
9. BRIEF ABETRACt
(A general description of the imnovation which describes its capabilities, but does not reveal dotails that wout enable
duplication or imitation of the innovation.)

The innovation presented here describes a method and apparatus which, by destgn, creates an environment for enhanced surface plasmon polaritons (SPP) at setected frequencles to initiate and sustain Low Energy Nuclear Reactions in metal hydride systems. LENR have been atudied for decades and are commonly, but incorrectly, referred to by the altemative name "Cold Fusion", LENR is used to define non-traditional methods (traditional methods would be fuston and fission) to access energy from nuclear reactions. The primary fuel is hydrogen or deuterium (afthough other efements can be made to work) and energy is released through the conversion of mass to enorgy (Emmec) via the transmutation of elements. What evidence of energy production vis LENR continues to mount and experiments are increasingly more reproduclble, the quantity and quality of excess heat produced by LENR has not improved much in the last 20 years and remains nothing more than a laboratory curiosity. A new theoretical development (by Widom and Larsen 2006 . henceforward referred to as WLT) describes the strong fie between Surface Plasmon Polaritons (SPP) and LENR, The innovation described in this disclosure presents a method and apparatus detaling a range of ambodiments that enhance the SPp distributlon at specific frequencles which are required to initiate LENR. The method detais the required arrangement and thape of metal partictes or surfaces that resonate at specific frequencies, The apparatus is how these arrangoments are realized and oporate in an actual device.

Low Energy Nuctear Reactions have been observed for nearly one hundred years and remain a litie understood phenomena. More recently, since. , LENR have been studled in laboratories world-wide under the name of "Cold Fusion". Despite the amount of activity and increasingly reproducible expermental resuts, there has been littie advancement in elther the control/reliability of dovices or quality/amount of energy/heat produced. Until very recently, there have been many competing theories purporting to explain the physics of LENR, but none have produced any actionable guicance or testable predietions. The result has been attempts at progress and increased understanding by trall and error. There is no agreed to description of the environment required to initiate and sustain LENR, let alone prescriptions for or practical devices that create such an environment. The result is that experimentallsts guess at what is required and utilize the following forms: electrochemistry - smooth electrodes comprised of plates, wires, or screens
metal powders - random shapes and slzes
flat metal surfaces - large smooth rodg, blocks, and thin films
mult-layer thin fitms - smooth single or alternating layers of materials

Close microscople inspection of the successfully activated LENR devices indicates that the problem lies not In the quality of the heat produced, but rather the fraction of the device that is partaking in LENR. Very small regions are observed where there has been an obviously large amount of energy released in a vary small area (typically only a few microns across) while the vast majority of the sample appears totally unaffected (non-participatory).

In z peer-feviewed scientific paper, Widom and Larsen presented a possible physical explanation for LENR. Theif proposed mechanism states that inithation of LENR activity is due to the coupling of SPP to a proton or detiteron resonance in the lattice of the metal hydride. The coupling requires SPP of specifle frequency and sufficient amplitude to initiate and sustain LENR. Thelr theory goes on to describe the production of heavy electrons which andergo electron capture by a proton thereby producing a neutron which is subsequentily captured by a nearby atom transmuting it into a new efement and releasing postive net energy in the process. Whether the full detalls of WLT are correct or not, the importance of SPP driven proton osciliations in the LENR-active metal hydride systems is supported by actual experimental evidence. This resonance in the metal hydride system exists independendy of the correctness of WLT and is likely required to intilate and sustain LENR in motal hydride systems.

By developing a device which, by design, signiflcantly enhances the amplitude of SPP in a narrow range of frequoncles (tallored to the specific metallalloy composition and physlcal operating enviromment of the dovicel over the entire surface of velume of the device, this innovation dramatically increases the enfergy output (ermergy density) due to LENR. These devices also present a direct method to control the rate of energy procuction (power output).

