradox can be solved by using stacks of thin metal foils. The reaction products
come to thermal equilibrium in the target matrix and, depending on their
chemical nature, can diffuse out of the matrix. Many techniques have been
used to ionize the emergent hot atoms including surface ionization, electron
beam or plasma ionization, and resonant laser ionization. Notice that the
reaction mechanism creates a broad range of products, many of which diffuse
out of the target at some rate but some do not. The ionization process is a
second chemical process that creates singly charged ions. After ionization
the reaction products can be readily extracted from the target system and
accelerated. The chemical selectivity provides a means to select the most
exotic nuclei that are only weakly produced in the primary reaction. The



Table 13.2 Examples of ISOL Fragmentation Facilities.

Device Accelerator System Reaction? Country
ARENAS Cyclotron/ECR/Cyclotron (p, n), (p, 2p), etc.  Belgium

ISAC Cyclotron/ECR/LINAC TF Canada
REX-ISOLDE  Synchrotron/1+/EBIS/LINAC TF CERN (Europe)
SPIRAL HI-Cyclotron/ECR/Cyclotron ~ PF France

“Class of reactions: low-energy fusion and direct reactions, target fragmentation (TF),
projectile fragmentation (PF).

target ion source combination is placed on an electrostatic platform to provide
very-low-energy ions (<50 keV, total) for beta decay or other studies. A large
number of facilities were operated over the years, the most successful being the
ISOLDE facility at CERN that uses pulses of 1 GeV protons from the CERN PS
synchrotron to irradiate targets such as Nb, Ta, and U. The ISOLDE facility has
a large electrostatic beam handling system with many experimental stations.

A number of facilities around the world are able to accelerate exotic beams
from ISOL production to energies sufficient to induce secondary nuclear
reactions. These first-generation facilities all rely on using existing accel-
erators and in some cases existing experimental equipment. A facility at
Louvain-la-Neuve produced radioactive beams of light nuclei created in direct
reactions induced by a 30 MeV proton beam from a small cyclotron developed
to produce radioisotopes for medicine. Neutral gaseous products, atoms
and small molecules, were pumped from the target into an ECR ion source,
ionized, and then transferred into a K110 cyclotron. Another facility recently
completed uses an EBIT charge-breeding source to increase the charge state
of positive ions from the ISOLDE separator before injection into a modern
linear accelerator. The hallmark of all of these facilities is that they have an
accelerator that provides an intense beam to produce the activities (the driver)
and another accelerator for the secondary beam. Table 13.2 presents a list of
ISOL facilities that is meant to indicate the variety of approaches that have
been used to produce radioactive beams from target fragments.

The advent in the 1970s of synchrotrons that were capable of delivering
beams of all elements with very high energies allowed the production of the
same exotic nuclei observed as target residues with sufficient kinetic energies
to allow rapid physical separation and identification. This technique is usually
called the projectile fragmentation technique but more correctly might be
referred to as in-flight separation since other reaction mechanisms besides
projectile fragmentation can be used to produce the fast nuclei (cf. Fig. 13.13).
The beams of exotic nuclei are not stopped in this technique, and even very
short-lived nuclei can be studied and used to induce secondary reactions.
In the mid-1970s it was shown that up to 1% of a primary "C beam could



be converted into ' C ions and separated for implantation into biomedical
samples. Nuclear physics experiments to produce exotic nuclei and calibrate
space flight instruments using similar techniques based on magnetic rigidity
were also pioneered with beam-line elements at LBL (Berkeley, California)
and then dramatically extended by using degraders (the LISE spectrometer
at GANIL (Caen, France)). This technique has been further extended in four
second-generation devices distributed around the world and third-generation
devices at the NSCL (Michigan State) and at RIKEN (Japan).

Fast beams of exotic nuclei are separated from the primary beam and from
the other reaction products by a combination of magnetic bending dipoles and
focusing quadrupole doublets acting on the distribution of ions emerging from
the target at high velocities (p ~ 0.5¢). Achromatic magnetic systems are used,
where achromatic means that the position and angle of ions at the end of the
device (called the focal plane) do not depend on the ion’s momentum. Such
achromatic magnetic systems are generally most useful for efficient separation
at the highest energies because they can collect a large fraction of the produced
fragments and focus them to a relatively small spot (~5 mm). Achromatic sys-
tems have the additional advantage that the final spot size remains small even
when the momentum acceptance is large. The key elements in these devices are:
(a) an initial bend for momentum-to-charge ratio selection, (b) an energy loss
degrader for atomic number separation also called a “wedge,” and (c) a second
bend for momentum-to-charge ratio selection of a specific ion. This technique
is sometimes referred to as the Bp—AE—Bp separation technique.

We can consider the in-flight production in more detail. An aperture or a
slit is used at an intermediate position (with a momentum dispersion) to limit
the momentum acceptance of the device. Since the fragmentation mechanism
produces all the nuclei with nearly the same velocity (depending on the target
thickness) and initial magnetic rigidity (Bp = mv/q), a momentum-to-charge
selection is approximately equal to a separation by mass-to-charge ratio of
the products. Under these conditions projectile fragmentation reactions can
produce many different ions that have the same mass-to-charge ratio, for
example, the fragmentation of an ®O beam can formally produce five ions

with m/q = 3: H, °He, "Li, ’Be, and "’B. An energy degrader is inserted
into the beam at the intermediate dispersive image in order to introduce a
velocity shift that depends on the energy loss in the material and thus on the
atomic number of the ion. Recall that all ions will lose some kinetic energy
in the degrader and the relative amount will depend on mZ%/KE « (Z/v)>.
The ions, therefore, will exit the foil with different magnetic rigidities since v
is approximately constant. The contaminants can then be spatially dispersed
at the focal plane by an additional bend. This Z-dependent separation is
proportional to the degrader thickness and to the ratio of the magnetic rigidity
of the second half of the system to that of the first half. A schematic diagram of
the A1900 separator operating at the NSCL is shown in Figure 13.14. There are



Figure 13.14 A schematic diagram of the A1900, a third-generation projectile
fragmentation separator operating at Michigan State University.



Table 13.3 Comparison of Projectile Fragmentation Facilities.

