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Preface to the Second Edition

The publisher’s suggestion of a second edition of “Nuclear Physics of Stars,” only

seven years after the first edition appeared, came as a surprise. However, I was

easily convinced to undertake this endeavor because of the enthusiastic response

to the first edition from students and colleagues at many universities and labora-

tories. This provided the opportunity to include several topics that were missing

in the first edition. The following sections have been added:

1) explosive nucleosynthesis in core-collapse supernovae,

2) explosive nucleosynthesis in thermonuclear supernovae,

3) neutrino-induced nucleosynthesis,

4) big bang nucleosynthesis,

5) galactic cosmic ray nucleosynthesis.

Several sections have been revised, including the discussion of stellar enhance-

ment factors and the extraction of cross sections from measured yields. All of the

tables have been updatedwith themost recent information available.Many figures

have been improved, some have been omitted, while others have been added. Ref-

erences have been updated and several new end-of-chapter problems have been

included. Some of the material was rearranged for a more coherent discussion.

I would like to thank the following people for their suggestions and valuable

comments: Art Champagne, Alessandro Chieffi, Alain Coc, Jack Dermigny, Lori

Downen, Mounib El Eid, Peter Hoeflich, Sean Hunt, Jordi José, Keegan Kelly,

Karl-Ludwig Kratz, Marco Limongi, Richard Longland, Maria Lugaro, Brad

Meyer, Peter Mohr, Anuj Parikh, Nikos Prantzos, Ivo Seitenzahl, Frank Timmes,

and John Wilkerson. This book is dedicated to my parents, for all that they have

done.

Carrboro, August 2014 Christian Iliadis
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Preface to the First Edition

Nuclear processes generate the energy that makes stars shine. The same nuclear

processes in stars are responsible for the synthesis of the elements. When stars

eject part of their matter through various means, they enrich the interstellar

medium with the nuclear ashes and thereby provide the building blocks for the

birth of new stars, of planets, and of life itself. The theory of this building of

elements is called nucleosynthesis and it is remarkably successful in describing

the nuclear processes in stars that are located so far away from us in space and

time. It is equally remarkable how the theory predicts these processes based on

the quantum mechanical properties of atomic nuclei. Nucleosynthesis, nuclear

energy generation in stars, and other topics at the intersection of nuclear physics

and astrophysics make up the science of nuclear astrophysics. Like most fields of

physics, it involves both theoretical and experimental activities. The purpose of

this book is to explain these concepts with special emphasis on nuclear processes

and their interplay in stars.

Work on the manuscript for this book started when I was invited to teach a

two-week long, graduate-level course on “Nuclear Physics of Stars” at the Uni-

versitat Politècnica de Catalunya in Barcelona, Spain, in June 2003. During the

preparations for the course, it became quite obvious that it would be useful to

have an up-to-date textbook available. The encouragement I received from many

colleagues and students to write such a book was instrumental for my decision to

begin work on a manuscript.

After a decade of teaching at the University of North Carolina at Chapel Hill

I learned from my students to take no “well-established” fact for granted. They

wanted to see derivations of equations when I attempted to state “the obvious.”

They insisted on more fundamental explanations when I just tried to “wave my

hands.” The style of the present book is certainly influenced by my teaching expe-

rience. Indeed, most equations are derived in the text and special emphasis has

been placed on the art work. My main intention is to explain complicated con-

cepts in the simplest and most intuitive manner. In some instances, more elegant

formulations of concepts have been presented in the literature. For themanuscript

thesewere considered only if I found it impossible to comeupwith a simpler expla-

nation. Colleagues frequently wanted to know “which review paper” I used in the

preparation of a specific section. My strategy was to consult review articles only
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after I wrote a complete first draft of the section. That way I was forced to com-

prehend the subject myself from the beginning and to come up with a coherent

presentation.

The present book is directed toward advanced undergraduate students, grad-

uate students, and researchers in the fields of nuclear physics and astrophysics.

Chapter 1 starts with the basic concepts in nuclear physics and stellar evolution.

Chapter 2 develops the theory of nuclear reactions starting from basic quantum

mechanical ideas. Nuclear processes in a stellar plasma are discussed in Chapter 3.

Chapter 4 contains themost important experimental information needed in order

to perform measurements in nuclear astrophysics. Chapter 5 provides a discus-

sion of the theory of stellar nucleosynthesis. The appendices contain sections on

basic solutions of the Schrödinger equation, angular momentum selection rules,

kinematics, and the theory of angular correlations. At the end of the text, physi-

cal constants, mathematical symbols, and physical quantities are listed as an aid

for the reader. As a prerequisite, the student should have taken an undergraduate

course in modern physics with elementary coverage of wave functions. An under-

graduate course in quantum mechanics or nuclear physics would also be helpful,

but is not required.

The present book goes into considerable depth and, consequently, restrictions

in time and space made it unavoidable for me to omit a number of important top-

ics. The instructor who is using this book may wish to supplement the material

presented here with information on primordial nucleosynthesis (J. Rich, Funda-

mentals of Cosmology, Berlin: Springer, 2001), cosmic-ray spallation reactions (E.

Vangioni-Flam,M. Cassé and J. Audouze, Phys. Rep., Vol. 333, p. 365, 2000), nucle-

ochronology (J. J. Cowan, F.-K. Thielemann and J. W. Truran, Ann. Rev. Astron.

Astrophys., Vol. 29, p. 447, 1991), neutrino astrophysics (J. N. Bahcall, Neutrino

Astrophysics, Cambridge: Cambridge University Press, 1989), 𝜈-process (Woosley

et al., Astrophys. J., Vol. 356, p. 272, 1990), presolar grains (M. Lugaro, Stardust

fromMeteorites, Singapore:World Scientific, 2005) and indirect measurements of

astrophysically important nuclear reactions. It is utterly impossible to recommend

one, or even a few, references for the last topic, which represents a vast field in its

own right.

I would certainly not have written this book without the influence of two of my

colleagues. I am indebted to Jordi José, who invited me to Barcelona in 2003 and

who organized my lectures and my wonderful stay there. I also wish to express

my appreciation to Art Champagne, who supported me professionally through all

stages during the preparation of the manuscript. A number of people have read

through parts of themanuscript and have providedmany valuable suggestions and

comments. The book benefited substantially from their input. It is my pleasure to

thankCarmenAngulo, DickAzuma, BruceCarney, GeraldCecil, Art Champagne,

Alan Chen, Alessandro Chieffi, Alain Coc, Pierre Descouvemont, Ryan Fitzger-

ald, Uwe Greife, Raph Hix, Jordi José, Franz Käppeler, Karl-Ludwig Kratz, Alison

Laird, John Lattanzio, Marco Limongi, Richard Longland, AlexMurphy, Joe New-

ton, Anuj Parikh, Helmut Paul, Tommy Rauscher, Paddy Regan, Hendrik Schatz,

Sumner Starrfield, and Claudio Ugalde. I would like to thank Daniel Aarhus for
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typing the manuscript, and John Kelley for helping with the preparation of some

figures. I would like to acknowledge support from a University Research Coun-

cil publication grant from the University of North Carolina at Chapel Hill and I

am also grateful for the support I received from the Triangle Universities Nuclear

Laboratory. The book is dedicated to my daughter Alina, my son Kimon, and my

wife Andrea, who certainly felt the significant investment of my private time in

this project during the past four years.

Carrboro, September 2006 Christian Iliadis





1

1

Aspects of Nuclear Physics and Astrophysics

1.1

History

In 1920, Aston discovered that the mass of the helium atom is slightly less than

four times themass of the hydrogen atom. Immediately afterward, Eddington sug-

gested in his 1920 presidential address to the British Association for the Advance-

ment of Science that Aston’s discovery would explain the energy generation of

the Sun via the conversion of hydrogen to helium. However, Eddington could not

explain why the stellar temperatures inferred from observation were well below

those thought necessary to initiate fusion reactions. In 1928 Gamow, and inde-

pendently Condon and Gourney, calculated the quantum mechanical probability

for particles to tunnel through potential barriers and thereby explained the phe-

nomenon of α-particle decay (Gamow, 1928; Condon and Gourney, 1929). Atkin-

son and Houtermans used Gamow’s results to suggest that quantum mechanical

tunneling may explain the energy generation of stars via nuclear fusion reactions

(Atkinson and Houtermans, 1929).

Cockcroft andWalton (1932) initiated the first nuclear reaction using artificially

accelerated particles by bombarding and disintegrating lithium nuclei with pro-

tons accelerated to several hundred kilo electron volts energy. Incidentally, the

disintegration of lithium into two α-particles is one of the reactions of what would

later be called the pp chains. Lauritsen and Crane produced in 1934 a 10-min

radioactivity following the bombardment of carbon with protons. It was the first

measurement of one of the reactions of what would later be called the CNO cycle.

Atkinson (1936) proposed the fusion of two hydrogen nuclei to deuterium as a

source of stellar energy generation. A detailed treatment of this reaction was pro-

vided by Bethe and Critchfield who showed that the p+ p reaction gives an energy

generation of the correct order of magnitude for the Sun (Bethe and Critchfield,

1938). The energy production in stars via the CNO cycle was independently dis-

covered by vonWeizsäcker (1938) and Bethe (1939).The latter work, in particular,

investigated for the first time the rate of energy production and the temperature

dependence of the CNO cycle.

In the following years some of the pioneering ideas of nuclear astrophysics were

established. In two papers, Hoyle first presented the theory of nucleosynthesis

Nuclear Physics of Stars, Second Edition. Christian Iliadis.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1 Aspects of Nuclear Physics and Astrophysics

within the framework of stellar evolution using the nuclear data available at

the time (Hoyle et al., 1946; Hoyle, 1954). Nuclear experiments had firmly

established that no stable nucleus of mass number 5 or 8 exists in nature. For

this reason, it was a mystery how these mass gaps could be bypassed in the

synthesis of heavier nuclei from lighter species. Salpeter suggested in 1951

that a small equilibrium concentration of unstable 8Be could capture another

α-particle to form stable 12C and that this triple-𝛼 reaction could be the main

energy source in red giant stars (Salpeter, 1952). Hoyle pointed out that the

capture probability would be far too small unless an excited state existed in
12C at about 7.7 MeV excitation energy. The level was experimentally verified

(Dunbar et al., 1953) and its properties determined (Cook et al., 1957), thereby

establishing the triple-𝛼 reaction as the mechanism to overcome the mass 5

and 8 gaps.

In an influential review, Suess and Urey demonstrated the existence of several

double peaks in a greatly improved distribution of observed solar-system abun-

dances (Suess and Urey, 1956). It became immediately clear that these abundance

peaks were associated with the neutron shell fillings at the magic neutron num-

bers in the nuclear shell model that Jensen and Goeppert Mayer had developed in

1949. The nucleosynthesis processes for the heavy nuclides beyond iron via neu-

tron captures became later known as the s- and r-processes.

Of great importance was the discovery of spectral lines from the element tech-

netium in evolved red giant stars (Merrill, 1952). All of the technetium isotopes

are unstable and the longest lived isotope has a half-life of≈ 4.2 × 106 y. Such half-

lives are very short on a cosmological time scale (≈ 1010 y) and, consequently, the

discovery showed beyond doubt that the technetium must have been produced

recently within the stars and that the products of nucleosynthesis could reach the

stellar surface with the help of mass loss and mixing.

The available knowledge at the time regarding the synthesis of elementswas pre-

sented in a review article by Burbidge et al. (1957), and independently byCameron

(1957).These papers laid the ground work for themodern theory of nuclear astro-

physics. The field has developed since into an exciting discipline with impres-

sive achievements, linking the topics of astronomical observation, nuclear physics

experiment, nuclear theory, stellar evolution, and hydrodynamics.

1.2

Nomenclature

Atomic nuclei consist of protons and neutrons.The symbol Z denotes the number

of protons and is called atomic number. The number of neutrons is denoted by

the symbol N . The mass number A is defined by the integer quantity A = Z + N .

It is sometimes also referred to as nucleon number. Nuclei with the same number

of protons and number of neutrons have the same nuclear properties.They can be

represented by the symbol A
Z
XN , where X is the element symbol. Any individual

nuclear species is called a nuclide. Nuclides with the same number of protons,
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Figure 1.1 Section of the chart of the

nuclides, showing the lightest species with

Z ≤ 15 and N ≤ 20. The shaded squares

represent stable nuclides, while the open

squares correspond to unstable nuclides with

half-lives in excess of 1 ms. The only excep-

tions are the nuclides 8Be and 9B, which

have considerably shorter half-lives. No sta-

ble nuclides exist with a mass number of

A = 5 or 8.

but different number of neutrons (and hence a different mass number A) are

called isotopes. Nuclides of the same mass number, but with different numbers

of protons and neutrons are called isobars. Nuclides with the same number of

neutrons, but with different number of protons (and hence a different mass

number A) are called isotones. Isotopes, isobars, and isotones have different num-

bers of protons or neutrons and, therefore, their nuclear physics properties are

different.

Nuclides can be represented in a two-dimensional diagram, called chart of the

nuclides. It displays the number of neutrons and protons on the horizontal and ver-

tical axes, respectively. Each square in this diagram represents a different nuclide

with unique nuclear physics properties. Figure 1.1 displays a section of the chart

of the nuclides, showing the lightest species with Z ≤ 15 and N ≤ 20. The shaded
squares represent stable nuclides, while the open squares correspond to unstable

nuclides with half-lives in excess of 1 ms.Manymore unstable than stable nuclides

exist in nature. It is also striking that no stable nuclides exist with a mass number

of A = 5 or 8. This circumstance has a profound influence on the nucleosynthesis

in stars, as will be seen in Chapter 5.
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Example 1.1

The nuclide of carbon (Z = 6) with 7 neutrons (N = 7) has a mass number of A =

Z + N = 13 and is represented by the symbol 13
6
C
7
. Since the element symbol and

the number of protons (atomic number) carry the same information, both Z = 6

andN = A − Z = 7 are frequently suppressed in the notation.The carbon species

with mass number A = 13 is then unambiguously described by the symbol 13C.

The species 12
6
C
6
, 13
6
C
7
, and 14

6
C
8
are isotopes of carbon (Z = 6); 20

10
Ne
10
, 20
11
Na
9
, and

20
12
Mg
8
are isobars of A = 20; 28

14
Si
14
, 29
15
P
14
, and 30

16
S
14
are isotones of N = 14.

1.3

Solar System Abundances

It is commonly accepted that the solar system formed from the collapse of a

gaseous nebula that had an almost uniform chemical and isotopic abundance

distribution. Abundances in the solar system are also similar to those found in

many stars, in the interstellar medium of the Sun’s neighborhood and in parts

of other galaxies. Therefore, it was hoped for a long time that a careful study

of solar system abundances would provide a “cosmic” or “universal” abundance

distribution, that is, an average abundance distribution representative for all

luminous matter in the universe. A closer comparison of abundances in the solar

system and other parts of the universe shows, however, significant compositional

differences. Furthermore, the discovery of presolar grains in primitive mete-

orites allowed for the first time a very precise chemical and isotopic analysis

of interstellar matter. Measurements of isotopic abundances in these presolar

grains revealed the existence of very large deviations compared to solar system

values. Following common practice in the literature, we will avoid the term

“universal” abundances and use instead the expression solar system abundances

when referring to the abundance distribution in the solar system at the time of

its formation. The latter distribution provides an important standard to which

reference is frequently made.

There are two major, independent and sometimes complementary, sources of

solar system elemental abundances: (i) observations of the solar photosphere, and

(ii) analysis of a specific class of meterorites, called CI carbonaceous chondrites.

The Sun contains most of the mass in the solar system and is, therefore, represen-

tative for the overall composition. On the other hand, planets contain consider-

ably less mass but they underwent extensive chemical fractionation over the past

4.5 Gy since their formation (Cowley, 1995). Among the more than 20 000 recov-

eredmeteorites, there are only five known CI carbonaceous chondrites. Although

they contain a minuscule amount of matter, they are believed to be among the

most primitive objects in the solar system.They show the least evidence for chem-

ical fractionation and remelting after condensation and thus they retainedmost of

the elements (except for a few very volatile species) present in the original matter
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of the solar nebula. Details on how these abundances are obtained will not be

repeated here (see, e.g., Arnett, 1996; Grevesse and Sauval, 1998; Palme and Jones,

2003; Lodders, Palme, and Gail, 2009). It is sufficient to remark at this point that

the abundances derived from the solar photosphere and fromprimitivemeteorites

are in remarkable overall agreement (better than ± 10% for most elements). Solar

system isotopic abundances are then derived from the elemental abundances using

mainly terrestrial isotopic ratios (Rosman and Taylor, 1998).

The solar system abundances of the nuclides are shown in Figure 1.2a versus

mass number A. The abundances are normalized to the number of silicon atoms.

In cases where two or more stable isobars exist for a specific mass number A,

the sum of the individual abundances is shown. Figure 1.2b displays the abun-

dances separately for even-A and odd-A nuclides. Almost all themass is contained

in 1H (71.1%) and 4He (27.4%). There is an abundance minimum in the A = 5–

11 region, corresponding to the elements Li, Be, and B. More than half of the

remaining mass (1.5%) is in the form of 12C and 16O.The abundances drop slowly

with increasingmass number. Anotherminimumoccurs in theA = 41–49 region,

around the element Sc. The abundance curve exhibits a maximum in the A =

50–65 region, near the element Fe.Thenuclides in this region are referred to as the

iron peak. Beyond the iron peak, the abundances in general decrease with increas-

ing mass number, although pronounced maxima are visible in the A = 110–150

and A = 180–210 regions. Closer inspection of Figure 1.2b also reveals that even-

A nuclides are generally more abundant than odd-A nuclides. Furthermore, the

abundance curve for odd-A nuclides is considerably smoother than the one for

even-A nuclides.

The outstanding gross features in Figure 1.2 are the abundance maxima and

minima. Specifically, the abundances do not scatter randomly, but instead exhibit

a certain regularity and systematics. It is reasonable to assume that the abundances

within any group or subgroup of nuclides can be attributed primarily to a specific

mechanism of nucleosynthesis. Starting with the work of Suess and Urey (1956),

such tables of solar system abundances had an enormous influence on investiga-

tions of the origin of the elements and the development of nuclear astrophysics.

Not only did it become possible to identify and study various processes of nucle-

osynthesis that left their distinctive signatures in the abundance distribution, but

a connection could also be made to the environments in which these sources of

nucleosynthesis operated. All nuclides, with few exceptions, are synthesized in

stars. Therefore, the observed solar system abundances offer powerful clues to

stellar history and evolution, and by extension, to the chemical evolution of the

galaxy as a whole.

It is fascinating that the structures seen in Figure 1.2 reflect the nuclear physics

properties of various processes occurring in nature. A few very general comments

follow below. All of the hydrogen (1H and 2H) and most of the helium (3He and
4He) nuclei originated in the big bang. The most abundant of these, 1H and 4He,

are the basic building blocks for the synthesis of heavier andmore complex nuclei.

A deep abundance minimum occurs in the Li–Be–B region. These nuclides are

quickly destroyed in fusion reactions with protons since their cross sections are
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Figure 1.2 Abundances of the nuclides in

the solar system at its birth. Number abun-

dances are normalized to the number of

silicon atoms (Si = 106). Data from Lodders

(2003). (a) Sum of all nuclide abundances at

a given value of A versus mass number. The

maximum in the A = 50–65 region is referred

to as the iron peak. (b) Separate abundance

contributions from nuclides with an even

or an odd value of A versus mass number.

Even-A nuclides are in general more abun-

dant than odd-A nuclides.

very large. Therefore, their observed solar system abundances must be explained

by processes that occur in sites other than stellar interiors.They are thought to be

produced via spallation reactions induced by Galactic cosmic rays. However, the

big bang and certain stars didmost likely contribute to the production of 7Li. All of

the heavier nuclides with A ≥ 12 are produced in stars. The nuclides in the region
between 12C and 40Ca are synthesized via charged-particle nuclear reactions in

various stellar burning processes. Reactions between charged particles are subject

to the Coulomb repulsion.The larger the charge of the reacting nuclei, the smaller
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the nuclear reaction probability will become.This circumstance is reflected in the

overall decline of the abundance curve from 12C to 40Ca. The abundance maxi-

mum of the iron peak occurs because these nuclides represent energetically the

most stable species (Section 1.5.1). Because of the large Coulomb repulsion, the

synthesis of nuclides beyond the iron peak via charged-particle reactions becomes

very unlikely. These nuclei are instead produced by the capture of neutrons. The

abundances of nuclides in theA > 80 region are on average a factor of 1010 smaller

than the hydrogen abundance, as can be seen from Figure 1.2. The observed nar-

row and broad peaks in this mass region provide unambiguous evidence for the

existence of two distinctive neutron capture processes. All of the above comments

are very general and do not explain any details of the solar system abundance

curve. An extensive discussion of the various nucleosynthetic processes will be

given in Chapter 5. Information regarding the origin of the solar system nuclides

is provided at the end of this book (Section 5.8).

1.4

Astrophysical Aspects

1.4.1

General Considerations

The study of stars is central to astronomy and astrophysics since stars are long-

lived objects that are responsible for most of the visible light we observe from

normal galaxies. The fusion of light nuclides into heavier species liberates kinetic

energy at the expense of mass and serves as the interior source of the energy

radiated from the surface. These very same reactions alter the composition of

the stellar matter. As already pointed out, all nuclides with masses of A ≥ 12 are
produced in stars. When a star ejects part of its mass into space during certain

evolutionary stages, the chemical composition of the interstellar medium will be

altered by the thermonuclear debris. The interstellar medium, in turn, plays a key

role in providingmaterial out of which new generations of stars form.This cycling

of matter between stars and the interstellar medium involves countless stars. By

comparing the age of the Galaxy (≈ 14 Gy) with the age of the Sun (≈ 4.5 Gy) we

can conclude that the cycling process that gave rise to the solar system abundance

distribution operated for almost 10 billion years.

There is unambiguous direct evidence for the nucleosynthesis in stars. First, we

already mentioned in Section 1.1 the observation of radioactive technetium in

stellar spectra (Merrill, 1952). Second, γ-rays from radioactive 26Al were discov-

ered in the interstellar medium by spectrometers onboard satellites (Mahoney

et al., 1982; Diehl et al., 1993). The half-life of this nuclide (≈ 7.17 × 105 y) is

even shorter than that for radioactive technetium, thus demonstrating again that

nucleosynthesis is currently active in the Galaxy. Third, neutrinos are predicted

to be the byproducts of nuclear processes in stars (Chapter 5). Since they interact

very weakly with matter, they escape essentially unimpeded from stellar interiors.
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Neutrinos from the Sun (Bahcall, 1989; Hirata et al., 1990; Bellini et al., 2014) and

from the type II supernova 1987A (Hirata et al., 1987; Bionta et al., 1987) were

detected on Earth, providing another direct test of stellar nucleosynthesis. Fourth,

models of supernovae predict the ejection of radioactive 56Ni (half-life of 6 days),

which then decays to the radioactive daughter nucleus 56Co (half-life of 77 days).

The subsequent decay of this nuclide to stable 56Fe is predicted to determine the

decline of the light emission from these stellar explosions. The predictions agree

well with the observed light curves of supernovae. Furthermore, the energetic

γ-rays produced in the radioactive decays initially thermalize and deposit their

energy via Compton scattering and photoelectric absorption. Because of the

expansion, however, the column density decreases with time and the ejecta

eventually become transparent. Photons from the radioactive decays of 56Co and
44Ti have been directly detected from supernova 1987A (Matz et al. 1988; Tueller

et al. 1990; Grebenev et al. 2012).

The discovery of the existence of two distinct stellar populations by astronomers

was also of paramount importance in this respect. The populations are referred

to as population I and population II stars. They differ in their age and their con-

tent of metals, by which astronomers mean any element other than hydrogen and

helium. Population I stars, including the Sun, are metal rich.They are young stars,

having formed within the past few billion years, and can be found in the disk of

the Galaxy. Extreme population I stars represent the youngest, most metal-rich

stars and are found in the spiral arms of the Galaxy. Population II stars, on the

other hand, are metal poor. They are relatively old and are found in the halo and

the bulge of the Galaxy. Extreme population II stars represent the oldest, most

metal poor stars and are found in the halo and in globular clusters. Their metal

abundance, relative to hydrogen, is smaller by a factor of 100 or more compared

to population I stars.

If one assumes that the initial composition of the Galaxy was uniform and if

there exists no mechanism capable of concentrating the metals in the disk of the

Galaxy, then the Galaxy must have synthesized an overwhelming fraction of its

ownmetals.This argument provides strong support for the theory that nucleosyn-

thesis is a natural process to occur during the evolution of stars.Themetal content

of the Galaxy increases with time since the matter out of which stars form is being

cycled through an increasing number of stellar generations. Therefore, the differ-

ences in metallicity between the two stellar populations suggest that population I

stars formed later during the history of the Galaxy when the interstellar medium

became metal rich.

Nuclear reactions not only are required for explaining the bulk solar-system

abundance distribution, but also are indispensable for explaining the observed

chemical composition of individual stars. Such observations, even for trace

elements, are crucial for constraining theoretical models of stars and for better

understanding the complicated interplay of stellar hydrodynamics, convection,

mixing, mass loss, and rotation. Stellar nucleosynthesis also plays a decisive role

for explaining the chemical composition of the interstellar medium and is thus
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intertwined with γ-ray astronomy, the study of primitive meteorites, and the

nature of cosmic rays.

1.4.2

Hertzsprung–Russell Diagram

The total amount of radiation emitted per unit time, or the luminosity, varies

strongly from star to star. The same holds for the effective stellar surface tem-

perature. However, if we plot these two quantities for many individual stars in a

diagram, then the result is not a random scatter of points, but most stars fall into

several distinct groups. This correlation of stellar luminosity and effective surface

temperature represents the single most important relationship of stellar proper-

ties. It is referred to asHertzsprung–Russell diagram or color-magnitude diagram.

The latter name implies that the surface temperature can be expressed in terms of

the color of the star, while luminosity is related to the absolute magnitude. An

explanation of these relationships can be found in any introductory astronomy

textbook.The Hertzsprung–Russell diagram has a profound influence on the the-

ory of stellar evolution and, by extension, on the history of the Galaxy as a whole.

Consider first Figure 1.3a, showing aHertzsprung–Russell diagram for a sample

of ≈ 5000 stars in the solar neighborhood. Each dot corresponds to a single star.

The surface temperature increases from right to left in the figure. The vast major-

ity of stars occupy themain sequence (MS), stretching diagonally from the upper

left (hot and bright stars) to the lower right (cool and faint stars). The Sun, for

example, belongs to the main sequence. In the low and right part (cool and faint

stars) of the main sequence one finds the red dwarfs (RD). The subgiant branch

(SGB) joins the main sequence and extends in a direction to cooler and brighter

stars, where the populated region turns first into the red clump (RC), and then into

the red giant branch (RGB). In a region corresponding to smaller luminosity and

higher temperature (lower left), one finds a group of faint and hot stars known as

white dwarfs (WD). A well-known example is Sirius B, the companion of Sirius.

Some stars are located below the main sequence, but are considerably brighter

than white dwarfs. These are known as subdwarfs (SD). A number of star cate-

gories do not appear in the figure. Supergiants (SG) are the brightest stars in the

Galaxy and would occupy the upper end of the Hertzsprung–Russell diagram, but

are very rare in the solar neighborhood. The cool and faint brown dwarfs would

appear off scale way down in the lower-right, but are too faint to appear in the

figure.

A Hertzsprung–Russell diagram for the globular cluster M 3 is shown in

Figure 1.3b. There are about 200 globular clusters in the Galaxy. They are located

in a spherical space surrounding the Galactic center, called the halo of the Galaxy.

Each cluster consists of 104–106 gravitationally bound stars that are highly

concentrated toward the cluster center. An image of the globular cluster M 10 is

shown in color Figure 1 on page 613. Spectroscopic observations revealed that

globular clusters are metal poor compared to the Sun, implying that they are

very old and that they formed during the early stages of Galactic evolution. It is
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Figure 1.3 Observational Hertzsprung–

Russell diagrams, showing visual magnitude
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in the solar neighborhood with precisely
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commonly accepted that all stars in a typical globular cluster formed around the

same time from material of very similar composition. The observation that the

stars of a globular cluster occupy distinct regions in the Hertzsprung–Russell

diagram must then be explained by differences in the only other major stellar

property, that is, their initial mass. As will be shown below, the stellar mass is the

most important property influencing the evolution of stars: the higher the mass,

the faster a star will evolve.

Figure 1.3b shows some of the same stellar categories already mentioned in

connection with Figure 1.3a. The densest region is occupied by main-sequence

stars. The distinctive kink extending from the main sequence toward cooler

and brighter stars is called the turn-off point (TO). The supergiant branch stars

(SGB) are located on a horizontal part stretching toward the right, which turns

upward into the red giant branch (RGB). Three more groups of stars can be

distinguished on the left-hand side of the red giant branch: the asymptotic giant

branch (AGB), the red horizontal branch (RHB), and the blue horizontal branch

(BHB). As will be seen below, the different groups of stars seen in Figure 1.3a,b

correspond to different stages of stellar evolution. Globular clusters in particular

play an outstanding role in astrophysics since the distinct features in their

Hertzsprung–Russell diagrams represent strong constraints for stellar models.

1.4.3

Stellar Evolution of Single Stars

One of the most important goals of the theory of stellar structure and evolu-

tion is to understand why certain stars appear only in specific regions of the

Hertzsprung–Russell diagram and how they evolve from one region to another.

Our aim in this section is to summarize without detailed justification the most

important issues related to the nuclear physics of stars. An introduction to

stellar evolution can be found in Binney and Merrifield (1998) or Iben (1985).

A more comprehensive account is given, for example, in Kippenhahn andWeigert

(1990). We will use in this section expressions such as hydrogen burning, helium

burning, pp chain, CNO cycle, and so on, to obtain a general idea regarding

nuclear processes in stars. These will be explained in depth in Chapter 5.

Theoretical models of stars in hydrostatic equilibrium are constructed in the

simplest case by solving a set of four partial differential equations (for radius, lumi-

nosity, pressure, and temperature) that describe the structure of a star as a function

of the distance from the center and as a function of time. A time sequence of such

solutions, or stellar models, represents an evolutionary track in the Hertzsprung–

Russell diagram. Stellar structure and evolution calculations rely heavily on large

scale numerical computer codes. The time changes in the stellar properties are

closely related to the energy budget. Energy is generated by the star via nuclear

reactions and gravitational contraction, while energy is continuously lost from

the stellar surface via emission of photons and neutrinos. As will become clear

in the following discussion, a star spends most of its nuclear burning time fus-

ing hydrogen to helium on the main sequence. Careful observations revealed a
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direct correlation between the mass and the luminosity of a main-sequence star.

The greater the total mass of the star, the greater the temperature and pressure in

the core, the faster nuclear energy is generated, and the greater the energy out-

put or the luminosity of the star. For example, a 10M☉ main-sequence star has

≈ 3000 times the luminosity of the Sun. Furthermore, the main-sequence lifetime

will also depend strongly on the stellar mass because a star burns the nuclear fuel

at a rate that is determined by its luminosity. For example, solar-metallicity stars

with masses of 1M☉, 5M☉, and 15M☉ spend about 10 Gy, 100 My, and 12 My,

respectively, on the main sequence. Once a star leaves the main sequence, the

evolution speeds up significantly, as will be seen below.

Modern theories have been enormously successful in describing the properties

of stars. Nevertheless, many open questions remain unsolved. Stellar evolution is

an active research field and it is worthwhile to keep in mind the uncertainties in

the model calculations. These reflect our incomplete knowledge of certain pro-

cesses in stars, including the treatments of energy transport via convection, mass

loss, atomic diffusion, turbulent mixing, rotation, and magnetic fields. For binary

stars (Section 1.4.4), a host of additional problems is encountered because, first,

the model assumption of spherical symmetry must be relaxed and, second, the

interaction between the two stars becomes important. We will not discuss these

effects in any detail other than to mention that most of them become increas-

ingly important with ongoing stellar evolution. The effects of nuclear physics are

deeply intertwinedwith these issues.Whenwe discuss in later chapters the impact

of nuclear physics uncertainties on the nuclear energy generation and the nucle-

osynthesis, it is very important to keep in mind that we are referring only to one

piece in a complex puzzle. One of the main goals in nuclear astrophysics is to bet-

ter understand the inner workings of stars. To this end, a reliable knowledge of

nuclear physics is indispensable.

A chart showing the main evolutionary phases for single stars of various initial

masses is shown in Figure 1.4 and will be helpful for the subsequent discussions.

The stellar masses are shown on the left-hand side and time increases from left

to right.

Premain-Sequence Stars

When an interstellar gas cloud consisting mainly of hydrogen and helium con-

tracts, gravitational potential energy is transformed into thermal energy and into

radiation. The gas is initially in gravitational free fall and most of the liberated

energy is not retained but radiated away because the gas is relatively transparent.

With increasing density, the opacity increases aswell and someof the emitted radi-

ation is retained in the cloud. As a result, the temperature and the pressure begin

to rise and the contraction of the central, denser part of the cloud slows down.

The increasing temperature causes first a dissociation of hydrogen molecules into

atoms, and then an ionization of hydrogen and helium atoms. When a temper-

ature of about 105 K is reached, the gas is essentially ionized. The electrons trap

radiation efficiently and, as a result, the pressure and temperature increase and

the collapse of the central part of the cloud halts. The premain-sequence star
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Figure 1.4 Major evolutionary stages for

single stars in different mass ranges. The

initial stellar mass is given on the left-

hand side. Time increases from left to right.

The nuclear fuel in each burning phase is

shown in bold. For example, “H-C” refers

to hydrogen burning in the core, “He-S”

denotes helium burning in a shell, and so

on. For lower-mass stars, the meaning of

the labels in square brackets is described

in the text (see also caption of Figure 1.5);

“DU” denotes the different dredge-up events.

For massive stars, the three dots indicate

that there are additional overlying burning

shells (Figure 1.7); the labels are: “CC” for

core collapse, “SN” for supernova, “NS” for

neutron star, and “BH” for black hole. The

mass ranges are approximate estimates only

and depend on the stellar metallicity. For

the evolution of stars in the mass range of

M ≥ 100M☉ , see Woosley, Heger, and Weaver

(2002), and references therein.

eventually reaches a state of hydrostatic equilibrium, while still accreting matter

from the outer parts of the cloud.

The source of energy is gravitational contraction, but the first nuclear reactions

start to occur when the central temperature reaches a few million kelvin.

Primordial deuterium fuses with hydrogen, a process that is called deuterium

burning (Section 5.1.1), and primordial lithiummay be destroyed via interactions

with protons (7Li + p → 𝛼 + 𝛼; the notation will be explained in Section 1.5.2).

At this stage, energy is transported via convection and most of the star’s matter,

including surface material, is expected to be processed through the center.

Although the nuclear energy release is very small, the reactions change the

light element abundances and thus provide valuable information on the central

temperatures.

When the temperature reaches several million kelvin, the fusion of hydrogen to

helium starts to occur and contributes an increasing fraction to the total energy

output. Ultimately, a point will be reached where hydrogen fusion in the core

becomes the only source of energy. The star is now in hydrostatic and thermal

equilibrium and has reached a location in the Hertzsprung–Russell diagram that
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is referred to as the zero age main sequence (ZAMS). Stars with different initial

masses reach the main sequence at different times. For example, the premain-

sequence evolution of a 1M☉ star lasts about 75 million years. Different stellar

masses populate different locations on the zero age main sequence, which thus

represents a line in the Hertzsprung–Russell diagram. Massive stars have higher

temperatures, initiate nuclear reactions earlier, and are therefore located on the

hotter and brighter part (upper left), while less massive stars will be found on the

cooler and fainter part (lower right).

Newly born stars are difficult to observe because they are usually surrounded by

a rotating disk of gas and dust. The solar system, for example, presumably formed

from such a disk. Examples for premain-sequence objects are the T Tauri stars.

Their lithium abundance is relatively high, indicating that the central temperature

has not yet reached large enough values to destroy lithium via nuclear reactions

involving protons.

The subsequent fate of stars depends strongly on their initial mass.We will con-

sider the different mass ranges in turn. These main divisions are not sharp but

depend somewhat on the chemical composition.

Initial Mass of 0.013M☉ ≲ M ≲ 0.08M☉

Theory predicts that objects in this mass range never reach the central temper-

atures required to sustain hydrogen fusion in their cores and are thus unable to

generate sufficient nuclear energy to provide pressure support. The search for

these very faint and cool stars provides important constraints for stellar evolution

theory. Such objects have only been discovered in the mid-1990s and are referred

to as brown dwarfs. They are predicted to be very abundant in the Galaxy and are,

therefore, candidates for the elusive (baryonic) darkmatter. Browndwarfs are fully

convective and their energy source in the early stages is provided by gravitational

contraction.

Although brown dwarfs are not true stars, they do have enoughmass to undergo

deuterium burning, which sets them apart from massive planets such as Jupiter.

This provides an additional, low-level, source of energy.They also have a relatively

high lithium abundance since temperatures remain too low to destroy this ele-

ment. The outer layers of a brown dwarf can be described by the ideal gas law.

The core, however, becomes eventually electron degenerate. As a result, the con-

traction halts and the brown dwarf slowly cools, at approximately constant radius,

by radiating its thermal energy into space. In the Hertzsprung–Russell diagram,

a brown dwarf evolves almost vertically downward and straight past the main

sequence (Figure 1.3).

A detailed description of the properties of degenerate matter is given in many

modern physics textbooks and is not repeated here. We will summarize a few

properties, however, that are also important for our discussion of other stars.

Matter becomes degenerate at relatively high densities as a result of the Pauli

exclusion principle which states that no more than two spin-1/2 particles (such

as electrons) can occupy a given quantum state simultaneously. A degenerate

gas strongly resists further compression because electrons cannot move into
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lower energy levels that are already occupied. Unlike an ideal classical gas,

whose pressure is proportional to its temperature, the pressure exerted by a

completely degenerate gas does not depend on temperature. Or, in other words,

increasing the temperature of a partially degenerate gas has only a small effect

on the total pressure. It will be seen later that, when the temperature reaches

a sufficiently high value, the degeneracy is lifted, by which we mean that the

properties of such a gas revert to those of an ideal classical gas. Furthermore,

there exists an upper limit to the pressure provided by a degenerate gas. If

gravity exceeds this pressure, the star will collapse despite the presence of the

degenerate particles. The maximum value for the mass of a star that can maintain

an equilibrium between degeneracy pressure and gravity is called the Chan-

drasekhar limit. Its precise value depends on the composition. For an electron

degenerate gas and matter characterized by two nucleons per electron (e.g., 4He,
12C, or 16O), the limiting value is ≈ 1.44M☉. Stars that enter a state of electron

degeneracy toward the end of their evolution are called white dwarfs. White

dwarfs with masses in excess of the Chandrasekhar limit are not observed in

nature.

Initial Mass of 0.08M☉ ≲ M ≲ 0.4M☉

Stars in this mass range are sometimes referred to as red dwarfs (or M dwarfs).

They are the most common type of star in the neighborhood of the Sun. For

example, the nearest star to the Sun, Proxima Centauri, is a red dwarf.These stars

have sufficient mass to fuse hydrogen to helium (hydrogen burning) in their cores

via the pp chain. Starting from the zero age main sequence, the red dwarf evolves

toward higher luminosity and increasing surface temperature (up and left). All

stars that sustain hydrostatic equilibrium by burning hydrogen in their cores

are called main-sequence stars. Theoretical models indicate that, for example, a

0.1M☉ star of solar metallicity remains on the main sequence for about 6000 Gy.

During this time the red dwarf is fully convective, which implies that its entire

hydrogen content is available as nuclear fuel. Since the age of the universe is about

14 Gy, all red dwarfs that we observe must be main-sequence stars. Eventually,

they will run out of nuclear fuel, that is, all their hydrogen will be converted to

helium. Red dwarfs do not have enough mass to produce the higher temperatures

required to fuse helium nuclei. Thus, they contract until electron degeneracy

sets in. Their volume is constant from then on since the degeneracy pressure

resists further compression. They become helium white dwarfs that cool slowly

by radiating away their thermal energy.

Initial Mass of 0.4M☉ ≲ M ≲ 2M☉

The evolution of stars in this mass range is considerably more complicated com-

pared to the previous cases.The life of the star starts on the zero agemain sequence

when hydrogen begins to fuse to helium in the core. In stars with masses below

M ≈ 1.5M☉, hydrogen fusion proceeds via the pp chains, whilemoremassive stars

burn hydrogen via the CNO cycles in their cores. It will be seen later that these

different processes affect the stellar structure since they possess very different
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temperature dependences (Section 5.1). In starswithM ≳ 1.5M☉, the strong tem-

perature dependence of the CNO cycles concentrates the energy production in

the center and, as a result, the core transports energy via convection. In stars with

M ≲ 1.5M☉, the energy generated in the core by the pp chains is transported via

radiation.

As an example, we will discuss in the following the evolution of a special

star, the Sun (see color Figure 2 on page 614). The evolutionary track is shown

schematically in Figure 1.5a. The arguments given below follow the numerical

results obtained by Sackmann, Boothroyd and Kraemer (1993). The Sun started

central hydrogen burning via the pp chains on the zero age main sequence about

4.5 Gy ago. At present, the central temperature and density amount toT ≈ 15 MK

and 𝜌 ≈ 150 g/cm3, respectively, and about one half of the original hydrogen in

the core has been consumed so far. The Sun has a very small convective region

at the surface, comprising only ≈ 2% of its entire mass. About 4.8 Gy from now,

the hydrogen in the core will be exhausted. The Sun will then be located at the

bluest and hottest point on the main sequence, called the turn-off point. Note

that in Figure 1.5a the track describing nuclear burning on the main sequence

follows an arc. This partially explains why the main sequence in observational

Hertzsprung–Russell diagrams represents a band rather than a narrow line.

Hydrogen fusion continues via the CNO cycles in a shell near the core where

hydrogen is still left. The Sun slowly leaves the main sequence at this point. The

Sun’s center begins to contract to generate energy that is no longer provided by

nuclear processes and the contraction causes further heating. As a result, the

temperature in the hydrogen burning shell, and the associated nuclear energy

generation rate, also increase. Initially, the Sun has not yet developed a fully

convective envelope and it is called a subgiant branch star (SGB). Eventually, the

envelope becomes fully convective. The extra energy output from the hydrogen

burning shell results in a dramatic surface expansion and engulfs the planet

Mercury. The Sun becomes a red giant star. While the Sun ascends the red giant

branch, the luminosity increases continuously. Maximum luminosity is achieved

on the tip of the red giant branch after about 0.6 Gy from the time when the

Sun left the main sequence. During the red giant branch phase the Sun starts

to experience significant mass loss. The contraction of the core during the red

giant phase increases the central temperature and density by factors of 10 and

104, respectively, compared to the values at hydrogen ignition. The core achieves

such high densities that the matter becomes electron degenerate. During the

red giant branch phase, the convective envelope deepens significantly until it

comprises about 75% of the Sun’s mass. This deep convective envelope dredges

up the products of hydrogen burning from the outer core. The process is referred

to as the first dredge-up.

When the temperature reaches about T ≈ 0.1 GK, the helium in the core starts

to fuse to carbon and oxygen (helium burning). In a normal gas, the extra energy

release would cause an expansion. As a result, the temperature would fall and the

nuclear energy generation rate would decrease as well.This is the usual manner by

which stars adjust to an energy increase in their interior, allowing them to stabilize.
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Figure 1.5 Schematic evolutionary tracks

of (a) the Sun, and (b) massive stars of initial

solar composition, in the Hertzsprung–Russell

diagram; the luminosity on the vertical axis

is given in units of the present solar luminos-

ity. The heavy portions define the locations

where major core nuclear burning phases

occur. Details of tracks during transitions

between major nuclear burning phases are

omitted. The meaning of the labels are: main

sequence (MS); zero age main sequence

(ZAMS); subgiant branch (SGB); red giant

branch (RGB); core helium flash (HeF); hor-

izontal branch (HB); early asymptotic giant

branch (E-AGB); thermally pulsing asymptotic

giant branch (TP-AGB); post asymptotic giant

branch (P-AGB); planetary nebula nucleus

(PNN); carbon–oxygen white dwarf (CO-WD).

Metal-poor stars in the initial mass range

of 0.4M☉ ≲ M ≲ 2M☉ appear during core

helium burning in a region marked by the

horizontal dashed line in part (a), depending

on the mass loss during the red giant branch

phase. The two dashed diagonal lines indi-

cate the instability strip. In part (b) the core

burning phases are labeled by the nuclear

fuel: hydrogen (H), helium (He), carbon (C),

and so on. The onset of carbon burning is

marked by the full circle. Note the vastly dif-

ferent luminosity scale in parts (a) and (b).
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However, in a degenerate gas the temperature increase does not affect the pres-

sure. No expansion occurs and, as a result, the temperature increases causing an

even higher energy generation rate. As will be seen in Section 5.2, helium burn-

ing is highly temperature sensitive. The sequence of events repeats itself, giving

rise to a thermonuclear runaway. It only terminates after a considerable energy is

released that lifts the degeneracy. Thus, the ignition of helium in the core results

in a violent core helium flash (HeF).

Notice that the helium flash does not represent a stellar explosion. The energy

during the thermonuclear runaway goes into lifting the electron degeneracy and

into the subsequent expansion of the core.The surface luminosity of the star does

not increase, but the opposite happens. The surface luminosity declines by two

orders of magnitude because the expansion of the core causes the surrounding

hydrogen burning shell, which has been supplying all the surface luminosity, to

cool and to generate less energy. Eventually, the Sun becomes a horizontal branch

star, quietly burning helium in the core. The temperatures in the hydrogen shell

just above the core are high enough for hydrogen to continue to burn via the CNO

cycles. The nuclear energy release in helium fusion is considerably smaller com-

pared to hydrogen fusion.Therefore, the duration of the core heliumburning stage

is considerably shorter than that of the core hydrogen burning stage. The Sun

remains on the horizontal branch for about 0.1 Gy, which is typical for all stars

in this mass range.