Surface Plasmon Polartons exist in conductive interfaces naturally as they arise from thermal nolse of the conduction electrons. SPP can also be driven directly by various methods (applied fiefds or currents, particle fluxes through the metal surface, incident beams of photons or energetic particles, excited directly by plasmonic circuit efements or devicesj. Most of these excitation methods produce broad-band or spactroscopically wide distributions of SPP with few, if any at the correct frequencies. By designing and fabricating a particle, surface, of volume which naturally resonates at a preferred frequency fmuch the same as the way a beli rings with a specific tone when struck with an arbitrary impulsel, these same excitation thechanisms will produce a tailored apectrum of SPP response initially. That spectrum will eventually decay Into the blackbody spectrumidistribution. Continuous excitation along with the preferred device resonance will proctuce the desired amplitude and frequency spectrum of SPP and fntiate and sustain \& ENR on/within the device.

All of the publicyy avaliable reports, presentations, and publications support the belief that no one is
intentionalfy deslgning devices based upon the importange of the coftribution of SPP to ostablatimg an LENR-actue enviforment. There is no known prior art supporting the intentional design and fabrication of devices to enhance SPP amplitudes at specific frequencies with the intent to intiate andfor sustain LENR There is evtence in the existing body of experimental data supporting the tmportance of spp to initiating LeNf, however, these instanoes appear to be random chance events in an otherwise uncontrolled aspect of the expertment.

IEnter as appropriate: existing reports, if available, may form a part of the disclosura, and reference thereto can be mace to complete this description: A.- Putpose and description of innovationsoftware; B.- Identification of componemt parts or steps. and explanation of mode of coeration of inovation/sofware praforably retening to drawings, sketches, photographs, graphs, fiow charts, andor parts of ingredient ists iflustrating the components; D. Attemate embodiments of the imnovation/software: E.Supportive theory; F. Engineening specifications; G. Peripheral equipment; and C. - Maintenance, reliability, safety factors.)

The innovation being disclosed is the intentional design and fabrication of metal particles or surfaces with specific sizes, shapes, oriantations, surface textures, or other relevant geometrical properties as required by the elemental composition of the metal hydride/deuteride and the working environment of the device (aqueous, gaseous, pressures, temperatures, dielectric constant of materials at the metal interface, ...) such that there exists a fundamental resonance in the SPP rasponse of the device at the proper frequencyffrequencies to initiate and sustain LENR. There are multiple embodiments of this innovation: Individual metal/metal-hydride particles; Two dimensional metalmetal-hydride surfaces: and Three dimenstonal structures andior arrays of particles.

Individual particles, by themselves, are the simplest but least effective embodiment of the innovation. Spherical or nearly spherical particles naturally resonate at a frequency where the particle circumference is equal to a multiple of the SPP wavelength (Mie theory). Similarty, long and thin, needie-fike particles or whiskers can resonate in modes analogous to small antenna when the length of the particle is a integer muttiple of one half the SPP wavelength. Larger and mone complex individual particles can also be effective SPP resonators and are placed in the class of two dimensional surface embodiments described in the next class of devices. Basically these are periodic structured variants of the platonic solids itetrabedron, cube, octahedron, icosahedron, dodecahedron, ...) or more complex shapes such as geodesics or fullerene-like shapes or arrangement of surface features.

Two dimensional embodiments are comprised of periodic textures or arrayed structures which, by design, resonate at specific SPP frequencies. Examples are triangular, rectangular, or hexagonal arrays of posts (cylinders, truncated cones, or derivatives of these with more complex, non-circular bases) where the array of objects creates and reinforces a natural SPP resonance at the desired frequency either in the array elements themselves or on the surface in the voids between array elements (see figure tor a example embodiment, provided separately). The array elements may also be shaped depressions in the metal surface, such as bowts, polygonal-based cylindricallconical holes, or more complex textures. The primary advantage of arfays of elements over individual particles is that the array geometry (pattern and spacing) amplitios the resonance of the individual elements through a mutual interaction of muitiple similar elements or by entablishing the resonance of otherwise nom-resonant elements - where the details of the array geometry Itself creates or reinforces the desired resonance.