Q Ap/p Bp Resolving  Length
Device (msr) (%) (T-m) Power (m) Facility
A1200 0.8-4.3 3.0 5.4 700-1500 22 NSCL (US)
A1900 8.0 4.5 6.0 ~2900 35 NSCL (US)
COMBAS 6.4 20 4.5 4360 14.5 JINR (Russia)
LISE3 1.0 5.0 3.2 800 18 GANIL (France)
ERS 0.7-25 2.0 9-18 240-1500 73 GSI (Germany)
RIPS 5.0 6.0 5.76 1500 21 RIKEN (Japan)
RCNP 1.1 8.0 3.2 2000 14 RCNP (Japan)

projectile fragmentation separators presently operating in France, Germany,
Japan, and the United States. Other similar devices are in the planning stages
or are under construction in several laboratories. A comparison of the various
parameters that describe these fragment separators is given in Table 13.2.
The LISE separator has been operated for more than 15 years at GANIL and
has provided beams for a wide variety of experiments. The BigRIPS device
at RIKEN in Japan has the largest solid angle and momentum acceptance of
third-generation devices. The more recently constructed COMBAS device
at the JINR at Dubna has a significantly larger acceptance and is based on
using combined function magnets. The A1200 (now retired) and the A1900
(MSU) (shown schematically in Fig. 13.14), RCNP (Osaka), and FRS (GS])
separators are positioned at the beginning of the beam distribution system to
allow delivery of radioactive beams to any experimental area. Next-generation
devices are being built for the FAIR project in Germany and for the FRIB
project in the United States (Table 13.3).

Besides the obvious dependence of the RNB intensity on the intensity of the
primary beam, the secondary beam rate is also directly related to the rela-
tive separator acceptance. The FRS at GSI and BigRIPS at RIKEN have been
designed for very high kinetic energies, where the fragmentation cone and rela-
tive energy spread are relatively small. This allows the physical acceptance of the
device to be smaller but gives essentially “full acceptance” for individual prod-
ucts. Large solid angle and large momentum acceptance are especially impor-
tant if the device is to be used to separate light ions at 50-200 MeV/nucleon,
the energy region in which most separators are operating. Note that the larger
the physical acceptance of the separator, the lower the primary beam energy
will be that reaches 100% collection efficiency.



13.8 Nuclear Weapons

While a full discussion of nuclear weapons is beyond the scope of this
book, some comments about the operating principles of such devices and
their connection to reactors and accelerators are desirable. The techniques
used to produce a “nuclear explosion” (i.e., an essentially instantaneous,
self-perpetuating nuclear chain reaction) are very complex. A nuclear explo-
sion must utilize a high-energy neutron spectrum (fast neutrons, i.e., neutrons
with energies >1 MeV). This requirement results from the fact that, for an
explosion to take place, the nuclear chain reaction must be very rapid, on
the order of microseconds. Each generation in the chain reaction must occur
within about 0.01 ps (a “shake” in the parlance of weaponeers) or less. The
energy release takes place over many generations although 99.9% of the energy
release occurs within the last seven generations, that is, in a time of the order
of 0.1 ps. The rapid time scale of this reaction requires propagation by fast
neutrons. The process by which a neutron is moderated in energy is time
consuming and largely eliminates the possibility of an explosion. This also
explains why power reactors that operate with a slow or thermal neutron
spectrum cannot undergo a nuclear explosion, even if the worst accident is
imagined. In the case of reactors that operate with higher-energy neutrons, a
nuclear explosion is also precluded based on the geometrical arrangement of
the fissionable material and the rearrangement of this material if an accident
occurs.

The explosive ingredients of fission weapons are limited, in practice, to
**pu and U, because these are the only nuclides that are reasonably long
lived, capable of being produced in significant quantities, and also capable
of undergoing fission with neutrons of all energies, from essentially zero or
thermal to the higher energies of the secondary neutrons emitted in fission.
Other nuclides, for example, U or **Th, can undergo fission with some
of these higher-energy neutrons, but not with those of lower energy. It is
not possible to produce a self-sustaining chain reaction with these latter
nuclides, since an insufficient fraction of the neutrons produced in the fission
reaction has an appropriate energy to induce, and hence perpetuate, the fission
reaction. Fission weapons currently use **Pu or highly enriched U (usually
>90%) although, in principle, enrichments as low as 10% are usable. Fission
weapons utilizing *’Pu have higher yield-to-weight ratios and can be made
with smaller sizes and weights. One problem in plutonium-based weapons
is the presence of *pu whose high spontaneous fission rate can present
problems with pre-initiation of the weapon. Pre-initiation of the weapon is
defined as the initiation of the nuclear chain reaction before the desired degree
of supercriticality (see following text) is achieved. The neutrons emitted during



the spontaneous fission of Py can cause such a pre-initiation, which will
decrease the yield of the weapon and increase the uncertainty in that yield.

To prevent this pre-initiation, weapons-grade plutonium contains <7% 24OPu,
while ordinary reactor-grade plutonium may contain more than 19% #py,
The **Pu content of plutonium can be regulated by controlling the time 28U
is left in the reactor for generating *pu. Many US fission weapons contain
both **

and the greater availability of u. (About 43 metric tons of Pu is contained in
US nuclear weapons.)

If the conditions are such that the neutrons are lost at a faster rate than they
are formed by fission, the chain reaction is not self-sustaining. The escape of
neutrons occurs at the exterior of the > Pu (or > U) object undergoing fis-
sion, and thus the rate of loss by escape will be determined by the surface area.
On the other hand, the fission process, which results in the formation of more
neutrons, takes place throughout the bulk of the material; the rate of growth

of neutron population is therefore dependent upon the mass. If the quantity of
239

Pu and *U as a trade-off between the higher efficiency of using *py

Pu (or 235U) is small, that is, if the ratio of the surface area to the volume is
large, the proportion of neutrons lost by escape to those producing fissions will
be so great that the propagation of a nuclear fission chain, and hence the pro-
duction of an explosion, will not be possible. But as the size of the piece of *py

(or 235U) is increased and the relative loss of neutrons is thereby decreased, a
point is reached at which the chain reaction can become self-sustaining. This
is referred to as the “critical mass” of the fissionable material.

The critical mass of a bare sphere of normal density U metal has been
reported to be 52 kg, while the same number reported for certain phases of plu-
tonium metal is about 10 kg . However, the critical mass may be lowered in a
number of ways. Use of a reflector can lower the critical mass by a factor of 2—-3.
Compression of the material to increase its density will also lower the value of
the critical mass, with the critical mass being approximately proportional to the
inverse square of the density. Most nuclear weapons employ only a fraction of
the critical mass (at normal density). Because of the presence of stray neutrons
in the atmosphere or the possibility of their being generated in various ways, a
quantity of **Pu (or V) exceeding the critical mass would be likely to melt
or possibly explode. It is necessary, therefore, that before detonation a nuclear
weapon should contain no single piece of fissionable material that is as large as
the critical mass for the given conditions. In order to produce an explosion, the
material must then be made supercritical, that is, made to exceed the critical
mass, in a time so short as to completely preclude a sub-explosive change in the
configuration, such as by melting.