When the helium in the core is exhausted, the core contracts again, heats up,

and ignites the helium in a surrounding shell. The Sun now burns nuclear fuel in

two shells, helium in a shell surrounding the carbon–oxygen core, and hydrogen

in a shell surrounding the helium burning region. The two shells are separated by

an intershell region consisting mainly of helium. This stage is referred to as the

early asymptotic giant branch phase (E-AGB), because the second ascent of the

giant branch merges almost asymptotically with the first giant branch (at least

for some stellar masses). While the Sun ascends the asymptotic giant branch, the

heliumburning shell becomes thermally unstable (Schwarzschild andHärm, 1965,

see also Section 5.6.1). Energy is not generated at a steady rate, but the hydro-

gen and helium burning shells alternate as the major contributor to the overall

luminosity. The details are rather complex, but an overview can be obtained from

Figure 1.6, showing the time evolution of the stellar region at the interface of the

hydrogen envelope and the carbon-oxygen core. The hydrogen and helium burn-

ing shell is depicted as thick and thin solid black line, respectively. For about 90%

of the time, the hydrogen burning shell provides the Sun’s nuclear energy, while

the helium shell is only marginally active. Hydrogen burning adds continuously to

the mass of the helium zone, however, so that the temperature and density near

this zone rise until energy is generated by helium burning at a rate that is larger

than the rate at which it can be carried outward by radiative diffusion. As a result,

a thermonuclear runaway occurs. The sudden release of energy drives convection

within the helium-rich intershell and extinguishes the hydrogen burning shell.

The helium burning shell is now the only source of nuclear energy. Eventually,

the expansion and associated cooling quenches the helium shell flash (or thermal
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Figure 1.6 Schematic representation (mass

versus time) of a low- or intermediate-mass

(M ≲ 9 M⊙), thermally pulsing AGB star. The

figure is not to scale. Shown are: convec-

tive H envelope (dark gray); radiative 4He-12C

intershell (white); degenerate C–O core (light

gray). The thick and thin black line indicates

the H-burning shell, which is active between

thermal pulses, and the weakly active He-

burning shell, respectively. For regular short

periods of time, the barely active He shell

ignites in a thermal pulse (TP), giving rise to

a convective region (black) that extends over

the entire intershell, extinguishing in the pro-

cess the H-burning shell. When the thermal

pulse comes to an end, the convective shell

disappears and the quiescent He-burning

resumes. Important mixing episodes occur

at the end of each thermal pulse: (i) the

convective envelope reaches into the inter-

shell so that synthesized matter is trans-

ported to the stellar surface (third dredge-

up; TDU); (ii) protons diffuse from the base

of the envelope into the intershell, where

they are captured by 12C to produce (after

β-decay) 13C. Neutrons are then released by

the 13C(𝛼,n)16O reaction, producing in situ

the main s-process component. During the

subsequent thermal pulse, temperatures can

be high enough to initiate the 22Ne(𝛼,n)25Mg

neutron source (Section 5.6.1).

pulse; solid black region labeled “TP” in Figure 1.6) and the Sun contracts again.

The hydrogen burning shell reignites and ultimately takes over as the dominant

nuclear energy source, until the next thermal pulse occurs about 105 y later. The

cycle may repeat many times.This evolutionary stage is called the thermally puls-

ing asymptotic giant branch (TP-AGB). The total amount of time the Sun spends

on the AGB amounts only to about 20 My and is thus very short compared to the

main-sequence lifetime.The thermal pulses cause the Sun’s radius to vary period-

ically by a factor of 4, with the peak radius reaching close to the Earth.

The Sun suffers an episode of significant mass loss on the AGB via a strong

stellar wind. Thermal pulses are ceasing at this point as the Sun becomes a post-

asymptotic giant branch star (P-AGB), with only a fraction of its initial mass left

and the other part returned to the interstellar medium. As more hydrogen of the

envelope is ejected into space, hotter layers are uncovered and the Sun begins to

move in the Hertzsprung–Russell diagram toward higher surface temperatures
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(horizontally to the left). When the surface of the Sun becomes hot enough, the

intense ultraviolet radiation ionizes the expanding ejecta, which begin to fluo-

resce brightly as a planetary nebula (PN). Two examples for planetary nebulae,

the Dumbbell Nebula and the Cat’s Eye Nebula, are shown in color Figures 3 and 4

on pages 615 and 616, respectively. The residual core is called a planetary nebula

nucleus (PNN). Eventually, the hydrogen envelope disappears and the hydrogen

burning shell extinguishes. The luminosity decreases rapidly causing the evolu-

tionary track to turn downward and slightly to the right.The Sun will then end its

existence as a white dwarf with a mass of ≈ 0.5M☉, consisting mainly of carbon

and oxygen. It is supported by electron degeneracy pressure and cools slowly by

radiating away its thermal energy.

In the above discussion, the evolution beyond the red giant branch is rather

uncertain because of our incomplete knowledge for predicting convection and

mass loss. That these effects will occur has been demonstrated by stellar obser-

vations, but a deeper understanding is lacking at present. It is generally accepted

that each thermal pulse during the TP-AGB phase provides favorable conditions

for another dredge-up episode after the end of flash-burning in the helium shell.

The convective envelope reaches deep into the intershell region, carrying the

products of helium burning (mainly carbon, but also elements heavier than iron)

to the stellar surface. This process is referred to as the third dredge-up (labeled

“TDU” in Figure 1.6) and increases the carbon abundance in the envelope relative

to other elements, for example, oxygen. Stars for which the number ratio of car-

bon to oxygen in their atmospheres exceeds unity are called carbon stars. Many

of these have been observed and most are believed to correspond to stars in their

TP-AGB phase. As will be seen later, AGB stars are also the source of many heavy

nuclides with mass numbers beyond A = 60. Stellar models predict that these

(s-process) nuclei are also dredged up to the surface where they can be observed

in stellar atmospheres. The first direct evidence that nucleosynthesis takes place

in stars and that the products could be mixed to the surface was the observation

of radioactive technetium in certain (S-type) carbon stars (Section 1.1). For more

information on AGB stars, see Habing and Olofsson (2004).

We are now in a position to understand some other details in the observational

Hertzsprung–Russell diagrams shown in Figure 1.3. The precise location in lumi-

nosity and surface temperature of a star on the horizontal branch depends on the

chemical composition of the envelope, the size of the helium core at the time of

the helium flash, and the mass of the envelope which is influenced by the mass

loss during the preceding red giant branch phase. In a globular cluster, all the

stars start out with the same, low-metallicity, composition and their location on

the horizontal branch is mainly influenced by mass loss. The more the mass lost

from the hydrogen envelope, the hotter the layers in the star are uncovered. Stars

with the smallest amount of mass in the hydrogen envelope populate the blue part

(BHB), while stars with more hydrogen left in the envelope can be found on the

red part (RHB).The horizontal branch intersects the instability strip (which is not

related to nuclear burning). Stars located in this narrow and almost vertical band,

indicated by the two vertical dashed lines in Figure 1.5a, are unstable to radial
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pulsation and are called RR Lyrae variables. Their luminosity correlates with both

their period (several hours to ≈ 1 day) and their metallicity. Therefore, they are

important for determining the distances to globular clusters and for establishing

a cosmic distance scale (Binney and Merrifield, 1998). Increasing the metallicity

has the overall effect of making a star fainter and cooler.Therefore, stars in metal-

rich clusters or in the solar neighborhood (Figure 1.3) accumulate at the red end

(right) of the horizontal branch, fairly independent of their envelope mass. This

region is called the red clump (RC).

The metallicity argument also applies to the subdwarfs. These are main-

sequence stars of very low metallicity. They are hotter than solar-metallicity stars

at a comparable evolutionary stage and are thus located to the left of the main

sequence that is occupied by metal-rich stars.

It should also be clear now why the upper part of the main sequence in

Figure 1.3b is missing. Globular clusters are metal-poor and old, and do not form

new stars. The high-mass stars that were originally located on the upper part

of the main sequence evolved a long time ago into red giants. Only the slowly

evolving low-mass stars are left today on the main sequence. With increasing

time lower mass stars will eventually become red giants and the main sequence

will become shorter. It is interesting that the age of the cluster can be determined

from the location of the turn-off point, located at the top of the surviving portion

of the main sequence. If the distance to the cluster is known by independent

means, the luminosity of the stars at the turn-off point can be related to their

mass. Stellar evolution models can predict the main-sequence lifetime of stars

with a given mass, which must then be nearly equal to the age of the cluster.

Such investigations yield ages for the most metal-poor (and presumably oldest)

globular clusters of about 12–13 Gy, indicating that these objects formed very

early in the history of the Galaxy. This estimate also represents an important

lower limit on the age of the universe (Krauss and Chaboyer, 2003).

Initial Mass of 2M☉ ≲ M ≲ 11M☉

We can divide this mass range into several subranges. Stars with initial masses of

2M☉ ≲ M ≲ 4M☉ evolve faster than less massive stars and their tracks will look

quantitatively different from the results shown in Figure 1.5a. But otherwise they

evolve through the same stages as a solar-like star. A major difference, however,

arises for stars with M ≳ 2M☉ since their helium cores during the red giant

branch phase do not become electron degenerate. Therefore, a helium flash does

not occur but instead helium ignites quiescently in the center. Subsequently,

these stars make excursions to the left (toward higher temperatures) in the

Hertzsprung–Russell diagram and some of them are liable to pass into the

instability strip. The observational counterparts of these variable stars are called

classical Cepheids. They are important for establishing a cosmic distance scale

since their observed pulsation period is correlated with their luminosity.

Stars with initial masses of M ≳ 4M☉ experience an additional episode of

mixing. Following helium exhaustion in the core, the structural readjustment

to helium shell burning results in a strong expansion, such that the hydrogen
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burning shell is extinguished as the star begins to ascend the early asymptotic

giant branch (E-AGB). At this time, the base of the convective envelope penetrates

the dormant hydrogen shell, and the products of hydrogen burning are mixed

to the surface. This process is referred to as the second dredge-up. Afterward,

the hydrogen shell reignites and the star continues to evolve up the asymptotic

giant branch (AGB). Subsequently, during the interpulse period of the TP-AGB

phase, the base of the convective envelope reaches down to the top of the

hydrogen burning shell, where the temperature exceeds 50 MK. The ensuing

nucleosynthesis is referred to as hot bottom burning. Because the envelope is fully

convective, it is completely cycled through this burning region and the products

of hydrogen burning will be enriched at the stellar surface.

The evolution of stars in the initial mass range of 9M☉ ≲ M ≲ 11M☉ is more

complicated and less established at present. Models predict a number of impor-

tant differences compared to the evolution of lowermass stars.Wewill discuss the

evolution of a 10M☉ star with initial solar composition as an example (Ritossa,

García-Berro, and Iben, 1996). The star starts out by burning hydrogen in the

core via the CNO cycles for about 10 million years. Following the exhaustion of

hydrogen in its center, the star evolves toward the red giant branch where even-

tually the first dredge-up event occurs. Helium burning starts in the core under

nondegenerate conditions and lasts for about 270 000 years. After helium exhaus-

tion, the core contracts and heats up, and the outer layers of the star expand.

Thereafter, the hydrogen burning shell extinguishes, while helium continues to

burn in a shell surrounding a partially electron degenerate carbon–oxygen core.

Eventually, the core becomes sufficiently hot for the fusion of carbon nuclei (car-

bon burning). When carbon ignites, the star enters the super asymptotic giant

branch (SAGB). Carbon burning starts with a thermonuclear runaway (carbon

flash) and the energy generation rate from carbon fusion increases greatly. The

energy release causes the overlying layers to expand, giving rise to a reduction

in the helium shell burning energy generation rate. After a relaxation period, the

helium burning shell returns to its prior energy output. Several of these flashes

occur over the carbon burning lifetime, which lasts for about 20 000 years. When

carbon is exhausted in the center, the electron degenerate core consists mainly of

oxygen and neon. After carbon burning extinguishes, the second dredge-up event

occurs. Subsequently, the dormant hydrogen shell on top of the helium burning

shell is reactivated and a complicated interplay between these two burning shells

gives rise to thermal pulses driven by helium shell flashes. During this time, the

third dredge-up event occurs. Eventually, the hydrogen-rich surface is removed by

a strong stellar wind and the star becomes the central object of a planetary nebula.

It ends its existence as an oxygen–neon white dwarf with a mass of ≈ 1.2M☉.

Initial Mass ofM ≳ 11M☉

The evolution of stars in this mass range is in many ways fundamentally different

compared to our earlier discussion. Schematic evolutionary tracks for 13M☉,

15M☉, 20M☉, and 25M☉ stars are shown in Figure 1.5b.The case of a 25M☉ star

with initial solar composition will be discussed in the following as an example
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(Chieffi, Limongi, and Straniero, 1998; Limongi, Straniero, and Chieffi, 2000;

Woosley, Heger, and Weaver, 2002). The total life of such a massive star is

relatively short and amounts only to ≈ 7 My. The star spends 90% of this time on

the main-sequence burning hydrogen to helium via the CNO cycles in the core.

When the hydrogen in the center is exhausted, hydrogen burning continues in

a shell. The core contracts and heats up until helium is ignited. This new source

of nuclear energy heats the overlying hydrogen shell and the outer layers of the

star expand greatly. The star becomes a supergiant. These stars show up in the

Hertzsprung–Russell diagram at the highest observed luminosities. Examples are

Rigel (blue supergiant) and Betelgeuse (red supergiant) in the constellation Orion.

Core helium burning lasts for about 800 000 years and some of the heavy

nuclides with masses of A > 60 are synthesized during this stage via neutron

captures (s-process; Section 5.6.1). When helium is exhausted in the center,

helium burning continues in a shell located beneath the hydrogen burning shell.

Eventually, carbon burning starts in the core. These burning stages have already

been discussed above.

Stars with initial masses exceeding ≈ 11M☉ are capable of igniting successive

burning stages in their cores using the ashes of the previous core burning stage

as fuel. Three distinct burning stages follow carbon burning. They are referred

to as neon burning, oxygen burning, and silicon burning, and will be discussed in

detail in Section 5.3.There is a fundamental difference between the initial and the

advanced burning stages in the manner by which the nuclear energy generated

in the stellar interior is transformed and radiated from the surface. For hydrogen

and helium burning, nuclear energy is almost exclusively converted to light. Dur-

ing the advanced burning stages energy is almost entirely radiated as neutrino–

antineutrino pairs and the light radiated from the star’s surface represents only a

very small fraction of the total energy release. Since the neutrino losses increase

dramatically during the advanced burning stages and because the nuclear burning

lifetime scales inversely with the total luminosity, the evolution of the star rapidly

accelerates. For example, silicon burning will last for only about one day. Since the

advanced burning stages transpire very quickly, the envelope has insufficient time

to react to the structural changes in the stellar interior. Thus, from carbon burn-

ing onward, the star will no longer move in the Hertzsprung–Russell diagram, but

remains at the position indicated by the solid circle in Figure 1.5b. Furthermore,

since the star spendsmost of its life burning either hydrogen or helium in the core,

these are typically the only phases that we can observe.

The approximate structure of the massive star after silicon has been exhausted

in the core is shown in Figure 1.7 (left side).The star consists now of several layers

of different composition that are separated by thin nuclear burning shells. The

details of the nucleosynthesis are complicated and will be discussed in Chapter 5.

It is sufficient tomention at this point that the heaviest andmost stable nuclei (i.e.,

the iron peak nuclei; Section 1.3) are found in the core. Also, the luminosity during

the red giant phase is so large that the star undergoes a significant mass loss. The

effect is more pronounced for stars withM ≳ 30–35M☉ that lose eventually most

of their hydrogen envelope. The observational counterparts of such stars are the
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2000), shortly before and after core col-

lapse (not to scale). Only the main con-

stituents in each layer are shown. Minor

constituents, among them important γ-ray

emitters, are set in thin rectangles. Vari-

ous processes are set in thick rectangles:

weak s-process component (s); p-process

(p); α-rich freeze-out (𝛼rf ); ν-process (𝜈).

(Left) Snapshot of pre-supernova structure.

Nuclear burning takes place in thin regions

(burning shells) at the interface of differ-

ent compositional layers, where each burn-

ing shell migrated outward to the position

indicated by the black lines. The composi-

tions result from burning stages indicated

at the bottom (subscripts C and S stand for

core and shell burning, respectively). The

diagonally arranged numbers indicate the

interior mass (in solar masses) for each burn-

ing shell. (Right) Explosive nucleosynthe-

sis resulting from the passage of the shock

wave through overlying layers, giving rise to

explosive burning of silicon (Six), oxygen (Ox )

and neon-carbon (Nex/Cx). Strictly speaking,

this classification depends on the tempera-

ture range, not on the available fuel. Nev-

ertheless, the names indicate approximately

which compositional layers of the pre-

supernova will usually be affected. Outside

the outer dashed line, the composition is lit-

tle altered by the shock. The inner dashed

line indicates the approximate boundary of

the part of the star that is ejected (mass cut).

This model is sometimes referred to as the

onion shell structure of a massive star.

hot and massive Wolf–Rayet stars, which have been observed to lose mass at a

rate of ≈ 10−5M☉ per year at stellar wind speeds of ≈ 2000 km/s. An image of a

Wolf–Rayet star is shown in color Figure 5 on page 617.

The electron degenerate stellar core has at this point no other sources of nuclear

energy to its disposal and grows inmass as the overlying burning shells contribute

more nuclear ashes. When the mass of the core reaches the Chandrasekhar limit

(≈ 1.4M☉), the electron degeneracy pressure is unable to counteract gravity, and

the core collapses freely at about a quarter of the speed of light. When the den-

sity reaches values on the order of the nuclear density (𝜌 ≈ 1014 g/cm3), the nuclei

and free nucleons begin to feel the short-range nuclear force, which is repulsive
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at very short distances. The collapsing inner core reaches high inward velocities

and overshoots the nuclear density.The nuclear potential acts as a stiff spring that

stores energy in the compressive phase until it rebounds. The rebounding part

of the core encounters infalling matter and thus gives rise to an outward moving

prompt shock wave. The hot and dense inner core has become a proto-neutron

star with a mass of ≈ 1.5M☉. While the shock wave moves outward through the

outer core region, it loses energy by photodisintegrating the iron peak nuclei. Fur-

thermore, energy is removed from the shock wave by the emission of neutrinos. It

takes about 1 s after core collapse, and about 10 ms after the core has bounced, for

the shock wave to reach the outer edge of the core. At this time, the shock wave

has lost all of its kinetic energy and it stalls. How exactly the shock is revived and

how it will ultimately propagate through the stellar layers beyond the iron core and

disrupt the star in a core-collapse supernova explosion is among the most elusive

problems in nuclear astrophysics. We will discuss this issue in Section 5.4.

Once the shock wave is revived, it moves through the star and heats matter

to high temperatures for a time period of seconds. Subsequently, the hot and

dense matter expands nearly adiabatically. As a result, the star experiences sev-

eral episodes of explosive nuclear burning. The silicon (28Si) and oxygen (16O)

in the first layers the shock wave encounters are quickly converted to iron peak

and intermediate-mass nuclei at high temperatures (≈ 3–5 GK). As will be shown

later, the nuclide 56
28
Ni
28
is among the most abundant products originating from

these layers. Some other important nuclides are synthesized by the shock in other

layers, among them the 26Al observed in the interstellar medium (Section 1.7.5

and color Figure 12 on page 624). The character of the explosive nuclear burning

depends, among other things, on the location of the shock and the expansion time

scale. During the explosion nuclides that have been synthesized before and after

the core collapse are ejected and are thenmixed into the interstellar medium. Sev-

eral nuclear processes that occur during the explosion are indicated in Figure 1.7

(right side) and will be discussed in more detail in Chapter 5.

Stellar model simulations support the idea that supernovae of type II and type

Ib/Ic are the observational counterparts of the core collapse in massive stars. The

different supernova types are classified observationally according to their opti-

cal spectra. Spectra of type II supernovae contain hydrogen lines, while those

of type I supernovae do not. Type I supernovae whose spectra show absorption

caused by the presence of silicon are referred to as type Ia supernovae; other-

wise they are classified as type Ib or Ic supernovae (the latter distinction is based

on a helium line feature in the spectrum). Type II supernovae tend to occur in

the arms of spiral galaxies, but not in early-type galaxies (elliptical galaxies) that

lack gas and show very low levels (if any) of star formation. Type Ib or Ic super-

novae also seem to occur in spiral arms. On the other hand, type Ia supernovae

show no such preference. Since the spiral arms contain many massive, and thus

young, stars and elliptical galaxies only contain old stellar populations (with ages

of ≈ 1010 y), the observations suggest that massive stars are the progenitors of

type II and type Ib/Ic supernovae, but not of type Ia supernovae. Stars with initial

masses ofM ≲ 20–30M☉ explode as a type II supernova and form a neutron star
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as a remnant. Stars with masses above this range (Wolf-Rayet stars), or less mas-

sive stars in binaries, that have lost their hydrogen envelopes are thought to be the

progenitors of type Ib and Ic supernovae. It is not clear at present if the latter explo-

sions leave a neutron star or a black hole behind as a remnant, mainly because

of our incomplete knowledge of post-main sequence mass loss and the details

of fall-back of matter onto the central object. As will become clear in Chapter 5,

core-collapse supernovae are of outstanding importance for three reasons: (i) they

are predicted to be among the most prolific sources of element synthesis in the

Galaxy; (ii) they are the sites where neutron stars are born; and (iii) they are a

likely source of shock waves that are believed to accelerate Galactic cosmic rays

(Section 5.7.2).

We still lack self-consistent models of core-collapse supernovae. Therefore,

many current stellar models induce the shock wave artificially by depositing a

given amount of energy somewhere near the iron core. The models are con-

strained by observation. In particular, observations of supernova 1987A, which

exploded in the Large Magellanic Cloud in 1987, were of outstanding importance

in this regard (see color Figure 6 on page 618). Since it was located so close

to us, the event could be studied in greater detail than any other supernova.

Observations of supernova 1987A and other type II supernova light curves

estimate explosion energies of ≈ (1–2) × 1044 J and, therefore, strongly constrain

the magnitude of artificial energy deposition in the models. The location of

artificial energy deposition is also constrained by observation: it can neither

be located inside the iron core or otherwise neutron-rich iron group nuclides

are overproduced, nor can it be located beyond the oxygen burning shell or the

resulting neutron star mass, after fall-back of matter, will be too large. In most

simulations, the mass cut, that is, the boundary between ejected and fall-back

matter, is located in the silicon layer (inner dashed line on right side of Figure 1.7).

Current stellar models of core-collapse supernovae agree with observation in

many respects. For example, a burst of neutrinos had long been predicted by the-

ory and was detected for supernova 1987A (Section 1.4.1). Furthermore, current

models reproduce the amount of the ejected radioactive 56Ni that, after first decay-

ing to 56Co and then to stable 56Fe, gives rise to the tail in the light curves of

core-collapse supernovae. A famous type II supernova remnant, the Crab Nebula,

is shown in color Figure 7 on page 619.

The supernova rate in our Galaxy amounts to ≈ 3 events per century, with an

estimated systematic uncertainty of a factor of two (Li et al., 2011b). For a volume-

limited sample, within a radius of about 70 Mpc in the local universe, the observed

fractions of supernovae of type II, Ia, and Ib/c are 57%, 24%, and 19%, respectively

(Li et al., 2011a). Type Ia supernovae will be discussed below.

1.4.4

Binary Stars

Perhaps as many as one half of all stars are members of binary star systems. If the

stars are members of a close binary system, then they will significantly influence
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Roche lobe

Inner Lagrangian point

Figure 1.8 Binary star system. Each star is

surrounded by a hypothetical surface, called

the Roche lobe, that marks its gravitational

domain. The intersection of the equatorial

plane with the Roche lobes is shown as

a dashed curve. The location where the

two Roche lobes touch is called the inner

Lagrangian point.

each other’s evolution. In a close binary system, the separation may range from a

few times the radii of the stars to a situation where both stars share a common

envelope (contact binaries). Consider the binary star system shown in Figure 1.8.

Each star is surrounded by a hypothetical surface marking its gravitational

domain. This surface is referred to as the Roche lobe and its intersection with

the equatorial plane is shown as a dashed figure-eight curve. The location where

the two Roche lobes touch, that is, where the effects of gravity and rotation

cancel each other, is called the inner Lagrangian point. When one of the stars

evolves off the main sequence and becomes a red giant, it may fill its Roche

lobe. Material is then free to flow from that star through the inner Lagrangian

point onto its companion. Many different kinds of stars may be members of

close binary systems and the transfer of mass from one star to another gives

rise to very interesting phenomena (Iben, 1991). In the following we will focus

on binary systems that contain a compact object, either a white dwarf or a

neutron star.

Type Ia Supernovae

Type Ia supernovae are the brightest phenomena powered by nuclear energy

release in the universe and they sometimes outshine their host galaxies. The

observed mean velocities of the ejecta are of order 10 000 km/s, corresponding

to kinetic energies of ≈ 1044 J. An image of the type Ia supernova 1994D is

shown in color Figure 9 on page 621. Recall that type Ia supernovae occur in

both early-type galaxies (elliptical galaxies) and spiral galaxies. The former show

very low levels (if any) of star formation and all supernovae observed so far in

elliptical galaxies are of type Ia. In spiral galaxies, the type Ia rate is positively

correlated with the star formation rate. Therefore, type Ia supernovae are likely

associated with older stellar populations and with stars of moderate mass. Their

light curves are powered by the decay of radioactive 56Ni to 56Co, followed by the

decay of 56Co to stable 56Fe. The inferred amount of 56Ni synthesized in type Ia

supernovae is ≈ 0.6M☉ per event, significantly higher than the amount observed

in type II supernovae (Section 5.4.4).
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We already mentioned that type Ia supernovae are classified according to their

spectra near maximum light: they lack hydrogen and helium lines, but contain

an absorption feature caused by the presence of Si. During the peak phase, other

intermediate-mass elements (O, Mg, S, Ca) are also observed in their spectra,

together with contributions from Fe and Co. With progressing time, the relative

contribution of the iron-peak elements increases. About two weeks after peak

luminosity, the spectra are dominated by Fe, although Si and Ca lines are still

present. The observations indicate that the thermonuclear explosion gave rise to

the synthesis of intermediate-mass elements in the outer layers, which become

visible early during the peak phase, and to the synthesis of iron-peak elements in

the deeper layers, which become visible a few weeks later.

Type Ia supernovae are fascinating objects in their own right, but a deeper

understanding of the explosion is crucial both for Galactic chemical evolution and

for cosmology. About 70% of observed type Ia supernovae (Li et al., 2011a) show

a remarkably small spread in peak brightness. Supernova 1994D, for example,

belongs to this class of normal type Ia supernovae. When the light curves of all

type Ia supernovae are compared, including both normal and peculiar events, it is

found that the peak luminosities correlate with the post-peak decline rate of the

light curves (Phillips, 1993). This correlation can be used to compensate for the

peak luminosity spread and, therefore, the intrinsic brightness can be determined

to within a narrow range. By measuring their apparent luminosity it becomes

hence possible to estimate their distance. Since type Ia supernovae are so bright,

they can be observed across billions of light years. For these reasons, type Ia

supernovae are used as cosmological distance indicators. By recording both their

apparent luminosity and their redshifts, observations of very distant type Ia

supernovae provide a measure for the expansion history of the universe. The

surprising finding that the expansion is accelerating, driven by the elusive dark

energy (Riess et al., 1998; Perlmutter et al., 1999), is an observation of paramount

importance for cosmology.

The observed variation in peak luminosity among the majority of type Ia super-

novae can be interpreted as a consequence of a single parameter, that is, the dif-

ferent amounts of 56Ni synthesized during the thermonuclear explosion (Arnett,

1982). The more 56Ni is produced, the larger the peak brightness. At the same

time, expansion velocities are larger and the light curve becomes broader since

the opacity increases with a higher concentration of iron-peak elements.

With an increasing number of type Ia supernovae discovered, it is now clear

that they represent a class of some diversity and that their properties cannot be

fully explained by a single parameter. For example, there is a spread in the expan-

sion velocities at the photospheres even for similarly bright events. Furthermore,

some peculiar type Ia supernovae of exceptionally high or extremely low lumi-

nosity do not obey the Phillips relation.These observations indicate that different

type Ia supernovae may be caused by different progenitor systems. Furthermore,

the Phillips relation is based on a sample of low redshift supernovae. It is concern-

ing that systematic differences in the properties of local and high-redshift type

Ia supernovae may exist, which could lead to erroneous cosmological distances.
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The profound cosmological implications strongly motivate the identification and

understanding of type Ia supernova progenitors.

Many different stellarmodels have been proposed to explain type Ia supernovae,

butwe are still lacking a satisfactory understanding. A common feature of all viable

progenitor systems is a thermonuclear explosion of a carbon-oxygen white dwarf,

which is initiated when the pressure and temperature become sufficient to fuse

carbon (Hoyle and Fowler, 1960). As a result, a significant fraction of the initial

carbon and oxygen is burned to 56Ni, with a predicted nuclear energy release

of ≈ 1044 J. About two thirds of this energy is invested in the kinetic energy of

the expanding debris, in agreement with observation. The remaining fraction is

responsible for disrupting the white dwarf at high velocity within a time scale of

seconds (thermonuclear supernovae). An example is Tycho’s supernova remnant

(SN 1572), shown in color Figure 10 on page 622, where no compact remnant has

been found, supporting the idea that the supernova was of type Ia.The conjecture

of a primary white dwarf is also supported by observational constraints (Bloom

et al., 2012) obtained for the normal type Ia supernova SN 2011fe that was dis-

covered in the Pinwheel galaxy (M 101).

All of these models include a companion (secondary) star that supplies mass

to the (primary) white dwarf. When the Chandrasekhar limit (≈ 1.4M☉) is

approached, carbon ignites under degenerate conditions. A thermonuclear

runaway ensues because the temperature increase from the nuclear burning does

not create an increase in pressure, and the temperature continues to increase

until the degeneracy is lifted. At this point, the energy generation rate is so

large that an explosion occurs. Stellar model simulations have also shown that

the white dwarf must be composed mainly of 12C and 16O, instead of 16O and
20Ne (see Figure 1.4). In the latter case, the temperature during mass accretion

toward the Chandrasekhar limit never becomes high enough to ignite oxygen

or neon, and the result is most likely a core collapse instead of a thermonuclear

supernova.

The nature of the secondary star is a matter of dispute. In the proposed

single-degenerate scenario, the secondary is a main-sequence star, a red giant,

or a helium star, whereas the double-degenerate scenario involves the merger of

two white dwarfs as a result of angular momentum loss caused by gravitational

wave emission. Both scenarios have difficulties in reproducing key observational

features of type Ia supernovae. In the single-degenerate model, the companion

star will survive the explosion. On the other hand, no remnant is left behind in

the double-degenerate model. One way to distinguish between these models

is to search for surviving companion stars near the centers of type Ia super-

nova remnants. However, the suggestion that Tycho G (a solar-like star) is the

likely companion for SN 1572 (Ruiz-Lapuente et al., 2004) is controversial at

present.

Another important unresolved issue is related to the propagation of the ther-

monuclear burning front in the interior of the primary white dwarf. Two burning

modes can be distinguished. One possibility is a detonation in which the nuclear

flame propagates as a supersonic front. In this case, the flame compresses the
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material and increases the temperature to the point of ignition.The energy release

from the ignitedmaterial behind the flame supports its propagation. Another pos-

sibility is a deflagration in which the nuclear burning proceeds subsonically. Here,

the heat released from nuclear burning is conducted by electrons and ignites the

next layer, causing the white dwarf to expand. The observation of intermediate-

mass elements in the spectra of type Ia supernovae rules out a pure detonation

regime since it would prevent the expansion of the layers ahead of the burning

front, giving most likely rise to the synthesis of iron-peak elements only. These

two burning modes are not exclusive and a transition from one mode to another

may occur. For example, a burning front could propagate via deflagration, causing

the white dwarf to pre-expand, and may then transition by some, yet not under-

stood, mechanism to a detonation (delayed detonation).The outcome depends on

the density, temperature, chemical composition, and the velocity profiles at the

time of ignition. Related to this issue is the question of where precisely, near or off

center and at how many locations, the ignition occurs.

We will discuss the nucleosynthesis in type Ia supernovae in more detail in

Section 5.5.1. More information on the progenitors of type Ia supernovae, includ-

ing a discussion of sub-Chandrasekharmodels andwhite dwarf collisions thatmay

explain peculiar events, can be found in the reviews byWang and Han (2012) and

Höflich et al. (2013).

Classical Novae

Classical novae are stellar explosions that occur in close binary systems. In this

case, hydrogen-richmatter is transferred via Roche lobe overflow from a low-mass

main-sequence star to the surface of a compact white dwarf.The transferred mat-

ter does not fall directly onto the surface but is accumulated in an accretion disk

surrounding the white dwarf. Typical accretion rates amount to≈ 10−10–10−9M☉
per year. A fraction of this matter spirals inward and accumulates on the white

dwarf surface, where it is heated and compressed by the strong surface gravity.

At some point, the bottom layer becomes electron degenerate. Hydrogen starts

to fuse to helium (via the pp chains) during the accretion phase and the tem-

perature increases gradually. The electron degeneracy prevents an expansion of

the envelope and eventually a thermonuclear runaway occurs near the base of

the accreted layers. At this stage, the nuclear burning is dominated by explosive

hydrogen burning via the (hot) CNO cycles. Both the compressional heating and

the energy release from the nuclear burning heat the accreted material until an

explosion occurs.

The classical nova rate in the Galaxy is about ≈ 35 per year and thus they occur

more frequently than supernovae (Section 1.4.3). Contrary to type Ia supernovae,

which disrupt the white dwarf, all classical novae are expected to recur with peri-

ods of≈ 104–105 years.The luminosity increase during the outburst amounts to a

factor of ≈ 104. A classical nova typically ejects ≈ 10−5–10−4M☉ of material, with

mean ejection velocities of ≈ 103 km/s. Also, there are other types of novae, such

as dwarf novae or nova-like variables. However, these are not related to thermonu-

clear burning.
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Optical, infrared, and ultraviolet spectra of classical novae reveal the presence

of many elements in the expanding nova shells that are strongly overabundant

compared to solar system values. For example, the observed overabundances

of carbon and oxygen in all classical novae demonstrate that at some time

during the evolution of the outburst the accreted material must have been

mixed to a certain degree with matter from the white dwarf. This dredge-up

of material gives rise to a more energetic explosion (by increasing the number

of CNO catalyst nuclei; Section 5.5.2). The observation of an overabundance

of neon in some classical novae showed that these outbursts do not involve a

carbon–oxygen white dwarf, but a more massive white dwarf of oxygen–neon

composition. The latter objects result from the evolution of intermediate mass

stars with initial masses of 9M☉ ≲ M ≲ 11M☉ (Figure 1.4). The presence of large

amounts of matter from the white dwarf core in the ejecta may imply that the

white dwarf in a classical nova system is losing mass as a result of subsequent

outbursts. Thus, these objects are unlikely to become progenitors of type Ia

supernovae. Other observed overabundances, for example, of nitrogen, silicon,

or sulfur, are the result of nuclear processing during the explosive burning

of hydrogen. An image of Nova Cygni 1992 is shown in color Figure 11 on

page 623.

Stellar model calculations indicate that the peak phase of explosive nuclear

burning in classical novae lasts typically for several hundred seconds.

The characteristics of the outburst depend on the white dwarf mass and

luminosity, the mass accretion rate, and the chemical composition for both the

accreted and the white dwarf material. For example, it has been demonstrated

that the lower the mass accretion rate, the larger the amount of accreted mass

before the thermonuclear runaway is initiated. A more massive accreted layer,

in turn, gives rise to a higher pressure in the bottom layers and hence a more

violent explosion. On the other hand, if a too large accretion rate is assumed,

no thermonuclear runaway is initiated. Simulations also indicate that classical

nova outbursts on the surface of the heavier oxygen–neon white dwarfs achieve

higher peak temperatures than those exploding on carbon–oxygen cores. For

more information on classical novae, see José, Hernanz, and Iliadis (2006) and

Starrfield, Iliadis, and Hix (2006).

Type I X-Ray Bursts

A number of close binary star systems involve a neutron star as a compact object.

A neutron star has a mass of ≈ 1.4M☉, a radius of about 10–15 km, and a density

of order 1014 g/cm3.These binary star systems belong to a class of objects that are

called X-ray binaries. The accretion of matter from the companion on the surface

of the neutron star gives rise to a large gravitational energy release. As a result, the

temperatures near the neutron star surface are high (≈ 107 K) and the persistent

thermal emission occurs at X-ray energies.

In high-mass X-ray binaries, the companion is a massive (≳ 5M☉) population I

star, while the neutron star has a strong magnetic field. The matter is accreted

at relatively high rates and is funneled along the magnetic field lines onto the



32 1 Aspects of Nuclear Physics and Astrophysics

magnetic poles. This creates a hot spot of X-ray emission and, if the rotational

axis of the neutron star is inclined with respect to the magnetic axis, this gives

rise to an X-ray pulsar. Typical rotation periods range from 0.1 s to a fraction

of an hour. The rotational periods for some X-ray pulsars have been observed

to decrease, indicating that the neutron stars spin up as a result of accretion of

matter.

In low-mass X-ray binaries, the companion is a lowmass (≲ 1.5M☉) population

II star and matter is transferred to a weakly magnetized neutron star via Roche

lobe overflow. Many of these systems produce, apart from the persistent X-ray

emission, bursts in the X-ray intensity (Lewin, van Paradijs, and Taam, 1993). For

a rare variety, called type II X-ray bursts, the bursts occur in rapid succession and

are separated by a few minutes. The profile of each burst rises and falls abruptly.

They are most likely associated with a sudden increase in the mass transfer rate

caused by instabilities in the accretion disk.

The large majority of bursts belong to the class of type I X-ray bursts. In this

case, the X-ray luminosity typically increases by an order of magnitude. They are

believed to be of thermonuclear origin, unlike the X-ray binary varieties discussed

above. When hydrogen- and helium-rich matter from the low-mass companion

is first accreted in a disk and then falls onto the surface of the neutron star, the

temperatures and densities are high enough to fuse hydrogen continuously to

helium via the (hot) CNO cycles. The accreted or synthesized helium, however, is

not fusing yet but sinks deeper into the neutron star atmosphere. Eventually the

helium is ignited via the triple-𝛼 reaction under electron degenerate conditions

and a thermonuclear runaway occurs. The helium flash triggers the explosive

burning of the outer region consisting of a mixture of hydrogen and helium.

This is just one possible scenario. In other models the ignition occurs in pure

helium or in mixed hydrogen–helium accreted material. The details of the

nucleosynthesis depend on the temperatures and densities achieved in the

various burning layers. Calculations show that in the innermost and hottest

layers elements up to – and perhaps beyond – the iron peak are synthesized.

After the termination of a burst, a new shell of matter is accreted and the cycle

repeats.

The above model explains the basic features of type I X-ray bursts. A burst lasts

typically for< 1min and repeats after several hours to days.The luminosity profile

shows a rapid rise within ≈ 1–10 s, caused by the sudden nuclear energy release,

and a slower decline of order ≈ 5–100 s, reflecting the cooling of the neutron star

surface. Some bursts show millisecond oscillations of the X-ray flux. These have

been suggested to arise froma surfacewave in the nuclear burning layer or perhaps

from anisotropies in the nuclear burning caused by a spreading hot spot on the

surface of a rapidly spinning neutron star.

Stellar models of type I X-ray bursts are sensitive to a number of parameters

and assumptions, such as themass accretion rate, rotation, the number of ignition

points, the propagation of the burning front across the neutron star surface, and

the composition of the accreted matter.
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It is unlikely for any significant amount of accreted and processed matter to

escape the large gravitational potential of the neutron star.Therefore, type I X-ray

bursts are probably not important contributors to the chemical evolution of the

Galaxy. They are important, however, for probing the properties of neutron stars,

such as the mass, radius, and the composition. For more information, see Parikh

et al. (2013a), and references therein.

1.5

Masses, Binding Energies, Nuclear Reactions, and Related Topics

1.5.1

Nuclear Mass and Binding Energy

Themost fundamental property of the atomic nucleus is its mass. Early massmea-

surements showed that the total nuclear mass,mnuc, is less than the sum ofmasses

of the constituent nucleons. We may write

mnuc = Zmp + Nmn − Δm (1.1)

According to the Einstein relationship between mass and energy, the mass defect

Δm is equivalent to an energy of ΔE = Δm ⋅ c2. The quantity ΔE is referred to as
nuclear binding energy. It is defined as the energy released in assembling a given

nucleus from its constituent nucleons, or equivalently, the energy required to sep-

arate a given nucleus into its constituent nucleons. We may express the binding

energy as

B(Z,N) =
(
Zmp + Nmn −mnuc

)
c2 (1.2)

A plot of experimental binding energies per nucleon, B(Z,N)∕A, for the most

tightly bound nuclide at each mass number A is shown in Figure 1.9a. An

expanded region is displayed in part (b), where the round symbols have the

same meaning as in the part (a). Most of these nuclides, which are stable

in the laboratory, have binding energies between 7 and 9 MeV per nucleon.

Nuclides with mass numbers in the range of A = 50–65 have the largest bind-

ing energies per nucleon. They are the iron peak species, which we already

encountered in Section 1.3. It appears that nature favors the synthesis of the

most tightly bound and most stable nuclides, as will be explained in detail

in later chapters. The most tightly bound nuclides of all are 62Ni, 58Fe, and
56Fe with binding energies per nucleon of B(Z,N)∕A = 8794.546 ± 0.008 keV,

8792.239 ± 0.008 keV, and 8790.342 ± 0.008 keV, respectively (Wang et al., 2012).

Lighter or heavier nuclei are less tightly bound. The square symbols in the

bottom part refer to N = Z nuclides above A = 40, which are all radioactive. The

most tightly bound N = Z species is 56Ni, with a binding energy per nucleon

of B(Z,N)∕A = 8642.767 ± 0.010 keV. It follows that nuclear processes liberate

energy as long as the binding energy per nucleon of the final products exceeds
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Figure 1.9 Experimental binding energy

per nucleon, B(Z,N)∕A, versus mass num-

ber, A. (a) Value of B(Z,N)∕A for the most

tightly bound nuclide at a given mass num-

ber A. (b) Expanded section; the round sym-

bols have the same meaning as in part (a),

that is, they correspond to the most tightly

bound nuclide of a given mass number;

the nuclide with the largest binding energy

per nucleon is 62Ni (B∕A = 8.795 MeV); the

square symbols show B(Z,N)∕A values for

N = Z nuclides above A = 40, which are

all radioactive; the N = Z species with the

largest binding energy per nucleon is 56Ni

(B∕A = 8.643 MeV). Data from Wang et al.

(2012).

the binding energy per nucleon of the initial constituents. Consequently, nuclear

energy can be liberated by the fusion of nuclei lighter than iron, or by the

fission of nuclei heavier than iron. For example, if a star consists initially of

pure hydrogen (1H), an energy of ≈ 7 MeV per nucleon can be liberated by fusing

hydrogen to helium (4He), or almost 9 MeV per nucleon is liberated by fusing

hydrogen to 56Fe.
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Example 1.2

The binding energies per nucleon of deuterium (2H or d) and helium (4He or 𝛼)

are given by B(d)∕A = 1.112 MeV and B(𝛼)∕A = 7.074 MeV. Calculate the energy

released when two deuterium nuclei are combined to form one 4He nucleus.

First, we calculate the binding energies of deuterium and 4He:

B(d) =
B(d)

A
A = (1.112MeV) ⋅ 2 = 2.224MeV

B(𝛼) =
B(𝛼)

A
A = (7.074MeV) ⋅ 4 = 28.296MeV

By combining two deuterium nuclei to one 4He nucleus, the total energy release

amounts to

(28.296MeV) − (2.224MeV) − (2.224MeV) = 23.85MeV

corresponding to a value of 5.96 MeV per nucleon.

1.5.2

Energetics of Nuclear Reactions

A nuclear interaction may be written symbolically as

0 + 1→ 2 + 3 or 0(1, 2)3 (1.3)

where 0 and 1 denote two colliding nuclei before the interaction, while 2 and 3

denote the interaction products. Most nuclear interactions of astrophysical inter-

est involve just two species before and after the interaction. If species 0 and 1 are

identical to species 2 and 3, then the interaction is called elastic or inelastic scat-

tering. Otherwise, the above notation refers to a nuclear reaction. Photons may

also be involved in the interaction. If species 2 is a photon, then the interaction is

called radiative capture reaction. If species 1 is a photon, then we are considering

a photodisintegration reaction. All of these interactions will be discussed in later

chapters.

Figure 1.10 shows schematically the energetics of nuclear reactions and can be

used to illustrate a number of relationships that will be employed frequently in

the following chapters. The vertical direction represents energy. Consider Figure

1.10a, showing a reaction 0 + 1→ 2 + 3, where all species involved in the interac-
tion are particles with rest mass. The rest masses of 0 and 1 (before the reaction)

and of 2 and 3 (after the reaction) are indicated by horizontal solid lines. The

total relativistic energy in a nuclear reaction must be conserved. Thus, one may

write

m0c
2 +m1c

2 + E0 + E1 = m2c
2 +m3c

2 + E2 + E3 or

Q01→23 ≡ m0c
2 +m1c

2 −m2c
2 −m3c

2 = E2 + E3 − E0 − E1 (1.4)
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0 + 1

3

Eγ

E01

Q = (m0 + m1 − m3)c2

m3c2

(m0 + m1)c2

(b)

0 + 1

2 + 3

E01

Q = (m0 + m1 − m2 − m3)c2

(m2 + m3)c2

(m0 + m1)c2

E23

(a)

Figure 1.10 Energy level diagrams to illus-

trate the energetics of nuclear reactions. The

vertical direction represents an energy scale.