Three dimenslonal embodiments are periodic arrays of elements in three dimensions or volume-filling fractai forms of 2 D embodiments just discussed. Periodic arrays in 3D can take a variety of forms analogous to the 2 D case as may be seen in common materials such as the array of locations of atoms in various crystal forms, the tocations of objects closely packed to minimize volume, or the quasi-crystilline arrays of particles found in dusty plasmas under certain conditions. This last example is perhaps the most useful in that the array can be formed within a moving and dynamic fluid. These fluid forms represent an important embodiment for use in high power devicas. Again as was seen in the 2 D case, the array elements may themselves be, but are not required to be, resonant at the desire frequency. An example of an array of resonant elements would be a number of properiy deslgned metallic whiskers oriented and spaced in a regular 30 rectangular array within an inert supporting matrix such as a ceramic. Another would be resonant metallic particies that were electrically charged and self organized into a quasi-crystafine array within a dusty plasma. The geometry of this fluld crystal comprised of the dusty plasma could be controlled by adjusting the rate of mass flow through a devite or by altering the geometry of the tube, body, or orifice throughiover which the dusty plasma flows the same resultant changes in pressure andior temperature would be used to provide the SPP excitation), In both these cases it is the combination of the resonant elements coupling to and reinforced by the resonance of the overall array geometry that produces the desired effect. For arrays of non-resonant elements, the geometry of
the array is critical thestablishing the desired resonance. Arrays of non-resonant eiements are usually limited to 2 D surface or 30 fractal embodiments because the required geometry must be tighty estabilished and controlled.

The function of the array is to establish a resonance in a SPP traveling along the surface of the metal, in the case of 2D forms, or for the other forms, to strengthen the amplitude of the SPP traveling over the surface of the individual elements by controlifig their mutual coupling (primarily inductive) and the array\& 433 ; ; positive reinforcement taking into consideration the speed of propagation of the SpP or EM held oscllations in the materdal and the spacing and orientation of the array chements. The coupling of elements controis the (increases/decreases) amplitude and (decreases/increases) the spectral width of the resonance.

The 20 embodiment of cylindrical posts arranged in a hexagonal armay (see figure provided separately) has been modeled extenstvely. The properties of this type of device, frequency of resonance and the Q (FWHMIresonant frequencyi, have been explored for various array apacings as well as cylinder radi and helghts. Large arrays of these simple elements can be designed for any frequency in the important terahertz region (THz) with Q values ranging from 5 to 50 and probably higher. Most importantly, the devices can and are currently being fabricated. There is also some evidence available from electro-chemical cells where the regions exhibiting LENR activity have arrays of metal dendrites which have, by a totally tandom process. formed small isolated SPP fesonators consistent with the modeling done to date.

One method of controling the resonant frequency is to aiter the geometrical spacing of the array by varying the temperature of a device fabricated offon a material with a sufficiently large coefficient of thermal expansion. Conversety, a resonator which is inherently stable over a wide ratige of operating tamperature would need to be fapricated oflon a matertal with a small coefficient of themal expansion.

LENR experiments to date are improving in term of reliability, but the amount and quaify of the energy output (primarily heat) remains poor. Microscopic inspection of the surfaces of reactor components indicate that on a very local level, the power density (quality of heat) is very tigh. The poor performance of the device is simply due to the very small fraction of the device that is LENR active - very small, several orders of magnitude less than 1%. This is a direct result of these expertments all relying on random chance to create the proper environ for SPP resonance at the desired frequency. In the case of the electrochemical cell commonly used in LENR experments, the formation of resonant arrays of metalle dendrites with just the right spacing, diameter, and length is pure chance. Modeling of devices demonstrates that there is a smatl non-zero chance that glven enough time, random clusters of dendrites will, as they grow during electrolysis, resonate and that the frequency of the resonance may sweep through the right frequency and do so slowly enough for initiation of LENR. Dendrite spacing is linked to metallic grain size on the cathodic metal. Growth rate and diameter are linked to the rate of electrolysis. However, none of these properties or procedures are being controlled with the intent to create a specifit geometry or to otherwise control the ablify of SPP on these devices to resonate at specific frequencles.

This innovation is the first to design and fabricate devices with the specifc intent to establish and control the frequency (and Q) of the SPP resonance and its uriformity over large regions (surfaces or volumes). Such devices not only increase the fraction of the device participating in LENR from some very tiny fraction to near 100%, but also LENR active when the devices are frst created (unlike the current state of the art which requires hours or days of electrolysis to grow the metal dendrites or other resonant textures).