Two general methods have been described for bringing about a nuclear
explosion, that is to say, for quickly converting a subcritical system into a



supercritical one. In the first procedure, two or more pieces of fissionable
material, each less than a critical mass, are brought together very rapidly in
the presence of neutrons to form one piece that exceeds the critical mass. This
may be achieved in some kind of gun barrel device, in which a high explosive
is used to blow one subcritical piece of fissionable material from the breech
end of the gun into another subcritical piece firmly held in the muzzle end.
Early nuclear weapons had a mass of U in the form of a sphere with a plug
removed from its center. The plug was then fired into the center of the sphere
creating a supercritical assembly. This technique is largely of historical interest.

The second method makes use of the fact that when a subcritical quantity
of an appropriate isotope, that is, pu (or 235U) is strongly compressed, it
can become critical or supercritical. The reason for this is that compressing
the fissionable material (increasing its density) increases the rate of production
of neutrons by fission relative to the rate of loss by escape. The surface area
(or neutron escape area) is decreased, while the mass (upon which the rate of
propagation of fission depends) remains constant. A self-sustaining chain reac-
tion may then become possible with the same mass that was subcritical in the
uncompressed state.

In a fission weapon, the compression may be achieved by encompassing
the subcritical material with a shell of chemical high explosives, which is
imploded by means of a number of external detonators, so that a uniform
inwardly directed “implosion” wave is produced. The implosion wave creates
overpressures of millions of pounds per square inch in the core of the weapon,
increasing the density by a factor of two. A simple estimate may be made to
show that the resulting assembly should have a size of 10 cm, the mean free
path of a fast neutron in *Pu or *’U. The implosion technique is used in
modern nuclear weapons. In both methods, high-density heavy metals are
used to surround the fissionable material, thereby reducing or preventing the
escape of neutrons from the reacting assembly. To contain the fissionable
material and ensure that a large enough fraction of the nuclei undergo fission
before the expansion of the exploding material causes subcriticality, the fissile
material is surrounded by a heavy metal case, which acts as a tamper (and a
neutron reflector.)

In a thermonuclear or hydrogen bomb, a significant fraction of the energy
release occurs by nuclear fusion rather than nuclear fission. The hydrogen iso-
topes, *H (deuterium, D) and *H (tritium, T), can be made to fuse, as in

H+°H - *He + 1+ 17 MeV (13.23)

To initiate such a D-T fusion reaction requires temperatures of 10-100
million degrees. Relatively large amounts of deuterium/tritium and/or
lithium deuteride can be heated to such temperatures by a fission explosion
where the temperature may be ~10% K. (Tritium is generated in situ by the
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Figure 13.15 A schematic diagram of a hydrogen bomb (From nuclearweaponarchive.org).

neutron bombardment of °Li during the fusion reaction by the reaction
°Li+n — "H+ "He + n+ 17 MeV thus making the overall fusion reaction

°Li+’H — 2'He + 21.78 MeV.)

The energy release can be enhanced further by using the high-energy neu-
tronszggleased in the fusion reactions to induce fission in the abundant iso-
tope " U. Thus, we have fission—fusion and fission—fusion—fission weapons,
which can give rise to explosions of much greater energy than those from sim-
ple fission weapons. In a typical modern multistage thermonuclear weapon,
the radiation from a fission explosion is used to transfer energy and compress a
physically separate component containing the fusion material. The fissile mate-
rial is referred to as the primary stage, while the fusion material is called the
secondary stage. A third stage can be added in which the fast neutrons from
the fusion reaction are used to initiate the fission of > U. In modern multistage
thermonuclear weapons, comparable energy release is said to come from fission
and fusion reactions.

A published schematic diagram of the operation of a modern multistage ther-
monuclear weapon is shown in Figure 13.15. The fission stage is similar to the
implosion weapon used over Nagasaki but is only 12 in. in diameter. The chem-
ical explosives are arranged in a soccer ball configuration with 20 hexagons and
12 pentagons forming a sphere. Detonator wires are attached to each face. In
this example, the fusion reaction must take place before the expanding fireball
of the exploding fission trigger blows apart the fusion materials (i.e., in a time
scale of <100 shakes). This is accomplished through the use of x and y-radiation
to transmit the energy of the fission reaction. The x and y-radiation travels
about a 100 times faster than the exploding debris from the fission reaction
toward the fusion assembly. As shown in Figure 13.15, the thermonuclear
weapon in this example is a 3—4 ft long cylinder with an 18 in. diameter with
the fission stage located near one end and the fusion stage near the other.



The x and y-radiation is directed to a tamper of polystyrene foam, which
surrounds the fusion assembly. The radiation energy is absorbed by the
polystyrene foam, which is transformed into a highly energized plasma, which
compresses the fusion fuel assembly.

The “neutron bomb” or “enhanced radiation” weapon is a thermonuclear
weapon in which the energy release in the form of heat and blast is minimized
and the lethal effects of the high-energy neutrons generated in fusion are max-
imized. This is reported to be done by the elimination of the U components
of the weapon. The suggested net effect of this is that the instantaneously
incapacitating radius (dose of 8000 rad) of a neutron bomb is about the same
as a fission weapon with 10 times the yield. The instantaneously incapacitating
radius for a one kiloton neutron bomb is thus about 690 m.

Nuclear weapon yields are measured in units of kilotons of TNT (1 kiloton
of TNT = 10'2 calories = the explosive energy release from 60 g of fissile mate-
rial). The energy release is mostly in the form of pressure and heat with a smaller
amount (~15%) released in the form of radiation. The first nuclear explosive
device, which was detonated at Alamogordo, New Mexico, had a yield of about
20 KT as did the Fat Man bomb dropped over Nagasaki, Japan (both fueled

by **Pu). The Little Boy bomb dropped over Hiroshima, Japan, had a yield of

12-15 KT (fueled by *U). The efficiency of the plutonium-based devices was
about 17%, while the uranium-based device had an efficiency of about 1.3%. For
a 20 kT weapon, the radiation dose at 500 m from the center was estimated to
be ~70 Gy and dropped to ~4 Gy at 1.1 km. The smallest nuclear weapons have
been reported to have weight that is about 0.5% of the Fat Man bomb (10,800 1b)
and a total size of 25—-30 in. in length and 10—12 inches in diameter, with explo-
sive yields about 0.25 kT. Modern thermonuclear weapons with yields above
100 KT have yield/weight ratios of 1-3 kT /kg, which is far from the theoretical
maximum of 80 KT/kg.