Part (a) corresponds to a situation where all

species participating in the reaction are par-

ticles with rest mass. In part (b) one of the

species is a photon.

where Ei are kinetic energies and mi are rest masses. The difference in masses

before and after the reaction, or the difference in kinetic energies after and before

the reaction, is equal to the energy release and is referred to as the reaction

Q-value. If Q is positive, the reaction releases energy and is called exothermic.

Otherwise the reaction consumes energy and is called endothermic. Apart

from a few exceptions, the most important nuclear reactions in stars are

exothermic (Q > 0). Equation (1.4) is applicable in any reference frame. The

difference between center-of-mass and laboratory reference frame is discussed in

Appendix C.The quantities E01 and E23 in Figure 1.10a represent the total kinetic

energies in the center-of-mass system before and after the reaction, respectively.

It is apparent that the center-of-mass kinetic energies and the Q-value are

related by

E23 = E01 + Q01→23 (1.5)

Figure 1.10b shows a radiative capture reaction 0 + 1 → 𝛾 + 3. In this case we find

accordingly

m0c
2 +m1c

2 + E0 + E1 = m3c
2 + E3 + E𝛾 or

Q01→𝛾3 ≡ m0c
2 +m1c

2 −m3c
2 = E3 + E𝛾 − E0 − E1 (1.6)

Center-of-mass kinetic energies and the Q-value are now related by

E𝛾3 = E01 + Q01→𝛾3 (1.7)

whereE𝛾3 denotes the sumof the energy of the emitted photon (E𝛾 ) and the center-

of-mass kinetic energy of the recoil nucleus 3. The latter contribution is usually

very small so that one can frequently set E𝛾3 ≈ E𝛾 (see Appendix C).

The reaction Q-value for a radiative capture reaction is equal to the energy

released when nuclei 0 and 1 combine to form a composite nucleus 3. If one

would add this very same amount of energy to nucleus 3, then it becomes

energetically possible for nucleus 3 to separate into the fragments 0 and 1. Thus,
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the particle separation energy of nucleus 3 is equal to the Q-value of the reaction

0 + 1→ 𝛾 + 3, that is, S3→01 = Q01→𝛾3. Separation energies will be used fre-

quently in the following chapters. Their values depend on the nuclear properties

of species 0, 1, and 3. For example, suppose we start out with a stable nucleus in

Figure 1.1 and remove one neutron at a time. As a result, we move in the chart

of the nuclides to the left toward increasingly proton-rich nuclei. The farther

we move away from the group of stable nuclei, the larger the proton–neutron

imbalance becomes, and the less energy is required to remove a proton from a

given nucleus. In other words, the proton separation energy Sp decreases. After a

certain number of neutrons have been removed, a nuclide is eventually reached

for which Sp becomes negative. Such nuclides are called proton unstable since

they decay via the emission of a proton. The line in the chart of the nuclides with

Sp = 0 (on the proton-rich side) is referred to as proton dripline. Similarly, if we

remove from a given stable nucleus protons instead of neutrons, then we would

move in the chart of the nuclides downward. The neutron–proton imbalance

increases while the neutron separation energy Sn decreases with each removal of

a proton. The line with Sn = 0 (on the neutron-rich side) defines now the neutron

dripline. Particle driplines play an important role in certain stellar explosions

(Chapter 5).

1.5.3

Atomic Mass and Mass Excess

Direct measurements of nuclear masses are complicated by the presence of the

atomic electrons. Atomic masses, on the other hand, can be measured with very

high precision. For this reason, experimental mass evaluations tabulate atomic

rather than nuclear masses. These quantities are related by

matom(A,Z) = mnuc(A,Z) + Zme − Be(Z) (1.8)

where me and Be denote the electron mass and the electron binding energy in

the atom, respectively. Nuclear reactions conserve the total charge.Therefore, one

may replace nuclear by atomic masses since the same number of electron rest

masses is added on both sides of a reaction equation. An error is introduced by

this approximation because of the difference in the electron binding energies in

the atom.The electron binding energy can be approximated by (Lunney, Pearson,

andThibault, 2003)

Be(Z) = 14.4381Z
2.39 + 1.55468 × 10−6 Z5.35 (eV) (1.9)

This contribution is smaller than the nuclear mass differences and is often

neglected. In the following we will be using atomic rather than nuclear masses,

unless noted otherwise.

Frequently, a quantity called atomic mass excess (in units of energy) is intro-

duced, which is defined by

M.E. ≡ (matom − Amu)c
2 (1.10)
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where the integer A is the mass number. The quantity mu denotes the (unified)

atomic mass unit, u, defined as one-twelfth of the mass of the neutral 12C atom.

Numerically, one finds muc
2 = 931.494 MeV (Appendix E). The Q-value for a

reaction 0 + 1→ 2 + 3 can be expressed in terms of the mass excess as

Q = m0c
2 +m1c

2 −m2c
2 −m3c

2

= (m0c
2 +m1c

2 −m2c
2 −m3c

2) + (A2muc
2 + A3muc

2 − A0muc
2 − A1muc

2)

= (M.E.)0 + (M.E.)1 − (M.E.)2 − (M.E.)3 (1.11)

Using atomic masses or atomic mass excesses gives precisely the same result

when calculating reaction Q-values. If positrons are involved in a reaction, then

the Q-value obtained using atomic masses (or atomic mass excesses) includes the

annihilation energy 2mec
2 = 1022 keV of the positron with another electron from

the environment, as will be shown below. In numerical expressions, we will fre-

quently use the quantity

Mi =
mi

mu

(1.12)

called relative atomic mass of species i, which is given in atomic mass units, u.

The relative atomic mass for a given species is numerically close to its (integer)

mass number, but for accurate work the former quantity should be used. An eval-

uation of atomic masses is presented in Wang et al. (2012). Mass measurement

techniques and various theoretical mass models are reviewed in Lunney, Pearson,

andThibault (2003).

Experimental values for atomic mass excesses, binding energies, and relative

atomicmasses for the light nuclides are listed in Table 1.1. Note that (M.E.)12C ≡ 0
by definition. The following example illustrates their use for calculating

Q-values.

Example 1.3

Calculate the Q-values for the reactions (i) 17O + p → 𝛼+ 14N and (ii) p + p →
e+ + 𝜈+ d using the information listed in Table 1.1. (The symbols e+ and 𝜈 denote

a positron and a neutrino, respectively.)

(i) For the 17O(p,𝛼)14N Reaction, we find from Eq. (1.11)

Q = (M.E.)17O + (M.E.)1H − (M.E.)14N − (M.E.)4He

= [(−808.76) + (7288.97) − (2863.42) − (2424.92)] keV = 1191.87 keV

Exactly the same result is obtained if atomicmasses are used. (ii) For the p(p,e+𝜈)d

reaction one obtains

Q = (m1H +m1H −m2H)c
2 = (M.E.)1H + (M.E.)1H − (M.E.)2H

= 2 × (7288.97 keV) − (13135.72 keV) = 1442.22 keV
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Table 1.1 Experimental values of the atomic mass excess (M.E.), binding energy per nuc-

leon (B∕A), and relative atomic mass (M) for light nuclides in the A ≤ 20 mass region.

A Element M.E. (keV) B∕A (keV) M (u)

1 n 8071.3171 0.0 1.0086649158

H 7288.97059 0.0 1.00782503223

2 H 13135.72174 1112.283 2.01410177812

3 H 14949.8061 2827.266 3.0160492779

He 14931.2155 2572.681 3.0160293201

4 He 2424.91561 7073.915 4.00260325413

6 Li 14086.8789 5332.331 6.0151228874

7 Li 14907.105 5606.439 7.016003437

Be 15769.00 5371.548 7.01692872

8 Li 20945.80 5159.712 8.02248625

Be 4941.67 7062.435 8.00530510

B 22921.6 4717.15 8.0246073

9 Li 24954.90 5037.768 9.02679019

Be 11348.45 6462.668 9.01218307

10 Be 12607.49 6497.630 10.01353470

B 12050.7 6475.07 10.0129369

11 Be 20177.17 5952.540 11.02166108

B 8667.9 6927.72 11.0093054

C 10650.3 6676.37 11.0114336

12 B 13369.4 6631.22 12.0143527

C 0.0 7680.144 12.0000000

13 B 16562.1 6496.41 13.0177802

C 3125.00875 7469.849 13.00335483507

N 5345.48 7238.863 13.00573861

14 C 3019.893 7520.319 14.003241988

N 2863.41669 7475.614 14.00307400443

O 8007.46 7052.301 14.00859636

15 C 9873.1 7100.17 15.0105993

N 101.4387 7699.460 15.0001088989

O 2855.6 7463.69 15.0030656

16 N 5683.9 7373.80 16.0061019

O −4737.00137 7976.206 15.99491461957

17 N 7870.0 7286.2 17.008449

O −808.7636 7750.728 16.9991317565

F 1951.70 7542.328 17.00209524

18 N 13113.0 7038.6 18.014078

O −782.8156 7767.097 17.9991596129

F 873.1 7631.638 18.0009373

19 O 3332.9 7566.49 19.0035780

F −1487.4443 7779.018 18.9984031627

Ne 1752.05 7567.342 19.00188091

20 F −17.463 7720.134 19.99998125

Ne −7041.9306 8032.240 19.9924401762

Na 6850.6 7298.50 20.0073544

Errors are not listed.

Source: Wang et al. (2012).
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This value includes the annihilation energy 2mec
2 = 1022 keV of the positronwith

another electron from the environment, as can be seen from

Q = [m1H +m1H −m2H]c
2 = [(mp +me) + (mp +me) − (md +me)]c

2

= [mp +mp −md +me]c
2 = [(mp +mp −md −me) + 2me]c

2

The symbols 1H, 2H and p, d in the above expression denote atomic and nuclear

masses, respectively.

1.5.4

Number Abundance, Mass Fraction, and Mole Fraction

The number density of nuclei i in a stellar plasma, Ni, is equal to the total number

of species i per unit volume. Avogadro’s number NA is defined as the number of

atoms of species i that makesMi gram, that is,NA = Mi∕mi = 6.022 × 10
23 mol−1.

Themass density is then given by 𝜌 = Nimi = NiMi∕NA if only species i is present,

or by 𝜌 = (1∕NA)
∑

i NiMi for a mixture of species. We write∑
i

NiMi

𝜌NA

=
N1M1
𝜌NA

+
N2M2
𝜌NA

+
N3M3
𝜌NA

+ · · ·

= X1 + X2 + X3 + · · · =
∑
i

Xi = 1

(1.13)

where the quantity

Xi ≡ NiMi

𝜌NA

(1.14)

represents the fraction of the mass that is bound in species i and, therefore, is

called themass fraction. A related quantity is themole fraction, defined by

Yi ≡ Xi

Mi

=
Ni

𝜌NA

(1.15)

In a stellar plasma, the number density Ni will change if nuclear transmutations

take place. But it will also change as a result of variations in themass density caused

by compression or expansion of the stellar gas. In situations where the mass den-

sity of the stellar plasma varies, it is of advantage to express abundances in terms of

the quantity Yi instead ofNi. In a simple expansion ofmatter without nuclear reac-

tions or mixing, the former quantity remains constant, whereas the latter quantity

is proportional to the mass density 𝜌.

Strictly speaking, the mass density 𝜌 is not a conserved quantity even if no

compression or expansion of the stellar gas occurs. The reason is that nuclear

transmutations transform a fraction of the nuclear mass into energy or leptons

(e.g., electrons or positrons) and vice versa. To avoid this difficulty, the density

is sometimes defined as 𝜌A = (1∕NA)
∑

i NiAi in terms of the number of nucle-

ons (i.e., the mass number Ai) instead of the relative atomic mass Mi, since the

number of nucleons is always conserved in a nuclear transmutation. The mass
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fraction of Eq. (1.14) should in principle be replaced by the nucleon fraction Xi =

NiAi∕(𝜌ANA). However, the difference between mass density and nucleon density,

or between mass fraction and nucleon fraction, is very small and the distinction

is usually not important numerically. To avoid confusion, we will be using in this

bookmass densities andmass fractions. Formore information on abundances see,

e.g., Arnett (1996).

Example 1.4

The mass fractions of 1H and 4He at the time of the Sun’s birth are equal to 0.71

and 0.27, respectively. Calculate the ratio of the corresponding number densities.

From Eq. (1.14) and Table 1.1, we find

N(1H)

N(4He)
=

𝜌NAX(
1H)

M(1H)

𝜌NAX(
4He)

M(4He)

=
M(4He)

M(1H)

X(1H)

X(4He)
=
(4.0026 u)

(1.0078 u)

0.71

0.27
= 10.4

1.5.5

Decay Constant, Mean Lifetime, and Half-Life

The time evolution of the number density N (or of the absolute number of nuclei

 ) of an unstable nuclide is given by the differential equation(
dN

dt

)
= −𝜆N (1.16)

The quantity 𝜆 represents the probability of decay per nucleus per time. Since it is

constant for a given nuclide under specific conditions (constant temperature and

density), it is referred to as decay constant. Integration of the above expression

immediately yields the radioactive decay law for the number density of undecayed

nuclei remaining after a time t,

N = N0e
−𝜆t (1.17)

where N0 is the initial number density at t = 0. The time it takes for the number

density N to fall to one-half of the initial abundance, N0∕2 = N0e
−𝜆T1∕2 , is called

the half-life T1∕2, with

T1∕2 =
ln 2

𝜆
=
0.69315

𝜆
(1.18)

The time it takes for N to fall to 1∕e = 0.36788 of the initial abundance, N0∕e =

N0e
−𝜆𝜏 , is called themean lifetime 𝜏 , with

𝜏 =
1

𝜆
= 1.4427T1∕2 (1.19)

If a given nuclide can undergo different competing decays (e.g., γ- and β-decay, or

different γ-ray transitions), then the total decay probability in Eqs. (1.16)–(1.19) is
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given by the sum of the decay probabilities for the individual processes. Hence,

𝜆 =
∑
i

𝜆i or
1

𝜏
=

∑
i

1

𝜏i
(1.20)

where the quantities 𝜆i and 𝜏i are called partial decay constant and partial life-

time, respectively.The product of the absolute number of nuclei, , and the decay
constant determines the number of decays per unit time and is referred to as the

activity, A ≡ 𝜆 = −d∕dt. Common units of the activity are the curie (1 Ci

= 3.7 × 1010 decays per second) and the becquerel (1 Bq= 1 decay per second).

It must be emphasized that Eqs. (1.16)–(1.20) apply to any nuclear decay, such

as β-decay, α-particle decay, γ-ray decay of excited levels, and the destruction of

nuclei via nuclear reactions in a stellar plasma, as will be shown later.

1.6

Nuclear Shell Model

A detailed treatment of the nuclear shell model is beyond the scope of this book.

Basic discussions are presented in many introductory nuclear physics texts (e.g.,

Krane, 1988). For a more detailed account, the reader is referred to DeShalit and

Talmi (1963) or Brussaard and Glaudemans (1977). In the following we will sum-

marize some of the important assumptions and predictions of themodel. Our aim

is to better understand how nuclear properties, such as binding energies, spins,

and parities, can be explained from the underlying configurations of the nucleons.

These considerations are also important because a number of nuclear structure

properties that are mentioned in this text, for example, reduced γ-ray transition

strengths, weak interaction matrix elements, and spectroscopic factors, are fre-

quently computed using the shell model.

The atomic shell model has been enormously successful in describing the prop-

erties of atoms. In the case of an atom, the heavy nucleus represents a center for

the Coulomb field in which the light electrons move independently in first-order

approximation. The spherical Coulomb potential is given by VC = Ze2∕r, with Z

the atomic number, e the electron charge, and r the distance between nucleus

and electron. Solving the Schrödinger equation for this system yields the electron

orbits, or shells, that are characterized by various quantum numbers. In general,

several of these (sub-)shells are almost degenerate in energy and together they

formmajor shells.The rules for building up the atomic electron configuration fol-

low immediately from the Pauli exclusion principle, stating that nomore than two

spin-1/2 particles can occupy a given quantum state simultaneously.The shells are

then filled up with electrons in order of increasing energy.We thus obtain an inert

core of filled shells and somenumber of valence electrons that primarily determine

the atomic properties. Atoms with all states of the major shells occupied exhibit a

high stability against removal or addition of an electron.These are the inert gases.

The application of a similar model to the atomic nucleus encounters a number

of complications. First, the nuclear interaction is very different from the Coulomb
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interaction and, moreover, the nature of the nucleon–nucleon interaction is not

precisely known. Second, there are two kinds of elementary particles present in the

nucleus (protons and neutrons) as opposed to the atomic case (electrons). Third,

there is no heavy center of force for the nucleons. Despite these complications,

the nuclear shell model has been highly successful in describing many properties

of nuclei. Its basic assumption is that the interaction of each nucleon with all the

other protons and neutrons in the nucleus is well approximated by some aver-

age potential V (r). A single nucleon moves independently in this potential and

can be described by a single-particle state of discrete energy and constant angular

momentum.

The independent motion of the nucleons can be understood qualitatively in the

following manner. According to the Pauli exclusion principle, no more than two

protons or neutrons can exist in a given quantum state. The single-particle lev-

els are filled with nucleons up to some level, depending on how many nucleons

are present. Consider now a single nucleon, occupying some intermediate single-

particle level, moving through the nucleus. The nuclear force has a short range

and, therefore, we expect that the nuclear potential will strongly fluctuate. The

nucleon may collide with other protons or neutrons, but it cannot gain or lose

energy easily since the neighboring levels are already occupied and thus cannot

accept an additional nucleon. It may gain a large amount of energy and hence

move to a higher lying, unoccupied single-particle level. But such collisions with

a significant energy transfer are less likely to occur. Consequently, the motion of

the nucleon will often be fairly smooth.

1.6.1

Closed Shells and Magic Numbers

We will start from the assumption that the interaction between one nucleon

and all the other nucleons in the nucleus can be approximated by a suitable

single-particle potential. In the simplest case, it consists of a central potential

(e.g., a harmonic oscillator potential or a Woods–Saxon potential) and a strong

spin–orbit coupling term. The solutions of the Schrödinger equation for such

a potential are bound single-particle states characterized by the values of the

radial quantum number n, orbital angular momentum quantum number 𝓁, and
total angular momentum quantum number j (the latter is obtained from the

coupling j⃗ = 𝓁 + s⃗, where s denotes the intrinsic spin equal to 1/2 for protons

or neutrons; see Appendix B). In particular, the energies of the single-particle

states depend explicitly on the values of n, 𝓁, and j. The single-particle states are
energetically clustered in groups and thus reveal a shell structure. Each state of

given j can be occupied by a maximum number of (2j + 1) identical nucleons,

corresponding to the number of magnetic substates (mj = −j,−j + 1,… , j − 1, j),

and thus represents a subshell. Several different subshells lying close in energy can

be grouped together and form a major shell. Furthermore, each single-particle

state possesses a definite parity (Appendix A), given by 𝜋 = (−1)𝓁 . The shells are

filled up according to the Pauli exclusion principle.



44 1 Aspects of Nuclear Physics and Astrophysics

Thesingle-particle levels for either protons or neutrons are shown in Figure 1.11

where the horizontal direction represents an energy scale. The left-hand side,

part (a), displays the single-particle energies of a harmonic oscillator potential as

a function of the oscillator quantum number N = 2(n − 1) + 𝓁, corresponding to
the total number of oscillator quanta excited. Part (b) shows the single-particle

energies of a Woods–Saxon potential. This potential is more realistic but math-

ematically less tractable. It is defined by V (r) = V0[1 + e(r−R0)∕a]−1, where V0,

R0, and a denote the potential depth, the potential radius, and the diffuseness,

respectively. In part (a), each single-particle state of givenN consists in general of

states with different values of 𝓁. These have the same energies and are thus called
degenerate. The degeneracy does not occur for the more realistic Woods–Saxon

potential, that is, states with different values of 𝓁 possess different energies. It
is customary to use the spectroscopic notation s, p, d, f, g, … for states with

orbital angular momenta of 𝓁 = 0, 1, 2, 3, 4, …, respectively. If an additional
spin–orbit term is added to the potential, then each state of given 𝓁 value (except
𝓁 = 0) can have a total angular momentum of either j = 𝓁 + 1∕2 or j = 𝓁 − 1∕2
(Appendix B). Since 𝓁 is an integer, j must be of odd half-integer value. Part
(c) shows how the spin–orbit term splits each state with 𝓁 > 0 into two levels.
The number of identical particles (protons or neutrons) that can occupy a state

of given j amounts to (2j + 1) and is presented in part (d). Part (e) displays the

single-particle states in spectroscopic notation as n𝓁j. The quantum number n

corresponds to the order in which the various states of given 𝓁 and j appear in
energy. Thus, 1s1∕2 is the first 𝓁 = 0, j = 1∕2 state, 2s1∕2 is the second, and so

on. The parities of the single-particle levels are shown in part (f ), and part (g)

indicates the subtotal of the number of identical nucleons that can fill all the

states up to a given level.

Notice that the spin–orbit coupling term is so strong that it changes the ener-

gies of the single-particle states significantly. For example, consider the N = 3

and 4 oscillator shells. The g-state (𝓁 = 4) in part (b) splits into two levels, 1g7∕2
and 1g9∕2. Since the spin–orbit coupling is strong the 1g9∕2 state is depressed and

appears to be close in energy to the 2p1∕2, 1f5∕2, and 2p3∕2 states that originate

from the N = 3 oscillator shell. There is now an energy gap at a subtotal nucleon

(or occupation) number of 50 and, consequently, this group of states forms a

major shell. Similar arguments apply to other groups of levels. It can be seen

from Figure 1.11 that gaps (or major shell closures) in the single-particle energy

spectrum appear at occupation numbers of 2, 8, 20, 28, 50, 82, and 126. These are

referred to asmagic numbers.

Nuclei with filled major shells of protons or neutrons exhibit an energetically

favorable configuration, resulting in an extra stability compared to neighboring

nuclei with only partly filled shells. The magic numbers manifest themselves in

many observed nuclear properties, such as masses, particle separation energies,

nuclear charge radii, electric quadrupole moments, and so on. For example,

Figure 1.12 shows the difference of the measured ground-state atomic mass

excess from its mean value that is calculated using a smooth semiempirical mass

formula. At the locations of magic neutron numbers, the atomic mass excess is
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Figure 1.11 Approximate sequence of

single-particle states for identical nucle-

ons (protons or neutrons). The magic num-

bers (given in boxes on the right-hand side)

appear at the energy gaps and correspond

to the cumulative number of nucleons up

to that state. The level pattern represents

qualitative features only. This holds specifi-

cally for states with N ≥ 4, where the level

order differs for protons (which are subject

to the Coulomb interaction) and neutrons.

(Reprinted with permission from Brussaard

and Glaudemans (1977). Copyright by P. J.

Brussaard.)
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Figure 1.12 Difference between experimental ground-state atomic mass excess (Audi et al.,

2003) and the mass excess predicted by the spherical macroscopic part of the finite-range

droplet (FRDM) mass formula (Möller et al., 1995) versus neutron number.

smaller, resulting in a smaller atomic mass and a larger binding energy according

to Eqs. (1.2) and (1.10). Another example will be given later in connection

with neutron capture cross sections (Figure 5.67). Such observations provide

unambiguous evidence for the shell structure of nuclei. As will become apparent

in Section 5.6, the synthesis of the heavy elements is strongly influenced by the

magic neutron numbers of N = 50, 82, and 126. It has to be emphasized again

that the magic numbers as they are observed in nature can be reproduced only

if a strong spin–orbit coupling term is introduced into the independent-particle

potential.

1.6.2

Nuclear Structure and Nucleon Configuration

Theshellmodel not only predicts the properties of closed shell nuclei, but also pre-

dicts the properties of nuclei with partly filled shells.The nuclear properties follow

directly from the configuration of the nucleons: (i) the binding energy or mass of

the nucleus is determined by the single-particle energies (caused by the indepen-

dentmotion of the nucleons in an average potential) and by themutual interaction

of the valence nucleons (i.e., those located outside a closed major shell); (ii) the

total angular momentum of the nucleus (or the nuclear spin) is obtained by cou-

pling the angular momenta of the independent single-particle states according to

the quantummechanical rules for vector addition (Appendix B); and (iii) the total

parity of the nucleus is determined by the product of the parities for all nucleons.

Consider first a nucleus with completely filled subshells. In each subshell j all

magnetic substatesmj are occupied and thus, the sum of jz over all nucleons in the

subshell must be zero. In other words, the nucleons in a completely filled subshell
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must couple to an angular momentum of zero. Furthermore, since (2j + 1) is an

even number, the total parity of the nucleons amounts to 𝜋 = +1. Indeed, the

observed spin and parity of nuclei with closed subshells (or closed major shells)

amount to J𝜋 = 0+ (e.g., 4
2
He
2
, 12
6
C
6
, 14
6
C
8
, 14
8
O
6
, 16
8
O
8
, 28
14
Si
14
, 32
16
S
16
, or 40

20
Ca
20
).

A closed-shell nucleus can only be excited by promoting at least one nucleon to

a higher lying, unoccupied, subshell. This is consistent with the observation that

the first excited states of such nuclei are usually found at relatively high excitation

energies. Nuclei with partly filled shells may have excited states that result from

a recoupling of the angular momenta only. This explains why in such cases the

observed excitation energies are significantly smaller.

By considering Figure 1.11, we can easily explain the quantum numbers for the

ground states of nuclei when a single nucleon is located outside a closed subshell.

In this case, the ground-state spin and parity is given by the lowest single-particle

state available to the valence nucleon. For example, we find J𝜋 = 1∕2− for 13
6
C
7
,

J𝜋 = 5∕2+ for 17
8
O
9
, J𝜋 = 1∕2+ for 29

14
Si
15
, or J𝜋 = 3∕2+ for 33

16
S
17
. A single valence

nucleon outside a closed subshell behaves in this respect the same as a single hole

in an otherwise filled subshell. The ground-state spin and parity, for example, of
27
14
Si
13
amounts to J𝜋 = 5∕2+ because it has a single neutron hole in the 1d5∕2 shell.

The situation is more complicated when the subshells are only partly filled. We

observe experimentally that the ground states of all doubly even nuclei possess a

spin and parity of J𝜋 = 0+. For example, this applies to 26
12
Mg
14
although neither

the protons nor the neutrons completely fill the subshells. This means that it is

energetically favorable for pairs of protons or neutrons to couple to a total spin

and parity of J𝜋
pair

= 0+. This pairing effect also influences the proton and neutron

separation energies of neighboring nuclei, as will be seen in Section 5.6. The shell

model can then be used to predict the ground-state spins and parities for odd-A

nuclei. For example, consider 23
10
Ne
13
. All the protons couple pairwise to quantum

numbers of 0+, as do 12 of the neutrons. The lowest available level for the odd

neutron is the 1d5∕2 state (Figure 1.11) and thus the ground-state spin of
23Ne

amounts to J𝜋 = 5∕2+. These simplistic considerations reproduce many of the

observed ground-state spins, but fail in some cases. According to the above argu-

ments, one would expect a ground-state spin and parity of J𝜋 = 5∕2+ for 23
11
Na
12
,

but instead we observe J𝜋 = 3∕2+. The discrepancy is caused by the complicated

interplay of many nucleons in an unfilled shell so that an even number of protons

or neutrons does not always couple to a total angular momentum of J = 0 for the

ground state. This is especially true for excited nuclear levels.

In all but the simplest situations, the nucleon configuration must be taken into

account explicitly. Further complications arise since a given nuclear level may be

described by a mixed configuration, that is, by different nucleon configurations

that couple to the same value of J𝜋 . In such cases, large-scale shell model calcu-

lations must be performed with numerical computer codes. The shell model has

been enormously successful in explaining the structure of nuclei. It is frequently

used in nuclear astrophysics to calculate nuclear quantities that have not yet been

measured in the laboratory. Reduced 𝛾-ray transition strengths (Section 1.7.2)

or weak interaction transition strengths (Section 1.8.3), for instance, depend



48 1 Aspects of Nuclear Physics and Astrophysics

on nuclear matrix elements that connect an initial (decaying) state with a final

state. The matrix elements can be calculated numerically with the shell model in

a straightforward manner once an appropriate form for the transition operator

(for the electromagnetic or weak interaction) is assumed. Another important

quantity in nuclear astrophysics is the spectroscopic factor. It will be explained

in Section 2.5.7 how this property can be used for estimating an unknown cross

section of a nuclear reaction A + a → B. The spectroscopic factor is defined in

terms of the overlap integral between the final state wave function of B and the

initial state wave function of A + a. It does not depend on a transition operator,

but only on a wave function overlap, and thus can be calculated rather reliably for

many nuclei.

1.7

Nuclear Excited States and Electromagnetic Transitions

1.7.1

Energy, Angular Momentum, and Parity

Every nucleus exhibits excited states. They can be populated by many different

means, for example, nuclear reactions, β-decays, thermal excitations (see below),

inelastic electron or particle scattering, and Coulomb excitation. Each nuclear

level is characterized by its excitation energy Ex, defined as the binding energy

difference between the level in question and the ground state of the nucleus.

For the ground state we have, as per definition, Ex = 0. In the laboratory, each

excited level of energy Ei can make a transition to a lower lying state of energy

Ef via three different processes that are all induced by the electromagnetic

interaction: (i) γ-ray emission, (ii) internal conversion, and (iii) internal pair

formation. Internal conversion refers to a process where an excited nucleus

de-excites by transferring its energy directly, that is, in a single step, to an orbital

electron. Internal pair formation denotes the de-excitation of a nucleus by

creating an electron–positron pair, in which case the de-excitation energy must

exceed twice the value of the electron rest energy (2mec
2). Although the three

processes can in principle compete with each other, the emission of a γ-ray is by

far the most important one for nuclear astrophysics and will be discussed in the

following.

In a γ-ray transition between two nuclear levels, the energy of the emitted pho-

ton is given by

E𝛾 = Ei − Ef − ΔErec (1.21)

where the origin of the recoil shift ΔErec is described in Appendix C.1 We are

mainly concerned here with γ-ray energies in the range of 100 keV to 15 MeV. For

such energies, the recoil shift is very small and can usually be neglected. Hence, we

may use in most cases E𝛾 ≈ Ei − Ef . This assumes that the excited nucleus decays

from rest. If the decaying level is populated via a nuclear reaction, then another
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correction (the Doppler shift) must also be taken into account (Appendix C.1).

In any case, the emitted γ-rays will exhibit discrete energies. If Ef corresponds to

the ground state, then no further emission of γ-rays is possible. Otherwise, de-

excitation of the nucleus by emission of one or more photons before reaching the

ground state is likely to occur.

The emitted (or absorbed) electromagnetic radiation can be classified accord-

ing to the angular momentum Lℏ carried by each photon, and according to

its parity (Appendix B). The angular momentum carried away by the photon

determines the multipolarity of the radiation. A value of L for the angular

momentum corresponds to 2L-pole radiation with its characteristic angular

distribution for the emitted intensity. For example, L = 1 and L = 2 correspond

to dipole (21) and quadrupole (22) radiation, respectively. Two identical radiation

patterns for a given value of L may correspond to different waves, electric

2L-pole radiation and magnetic 2L-pole radiation, which differ through their

parity. For example, E2 and M1 correspond to electric quadrupole radiation

and magnetic dipole radiation, respectively. In a γ-ray transition between two

nuclear levels the total angular momentum and parity of the system (nucleus plus

electromagnetic field) are conserved. The conservation laws give rise to certain

selection rules that must be fulfilled for an emission (or absorption) of radiation

of given character to occur. The quantum mechanical rules are explained in

Appendix B.

1.7.2

Transition Probabilities

A detailed discussion of the quantum theory for the interaction of nuclei with

electromagnetic radiation is beyond the scope of this book. We will instead sum-

marize themost important steps in the derivation of the transition probability. For

more information, see Blatt and Weisskopf (1952).

The decay constant (i.e., the probability per unit time) for the emission of elec-

tromagnetic radiation of a given character (e.g., E1 or M2) in a transition con-

necting two given nuclear levels can be calculated using perturbation theory. The

result is (Blatt and Weisskopf, 1952)

𝜆(𝜔L) =
8𝜋(L + 1)

ℏL[(2L + 1)!!]2

(
E𝛾

ℏc

)2L+1
B(𝜔L) (1.22)

withE𝛾 and L the energy andmultipolarity of the radiation, respectively;𝜔 denotes

either electric (E) or magnetic (M) radiation and the double factorial is defined as

(2L + 1)!! ≡ 1 ⋅ 3 ⋅ 5 ⋅… ⋅ (2L + 1). The quantity B(𝜔L) is called the reduced tran-

sition probability. It contains the wave functions of the initial and final nuclear

states, and the multipole operator, that is, the operator responsible for chang-

ing the initial to the final state while simultaneously creating a photon of proper

energy, multipolarity, and character. Reduced transition probabilities can be cal-

culated using nuclear structuremodels, for example, the shell model (Section 1.6).

In the simplest case, one may assume that the nucleus consists of an inert core
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plus a single nucleon, that the γ-ray transition is caused by this nucleon changing

from one shell-model state to another, and that the radial wave functions of the

initial and final states are constant over the nuclear interior and vanish outside

the nucleus. With these assumptions, one obtains theWeisskopf estimates for the

γ-ray transition probabilities, which are given below for the lowest – and as will

be seen, most important – multipolarities:

𝜆W (E1)ℏ = 6.8 × 10
−2A2∕3E3

𝛾
, 𝜆W (M1)ℏ = 2.1 × 10−2E3

𝛾
(1.23)

𝜆W (E2)ℏ = 4.9 × 10
−8A4∕3E5

𝛾
, 𝜆W (M2)ℏ = 1.5 × 10−8A2∕3E5

𝛾
(1.24)

𝜆W (E3)ℏ = 2.3 × 10
−14A2E7

𝛾
, 𝜆W (M3)ℏ = 6.8 × 10−15A4∕3E7

𝛾
(1.25)

In these numerical expressions, A denotes the mass number of the decaying

nucleus, the photon energy E𝛾 is in units ofmega electron volts, and theWeisskopf

estimates are in units of electron volts. It will be shown later that the product 𝜆ℏ

is equal to a γ-ray partial width.

TheWeisskopf estimates for the γ-ray decay probability are shown in Figure 1.13

versus γ-ray energy for emitted radiations of different multipolarity and character.

It is apparent that the quantity 𝜆W rises strongly with increasing γ-ray energy.

We will be using in later chapters the relation Γ = 𝜆ℏ ∼ E2L+1
𝛾
, as predicted

by the Weisskopf estimates, when describing the energy dependence of γ-ray

partial widths. Also, the decay probability depends strongly on the multipolarity

L and the character 𝜔 of the radiation. Furthermore, according to the selection

rules (Appendix B), electric and magnetic radiations of the same multipolarity

cannot be emitted together in a transition between two given nuclear levels. For a
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Figure 1.13 Weisskopf estimate of the γ-

ray decay probability for pure electric (E) and

magnetic (M) multipole radiations emitted

in transitions between two nuclear levels of

energy difference E𝛾 . The γ-ray partial width

ΓW is equal to the product 𝜆Wℏ. The curves

are calculated for A = 20 and a nuclear

radius of R = 1.20A1/3 fm = 3.3 fm.
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transition connecting two levels of opposite parities, we find from Figure 1.13 the

inequalities

𝜆W (E1)≫ 𝜆W (M2)≫ 𝜆W (E3)≫ · · · (1.26)

In this case, the lowest multipole permitted by the selection rules usually

dominates. In particular, if E1 radiation is allowed it will dominate the transition

strength in the vast majority of astrophysical applications. For a transition

connecting two levels of the same parity, one obtains

𝜆W (M1)≫ 𝜆W (E2)≫ 𝜆W (M3)≫ · · · (1.27)

However, experimentally measured γ-ray transition strengths do not support the

conclusion that M1 transitions are always faster than E2 transitions if both radia-

tions are allowed by the selection rules. The decay strengths may deviate strongly

from the Weisskopf estimates since the latter are obtained using rather crude

assumptions. It turns out that for many transitions the observed decay constants

are several orders of magnitude smaller than the theoretically predicted value of

𝜆W , indicating a poor overlap in the wave functions of the initial and final nuclear

levels. On the other hand, for E2 transitions it is found that the observed decay

probability frequently exceeds the Weisskopf estimate by large factors. This indi-

cates thatmore than one nucleonmust be taking part in the transition and that the

excitation energy of the decaying level is stored in the collective in-phase motion

of several nucleons.

The Weisskopf estimates are very useful since they provide a standard against

which to compare observed transition strengths. The latter are frequently quoted

inWeisskopf units, defined as

M2
W
(𝜔L) ≡ 𝜆(𝜔L)

𝜆W (𝜔L)
=

Γ(𝜔L)

ΓW (𝜔L)
or 𝜆(𝜔L) = M2

W
(𝜔L)W.u. (1.28)

This definition removes the strong energy dependence of the decay probability.

Several thousand observed γ-ray transitions were analyzed in this manner and

their transition strengths in Weisskopf units have been presented separately

according to the multipolarity and character of the radiation (Endt, 1993, and

references therein). The resulting distributions of transition strengths extend

from some small value ofM2
W
(𝜔L), which is strongly influenced by the sensitivity

of the detection apparatus, to the largest observed transition probability. The

latter value defines for each combination of 𝜔L a recommended upper limit

(RUL). For the mass region A = 5–44, the following values have been reported

(Endt, 1993)

RUL(E1) = 0.5W.u., RUL(M1) = 10W.u.

RUL(E2) = 100W.u., RUL(M2) = 5W.u.

RUL(E3) = 50W.u., RUL(M3) = 10W.u.

These values are important for estimating the maximum expected γ-ray decay

probability for an unobserved transition (Problem 1.5). It is tempting to estimate
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average decay strengths based on the centroids of the observed transition strength

distributions (see Figure 2 in Endt, 1993). However, one has to be very careful

since the “averages” (as well as the “lower limits”) depend on the γ-ray detection

limit and thus may decrease with an improvement in the sensitivity of the detec-

tion equipment.

1.7.3

Branching Ratio andMixing Ratio

So far we discussed γ-ray transitions of specific multipolarity L and character 𝜔.

In practice, however, a given initial state may decay to a number of different final

states. Furthermore, each transition connecting two given states may proceed

via a mixture of radiations according to the selection rules. These complications

can be described by introducing two new quantities, the branching ratio and

the mixing ratio. In the following we will express these quantities in terms

of the γ-ray decay probability in units of energy, Γ = 𝜆ℏ, also called the γ-ray

partial width. Consider Figure 1.14 showing the γ-ray decay of an initial excited

level i. The total γ-ray width of the initial state can be expressed in terms of

partial γ-ray widths that each correspond to a transition to a specific final

state j as

Γtot =
∑
j

Γj (1.29)

Assuming that the initial state decays only by γ-ray emission, the γ-ray branching

ratio is defined by

Bj ≡ Γj

Γtot
× 100% (1.30)

Ex(0)

Ex(1)

Ex(2)

Ex(i )

J𝜋(2)

J𝜋(1)

J𝜋(0)

J𝜋(i )

B1 B2B0

𝛿0 𝛿1 𝛿2

Figure 1.14 Energy level diagram show-

ing the γ-ray decay of an initial state i to the

ground state (0) and to two excited states

(1, 2). The branching ratio Bj represents the

relative intensity of a particular decay branch

as a percentage of the total intensity and 𝛿j
denotes the multipolarity mixing ratio.
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and is usually given in percent. Each γ-ray branch may result from radiations of

different multipolarities L and characters 𝜔. Although the selection rules may

allow for three or more possibilities (e.g., a 2+ → 1+ transition may proceed via
M1, E2, or M3 radiations), in most practical cases not more than the lowest two

values of 𝜔L need to be taken into account. If we assume that only radiations with

𝜔
′
L and 𝜔L + 1 contribute to the transition (M1 and E2 in the above example),

the partial γ-ray width is given by

Γj(𝜔L + 1;𝜔
′
L) = Γj(𝜔L + 1) + Γj(𝜔

′
L) (1.31)

The γ-ray multipolarity mixing ratio is defined as

𝛿2
j
≡ Γj(𝜔L + 1)

Γj(𝜔
′
L)

(1.32)

By combining Eqs. (1.29)–(1.32), we may express the individual widths in terms

of the total width as

Γj(𝜔
′
L) =

1

1 + 𝛿2
j

Bj

100
Γtot (1.33)

Γj(𝜔L + 1) =
𝛿2
j

1 + 𝛿2
j

Bj

100
Γtot (1.34)

A highly excited nuclear state with many different decay probabilities to lower

lying levels will preferably decay via those transitions that correspond to the

largest decay strengths, that is, via emission of radiations with the smallest

multipoles. If a given level is located, say, above at least 20 lower lying states,

then the observed γ-ray decays from this level are in almost all instances either

of dipole (E1 or M1, depending on the parity of the initial and final level) or of E2

character. This empirical finding is called the dipole or E2 rule (Endt, 1990) and

is useful for estimating unknown spin and parities of nuclear levels.

1.7.4

𝛄-Ray Transitions in a Stellar Plasma

In a hot plasma, excited states in a given nucleus are thermally populated, for

example, through absorption of photons (photoexcitation), Coulomb excitation

by surrounding ions, inelastic particle scattering, and other means.The time scale

for excitation and de-excitation (e.g., via emission and absorption of photons)

in a hot stellar plasma is usually – with the important exception of isomeric

states (see below) – considerably shorter than stellar hydrodynamical time scales,

even under explosive conditions (Fowler, Caughlan, and Zimmerman, 1975).

These excited levels will participate in nuclear reactions and β-decays, as will be

explained later, and thus their population must in general be taken into account.
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For a given nuclide in a nondegenerate plasma at thermodynamic equilibrium,

the ratio of the number density of nuclei in excited state 𝜇, denoted by N𝜇 , and

the total number density of nuclei, N , is given by a Boltzmann distribution (Ward

and Fowler, 1980)

P𝜇 =
N𝜇

N
=

g𝜇e
−E𝜇∕kT∑

𝜇

g𝜇e
−E𝜇∕kT

=
g𝜇e

−E𝜇∕kT

G
(1.35)

with g𝜇 ≡ (2J𝜇 + 1), J𝜇 and E𝜇 the statistical weight, spin and excitation energy,

respectively, of state 𝜇; the quantity k denotes the Boltzmann constant and T is

the plasma temperature. The sum over 𝜇 in the denominator includes the ground

state and is referred to as the partition function, G. Equation (1.35) follows directly

from statistical thermodynamics and encompasses all the different processes for

the excitation and de-excitation of levels (i.e., not only the emission and absorp-

tion of photons). The thermal population of excited nuclear levels becomes more

important with increasing temperature and lower excitation energy. These prop-

erties of Eq. (1.35) are explored in Problem 1.6.

1.7.5

Isomeric States and the Case of 26Al

In most cases, the nuclear levels decaying by γ-ray emission have very high tran-

sition probabilities, corresponding to half-lives that are generally < 10−9 s. How-

ever, in some cases the half-lives are longer bymany orders ofmagnitude, amount-

ing to seconds, minutes or even days. Such long-lived excited nuclear levels are

referred to as isomeric states (or isomers, or metastable states) and the corre-

sponding γ-ray decays are called isomeric transitions. We will denote these levels

with the superscriptm (e.g., AXm).

The two aspects that are mainly responsible for the long half-lives of isomeric

states are (i) a large difference for the spins of the isomeric and the final nuclear

level, and (ii) a relatively small energy difference between the two levels. The first

aspect implies a large γ-ray multipolarity (e.g., M4 or E5). The second aspect

implies a small γ-ray energy. According to Eq. (1.22), both of these effects have

the tendency to reduce the decay probability substantially.

Wewill illustrate some of the complexities that arise from the presence of an iso-

mer by discussing the important case of 26Al. An energy level diagram is displayed

in Figure 1.15. Focus first only on the left-hand part, showing the ground state

(Ex = 0, J
𝜋 = 5+) and three excited states (Ex = 228 keV, J

𝜋 = 0+; Ex = 417 keV,

J𝜋 = 3+; and Ex = 1058 keV, J
𝜋 = 1+) in 26Al. According to the selection rules,

the direct γ-ray de-excitation of the first excited state at Ex = 228 keV would

require the emission of M5 radiation. The γ-ray decay probability for such a high

multipolarity is very small and thus the first excited state is an isomer (26Alm).

It decays via a β-transition (which is considerably more likely to occur than the

M5 γ-ray transition) to the ground state of 26Mg with a half-life of T1∕2(
26Alm) =

6.34 s. The 26Al ground state is also β-unstable and decays with a half-life of
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Figure 1.15 Energy level schemes of 26Al

and 26Mg, showing the lowest lying states

in each nuclide. The vertical arrows repre-

sent γ-ray decays, while the diagonal arrows

indicate β-decay transitions. Only the tran-

sitions indicated by the thick arrows have

been observed experimentally. The transi-

tions shown as thin arrows play an important

role in the equilibration of the ground state

and the isomer at Ex = 228 keV in 26Al. The

direct γ-ray de-excitation of the isomer is

strongly inhibited by the selection rules. The

presence of 26Alg in the interstellar medium

is inferred from the observed intensity of

the 1809 keV γ-ray, originating from the de-

excitation of the first excited state in 26Mg.