Evaluation of the performance of this innovation will be done on a series of 2D hexagonal arrays of truncated cones fabricated out of fused silica with a thin film of metal applied to the surface. The series will span a range of frequencies in the 7 to 25 THz region with each device having a Q of approximately 20. After thorough modeling, design of the devices is complete. Fabrication will occur in the fall. and testing will begin in early festing will determine the efficiency of the design fraction of the device paticipating in LENR activity).

There is no known application, adaptation, or reuse of existing IP in this innovation, Larsen Patents (list to be provided separately) relate primarily to the physics (unpatentabie) and not to the specific embodiment of a device which seeks to optimally tallor the response of SPP according to W-L. theory. The Larsen patents talk about what an apparatus might do or would be useful for, but they do not indicate how such a device might actually be made to work. They do not indicate the knowledge or understanding of the specific properties (materibls and form) such a device must have to function,

∞

EM Modeling \& Device Design

- Device is an hexagonal array of cylindrical cavities or posts
- Q is typically between 20 and 30

Length	21000 microns
Width	15000 microns
Thickness	0.25 microns
Volume	78750000 microns^3
	0.000079 cc
Ni Density	$8.908 \mathrm{~g} / \mathrm{cc}$
Ni Mass	0.00070 g
Ni AW	58.693 AU
H Mass	$1.2 \mathrm{E}-05 \mathrm{~g}$
LENR Energy	$3.7 \mathrm{E}+11 \mathrm{~J} / \mathrm{g}$
Energy	4422279 J
Dynamite stick	$2.1 \mathrm{E}+06 \mathrm{~J} /$ stick
Dynamite equiv.	Assumes $1: 1$ stoiciometry of NiH

$\frac{1}{5.00}$	Freq	A	R
A	27.0	6.89	2.74
B	25.7	7.15	2.74
C	24.5	7.40	2.73
D	23.3	7.67	2.73
E	22.2	7.95	2.73
F	21.1	8.27	2.73
G	20.1	8.59	2.73
H	19.2	8.93	2.73
I	18.3	9.30	2.74
J	17.4	9.72	2.75
K	16.6	10.13	2.76
L	15.8	10.59	2.79
M	15.0	11.10	2.83
N	14.3	11.59	2.87
0	13.6	12.11	2.94

L is post height
A is post spacing
R is post mean radius

Hexagonal array of cyindricel posts (as in exmple drawing)

c-c spacing	Array size	Number
microns	microns	of Cells
30	1500	2875
15	1500	11500
10	1500	25875
7	1500	52806

L is post height
A is post spacing
A is post mean radius
Everything is in microns
R assumes 0.25 micron metal thicknes Mask must allow for post taper

Lo Med L=5.0 A R

Freq TH2	Step	Q	Lo	Med	$4 .=5.0$	A	R
29.8	1.4	21.3					
28.4	1.4	20.3					
27.0	1.4	19.3			A	6.89	2.49
25.7	1.3	19.8			B	7.15	2.49
24.5	1.2	20.4			C	7.40	2.48
23.3	1.2	19.4			D	7.67	2.48
22.2	1.1	20.2			E	7.95	2.48
21.1	1.1	19.2			F	8.27	2.48
20.1	1.0	20.1		A	G	8.59	2.48
19.2	0.9	21.3		3	H	8.93	2.48
18.3	0.9	20.3		c	1	9.30	2.49
17.4	0.9	19.3		-	J	9.72	2.50
16.6	0.8	20.8		ε	K	10.13	2.51
15.8	0.8	19.8		F	1	10.59	2.54
15.0	0.8	18.8		G	M	11.10	2.58
14.3	0.7	20.4		H	N	11.59	2.62
13.6	0.7	19.4	A	1	0	12.11	2.69
13.0	0.6	21.7	B	?			
12.4	0.6	20.7	C	K			
11.8	0.6	19.7	0	1			
11.2	0.6	18.7	E	M			
10.7	0.5	21.4	F	N			
10.2	0.5	20.4	G	0			
9.7	0.5	19.4	H				
9.2	0.5	18.4	I				
8.8	0.4	22.0	1				
8.4	0.4	21.0	k				
8.0	0.4	20.0	L				
7.6	0.4	19.0	M				
7.2	0.4	18.0	N				
6.9	0.3	23.0	0				