Problems
13.1 A Cockcroft—Walton accelerator produces 400 keV protons. What is
the maximum energy of the neutrons that can be produced with this

accelerator using the d + T reaction?

13.2 Givenareactor that contains 11 kg of **Uand operates at a power level
of 1 MWe, what is the antineutrino flux 15 m from the core?

13.3  Verify the statement that the reactor poison '®Xe reaches a maximum
~10 h after shutdown of a high-flux (>10'* n/cm?/s) reactor.



13.4

13.5

13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13

13.14

13.15

Given the reactor of Problem 2, how long can it run before it uses up
10% of its fuel?

Estimate the quantity of "“Ba in a reactor operating at 3000 MWt for a
year. Assume the fission yield of "Ba is 0.06345.

Given a reactor where the average time between production and
absorption of neutrons is 1 ms. and the power level is 1 MWe, calculate
the number of free neutrons in the reactor during operation.

Calculate the number of collisions needed to reduce a neutron’s energy
from 1 MeV to 0.025 eV in H,O, D,0, and C. Calculate the neutron
mean free path in each case.

Given a 1 g source of ?2Cf, calculate the neutron flux 1 m from the
source and the heat produced in the source.

For a 1000 MWe nuclear reactor fueled with a fuel containing 5% 235U,
calculate the uranium use in a year of full-time operation.

Describe and compare electron cooling and stochastic cooling of a
charged-particle beam.

Using the web as an information source, compare and contrast either
of the current Michigan State University superconducting cyclotrons
(K500, K1200) and also the Uppsala University GWI synchrocyclotron
with a “classical” simple cyclotron.

Describe the duty cycles of a typical Van de Graaff accelerator, a linac,
and a synchrotron.

For an accelerator with a radius equal to that of the Earth and a mag-
netic field of 40 kG, calculate the maximum energy of the protons that
could be accelerated in this device.

A cyclotron accelerates a-particles to a maximum energy of 42 MeV.
What is the K of this cyclotron? What is the maximum energy deuteron
beam that it can produce?

A cyclotron has a diameter of 60 inches with an RF frequency of
10.75 MHz. Calculate the maximum energy of the proton beam and
maximum field strength needed.



13.16 Explain the meaning of the term “phase stability” in regard to a linac
and as used with a synchrocyclotron.

13.17 To study the internal structure of the proton, what minimum energy
electrons would be needed? Explain your reasoning.

13.18 Consider the following situations: (a) a 20 GeV proton collides with a
target electron, (b) a 20 GeV electron collides with a target proton, and
(c) a10 GeV proton collides with a 10 GeV electron. In each case, what
is the CM energy available to create new particles?
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14

The Transuranium Elements

14.1 Introduction

The chemical elements are the building blocks of nature. All substances are
combinations of these elements. There are (as of 2016) 118 known chemical ele-
ments with the heaviest naturally occurring element being uranium (Z = 92).
The 26 heaviest chemical elements, the transuranium elements, are man-made.
The story of their synthesis, their properties, their impact on chemistry and
physics, and their importance to society is fascinating. This story is of partic-
ular importance to nuclear chemistry because most of our knowledge of these
elements and their properties comes from the work of nuclear chemists, and
such work continues to be a major area of nuclear chemical research. One of
us (GTS) has been intimately involved in the discovery and characterization of
these transuranium elements.

In this chapter, we will discuss how to make these elements, their chemical
properties, and their presence in the environment. The current list of transura-
nium elements is shown in Table 14.1 with a modern view of their place in the
periodic table being shown in Figure 14.1.

14.2 Limits of Stability

There are about 290 known transuranium nuclei as of 2015. All these nuclei
are unstable, with half-lives ranging from ~107 to 107 s (see Fig. 14.2). The
longest-lived nuclei are those with lower atomic numbers. As the atomic num-
ber increases, the lifetimes become shorter with the lifetimes of the heaviest
elements being tiny fractions of a second.

All transuranium nuclei are unstable with respect to a-decay, meaning that
Q, is positive for all these nuclei. In addition, nuclei with neutron—proton
ratios differing from that of nuclei along the valley of B-stability can also
decay either by f~ decay (rare in this region at present) or by §*/EC decay.
For most heavy nuclei, EC decay dominates over f* decay and consequently



Table 14.1 The Transuranic Elements.

Atomic Number  Element Symbol
93 Neptunium Np
94 Plutonium Pu
95 Americium Am
96 Curium Cm
97 Berkelium Bk
98 Californium Cf
99 Einsteinium Es
100 Fermium Fm
101 Mendelevium Md
102 Nobelium No
103 Lawrencium Lr
104 Rutherfordium  Rf
105 Dubnium Db
106 Seaborgium Sg
107 Bohrium Bh
108 Hassium Hs
109 Meitnerium Mt
110 Darmstadtium  Ds
111 Roentgenium Rg
112 Copernicium Cn
113 Nihonium Nh
114 Flerovium Fl
115 Moscovium Mc
116 Livermorium Lv
117 Tennessine Ts
118 Oganesson Og

Names for elements 113, 115, 117, and 118 have not been accepted by
the IUPAC (as of 2015).

the neutron-deficient heavy nuclei decay by EC decay. As the atomic number
of these nuclei increases, the importance of decay by spontaneous fission
(SF) increases. Figure 14.3 shows the dominant decay mode for each of the
transuranium nuclei. (A subtle bias occurs in preparing Fig. 14.3 in that SF is,
in general, not an acceptable way to characterize a nucleus, due to the lack of a
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Figure 14.1 The modern periodic table showing the transuranium elements (Reproduced
with the IUPAC).

Figure 14.2 The half-lives of the
known transuranium nuclei plotted
as a function of Z and N (Karpov et al.
(2012). Reproduced with the
permission of World Scientific
Publishing Co Pvt Ltd). (See insert for
color representation of the figure.)
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definitive way of establishing the Z, A of the fissioning system. Consequently,
the heaviest known nuclei are a-emitters.) As was discussed in Chapter 11,
the upper bound of the periodic table is given by SF for fundamental reasons.
At some value of (Z,A), the SF half-life becomes so short that it prevents
observation (¢, , < 10~ s). Many transuranium nuclei decay by a combination



Figure 14.3 The dominant decay
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Figure 14.4 The predicted half-lives of the transuranium nuclei with Z < 112 (Méller (1997).
Reproduced with the permission of John Wiley & Sons). (See insert for color representation of
the figure.)

of EC, a-decay, and SF with the branching ratios for each mode depending on
the (Z, A) of the nucleus.