A small β-decay branch of the 26Al ground

state to the Ex = 2938 keV (J𝜋 = 2+) level in
26Mg is omitted in the figure for clarity.

T1∕2(
26Alg) = 7.17 × 105 y mainly to the first excited state at Ex = 1809 keV in

26Mg. This level, in turn, de-excites quickly via γ-ray emission of E2 character.

Interestingly, photons with an energy of 1809 keV originating from the interstel-

lar medium have been detected first by the HEAO-3 spacecraft (Mahoney et al.,

1982), and subsequently by other instruments. The Ex = 1809 keV level in
26Mg

decays so quickly (within a fraction of a second) that, if it is populated via nuclear

reactions in the interiors of stars, the emitted 1809 keV photons would immedi-

ately be absorbed by the surrounding matter and would never be able to escape

from the stellar production site. However, suppose instead that 26Alg is synthe-

sized via nuclear reactions in the stellar interior. The long half-life of the ground

state provides ample opportunity for this species to be expelled from a star into the

interstellar medium, where it then decays so that the emitted photons can reach

the Earth. Only the decay of the ground state, but not the decay of the isomer, in
26Al gives rise to the emission of 1809 keV γ-rays.
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An all-sky map of the 1809 keV γ-ray line, obtained by the Imaging Compton

Telescope (COMPTEL) aboard the Compton Gamma Ray Observatory (CGRO),

is shown in color Figure 12 on page 624. The discovery of 26Alg in the interstel-

lar medium is of paramount importance, as already pointed out (Section 1.4.1).

It demonstrates that nucleosynthesis is currently active since the 26Alg half-life is

considerably shorter than the time scale of Galactic chemical evolution (≈ 1010 y).

From the observed γ-ray intensity, it is estimated that the production rate of 26Alg

in the Galaxy amounts to≈ 2M☉ per 10
6 y.The origin of the Galactic 26Alg is con-

troversial at present. However, the observational evidence favors massive stars as

sources. For example, the all-sky map of the 1809 keV γ-ray line shows that 26Alg

is confined along the Galactic disk and that the measured intensity is clumpy and

asymmetric. Furthermore, the measurement of the Doppler shift of the 1809 keV

line demonstrated that the 26Alg co-rotates with the Galaxy and hence supports

a Galaxy-wide origin for this species (Diehl et al., 2006). Stellar model calcula-

tions for massive stars suggest that 26Alg is mainly produced in type II supernovae

during explosive neon–carbon burning (Section 5.4.3 and right side of Figure 1.7).

A smaller fraction is possibly synthesized in Wolf–Rayet stars during core hydro-

gen burning and in the subsequent type Ib/Ic supernova explosion. Formore infor-

mation, see Limongi and Chieffi (2006).

We noted above that in a hot stellar plasma, most nuclear levels quickly achieve

thermal equilibrium since the time scales for excitation and de-excitation are very

short. However, this is not necessarily the case for isomeric states. For example,

the γ-ray transition probabilities for the de-excitation of the 26Al isomer at Ex =

228 keV and for its population from the ground state via absorption of radiation

depend on the same reduced transition strength. Since the emission or absorp-

tion of M5 radiation is unlikely, the ground and isomeric states in 26Al cannot

achieve thermal equilibrium directly (i.e., Eq. (1.35) is not generally valid in this

case).Thermal equilibriummay nevertheless be achieved indirectly via transitions

involving higher lying levels in 26Al.

Consider again Figure 1.15. In this case, the ground state and the isomer

can communicate via the Ex = 417 keV state (0 ↔ 417 ↔ 228) or via the Ex =

1058 keV state (0 ↔ 417↔ 1058↔ 228). Higher lying 26Al states also play a role
as the temperature is increased, but have been omitted in the figure for clarity.

The thermal equilibration of 26Al can be calculated by solving numerically a set

of linear differential equations that describe all possible γ-ray and β-decay transi-

tions. For some of these (indicated by thick arrows), the experimental transition

strengths are known, while for others (thin arrows) the transition strengths have

to be calculated using the shell model (Section 1.6).The procedure is described in

detail in Coc, Porquet, and Nowacki (1999) and Runkle, Champagne, and Engel

(2001), and is not repeated here. The resulting effective lifetime of 26Al versus

temperature is displayed in Figure 1.16. The solid line is obtained numerically by

taking explicitly the equilibration of the ground and isomeric states via thermal

excitations involving higher lying levels into account. The dashed curve is calcu-

lated analytically by assuming that the ground and isomeric states are in thermal
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Figure 1.16 Effective lifetime of 26Al as a

function of temperature. The solid line is

adopted from Coc, Porquet, and Nowacki

(1999) and Runkle, Champagne, and Engel

(2001). It was obtained numerically by tak-

ing explicitly the equilibration of the ground

and isomeric states via thermal excitations

involving higher lying levels into account.

At each temperature, the calculation was

started with a given amount of pure 26Alg.

The value of 𝜏eff(
26Al) is then defined by the

time necessary for the total (ground plus

isomeric state) 26Al abundance to decline

by 1∕e. The dashed curve is calculated ana-

lytically by assuming that the ground and

isomeric states are in thermal equilibrium

(Example 1.5).

equilibrium (Example 1.5). BelowT = 0.1 GK, the effective lifetime is given by the

laboratory lifetime of 26Alg (𝜏 = 1.4427T1∕2 = 3.3 × 10
13 s). Above T = 0.4 GK,

the ground and isomeric states are in thermal equilibrium. At intermediate tem-

peratures, T = 0.1–0.4 GK, the equilibration of 26Al via higher lying levels results

in an effective lifetime that differs significantly from the thermal equilibrium

value.

We focussed here on the case of 26Al. Other important examples of isomers in

nuclear astrophysics are 176Lum (Zhao and Käppeler, 1991) and 180Tam (Wisshak

et al., 2001). For a distinction between the kind of isomer discussed above (also

called spin-isomer) and other types of isomers (shape- and K-isomers), seeWalker

and Dracoulis (1999).

1.8

Weak Interaction

The strong nuclear force and the electromagnetic force govern the nuclear reac-

tions that are of outstanding importance for the energy generation and the nucle-

osynthesis in stars. However, weak interactions also play an important role in

stars for several reasons. First, when a radioactive nuclide is produced during the

nuclear burning, its decay via weak-interaction processes will compete with its
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destruction via nuclear reactions, as will become apparent in Chapter 5. Second,

weak interactions determine the neutron excess parameter during the nucleosyn-

thesis, defined as

𝜂 ≡ ∑
i

(Ni − Zi)Yi =
∑
i

(Ni − Zi)

Mi

Xi with − 1 ≤ 𝜂 ≤ 1 (1.36)

where Ni, Zi,Mi, Yi, and Xi denote the number of neutrons and protons, the rela-

tive atomic mass (in atomic mass units), the mole fraction, and the mass fraction,

respectively. The sum runs over all nuclides i in the plasma. Note that 𝜂 = 0 if

only N = Z nuclei (4He, 12C, 16O, and so on) are present. The quantity 𝜂 repre-

sents physically the number of excess neutrons per nucleon in the plasma and can

only change as a result of weak interactions. A closely related quantity is the elec-

tron mole fraction, Ye, which, according to Eqs. (1.13) and (1.15), is equal to the

electron-to-baryon ratio, or the proton-to-baryon ratio,

Ye =
Ne∑

i

NiMi

(1.37)

where the sum is again over all nuclides present and Ne denotes the electron

number density. Thus, the electron mole fraction is related to the neutron excess

parameter via

𝜂 = 1 − 2Ye (1.38)

The neutron excess must be monitored carefully in stellar model computations,

since it is of crucial importance for the nucleosynthesis during the late burning

stages in massive stars and during explosive burning (Section 5.3). Furthermore,

we already mentioned that electron capture is very important for the dynamic

behavior of the core collapse in massive stars before a type II supernova explo-

sion because it reduces the number of electrons available for pressure support

(Section 1.4.3). Third, neutrinos emitted in weak interactions affect the energy

budget of stars and thus influence models of stellar evolution and explosion.

We will focus in this section on the process of nuclear β-decay, which involves

the proton, neutron, electron, positron, neutrino, and antineutrino, and we will

summarize some concepts that are important in the present context. Weak

interaction processes in stars will be addressed in Chapter 5. A note regarding

the nomenclature. Neutrinos come in three types, or flavors: electron neutrinos,

muon neutrinos, and tau neutrinos. For weak interaction processes where this

distinction matters, we will use appropriate subscripts for the different flavors (𝜈e,

𝜈𝜇 , 𝜈𝜏 ). If no subscript is used, the symbol 𝜈 refers explicitly to electron neutrinos.

1.8.1

Weak Interaction Processes

Consider first the free neutron. It decays into a proton under the influence of the

weak interaction via

n → p + e− + 𝜈 (1.39)
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where e− and 𝜈 denote an electron and antineutrino, respectively. The half-life of

the free neutron amounts to T1∕2 = 10.2 min.This decay is slower by many orders

of magnitude compared to typical nuclear reaction time scales or electromagnetic

decay probabilities and demonstrates that the interaction causing β-decay is very

weak.Themost common weak interaction processes in nuclear β-decay are listed

below:

A
Z
X
N
→ A

Z+1
X′
N−1

+ e− + 𝜈 β−-decay (electron emission) (1.40)

A
Z
X
N
→ A

Z−1
X′
N+1

+ e+ + 𝜈 β+-decay (positron emission) (1.41)

A
Z
X
N
+ e− → A

Z−1
X′
N+1

+ 𝜈 electron capture (1.42)

A
Z
X
N
+ 𝜈 → A

Z+1
X′
N−1

+ e− neutrino capture (1.43)

A
Z
X
N
+ 𝜈 → A

Z−1
X′
N+1

+ e+ (1.44)

Here e+, 𝜈, and 𝜈 denote a positron, neutrino, and antineutrino, respectively. In

each of these interactions, the decaying nuclide changes its chemical identity, but

the mass number A remains the same. The light particles e−, e+, 𝜈, and 𝜈 are lep-

tons, that is, they do not interact via the strong nuclear force.

The first three decays represent the most common weak interaction processes

of radioactive nuclei in the laboratory. Consider an example, the β-decay of 64
29
Cu
35
.

It may proceed via 64
29
Cu
35

→ 64
30
Zn
34
+ e− + 𝜈 (β−-decay), 64

29
Cu
35

→ 64
28
Ni
36
+ e+ + 𝜈

(β+-decay), or 64
29
Cu
35
+ e− → 64

28
Ni
35
+ 𝜈 (electron capture). When the electron

is captured from the atomic K-shell, the process is called K capture. Neutrino

capture is observed, for example, in the reaction 37
17
Cl
20
+ 𝜈 → 37

18
Ar
19
+ e−, which

has been used for the detection of solar neutrinos (Davis, Harmer, and Hoffman,

1968). Antineutrinos produced by nuclear power plants have been observed via

the process p +𝜈 → e++ n (Reines and Cowan, 1959).
Positron emission and electron capture populate the same daughter nuclide. In

later chapters, both of these decayswill sometimes be considered together, while at

other times it will be important to distinguish between these processes.Wewill be

using the following abbreviated notation.The β-decay of 64Cu to 64Ni, irrespective

of the specific process, will be denoted by 64Cu(𝛽+𝜈)64Ni. When we would like to

make specific reference to the positron emission or electron capture, we write
64Cu(e+𝜈)64Ni or 64Cu(e−,𝜈)64Ni, respectively. The β−-decay of 64Cu to 64Zn will

be denoted by 64Cu(𝛽−𝜈)64Zn, irrespective of the fact that an antineutrino rather

than a neutrino is emitted in this decay.

1.8.2

Energetics

The total energy release in nuclear β-decay can be expressed by the difference of

the atomicmasses before and after the interaction. We find (Problem 1.7)

Q𝛽− =
[
m(A

Z
XN ) −m( A

Z+1
X′
N−1

)
]
c2 β−-decay (1.45)

Qe+ =
[
m(A

Z
XN ) −m( A

Z−1
X′
N+1

) − 2me

]
c2 positron emission (1.46)

QEC =
[
m(A

Z
XN ) −m( A

Z−1
X′
N+1

)
]
c2 − Eb electron capture (1.47)
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where me and Eb denote the electron mass and the atomic binding energy of the

captured electron, respectively. The released energy is almost entirely transferred

to the emitted leptons. For example, in β−-decay we have Q𝛽− = Ke + E𝜈 , where

Ke and E𝜈 denote the kinetic electron energy and the total neutrino energy,

respectively. Since there are three particles after the interaction, the electron

and neutrino energy distributions must be continuous, ranging from zero to

Q𝛽− for each lepton. In electron capture, only one lepton is emitted and thus

the neutrino is monoenergetic, with QEC = E𝜈 . Furthermore, this decay mode is

accompanied by X-ray emission since the vacancy in the atomic shell caused by

the captured electron is quickly filled by other atomic electrons. Electron capture

competes in general with positron emission since both decay modes populate

the same daughter nucleus. However, if the difference in atomicmasses amounts

to [m(A
Z
X
N
) −m( A

Z−1
X′
N+1

)]c2 < 2mec
2 = 1022 keV, then only electron capture is

energetically allowed.

It must be emphasized that for positron emission in a stellar plasma, the

energy release calculated from the mass difference of parent and daughter

nucleus alone, Q ′
e+
= [m(A

Z
X
N
) −m( A

Z−1
X′
N+1

)]c2, includes the annihilation energy

2mec
2 = 1022 keV of the positron with another electron from the environment,

as can be seen by comparison with Eq. (1.46). Therefore, the quantity Q ′
e+
rather

than Qe+ is of primary interest when calculating the energy release of positron

emission in a stellar plasma. Also, Q ′
e+
must be properly corrected for neutrino

losses (see below).

We considered so far only β-decay transitions involving nuclear ground states.

If a transition proceeds to an excited state in the daughter nucleus, then we have

to replace Qi by Q
gs

i
− Ex in Eqs. (1.45)–(1.47), where Q

gs

i
and Ex denote the

ground-state energy release and the excitation energy, respectively. Sometimes a

β-decay populates levels in the daughter nucleus that are unstable by emission of

light particles (protons, neutrons, or α-particles). These transitions give rise to

𝛽-delayed particle decays. They compete with transitions to bound states in the

daughter nucleus. Therefore, both of these processes have to be distinguished

carefully when modeling the nucleosynthesis in certain scenarios. For example,

consider the β-decay of 29S which proceeds with about equal probability to bound

states in 29P and to excited 29P levels that are unbound by proton emission. In

the first case, 29S decays to the final nucleus 29P via 29S → e+ + 𝜈 + 29P, while
in the second case 29S decays to the final nucleus 28Si via 29S → e+ + 𝜈 + 29P∗

and 29P∗ → 28Si + p. These processes can be distinguished using the notations
29S(e+𝜈)29P and 29S(e+𝜈p)28Si.

The neutrinos released in nuclear β-decay interact so weakly with matter that

they are lost from the star unless the density is very large (𝜌 ≥ 1011 g/cm3). Con-
sequently, the average neutrino energy must usually be subtracted from the total

nuclear energy liberated when considering the energy budget of a star. An approx-

imate expression for the average neutrino energy loss in β−-decay or positron

emission is given by (Fowler, Caughlan, and Zimmerman, 1967)

E
𝛽

𝜈
≈

mec
2

2
w
(
1 −
1

w2

)(
1 −
1

4w
−
1

9w2

)
(1.48)
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where w = (Q𝛽 +mec
2)∕mec

2. The energy release of the β-decay, Q𝛽 , is given by

Eqs. (1.45) and (1.46), and may need to be corrected for the excitation energy if

the transition proceeds to an excited state in the daughter nucleus. As already

mentioned above, the neutrinos emitted in electron capture are monoenergetic.

Neutrino emission is also important for the transport of energy from the stel-

lar interior to the surface, from which the energy can be radiated. During the

early evolutionary stages of stars, internal energy is mainly transported by mech-

anisms such as radiative diffusion or convection. As a result, the rate of energy

outflow is related to the temperature gradient of the star. At high temperature

(T > 109 K), however, a relatively large number of photons have energies in excess

of the threshold for pair production, 𝛾 → e+ + e− (Section 4.2.2). The positron

and electron, in turn, may either annihilate via e+ + e− → 2𝛾 or via e+ + e− →
𝜈 + 𝜈. These neutrinos emerge directly from their point of origin and will escape

from the star. During the late evolutionary stages of massive stars, this produc-

tion of neutrino–antineutrino pairs represents the dominant energy loss mech-

anism. The energy outflow is in this case directly determined by the neutrino

production rate. Neutrino energy losses rise strongly with temperature and have

a profound influence on the stellar evolution of massive stars (Section 1.4.3 and

Chapter 5).

1.8.3

𝛃-Decay Probabilities

A detailed discussion of the theory of weak interactions in nuclei is beyond the

scope of the present book. A modern account can be found, for example, in

Holstein (1989). Here we will focus on the elementary Fermi theory of β-decay

which explains satisfactorily lifetimes and the shapes of electron (or positron)

energy distributions. Fermi’s theory of β-decay is discussed in most introductory

nuclear physics texts (see, e.g., Krane, 1988). We will initially assume that the

β-decay occurs under laboratory conditions. Beta-decays in stellar plasmas will

be addressed afterward. The rate of nuclear β-decay can be calculated from the

golden rule of time-dependent, first-order perturbation theory (Messiah, 1999).

To illustrate the most important results, we will first discuss β−-decay, although

the derived expressions are equally valid for positron emission. The case of

electron capture is subsequently discussed.

Electron or Positron Emission

The probability N(p) dp per unit time that an electron (or positron) with linear

momentum between p and p + dp is emitted can be written as

d𝜆 = N(p) dp =
2𝜋

ℏ

||||∫ Ψ∗
f
HΨi dV

||||2 dn

dE0
=
2𝜋

ℏ

|||Hfi
|||2 dn

dE0
(1.49)

where Ψi and Ψf are the total wave functions before and after the decay, respec-

tively, H is the Hamiltonian associated with the weak interaction, and dV is a

volume element. The factor dn∕dE0 denotes the number of final states per unit
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energy. A given transition ismore likely to proceed if the number of accessible final

states is large.The experimental evidence shows that the shapes ofmanymeasured

electron (or positron) energy distributions are dominated by the factor dn∕dE0.

The integralHfi (or matrix element), which depends only weakly on energy, deter-

mines the overall magnitude of the decay probability. It can be expressed in terms

of the separate wave functions of the final nuclear state (𝜓f ) and of the leptons (𝜙e,

𝜙𝜈) after the decay as

Hfi = g ∫
[
𝜓∗
f
𝜙∗
e
𝜙∗
𝜈

]
ΩΨi dV (1.50)

where the constant g determines the strength of the interaction. For electron (or

positron) decay, the total wave function before the transition is equal to the wave

function of the parent nucleus, Ψi = 𝜓i. The operator Ω describes the transition

from nuclear level 𝜓i to level 𝜓f . The emitted neutrino (or antineutrino) can be

treated as a free particle because it interacts only weakly. The emitted electron

(or positron) can also be treated as a free particle because it has a relatively high

velocity and is little affected by the nuclear Coulomb field. Thus, we may approx-

imate the lepton wave functions by plane waves, normalized within the nuclear

volume V , and expand the exponentials according to

𝜙e(r⃗) =
1√
V
e−ip⃗⋅r⃗∕ℏ ≈

1√
V

(
1 +

ip⃗ ⋅ r⃗
ℏ

+ · · ·

)
(1.51)

𝜙𝜈(r⃗) =
1√
V
e−iq⃗⋅r⃗∕ℏ ≈

1√
V

(
1 +

iq⃗ ⋅ r⃗
ℏ

+ · · ·

)
(1.52)

where p⃗ and q⃗ are the linear momenta of the electron (or positron) and the neu-

trino (or antineutrino), respectively. Consider, for example, the emission of an

electron in β−-decay with a typical kinetic energy of 1 MeV. The relativistic elec-

tron momentum amounts in this case to p = 1.4 MeV/c. For a nuclear radius of

r ≈ 5 fm, we find then a value of pr∕ℏ = 0.035. Hence, the second term in the

expansion of Eq. (1.51) is usually very small and, therefore, the electronwave func-

tion is approximately constant over the nuclear volume. Similar arguments apply

to the neutrino wave function. In the simplest case, one may then retain just the

first, leading, term in Eqs. (1.51) and (1.52). It follows

|Hfi|2 = 1V 2 ||||g ∫ 𝜓∗
f
Ω𝜓i dV

||||2 = 1V 2 g2M2 (1.53)

The nuclear matrix element M describes the transition probability between the

initial and final nuclear levels. A proper relativistic treatment of β-decay results in

two different matrix elements with different strengths that may contribute to the

overall transition probability. Thus, we have to replace Eq. (1.53) by

|Hfi|2 = 1V 2 (G2VM2F + G2
A
M2

GT

)
(1.54)

where GV and GA are the vector and axial-vector coupling constants, and MF

andMGT are referred to as Fermi andGamow–Teller matrix element, respectively.
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It can be shown that no interference term between vector and axial-vector inter-

action occurs. The two matrix elements depend on the structure of the initial and

final nuclear states and can be calculated by using the shell model (Section 1.6).

The above nonrelativistic treatment of the nucleons and the assumption of

constant lepton wave functions over the nuclear volume results in nuclear matrix

elements that are independent of the lepton energies and define the allowed

𝛽-decay transitions. In some decays, however, it turns out that angular momen-

tum and parity selection rules prevent allowed transitions. In such cases, the

next terms in the plane wave approximations of Eqs. (1.51) and (1.52) have to be

taken into account and the nuclear matrix element is no longer independent of

energy. These transitions are termed forbidden since they are considerably less

likely to occur than allowed decays. The degree by which a transition is forbidden

depends on how many terms in the plane wave approximation need to be taken

into account until a nonvanishing nuclear matrix element is obtained.The second

term gives rise to first-forbidden transitions, the third to second-forbidden, and so

on. We will consider in the following only allowed β-decay transitions.

The density of final states, dn∕dE0, in Eq. (1.49) determines for allowed tran-

sitions the shape of the electron (or positron) energy distribution. It is given by

(Problem 1.10)

dn

dE0
=

dnedn𝜈
dE0

=
(4𝜋)2V 2

h6
p2 dp q2 dq

1

dE0
(1.55)

The final state (or total decay) energy is E0 = Q = Ke + E𝜈 , where Q is the energy

release for the transition under consideration (see Eqs. (1.45) and (1.46); if the

decay proceeds to an excited state, Q must account for the excitation energy).

Since the neutrino mass is very small, we may use m𝜈c
2 ≈ 0, so that q = E𝜈∕c =

(E0 − Ke)∕c and dq∕dE0 = 1∕c. A correction must be applied to Eq. (1.55) that

takes into account the Coulomb interaction between the daughter nucleus and the

emitted electron or positron.The electron in β−-decay feels an attractive Coulomb

force, while the positron in β+-decay experiences a repulsive force.Hence, the elec-

tron or positron plane wave in Eq. (1.51) has to be replaced by a distorted wave.

The correction factor is referred to as Fermi function, F(Z′, p), and depends on the

electron or positronmomentumand the charge of the daughter nucleus.The func-

tion F(Z′, p) can be calculated numerically and is tabulated in Gove and Martin

(1971).

It follows from Eqs. (1.49), (1.54), and (1.55) that

d𝜆 = N(p) dp =
1

2𝜋3ℏ7c3

(
G2

V
M2

F
+ G2

A
M2

GT

)
F(Z′, p)p2(E0 − Ke)

2 dp (1.56)

This distribution vanishes for p = 0 and at the endpoint where themaximum elec-

tron or positron kinetic energy is equal to the total decay energy, Kmax
e

= E0 =

Q. Hence, a measurement of the momentum or energy distribution in a given

decay yields a value for the total energy release in β-decay. Total relativistic energy,

kinetic energy, and linear momentum of the electron or positron are related by

Ee = Ke +mec
2 =

√
(mec

2)2 + (pc)2 (1.57)
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The total decay constant is then given by the integral

𝜆 =
ln 2

T1∕2
=

(
G2

V
M2

F
+ G2

A
M2

GT

)
2𝜋3ℏ7c3 ∫

pmax

0

F(Z′, p)p2(E0 − Ke)
2 dp

=
m5

e
c4

2𝜋3ℏ7

(
G2

V
M2

F
+ G2

A
M2

GT

)
f (Z′,Emax

e
) (1.58)

The dimensionless quantity

f (Z′,Emax
e

) =
1

m5
e
c7 ∫

pmax

0

F(Z′, p)p2(Emax
e

− Ee)
2 dp (1.59)

is referred to as the Fermi integral and depends only on the chargeZ′ of the daugh-

ter nucleus and on the maximum total energy of the electron, Emax
e
. Numerical

values of f (Z′,Emax
e

) have also been tabulated. For the derivation of Eq. (1.58),

we used the relationships pmaxc =
√
(Emax

e
)2 − (mec

2)2 and E0 − Ke = Kmax
e

− Ke =

Emax
e

− Ee that are obtained from Eq. (1.57).

We can rewrite Eq. (1.58) as

f (Z′,Emax
e

)T1∕2 =
2𝜋3ℏ7

m5
e
c4

ln 2(
G2

V
M2

F
+ G2

A
M2

GT

) (1.60)

The quantity f (Z′,Emax
e

)T1∕2 is called the ft-value and is experimentally obtained

from measurements of the half-life and the maximum energy of the emitted elec-

trons or positrons. The ft-value is a standard measure for the strength of a partic-

ular β-decay transition and yields information about the nuclear matrix elements

and the coupling constants.

Electron Capture

The decay constant for allowed electron capture can be obtained in a similar

manner. Recall that in this case the energy spectrum of the emitted neutrino is

not continuous, but monoenergetic with QEC = E0 = E𝜈 . Instead of Eq. (1.49)

we write

𝜆 =
2𝜋

ℏ

||||∫ Ψ∗
f
HΨi dV

||||2 dn

dE0
=
2𝜋

ℏ
|Hfi|2 dn𝜈dE0

(1.61)

The density of final states in this case is given by (Problem 1.10)

dn𝜈
dE0

=
Vq2

2𝜋2ℏ3
dq

dE0
=

VE2
𝜈

2𝜋2ℏ3c3
(1.62)

where we used E𝜈 = qc. The total wave functions before and after the decay are

now given byΨi = 𝜓i𝜙e andΨf = 𝜓f𝜙𝜈 (the subscripts have the same meaning as

before). Usually an electron from the atomic K shell is captured because these have

the largest probability of being near the nucleus. But the electron is now in a bound

state and cannot be described by a free-particle plane wave. One can approximate

𝜙e by the electron wave function 𝜙K of the K orbit at the location of the nucleus,
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𝜙e(r⃗) = 𝜙K (r⃗) =
1√
𝜋

(
Z

a0

)3∕2
e−Zr∕a0

≈ 𝜙K (0) =
1√
𝜋

(
Z

a0

)3∕2
=
1√
𝜋

(
Zmee

2

ℏ2

)3∕2
(1.63)

with Z the atomic number of the parent nucleus. The constant a0 denotes the

Bohr radius, a0 = ℏ
2∕(mee

2) = 0.0529 nm. For the neutrino wave function 𝜙𝜈 , we

use again only the first (constant) term in the plane wave approximation.

From Eqs. (1.52), (1.61)–(1.63), one finds for the decay constant of allowed elec-

tron capture

𝜆K = 2
Z3m3

e
e6

𝜋2ℏ10c3

(
G2

V
M2

F
+ G2

A
M2

GT

)
E2
𝜈

(1.64)

where the matrix elements are defined as before in terms of initial and final state

nuclear wave functions. These are identical to the matrix elements that occur in

Eq. (1.54) for positron emission, since they connect the very same nuclear states.

The additional factor of two in Eq. (1.64) arises because either of the two elec-

trons in the K shell can be captured. The transition probability for the weaker

L-capture can be calculated in a similar manner. The electron capture probabil-

ity increases strongly with the charge Z of the parent nucleus. This is the reason

why electron capture is greatly favored over positron emission in heavy nuclei.

The above expression must be corrected for relativistic effects and the influence

of the shielding of the nuclear Coulomb field by the outer electrons. Such correc-

tions have been calculated numerically and are tabulated, for example, in Gove

and Martin (1971).

Fermi and Gamow–Teller Transitions

We already commented on the classification of β-decays into allowed and forbid-

den transitions. In the first case, the leptons do not remove any orbital angu-

lar momentum. In the latter case, the radiations are inhibited because angular

momentum conservation requires the leptons to carry off orbital angularmomen-

tum or because the parities of the initial and final nuclear states are mismatched.

The allowed radiations are further subdivided into Fermi transitions andGamow–

Teller transitions. They can only occur (i.e., the corresponding matrix elements

MF orMGT are nonzero only) if certain selection rules are satisfied for the nuclear

spins (Ji, Jf ) and parities (𝜋i, 𝜋f ) of the initial and final nuclear states connected by

the transition:

ΔJ ≡ |Ji − Jf | = 0, 𝜋i = 𝜋f for Fermi transitions (1.65)

ΔJ ≡ |Ji − Jf | = 0 or 1, 𝜋i = 𝜋f for Gamow–Teller transitions

(but not Ji = 0 → Jf = 0) (1.66)

It follows that one can study these cases separately since decays with 0→ 0 (ΔJ =
0) and 𝜋i = 𝜋f represent pure Fermi transitions (MGT = 0), while decays with
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ΔJ = 1 and 𝜋i = 𝜋f are pure Gamow–Teller transitions (MF = 0). Examples

for pure Fermi and Gamow–Teller transitions are 14O → 14N + e+ + 𝜈

(Ji = 0
+ → Jf = 0

+) and 6He → 6Li + e− + 𝜈 (Ji = 0
+ → Jf = 1

+). The decay

of the free neutron in Eq. (1.39), on the other hand, represents a mixed transition.

From studies of such decays, the values of the coupling constants GV and GA can

be deduced (see, e.g., Wilkinson, 1994).

In the laboratory, where the parent nucleus is usually in its ground state, β-decay

transitions proceed to all energetically accessible states in the daughter nucleus.

The total decay constant is given by the sum of transition probabilities for all of

these β-decay branches. Such laboratory β-decay constants or half-lives are inde-

pendent of temperature and density. Experimental values of T1∕2 are tabulated in

Audi et al. (2012) and this reference will be used as a source of terrestrial half-lives

throughout this book, unless mentioned otherwise.

1.8.4

𝛃-Decays in a Stellar Plasma

Consider now the weak interaction processes that take place when β-decays occur

in a stellar plasma at elevated temperatureT and density 𝜌. In a hot plasma, excited

states in the parent nucleus are thermally populated and these excited levels may

also undergo β-decay transitions to the ground state or to excited states in the

daughter nucleus. The total β-decay rate in a stellar plasma, 𝜆∗
𝛽
, is given by the

weighted sum of the individual transition rates, 𝜆ij, according to

𝜆∗
𝛽
=

∑
i

Pi
∑
j

𝜆ij (1.67)

The sum on i and j is over parent and daughter states, respectively. The popula-

tion probabilities, Pi, of excited states in a nondegenerate plasma at thermody-

namic equilibrium are given by Eq. (1.35). Since the quantity Pi is temperature

dependent, it follows immediately that 𝜆∗
𝛽
will also depend on temperature. If the

decay constants for excited state β-decays are larger than the one for ground-state

β-decay, the total decay constant 𝜆∗
𝛽
may become strongly temperature depen-

dent. Even if the ground state of the parent nucleus is stable in the laboratory, it

may nevertheless undergo β-decay in a hot stellar plasma. Similar considerations

apply to the β-decay of the daughter nucleus. In the laboratory, it cannot decay

back to the parent nucleus because the transition is energetically forbidden. In

a hot plasma, however, β-decay transitions may occur from thermally populated

excited states in the daughter nucleus to the ground state or to excited states in the

parent nucleus. The situation is schematically shown in Figure 1.17. In practice,

one finds that most of the transition probability for β−-decay or positron emission

in a hot stellar plasma arises from the first few levels in a given parent nucleus.

The β−-decay rate becomes also density dependent at sufficiently large values of 𝜌

when the electron gas is degenerate.The decay rate decreases with increasing den-

sity since the number of final states available for the emitted electron to occupy is

reduced (Langanke and Martinez-Pinedo, 2000).
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(b)

Laboratory Stellar plasma

Figure 1.17 β-Decays (a) in the laboratory,

and (b) in a hot stellar plasma. The vertical

direction corresponds to an energy scale. For

reasons of clarity, only two levels are shown

in the parent nucleus X and the daughter

nucleus X′. The ground and first excited

state are labeled by 0 and 1, respectively.

In the laboratory, the β-decay proceeds from

the ground state of nucleus X to levels in

nucleus X ′, while far more β-decay transi-

tions are energetically accessible in a stellar

plasma owing to the thermal excitation of

levels (dashed vertical arrows).

Example 1.5

In the laboratory, β+-decays of the nuclide 26Al have been observed both from

the ground state (J𝜋 = 5+) and from the first excited (isomeric) state (J𝜋 = 0+)

located at an excitation energy of Ex = 228 keV (Figure 1.15). The ground state

decays via positron emission to excited levels in the daughter nucleus 26Mg (we

will neglect a small electron capture branch) with a half-life ofT
gs

1∕2
= 7.17 × 105 y,

while the first excited state decays to the 26Mg ground state with a half-life of

Tm
1∕2

= 6.345 s. Above a temperature of T = 0.4 GK, both of these 26Al levels are

in thermal equilibrium (Figure 1.16). Calculate the stellar half-life of 26Al when

the plasma temperature amounts to T = 2 GK.

According to Eq. (1.67), the decay constant of 26Al in the stellar plasma is given by

𝜆∗
𝛽
= Pgs𝜆gs + Pm𝜆m = Pgs

ln 2

T
gs

1∕2

+ Pm
ln 2

Tm
1∕2

where the subscripts gs and m denote the ground state and the first excited

state, respectively. The thermal population probability Pi (i.e., the fraction

of 26Al nuclei residing in either the ground or the first excited state) can be

calculated from Eq. (1.35) (a numerical expression for the quantity kT is given in

Section 3.1.1). Thus

𝜆∗
𝛽
=

ln 2

ggse
−Egs∕kT + gme

−Em∕kT

[
ggse

−Egs∕kT

T
gs

1∕2

+
gme

−Em∕kT

Tm
1∕2

]

=
ln 2

(2 ⋅ 5 + 1) + (2 ⋅ 0 + 1)e−0.228∕kT

[
(2 ⋅ 5 + 1)

T
gs

1∕2

+
(2 ⋅ 0 + 1)e−0.228∕kT

Tm
1∕2

]

=
ln 2

11 + e−0.228∕0.0862T9

[
11

T
gs

1∕2

+
e−0.228∕0.0862T9

Tm
1∕2

]
≈
ln 2

11

[
e−0.228∕0.0862T9

6.345 s

]
= 9.93 × 10−3e−2.646∕T9 (s−1)
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Hence, we find at T = 2 GK (T9 = 2)

𝜆∗
𝛽
= 9.93 × 10−3e−2.646∕2.0 s−1 = 0.0026 s−1

and the stellar half-life of 26Al amounts to T∗
1∕2

= ln 2∕𝜆∗
𝛽
= 270 s. The result

is valid only for densities of 𝜌 ≤ 106 g/cm3, since at higher densities electron
capture needs to be taken into account (see below). The results from the above

method for calculating the stellar half-life of 26Al are shown as the dashed line

in Figure 1.16. The values are only correct for temperatures in the range of

T = 0.4–5 GK. At lower temperatures, the ground and isomeric states are not

in thermal equilibrium (Section 1.7.5), while at higher temperatures the thermal

populations of other excited states in 26Al have to be taken into account.

We will now discuss the interesting case of electron capture. It will be shown

later (Section 3.1.1) that the average thermal energies at the temperatures typ-

ical for the interior of main-sequence stars and red giants amount to ≈ 1 keV

and a few tens of kilo electron volts, respectively. For most atoms, however, the

ionization energies are smaller than these values. Therefore, most nuclei in these

environments possess few, if any, bound electrons. The decay constant for bound

electron capture, given by Eq. (1.64), may thus be very small or even zero. In the

hot interiors of stars, however, there is an appreciable density of free electrons.

Hence, β-decays can proceed by capture of (free) electrons from the continuum.

The probability of continuum electron capture is proportional to the free electron

density at the location of the nucleus and is inversely proportional to the aver-

age electron velocity which depends on the plasma temperature. Consequently,

the rate of continuum electron capture depends on the local electron temperature

and the density. At lower stellar temperatures, a given parent nucleus may not

be completely ionized. In that case, both bound and continuum electron capture

contribute to the total decay constant.

At low densities, the kinetic energies of the free electrons are usually small.

At very high densities, however, the (Fermi) energy of the degenerate electrons

may become sufficiently large to cause nuclei to undergo continuum capture of

energetic electrons, even if they are stable under laboratory conditions. Electron

capture transitions involving thermally excited nuclear levels must also be taken

into account according to Eq. (1.67).

Moreover, at high temperature (T > 1 GK) a large number of photons have

energies in excess of the threshold energy for pair production (Section 4.2.2).

Although a positron annihilates quickly in the stellar plasma with an electron,

the pair production rate becomes eventually so large at high temperatures that

the positron density is a significant fraction of the electron density. Thus, capture

of continuum positrons by nuclei must be considered in addition to continuum

electron capture.

The decay constant for continuum electron capture can be obtained for a given

nuclide if its laboratory decay constant for bound electron capture is known. The

ratio of stellar to laboratory decay constant is approximately equal to the ratio of
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the electron densities at the nucleus for the stellar and laboratory environments,

that is, the ratio of probabilities for finding an electron at the nucleus where it

can be captured. An order of magnitude estimate for the ratio of electron capture

probabilities is given by

𝜆star

𝜆lab
≈

ne−⟨F(Z, p)⟩
2NA|𝜙e(0)|2 (1.68)

where ne−∕NA = 𝜌(1 − 𝜂)∕2 = 𝜌Ye is the electron density (Fowler, Caughlan, and

Zimmerman, 1967), 𝜂 is the neutron excess parameter given by Eq. (1.36), Ye is

the electron mole fraction given by Eq. (1.37), and |𝜙e(0)|2 is given by Eq. (1.63).
The Fermi function F(Z, p) accounts for the distortion of the wave function of the

captured electron by the nuclear Coulomb field. Since the electron velocities

in the plasma are given by a distribution, the Fermi function must be averaged

over the electron velocities. It can be seen from Eq. (1.68) that the ratio 𝜆star∕𝜆lab
depends on the density and composition (through ne− ), and on the temperature

(through ⟨F(Z, p)⟩). The above expression is independent of nuclear matrix
elements. For more information, including a discussion of induced continuum

electron capture (i.e., when a nuclide is stable in the laboratory), see Bahcall

(1964).

Many different transitions contribute to the stellar decay rate of a given nucleus.

In the laboratory, the decay proceeds from the ground state of parent nucleusX to

energetically accessible states in the daughter nucleus X′. In a stellar plasma, the

labels “parent” and “daughter” can alternatively apply to both nuclei. For example,

in the laboratory 56Mn decays to the stable nuclide 56Fe via 56Mn(𝛽−𝜈)56Fe. At

high temperatures and densities, however, 56Fe decays via continuum electron

capture, 56Fe(e−,𝜈)56Mn, and via positron emission through thermally populated
56Fe states, 56Fe(e+𝜈)56Mn.

The estimation of stellar β-decay rates essentially reduces to the calculation of

(i) nuclear matrix elements using some model of nuclear structure (e.g., the shell

model; Section 1.6), and (ii) the appropriate Fermi functions and integrals for all

energetically accessible transitions from the parent to the daughter nucleus. The

calculations can be constrained and tested by experimental measurements of

half-lives and Gamow–Teller strength distributions. Stellar weak interaction rates

and the associated neutrino energy losses for a range of temperatures and densi-

ties are tabulated in Fuller, Fowler, and Newman (1982) (for the proton, neutron,

and nuclides with A = 21–60), Oda et al. (1994) (for A = 17–39), and Langanke

and Martinez-Pinedo (2001) (for A = 45–65). Figure 1.18 shows as an example

the stellar decay constants versus temperature for the electron capture (solid

lines) and positron emission (dashed line) of 37Ar. The three lines for electron

capture correspond to different values of 𝜌Ye = 𝜌(1 − 𝜂)∕2. The strong density

dependence of the electron capture rate is apparent. In the laboratory, 37Ar decays

to 37Cl by bound electron capture with a half-life of T1∕2 = 35.0 d (horizontal

solid line).
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Figure 1.18 Stellar decay constants versus

temperature for the electron capture (thin

solid lines) and positron emission (dashed

line) of 37Ar. The three lines for electron

capture correspond to different values of

𝜌Ye = 𝜌(1 − 𝜂)∕2, whereas the decay rate for

positron emission is independent of den-

sity. In the laboratory, 37Ar decays to 37Cl by

bound electron capture with a decay con-

stant of 𝜆lab = 2.3×10−7 s−1 (T1∕2 = ln 2∕𝜆lab
= 35.0 d), shown as the horizontal solid line

labeled “Lab”. Data from Oda et al. (1994).

Finally, we will briefly discuss a neutrino energy loss mechanism that becomes

important at very high temperatures and densities. It is referred to as the Urca

process (Gamowand Schoenberg, 1940) and consists of alternate electron captures

and β−-decays involving the same pair of parent and daughter nuclei

A
Z
XN (e

−, 𝜈) A
Z−1

X′
N+1

(𝛽−𝜈)A
Z
XN … (1.69)

The net result of two subsequent decays gives A
Z
X

N
+ e− → A

Z
X

N
+ e− + 𝜈 + 𝜈. A

neutrino–antineutrino pair is produced with no change in the composition, but

energy in the form of neutrinos is lost from the star. It is obvious from energy

arguments that both the electron capture and the β−-decay cannot occur sponta-

neously.The first stepmay be induced by continuum electron capture of energetic

electrons when the density is high, while the second step may proceed from ther-

mally populated excited states when the temperature is high. In the end, thermal

energy is lost every time a pair of interactions goes to completion.Themechanism

represents an efficient cooling process that will not only depend on temperature

and density but also on the composition of the stellar plasma.The Urca process is

thought to be vital for understanding the explosion mechanism in some models

of type Ia supernovae (Section 1.4.4).
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Problems

1.1 Determine the number of protons, Z, and the number of neutrons, N , for

the nuclides 18F, 56Ni, 82Rb, 120In, 150Gd, and 235U.

1.2 Howmuch energy is released in the following reactions: (i) 3He(d,p)4He; (ii)
17O(p,𝛾)18F; (iii) 12C(𝛼,𝛾)16O; and (iv) 13C(𝛼,n)16O? Assume that the reac-

tions involve nuclei only in their ground states. Use the results presented in

Table 1.1.

1.3 Consider the chain of radioactive decays, 1 → 2 → 3, where 1, 2, and
3 denote a parent, daughter, and final nuclide respectively. Assume

that initially only the parent nuclei are present, that is, N1(t = 0) = N0,

N2(t = 0) = 0, N3(t = 0) = 0, and that species 3 is stable. (i) Set up the

differential equation describing the abundance change of species 2 and

find the time evolution of the daughter abundance, N2(t). (ii) Find the

time evolution of the final nuclide abundance, N3(t). (iii) Examine the

abundances N1, N2, and N3 at small values of t. Keep only the linear terms

in the expansion of the exponential function and interpret the results.

1.4 With the aid of Figure 1.11, predict the spins and parities of 19O, 31P, and
37Cl for both the ground state and the first excited state. Compare your

answer with the observed values. These can be found in Endt (1990) and

Tilley et al. (1995).

1.5 Suppose that an excited state with spin and parity of 2+ in a nucleus of mass

A = 20 decays via emission of a γ-ray with a branching ratio of 100% to a

lower lying level with spin and parity of 0+. Assume that the γ-ray energy

amounts to E𝛾 = Ei − Ef = 6 MeV. Estimate the maximum expected γ-ray

transition probability Γ = 𝜆ℏ.

1.6 Consider a nucleus in a plasma at thermal equilibrium. Calculate the popu-

lation probabilities of the ground state (E0 = 0) and of the first three excited

states (E1 = 0.1 MeV, E2 = 0.5 MeV, E3 = 1.0 MeV). Perform the computa-

tions for two temperatures, T = 1.0 × 109 K and 3.0 × 109 K, and assume

for simplicity that all states have the same spin value.

1.7 Derive the relationships of Eqs. (1.45)–(1.47) from the differences in

nuclear masses before and after the decay.

1.8 Howmuch energy is released in the following β-decays: (i) 7Be(e−,𝜈)7Li; (ii)
14C(β−𝜈)14N; and (iii) 18F(e+𝜈)18O? Assume that the decays involve nuclei

in their ground states only. Use the results presented in Table 1.1.

1.9 Calculate the average neutrino energy losses in the decays 13N(e+𝜈)13C

and 15O(e+𝜈)15N. Assume that the positron emissions involve the ground

states of the parent and daughter nuclei only. Use the results presented in

Table 1.1.

1.10 Derive Eq. (1.55) for the density of final states. Recall that the final state

contains both an electron and a neutrino. You have to count the states in

the six-dimensional phase space that is defined by three space and three

linear momentum coordinates. The unit volume in phase space is h3.
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2

Nuclear Reactions

2.1

Cross Sections

Thecross section, 𝜎, is a quantitativemeasure of the probability that an interaction

will occur. In the following, we define several quantities that are displayed in

Figure 2.1. Suppose that a beam of b particles per unit time t, covering an area

A, is incident on a target. The number of nonoverlapping target nuclei within the

beam ist . We assume that the total number of interactions that occur per unit

time, R∕t, is equal to the total number of emitted (nonidentical) interaction

products per unit time, e∕t. If the interaction products are scattered incident

particles, then we are referring to elastic scattering. If the interaction products

have an identity different from the incident particles, then we are referring to a

reaction. The number of interaction products emitted at an angle 𝜃 with respect

to the beam direction into the solid angle dΩ is dΩ
e
. The area perpendicular to

the direction 𝜃 covered by a radiation detector is given by dF = r2 dΩ. The cross

section is defined by

𝜎 ≡ (number of interactions per time)

(number of incident particles per area per time)(number of target nuclei within the beam)

=
(R∕t)[b∕(tA)

]t

(2.1)

We will use this general definition to describe reaction probabilities in astrophys-

ical plasmas and in laboratory measurements of nuclear reactions. In the latter

case, two situations are frequently encountered: (i) if the beam area, A, is larger

than the target area, At , then

R

t
=

b

tA
t𝜎 (2.2)

and the number of reactions per unit time is expressed in terms of the incident

particle flux,b∕(tA), the number of target nuclei,t , and the cross section; (ii) if

the target area, At , is larger than the beam area, A, then

R

t
=

b

t

t

A
𝜎 (2.3)
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Figure 2.1 Typical nuclear physics counting

experiment, showing a beam of b parti-

cles per unit time, t nonoverlapping target

nuclei within the beam area A, e inter-

action products and a detector of area dF.

The detector is located at an angle of 𝜃 with

respect to the incident beam direction. The

two situations are as follows: (a) the target

area is larger than the beam area; and (b)

the beam area is larger than the target area.

and the number of reactions per unit time is expressed in terms of the incident

particle current,b∕t, the total number of target nuclei within the beam per area

covered by the beam, t∕A, and the cross section. For a homogeneous target,t∕A is equal to the total number of target nuclei divided by the total target area

At . The latter quantity is easier to determine in practice. We can also express the

total cross section, 𝜎, and the differential cross section, d𝜎∕dΩ, in terms of the

number of emitted interaction products

e

t
= 𝜎

(b∕t)

A
t (2.4)

 dΩ
e

t
=

(
d𝜎

dΩ

)
(b∕t)

A
t dΩ (2.5)

If we defineet ≡ e∕t , that is, the number of emitted interaction products per

target nucleus, then we obtain
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𝜎 =
(et∕t)

(b∕t)(1∕A)
and

(
d𝜎

dΩ

)
=

( dΩ
et
∕t)

(b∕t)(1∕A)

1

dΩ
(2.6)

With the definition of a flux or current density j as the number of particles per

time per area, we can write for the beam and emitted interaction products

jb =
(b∕t)

A
(2.7)

jet =
( dΩ

et
∕t)

dF
(2.8)

For the total and differential cross section, one finds

𝜎 =
(et∕t)

jb
(2.9)(

d𝜎

dΩ

)
=

jet dF

jb dΩ
=

jetr
2 dΩ

jb dΩ
=

jetr
2

jb
(2.10)

These quantities are related by

𝜎 = ∫
(
d𝜎

dΩ

)
dΩ (2.11)

Common units of nuclear reaction and scattering cross sections are

1 b ≡ 10−24 cm2 = 10−28 m2
1 fm2 = (10−15 m)2 = 10−30 m2 = 10−2 b

In this chapter, all kinematic quantities are given in the center-of-mass system

(Appendix C), unless noted otherwise.

2.2

Reciprocity Theorem

Consider the reactionA + a → B + b, whereA and a denote the target and projec-

tile, respectively, and B and b are the reaction products. The cross section of this

reaction is fundamentally related to that of the reverse reaction, B + b → A + a,

since these processes are invariant under time-reversal, that is, the direction of

time does not enter explicitly in the equations describing these processes. At a

given total energy, the corresponding cross sections 𝜎Aa→Bb and 𝜎Bb→Aa are not

equal but are simply related by the phase space available in the exit channel or,

equivalently, by the number of final states per unit energy interval in each case.

The number of states available for momenta between p and p + dp is proportional

to p2 (Messiah, 1999). Hence

𝜎Aa→Bb ∼ p2
Bb

and 𝜎Bb→Aa ∼ p2
Aa

(2.12)
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The linear momentum and the de Broglie wavelength are related by 𝜆 = h∕p.

The wave number k of the free particle is defined in terms of the de Broglie

wavelength by 𝜆 ≡ 2𝜋∕k. Hence, we have p = m𝑣 = ℏk. It follows (Blatt and

Weisskopf, 1952) that

k2
Aa
𝜎Aa→Bb

(1 + 𝛿Aa)
=

k2
Bb
𝜎Bb→Aa

(1 + 𝛿Bb)
(2.13)

This expression, called the reciprocity theorem, holds for differential as well as total

cross sections. The factors (1 + 𝛿ij) appears because the cross sections between

identical particles in the entrance channel are twice those between different par-

ticles, other factors being equal.

When particles with spin are involved in the reactions, then the above equation

must be modified by multiplying the density of final states by their statistical

weights. Since there are (2ji + 1) states of orientation available for a particle with

spin ji, we can write for unpolarized particles

k2
Aa
(2jA + 1)(2ja + 1)𝜎Aa→Bb

(1 + 𝛿Aa)
=

k2
Bb
(2jB + 1)(2jb + 1)𝜎Bb→Aa

(1 + 𝛿Bb)
(2.14)

𝜎Bb→Aa

𝜎Aa→Bb

=
(2jA + 1)(2ja + 1)

(2jB + 1)(2jb + 1)

k2
Aa
(1 + 𝛿Bb)

k2
Bb
(1 + 𝛿Aa)

(2.15)

It follows that the cross section 𝜎Bb→Aa can be easily calculated, independently

from any assumptions regarding the reaction mechanism, if the quantity 𝜎Aa→Bb

is known experimentally or theoretically. Equation (2.15) is applicable to parti-

cles with rest mass as well as to photons. In the former case, the wave number

is given by k =
√
2mE∕ℏ, and the linear momentum can be expressed as p2 =

ℏ2k2 = 2mE, where E denotes the (nonrelativistic) center of mass energy andm is

the reducedmass (see Appendix C). In the latter case, the wave number is defined

as k = E∕(ℏc), and the linear momentum can be expressed as p2 = ℏ2k2 = E2∕c2,

where E denotes the photon energy; furthermore, (2j𝛾 + 1) = 2 for photons. See

also Eqs. (3.27) and (3.28). It must be emphasized that the symbols A, a, b, and B

do not only refer to specific nuclei but, more precisely, to specific states. In other

words, the reciprocity theorem connects the same nuclear levels in the forward

and in the reverse reaction.

The reciprocity theorem has been tested in a number of experiments. An

example is shown in Figure 2.2. Compared are differential cross sections for the

reaction pair 24Mg(𝛼,p)27Al (open circles) and 27Al(p,𝛼)24Mg (crosses), connect-

ing the ground states of 24Mg and 27Al. Both reactions were measured at the same

center-of-mass total energy and angle. The differential cross sections exhibit a

complicated structure, presumably caused by overlapping broad resonances.

Despite the complicated structure, it can be seen that the agreement between

forward and reverse differential cross section is excellent. Such results support

the conclusion that nuclear reactions are invariant under time-reversal. See also

Blanke et al. (1983).
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Figure 2.2 Experimental test of the reci-

procity theorem for the reaction pair
24Mg(𝛼,p)27Al (open circles) and 27Al(p,𝛼)24Mg

(crosses), connecting the ground states of
24Mg and 27Al. The differential cross sections

of both reactions are shown for the same

total energy and detection angle in the

center-of-mass system. The cross sections

have also been adjusted to compensate for

differences in spins. (Reprinted with per-

mission from W. von Witsch, A. Richter and

P. von Brentano, Phys. Rev. Vol. 169, p. 923

(1968). Copyright (1968) by the American

Physical Society.)

2.3

Elastic Scattering andMethod of Partial Waves

2.3.1

General Aspects

The interactions between nucleons within a nucleus and between nucleons par-

ticipating in nuclear reactions have to be described using quantum mechanics.

The fundamental strong interaction is very complicated and not precisely known.

We know from experiments that it is of short range. Furthermore, it exhibits a

part that is attractive at distances comparable to the size of a nucleus and another

part that is repulsive at very short distances. Because of the complexity of this

nucleon–nucleon interaction it is necessary to employ approximations. Instead of

calculating all the interactions between all nucleons exactly, one frequently resorts

to using effective potentials. These describe the behavior of a nucleon, or a group

of nucleons (such as an α-particle), in the effective (average) field of all the other

nucleons. Because of the approximate nature of this approach, the resulting effec-

tive potentials are usually tailored to specific reactions and energies and thus lack

generality. The most widely used approximate potentials are called central poten-

tials. They depend on the magnitude of the radius vector, but not on its direction,
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Target nuclei
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p = ћk
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𝜃

Figure 2.3 Schematic representation of

the scattering process. A plane wave is inci-

dent along the z-direction on a scattering

center (target) which gives rise to an out-

going spherical wave. Note the significant

differences in the dimensions of the col-

limator (≈ mm), target nuclei (≈ fm), and

detector distance (≈ cm), which are typical

for nuclear physics experiments.

that is, V (r⃗) = V (r). Since the nuclear potential is of short range, we will consider

here only potentials that for large distances (r → ∞) approach V (r) → 0 faster
than 1∕r.

In this section, we will initially focus on the problem of elastic scattering. The

formalism is then extended to include nuclear reactions. A general treatment

of nuclear scattering involves solutions of the time-dependent Schrödinger

equation, that is, the scattering of wave packets. However, the most important

physics aspects can be derived by considering the simpler stationary problem of

solving the time-independent Schröodinger equation. No further assumptions

about the nuclear potential are made here. We will derive the general formalism,

which relates the observed scattering cross section to the wave function far away

from the scattering center. The cross section will be expressed in terms of phase

shifts. To determine the latter quantity, knowledge of the wave function in the

nuclear region is necessary. These considerations will be discussed in subsequent

sections.

The scattering process is schematically shown in Figure 2.3. Consider a beam

of monoenergetic particles incident on a target along the z-direction. The value

and the uncertainty of the z-component of the linear momentum are given by

pz = const and Δpz = 0, respectively. It follows immediately from the Heisenberg

uncertainty principle (ΔpzΔz ≈ ℏ) that Δz → ∞. Hence, the incoming wave has

a large extent in the z-direction, that is, the process is nearly stationary. Further-

more, we assume for the x- and y-components of the linear momentum px = py =

0. This implies, according to 𝜆i = h∕pi, that 𝜆x = 𝜆y → ∞. In other words, the

incoming particles are represented by a wave of very large wavelength in the x-

and y-directions, that is, an incident plane wave.

The stationary scattering problem is described by the time-independent

Schrödinger equation
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[
−
ℏ2

2m
𝛻2 + V (r⃗)

]
𝜓(r⃗) = E𝜓(r⃗) (2.16)

At the position of the target nucleus, we cannot specify the total wave function

further without assuming an explicit nuclear potential. However, far away from

the scattering center, at the position of our detector, we can express the total wave

function as a sum of two stationary waves: an incoming plane wave and an out-

going spherical wave. Therefore, for the total wave function at large distances we

start with the ansatz

𝜓T (r⃗) = N

[
eik⃗⋅r⃗ + f (𝜃)

eikr

r

]
, r → ∞ (2.17)

The term eik⃗⋅r⃗ represents a plane wave traveling in the z-direction (a free particle).

The second term contains a spherical wave (eikr), a quantity f (𝜃) called scattering

amplitude, and the factor 1∕r since the scattered intensity must obey an inverse

square law; N is an overall normalization factor.

2.3.2

Relationship Between Differential Cross Section and Scattering Amplitude

The particle density (in units of inverse volume) is given by P = 𝜓∗𝜓 and the

current density (or flux, in units of inverse area per time) of beam particles or

scattered particles with velocity 𝑣 can be written as j = 𝑣P. For the incoming plane

wave, we can write

jb = 𝑣b(Ne
−ikz)(Neikz) = 𝑣bN

2 (2.18)

whereas we obtain for the scattered spherical wave

js = 𝑣s

[
Nf ∗(𝜃)e−ikr

1

r

] [
Nf (𝜃)eikr

1

r

]
= 𝑣sN

2|f (𝜃)|2 1
r2

(2.19)

Substitution of jb and js into Eq. (2.10) yields(
d𝜎

dΩ

)
=

jsr
2

jb
= |f (𝜃)|2 (2.20)

since for elastic scattering we can assume that 𝑣b = 𝑣s.The important result here is

that the differential cross section is equal to the square of the scattering amplitude.

2.3.3

The Free Particle

It is instructive to consider first the force-free particle. The plane wave eik⃗⋅r⃗ repre-

sents a free particle of momentum p⃗ = ℏk⃗ and energy E = ℏ2k2∕(2m). The poten-

tial is V (r) = 0 and, therefore, we have f (𝜃) = 0. If we choose the z axis along k⃗

(see Figure 2.4), the plane wave can be written as

eik⃗⋅r⃗ = eikr cos 𝜃 = eikr(z∕r) = eikz (2.21)
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r

Figure 2.4 Linear and angular momenta of the free particle. The vector p⃗ points along the

z axis, while the projection of L⃗ on the z axis is zero (m = 0).

which is independent of the angle 𝜙. Since L⃗ = r⃗ × p⃗, we only need to consider

values ofm = 0 for the magnetic quantum number. In this case, the spherical har-

monics are given by (see Eq. (A.9))

Y𝓁0 =

√
2𝓁 + 1
4𝜋

P𝓁(cos 𝜃) (2.22)

where P𝓁(cos 𝜃) is a Legendre polynomial. With the substitutions E = p2∕(2m) =

ℏ2k2∕(2m) and 𝜌 ≡ kr, the radial equation for the free particle can be written as

(see Eq. (A.23))

d2u𝓁
d𝜌2

+

[
1 −

𝓁(𝓁 + 1)
𝜌2

]
u𝓁 = 0 (2.23)

The solutions, j𝓁(kr), are called spherical Bessel functions (Appendix A.2) and we

can write for the asymptotic values

u
f.p.

𝓁 = (kr)j𝓁(kr) = sin (kr − 𝓁𝜋∕2) , r → ∞ (2.24)

The eigenfunctions of the free particle, j𝓁(kr)P𝓁(cos 𝜃), form a complete orthonor-

mal set. Therefore, we expand the plane wave according to

eikz =

∞∑
𝓁=0

c𝓁 j𝓁(kr)P𝓁(cos 𝜃) (2.25)

The derivation of the expansion coefficients, which is not repeated here (see, e.g.,

Messiah, 1999), yields c𝓁 = (2𝓁 + 1)i𝓁 . Thus

eikz =

∞∑
𝓁=0

(2𝓁 + 1)i𝓁 j𝓁(kr)P𝓁(cos 𝜃) (2.26)

It can be seen that the plane wave with linear momentum kr has been expanded

into a set of partial waves, each having an orbital angular momentum of

ℏ
√
𝓁(𝓁 + 1), an amplitude of (2𝓁 + 1), and a phase factor of i𝓁 . For very large

distances appropriate for any experimental detector geometry, we find for the

free particle

𝜓
f.p.

T
= eikz =

∞∑
𝓁=0

(2𝓁 + 1)i𝓁
sin (kr − 𝓁𝜋∕2)

kr
P𝓁(cos 𝜃), r → ∞ (2.27)
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Using the relationship sin x = (i∕2)(e−ix − eix) we write

𝜓
f.p.

T
=
1

2kr

∞∑
𝓁=0

(2𝓁 + 1)i𝓁+1
[
e−i(kr−𝓁𝜋∕2) − ei(kr−𝓁𝜋∕2)

]
P𝓁(cos 𝜃), r → ∞ (2.28)

For the special case of s-waves (𝓁 = 0), we have u
f.p.

0
= sin(kr) instead of Eq. (2.24)

(see also Eq. (A.26)). Consequently, Eqs. (2.27) and (2.28) are not only valid for

r → ∞, but also apply in this case to all distances.

2.3.4

Turning the Potential On

For a central potential (Section 2.3.1) with V (r) ≠ 0 and f (𝜃) ≠ 0, only the solu-
tion to the radial equation will change. Instead of u

f.p.

𝓁 we have to write u𝓁 . The

two functions u
f.p.

𝓁 and u𝓁 essentially differ only for small r where V (r) ≠ 0. For
large distances r, we haveV (r) = 0 and both functionsmust satisfy the same radial

equation. We write

u𝓁 = sin(kr − 𝓁𝜋∕2 + 𝛿𝓁), r → ∞ (2.29)

This solution can differ at most from the radial wave function of the free particle

(Eq. (2.24)) by a phase shift 𝛿𝓁 , which arises from the different r dependence in the

regionwhereV (r) ≠ 0. For s-waves (𝓁 = 0), Eq. (2.29) applies again to all distances

outside the potential.

Similar to the case of the free particle (see Eq. (2.25)), we can expand the total

wave function into partial waves

eikz + f (𝜃)
eikr

r
=

∞∑
𝓁=0

b𝓁
u𝓁(kr)

kr
P𝓁(cos 𝜃) (2.30)

The expansion coefficients are given by b𝓁 = (2𝓁 + 1)i𝓁ei𝛿𝓁 (Problem 2.1). Thus

𝜓T = eikz + f (𝜃)
eikr

r

=

∞∑
𝓁=0

(2𝓁 + 1)i𝓁ei𝛿𝓁
sin(kr − 𝓁𝜋∕2 + 𝛿𝓁)

kr
P𝓁(cos 𝜃), r → ∞ (2.31)

Using the relation sin x = (i∕2)(e−ix − eix) we write

𝜓T =
1

2kr

∞∑
𝓁=0

(2𝓁 + 1)i𝓁+1
[
e−i(kr−𝓁𝜋∕2) − e2i𝛿𝓁ei(kr−𝓁𝜋∕2)

]
P𝓁(cos 𝜃), r → ∞ (2.32)

Comparison to the total wave function of the free particle (Eq. (2.28)) shows that

the potential modifies at large distances each outgoing spherical wave by a factor

of e2i𝛿𝓁 and thereby shifts each outgoing spherical wave by a phase 𝛿𝓁 .
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2.3.5

Scattering Amplitude and Elastic Scattering Cross Section

We solve first for the scattering amplitude f (𝜃) by writing

f (𝜃)
eikr

r
= 𝜓T − 𝜓

f.p.

T
=
1

2kr

∞∑
𝓁=0

(2𝓁 + 1)i𝓁+1
[
ei(kr−𝓁𝜋∕2)

(
1 − e2i𝛿𝓁

)]
P𝓁(cos 𝜃)

(2.33)

Using ei𝜋𝓁∕2 = cos(𝜋𝓁∕2) + i sin(𝜋𝓁∕2) = i𝓁 and the identity ei𝛿 sin 𝛿 ≡ (i∕2)(1 −

e2i𝛿) yields

f (𝜃) =
i

2k

∞∑
𝓁=0

(2𝓁 + 1)
(
1 − e2i𝛿𝓁

)
P𝓁(cos 𝜃) =

1

k

∞∑
𝓁=0

(2𝓁 + 1)ei𝛿𝓁 sin 𝛿𝓁P𝓁(cos 𝜃)

(2.34)

It is again apparent that the effect of the scattering potential is to shift the phase

of each outgoing partial wave.

The differential elastic scattering cross section can be written as(
d𝜎

dΩ

)
el

= f ∗(𝜃)f (𝜃) =
1

4k2

|||||
∞∑
𝓁=0

(2𝓁 + 1)
(
1 − e2i𝛿𝓁

)
P𝓁(cos 𝜃)

|||||
2

=
1

k2

|||||
∞∑
𝓁=0

(2𝓁 + 1) sin 𝛿𝓁P𝓁(cos 𝜃)
|||||
2

(2.35)

The interference terms involving different functionsP𝓁(cos 𝜃) generally give rise to

nonisotropic angular distributions. Using the orthogonality relation for Legendre

polynomials,

∫dΩ

P𝓁(cos 𝜃)P𝓁′ (cos 𝜃)dΩ =
4𝜋

2𝓁 + 1
𝛿𝓁𝓁′ (2.36)

where 𝛿𝓁𝓁′ denotes a Kronecker symbol, we obtain for the total elastic scattering

cross section

𝜎el = ∫
(
d𝜎

dΩ

)
el

dΩ =

∞∑
𝓁=0

𝜎el,𝓁 (2.37)

𝜎el,𝓁 =
𝜋

k2
(2𝓁 + 1) |||1 − e2i𝛿𝓁

|||2 = 4𝜋k2 (2𝓁 + 1) sin2 𝛿𝓁 (2.38)

For the special case of s-waves (𝓁 = 0), we find(
d𝜎

dΩ

)
el,0

=
1

k2
sin2 𝛿0 (2.39)

𝜎el,0 =
4𝜋

k2
sin2 𝛿0 (2.40)

and the angular distribution becomes isotropic (i.e., independent of 𝜃). It follows

that the cross section is entirely determined by the phase shifts 𝛿𝓁 . It is also appar-

ent that 𝛿𝓁 → 0 as V (r) → 0 for all 𝓁.
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So far, we have assumed that at least one particle participating in the interaction

is uncharged. If both nuclei are charged, then we have to replace the phase 𝛿𝓁 for

the short-range nuclear potential with 𝛿𝓁 + 𝜎𝓁 , where 𝜎𝓁 is the phase shift caused

by the long-range Coulomb potential. The Coulomb phase shift can be calculated

analytically (see Eq. (D.13)). We write

1 − e2i(𝛿𝓁+𝜎𝓁) =
(
1 − e2i𝜎𝓁

)
+ e2i𝜎𝓁

(
1 − e2i𝛿𝓁

)
(2.41)

and the scattering amplitude can be expressed as

f (𝜃) =
i

2k

∞∑
𝓁=0

(2𝓁 + 1)
[
1 − e2i(𝛿𝓁+𝜎𝓁 )

]
P𝓁(cos 𝜃)

=
i

2k

∞∑
𝓁=0

(2𝓁 + 1)
(
1 − e2i𝜎𝓁

)
P𝓁(cos 𝜃)

+
i

2k

∞∑
𝓁=0

(2𝓁 + 1)e2i𝜎𝓁
(
1 − e2i𝛿𝓁

)
P𝓁(cos 𝜃) (2.42)

Thefirst termdescribes the scattering fromapureCoulombfield (Rutherford scat-

tering).The second term contains the phase shifts 𝛿𝓁 and 𝜎𝓁 .The cross section will

exhibit interference terms corresponding to the scattering from both the nuclear

and the Coulomb potential.

2.3.6

Reaction Cross Section

We can now consider the possibility that a nuclear reaction occurs, that is, any

process that is different from elastic scattering (e.g., particle capture or inelastic

scattering). A specific set of conditions (momentum, quantum numbers, and so

on) for the outgoing particle is called a channel. A more precise definition of this

concept will be given in later sections. Elastic scattering, inelastic scattering to a

final excited state x, inelastic scattering to a different excited final state y, and so

on, all correspond to different channels.

Suppose first that elastic scattering is the only possible process. In that case,

as many particles enter as exit from an imaginary sphere surrounding the target

nucleus (Figure 2.5a). As a result, the integral over the current density jT , corre-

sponding to the total wave function 𝜓T for elastic scattering, is zero

∫dΩ

jT dΩ = 0 (2.43)

Suppose now that nonelastic processes occur as well. In that case, a fraction of the

incoming particles will either change kinetic energies, for example, in inelastic

scattering (n,n′), or change identity, for example, in particle capture (n,𝛾). A num-

ber of incoming particles will disappear and, consequently, there will be a net cur-

rent of particles into the sphere (Figure 2.5b). The rate of disappearance from the
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jin jin

jel jel

jout jout

jre(a) (b)

Figure 2.5 Representation of the current

density if (a) scattering is the only possible

process, and (b) both elastic and nonelastic

processes occur. In part (a), the same num-

ber of particles enter and exit from an imag-

inary sphere surrounding the target nucleus

and the integral over the total current den-

sity is zero. In part (b), a number of incoming

particles disappear because of reactions and

thus there is a net current of particles into

the sphere.

elastic channel corresponds to the reaction cross section. Formally, we can write

𝜎re =
r2

jb ∫dΩ

jT dΩ (2.44)

Recall that the wave function 𝜓T , corresponding to the current density jT , rep-

resents the wave function for elastic scattering only. In the following, an expres-

sion is derived, which relates the reaction cross section to the phase shifts. We

start from the quantum mechanical expression for the current density (Messiah,

1999),

j =
ℏ

2mi

(
𝜓∗ 𝜕𝜓

𝜕r
−
𝜕𝜓

𝜕r

∗

𝜓

)
(2.45)

From this expression, we find for the incoming plane wave eikz

jb =
ℏ

2mi

[
e−ikz(eikzik) − e−ikz(−ik)eikz

]
=
ℏk

m
(2.46)

Substitution of the total elastic scattering wave function 𝜓T (see Eq. (2.32)) into

Eq. (2.45) yields, after some algebra,

jT =
ℏ

4mkr2

{|||||
∞∑
𝓁=0

(2𝓁 + 1)i𝓁+1ei𝓁𝜋∕2P𝓁(cos 𝜃)
|||||
2

−
|||||
∞∑
𝓁=0

(2𝓁 + 1)i𝓁+1e2i𝛿𝓁e−i𝓁𝜋∕2P𝓁(cos 𝜃)
|||||
2}

(2.47)

With the orthogonality relation for Legendre polynomials (see Eq. (2.36)), one

finds

𝜎re =

∞∑
𝓁=0

𝜎re,𝓁 (2.48)

𝜎re,𝓁 =
𝜋

k2
(2𝓁 + 1)

(
1 −

|||e2i𝛿𝓁 |||2) (2.49)
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Figure 2.6 Upper and lower limit of elastic scattering cross section for a given reaction

cross section. Values inside the shaded region are allowed, while those outside the shaded

region are impossible. The quantity e2i𝛿𝓁 is real for all points located on the solid curve.

We require |e2i𝛿𝓁 |2 ≤ 1 since otherwise 𝜎re becomes negative. In general, the
phase shift 𝛿𝓁 will be a complex number, that is, 𝛿𝓁 = 𝛿𝓁1 + i𝛿𝓁2 . For the special

case that 𝛿𝓁 is real, one finds |e2i𝛿𝓁 |2 = 1. In other words, reactions cannot occur
and elastic scattering is the only possible process. The allowed range of values

for 𝜎re,𝓁 and 𝜎el,𝓁 is represented by the shaded region in Figure 2.6. Recall that

the expression for the elastic scattering cross section (see Eq. (2.38)) holds only

for uncharged particles. The maximum elastic scattering cross section occurs at

e2i𝛿𝓁 = −1, yielding

𝜎max
el,𝓁 =

4𝜋

k2
(2𝓁 + 1) and 𝜎re,𝓁 = 0 (2.50)

The maximum reaction cross section is obtained for e2i𝛿𝓁 = 0, leading to

𝜎max
re,𝓁 = 𝜎el,𝓁 =

𝜋

k2
(2𝓁 + 1) (2.51)

It follows that elastic scattering may occur without any reactions taking place,

but reactions can never occur without elastic scattering being present. When the

reaction cross section is at maximum, its value is equal to the elastic scattering

cross section.

Traditionally, the theory of scattering has been applied to study the nature of the

nuclear potential. Usually, the differential cross section d𝜎∕dΩ is given by experi-

ment and it is desired to find the corresponding potential V (r). The experimental
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phase shifts 𝛿𝓁 are obtained by fitting the cross section formula to experimental

angular distribution data, provided that a satisfactory fit is achieved by means of a

small number of terms in the partial wave expansion. This procedure is repeated

for several values of the incident energy.One then attempts to find a potentialV (r),

which reproduces the observed phase shifts, by solving the Schrödinger equation

numerically for each value of 𝓁.

2.4

Scattering by Simple Potentials

The cross section is determined by the phase shifts. The latter can be obtained

from the wave function in the nuclear region that is generated by an explicit

nuclear potential. In this section, we will consider the case of s-wave (𝓁 = 0)

scattering of neutral and spinless particles. Two simple potentials will be dis-

cussed explicitly: (i) an attractive square-well potential, and (ii) an attractive

square-well plus square-barrier potential. Although very simple, these models

contain qualitatively most of the physics that will be encountered later in the

discussion of far more complex situations. We will specifically calculate the phase

shifts 𝛿0 and the intensity of the wave function in the region of the potential by

solving the radial Schrödinger equation. It will be seen how the properties of the

potential determine the phase shift and the wave function intensity.

2.4.1

Square-Well Potential

The potential is displayed in Figure 2.7. For 𝓁 = 0, the radial equation becomes

(Appendix A.1)

d2u

dr2
+
2m

ℏ2
[E − V (r)]u = 0 (2.52)

V(r)

E + V0

−V0

R0

E

r

Figure 2.7 Three-dimensional square-well

potential of radius R0 and potential depth V0.

The upper horizontal line indicates the total

particle energy E. For the calculation of the

transmission coefficient, it is necessary to con-

sider a one-dimensional potential step that

extends from −∞ to +∞.
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For a constant potential, V (r) = const, we obtain with k̂2 = (2m∕ℏ2)(E − V ) the

radial equation

d2u

dr2
+ k̂2u = 0 (2.53)

The general solution in terms of complex exponentials is given by

u = 𝛼eik̂r + 𝛽e−ik̂r (2.54)

We will consider the two regions r < R0 and r > R0 separately. For r < R0, we have

E − V > 0 and, therefore,

uin = A′eiKr + B ′e−iKr, K2 =
2m

ℏ2
(E + V0)

= A′[cos(Kr) + i sin(Kr)] + B ′[cos(Kr) − i sin(Kr)] (2.55)

At the boundary, we require uin(0) = 0, otherwise the radial wave function u(r)∕r

will diverge at r = 0. It follows immediately that uin(0) = A′ + B ′ = 0 and the

cosine terms in Eq. (2.55) disappear. Hence

uin = A′i sin(Kr) − A′[−i sin(Kr)] = 2iA′ sin(Kr) = A sin(Kr) (2.56)

where we used the definition A ≡ 2iA′. In the region r > R0, one finds again

E − V > 0, and the general solution is given by

uout = C′eikr + D ′e−ikr, k2 =
2m

ℏ2
E

= C′[cos(kr) + i sin(kr)] + D ′[cos(kr) − i sin(kr)]

= i[C′ − D ′] sin(kr) + [C′ + D ′] cos(kr) = C′′ sin(kr) + D′′ cos(kr)

(2.57)

It is convenient to rewrite this expression. The sum of sin x and cos x again gives

a sine function, which is shifted along the x-axis. Using C′′ = C cos 𝛿0 and D
′′ =

C sin 𝛿0 we can formally write

uout = C
[
sin(kr) cos 𝛿0 + cos(kr) sin 𝛿0

]
(2.58)

With sin(x ± y) = sin x cos y ± cos x sin y one finds

uout = C sin(kr + 𝛿0) (2.59)

The solutions uin (see Eq. (2.56)) and uout (see Eq. (2.59)) will be used below.

Transmission Probability

We are interested in the probability of transmission from the outer to the inner

region. It is convenient to start from the wave function solutions in terms of com-

plex exponentials (see Eqs. (2.55) and (2.57)). It should be pointed out that for real

potentials, the transmission probability is only defined for the one-dimensional
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case (see, e.g., Messiah, 1999). Instead of considering the three-dimensional

potential shown in Figure 2.7, we will assume that the particles are incident from

the right-hand side, that a one-dimensional potential steps down at a distance of

x = R0 by an amount of V0, and that the potential step extends to −∞. We obtain

for the one-dimensional radial wave functions

uin = A′eiKx + B ′e−iKx (2.60)

uout = C′eikx + D ′e−ikx (2.61)

Although we do not have to consider the time-dependent Schrödinger equation

here, it is instructive to investigate the full time-dependent solution obtained by

multiplying the complex exponentials by the factor e−i𝜔t , where 𝜔 = E∕ℏ. It can

easily be seen, for example, that the second term of uin corresponds to a plane

wave that propagates into the negative x direction. The first and second terms of

uout correspond to plane waves reflected from the boundary at R0 and moving

toward R0, respectively. We are interested in the scattering process. The particle

density of incident projectiles, for example, is given by |D ′e−ikx|2 = |D ′|2.The cur-
rent density (or flux) of incident particles is given by the product of particle density

and velocity in the outer region, jinc = 𝑣out|D ′|2 (Section 2.3.2). Similarly, one finds
for the transmitted and reflected particle flux jtrans = 𝑣in|B ′|2 and jrefl = 𝑣out|C′|2,
respectively. It follows for the probability that an individual particle will be trans-

mitted from the outer to the inner region

T̂ =
jtrans
jinc

=
𝑣in|B ′|2
𝑣out|D ′|2 = K |B ′|2

k|D ′|2 (2.62)

The quantity T̂ is called the transmission coefficient.

The continuity condition requires that the wave functions and their derivatives

are continuous at the boundary x = R0,(
uin

)
R0
=

(
uout

)
R0

(2.63)(
duin
dx

)
R0

=

(
duout
dx

)
R0

(2.64)

We obtain

A′eiKR0 + B ′e−iKR0 = C′eikR0 + D ′e−ikR0 (2.65)

K

k

(
A′eiKR0 − B ′e−iKR0

)
=

(
C′eikR0 − D ′e−ikR0

)
(2.66)

Setting A′ = 0, since there is no plane wave approaching the boundary R0 from

the left-hand side, and eliminating C′ yields

K

k

(
−B ′e−iKR0

)
= B ′e−iKR0 − 2D ′e−ikR0 or

B ′

D ′
= 2

e−ikR0

e−iKR0

k

K + k
(2.67)
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For the transmission coefficient, we find with Eqs. (2.62) and (2.67)

T̂ =
K

k

|B ′|2|D ′|2 = 4 kK

(K + k)2
= 4

2m

ℏ2

√
(E + V0)E[√

2m

ℏ2
(E + V0) +

√
2m

ℏ2
E

]2 (2.68)

We will use this result later in connection with the continuum theory of nuclear

reactions (Section 2.6).

Phase Shift and Resonance Phenomenon

The quantity T̂ describes the transmission probability from the right- to the left-

hand side in Figure 2.7. We have considered so far only the amplitude ratio of two

waves: one approaching the boundary R0 from the right, the other one receding

from R0 to the left. We will now consider the full radial wave function solution for

the three-dimensional case. We start from Eqs. (2.56) and (2.59),

uin = A sin(Kr) (2.69)

uout = C sin(kr + 𝛿0) (2.70)

From the continuity condition (see Eqs. (2.63) and (2.64)), one finds

A sin(KR0) = C sin(kR0 + 𝛿0) (2.71)

AK cos(KR0) = Ck cos(kR0 + 𝛿0) (2.72)

First, we divide both equations to solve for the phase shift 𝛿0. The result is

1

K
tan(KR0) =

1

k
tan(kR0 + 𝛿0) (2.73)

𝛿0 = −kR0 + arctan

[
k

K
tan(KR0)

]
(2.74)

This expression can be rewritten in terms of the total energy as

𝛿0 = −

√
2mE

ℏ
R0 + arctan

[√
E

E + V0
tan

(√
2m(E + V0)

ℏ
R0

)]
(2.75)

It can be seen that the phase shift is determined by the properties of the potential

(R0,V0) and the properties of the particle (E,m). For V0 → 0, one finds 𝛿0 → 0, as
already pointed out above. The cross section can be calculated simply from the

phase shift (see Eq. (2.40)). Second, one can solve for |A|2∕|C|2, that is, the ratio
of wave function intensities in the interior (r < R0) and exterior regions (r > R0).

By squaring and adding Eqs. (2.71) and (2.72) we obtain|A|2|C|2 = k2

k2 + [K2 − k2] cos2(KR0)
=

E

E + V0 cos
2
(√
2m(E+V0)

ℏ
R0

) (2.76)

where the identity sin2(kr + 𝛿) + cos2(kr + 𝛿) = 1 has been used.

Plots of |A|2∕|C|2 and 𝛿0 versus E for the scattering of a neutron by a square-
well potential are shown in Figure 2.8. A potential depth of V0 = 100 MeV and a
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Figure 2.8 (a) Ratio of wave function inten-

sities in the interior (r < R0) and exterior

(r > R0) regions, |A|2∕|C|2, and (b) phase shift

𝛿0 versus total energy E for the scattering of

neutrons (2m∕ℏ2 = 0.0484 MeV−1 fm−2) by

a square-well potential (Figure 2.7). For the

potential depth and the radius, the values of

V0 = 100 MeV and R0 = 3 fm, respectively,

are assumed. The curves show the resonance

phenomenon.

potential radius of R0 = 3 fm are assumed. The quantity |A|2∕|C|2 measures the
relative intensity of the wave function in the interior region r < R0. It is appar-

ent that |A|2∕|C|2 oscillates between extreme values. This remarkable behavior is
referred to as resonance phenomenon. At certain discrete energies Ei (resonance

energies), the probability for finding the particle inside the boundary r < R0 is at

maximum. It can also be seen that each resonance shifts the phase 𝛿0 by some

amount. The resonances occur at energies at which cos2(KR0) = 0 in Eq. (2.76),

that is, KR0 = (n + 1∕2)𝜋. Hence

K =

(
n +

1

2

)
𝜋

R0
=
2𝜋

𝜆in
(2.77)

𝜆in =
2R0(
n + 1

2

) =
R0(

n

2
+
1

4

) (2.78)
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n = 0

sin x

n = 1

R0

x

x

Figure 2.9 Two simplest solutions for the radial

wave function inside the square-well potential. Both

solutions give rise to a resonance since the deriva-

tive of the wave function at the potential radius R0
is zero. The solutions are characterized by the num-

ber of wave function nodes n in the interior region

(r < R0). They are shown here for illustrative purposes.

Neither of these functions represent physical solu-

tions for the conditions adopted in Figure 2.8.

with 𝜆in the wavelength in the interior region. Since (n∕2 + 1∕4) =
1

4
,
3

4
,
5

4
,… it

follows that resonances occur when precisely (n∕2 + 1∕4)wavelengths fit into the

interior region. At those wavelengths, the derivative of the interior wave function

(a sine function; see Eq. (2.69)) at the radiusR0 is zero. As can be seen in Figure 2.9,

n also corresponds to the number of wave function nodes in the region r < R0. For

the resonance energies, we obtain from Eq. (2.77)

En =
ℏ2

2m

𝜋2

R2
0

(
n +
1

2

)2
− V0 (2.79)

In the above example of neutron scattering by a square-well potential of depth

V0 = 100 MeV and radius R0 = 3 fm, one has (ℏ𝜋)
2∕(2mR2

0
) = 22.648 MeV. We

obtain

E2 = 41.5MeV, E3 = 177.4MeV, E4 = 358.6MeV, … (2.80)

Nophysical solution exists for n = 0 or 1, that is, for the potential depth chosen it is

not possible tomatch the interior and exterior wave functions by fitting either 1∕4

or 3∕4 wavelengths into the region r < R0. In other words, there are no solutions

with either no node or only one node in the interior region.

The results obtained from the above formalism are illustrated qualitatively in

Figure 2.10 showing radial wave functions for different depths of an attractive

square-well potential. The bombarding energy is low (i.e., the wavelength is large

compared to R0) and held constant. In Figure 2.10a, the potential depth is zero

(free particle) and thewave function is given by a sine function. In Figure 2.10b, the

potential depth increases and, therefore, the wavelength in the interior decreases

according to

𝜆in
2𝜋

=
1

K
=

1√
(2m∕ℏ2)(E + V0)

, 𝜆in =
h√

2m(E + V0)
(2.81)

The values and derivatives of the inside and outside wave functions can only be

matched by shifting the outside solution inward. This is the physical meaning

of a phase shift. If the potential depth is increased further, the wavelength in

the interior becomes smaller and the exterior wave must shift inward, until
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Figure 2.10 Square-well potential (a–f ) and

corresponding radial wave function solu-

tions for different potential depths. For a

given depth of the potential, the values and

derivatives of the inside and outside wave

functions must be matched by shifting the

outside solution. The phase shift is a mea-

sure for this displacement. In part (c), the

derivative of the wave function at R0 is zero

and the system is in resonance.

exactly 1∕4 wavelength fit into the interior region. When this happens, the

derivative of the wave function at R0 becomes zero, corresponding to a maximum

amplitude inside the potential region. The system is in resonance as shown in

Figure 2.10c. A further increase in the potential depth results in: a decreasing

amplitude in the interior (Figure 2.10d); a minimum interior amplitude because

of poor wave function matching conditions (Figure 2.10e); and the appearance of

the first node in the interior region (Figure 2.10f ).

A plot of |A|2∕|C|2 versus potential depth V0 is shown in Figure 2.11. A total
energy of E = 1 MeV and a potential radius of R0 = 3 fm are assumed. Solving

Eq. (2.79) for the potential depth V0 yields

V0,n =
ℏ2

2m

𝜋2

R2
0

(
n +
1

2

)2
− E (2.82)

Thus, we expect resonances to occur at V0,0 = 4.7 MeV, V0,1 = 49.9 MeV, V0,2 =

140.5 MeV, V0,3 = 276.4 MeV, V0,4 = 457.6 MeV, and so on (with n = 0, 1, 2, 3, 4
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Figure 2.11 Plot of |A|2∕|C|2 versus poten-

tial depth V0 for the scattering of neutrons

by a square-well potential. For the total

energy and the potential radius, values of

E = 1 MeV and R0 = 3 fm are assumed. The

maxima show resonances corresponding to

n = 0, 1, 2, 3, and 4 radial wave function

nodes in the interior region.

nodes in the interior region, respectively), in agreement with the results displayed

in Figure 2.11.

2.4.2

Square-Barrier Potential

In the following, we will again consider the simple case of s-wave (𝓁 = 0) scat-

tering. In addition to an attractive square well, the potential displays a repulsive

square barrier. This is a simple model for a nuclear reaction if a barrier is present.

For example, the Coulomb potential provides a barrier in reactions involving

charged particles. By solving the Schrödinger equation explicitly, we will find the

probability for transmission through the potential barrier and the intensity of

the wave in the interior region. The potential is displayed in Figure 2.12. We will

consider the three regions I, II, III separately. In each region, the potential is

constant and, assuming 𝓁 = 0, we again obtain with k̂2 = (2m∕ℏ2)(E − V ) the

radial equation (Appendix A.1)

d2u

dr2
+ k̂2u = 0 (2.83)

For region I, we have E − V > 0 and, therefore,

uI = AeiKr + Be−iKr, K2 =
2m

ℏ2
(E + V0)

= A′ sin(Kr) (2.84)

The solution is the same as the one obtained in the study of the square-well poten-

tial (see Eq. (2.56)). In region II, we haveE − V < 0 and kII becomes imaginary.The
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−V0
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Figure 2.12 Three-dimensional square-well

potential of radius R0 and potential depth

V0 and a repulsive square-barrier potential of

thickness R1 − R0 and height V1. The total par-

ticle energy (horizontal line) is smaller than

the barrier height, E < V1. For the calculation

of the transmission coefficient, it is necessary

to consider a one-dimensional potential that

extends from −∞ to +∞.

solution can be written in terms of real exponentials as

uII = CeikIIr + De−ikIIr, k2
II
=
2m

ℏ2
(E − V1) = i2

2m

ℏ2
(V1 − E) ≡ i2𝜅2

= Ce−𝜅r + De𝜅r (2.85)

In region III, we have again E − V > 0, and the general solution is given by

uIII = Feikr + Ge−ikr, k2 =
2m

ℏ2
E

= F′ sin(kr + 𝛿0) (2.86)

The solution is the same as the one obtained in the study of the square-well poten-

tial (see Eq. (2.59)).