What about the breadth of the distribution of heavy nuclei? What are
the limits on N-Z? As in the lighter nuclei, the limits are set by the proton
dripline (S, = 0) and the neutron dripline (S, = 0). For a typical heavy nucleus,
nobelium, the proton dripline is predicted to be N ~132, while the neutron
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dripline is predicted to be N ~ 236 (Moller et al., 1997). The range of presently
known nobelium isotopes goes from N = 148 to N = 160. Thus, it is unlikely
that one will be limited by the neutron dripline for heavy nuclei, while the
proton dripline may be reachable with some effort, rather the range of isotopes
is limited by the production mechanisms. Figure 14.4 shows the calculated
changes in the half-lives of the heavy nuclei, as they become more neutron
rich. Comparison of Figures 14.2 and 14.4 show that the predicted half-lives
increase by orders of magnitude as the neutron number increases modestly
from those currently observed. This effect motivated recent work to make
more neutron-rich heavy nuclei to study their chemistry and atomic physics.
The underlying science behind these trends is that increasing N—Z decreases
Z?/A (reducing SF decay) and decreases Q, (reducing the a-decay probabil-
ity), and this consequently leads to nuclei that decay by p~ decay, a slower
process.

The heaviest transuranium nuclei (Z > 100) all lie on the n-deficient side of
[~ stability. This is due to the fact that they are made in fusion—evaporation reac-
tions where two nuclei on the line of $-stability combine, producing a nucleus
that is neutron deficient that de-excites by emitting neutrons. For example, the
most neutron-rich isotope of Sg (as of 2016) is 27!Sg. The p-stable isotope of
Sg is 27°Sg. Since the half-lives of the transactinide nuclei generally get larger
as their neutron numbers approach the N = 184 shell, this neutron-deficient
character of the heaviest actinides represents a challenge for people who
need or want to make longer-lived nuclei for studies of atomic physics and
chemistry.



14.3 Element Synthesis

The synthesis of a new element involves more than just colliding two nuclei
whose atomic numbers are such that they sum to an unknown value. Heavy
nuclei are, in general, quite fissionable. If they are made with significant excita-
tion, they will decay by fission, leaving no identifiable heavy residue of their for-
mation. So one must balance carefully the factors governing the “production” of
a new nucleus with those factors governing its “survival” The “production fac-
tors” determine the yield of the primary reaction products, while the “survival
factors” determine which primary product nuclei de-excite by particle emis-
sion, which allows them to survive, or which nuclei de-excite by fission, which
destroys them. Among the “production factors” are items such as the “starting
material,” the target nuclei, which must be available in sufficient quantity and
suitable form. We must have enough transmuting projectile nuclei also. The
transmutation reaction must occur with adequate probability to insure a good
yield of the product nucleus in a form suitable for further study. Equally impor-
tant is that the product nuclei be produced with excitation energy and angular
momentum distributions such that the product nuclei will de-excite by particle
or photon emission rather than the disastrous fission process. The competi-
tion between particle emission and fission as de-excitation paths depends on
excitation energy, angular momentum, and the intrinsic stability of the product
nucleus, which is related to the atomic and mass numbers of the product.

Nuclear synthesis is similar in some ways to inorganic or organic chemical
syntheses with the synthetic chemist or physicist having to understand the reac-
tions involved and the structure and stability of the intermediate species. While
in principle, the outcome of any synthesis reaction is calculable, in practice
such calculations are, for the most part, very difficult. Instead, the cleverness of
the scientists involved, their manipulative skills, and the instrumentation avail-
able for their use determine the success of many synthetic efforts. The synthesis
reactions used to “discover” the transuranium elements are given in Tables 14.2
and 14.3. All these reactions are complete fusion reactions in which the reacting
nuclei fuse, equilibrate, and de-excite in a manner independent of their mode
of formation. Other production reactions involving a partial capture of the pro-
jectile nucleus are also possible.

The cross section for production of a heavy evaporation residue, 6gyg, by a
complete fusion reaction can be written as

opyr = (fusion probability)(survival probability) (14.1)

where the “fusion probability” refers to the probability of forming a completely
fused system in the reaction and the survival probability refers to the probabil-
ity that the excited complete fusion product will de-excite by particle emission
rather than fission, which destroys the nucleus. Synthesis reactions for heavy
nuclei are divided into “cold” or “hot” fusion. Cold fusion reactions involve



Table 14.2 Summary of the Initial Synthesis of the Transuranic Elements, Z < 104.

Atomic Number  Name (Symbol) Synthesis Reaction Half-life
93 Neptunium (Np) Py +n— *u +v

U Np+e +7, 2.35 days

. 238 2 238

94 Plutonium (Pu) U+ H- "Np+2n

238Np — 238Pu +e " +v, 86.4 years

- 239 240

95 Americium (Am) Pu+n—>"Pu+y

240 241

Pu+n— Pu+y
Mpy o MAm e + v, 433 years
. 239 4 242

96 Curjum (Cm) Pu+ He—» " Cm+n 162.5 days
97 Berkelium (Bk) ! Am + *He — Bk +2n 4.5 h
98 Californium (Cf) 2Cm +*He — ef +n 44 min
99 Einsteinium (Es) “Mike” thermonuclear

explosion producing g 20 days
100 Fermium (Fm) “Mike” thermonuclear

explosion producing *Fm 20 h
101 Mendelevium (Md) g + *He - *°Mmd +n 76 min
102 Nobelium (No) *Cm + "He - **No + 4n 23s
103 Lawrencium (L) 20020 . "B 5 e 4350

POL20p 4 B 5 P e 2—4n 43

. 249 12 257

104 Rutherfordium (Rf) Cf+ C- "Rf+4n 34s

et + 5 - ®’Rf + 30 3.8s

a heavier projectile (Ar to Kr) interacting with a Pb or Bi nucleus, where the
excitation energy of the completely fused system is low (~13 MeV), giving high
survival probabilities. Unfortunately the fusion probability in such systems is
low. Hot fusion reactions involve the use of lighter projectiles ("'Bto**Ca) inter-
acting with actinide nuclei, giving a high fusion probability but a high excitation
energy (E %*~30-50 MeV) with a resulting low survival probability.