Transmission Through the Barrier

First, we are interested in the probability of transmission through the potential

barrier. It is convenient to start from the wave function solutions in terms of com-

plex exponentials (see Eqs. (2.84)–(2.86)). We must again perform the calculation

for the one-dimensional case. Instead of considering the three-dimensional poten-

tial shown in Figure 2.12, we will assume that the particles are incident from the

right-hand side, that they encounter at a distance of x = R1 a one-dimensional step

barrier of height V1, that at a distance of x = R0 the potential steps down to −V0,

and that this potential continues to−∞. We obtain for the one-dimensional radial

wave functions

uI = AeiKx + Be−iKx (2.87)

uII = Ce−𝜅x + De𝜅x (2.88)

uIII = Feikx + Ge−ikx (2.89)

The second term of uI corresponds to a plane wave that propagates into the neg-

ative x direction, whereas the first and second terms of uIII correspond to plane

waves reflected from the barrier and moving toward the barrier, respectively. The

transmission coefficient is then given by T̂ = jtrans∕jinc = (K |B|2)∕(k|G|2) (see
Eq. (2.62)).
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Thecontinuity condition (see Eqs. (2.63) and (2.64)) requires that thewave func-

tions and their derivatives are continuous at the boundaries x = R0 and x = R1(
uI
)
R0
=

(
uII

)
R0

(
uII

)
R1
=

(
uIII

)
R1

(2.90)(
duI
dx

)
R0

=

(
duII
dx

)
R0

(
duII
dx

)
R1

=

(
duIII
dx

)
R1

(2.91)

We obtain specifically

AeiKR0 + Be−iKR0 = Ce−𝜅R0 + De𝜅R0 (2.92)

i
K

𝜅

(
AeiKR0 − Be−iKR0

)
= −Ce−𝜅R0 + De𝜅R0 (2.93)

Ce−𝜅R1 + De𝜅R1 = FeikR1 + Ge−ikR1 (2.94)

−Ce−𝜅R1 + De𝜅R1 = i
k

𝜅

(
FeikR1 − Ge−ikR1

)
(2.95)

Adding and subtracting pairs of equations yields

A
(
1 + i

K

𝜅

)
eiKR0 + B

(
1 − i

K

𝜅

)
e−iKR0 = 2De𝜅R0 (2.96)

A
(
1 − i

K

𝜅

)
eiKR0 + B

(
1 + i

K

𝜅

)
e−iKR0 = 2Ce−𝜅R0 (2.97)

2De𝜅R1 = F

(
1 + i

k

𝜅

)
eikR1 + G

(
1 − i

k

𝜅

)
e−ikR1 (2.98)

2Ce−𝜅R1 = F

(
1 − i

k

𝜅

)
eikR1 + G

(
1 + i

k

𝜅

)
e−ikR1 (2.99)

Elimination of the coefficients C and D, and using the definitions 𝛼 ≡ 1 + iK∕𝜅

and 𝛽 ≡ 1 + ik∕𝜅 gives

A𝛼eiKR0 + B𝛼∗e−iKR0 = e−𝜅(R1−R0)
(
F𝛽eikR1 + G𝛽∗e−ikR1

)
(2.100)

A𝛼∗eiKR0 + B𝛼e−iKR0 = e𝜅(R1−R0)
(
F𝛽∗eikR1 + G𝛽e−ikR1

)
(2.101)

Of interest is the transmission coefficient T̂ of awave incident from the right-hand

side of the potential barrier. Since there is no wave approaching the barrier from

the left-hand side, we set A = 0. We can also eliminate F and obtain

B
[
𝛼∗𝛽∗e𝜅Δ − 𝛼𝛽e−𝜅Δ

]
= G

[
(𝛽∗)2 − 𝛽2

]
e−i(kR1−KR0) = −2i

k

𝜅
Ge−i(kR1−KR0) (2.102)

where we used Δ ≡ R1 − R0. The transmission coefficient is then given by

T̂ =
K

k

|B|2|G|2 = 4Kk∕𝜅2|𝛼∗𝛽∗e𝜅Δ − 𝛼𝛽e−𝜅Δ|2 (2.103)

Using the relation sinh2 z = (1∕4)(e2z + e−2z) − 1∕2 yields after some algebra

T̂ =
Kk

[K + k]2 +
[
𝜅2 + K2 + k2 + K2k2∕𝜅2

]
sinh2(𝜅Δ)

(2.104)
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In terms of energies, one finds explicitly

1

T̂
=

1√
E(E + V0)

{[
2E + V0 + 2

√
E(E + V0)

]
+

[
E + V0 + V1 +

E(E + V0)

V1 − E

]
sinh2

[√
(2m∕ℏ2)(V1 − E) Δ

]}
(2.105)

This result is remarkable since it shows that a particle approaching the poten-

tial barrier from the right-hand side can reach the left-hand side even if its total

energy is less than the barrier height. This is referred to as the tunnel effect and is

of central importance for charged-particle reactions in stars, as will be shown in

Chapter 3.

Plots of T̂ versus E for the scattering of neutrons are shown in Figure 2.13.

The values used are (Figure 2.13a) V0 = 100 MeV, V1 = 10 MeV, R0 = 3 fm,

R1 = 8 fm, and (Figure 2.13b) V0 = 50 MeV, V1 = 10 MeV, R0 = 3 fm, R1 = 8 fm.

It can be seen that the transmission coefficient drops rapidly with a decreas-

ing energy E. It is also apparent from the absolute magnitude of T̂ that the

intensity of the wave receding from the barrier to the left-hand side is consid-

erably smaller than the intensity of the wave approaching the barrier from the

right-hand side.

Frequently, the case of a low bombarding energy or a thick barrier is of interest,

𝜅Δ =

√
2m(V1 − E)

ℏ
(R1 − R0)≫ 1 (2.106)
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Figure 2.13 Transmission coefficient

T̂ versus energy E for the scattering of

neutrons by the square-barrier poten-

tial shown in Figure 2.12. The poten-

tial properties are: (a) V0 = 100 MeV,

V1 = 10 MeV, R0 = 3 fm, R1 = 8 fm,

and (b) V0 = 50 MeV, V1 = 10 MeV,

R0 = 3 fm, R1 = 8 fm. The drastic drop of the

transmission coefficient at small energies is

apparent.
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In this case, we can approximate the denominator in Eq. (2.103) by||𝛼∗𝛽∗e𝜅Δ − 𝛼𝛽e−𝜅Δ||2 ≈ ||𝛼∗𝛽∗e𝜅Δ||2 (2.107)

After some algebra we obtain

T̂ ≈ 4

√
E(E + V0)(V1 − E)

V1(V0 + V1)
e−2𝜅(R1−R0) (2.108)

The energy dependence of the transmission coefficient is entirely dominated by

the exponential factor. For physically reasonable values of E, V0, and V1, the coef-

ficient in front of the exponential is of order unity. Hence, we find

T̂ ≈ e−(2∕ℏ)
√
2m(V1−E)(R1−R0) (2.109)

This important result, which strictly applies to the s-wave (𝓁 = 0) scattering of

neutral particles, will be used later in connection with the transmission through

the Coulomb barrier (Section 2.4.3).

Resonances

In the previous section, we derived the transmission probability for a one-

dimensional square-barrier potential. The full radial wave function solution

for the three-dimensional case will now be considered. It is interesting to

have a closer look at the situation. For region I, we expect again a resonance

phenomenon because of good wave function matching conditions. For region

III, we expect again a phase shift to match the solutions smoothly at r = R1.

The barrier in region II provides an extra complication. Here, the wave function

uII is given by real exponentials and, depending on the relative magnitude of

the coefficients C and D, may represent a decreasing, an increasing, or a more

complicated function of the radius r.

As we did in the study of the square-well potential, we will calculate the

energy dependence of the phase shift 𝛿0 and of |A′|2, the intensity of the wave
in the interior region r < R0. We start from the wave function solutions (see

Eqs. (2.84)–(2.86))

uI = A′ sin(Kr) (2.110)

uII = Ce−𝜅r + De𝜅r (2.111)

uIII = F ′ sin(kr + 𝛿0) (2.112)

and apply again the continuity condition (see Eqs. (2.63) and (2.64)) to the bound-

aries r = R0 and r = R1. It follows that

A′ sin(KR0) = Ce−𝜅R0 + De𝜅R0 (2.113)

A′K

𝜅
cos(KR0) = −Ce−𝜅R0 + De𝜅R0 (2.114)

Ce−𝜅R1 + De𝜅R1 = F ′ sin(kR1 + 𝛿0) (2.115)

−Ce−𝜅R1 + De𝜅R1 = F ′
k

𝜅
cos(kR1 + 𝛿0) (2.116)



98 2 Nuclear Reactions

Solving for 𝛿0 by eliminating A
′, F ′, C, and D yields

𝛿0 = −kR1 + arctan

[
k

𝜅

sin(KR0)
(
e−𝜅Δ + e𝜅Δ

)
+

K

𝜅
cos(KR0)

(
e𝜅Δ − e−𝜅Δ

)
sin (KR0)

(
e𝜅Δ − e−𝜅Δ

)
+

K

𝜅
cos(KR0)

(
e−𝜅Δ + e𝜅Δ

)]
(2.117)

For k → 0 (or E → 0), we obtain 𝛿0 → 0.
The wave intensity in the interior region, |A′|2, is found by eliminating the con-
stants C, D, and the phase shift 𝛿0. Furthermore, we use the expressions e

2x +

e−2x = 4 sinh2 x + 2 and ex − e−x = 2 sinh x. The tedious algebra is not given here

explicitly. The result is|F′|2|A′|2 = sin2(KR0) + (
K

k

)2
cos2(KR0)

+ sin2(KR0) sinh
2(𝜅Δ)

[
1 +

(
𝜅

k

)2]
+ cos2(KR0) sinh

2(𝜅Δ)

[(
K

𝜅

)2
+

(
K

k

)2]
+ sin(KR0) cos(KR0) sinh(2𝜅Δ)

[(
K

𝜅

)
+

(
K

𝜅

)(
𝜅

k

)2]
(2.118)

The energy dependence of the quantities |A′|2∕|F ′|2, |A′|2∕(|F ′|2T̂ ) and 𝛿0
for neutron scattering by a square-barrier potential is shown in Figure 2.14,

where the transmission coefficient T̂ is obtained from the approximation

of Eq. (2.109). We assume values of V0 = 100 MeV, V1 = 10 MeV, R0 = 3 fm,

R1 = 8 fm (dashed lines) and V0 = 50 MeV, V1 = 10 MeV, R0 = 3 fm, R1 = 8 fm

(solid lines).The figure reflects both the effects of the barrier transmission and the

resonance phenomenon. For a potential depth of V0 = 100 MeV, no resonance

occurs over the energy range shown and the plot looks almost identical to the

corresponding part in Figure 2.13. Consequently, the quantity |A′|2∕(|F′|2T̂ ) is
almost constant with energy. Furthermore, the phase shift varies smoothly with

energy. For a potential depth ofV0 = 50 MeV, on the other hand, the interior wave

function solution has a large amplitude because of good matching conditions.

The resulting resonance is seen in Figure 2.14a. The shape of the resonance is

distorted by the barrier transmission coefficient. In Figure 2.14b, the effects of the

barrier transmission are removed and, consequently, the shape of the resonance

becomes symmetric. It is also evident that the resonance shifts the phase by a

significant amount. This method of removing the transmission coefficient from

the wave function intensity or the cross section is of crucial importance in nuclear

astrophysics, as will be seen in Chapter 3.

A plot of |A′|2∕|F ′|2 versus potential depth V0 in the region r < R0 is shown

in Figure 2.15. The graph is obtained for the potential parameters V1 = 10 MeV,

R0 = 3 fm, R1 = 8 fm, and E = 5 MeV. Several resonances that become broader

with an increasing value of V0 are apparent. By changing V0 we change the
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Figure 2.14 Energy dependence of the

quantities (a) |A′|2∕|F′|2, (b) |A′|2∕(|F′|2T̂ )
and (c) 𝛿0 for neutron scattering by a square-

barrier potential (Figure 2.12). The proper-

ties of the potential are V1 = 10 MeV, R0 =

3 fm and R1 = 8 fm. The dashed and solid

lines are obtained for potential depths of V0

= 100 MeV and V0 = 50 MeV, respectively.

The curves represent the effects of both the

barrier transmission and the resonance phe-

nomenon. In part (b), the effects of the bar-

rier transmission are removed and the shape

of the resonance becomes symmetric (solid

line).

wavelength in the interior region (see Eq. (2.81)). As was the case for the simple

square-well potential (Section 2.4.1), the resonances result from favorable wave

function matching conditions at the boundaries. The first resonance corresponds

to a wave function with no node in the region r < R0. The second resonance cor-

responds to one node, the third resonance to two nodes, and so on. Comparison
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Figure 2.15 Plot of |A′|2∕|F′|2 versus

potential depth V0 in the interior region

for the scattering of neutrons by a square-

barrier potential. The curve is calculated

for the parameters V1 = 10 MeV, R0 = 3 fm,

R1 = 8 fm and E = 5 MeV. The maxima corre-

spond to resonances that result from favor-

able wave function matching conditions at

the boundaries.

to Figure 2.11 shows that the resonances are much narrower because of the

repulsive square-barrier potential.

As a final example, Figure 2.16 shows schematically the radial wave functions

for three cases. In Figure 2.16a, the potential depth is zero. The amplitude of the

wave function in the interior is very small and reflects primarily the transmission

through the barrier. In Figure 2.16b, the amplitude in the interior is at maximum

because of favorable matching conditions. The system is in resonance with no

wave function node in the interior. Figure 2.16c displays the wave function for

the second resonance, showing one node in the interior region.

2.4.3

Transmission Through the Coulomb Barrier

The low-energy s-wave transmission coefficient for a square-barrier potential

(see Eq. (2.109)) can be easily generalized since a potential barrier of arbitrary

shape may be divided into thin slices of width dr. The total s-wave transmission

coefficient is then given by the product of the transmission coefficients for

each slice,

T̂ = T̂1 ⋅ T̂2 ⋅… ⋅ T̂n ≈ exp

[
−
2

ℏ

∑
i

√
2m(Vi − E)(Ri+1 − Ri)

]

−−−−→
n large

exp

[
−
2

ℏ ∫
Rc

R0

√
2m[V (r) − E] dr

]
(2.119)
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Figure 2.16 Schematic representation of

radial wave functions (thin solid lines) for the

scattering of neutral particles by a square-

barrier potential (thick solid line) of different

potential depths V0. The wave functions are

appropriate for (a) no resonance, (b) the first

resonance with no wave function node in

the interior region (r < R0), and (c) the sec-

ond resonance with one node in the interior.

For the important case of the Coulomb potential, displayed in Figure 2.17, we

obtain

T̂ ≈ exp

(
−
2

ℏ

√
2m∫

Rc

R0

√
Z0Z1e

2

r
− E dr

)
(2.120)

with Z0 and Z1 the charge of the projectile and target, respectively. The quantity

R0 is the radius of the square-well potential and defines the height of the Coulomb

barrier, VC = Z0Z1e
2∕R0. Numerically, one finds VC = 1.44Z0Z1∕R0 (MeV), with

R0 in units of femtometers; we can approximate this radius using the expression

given in Section 2.5.5. The quantity Rc is the distance at which the incoming par-

ticle would be reflected classically. It is referred to as the classical turning point

and is defined by E = Z0Z1e
2∕Rc or E∕VC = R0∕Rc. The integral in Eq. (2.120) can

be solved analytically. Rewriting the above expression using the definition of the

classical turning point yields

T̂ ≈ exp

(
−
2

ℏ

√
2mZ0Z1e

2 ∫
Rc

R0

√
1

r
−
1

Rc

dr

)
(2.121)
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Us
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Figure 2.17 Attractive nuclear square-well

potential (r < R0) plus repulsive Coulomb

potential (r > R0), shown as thick solid line.

The transmission coefficient can be calcu-

lated analytically by dividing the Coulomb

barrier of height VC = Z1Z2e
2∕R0 into

infinitesimally thin square-barrier poten-

tials. The radius Rc at which the total par-

ticle energy E (thin solid line) is equal to

the Coulomb potential, E = Z1Z2e
2∕Rc , is

referred to as the classical turning point. The

thick dashed line indicates a small negative

(attractive) potential Us that results from the

polarization of the electron–ion plasma (elec-

tron screening), giving rise to a modification

of both the Coulomb potential and the ener-

getics of the reaction (Section 3.2.6).

Substitution of z ≡ r∕Rc gives

T̂ ≈ exp

(
−
2

ℏ

√
2mZ0Z1e

2 ∫
1

R0∕Rc

√
1

zRc

−
1

Rc

Rc dz

)
= exp

(
−
2

ℏ

√
2m

E
Z0Z1e

2 ∫
1

R0∕Rc

√
1

z
− 1 dz

)
(2.122)

The result is

T̂ ≈ exp

⎛⎜⎜⎝− 2ℏ
√
2m

E
Z0Z1e

2
⎡⎢⎢⎣arccos

√
E

VC

−

√
E

VC

(
1 −

E

VC

)⎤⎥⎥⎦
⎞⎟⎟⎠ (2.123)

For low energies compared to the Coulomb barrier height, E∕VC ≪ 1, we use the

expansion arccos
√
x −

√
x(1 − x) ≈ 𝜋∕2 − 2

√
x + x3∕2∕3 and obtain
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T̂ ≈ exp

(
−
2

ℏ

√
2m

E
Z0Z1e

2

[
𝜋

2
− 2

√
E

VC

+
1

3

(
E

VC

)3∕2])

= exp

(
−
2𝜋

ℏ

√
m

2E
Z0Z1e

2

[
1 +
2

3𝜋

(
E

VC

)3∕2]
+
4

ℏ

√
2mZ0Z1e

2R0

)
(2.124)

The first term in the exponential is larger than the third term by a factor of

(𝜋∕4)
√
VC∕E and therefore dominates the transmission coefficient. The third

term vanishes in the limit R0 → 0 and represents a correction caused by a finite
radius to which the projectile must penetrate.The larger the radius R0, the smaller

the penetration distance (Figure 2.17) and the larger the transmission coefficient

will become. The second term represents a correction factor to the first term

when the energy becomes a significant fraction of the Coulomb barrier height.

The leading term of the s-wave Coulomb barrier transmission coefficient for

small energies compared to the Coulomb barrier height,

T̂ ≈ exp

(
−
2𝜋

ℏ

√
m

2E
Z0Z1e

2

)
≡ e−2𝜋𝜂 (2.125)

is called the Gamow factor and will play an important role in the discussion of

thermonuclear reaction rates for charged particles (Section 3.2.1). The quantity 𝜂

is the Sommerfeld parameter and its numerical value is given in Section 3.2.1.

2.5

Theory of Resonances

2.5.1

General Aspects

Up to now we have discussed wave function intensities, phase shifts, and trans-

mission probabilities for simple nuclear potentials. In the following, the resulting

cross sections will be considered. Initially, we will restrict ourselves again to the

case of s-wave scattering of neutral particles, that is, the complications of the

Coulomb and centripetal barriers are disregarded.The total elastic scattering and

reaction cross sections are then given by Eqs. (2.40) and (2.49),

𝜎el,0 =
𝜋

k2
|||1 − e2i𝛿0

|||2 = 4𝜋k2 sin2 𝛿0 (2.126)

𝜎re,0 =
𝜋

k2

(
1 −

|||e2i𝛿0 |||2) (2.127)

The cross sections are entirely determined by the phase shift 𝛿0.

It is interesting to plot the total elastic scattering cross sections for the poten-

tial models considered in Sections 2.4.1 and 2.4.2. They are shown in Figure 2.18

for (a) a square-well potential with R0 = 3 fm, V0 = 100 MeV; (b) a square-barrier

potential with R0 = 3 fm, R1 = 8 fm, V0 = 100 MeV, V1 = 10 MeV; and (c) a
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Figure 2.18 Elastic scattering cross sections

for s-wave neutrons versus energy for the

simple potentials discussed in Sections 2.4.1

and 2.4.2: (a) square-well potential with

R0 = 3 fm, V0 = 100 MeV; (b) square-barrier

potential with R0 = 3 fm, R1 = 8 fm, V0 =

100 MeV, V1 = 10 MeV; (c) square-barrier

potential with R0 = 3 fm, R1 = 8 fm, V0 =

50 MeV, V1 = 10 MeV. A resonance is

observed only in part (c).

square-barrier potential with R0 = 3 fm, R1 = 8 fm, V0 = 50 MeV, V1 = 10 MeV.

We expect resonances in parts (a) and (c), as is apparent from Figures 2.8

and 2.14. However, a resonance is observed only in Figure 2.18c. And even in

this case the resulting shape of the total elastic scattering cross section looks

complicated.

Up to now we considered single-particle potentials. The spacing of resonances,

referred to as single-particle resonances, calculated by these models amounts to

many mega electron volts. However, experiments performed since the 1930s fre-

quently showed closely spaced resonances (sometimes a few kilo electron volts or



2.5 Theory of Resonances 105

0.5

100

101

1.0 1.5 2.0

En (MeV)

16O(n,n)16O

2.5 3.0 3.5

𝜎
 (

b
)

Figure 2.19 Experimental total cross section

for the elastic scattering 16O(n,n)16O (data

points) and calculated elastic scattering

cross section using a (Woods–Saxon) single-

particle potential (solid line). The potential

reproduces only one of the observed res-

onances but cannot account for the entire

observed structure. Data are from Westin

and Adams (1972).

less apart) of very narrowwidths. For example, Figure 2.19 shows the experimental

elastic scattering cross section of neutrons on 16O. In contrast to our theoretical

results obtained so far, a very complicated structure consisting of several reso-

nances with different widths is observed. The solid line in Figure 2.19 represents

a calculation using a single-particle potential. It reproduces only one of the many

resonances shown. Although some observed resonances can be described by

single-particle potentials, in the vastmajority of cases the single-particle picture is

not appropriate for the explanation of the observed rapid cross section variations.

At this point, we suspect that the interactions of many nucleons inside the

nucleus are complicated and cannot be expressed in terms of a single radial wave

function generated by a single-particle potential. In the following, we will develop

a different model to describe a nuclear resonance in general terms without using

an explicit assumption for the nuclear potential. A specific assumption regarding

the many-particle nuclear potential may even be undesirable since at this point

neither the nuclear forces between the nucleons nor their motion in the nuclear

interior are precisely known.

2.5.2

Logarithmic Derivative, Phase Shift, and Cross Section

Since wewill notmake reference to a specific nuclear potential, this model will not

be able to predict the absolute magnitude of cross sections. Most resonance theo-

ries reformulate the cross sections in terms of known quantities of the nuclear

exterior (penetration and shift factors) and unknown quantities of the nuclear

interior (reduced widths). Our goal is to predict relative cross sections near a

resonance. The only assumptions we make regarding the nuclear potential is the
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existence of a relatively well-defined spherical nuclear surface at r = R and that

the projectile and target have no nuclear interaction outside of this radius.

At this boundary, the interior and exterior wave functions and their derivatives

have to be matched,

uin𝓁 (R) = uout𝓁 (R) and

(
duin𝓁 (r)

dr

)
r=R

=

(
duout𝓁 (r)

dr

)
r=R

(2.128)

By dividing both expressions and by introducing a dimensionless quantity, called

the logarithmic derivative at the boundary,

f𝓁 ≡ R

(
1

u𝓁(r)

du𝓁(r)

dr

)
r=R

= R

(
d lnu𝓁(r)

dr

)
r=R

(2.129)

we can rewrite the conditions of Eq. (2.128) as

f𝓁(u
in
𝓁 ) = f𝓁(u

out
𝓁 ) (2.130)

In other words, the calculation of f𝓁 with u
in
𝓁 and u

out
𝓁 must yield the same value.

The quantity f is related to the slope of the wave function at the radius r = R.

We start from the expression for the total wave function in the exterior region

r > R (see Eq. (2.32)). For s-waves (𝓁 = 0) it reduces to

𝜓T ,out = Aeikr + Be−ikr, k2 =
2mE

ℏ2

= −
i

2kr
e2i𝛿0eikr +

i

2kr
e−ikr =

i

2kr

(
e−ikr − e2i𝛿0eikr

)
=
1

2kr
ei𝛿0

[
e−i(kr+𝛿0) − ei(kr+𝛿0)

]
=
1

kr
ei𝛿0 sin(kr + 𝛿0) (2.131)

where the first expression (Aeikr + Be−ikr) generally holds in the force-free region

(Eqs. (2.57) and (2.86); see also Appendix A.1). Recall the meaning of the above

equation: the outgoing spherical wave eikr is multiplied by a factor e2i𝛿0 , which

effectively shifts the wave by an amount of 𝛿0.

As already implied in Sections 2.3.3 and 2.3.4, for the special case of s-waves,

Eq. (2.32) (and thus Eq. (2.131)) is not only valid at large distances but also applies

to all distances r > R. Furthermore, the spherical harmonic for 𝓁 = 0 is constant

(see Eq. (A.9)) and, therefore, the total wave function is given by the radial wave

function

𝜓T ,out =
i

2kr

(
e−ikr − e2i𝛿0eikr

)
=

uout(r)

r
(2.132)

The cross section is determined by the phase shift 𝛿0. We will first find a relation-

ship between 𝛿0 and f0 and will then express the cross section in terms of f0. From

Eqs. (2.129) and (2.132), one obtains

f0
R
=

(
1

uout(r)

duout(r)

dr

)
r=R

=
−ike−ikR − ike2i𝛿0eikR

e−ikR − e2i𝛿0eikR
(2.133)

Solving for e2i𝛿0 gives

e2i𝛿0 =
f0 + ikR

f0 − ikR
e−2ikR (2.134)
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For the elastic scattering cross section (see Eq. (2.126)), we find

𝜎el,0 =
𝜋

k2

||||1 − f0 + ikR

f0 − ikR
e−2ikR

||||
2

=
𝜋

k2

||||e2ikR − f0 + ikR

f0 − ikR

||||
2

=
𝜋

k2

||||− 2ikRf0 − ikR
+ e2ikR − 1

||||2 = 𝜋

k2
|||Ares + Apot

|||2 (2.135)

with

Ares = −
2ikR

f0 − ikR
and Apot = e2ikR − 1 (2.136)

It can be seen that Ares has a maximum if f0 = 0, consistent with our identifica-

tion of resonances as a slope of zero for the radial wave function at the bound-

ary r = R.

Similarly, using f0 = Re f0 + i Im f0 = g + ih, one obtains for the reaction cross

section (see Eq. (2.127))

𝜎re,0 =
𝜋

k2

(
1 −

|||| f0 + ikR

f0 − ikR
e−2ikR

||||
2
)

=
𝜋

k2

[
1 −

(
g + ih + ikR

g + ih − ikR

)(
g − ih − ikR

g − ih + ikR

)]
=
𝜋

k2
−4hkR

g2 + h2 − 2hkR + k2R2
=
𝜋

k2
−4kR Im f0

(Re f0)
2 + (Im f0 − kR)2

(2.137)

Only Ares depends on the interior region r < R through f0. Consequently, only

this term can give rise to resonances and Ares is called resonance scattering ampli-

tude. The term Apot can be interpreted as follows. Suppose that f0 → ∞. In that

case, Ares = 0. From the definition of f0 (see Eq. (2.129)), this implies u(R) = 0

and, therefore, an infinitely high potential for r < R (i.e., the sphere of radius R

is impenetrable). Thus, the quantity Apot is called hardsphere potential scattering

amplitude. Note also that Im f0 ≤ 0, otherwise 𝜎re,0 becomes negative. For the spe-
cial case that f0 is real (Im f0 = 0), the reaction cross section disappears, 𝜎re,0 = 0.

Therefore, f0 must be complex for reactions to occur.

It is also interesting to consider the elastic scattering phase shift 𝛿0. From

Eq. (2.134) one finds

2i𝛿0 = ln(f0 + ikR) − ln(f0 − ikR) − 2ikR (2.138)

Assuming Im f0 = 0 (or 𝜎re,0 = 0) we find using the identity ln(a + ib) =

(1∕2) ln(a2 + b2) + i arctan(b∕a)

𝛿0 =
1

2i

[
1

2
ln

(
f 2
0
+ k2R2

)
+ i arctan

(
kR

f0

)]
−
1

2i

[
1

2
ln

(
f 2
0
+ k2R2

)
+ i arctan

(
−kR

f0

)]
− kR

= arctan

(
kR

f0

)
− kR = 𝛽0 + 𝜑0 (2.139)
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with

𝛽0 = arctan

(
kR

f0

)
and 𝜑0 = −kR (2.140)

The phase shift 𝛿0 is expressed as a sum of two terms. The first term, 𝛽0, depends

on the scattering potential through f0 and can give rise to resonances. The second

term, 𝜑0, is independent of the scattering potential. It corresponds to the phase

shift for hardsphere scattering, since 𝛿0 = 𝜑0 for f0 → ∞ (or u(R) = 0).

2.5.3

Breit–Wigner Formulas

The logarithmic derivative at the boundary, f0, has to be known to calculate 𝜎el,0
and 𝜎re,0. For the derivation of f0, we need to make some assumptions regard-

ing the wave function in the nuclear interior (r < R). Remember that the general

solution with constant wave number K in the interior (see Eqs. (2.55) and (2.84))

uin = AeiKr + Be−iKr (2.141)

only applies for the simple assumption of a constant potential V (r) = const

(Section 2.4). The nuclear potential will be rather complicated since for r < R the

wave function of the incident particle will depend on the variables of all the other

nucleons involved. Nevertheless, we will approximate the interior wave function,

in the closest vicinity of the nuclear boundary only, by the above expression.

The complex amplitudes A and B depend on the properties of the nuclear sys-

tem. We have to allow for a phase difference 𝜁 between incoming (e−iKr) and out-

going (eiKr) spherical waves. Furthermore, one has to account for the possibility

that the particle is absorbed in the nuclear interior because of reaction processes,

that is, the amplitude of the outgoing wave eiKr will generally be smaller than the

amplitude of the incoming wave e−iKr . We start with the ansatz

A = Be2i𝜁e−2q (2.142)

where both 𝜁 and q are real numbers. We also require q ≥ 0 since no more parti-
cles can return than entered the nucleus originally. From Eqs. (2.141) and (2.142),

one finds

uin = Be2i𝜁e−2qeiKr + Be−iKr =
B

2

[
e−i(Kr+𝜁+iq) + ei(Kr+𝜁+iq)

]
2e(i𝜁−q)

= 2Be(i𝜁−q) cos(Kr + 𝜁 + iq) (2.143)

The logarithmic derivative of the radial wave function must be continuous at r =

R. Substitution of Eq. (2.143) into Eq. (2.129) yields

f0 = R

(
1

uin(r)

duin(r)

dr

)
r=R

= R
−2Be(i𝜁−q)K sin(KR + 𝜁 + iq)

2Be(i𝜁−q) cos(KR + 𝜁 + iq)

= −KR tan(KR + 𝜁 + iq) (2.144)
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Clearly, f0 depends on the energy-dependent quantities K , 𝜁 , and q. If one knew

these variables, then one could calculate resonance energies and cross sections

directly from the properties of the nuclear interior. Unfortunately, this is not the

case.Thus, our strategywill be to express the cross sections 𝜎el and 𝜎re near a single

resonance in terms of measurable quantities.

Wewill assume that the argument of the tangent,KR + 𝜁 + iq, is a smooth func-

tion of energy,E. Furthermore, if q = 0 then f0 becomes real, and the reaction cross

section disappears. Recall that a resonance corresponds to a large wave function

amplitude in the nuclear interior, implying a slope of zero for the radial wave func-

tion at r = R (Figure 2.10). One can define formal resonance energies, E𝜆, by the

condition

f0(E𝜆, q) = −KR tan(KR + 𝜁 + iq) = 0 (2.145)

There is a whole set of such energies. Let us consider any one of them and study

the behavior of f0 near E𝜆.

In the following, it is assumed that the absorption in the nuclear interior is

weaker than the elastic scattering process, that is, |q|≪ 1. Expansion of f0(E, q)
near E𝜆 and q = 0 into a Taylor series in both q and E gives

f0 ≈ f0(E𝜆, q) + (E − E𝜆)

(
𝜕f0
𝜕E

)
E𝜆,q=0

+ q

(
𝜕f0
𝜕q

)
E𝜆,q=0

(2.146)

For the last term, one finds with Eq. (2.144)

q

(
𝜕f0
𝜕q

)
E𝜆,q=0

= −qKR

[
𝜕

𝜕q
tan(KR + 𝜁 + iq)

]
E𝜆,q=0

= −iqKR (2.147)

since at the resonance energy, E𝜆, one has tan x = 0 (see Eq. (2.145)) and thus

d(tan x)∕dx = cos−2 x = 1. It follows

f0 ≈ (E − E𝜆)

(
𝜕f0
𝜕E

)
E𝜆,q=0

− iqKR = Re f0 + i Im f0 (2.148)

Recall that (𝜕f0∕𝜕E)E𝜆,q=0 is a real quantity since q = 0 implies a vanishing reaction

cross section. Substitution of Eq. (2.148) into Eqs. (2.136) and (2.137) gives for the

resonance scattering amplitude and the reaction cross section

Ares =

−
2ikR

(𝜕f0∕𝜕E)E𝜆,q=0

(E − E𝜆) −
i(kR+qKR)

(𝜕f0∕𝜕E)E𝜆,q=0

(2.149)

𝜎re,0 =
𝜋

k2

(2kR)(2qKR)

(𝜕f0∕𝜕E)
2
E𝜆,q=0

(E − E𝜆)
2 +

(qKR+kR)2

(𝜕f0∕𝜕E)
2
E𝜆,q=0

(2.150)
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We introduce the following definitions (the subscripts e and r stand for elastic and

reaction, respectively):

Γ𝜆e ≡ −
2kR(

𝜕f0∕𝜕E
)
E𝜆,q=0

(particle width) (2.151)

Γ𝜆r ≡ −
2qKR(

𝜕f0∕𝜕E
)
E𝜆,q=0

(reaction width) (2.152)

Γ𝜆 ≡ Γ𝜆e + Γ𝜆r (total width) (2.153)

Only the quantity Γ𝜆r depends on the parameter q describing absorption in the

nuclear interior. The new quantities Γ𝜆e, Γ𝜆r , and Γ𝜆 have units of energy since

f0, kR, and KR are dimensionless. All widths refer to the resonance 𝜆 of interest.

Also, f0 depends on the channel through which the reaction is initiated. Rewrit-

ing Eqs. (2.149) and (2.150) in terms of the newly defined quantities yields, after

some algebra, for the elastic scattering and reaction cross sections (see Eqs. (2.135)

and (2.137))

𝜎el,0 =
𝜋

k2

|||| iΓ𝜆e
(E − E𝜆) + iΓ𝜆∕2

+ e2ikR − 1
||||
2

=
𝜋

k2

[
2 − 2 cos(2kR)

+
Γ2
𝜆e
− Γ𝜆eΓ𝜆 + Γ𝜆eΓ𝜆 cos(2kR) + 2Γ𝜆e(E − E𝜆) sin(2kR)

(E − E𝜆)
2 + Γ2

𝜆
∕4

]
(2.154)

𝜎re,0 =
𝜋

k2
Γ𝜆eΓ𝜆r

(E − E𝜆)
2 + Γ2

𝜆
∕4

(2.155)

The last two expressions are referred to as Breit–Wigner formulas for s-wave

neutrons.

Plots of 𝜎el,0 and 𝜎re,0 for incident neutrons versus energy E near a resonance

are shown in Figure 2.20. We use the values R = 3 fm and E𝜆 = 1 MeV and

assume energy-independent partial widths of Γ𝜆 = 10.1 keV and Γ𝜆e = 10 keV.

Several interesting aspects can be noticed. First, the full width at half maximum

(FWHM) of the 𝜎re,0 curve (FWHM = 10.1 keV) corresponds precisely to the

value of Γ𝜆. Therefore, we identify this parameter with the total resonance

width. The quantities Γ𝜆e and Γ𝜆r correspond then to partial widths for the

scattering and reaction channel, respectively. Second, far away from the res-

onance (|E − E𝜆|≫ Γ𝜆) only the hardsphere potential scattering amplitude

Apot will contribute to the cross section. We obtain from Eq. (2.154) a value of

𝜎el,0 ≈ (2𝜋∕k2)[1 − cos(2kR)] ≈ 100 fm2, shown as dashed line in Figure 2.20.

Third, the numerator in the expression for 𝜎el,0 (see Eq. (2.154)) contains an

interference term 2Γ𝜆e(E − E𝜆) sin(2kR), which will change sign below and

above the resonance. The structure seen in Figure 2.20a is caused by destructive

(E < E𝜆) and constructive (E > E𝜆) interference of Ares and Apot. This interference

also causes FWHM in the elastic scattering cross section at the resonance to be

different from the value of Γ𝜆. Fourth, remember that a resonance corresponds
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Figure 2.20 Plots of (a) 𝜎el,0 and (b) 𝜎re,0
versus energy E for incident neutrons near

a resonance at E𝜆 = 1 MeV. A value of R =

3 fm is chosen for the radius. The widths are

assumed to be energy independent with val-

ues of Γ𝜆 = 10.1 keV and Γ𝜆e = 10 keV. See

discussion in the text.

to a value of zero for the logarithmic derivative f0 at the nuclear boundary. The

implication is that in the scattering process the particle enters the nucleus with

significant probability only near resonance. Off resonance the particle is almost

entirely reflected at the boundary, and the wave function inside is weak. The

resonance scattering is thus ascribed to the inside of the nucleus and the potential

scattering to its surface.

The present results help us understand the complicated structures observed

in the scattering cross sections for an explicit nuclear potential, as shown in

Figure 2.18. The structures are caused, in part, by interference effects between

the re-emission of the incident particle by the nucleus and the scattering near

the nuclear surface. An additional complication is introduced because single-

particle potential models predict several resonances that may interfere with each

other.
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We consider now the elastic scattering phase shift near a resonance, 𝛿0 = 𝛽0 +

𝜑0 ≈ 𝛽0. For Im f0 = 0 (q = 0), we obtain from Eqs. (2.139), (2.148), and (2.151)

𝛽0 ≈ arctan

[
kR

(E − E𝜆)(𝜕f0∕𝜕E)E𝜆,q=0

]
= arctan

[
Γ𝜆e

2(E𝜆 − E)

]
(2.156)

At the resonance energy, E = E𝜆, the argument of the arctan function becomes

infinite and thus 𝛽0 = 𝜋∕2. Furthermore, since d(arctan x)∕dx = (1 + x2)−1, one

finds for the energy derivative of the resonance elastic scattering phase shift

at E = E𝜆(
d𝛽0
dE

)
E𝜆

=
1

2

[
(dΓ𝜆e∕dE)(E𝜆 − E) + Γ𝜆e

(E𝜆 − E)2 + (Γ𝜆e∕2)
2

]
E𝜆

=
2

(Γ𝜆e)E𝜆
(2.157)

Hence, the resonance phase shift at E = E𝜆 amounts to 𝜋∕2, while its energy

derivative determines the particle width. For the special case that Γ𝜆e is nearly

constant with energy (e.g., for a narrow resonance), we find from Eq. (2.156) that

𝛽0 = 𝜋∕4 at E = E𝜆 − Γ𝜆e∕2 and 𝛽0 = 3𝜋∕4 at E = E𝜆 + Γ𝜆e∕2. Thus, the particle

width Γ𝜆e becomes equal to the energy interval over which 𝛽0 increases from 𝜋∕4

to 3𝜋∕4. The above techniques involving the resonance phase shift are frequently

employed for the calculation of particle partial widths.

Let us now consider the particle width Γ𝜆e in more detail. We define (see

Eq. (2.151))

Γ𝜆e = −
2kR

(𝜕f0∕𝜕E)E𝜆,q=0
≡ 2P0𝛾2𝜆e with 𝛾2

𝜆e
≡ −

(
𝜕f0
𝜕E

)−1

E𝜆,q=0

(2.158)

where the particle width has been split into two factors. The first factor, P0 = kR,

depends on the channel energy through the factor kR and on the conditions out-

side the nucleus. The second factor, 𝛾2
𝜆e
, is called the reduced width and it incor-

porates all the unknown properties of the nuclear interior. The quantity 𝛾2
𝜆e
is

characteristic of the resonance and the channel under consideration, and is inde-

pendent of the channel energy E. The energy dependence of the partial widths Γ𝜆e
and Γ𝜆r has to be taken into account when calculating the cross section for broad

resonances, as will be explained in later sections.

2.5.4

Extension to Charged Particles and Arbitrary Values of Orbital Angular Momentum

The one-level Breit–Wigner formulas (see Eqs. (2.154) and (2.155)) have been

obtained near a formal resonance energy E𝜆 assuming (i) neutrons as incident

particles, (ii) an orbital angular momentum of 𝓁 = 0, and (iii) interactions of

spinless particles. The basic structure of the cross section expressions derived

here is also applicable to the more general case. Although the general expressions

are more complicated in appearance than the results for s-wave neutrons, no

new physical ideas are involved. The properties of the nuclear interior enter into
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the cross sections only through the logarithmic derivative f𝓁 of the wave function

u𝓁(r) at the nuclear boundary r = R.

In the following, the formulas will be generalized to arbitrary values of 𝓁 and
to interacting charged particles. We will not derive the results in detail here (see,

e.g., Blatt andWeisskopf, 1952) but will only sketch some results of the derivation.

Of special interest to us is the modified reaction cross section 𝜎re,𝓁 .

The radial wave function solutions of the Schrödinger equation outside the

nuclear surface are no longer given by incoming and outgoing spherical waves

(e−ikr and eikr), as in the case of 𝓁 = 0 neutrons (see Eq. (2.131)), but are given in

terms of the functions F𝓁 and G𝓁 . For neutrons, these represent spherical Bessel

and Neumann functions, F𝓁 = (kr)j𝓁(kr) and G𝓁 = (kr)n𝓁(kr), respectively, while

for charged particles they correspond to the regular and irregular Coulomb wave

functions (Appendix A.3).The radial wave function outside the nuclear boundary

is given in terms of F𝓁 and G𝓁 by

u𝓁(r) = Au+𝓁 (r) + Bu−𝓁 (r), r > R

= Ae−i𝜎𝓁 [G𝓁(r) + iF𝓁(r)] + Bei𝜎𝓁 [G𝓁(r) − iF𝓁(r)] (2.159)

where u−𝓁 and u
+
𝓁 correspond, for large distances, to incoming and outgoing spher-

ical waves, respectively. The quantity 𝜎𝓁 denotes the Coulomb phase shift and

determines the purely Rutherford (electrostatic) scattering. For 𝓁 = 0 neutrons,

the above expression reduces to our previous result (Eq. (2.131); see Problem 2.4).

It is of advantage to introduce two real quantities, called shift factor S𝓁 and pen-

etration factor P𝓁 , which are completely determined by the conditions outside the

nucleus. We obtain with Eqs. (2.159) and (A.18)

R

(
1

u+𝓁 (r)

du+𝓁 (r)

dr

)
r=R

= R

[
G𝓁(dG𝓁∕dr) + F𝓁(dF𝓁∕dr) + iG𝓁(dF𝓁∕dr) − iF𝓁(dG𝓁∕dr)

F2𝓁 + G2𝓁

]
r=R

≡ S𝓁 + iP𝓁 (2.160)

where

S𝓁 = R

[
F𝓁(dF𝓁∕dr) + G𝓁(dG𝓁∕dr)

F2𝓁 + G2𝓁

]
r=R

and

P𝓁 = R

(
k

F2𝓁 + G2𝓁

)
r=R

(2.161)

The new quantities depend on the wave number k, the channel radius R, the

orbital angular momentum 𝓁, and on the charge parameter 𝜂 (see Eq. (A.32)).
For 𝓁 = 0 neutrons, F𝓁 = (kr)j0(kr) = sin(kr) and G𝓁 = (kr)n0(kr) = cos(kr)

(Appendix A.2), and we obtain from Eq. (2.160) P0 = kR and S0 = 0. In other

words, the shift factor vanishes without a barrier. With the quantities P𝓁 and S𝓁 ,
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the reaction cross section can be derived in a similar way as presented in the

previous section. The calculation is not repeated here (see Blatt and Weisskopf,

1952). The result is the Breit–Wigner formula

𝜎re,𝓁 = (2𝓁 + 1)
𝜋

k2
Γ𝜆eΓ𝜆r

(E − Er)
2 + Γ2

𝜆
∕4

(2.162)

with

Γ𝜆e ≡ −
2P𝓁(E)

(𝜕f𝓁∕𝜕E)E𝜆,q=0
= 2P𝓁(E)𝛾

2
𝜆e

(particle width) (2.163)

Γ𝜆r ≡ −
2qKR

(𝜕f𝓁∕𝜕E)E𝜆,q=0
(reaction width) (2.164)

Γ𝜆 = Γ𝜆e + Γ𝜆r (total width) (2.165)

Er ≡ E𝜆 +
S𝓁(E)

(𝜕f𝓁∕𝜕E)E𝜆,q=0
= E𝜆 − S𝓁(E)𝛾

2
𝜆e

(observed resonance

energy) (2.166)

The similarity between Eq. (2.162) and the result obtained earlier for s-wave neu-

trons (see Eq. (2.155)) is apparent. The meaning of P𝓁 and S𝓁 becomes clear now.

The penetration factor appears in the particle width expression since an incident

particle must penetrate to the nuclear surface for a reaction to occur. The shift

factor appears in the level shift expression and it causes the observed resonance

energy Er to be different from the formal resonance energy (or level energy) E𝜆.

Both the resonance energy shift and the particle width also depend on the prop-

erties of the nuclear interior through the reduced width 𝛾2
𝜆e
.

The penetration factor is closely related to the transmission coefficient. Both

quantities describe the same physical concept, but are defined in slightly different

ways. The former quantity is independent of the nuclear interior while the latter

is defined in terms of the ratio of current densities in the interior and exterior

regions (see Eqs. (2.62) and (2.103)). However, the energy dependences of both

quantities should be very similar. The penetration factor can be calculated

analytically for neutrons. The expressions are not repeated here (see Blatt and

Weisskopf, 1952). It is sufficient to mention that for small neutron energies

the neutron partial widths behave as Γ𝓁(E) ∼ P𝓁(E) ∼ (kR)2𝓁+1 ∼ E𝓁+1∕2. For

charged particles, on the other hand, the calculation of penetration factors is

more involved. Various analytical approximations exist for estimating P𝓁(E) (see,

e.g., Clayton, 1983). The reader should be aware, however, that some of these

approximations are not always accurate and that it is more reliable to compute

penetration factors directly from numerical values of the Coulomb wave func-

tions (Appendix A.3). The energy dependence of the s-wave penetration factor

at low energies compared to the Coulomb barrier height (E ≪ VC) is given by

Eqs. (2.124) and (2.125). For higher orbital angularmomenta, the charged-particle

penetration factors behave at low energies as P𝓁(E) ∼ exp [−a∕
√
E − b𝓁(𝓁 + 1)]

(Problem 2.2), where the first exponential term represents the Gamow

factor.
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Figure 2.21 Penetration (top) and shift fac-

tors (bottom) for 12C + p (left) and 12C + n

(right). In each panel, the curves show the

results for orbital angular momenta of 𝓁 =

0, 1, 2, and 3. All curves are calculated for a

radius of R = 1.25(121∕3 + 1) = 4.1 fm. The

considerably stronger energy dependence of

the penetration factor for protons compared

to neutrons is apparent.