The reactions shown in Tables 14.2 and 14.3 can be divided into four
classes: the neutron-induced reactions (Z = 93, 95,99, 100), the light-charged
particle-induced reactions (Z = 94, 96-98, 101), the “hot fusion” reactions
(Z =102 - 106, 113-118), and the “cold fusion” reactions (Z = 107 — 113).
In the neutron-induced reactions used to make the transuranium nuclei,
the capture of a neutron does not create a new element, but the subsequent
B~ decays do. Light-charged particle reactions with exotic actinide target
nuclei allow one to increase the atomic number of the product one or two
units from the target nucleus. To make the heaviest elements, one needs
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to add several protons to the target nucleus by a reaction with a heavy ion.
Such “hot fusion” reactions with actinide target nuclei lead to highly excited
intermediate species that decay mostly by fission but occasionally by emitting
neutrons, thus producing new nuclei. However, as the atomic number of the
product nuclei increases, so does the probability of fission leading to very poor
survival probabilities for the putative new species. The Russian nuclear physi-
cist Yuri Oganessian pointed out that a way around this problem was to fuse
heavier projectile nuclei with target nuclei in the lead—bismuth region. Because
of the special stability of the lead—bismuth nuclei due to two closed shells, the
resulting fused species would be formed “cold” and could, with some reasonable
probability, decay by only emitting a single neutron.

Figure 14.5 shows the results of measurements (filled squares) of the cross
sections for cold fusion reactions as a function of the atomic number Z of the
completely fused system. Also shown (as circles) are the cross sections for hot
fusion reactions. The points for elements 119 and 120 represent upper limits for
the cross sections. Clearly future efforts will focus on experiments at the fem-
tobarn cross section level or lower. Current technology for cold fusion reaction
studies would require ~12 days to observe one event at a cross section level of
1 pb. Similarly, a cross section of 1 pb in a hot fusion reaction would require
~6-19 days to observe one event. Using current technology, production of
nuclei with femtobarn cross sections is a few atoms per year. From examin-
ing the data in Figure 14.5, it would also appear that hot fusion reactions might
be the reactions of choice in pursuing future research in this area.

14.4 History of Transuranium Element Discovery

The first scientific attempts to prepare the elements beyond uranium were by
Enrico Fermi, Emilio Segré and coworkers in Rome in 1934, shortly after the
existence of the neutron was discovered. This group of investigators irradiated
uranium with slow neutrons and found several radioactive products, which
were thought to be due to new elements. However, chemical studies by Otto
Hahn and Fritz Strassmann in Berlin showed that these species were isotopes
of the known elements created by the fission of uranium into two approximately
equal parts. This discovery of nuclear fission in December of 1938 was thus a
by-product of man’s quest for the transuranium elements.

With poetic justice, the actual discovery of the first transuranium element
came as part of an experiment to study the nuclear fission process. Edwin
McMillan, working at the University of California at Berkeley in the spring of
1939, was trying to measure the energies of the two recoiling fragments from
the neutron-induced fission of uranium. He placed a thin layer of uranium
oxide on one piece of paper. Next to this he stacked very thin sheets of cigarette
paper to stop and collect the uranium fission fragments. During his studies



he found there was another radioactive product of the reaction, one that did
not recoil enough to escape the uranium layer, as did the fission products.
He suspected that this product was formed by the capture of a neutron by
the more abundant isotope of uranium, iiSU. McMillan and Philip Abelson,
who joined him in this research, showed in 1940 by chemical means that this
product is an isotope of element 93, 329Np, formed in the following sequence:

238 1 239
o Utm— g, Uty (14.2)
and
239 239 R
o Ut =235m) > "Np+e +v, (14.3)

Neptunium, the element beyond uranium, was named after the planet Neptune
because this planet is beyond the planet Uranus for which uranium was named.

Plutonium was the second transuranium element to be discovered. By
bombarding uranium with charged particles, in particular, deuterons (ZH),
using the 60-in. cyclotron at the University of California at Berkeley, Glenn
T. Seaborg, McMillan, Joseph W. Kennedy, and Arthur C. Wahl succeeded in

preparing a new isotope of neptunium, 239Np, which decayed by p~ emission

to 238Pu, that is,

238 2 238
o U+ H—= “Np+2gn (14.4)
and
239 239 _ =
o Ut =235m) > "Np+e +1, (14.5)

. 239 . . . .
Early in 1941, ©" Pu, the most important isotope of plutonium, was discovered

by Kennedy, Segre, Wahl, and Seaborg. *Pu was produced by the decay of

239Np, which in turn was produced by the irradiation of U by neutrons,

using the sequence of p decays following neutron capture on U
2PU(t), = 23.5m) — oo Np+e™ +7, (14.6)
igng(tm = 2.35 days) — igPu(tl/2 = 24110 years) + e~ + Vv, (14.7)

. 3 .
This isotope, *’Pu, was subsequently shown to have a cross section for thermal

neutron-induced fission that exceeded that of U, a property that made it
important for nuclear weapons, considering that it could be prepared by
chemical separation as compared with isotopic separation that was necessary
for *’U. Plutonium was named after the planet Pluto, following the pattern
used in naming neptunium.

The next transuranium elements to be discovered, americium and curium
(Am and Cm; Z = 95 and 96, respectively) represent an important milestone in
chemistry, the recognition of a new group of elements in the periodic table, the



actinides. According to the periodic table of the early 20™ century, one expected
americium and curium to be eka-iridium and eka-platinum, that is, to have
chemical properties similar to iridium and platinum. In 1944, Seaborg con-
ceived the idea that all the known elements heavier than actinium (Z = 89) had
been misplaced in the periodic table. He postulated that the elements heavier
than actinium might form a second series similar to the lanthanide elements
(Fig. 14.1), called the actinide series. This series would end in element 103 (Lr)
and, analogous to the lanthanides, would show a common oxidation state of +3.

Once this redox property and the actinide concept was understood, the use of
appropriate chemical proceduresled quickly to the identification of an isotope of
anew element with a new a-emitting nuclide, now known to be iéZCm (half-life
162.9 days), which was identified by Seaborg, Albert Ghiorso, and Ralph James
in the summer of 1944 by the bombardment of **Puwith 32-MeV helium ions:

239 4 242 1
o PU+ He = “Cm+ n (14.8)

The bombardment took place in the Berkeley 60-in. cyclotron after which the
target material was shipped to the Metallurgical Laboratory at Chicago for
chemical separation and identification. A crucial step in the identification of
the a-emitting nuclide as an isotope of element 96, §§2Cm, was the identifica-

. : ) 238
tion of a previously known isotope, ;, Pu, as the a-decay daughter of the new
nuclide.

Aside 14.1: Element Synthesis Calculations

The reactions used to synthesize heavy nuclei are, quite often, very
improbable reactions, representing minor branches to the main reaction.
Their probability of occurrence with respect to the main synthesis
reaction is frequently < 107%. As such, it is intrinsically difficult to
accurately describe these reactions from a theoretical point of view.
Instead, workers in this field have frequently resorted to semiempirical
prescriptions to guide their efforts.