Numerical values for the factors P𝓁 and S𝓁 are displayed in Figure 2.21 for
12C + p and 12C + n to illustrate some important points. The curves are obtained

using a radius of R = 1.25(121∕3 + 1) = 4.1 fm. The different energy dependences

of P𝓁 for protons and neutrons is striking. The penetration factors for both

protons and neutrons drop for decreasing energy, but the former values drop

significantly faster since the Coulomb barrier has to be penetrated in addition

to the centripetal barrier (for 𝓁 > 0). The energy dependence of P𝓁 is similar

for protons of all 𝓁 values, while for neutrons the energy dependence varies
for different 𝓁 values. At higher energies (E ≈ 3 MeV), we obtain P𝓁 ≈ 1 for

protons and neutrons. The curve for the s-wave (𝓁 = 0) penetration factor of 12C

+ n is simply given by P0 = kR (see earlier). The shift factors vary far less with

energy than the penetration factors. For both neutrons and protons, S𝓁 is almost

constant below an energy of a few hundred kilo electron volts. Also, one finds

S0 = 0 for neutrons, as already noted above.

The straight lines for P𝓁(E) at low neutron energies in the log–log plot

of Figure 2.21 are a consequence of the energy dependence P𝓁(E) ∼ E𝓁+1∕2.
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The slopes of the curves are equal to 𝓁 + 1∕2 since logP𝓁(E) ∼ logE
𝓁+1∕2 =

(𝓁 + 1∕2) logE. A similar procedure can be applied to charged particles. A
graphic illustration of the energy dependence of the penetration factors for 12C +

p is given in Figure 2.22. Since we have logP𝓁(E) ∼ −a∕
√
E − b𝓁(𝓁 + 1), straight

lines are obtained at low energies when log P𝓁(E) is plotted versus −1∕
√
E. The

slopes are similar at low energies where they are determined by the tunneling

probability through the Coulomb barrier, while the intercepts depend on the

value of 𝓁. The straight lines shown in Figure 2.22 represent a useful tool when
checking or interpolating values of P𝓁(E) that are obtained numerically from

computer codes.

Up to now we have not specified the reaction channel. Suppose that there are

only two channels open for the resonance 𝜆 of interest, channel 𝛼 and channel 𝛽.

According to Eq. (2.162), the reaction cross sections near resonance in channels 𝛼

and 𝛽 are given by

𝜎𝛼,re,𝓁 = (2𝓁 + 1)
𝜋

k2
𝛼

Γ𝜆𝛼Γ𝜆r𝛼

(E𝛼 − Er𝛼)
2 + (Γ𝜆𝛼 + Γ𝜆r𝛼)

2∕4
= 𝜎(𝛼,𝛽) (2.167)

𝜎𝛽,re,𝓁 = (2𝓁 + 1)
𝜋

k2
𝛽

Γ𝜆𝛽Γ𝜆r𝛽

[(E𝛼 + Q) − (Er𝛼 + Q)]2 + (Γ𝜆𝛽 + Γ𝜆r𝛽)
2∕4

= 𝜎(𝛽,𝛼)

(2.168)

It follows directly from the reciprocity theorem, k2
𝛼
𝜎(𝛼,𝛽) = k2

𝛽
𝜎(𝛽,𝛼) (see Eq. (2.13)),

that the reaction width of the (𝛼,𝛽) reaction is equal to the entrance channel width

of the (𝛽,𝛼) reaction, and vice versa.
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Figure 2.22 Penetration factor versus −1∕
√
E for the 12C + p reaction. At low energies

compared to the Coulomb barrier height (E ≪ VC ), straight lines are obtained for each

value of 𝓁.
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2.5.5

R-Matrix Theory

Let us summarize the assumptions wemade in the derivation of the reaction cross

section formula (see Eq. (2.162)): (i) the spins of the interacting nuclei are zero,

(ii) the nucleus has a sharp radius, and (iii) a specific resonance corresponds to a

logarithmic derivative of zero at the nuclear boundary. In the formal theory of res-

onance reactions (R-matrix theory), all of these assumptions are relaxed. We will

not derive the formalism in any detail (see, e.g., Breit, 1959, or Lane andThomas,

1958) but will instead present some of the main results. We are specifically inter-

ested in the application of the general theory to the case of a single and isolated

resonance. As will be seen, the main physical ideas of the formalism developed so

far will not change in the formal theory.

Consider again Eq. (2.148), but to describe the simplest possible case we will

assume that elastic scattering is the only allowed process (q = 0). In that case,

f0 = (E − E𝜆)

(
𝜕f0
𝜕E

)
E𝜆,q=0

(2.169)

By using the definitions of the logarithmic derivative f0 (see Eq. (2.129)) and of the

reduced width 𝛾2
𝜆e
(see Eq. (2.158)) we find near a particular level energy E𝜆

1

f0
=
1

R

(
uin(r)

duin(r)∕dr

)
r=R

=
(𝜕f0∕𝜕E)

−1
E𝜆,q=0

E − E𝜆
=

𝛾2
𝜆e

E𝜆 − E
≡ ℜ (2.170)

The quantity ℜ is called R-function. When the energy E is not close to E𝜆, the
R-function is obtained by summing over all resonances 𝜆. In general, elastic scat-

tering will not be the only possible process, but other channels are present as well.

To take these into account, the R-function becomes the R-matrix,

ℜc′c =
∑
𝜆

𝛾𝜆c′𝛾𝜆c

E𝜆 − E
(2.171)

Physically, theR-matrix relates the value of thewave function in the internal region

to its derivative at each channel entrance. The above equation gives the energy

dependence of the R-matrix explicitly in terms of the energy-independent param-

eters 𝛾𝜆c and E𝜆. The poles of the R-matrix, that is, the energies E𝜆, are real and

hence each of the elementsℜc′c represents a real number. Furthermore, the ener-

gies E𝜆 are independent of the channels c and c
′. In other words, the poles of every

matrix elementℜc′c occur at the same energies E𝜆.

We need to be more precise when defining a reaction channel c. The quantity c

denotes a set of quantum numbers {𝛼(I1I2)s𝓁, JM} with

𝛼(I1I2) a specific pair of nuclei 1 and 2, with spins of I1 and I2,

in a specific state of excitation (thus an excited state of

1 or 2 would correspond to a different 𝛼)
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s⃗ = I⃗1 + I⃗2 channel spin, with |I1 − I2| ≤ s ≤ I1 + I2

𝓁 orbital angular momentum

J⃗ ,M total spin and its component, with J⃗ = s⃗ + 𝓁

For the entrance channel consisting of a projectile and a target nucleus, we set

I⃗1 = j⃗p and I⃗2 = j⃗t . Conservation of the total angular momentum restricts the

possible J values of the resonance, which can be populated in the reaction to

(Appendix B)

J⃗ = 𝓁 + j⃗p + j⃗t (2.172)

Each of these spins has (2I + 1) orientations in space, which are determined by

the magnetic quantum number mI = 0, 1,… ,±I. Thus, there are (2𝓁 + 1)(2jp +
1)(2jt + 1) different sets of spin orientations, corresponding to different quantum

states of the system. For an unpolarized beam and target, each such state has the

same probability, that is, [(2𝓁 + 1)(2jp + 1)(2jt + 1)]
−1.Therefore, the cross section

has to bemultiplied by the relative probability that the unpolarized projectiles and

target nuclei will be found to have a total spin of J , given by

g(J) =
2J + 1

(2jp + 1)(2jt + 1)(2𝓁 + 1)
(2.173)

From the R-matrix, the cross sections and phase shifts can be derived for any

number of resonances and channels (Lane and Thomas, 1958). In the following,

we will only focus on a particularly simple but useful case, that is, the reaction

cross section near an isolated resonance 𝜆 of spin J . The one-level, many channel

approximation of R-matrix theory (or generalized one-level Breit–Wigner for-

mula) for the cross section of a reaction (𝛼,𝛼′), involving charged or neutral par-

ticles with projectile and target spins of jp and jt , is given by

𝜎re(𝛼, 𝛼
′) =

𝜋

k2
2J + 1

(2jp + 1)(2jt + 1)

(∑
𝓁s
Γ𝜆c

)(∑
𝓁′s′

Γ𝜆c′

)
(E − E𝜆 − Δ𝜆)

2 + Γ2
𝜆
∕4

(2.174)

with

Γ𝜆c(E) = 2Pc(E)𝛾
2
𝜆c

(particle width) (2.175)

Γ𝜆(E) =
∑
c′′

Γ𝜆c′′ (E) (total width) (2.176)

Δ𝜆(E) =
∑
c′′

Δ𝜆c′′ (E) (total level shift) (2.177)

Δ𝜆c(E) = −[Sc(E) − Bc]𝛾
2
𝜆c

(partial level shift) (2.178)

𝛽(E) = arctan
Γ𝜆(E)

2[E𝜆 − E + Δ𝜆(E)]
(resonance elastic scattering

phase shift) (2.179)
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The parameter Bc will be described later. The penetration and shift factors refer

to the nuclear radius. In principle, one can chose an arbitrary radius beyond the

range of the nuclear force so that the external wave functions reflect the solutions

of the wave equation containing only the Coulomb interaction. However, it is also

desirable to chose R as small as possible so that the characteristic quantities of the

resonance theory contain primarily information concerning the nuclear interac-

tion. Commonly, the interaction radius R is the smallest separation distance of the

nuclear pair at which the nuclear potential is negligible.This radius is customarily

chosen in R-matrix theory as R = r0(A
1∕3
t + A

1∕3
p ), with a radius parameter in the

range of r0 = 1.0–1.5 fm.

The above expression for the reaction cross section (see Eq. (2.174)) contains

certain complications with respect to practical applications. This comes about

because, in general, the energy dependence of the penetration and shift factor

has to be taken into account. The quantity Pc is strongly energy dependent, but

the energy dependence of Sc is weak (Figure 2.21). The usual approximation pro-

cedure, called theThomas approximation (Thomas, 1951), is to expand the level

shift linearly with respect to energy. We call the energy at which the cross section

𝜎re(𝛼, 𝛼
′) has a maximum the observed resonance energy Er . It is defined by the

requirement

Er − E𝜆 − Δ𝜆(Er) = 0 (2.180)

The boundary condition parameter Bc in Eq. (2.178), defined as the real and

arbitrary value of the logarithmic derivative of the radial wave function in

channel c at the radius R, determines the eigenvalues E𝜆 (in previous sections,

we used implicitly the zero derivative condition, Bc = 0). It is customarily chosen

as Bc = Sc(Er) so that the level shift Δ at the observed resonance energy Er

becomes zero,

Δ𝜆c(Er) = −[Sc(Er) − Sc(Er)]𝛾
2
𝜆c
= 0 and Er = E𝜆 (2.181)

With the expansion

Δ𝜆(E) ≈ Δ𝜆(Er) + (E − Er)

(
dΔ𝜆
dE

)
Er

(2.182)

we obtain using Eq. (2.180)

E𝜆 + Δ𝜆 − E ≈ Er − E + (E − Er)

(
dΔ𝜆
dE

)
Er

= (Er − E)

[
1 −

(
dΔ𝜆
dE

)
Er

]
(2.183)

Substitution into Eq. (2.174) yields

𝜎re(𝛼, 𝛼
′) =

𝜋

k2
2J + 1

(2jp + 1)(2jt + 1)

(∑
𝓁s
Γ𝜆c

)(∑
𝓁′s′

Γ𝜆c′

)
(Er − E)2[1 − (dΔ𝜆∕dE)Er ]

2 + Γ2
𝜆
∕4

(2.184)
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Dividing the numerator and denominator by [1 − (dΔ𝜆∕dE)Er
]2 gives

𝜎re(𝛼, 𝛼
′) =

𝜋

k2
2J + 1

(2jp + 1)(2jt + 1)

(∑
𝓁s
Γo
𝜆c

)(∑
𝓁′s′

Γo
𝜆c′

)
(Er − E)2 + (Γo

𝜆
)2∕4

(2.185)

where the observed widths Γo
𝜆i
are given in terms of the previously defined formal

widths Γ𝜆i (see Eq. (2.175)) by

Γo
𝜆c
≡ Γ𝜆c

1 − (dΔ𝜆∕dE)Er

=
Γ𝜆c

1 +

(∑
c′′
𝛾2
𝜆c′′

dSc′′

dE

)
Er

(2.186)

The main advantage of using Eq. (2.185) compared to Eq. (2.174) is that the com-

plication of an energy-dependent shift factor in the denominator is absent. Since

the former expression has a simpler (Lorentzian) structure, it is used in the vast

majority of applications. However, we had to introduce a new quantity.The reader

must be careful when applying Eq. (2.185) in the analysis of experimental data.

It has to be understood that the partial widths thus obtained represent observed

widths. As can be seen from Eq. (2.186), the difference between observed and for-

mal partial width may be substantial for levels with a large reduced width.We can

also introduce an observed reduced width by writing

Γo
𝜆c
=

2Pc(E)𝛾
2
𝜆c

1 +

(∑
c′′
𝛾2
𝜆c′′

dSc′′

dE

)
Er

= 2Pc(E)(𝛾
o
𝜆c
)2 (2.187)

As a general guide, partial widths have to be interpreted as observed quantities

whenever a Lorentzian structure is assumed for the cross section (e.g., in reaction

rate calculations, mean lifetime measurements, or thick target yields).

Finally, we express the resonance phase shift and its energy derivative in terms

of the observed total width. We obtain from Eqs. (2.179) and (2.183) immediately

𝛽 = arctan
Γ𝜆∕[1 − (dΔ𝜆∕dE)Er

]

2(Er − E)
= arctan

Γo
𝜆

2(Er − E)
(2.188)

and, similar to Eq. (2.157),(
d𝛽

dE

)
Er

=
2

(Γo
𝜆
)Er

(2.189)

This expression is frequently used in calculations of observed particle partial

widths (see Section 2.5.7).

2.5.6

Experimental Tests of the One-Level Breit–Wigner Formula

The total cross section for neutrons incident on a target consisting of a natural

isotopic mixture of cadmium is shown in Figure 2.23.The data are fitted by a one-

level Breit–Wigner formula, superimposed on a 1∕𝑣 background (Section 2.6).
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Figure 2.23 Total cross section for neutrons

incident on a target consisting of a natu-

ral isotopic mixture of cadmium. The data

are fitted by a one-level Breit–Wigner for-

mula, superimposed on a 1∕𝑣 background.

The deduced resonance parameters are

E𝜆 = 0.176 eV, Γ = 0.115 eV, and 𝜎max =

7.2 × 10−21 cm2. The Breit–Wigner formula

reproduces the shape of resonances accu-

rately if their widths are small compared

to their energy separation. Data from Gold-

smith, Ibser, and Feld (1947).

The prediction agrees with the data. The Breit–Wigner formula describes reli-

ably the shape of resonances if their widths are small compared to their energy

separation.

The resonance reaction theory developed so far does not only apply to unbound

states but also apply to bound states as well. In the latter case, the Breit–Wigner

formula allows for the calculation of the cross section wing of a subthreshold

resonance (Example 2.1). The Breit–Wigner formula has important applications

in nuclear astrophysics, especially in cases where the cross section of interest

cannot be measured directly and has to be estimated theoretically. For example,

consider the following situation that is frequently encountered in practice. Data

have been obtained in some higher lying bombarding energy range. The energy

range of interest for stellar fusion, however, is located outside the range for which

data have been measured. By fitting the existing data to a Breit–Wigner formula,

one obtains the resonance energy and widths as phenomenological parameters,

which can then be used to extrapolate the cross section to the energy region of

interest.

Frequently, the widths of astrophysically important resonances are rather

small (less than a few electron volts) and it is experimentally no longer feasible

to measure the cross section directly at specific energies near the resonance.

What is directly measured in such cases is the integral under the resonance

cross section curve. The Breit–Wigner formula provides an accurate equation

for integrating the resonance cross section, resulting in convenient analytical

expressions for narrow-resonance reaction rates (Section 3.2.4) and thick-target

yields (Section 4.8.1).
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The total cross section for several overlapping resonances of different spins and

parities can be described by an incoherent sum of one-level Breit–Wigner for-

mulas. If two resonances have the same J𝜋 value, however, they may interfere

and the resulting expressions become more complicated. Also, the differential

cross sections of two broad resonances may interfere even if their J𝜋 values are

different.

It must be emphasized again that the resonance theory described here is not

capable of predicting resonance energies and widths. These quantities are treated

as phenomenological parameters. Absolute cross sections can be obtained, for

example, by fitting resonance data. Cross sections can also be obtained if the res-

onance energies and partial (or reduced) widths are independently known from

other sources (Section 2.5.7). In the following numerical example, the one-level

Breit–Wigner formula will be applied to a subthreshold resonance.

Example 2.1

The Q-value of the 20Ne(p,𝛾)21Na reaction amounts to Q = 2431.3 keV. The 21Na

level at Ex = 2425 keV (J
𝜋 = 1∕2+) is located just below the proton threshold

and corresponds to a subthreshold s-wave (𝓁 = 0) resonance at a center-of-mass

energy of Er = −6.4 keV (Figure 2.24a). The (formal) reduced proton width for

this level can be obtained from (d,n) proton transfer reaction measurements

(Terakawa et al., 1993). The value is 𝛾2
p,𝓁=0 = 1.41 × 10

6 eV. The Ex = 2425 keV

level decays to the ground state with a probability (branching ratio) of 1 (100%)

via emission of M1/E2 radiation (Appendix B). The value of the (formal) γ-ray

partial width at Er , obtained from the measured mean lifetime of the state

(Anttila, Keinonen, and Bister, 1977), amounts to Γ𝛾 (Er) = 0.30 eV. Calculate the

contribution of this level to the astrophysical S-factor (the S-factor is defined in

Section 3.2.1) versus bombarding energy below 2 MeV.

In this case, only two channels are open.The level can decay via emission of either

a proton or a γ-ray. We may write the Breit–Wigner formula (see Eq. (2.174)) as

𝜎20Ne+p(p, 𝛾) =
𝜋

k2
2J + 1

(2jp + 1)(2jt + 1)

Γp,𝓁=0Γ𝛾,M1∕E2

(E − E𝜆 − Δ𝜆)
2 + (Γp,𝓁=0 + Γ𝛾,M1∕E2)

2∕4

The cross section has a maximum at the observed resonance energy

Er = E𝜆 + Δ𝜆(Er) = E𝜆 (see Eqs. (2.180) and (2.181)) since we chose the

boundary condition as Δ𝜆(Er) = 0. Therefore, we set E𝜆 = −6.4 keV. We find the

energy-dependent proton width from the expression Γp,𝓁=0(E) = 2P𝓁=0(E)𝛾
2
p,𝓁=0

(see Eq. (2.175)). The energy dependence of the γ-ray partial width is given by

Γ𝛾,L ∼ E2L+1
𝛾
(see Eq. (1.22)), with E𝛾 the γ-ray energy and L the γ-ray multipo-

larity. The M1/E2 multipolarity mixing ratio (see Eq. (1.32)) for this level is not

known. It is sufficient to assume here that the transition to the ground state

(Ef = 0) proceeds via pure M1 emission. Thus

Γ𝛾,M1(E)

Γ𝛾,M1(Er)
=

[
E𝛾 (E)

E𝛾 (Er)

]2L+1
=

[
E + Q − Ef

Er + Q − Ef

]2L+1
=

[
E + Q

Er + Q

]3
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Figure 2.24 (a) Level scheme of 21Na show-

ing a subthreshold s-wave (𝓁 = 0) resonance

in 20Ne + p, corresponding to a level at Ex =

2425 keV (J𝜋 = 1∕2+), which is located just

below the proton threshold. (b) Astrophysical

S-factor of the 20Ne(p,𝛾)21Na reaction versus

center-of-mass proton energy for the γ-ray

transition to the ground state of 21Na. The

data points display the measured S-factor

(from Rolfs and Rodney, 1975), while the

solid line shows the result of the calculation

explained in the text. The solid line is not a

fit to the data. The agreement between data

and calculation is remarkable since the Breit–

Wigner formula had to be extrapolated over

more than 106 resonance widths.

The influence of the γ-ray channel on the level shift can be neglected. From

Eqs. (2.177) and (2.178), one finds

Δ𝜆(E) ≈ Δp,𝓁=0(E) = −[S𝓁=0(E) − S𝓁=0(Er)]𝛾
2
p,𝓁=0

We obtain from the definition of the astrophysical S-factor (see Eq. (3.71))

S20Ne+p(p, 𝛾) = E e2𝜋𝜂𝜎20Ne+p(p, 𝛾)

=

Ee2𝜋𝜂
𝜋

k2
2J+1

(2jp+1)(2jt+1)
2P𝓁=0(E)𝛾

2
p,𝓁=0Γ𝛾,M1(Er)

(
E+Q

Er+Q

)3
{
E − Er + [S𝓁=0(E) − S𝓁=0(Er)]𝛾

2
p,𝓁=0

}2
+ [Γ(E)]2∕4
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with Γ(E) = Γp,𝓁=0(E) + Γ𝛾,M1(E). Numerically we find (with E in MeV and

Mi in u)

2𝜋𝜂 = 0.989510ZpZt

√
1

E

MtMp

Mt +Mp

E
𝜋

k2
= 6.56618216 × 10−1

Mt +Mp

MtMp

(MeVb)

2J + 1

(2jp + 1)(2jt + 1)
=

2 ⋅ 1
2
+ 1(

2 ⋅ 1
2
+ 1

)
(2 ⋅ 0 + 1)

= 1

S𝓁=0(Er) = −1.537

The penetration and shift factors are directly computed from the Coulomb wave

functions (see Eq. (2.161)). The resulting calculated S-factor for the ground-state

transition in the 20Ne(p,𝛾)21Na reaction is shown as a solid line in Figure 2.24b.

The data points display the experimental S-factor. These results represent one

of the very few examples in nuclear physics where a tail of a subthreshold reso-

nance is observed without interference from unbound states or direct radiative

capture.

It must be emphasized that the solid line does not represent a fit to the data. It

is calculated using the Breit–Wigner formula with parameters (resonance energy,

proton and γ-ray partial widths) that are obtained from independent experiments

(i.e., not from capture measurements). It should also be noted that the total width

at the resonance energy amounts to Γ(Er) = Γ𝛾 (Er) = 0.3 eV. In other words,

the S-factor is extrapolated over 1500 keV∕0.3 eV = 5 × 106 resonance widths.

The agreement between experiment and calculation is remarkable and provides

strong support for the applicability of the Breit–Wigner formula to isolated

resonances.

2.5.7

Partial and ReducedWidths

We have seen how the resonance cross section can be expressed in terms of

resonance energies and reduced widths. For some reactions, however, no cross

section data are available. In such cases, it becomes important to estimate the

cross section theoretically. The Breit–Wigner formula can only be used for

this purpose if the resonance energies and reduced widths are known from

independent sources (see Example 2.1).

Resonances that are generated by simple explicit potentials are discussed in

Section 2.4. Such single-particle resonances are generally broad at higher bom-

barding energies and their energy separation is large. In contrast to these, many

measured resonances are very narrow and their spacing is small (Figure 2.19).

These resonances could not be explained by single-particle potentials and it was

therefore necessary to develop a theory of resonances without reference to a
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specific nuclear potential (Section 2.5.1). The reduced widths depend on, as yet

unknown, properties of the nuclear interior and are treated as phenomenological

parameters.

According to Bohr (1936), the observed resonances correspond to virtual states

in the nucleus. These virtual states are not single-particle levels, but are the result

of the interactions of many nucleons. This many-nucleon picture is also referred

to as compound nucleus description.The close spacing of the observed resonances

is then explained by the many different ways a large number of nucleons can be

excited. The observed resonances are then caused by the rapid variation of the

total nuclear wave function of the target-plus-projectile system with energy. In

the following, we will develop this picture quantitatively. Our goal will be to relate

the reduced widths to nuclear properties, which can be estimated using models of

nuclear structure.

Consider the total wave function of the target-plus-projectile system, Ψ, with

HΨ = EΨ. The total Hamiltonian H , although unknown, may be written as

H = Ht
𝜉
+ E

p

K
(r) +

A∑
i=1

Vi(𝜉i, x)

=
[
Ht
𝜉
+ E

p

K
(r) + V (r)

]
+

[
−V (r) +

A∑
i=1

Vi(𝜉i, x)

]
= H0 +H′ (2.190)

with Ht
𝜉
the Hamiltonian of the target nucleus consisting of A nucleons, E

p

K
(r)

the kinetic energy of the projectile, Vi(𝜉i, x) the interactions between each target

nucleon with the projectile, and V (r) an average potential of the projectile in the

field of the target nucleus. The quantity H0 is the single-particle Hamiltonian,

and H′ describes the residual interaction (i.e., the deviation from an average

potential). Without the residual interaction, the potential V (r) would give rise

to single-particle resonances, corresponding to single-particle levels in the

target-plus-projectile system. However, the quantityH′ causes the single-particle

levels to split into a large number of distinct levels. Each of these states cor-

responds to a complicated mixture of configurations and is described by a

complicated sum of wave functions. Consequently, the logarithmic derivative

of the radial wave function at the nuclear boundary, that is, the reduced width

𝛾2
𝜆c
, will in general be different for each virtual state. Such levels are described by

the configurations of many nucleons and are referred to as compound-nucleus

levels.

The situation is shown schematically in Figure 2.25. The single-particle Hamil-

tonianH0 gives rise to the single-particle levels p1, p2, p3, and p4.The levels p1 and

p2 are bound states. The Hamiltonian H causes a splitting of each single-particle

level into many states. These can be observed as resonances in the cross section

(thin solid line). However, the single-particle character does not get entirely

lost. If the measured cross section curve is averaged over the observed fine

structure, then the single-particle resonances are approximately recovered (thick

solid line). We may also say that, in this picture, each reduced width 𝛾2
𝜆c
of an

actual level belongs to a definite single-particle level pi. The entire set of reduced
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p4

H0 H
E

𝜎

p3

p2

p1

Figure 2.25 Level scheme and cross section

versus energy. A single-particle Hamiltonian

H0 generates the single-particle levels p1,

p2, p3, p4. The Hamiltonian H gives rise to

a splitting of each single-particle level into

many states. The latter show up as a fine

structure in the cross section versus energy

curve.

widths can then be split up into groups, each group corresponding to a definite

value of pi.

In the following, we will consider the simple case of only one open nucleon

channel (elastic only) for compound nucleus formation or decay. It is useful at

this point to express the particle width in a different way. We have seen that Γ𝜆
corresponds to the total width of a resonance 𝜆, or the total width of a virtual level

in the compound nucleus. A finite level width, in turn, implies a finite mean life-

time 𝜏 of the level, since Γ𝜆𝜏𝜆 ≈ ℏ. Therefore, we can identify 1∕𝜏𝜆 ≈ Γ𝜆∕ℏ with

the decay (or formation) probability of the level per unit time. A partial width

Γ𝜆c corresponds then to the decay (or formation) probability of level 𝜆 through a

particular channel c. The decay of a compound nucleus state into two channels is

shown schematically in Figure 2.26.

The partial width Γ𝜆c will now be determined from the flux of the particles

through the only open channel c. The probability per unit time, Γ𝜆c∕ℏ, for the

emission of a particle is given by the number of particles per second leaving the

channel. This number can be calculated by integrating the current (see Eq. (2.45))

through a sphere of radius R over the full solid angle,

Γ𝜆c

ℏ
= ∫dΩ

R2j dΩ = ∫dΩ

R2
ℏ

2mi

(
𝜓∗ 𝜕𝜓

𝜕r
−
𝜕𝜓

𝜕r

∗

𝜓

)
r=R

dΩ (2.191)

With 𝜓 = Y (𝜃, 𝜙)Rc(r) = Y (𝜃, 𝜙)uc(r)∕r (Appendix A) we find

Γ𝜆c

ℏ
=

ℏ

2mi ∫dΩ

R2
[
u∗
c

r

d

dr

(uc
r

)
−

uc

r

d

dr

(
u∗
c

r

)]
r=R

|Y |2 dΩ
=

ℏ

2mi ∫dΩ

R2
1

R2

(
u∗
c

duc

dr
− uc

du∗
c

dr

)
r=R

|Y |2 dΩ (2.192)
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a

E

E

A + a

C

𝛾

𝜆

𝜎A + a

Γ𝜆 = Γ𝜆a + Γ𝜆𝛾

Figure 2.26 Level scheme of compound

nucleus C showing a single unbound (or vir-

tual) state 𝜆 that may decay by emission of

particles (a) or photons (𝛾). The full width

at half maximum (FWHM) of the resonance

in the cross section versus energy curve

corresponds to the total width Γ𝜆, which is

equal to the sum of all partial widths. The

latter quantities are a measure for the decay

(or formation) probability of level 𝜆 through

a particular channel c.

The radial wave function uc of the compound state can be expanded in terms of

single-particle radial eigenfunctions upc, which form a complete set of orthonor-

mal functions. The eigenfunctions upc describe a single nucleon moving in a

single-particle potential. We may write

uc(R) =
∑
p

A𝜆pcupc(R) (2.193)

The above discussion of compound levels implies that, at a given energy, one par-

ticular single-particle state p contributesmainly to thewidth of level 𝜆.Thismeans

that for a given level 𝜆 one of the terms in the sum of Eq. (2.193) is significantly

larger than the others. Hence

uc(R) ≈ A𝜆pcupc(R) (2.194)

By using the normalization of the spherical harmonic Y and the definition of

the logarithmic derivative, fpc(E) = R(u−1
pc

dupc∕dr)r=R (see Eq. (2.129)), we obtain

from Eqs. (2.192) and (2.194)

Γ𝜆c =
ℏ2

2mi
A2
𝜆pc

(
u∗
pc

dupc

dr
− upc

du∗
pc

dr

)
r=R

=
ℏ2

2miR
A2
𝜆pc

(
u∗
pc
upc fpc − upcu

∗
pc
f ∗
pc

)
r=R

=
ℏ2|upc(R)|2
2miR

A2
𝜆pc

( fpc − f ∗
pc
) (2.195)

Since we describe a decaying compound state, the radial wave function for r >

R is given by upc(r) = Au+
pc
(r), that is, we have B = 0 for a purely outgoing wave

(see Eq. (2.159)). This condition is equivalent to fpc(E) = Sc + iPc (see Eq. (2.160)).
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It follows that

Γ𝜆c =
ℏ2|upc(R)|2
2miR

A2
𝜆pc
[(Sc + iPc) − (Sc − iPc)] = 2

ℏ2

mR2
PcA

2
𝜆pc

R

2
|upc(R)|2 (2.196)

This can be expressed as

Γ𝜆c = 2
ℏ2

mR2
Pc C

2S 𝜃2
pc

(2.197)

with

C2S = A2
𝜆pc

(spectroscopic factor) (2.198)

𝜃2
pc
=

R

2

|||upc(R)
|||2 (dimensionless single-particle reduced width) (2.199)

Comparison to Eq. (2.175) shows that the reduced width 𝛾2
𝜆c
has been reformu-

lated in terms of a constant, ℏ2∕(mR2), and the quantities 𝜃2
pc
and C2S.

Strictly speaking, the quantities S and C2 denote a spectroscopic factor

(Section 1.6.2) and the square of an isospin Clebsch–Gordan coefficient, respec-

tively. The former quantity is frequently calculated using the nuclear shell model

(Section 1.6), while the latter depends on the nuclear reaction (see, e.g., Brussaard

and Glaudemans, 1977). In the present context of partial widths, only the product

C2S is of interest. The spectroscopic factor depends on the many-nucleon

structure of level 𝜆 and is a measure for the relative probability that a compound

state 𝜆 can be described by the single-particle state p. The structure of Eq. (2.197)

emphasizes that the partial width for nucleon emission from a compound level

can be thought of as a product of three factors: (i) the probability that the

nucleons will arrange themselves in a configuration corresponding to the final

state, C2S, (ii) the probability that the single nucleon will appear at the boundary,|upc(R)|2, and (iii) the probability that the single nucleon will penetrate the
Coulomb and angular momentum barriers, Pc. By introducing a single-particle

partial width

Γ𝜆pc = 2
ℏ2

mR2
Pc𝜃
2
pc

(2.200)

we may also express Eq. (2.197) as

Γ𝜆c = C2S Γ𝜆pc (2.201)

In other words, the spectroscopic factor can be written as the ratio of the two

quantities Γ𝜆c and Γ𝜆pc. Since both of these partial widths are strongly energy

dependent through the penetration factor Pc, they have to be calculated at the

same incident energy E.

It is apparent that there are two different methods of estimating partial widths

for nucleon channels once the spectroscopic factor C2S has been obtained by

independent means. If Eq. (2.197) is used, then the penetration factor Pc and the

dimensionless single-particle reduced width 𝜃2
pc
must be computed. On the other

hand, if Eq. (2.201) is employed, then the single-particle partial width Γ𝜆pc has

to be calculated. This can be achieved, for example, by solving the Schrödinger
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equation numerically for the elastic scattering of nucleons by an appropriate

single-particle potential (Schiffer, 1963; Iliadis, 1997). The single-particle partial

width is then directly obtained from the slope of the resonance phase shift at the

resonance energy (see Eq. (2.189)). The former method is computationally more

convenient if values of 𝜃2
pc
are already available.

Numerical values of the dimensionless single-particle reduced width 𝜃2
pc
for

protons are reported in Iliadis (1997) (Figure 2.27) and Barker (1998). The results

were obtained by calculating upc for a Woods–Saxon single-particle potential

(Section 1.6.1). The value of 𝜃2
pc
depends on the interaction radius, R, the orbital

angular momentum, 𝓁, and the number of nodes of the radial wave function
in the nuclear interior. The numerical values shown in Figure 2.27 have been

obtained with R = 1.25(A
1∕3
p + A

1∕3
t ) fm. For estimates of Γ𝜆c, the quantities 𝜃

2
pc

and Pc have to be computed at the same radius R. The 𝜃
2
pc
values from Iliadis

(1997) represent observed quantities, while the results from Barker (1998)

represent formal quantities. The dimensionless single-particle reduced width 𝜃2
pc

is frequently set equal to unity in the literature. In this case, a significant error is

introduced in the estimation of partial widths.

Frequently, a resonance cannot be observed directly.This happens, for example,

if the cross section is too small or if the target is radioactive. In such cases, the

formalism discussed above can be used to estimate the absolute reaction cross
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Figure 2.27 Observed dimensionless single-

particle reduced width 𝜃2pc for 12C+ p, 22Na+

p, 31P+ p, and 40Ca+ p versus center-of-

mass proton energy. In each panel, the

curves correspond to different orbital angular

momenta (𝓁 = 0, 1, 2, and 3) and have been

computed for a radius of R = 1.25(A
1∕3
p +

A
1∕3
t ) fm.
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Figure 2.28 Ratio of measured and esti-

mated proton partial widths, Γexp∕Γ𝜆c , for

levels in 25Al, 27Al, and 31P (a) versus the

value of C2S, and (b) versus the observed

resonance energy Er . The experimental pro-

ton widths Γexp were directly measured in

resonance elastic proton scattering or pro-

ton capture reactions. The calculated values

Γ𝜆c are obtained from Eq. (2.197) using spec-

troscopic factors measured in (3He,d) transfer

studies.

section. Once the spectroscopic factor is either calculated using the nuclear shell

model (Section 1.6) or measured using transfer reactions, the particle partial

width can be estimated in a straightforward way. The reaction cross section is

then obtained by applying the Breit–Wigner formula.

It is interesting to investigate the reliability of Eq. (2.197) for the calculation

of proton partial widths. Figure 2.28 shows a comparison of measured and

estimated proton partial widths for compound levels in 25Al, 27Al, and 31P. The

ratio of partial widths, Γexp∕Γ𝜆c, is shown in Figure 2.28a versus the value of

C2S, and in Figure 2.28b versus the observed resonance energy Er . The values of

Γ𝜆c are estimated from Eq. (2.197) using proton spectroscopic factors measured

in (3He,d) transfer reactions and by computing 𝜃2
pc
and Pc numerically. The

experimental proton widths Γexp were directly measured in resonance elastic

proton scattering or proton capture reactions. The error bars of the displayed

ratios consider only the uncertainties of the experimental proton widths. It can

be seen that experimental and estimated proton partial widths agree on average

within ≈50%. We expect that the parametrizations of Γ𝜆c (see Eqs. (2.197) and

(2.201)) are more accurate than this since we have entirely neglected the errors

in the measured transfer spectroscopic factors. Further systematic studies are

needed.

Example 2.2

An important resonance in the 17F(p,𝛾)18Ne reaction occurs at a center-of-mass

energy of Er = 600 keV (J
𝜋 = 3+).The spectroscopic factors for this resonance are

known from independent measurements (i.e., neutron-stripping on the mirror

target nucleus 17O). Their values are (C2S)𝓁=0 = 1.01 and (C
2S)𝓁=2 ≈ 0. Estimate

the observed proton partial width for this resonance.
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We write with Eq. (2.197)

Γo
p,𝓁=0 = 2

ℏ2

mR2
P𝓁=0(C

2S)𝓁=0(𝜃
o
p,𝓁=0)

2

= 2(2.22 × 106 eV)(8.10 × 10−3)(1.01)(0.45) = 16.3 keV

Γo
p,𝓁=2 = 2

ℏ2

mR2
P𝓁=2(C

2S)𝓁=2(𝜃
o
p,𝓁=2)

2

= 2(2.22 × 106 eV)(7.90 × 10−5)(≈ 0)(0.45) ≈ 0

The values of (𝜃o
p,𝓁=0)

2 and (𝜃o
p,𝓁=2)

2 are obtained by interpolating the results for
12C + p and 22Na + p shown in Figure 2.27.The estimated observed proton partial

width is

Γo
p
= Γo

p,𝓁=0 + Γo
p,𝓁=2 = 16.3 keV

The calculated result is in excellent agreementwith the experimental value of Γp =

(18 ± 2) keV that was directly measured in 17F(p,p)17F elastic scattering studies

(Bardayan et al., 2000).

Example 2.3

The observed proton partial width for the s-wave (𝓁 = 0) resonance at a center-

of-mass energy of Er = 214 keV (J
𝜋 = 1∕2+) in 24Mg(p,𝛾)25Al was directly

measured. The result is Γo
p,𝓁=0 = (1.40 ± 0.12) × 10−2 eV (Powell et al., 1999).

Estimate the proton spectroscopic factor for the corresponding compound

state.

First, we calculate the observed single-particle proton width from Eq. (2.200),

Γo
𝜆pc

= 2
ℏ2

mR2
Pc(𝜃

o
pc
)2 = 2(1.84 × 106 eV)(4.56 × 10−8)(0.59)

= 9.90 × 10−2 eV

We obtain from Eq. (2.201)

(C2S)𝓁=0 =
Γo
p,𝓁=0

Γo
𝜆pc

=
(1.40 ± 0.12) × 10−2 eV

9.90 × 10−2 eV
= 0.14 ± 0.01

The result is in excellent agreement with the value of (C2S)𝓁=0 = 0.14 measured

independently in the proton transfer reaction 24Mg(3He,d)25Al (Peterson and

Ristinen, 1975).

2.6

Continuum Theory

It is interesting to discuss the extreme case where a projectile approaching the

target in a particular channel 𝛼 is very unlikely to reappear in the entrance
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channel once it has penetrated into the nuclear interior. The condition is fulfilled,

for example, if the number of open channels is very large. This is typically the

case when the energy of the incident particle is considerably higher than the first

few excitation energies of the target nucleus (say, E > 3 MeV for target masses of

A > 50).The condition may also be fulfilled at low energies if the incident particle

initiates a reaction with a large positive Q-value (say, Q > 2 MeV). In these cases

we expect that, once the incident particle is inside the nucleus, it exchanges its

energy rapidly with the other nucleons and the probability that it leaves by the

same channel 𝛼 is very small.

For simplicity, s-wave neutrons are considered again as incident particles. For

the interior wave function, we find from Eq. (2.141)

uin ∼ e−iKr (2.202)

It has the form of an ingoing wave since it does not return. This is only a rough

approximation since it is impossible to represent the motion of the incident

particle inside the nucleus as a function of r only. However, it represents the

main features of the dependence of the wave function on r. The logarithmic

derivative of the radial wave function must be continuous at r = R. Hence, (see

Eq. (2.129))

f0 = R

(
1

uin(r)

duin(r)

dr

)
r=R

= R

[
d

dr
(Be−iKr)

]
r=R

Be−iKr
= −iKR (2.203)

Substitution into Eq. (2.137) yields immediately for the reaction cross section

(since Re f0 = 0 and Im f0 = −KR)

𝜎re,0 =
𝜋

k2

(
1 −

|||e2i𝛿0 |||2) =
𝜋

k2
4kK

(K + k)2
(2.204)

The wave number inside the nucleus, K , is the only information regarding the

interior, which enters into this expression. Comparison to Eqs. (2.51) and (2.68)

shows that the reaction cross section for s-wave neutrons can be interpreted as

the product of the maximum cross section, 𝜋∕k2, and the s-wave transmission

coefficient, T̂0,

𝜎re,0 = 𝜎
max
re,0

T̂0 (2.205)

where

T̂0 = 1 −
|||e2i𝛿0 |||2 (2.206)

Since we assumed that the projectile is not re-emitted by the compound nucleus

into the entrance channel 𝛼, the reaction cross section 𝜎re here is identical to the

cross section 𝜎𝛼C for the formation of the compound nucleus through channel

𝛼. Also, disregarding the possibility that the incident particle can return via the

entrance channel means that Eq. (2.204) cannot give rise to resonances. For this

reason, the above method for determining the cross section is referred to as con-

tinuum theory.
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From Eq. (2.204), we can also estimate the s-wave reaction cross section for

neutrons at low incident energies, E. For k ≪ K , the wave number K in the

interior does not change considerably with variations in k (see Figure 2.7) and

one finds

𝜎re,0 =
𝜋

k2
4kK

(K + k)2
≈
4𝜋

Kk
∼
1

k
∼
1

𝑣
∼
1√
E

(2.207)

where p = ℏk and 𝑣 is the velocity of the incident neutron. The result is inde-

pendent of the reaction mechanism and is referred to as 1∕𝑣 law for reactions

induced by s-wave neutrons. Reaction cross sections for 3He(n,p)3H, 6Li(n,𝛼)3H

and 10B(n,𝛼)7Li are displayed in Figure 4.15a. Below a neutron energy of ≈ 1 keV,

the cross sections follow the 1∕𝑣 law.

Equations (2.204)–(2.206) are obtained under the assumption of s-wave neu-

trons as incident particles. They can be easily generalized for any projectile and

orbital angular momentum (Blatt and Weisskopf, 1952). The cross section for the

formation of the compound nucleus through channel 𝛼 is then given by

𝜎𝛼C =
𝜋

k2

∑
𝓁

(2𝓁 + 1)T̂𝓁(𝛼) (2.208)

where

T̂𝓁(𝛼) = 1 −
|||e2i𝛿𝛼𝓁 |||2 (2.209)

is the transmission coefficient of channel 𝛼 for orbital angular momentum 𝓁 and
𝛿𝛼𝓁 is the corresponding phase shift in channel 𝛼 for elastic scattering by an appro-

priate potential. The potential must be complex for reactions to occur; otherwise

the phase shift will be real and the transmission coefficient vanishes. This is con-

sistent with our earlier discussion in Section 2.3.6. Transmission coefficients are

usually calculated numerically from optical model potentials, which represent the

average nuclear potential. For more information on optical model potentials, see

Satchler (1990).

2.7

Hauser–Feshbach Theory

In Section 2.5, we considered the case where a reaction proceeds through an iso-

lated narrow resonance. We will now discuss the other extreme situation. With

increasing excitation energy in the compound nucleus, the resonances become

broader and are located closer together. There is a continuous transition from

sharp, isolated levels to the continuum, where levels overlap considerably such

that little structure remains in the cross section. In other words, the cross section

varies smoothly with energy. The reaction cross section, averaged over any reso-

nance structure, is derived in the following.