To give one a feel for the magnitude of the quantities involved, we out-
line in the following text a very simple schematic method for estimating
heavy element production cross sections. It is intended to show the rele-
vant factors and should not be taken too seriously, except to indicate the
order of magnitude of a particular formation cross section.

The German physicist Peter Armbruster has made an empirical system-
atic description of the probability of fusion of two heavy nuclei at energies
near the reaction barrier. These systematics are shown in Figure 14.6. To
use this graph, one picks values of the atomic number of projectile and
target nuclei and reads off the expected value for the cross section for
producing a completely fused species. The excitation energy of the com-
pletely fused species can then be read from Figure 14.7, which is based
upon the nuclear masses of Peter Moller, J. Rayford Nix, and Karl-Ludwig



Figure 14.6 Contours of log,, o, as functions of the projectile atomic number, Z,, and
target atomic number, Z;, where o, is the s-wave fusion cross section at the interaction
barrier.
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Figure 14.7 Excitation energy of the completely fused system formed from a given target,
Z;,and projectile, Z,, combination. Reactions are assumed to take place at the interaction
barrier.

Kratz. Taking as a rough rule of thumb, for each 10 MeV of excitation
energy, the survival probability of the fused system drops by a factor of
102, one can then compute the cross section for producing a given species.

For example, the successful synthesis of *®Hs (265108) involved the
reaction

208 58 265
Pb+ " "Fe - ""Hs+n

From Figure 14.6, one predicts the fusion cross section to be 10732 cm?,
while Figure 14.7 suggests an excitation energy of ~20 MeV. Thus, one
would roughly estimate the overall cross section for producing **Hsto be



(10722 cm?)(1072)(1072) = 10736 cm?

Note that the measured cross section was found to be 2 X 1073> cm?.

The identification of an isotope of element 95, by Seaborg, Ghiorso, James,
and Leon Morgan in late 1944 and early 1945, followed the identification of
this isotope of element 96 (mCm) as a result of the bombardment of >’ Pu with
neutrons in a nuclear reactor. The production reactions, starting with multiple
neutron capture by plutonium, are

239 1 240
o PUton = "Puty
240
94

241 241 _ —
o PUt p = 14.4y) = U Am(t , = 4327 y) + e + 7,

241
Pu+én—>94 Pu+y

241 1 242
95 Am+,n - o Am+y

242 242 R

o5 Am(t; ), =16.0h) - "Cm+e” + v,

The years after World War II led to the discovery of elements 97-103 and
the completion of the actinide series. While the story of the discovery of each
of these elements is fascinating, we shall, in the interests of brevity, refer the
reader elsewhere (see Bibliography list) for detailed accounts of most of these
discoveries. As an example of the techniques involved, we shall discuss the dis-
covery of element 101 (mendelevium).

The discovery of mendelevium was one of the most dramatic in the sequence
of transuranium element syntheses. It marked the first time in which a new
element was produced and identified one atom at a time. By 1955, scientists at
Berkeley had prepared an equilibrium amount of about 10° atoms of ings by
neutron irradiation of plutonium in the Materials Testing Reactor in Idaho. As
the result of a “back of the envelope” calculation done by Ghiorso during an
airplane flight, they thought it might be possible to prepare element 101 using
the reaction

2Es +2He — Md +} n (14.9)

The amount of element 101 expected to be produced in an experiment can be
calculated using the formula

Ngod (1 —e*)
A

where N, and N, are the number of element 101 atoms produced and the

Ny, = (14.10)

5 . . . . .
number of §93Es target atoms, respectively, o is the reaction cross section (esti-
mated to be ~107%7 cm?), ¢ is the helium ion flux (%10 particles/s), A is the



decay constant of the product, fg?Md (estimated to be ~107%/s), and ¢ is the

length of the bombardment (~10*s, just under 3 h). Substituting these values,
(109) ( 10—27) (1014) (1 _ e(—10"‘104‘))

= ~1 14.11
101 104 ( )

Thus the production of only one atom of element 101 per experiment could be
expected with the available number of target atoms.

Adding immensely to the complexity of the experiment was the absolute
necessity for the chemical separation of the one atom of element 101 from
the 10° atoms of einsteinium in the target and its ultimate, complete chemical
identification by separation with the ion exchange method. This separation
and identification would presumably have to take place in a period of hours
or perhaps even 1 h or less. Furthermore, the target material had a 20-day
half-life, and one needed a nondestructive technique allowing the target
material to be recycled into another target for a subsequent bombardment.

The definitive experiments were performed in a memorable, all-night ses-
sion, on February 18, 1955. To increase the number of events that might be
observed at one time, three successive 3-h bombardments were made, and,
in turn, their transmutation products were quickly and completely separated
by the ion exchange method. Some of the target nuclide *%Es was present in
each case along with et produced from **Cm also present in the target (via

the **Cm (4He, 2n) reaction). The important chemical step was to define the
positions (volumes of extractant) at which the elements were eluted from the
column containing the ion exchange resin. Five SF counters then were used to
count simultaneously the corresponding drops of solution from the three runs.
A total of 5 SF counts was observed in the element 101 position, while a total of 8
SF counts were also observed in the element 100 position. No such counts were
observed in any other position. The original data are presented in Figure 14.8.

Aside 14.2: Detection of Heavy Element Atoms

The detection of atoms of a new element has always focused on measur-
ing the atomic number of the new species and showing that it is different
from all known atomic numbers, Z. Unambiguous methods for estab-
lishing the atomic number include chemical separations, measurement
of the X-ray spectrum accompanying a nuclear decay process, or estab-
lishment of a genetic relationship between the unknown new nucleus and
some known nuclide. As the quest for new elements focuses on still heav-
ier species, the probability of producing the new elements has generally
decreased, and one has had to devote increasing attention to the prob-
lem of detecting a few atoms of a new species amidst a background of
many orders of magnitude more of other atoms. Thus, modern attempts
to make new heavy element atoms usually involve some kind of physical
separation.
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Figure 14.8 Original elution data corresponding to the discovery of mendelevium,
February 18, 1955. The curves for s (given the old symbol E253) and #5Cf were
determined by a particle emission. (Dowex 50 ion exchange resin was used, and the eluting

agent was ammonium a-hydroxyisobutyrate.)
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Figure 14.9 A schematic diagram of the SHIP velocity filter separator at the GSI in Germany.
(See insert for color representation of the figure.)

An example of a modern separator is the SHIP velocity filter (Fig. 14.9)
at the GSI in Darmstadt, Germany. In this separator, nuclear reaction
products (from the target wheel) undergo different deflections (in crossed
electric and magnetic fields) depending on whether they are fission frag-
ments, scattered beam particles, or the desired heavy element residues.
The efficiency of the separator is ~50% for heavy element residues, while
transfer products and scattered beam nuclei are rejected by factors of
10'* and 10", respectively. The heavy recoil atoms are implanted in the



silicon detectors. Their implantation energy and position are correlated
with any subsequent decays of the nuclei to establish genetic relationships
to known nuclei.

The synthesis of the transactinides is noteworthy from a chemical and a
nuclear viewpoint. From the chemical point of view, rutherfordium (Z = 104)
is important as an example of the first transactinide element. From Figure 14.1,
we would expect rutherfordium to behave as a Group 4 (IV-B) element, such as
hafnium or zirconium, but not like the heavy actinides. Its solution chemistry,
as deduced from chromatography experiments, is different from that of the
actinides and resembles that of zirconium and hafnium. More recently, detailed
gas chromatography has shown important deviations from expected periodic
table trends and relativistic quantum chemical calculations.

The work on the discovery and identification of elements 104—106 was con-
troversial and contentious due, in part, to the difficulty of the experiments.
Looking back now, the following series of experiments clearly identified these
elements. Ghiorso et al. (1969) produced isotopes of element 104 in experi-
ments at Berkeley in 1969. The nuclear reactions involved were

249 12 257 1
os Cf +,C = ""104(t, ), ~ 3.85) +4 n

0
2Ct +.°C - *104(t,, ¥ 3.45)+3 n

The atomic numbers of these isotopes were identified by detecting the known

nobelium daughters of these two nuclei. The group suggested the name of

rutherfordium (chemical symbol Rf) for element 104 in honor of Lord Ernest

Rutherford.

Contemporaneously with these experiments, Zvara et al. (1970), working
at Dubna, produced *9104(3.2 + 0.8 5) by the z:zPu(ﬁNe, 5n) reaction. The
chloride of this spontaneously fissioning activity was shown to be slightly less
volatile than Hf but more volatile than the actinides using gas chromatography.
An international group of reviewers (Barber et al., 1992) has determined that
the Berkeley and Dubna groups should share the credit for the discovery of
element 104 and has suggested the name of rutherfordium for element 104.

In 1970, Ghiorso et al. (1970) reported the observation of an isotope of ele-
ment 105 produced in the reaction

249 15 260 1
os Cf + N = “°105(t, , % 1.55) + 4 n (14.12)

The Z and A of this isotope were established by correlations between the parent
2105 and its daughter L. They suggested the name of hahnium (chemi-
cal symbol Ha) for this element in honor of the German radiochemist Otto
Hahn, codiscoverer of fission. In a series of experiments occurring at a similar
time, Druin et al. (1971) identified a mother—daughter pair from the decay of
260261105 formed in the reactions jisAm(nge, 4,5n). A name of nielsbohrium



Fod e
W e o -F Tm e -
R Ha Sy Mg Hs W

Figure 14.10 Glenn Seaborg points out the position of seaborgium (Sg) in the periodic
table. (See insert for color representation of the figure.)

(chemical symbol Ns) was suggested for this element in honor of the Dan-
ish physicist Niels Bohr by the Russian group. Later the international group
(Barber et al., 1992) also suggested that credit for this discovery be shared and
subsequently the name of dubnium (chemical symbol Db) was assigned to this
element.

Element 106 was first synthesized by Ghiorso et al. (1974) at Berkeley in 1974
using the reaction

249 18 263 1
o CF + .0 = *7106(t, ), ~ 0.85) +4 n (14.13)

The nuclide was identified by genetic links to its daughters *Rf and **No.
This synthesis was reconfirmed almost twenty years later in 1993 by Gregorich
et al. (1994). Element 106 has been named seaborgium (symbol Sg) after one
of the authors of this book. Glenn, the codiscoverer of plutonium and nine
other transuranium elements, said upon this occasion (cf. Fig. 14.10), “It is the
greatest honor ever bestowed upon me—even better, I think, than winning the
Nobel Prize”

In 1981, G. Miinzenberg et al. (1981), working in Darmstadt (West Germany
at the time) using the velocity filter SHIP, identified the isotope *’Bh produced
in the “cold fusion” reaction



209. 54 262 1
g3 Bi+,,Cr — 77107(¢; ), & 102 ms) + n (14.14)

This nuclide was identified by genetic links to the sequence of its a-decay
daughters: **Db, **'Lr, *’Md, *Fm, and ending with *Cf. The cross section
reported for this reaction was %200 pb (~1/5,000,000 of the production cross
section assumed for the reaction used in the discovery of Md). This element
was named bohrium (chemical symbol Bh) in honor of Niels Bohr.

In 1984, Minzenberg et al, (1981) continuing to work at Darmstadt
(Miinzenberg et al., 1984b, 1987), produced three atoms of *°Hs using the
“cold fusion” reaction “**Pb(5$Fe, 1n). *’Hs was identified by genetic links to its

a-particle emission daughter and granddaughter: 261Sg and *”'Rf. The half-life
of this nucleus was ~1.8 ms. The production cross section was ~20 pb. At a

similar time, Oganessian et al. (1984) reported the production of 232 Hs in

the reactions *” Bi(**Mn, n), “**Pb(**Fe, n), *” Pb(**Fe, n), and "’ Pb(**Fe, n). The
Russian group reported observation of SF and a-decays of the granddaughter
and great-great-great-granddaughters. Because of this weaker identification,
credit for this discovery (Barber et al., 1992) was assigned to the Darmstadt
group, who suggested the name of hassium (chemical symbol Hs) in honor of
the region of Germany, Hesse, in which the work was done.

In 1982, Miinzenberg et al. (1982, 1984a) reported the observation of one
atom of element 109 formed in the reaction 209Bi(58Fe, n). The production cross
section was 10 pb. This discovery was confirmed by the later observation of
more atoms at Darmstadt (Hofmann et al., 1997). The discoverers suggested
the name of meitnerium (chemical symbol Mt) in honor of Lise Meitner.

In 1991, Ghiorso et al. (1995a,b) studied the reaction of *®Bi with ”Co. They

found one event that they associated with the production of *"110 (267Ds). The
evaporation residue formed decayed by the emission of an 11.6 MeV a-particle
4 ps after implantation. Their evidence for the formation of *7110 was weak-
ened by the inability (due to malfunctioning electronics) to detect the decay of
the daughter *Hs although the decay of other members of the decay chain was
observed. Further work was not pursued by this group due to the closure of the
accelerator used to produce the beam. This observation was probably correct
although the evidence presented is not strong