The total angular momentum J and parity 𝜋 of the compound nucleus will be

conserved in a reaction (𝛼,𝛼′). The average cross section is then given by a sum of
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contributions from separate J and 𝜋,

⟨𝜎re(𝛼, 𝛼′)⟩ = ∑
J𝜋

⟨𝜎re(𝛼, 𝛼′)⟩J𝜋 (2.210)

Recall that 𝛼 denotes a pair of particles (including their state of excitation) in a

particular channel (Section 2.5.5). Unprimed and primed quantities refer to the

incoming and outgoing channel of the reaction, respectively. Next, we factor each

term ⟨𝜎re(𝛼, 𝛼′)⟩J𝜋 into a cross section for compound nucleus formation through
channel 𝛼 and a branching ratio for decay into channel 𝛼′,

⟨𝜎re(𝛼, 𝛼′)⟩J𝜋 = 𝜎J𝜋𝛼C GJ𝜋
𝛼′∑

𝛼′′
GJ𝜋
𝛼′′

(2.211)

The quantities GJ𝜋
𝛼
represent probabilities for the decay into a specific outgoing

channel, where the sum over 𝛼′′ in the denominator is over all channels to

which the compound nucleus can decay (
∑
𝛼′′ G

J𝜋
𝛼′′
= 1). The factorization of the

cross section in Eq. (2.211) reflects the independence of formation and decay

of the compound nucleus while still fulfilling the requirement of total angular

momentum and parity conservation. Substitution of the reciprocity theorem (see

Eq. (2.14))

(2I1 + 1)(2I2 + 1)k
2
𝛼
⟨𝜎re(𝛼, 𝛼′)⟩J𝜋 = (2I′

1
+ 1)(2I ′

2
+ 1)k2

𝛼′
⟨𝜎re(𝛼′, 𝛼)⟩J𝜋 (2.212)

into Eq. (2.211) gives

GJ𝜋
𝛼′

GJ𝜋
𝛼

=
(2I′
1
+ 1)(2I′

2
+ 1)k2

𝛼′
𝜎J𝜋
𝛼′C

(2I1 + 1)(2I2 + 1)k
2
𝛼
𝜎J𝜋
𝛼C

(2.213)

where I1 and I2 are the spins of the particles in channel 𝛼. Summation over all

channels 𝛼′′ yields (since
∑
𝛼′′ G

J𝜋
𝛼′′
= 1)

GJ𝜋
𝛼′
=

(2I′
1
+ 1)(2I′

2
+ 1)k2

𝛼′
𝜎J𝜋
𝛼′C∑

𝛼′′
(2I′′
1
+ 1)(2I′′

2
+ 1)k2

𝛼′′
𝜎J𝜋
𝛼′′C

(2.214)

For the formation of the compound nucleus, one can use Eq. (2.208),

𝜎𝛼C =
∑
J𝜋

𝜎J𝜋
𝛼C

=
𝜋

k2
𝛼

∑
𝓁

(2𝓁 + 1)T̂𝓁(𝛼) (2.215)

Since the cross section is averaged over many overlapping resonances, we expect

that the transmission coefficient does not depend on J . Therefore

𝜎𝛼C =
𝜋

k2
𝛼

∑
𝓁

(2𝓁 + 1)
𝓁+s∑

J=|𝓁−s|
I1+I2∑

s=|I1−I2|
2J + 1

(2I1 + 1)(2I2 + 1)(2𝓁 + 1)
T̂𝓁(𝛼) (2.216)

The quantities I, s, and 𝓁 have the same meanings as in Section 2.5.5 and refer to
a specific channel 𝛼. The factor in front of the transmission coefficient takes the
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number of different spin orientations into account (Section 2.5.5). Rearranging the

order of summation yields

𝜎𝛼C =
𝜋

k2
𝛼

∑
J𝜋

2J + 1

(2I1 + 1)(2I2 + 1)

I1+I2∑
s=|I1−I2|

J+s∑
𝓁=|J−s| T̂𝓁(𝛼) (2.217)

Comparison of Eqs. (2.215) and (2.217) then gives

𝜎J𝜋
𝛼C

=
𝜋

k2
𝛼

2J + 1

(2I1 + 1)(2I2 + 1)

∑
s𝓁

T̂𝓁(𝛼) (2.218)

Combining Eqs. (2.210), (2.211), (2.214), and (2.218) results in

⟨𝜎re(𝛼, 𝛼′)⟩ = ∑
J𝜋

(2I′
1
+ 1)(2I′

2
+ 1)k2

𝛼′

𝜎J𝜋
𝛼C
𝜎J𝜋
𝛼′C∑

𝛼′′
(2I′′
1
+ 1)(2I′′

2
+ 1)k2

𝛼′′
𝜎J𝜋
𝛼′′C

=
𝜋

k2
𝛼

∑
J𝜋

2J + 1

(2I1 + 1)(2I2 + 1)

[∑
s𝓁
T̂𝓁(𝛼)

] [∑
s′𝓁′

T̂𝓁′ (𝛼
′)

]
∑
𝛼′′

∑
s′′𝓁′′

T̂𝓁′′ (𝛼
′′)

(2.219)

This is the Hauser–Feshbach formula for energy-averaged cross sections (Hauser

and Feshbach, 1952; Vogt, 1968).The quantity 𝛼 refers to the incoming channel of

the reaction and thus I1 and I2 are the spins of the target and projectile, respec-

tively. The sum over 𝛼′′ is again over all channels that are energetically accessible

for the decay of the compound nucleus at the total energy in the entrance chan-

nel.The sums over J𝜋 , 𝓁, and s run over all values allowed by the selection rules for
angularmomentum coupling (Appendix B): 𝜋 is positive or negative; J = 0, 1, 2,…

forA even, or J =
1

2
,
3

2
,
5

2
,… forAodd; s takes on all integer values between |I1 − I2|

and I1 + I2; 𝓁 takes on all even values between |J − s| and J + s if the pair 𝛼 has the

same parity as 𝜋, and all odd values otherwise. We assume here that the trans-

mission coefficients are independent of the channel spin (i.e., the potential has no

spin–orbit term) and, therefore, the sum over s in Eq. (2.219) becomes a simple

multiplicative factor. See Problem 2.6.

The transmission coefficients T̂𝓁(𝛼) are determined by complex phase shifts 𝛿𝛼𝓁
(see Eq. (2.209)) that are usually calculated numerically from optical model poten-

tials (Section 2.6). Recall that these represent the average nuclear potential only.

Consequently, the transmission coefficients describe the formation probability of

single-particle levels. In other words, the reaction cross section calculated from

Eq. (2.219) cannot account for the fine structure shown in Figure 2.25, but corre-

sponds to the average cross section shown as the thick solid line.

The Hauser–Feshbach theory is also applicable if a channel involves the emis-

sion or absorption of γ-rays (Cowan,Thielemann, and Truran, 1991). A correction

must be applied to Eq. (2.219) because the processes of compound nucleus forma-

tion and decay are not completely independent of each other as can be shown by

a more involved derivation of the Hauser–Feshbach formula using the resonance

theory (Vogt, 1968). This width-fluctuation correction enhances the cross section

for weak reaction channels at the cost of stronger ones and is most important
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near thresholds, where additional channels become energetically accessible, and

for reactions with few open channels (Moldauer, 1964).

Recall that 𝛼 also specifies the state of excitation of a pair of particles in a

particular channel. In practical applications, one is mostly interested in cross

sections obtained by summing or averaging over specific sets of excited states. For

example, what is usually measured in the laboratory is the quantity ⟨𝜎re(𝛼, 𝛼′)⟩,
with 𝛼 representing the ground states of target and projectile, summed over

excited states in the outgoing channel 𝛼′. Or, if the reaction takes place in

a hot stellar plasma, ⟨𝜎re(𝛼, 𝛼′)⟩ must be averaged over excited states in the
entrance channel 𝛼 (Section 3.1.5). In such cases, Eq. (2.219) is still valid if

each of the transmission coefficients in the numerator is replaced by sums of

transmission coefficients over the excited states in question. In exceptional cases,

all the final states for compound nucleus decay and their quantum numbers are

experimentally known. The Hauser–Feshbach formula can then be applied with

essentially no adjustable parameters. In most cases of practical interest, however,

the compound nucleus may decay to levels beyond the highest excited state for

which energy, spin, and parity are explicitly known.The transmission coefficients

in the numerator and denominator of Eq. (2.219) must then be modified to

include terms that integrate a nuclear level density over the energy region beyond

the known levels. This requires the development of expressions for the density of

states as a function of excitation energy, spin, and parity. The evaluation of the

overall cross section is then reduced to the problem of determining the required

transmission coefficients and nuclear level densities. For a detailed discussion of
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Figure 2.29 Cross section versus bom-

barding energy for the 64Ni(p,𝛾)65Cu reac-

tion. Beyond an energy of ≈ 2.5 MeV the

endothermic 64Ni(p,n)64Cu reaction is ener-

getically allowed. The sharp drop in the cross

section at the neutron threshold reflects

the decrease of the flux in all other decay

channels of the compound nucleus 65Cu. The

curves show the results of Hauser–Feshbach

statistical model calculations with (solid line)

and without (dashed line) width fluctuation

corrections. Data adopted from Mann et al.

(1975).
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these quantities in connection with the Hauser–Feshbachmodel see, for example,

Rauscher et al. (1997) or Arnould and Goriely (2003).

Figure 2.29 shows the cross section for the 64Ni(p,𝛾)65Cu reaction at bombard-

ing energies between 1 MeV and 4 MeV.The 64Ni(p,n)64Cu reaction has aQ-value

of ≈ −2.5 MeV, which means that at a bombarding energy close to 2.5 MeV the

neutron channel opens and the (p,n) reaction will start to compete with the

(p,𝛾) reaction. Since the total incoming flux must be constant, the opening of a

new reaction channel corresponds to a reduction of flux into all other reaction

channels. As a result, the cross section of the (p,𝛾) reaction drops substantially

at the neutron threshold, giving rise to a competition cusp. The dashed curve

in Figure 2.29 was obtained using Eq. (2.219) and is in qualitative agreement

with the measurements. The theoretical description of the data is significantly

improved if width fluctuation corrections are taken into account (solid line).

A discussion of the Hauser–Feshbach model in the context of thermonuclear

reaction rates is given in Section 3.2.7.

Problems

2.1 Show by substituting Eq. (2.27) into Eq. (2.30) that the expansion coefficients

are given by b𝓁 = (2𝓁 + 1)i𝓁ei𝛿𝓁 . It is helpful for the derivation to write the
sine functions as complex exponentials and to group separately the terms

with eikr and e−ikr .

2.2 The s-wave (𝓁 = 0) transmission coefficient at low energies compared to the

Coulomb barrier height is given by Eq. (2.124). Derive the transmission coef-

ficient at low energies for the Coulomb and centripetal potentials by substi-

tuting V (r) = Z0Z1e
2∕r + 𝓁(𝓁 + 1)ℏ2∕(2mr2) into Eq. (2.119). The simplest

procedure is to expand the square root in the integrand before integration.

2.3 Suppose that a hypothetical resonance occurs in the A(p,𝛾)B reaction. The

observed proton and γ-ray partial widths amount to Γo
p
= 50 meV and Γo

𝛾
=

50 meV, respectively. Assume that no other reaction channels are open. Use

the one-level Breit–Wigner formula to calculate the ratio of reaction cross

sections at Er and Er + Γo (Γo denotes the total resonance width). Disregard

the small energy dependence of the wave number k and of the partial widths.

2.4 Show explicitly that the general solution of Eq. (2.159) reduces for𝓁 = 0 neu-

trons to u0(r) = Aeikr + Be−ikr (see Eq. (2.131)).

2.5 The Ecm
r

= 518 keV (J𝜋 = 1−) s-wave resonance (Figure 3.12) in the
13C(p,𝛾)14N reaction (Q = 7550 keV) has an observed proton and γ-ray

partial width of Γo
p
= 37 keV and Γo

𝛾
= 9.4 eV, respectively, at the resonance

energy. Both values are given here in the center-of-mass system. They are

derived from the results reported in King et al. (1994). The latter value

corresponds to the γ-ray partial width of the E1 transition to the 14N ground

state (J𝜋 = 1+). By using the energy dependences of the partial widths, find

for this particular resonance the center-of-mass energy at which Γo
p
≈ Γo

𝛾
.

Approximate the s-wave penetration factor by the Gamow factor and
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disregard the small energy dependence of the dimensionless single-particle

reduced width.

2.6 Consider the 23Na(p,𝛼)20Ne reaction, leading to the 20Ne ground

state (J𝜋 = 0+), at a center-of-mass proton energy of Ep ≈ 0.4 MeV

[J𝜋(23Na) = 3∕2+, J𝜋
p
= 1∕2+]. The proton separation energy of 24Mg (or

the Q-value for the 23Na(p,𝛾)24Mg reaction) is Sp = 11.693 MeV (Wang

et al., 2012). Hence, the compound nucleus 24Mg has an excitation energy

near 11.7 MeV +0.4 MeV ≈ 12 MeV. At this energy, 24Mg can decay by

proton emission to the 23Na ground state and by α-particle emission to the
20Ne ground state or the 20Ne first-excited state (Ex = 1.63 MeV, J

𝜋 = 2+).

Determine the energy-averaged cross section by writing down all terms of

Eq. (2.219) up to and including J = 2.
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3

Thermonuclear Reactions

3.1

Cross Sections and Reaction Rates

The Q-value represents the energy released in a particular nuclear reaction. Of

importance in a stellar environment, however, is the total nuclear energy liberated

in a stellar plasma per unit volume. The latter aspect depends on two additional

quntities, the nuclear cross section and the velocity distribution of the particles in

the plasma. The nuclear cross section is a measure for the probability per pair of

interacting nuclei 0 and 1 that a nuclear reaction will occur.The total cross section

(in units of area) is defined by Eq. (2.1). In general, nuclear cross sections depend

on the relative velocity of the target-plus-projectile system, that is, 𝜎 = 𝜎(𝑣).

Using Eq. (2.1), wemay write the rate of a nuclear reaction (number of reactions

per time t and unit volume V ) as

R

V ⋅ t
= (𝜎t)

( b

V ⋅ A ⋅ t

)
= 𝜎

t

V

b

A ⋅ t
= 𝜎

t

V
𝑣
b

V
(3.1)

with the current density (number of particles per time and per area) given by jb =b∕(At) = 𝑣b∕V .

3.1.1

Particle-Induced Reactions

Consider a reaction involving four species, 0 + 1 → 2 + 3, where both the projec-
tile (0) and the target (1) are represented by particles with rest mass (i.e., neither 0

nor 1 represents a photon). With the definition r01 ≡ R∕(Vt), we obtain for the

reaction rate

r01 = N0N1𝑣𝜎(𝑣) (3.2)

where N0 ≡ t∕V and N1 ≡ b∕V are the number densities of the interacting

particles (in units of particles per volume). In a stellar plasma at thermodynamic

equilibrium, the relative velocity of the interacting nuclei 0 and 1 is not constant,

but there is a distribution of relative velocities, described by the probability func-

tion P(𝑣). In this case, P(𝑣) d𝑣 is the probability that the relative velocity of the

Nuclear Physics of Stars, Second Edition. Christian Iliadis.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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interacting nuclei is in the range between 𝑣 and 𝑣 + d𝑣, with

∫
∞

0

P(𝑣) d𝑣 = 1 (3.3)

We may generalize the reaction rate for a distribution of relative velocities by

writing

r01 = N0N1 ∫
∞

0

𝑣P(𝑣)𝜎(𝑣) d𝑣 ≡ N0N1⟨𝜎𝑣⟩01 (3.4)

where ⟨𝜎𝑣⟩01 is the reaction rate per particle pair and N0N1 is the total number
density of pairs of nonidentical nuclei 0 and 1. For identical particles, the total

number density of pairs is given by

N0(N0 − 1)

2
−−−−−→
N0 large

N2
0

2
(3.5)

and we obtain for the reaction rate the general expression

r01 =
N0N1⟨𝜎𝑣⟩01
(1 + 𝛿01)

(3.6)

where 𝛿01 is the Kronecker symbol. The number of reactions per unit volume

and time is given by the product of the number of particle pairs and the reaction

rate per particle pair. The latter quantity contains the nuclear physics informa-

tion. In practice, it is the quantity NA⟨𝜎𝑣⟩01 (where NA denotes the Avogadro

constant) in units of cm3mol−1s−1 rather than ⟨𝜎𝑣⟩01, which is tabulated and pre-
sented in the literature. For the case of three-particle reactions or decays, see

Fowler, Caughlan, and Zimmerman (1967). In a stellar plasma, the kinetic energy

available to nuclei is that of their thermal motion. Therefore, the reactions ini-

tiated by this motion are called thermonuclear reactions. With few exceptions,

nuclei in a stellar plasmamove nonrelativistically and are nondegenerate (see, e.g.,

Wolf, 1965). Thus, in most cases, the velocities of nuclei can be described by a

Maxwell–Boltzmann distribution.The probability for the occurrence of a nuclear

reaction depends on the relative velocities between the interacting nuclei. If the

velocity distributions of the interacting nuclei at thermodynamic equilibrium are

separately described by Maxwell–Boltzmann distributions, then it follows that

the relative velocities between the two species of nuclei will also be Maxwellian

(Clayton, 1983).

We may write for the Maxwell–Boltzmann distribution

P(𝑣) d𝑣 =
( m01
2𝜋kT

)3∕2
e−m01𝑣

2∕(2kT) 4𝜋𝑣2 d𝑣 (3.7)

which gives the probability that the relative velocity has a value between 𝑣 and

𝑣 + d𝑣.The Boltzmann constant is given by k = 8.6173 × 10−5 eV/K, T is the tem-

perature, and m01 is the reduced mass m01 = m0m1∕(m0 +m1) (Appendix C.2).

With E = m01𝑣
2∕2 and dE∕d𝑣 = m01𝑣, we may write the velocity distribution as

an energy distribution,
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P(𝑣) d𝑣 = P(E) dE =
( m01
2𝜋kT

)3∕2
e−E∕kT 4𝜋

2E

m01

dE

m01

√
m01
2E

=
2√
𝜋

1

(kT)3∕2

√
E e−E∕kT dE (3.8)

The velocity distribution has a maximum at 𝑣T =
√
2kT∕m01, corresponding to

an energy of E = kT .The energy distribution has a maximum at E = kT∕2. For the

reaction rate per particle pair, we obtain

⟨𝜎𝑣⟩01 = ∫
∞

0

𝑣P(𝑣)𝜎(𝑣) d𝑣 = ∫
∞

0

𝑣𝜎(E)P(E) dE

=

(
8

𝜋m01

)1∕2
1

(kT)3∕2 ∫
∞

0

E 𝜎(E) e−E∕kT dE (3.9)

Numerically we obtain for the reaction rate at a given temperature T

NA⟨𝜎𝑣⟩01 = 3.7318 × 1010
T
3∕2

9

√
M0 +M1
M0M1 ∫

∞

0

E 𝜎(E) e−11.605E∕T9 dE

(cm3mol−1s−1) (3.10)

where the center-of-mass energy E is in units of MeV, the temperature T9 in GK

(T9 ≡ T∕109 K), the relative atomic masses Mi in u, and the cross section 𝜎 in

barn (1 b ≡ 10−24 cm2).The reaction rate depends critically on the cross section 𝜎,
which differs for each nuclear reaction.

Figure 3.1a shows the factor (kT)−3∕2E e−E∕kT , containing the Maxwell–

Boltzmann distribution, versus energy E for three different scenarios: (i) the

Sun’s core (T = 15 MK), (ii) a classical nova (T = 300 MK), and (iii) a supernova

10

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

8

6

4

2

0
10–5 10–4 10–3 10–310–2 10–2

Energy (MeV)

T = 5 GK

kT = 0.43 MeV

T = 5 GK

kT = 0.43 MeV

T = 2.5 GK

kT = 0.22 MeV

T = 1 GK

kT = 0.086 MeV

T = 0.3 GK

kT = 0.026 MeV

T = 0.015 GK

(a) (b)

kT = 0.0013 MeV

(k
T

) 
–
3
/2

E
e

–
E

/k
T

E
2
/(

e
E

/k
T
–

1
)

Energy (MeV)

10–1 10–1101 101100 100

Figure 3.1 (a) The factor (kT)−3∕2E e−E∕kT

that occurs in the rate expression for reac-

tions induced by particles with rest mass

(see Eq. (3.10)) at three different tempera-

tures, T = 0.015 GK, 0.3 GK, and 5 GK; these

conditions are encountered in the Sun, in

classical novae and in type II supernovae,

respectively; (b) The factor E2𝛾∕(e
E𝛾∕kT − 1)

that occurs in the expression of the decay

constant for photodisintegration reactions

(see Eq. (3.18)) at three different tempera-

tures, T = 1 GK, 2.5 GK, and 5 GK.
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Figure 3.2 Energy maximum of the Maxwell–Boltzmann velocity distribution as a function

of temperature.

(T = 5 GK). Each displayed curve increases linearly at small energies, reaches

a maximum at E = kT , and then decreases exponentially and approaches zero

for large values of E. The term kT is numerically given by kT = 86.173T9 (keV)

= 0.086173T9 (MeV), and is displayed in Figure 3.2. The maxima of the curves in

Figure 3.1a occur at Emax = kT = 1.3 keV, 26 keV, and 431 keV.

For neutron-induced reactions, such as (n,𝛾) or (n,𝛼), the reaction rate is fre-

quently expressed in terms of a Maxwellian-averaged cross section,

NA⟨𝜎⟩T ≡ NA⟨𝜎𝑣⟩
𝑣T

=
1

𝑣T
NA ∫

∞

0

𝑣P(𝑣)𝜎n(𝑣) d𝑣

=
4√
𝜋

NA

𝑣2
T
∫

∞

0

𝑣𝜎n(𝑣)

(
𝑣

𝑣T

)2
e−(𝑣∕𝑣T )

2

d𝑣 (3.11)

with 𝑣T =
√
2kT∕m01 the thermal velocity, that is, the maximum of the velocity

distribution. The quantity ⟨𝜎⟩T rather than ⟨𝜎𝑣⟩ is frequently presented in the
literature. The usefulness of the above expression will become apparent in later

sections.

3.1.2

Photon-Induced Reactions

When species 2 is a photon, the process 𝛾 + 3→ 0 + 1 is called a photodisinte-
gration reaction. The current density may be written as jb = b∕(At) = cb∕V ,

with c the speed of light. With the definitions r𝛾3 ≡ R∕(Vt), N3 ≡ t∕V , and

N𝛾 ≡ b∕V , we obtain from Eq. (3.1)

r𝛾3 = N3N𝛾c𝜎(E𝛾 ) (3.12)
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The cross section depends on the γ-ray energy. Furthermore, in a stellar plasma at

thermodynamic equilibrium, the number density of photons is not constant, but

depends on the stellar temperature and on the γ-ray energy. We may generalize

the reaction rate by writing

r𝛾3 = N3 ∫
∞

0

cN𝛾 (E𝛾 )𝜎(E𝛾 ) dE𝛾 (3.13)

For the decay constant (probability of decay per nucleus per second), we find

𝜆𝛾 (3) =
r𝛾3

N3
= ∫

∞

0

cN𝛾 (E𝛾 )𝜎(E𝛾 ) dE𝛾 (3.14)

The energy density of electromagnetic waves with frequencies between 𝜈 and 𝜈 +

d𝜈 at temperature T is given by the Planck radiation law

u(𝜈) d𝜈 =
8𝜋h𝜈3

c3
1

eh𝜈∕kT − 1
d𝜈 (3.15)

With the substitution E𝛾 = h𝜈, we find for the energy density

u(E𝛾 ) dE𝛾 =
8𝜋

(hc)3

E3
𝛾

eE𝛾∕kT − 1
dE𝛾 (3.16)

The number of photons with energies between E𝛾 and E𝛾 + dE𝛾 per unit volume

at a temperature T is then

N𝛾 (E𝛾 ) dE𝛾 =
u(E𝛾 )

E𝛾
dE𝛾 =

8𝜋

(hc)3

E2
𝛾

eE𝛾∕kT − 1
dE𝛾 (3.17)

With Eq. (3.14), we obtain for the photodisintegration decay constant at a given

temperature

𝜆𝛾 (3) =
8𝜋

h3c2 ∫
∞

0

E2
𝛾

eE𝛾∕kT − 1
𝜎(E𝛾 ) dE𝛾 (3.18)

Sincemost photodisintegration reactions are endothermic (Q𝛾3→01 < 0), the lower

integration limit is given by the threshold energy, Et = Q01→𝛾3, of the reaction.

Note that 𝜆𝛾 (3) does not depend on the stellar density.

Figure 3.1b shows the factor E2
𝛾
∕(eE𝛾∕kT − 1) versus γ-ray energy for three differ-

ent scenarios: (i) T = 1 GK (kT = 86 keV), (ii) T = 2.5 GK (kT = 215 keV),

and (iii) T = 5 GK (kT = 431 keV). The maxima of the curves occur at

E𝛾,max ≈ 1.6 kT = 140 keV, 349 keV, and 700 keV. The number of photons is

not conserved, but is determined by the conditions of thermal equilibrium.

For many important photodisintegration reactions, the threshold energies are

considerably larger than the location of the maxima of the factor E2
𝛾
∕(eE𝛾∕kT − 1),

that is, Et ≫ E𝛾,max. Figure 3.3 compares the situation for two photodisintegration

reactions of different threshold energies and with Et ≫ E𝛾,max. The integral

𝜆𝛾 (3) ∼ ∫ ∞

Et
E2
𝛾
(eE𝛾∕kT − 1)−1𝜎(E𝛾 ) dE𝛾 will be smaller for the reaction with the

larger threshold energy if both reactions have similar photodisintegration cross

sections.
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Figure 3.3 Energy level diagram compar-

ing photodisintegration reactions of different

threshold energies, Et . The right-hand side

shows schematically the factor E2𝛾 ∕(e
E𝛾∕kT −

1) (see Figure 3.1b). Only photons with

energies above the threshold (Et = Q01→𝛾3

for photon 𝛾 ; E ′t = Q45→𝛾3 for photon 𝛾 ′) can

initiate a photodisintegration reaction and

contribute to the decay constant given by

Eq. (3.18).

3.1.3

Abundance Evolution

Consider first a reaction between two nuclei 0 and 1, and disregard other

processes. The reaction rate for 0 + 1 is related to the mean lifetime 𝜏 of the

nuclear species in the stellar plasma. The rate of change of the abundance (in

terms of the number density) of nucleus 0 caused by reactions with nucleus 1 can

be expressed as(
dN0
dt

)
1

= −𝜆1(0)N0 = −
N0
𝜏1(0)

(3.19)

where 𝜆 ≡ 1∕𝜏 is the decay constant. By using the reaction rate (see Eq. (3.6)), we
may also write(

dN0
dt

)
1

= −(1 + 𝛿01)r01 = −(1 + 𝛿01)
N0N1⟨𝜎𝑣⟩01
(1 + 𝛿01)

= −N0N1⟨𝜎𝑣⟩01 (3.20)
The Kronecker symbol appears since for identical nuclei each reaction destroys

two particles. From Eqs. (3.19), (3.20), and (1.14), we obtain the relations

r01 =
𝜆1(0)N0
(1 + 𝛿01)

=
1

(1 + 𝛿01)

N0
𝜏1(0)

(3.21)

𝜏1(0) =
N0

(1 + 𝛿01)r01
=

1

N1⟨𝜎𝑣⟩01 =
(
𝜌
X1
M1

NA⟨𝜎𝑣⟩01)−1

(3.22)

𝜆1(0) =
1

𝜏1(0)
= N1⟨𝜎𝑣⟩01 = 𝜌 X1M1NA⟨𝜎𝑣⟩01 (3.23)

The decay constant of a nucleus for destruction via a particle-induced reaction

depends explicitly on the stellar density and, as we shall see, implicitly on stellar
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temperature through the reaction rate. If species 0 can be destroyed by several

different reactions, its total lifetime is given by

1

𝜏(0)
=

∑
i

1

𝜏i(0)
(3.24)

The above expressions are very useful and will be applied frequently in the discus-

sion of nuclear burning stages (Chapter 5).The following example shows their use

in determining the preferred process (reaction or β-decay) by which a particular

nucleus is destroyed in a stellar plasma.

Example 3.1

In a stellar plasma, the nucleus 25Al may be destroyed by the capture reaction
25Al(p,𝛾)26Si or by β+-decay (T1∕2 = 7.18 s). Neglecting other processes, deter-

mine the dominant destruction process at a stellar temperature of T = 0.3 GK

assuming a reaction rate of NA⟨𝜎𝑣⟩ = 1.8 × 10−3 cm3mol−1s−1. Assume a stellar
density of 𝜌 = 104 g/cm3 and a hydrogen mass fraction of XH = 0.7.

Using Eqs. (1.19) and (3.22), we obtain for the mean lifetime of both processes

β+-decay: 𝜏𝛽+(
25Al) =

T1∕2

ln 2
=
7.18 s

0.693
= 10.36 s

p capture: 𝜏p(
25Al) =

(
𝜌
XH
MH

NA⟨𝜎𝑣⟩)−1

=
[
(104 g/cm3) ⋅

0.7

1.0078 u
⋅ (1.8 × 10−3 cm3s−1mol−1)

]−1
= 0.08 s

Thus, the proton capture reaction is the dominant destruction mechanism of
25Al under these conditions.

Consider now the influence of several nuclear processes (reactions, photodis-

integrations, and β-decays) together on the abundance evolution of a particu-

lar nucleus in a stellar plasma. As a specific example, we will choose again 25Al

(Figure 3.4). It may be produced by a number of processes that are represented

by solid lines, including 24Mg(p,𝛾)25Al, 22Mg(𝛼,p)25Al, 25Si(𝛽+𝜈)25Al, 26Si(𝛾 ,p)25Al,

and so on. On the other hand, it is destroyed by the processes shown as dotted

lines, such as 25Al(p,𝛾)26Si, 25Al(𝛼,p)28Si, 25Al(𝛽+𝜈)25Mg, 25Al(𝛾 ,p)24Mg, and so

forth. The time evolution of the 25Al abundance is described by the expression

d(N25Al)

dt
= NHN24Mg⟨𝜎𝑣⟩24Mg(p,𝛾) + N4HeN22Mg⟨𝜎𝑣⟩22Mg(𝛼,p)
+ N25Si𝜆25Si(𝛽+𝜈) + N26Si𝜆26Si(𝛾,p) + · · ·

− NHN25Al⟨𝜎𝑣⟩25Al(p,𝛾) − N4HeN25Al⟨𝜎𝑣⟩25Al(𝛼,p)
− N25Al𝜆25Al(𝛽+𝜈) − N25Al𝜆25Al(𝛾,p) − · · · (3.25)

In general, if the only sources of abundance change are nuclear processes (i.e.,

there is no expansion or mixing of matter), then the abundance evolution of
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22Mg 23Mg 24Mg 25Mg

26AI25AI24AI

25Si 26Si 27Si 28Si (p,γ)

(α,p)

(γ,p) (β+ν)

Figure 3.4 Relevant part of the chart of the nuclides showing processes that create (solid

arrows) or destroy (dashed arrows) the species 25Al.

nucleus i is given by the differential equation

dNi

dt
=

[∑
j,k

NjNk⟨𝜎𝑣⟩jk→i +
∑
l

𝜆𝛽,l→iNl +
∑
m

𝜆𝛾,m→iNm

]

−

[∑
n

NnNi⟨𝜎𝑣⟩ni +∑
o

𝜆𝛽,i→oNi +
∑
p

𝜆𝛾,i→pNi

]
(3.26)

The terms in the first and second parenthesis represent all processes producing

and destroying nucleus i, respectively. In the first parenthesis, the three terms

stand for: the sum over all reactions producing nucleus i via reactions between

j and k; the sum over all β-decays of nuclei l leading to i; and the sum over all pho-

todisintegrations of nucleim leading to i. Similar arguments apply to the terms in

the second parenthesis. If a reaction between nonidentical particles ( j ≠ k) cre-

ates two nuclei i (e.g., 7Li + p→ 𝛼 + 𝛼), then NjNk⟨𝜎𝑣⟩jk→i has to be replaced by

2NjNk⟨𝜎𝑣⟩jk→i. If a reaction between identical particles (j = k) produces only one

particle i (e.g., p + p → d), then NjNk⟨𝜎𝑣⟩jk→i must be replaced by N
2
j
⟨𝜎𝑣⟩jj→i∕2.

The above expression holds without modification for all other reactions involving

identical particles. For the inclusion of three-particle reactions, see, for example,

Chieffi, Limongi, and Straniero (1998). It is of advantage to express Eq. (3.26) in

terms ofmole fractionsY (Section 1.5.4) instead of number densitiesN if themass

density changes during the nucleosynthesis. In most discussions of nuclear burn-

ing stages and processes in Chapter 5, we will make the assumption of constant

density 𝜌 and thus the use of either N or Y is appropriate.

In any realistic situation, we have to consider the evolution of not just one

nuclide, but of several (sometimes many) species simultaneously. For each

nuclide, we can set up an expression of the form given by Eq. (3.26). Such a system

of coupled, nonlinear ordinary differential equations is called a nuclear reaction

network. In the simplest cases, we will solve the reaction network analytically.

In more complex situations, however, the system of equations must be solved

numerically. We do not concern ourselves with the numerical techniques of

solving a reaction network here. These are described in detail by Arnett (1996),

Timmes (1999), or Hix and Meyer (2006).

Sometimes, the solutions of nuclear reaction networks reveal certain funda-

mental properties, which simplify the interpretation of the results. The most
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important of these properties are called steady state and equilibrium. A steady-

state solution exists if for some part of the reaction network, the time derivatives

of all abundances, dNi∕dt, are zero or nearly zero. This implies that in Eq. (3.26)

the sum of all destruction terms is balanced by the sum of all creation terms.

An equilibrium solution is more restrictive and applies to a situation where the

abundances of a pair of nuclei (or of a group of nuclei) are locally balanced because

of (almost) equally strong forward and reverse reaction rates (see Section 3.1.4).

We will use both concepts in discussions of the nucleosynthesis.

3.1.4

Forward and Reverse Reactions

It was shown in Section 2.2 that the cross sections of a forward and a reverse reac-

tion are fundamentally related by the reciprocity theorem. Here, we will derive a

number of expressions for the corresponding reaction rates. For a reaction involv-

ing only particles with rest mass, 0 + 1→ 2 + 3, we obtain from Eq. (2.15) with
p2 = 2mE

𝜎23→01
𝜎01→23

=
(2j0 + 1)(2j1 + 1)

(2j2 + 1)(2j3 + 1)

m01E01
m23E23

(1 + 𝛿23)

(1 + 𝛿01)
(3.27)

where E01 and E23 denote the center-of-mass energies for the forward and reverse

reaction, respectively. For a reaction involving photons, 0 + 1→ 𝛾 + 3, we obtain

from Eq. (2.15) with p2 = E2
𝛾
∕c2

𝜎𝛾3→01

𝜎01→𝛾3
=
(2j0 + 1)(2j1 + 1)

2(2j3 + 1)

2m01c
2E01

E2
𝛾

1

(1 + 𝛿01)
(3.28)

where (2j𝛾 + 1) = 2, since the photon has only two polarization directions

(Messiah, 1999).

If the forward reaction, 0 + 1→ 2 + 3, and corresponding reverse reaction, 2 +
3→ 0 + 1, involve only particles with rest mass, we find for the reaction rates

NA⟨𝜎𝑣⟩01→23 = (
8

𝜋m01

)1∕2
NA

(kT)3∕2 ∫
∞

0

E01 𝜎01→23 e
−E01∕kT dE01 (3.29)

NA⟨𝜎𝑣⟩23→01 = (
8

𝜋m23

)1∕2
NA

(kT)3∕2 ∫
∞

0

E23 𝜎23→01 e
−E23∕kT dE23 (3.30)

The kinetic energies are related by E23 = E01 + Q01→23 (see Eq. (1.5)). It follows

(see also Fowler, Caughlan, and Zimmerman, 1967)

NA⟨𝜎𝑣⟩23→01
NA⟨𝜎𝑣⟩01→23 =

(
m01
m23

)1∕2 ∫ ∞

0
E23 𝜎23→01 e

−E23∕kT dE23

∫ ∞

0
E01 𝜎01→23 e

−E01∕kT dE01

=
(2j0 + 1)(2j1 + 1)(1 + 𝛿23)

(2j2 + 1)(2j3 + 1)(1 + 𝛿01)

(
m01
m23

)3∕2
e−Q01→23∕kT (3.31)

The rates NA⟨𝜎𝑣⟩01→23 and NA⟨𝜎𝑣⟩23→01 refer to the same stellar temperature T .
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To find the relationship between forward and reverse reactions, if species 2 is a

photon, we start from Eqs. (3.9) and (3.18)

𝜆𝛾 (3) =
8𝜋

h3c2 ∫
∞

0

E2
𝛾

eE𝛾∕kT − 1
𝜎𝛾3→01 dE𝛾 (3.32)

NA⟨𝜎𝑣⟩01→𝛾3 = (
8

𝜋m01

)1∕2
NA

(kT)3∕2 ∫
∞

0

E01 𝜎01→𝛾3 e
−E01∕kT dE01 (3.33)

From Eq. (3.28), we find

𝜆𝛾 (3)

NA⟨𝜎𝑣⟩01→𝛾3 =
8𝜋

h3c2
∫ ∞

0

E2
𝛾

eE𝛾 ∕kT−1

(2j0+1)(2j1+1)

(2j3+1)(1+𝛿01)

m01c
2E01

E2
𝛾

𝜎01→𝛾3 dE𝛾(
8

𝜋m01

)1∕2
NA

(kT)3∕2
∫ ∞

0
E01 𝜎01→𝛾3 e

−E01∕kT dE01

(3.34)

The energies are related by E01 + Q01→𝛾3 = E𝛾 , as shown in Figure 3.3. Most

capture reactions have positive Q-values (i.e., Q < 0 for the corresponding

reverse photodisintegration reactions), otherwise nucleus 3 would be unstable

by particle emission. Furthermore, many capture reactions have large Q-values,

on the order of several MeV. In this case, the integration over γ-ray energy

E𝛾 will not start at zero but at a threshold energy of Et = Q01→𝛾3 as explained

above (Figure 3.3). Since this implies E𝛾 ≫ kT , we may use the approximation

eE𝛾∕kT − 1 ≈ eE𝛾∕kT . Figure 3.5 shows the factor E2
𝛾
∕(eE𝛾∕kT − 1) (solid line) and

the approximation E2
𝛾
∕eE𝛾∕kT (dashed line) versus γ-ray energy for a stellar

temperature of T = 5 GK. If the threshold energy Et = Q01→𝛾3 is sufficiently large,

the difference between the two expressions is negligible. The approximation also
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Figure 3.5 Comparison of the exact expres-

sion E2𝛾∕(e
E𝛾∕kT − 1) (solid line) and the

approximation E2𝛾∕e
E𝛾 ∕kT (dashed line)

at a stellar temperature of T = 5 GK. For

a sufficiently large threshold energy (in

this case, for Et > 1.5 MeV), the differ-

ence between the two expressions is

negligible.
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Figure 3.6 (a) Reaction rate ratio of forward

and reverse reactions versus temperature.

The curves correspond to different values

of Q01→23. (b) Ratio of decay constants for

photodisintegration reaction and correspond-

ing capture reaction versus temperature for

different values of Q01→𝛾3.

holds for smaller Q-values below 1 MeV if charged particles are involved in the

process. The photodisintegration cross section is then suppressed at low energies

(because of the tunnel effect) where the deviation between the solid and dashed

lines in Figure 3.5 is largest. However, the approximation may not be valid for

(n,𝛾) reactions with small Q-values.

With the approximation eE𝛾∕kT − 1 ≈ eE𝛾∕kT , we obtain from Eq. (3.34) (see also

Fowler, Caughlan, and Zimmerman, 1967)

𝜆𝛾 (3)

NA⟨𝜎𝑣⟩01→𝛾3 =
8𝜋

h3c2
(kT)3∕2m01c

2(
8

𝜋m01

)1∕2
NA

(2j0 + 1)(2j1 + 1)

(2j3 + 1)(1 + 𝛿01)

×
∫ ∞

0
E01 e

−(E01+Q01→𝛾3)∕kT𝜎01→𝛾3 dE𝛾

∫ ∞

0
E01 e

−E01∕kT𝜎01→𝛾3 dE01

=
(
2𝜋

h2

)3∕2 (m01kT)3∕2
NA

(2j0 + 1)(2j1 + 1)

(2j3 + 1)(1 + 𝛿01)
e−Q01→𝛾3∕kT (3.35)

Figure 3.6a shows the ratio of reaction rates, NA⟨𝜎𝑣⟩23→01∕NA⟨𝜎𝑣⟩01→23 ≈
e−Q01→23∕kT , for reactions involving particles with rest mass, where the factor

containing the spins and reduced masses in Eq. (3.31) is set equal to unity.

The different curves correspond to different values of Q01→23. For a positive

Q-value, the ratio NA⟨𝜎𝑣⟩23→01∕NA⟨𝜎𝑣⟩01→23 is always less than unity. It is
apparent that the reverse reaction becomes important at sufficiently large tem-

peratures and at small Q-values. Figure 3.6b shows the ratio of decay constants,

𝜆𝛾 (3)∕𝜆1(0) = 𝜆𝛾 (3)∕[𝜌(X1∕M1)NA⟨𝜎𝑣⟩01→𝛾3], for reactions involving photons,
where the factor containing the spins in Eq. (3.35) and the term X1∕M1 are set

equal to unity. For the density, an arbitrary value of 𝜌 = 103 g/cm3 has been

chosen. For all curves shown, the value of Q01→𝛾3 (i.e., for the capture reaction)
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Figure 3.7 Sections of the nuclide chart

indicating interactions between nuclei.

Arrows that point vertically up show (p,𝛾)

reactions; those pointing vertically down

represent (𝛾 ,p) photodisintegrations; and

those pointing diagonally down to the right

correspond to β+-decays. (a) The reaction

chain 11B+p↔12C and 12C+p↔13N at ele-

vated temperatures. (b) A situation depicting

an equilibrium between the forward reac-

tion A+a → 𝛾+B and the reverse reaction

B+𝛾 → a+A; see Section 3.1.6.

is positive. It can be seen that the ratio of photodisintegration and capture

reaction decay constants can exceed unity and may become very large, depending

on the values of temperature and reaction Q-value.

The strong Q-value dependence of the ratio 𝜆𝛾 (3)∕𝜆1(0) in Figure 3.6b has an

important consequence. Capture reactions involving target nuclei with an even

number of protons and neutrons usually have small Q-values, while the Q-values

are larger for capture reactions involving an odd number of protons or neutrons.

In other words, a relatively large amount of energy is released if an energetically

favorable even–even structure can be achieved as a result of the capture pro-

cess. For example, consider the reaction chain 11B + p ↔ 12C and 12C + p ↔
13N shown in Figure 3.7a. The corresponding Q-values are Q11B+p = 16 MeV and

Q12C+p = 2 MeV. At elevated temperatures, the photodisintegration of
12C will be

a relatively slow process, while the photodisintegration of 13N will be considerably

faster. As a consequence, the abundance of 12C will be enhanced over that of the

neighboring (and less stable) nuclei 11B and 13N. The net effect of photodisinte-

gration processes in stellar plasmas at elevated temperatures is to convert nuclei

to more stable species. These considerations will be especially important for the

advanced burning stages of massive stars (Section 5.3) and for explosive burning

(Sections 5.4.3 and 5.5.1).

3.1.5

Reaction Rates at Elevated Temperatures

Until now we considered only those reactions involving nuclei in their ground

states. However, at elevated stellar temperatures, the nuclei will be thermally

excited, for example, through photoexcitation, inelastic particle scattering, and

other means. These excited states may also participate in nuclear reactions.
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We already mentioned in Section 1.7.4 (see Eq. (1.35)) that for a nondegenerate

plasma in thermodynamic equilibrium, the ratio of the number density Ni𝜇 of

nuclei i in excited state 𝜇 and the total number density Ni of nuclei i is given by a

Boltzmann distribution

Pi𝜇 =
Ni𝜇

Ni

=
gi𝜇e

−Ei𝜇∕kT∑
𝜇 gi𝜇e

−Ei𝜇∕kT
=

gi𝜇e
−Ei𝜇∕kT

Gi

(3.36)

with gi𝜇 = (2Ji𝜇 + 1), Ji𝜇 and Ei𝜇 the statistical weight, spin, and excitation energy,

respectively, of state 𝜇 in nucleus i. Recall that the sum over 𝜇 defining the parti-

tion function, Gi, of nucleus i includes the ground state. The related quantity

Gnorm
i

≡ Gi

gig.s.
=

∑
𝜇 gi𝜇e

−Ei𝜇∕kT

gig.s.
(3.37)

is referred to as the normalized partition function, where gig.s. is the statistical

weight of the ground state of nucleus i. Numerical values of Gnorm
i
versus tem-

perature are given in Rauscher and Thielemann (2000) and Goriely, Hilaire, and

Koning (2008).

Of primary astrophysical importance is the reaction rate involving thermally

excited nuclei, NA⟨𝜎𝑣⟩∗, rather than the rate involving nuclei in the ground state,
NA⟨𝜎𝑣⟩. For the reaction 0 + 1→ 2 + 3, the rate including thermally excited
states is obtained by summing over all transitions to relevant excited states in

nuclei 2 and 3, and by appropriately averaging over combinations of excited states

in nuclei 0 and 1. The number densities Ni entering the reaction rate expression,

r01 = N0N1⟨𝜎𝑣⟩∗01→23, refer to the total number of nuclei i per unit volume. For
the sake of simplicity, we will disregard in the following excited states of the light

particles 1 and 2 in the entrance or exit channel (which is a valid assumption for

the proton, neutron, and α-particle). We write for the stellar reaction rate

NA⟨𝜎𝑣⟩∗01→23 = ∑
𝜇

P0𝜇
∑
𝜈

NA⟨𝜎𝑣⟩𝜇→𝜈01→23
=

∑
𝜇 g0𝜇e

−E0𝜇∕kT
∑
𝜈 NA⟨𝜎𝑣⟩𝜇→𝜈01→23

G0

(3.38)

where 𝜇 and 𝜈 are labels for states in the target nucleus 0 and the residual

nucleus 3, respectively, and G0 denotes the partition function of target nucleus 0.

It must be emphasized that experiments usually provide information only for the

calculation of the laboratory reaction rate

NA⟨𝜎𝑣⟩01→23 = ∑
𝜈

NA⟨𝜎𝑣⟩g.s.→𝜈01→23 (3.39)

that is, the rate involving all transitions from the ground state of the target

nucleus 0 to the ground state and to excited states of the residual nucleus 3. In

most cases, cross sections involving excited target nuclei cannot be measured in

the laboratory and have to be calculated using theoretical models.
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We can derive a number of useful quantities from Eqs. (3.36)–(3.39). The ratio

of stellar to laboratory reaction rates, called stellar enhancement factor (SEF), is

defined by

SEF ≡ NA⟨𝜎𝑣⟩∗01→23
NA⟨𝜎𝑣⟩01→23 =

∑
𝜇 g0𝜇e

−E0𝜇∕kT
∑
𝜈 NA⟨𝜎𝑣⟩𝜇→𝜈01→23

G0
∑
𝜈 NA⟨𝜎𝑣⟩g.s.→𝜈01→23

(3.40)

Numerical values, estimated by using the Hauser–Feshbach statistical model

(Section 2.7), are given in Rauscher and Thielemann (2000) and Goriely, Hilaire,

and Koning (2008).The above expressions are also valid if general thermodynamic

equilibrium has not been attained, as long as the excited states are in equilibrium

with the ground state (Fowler, Caughlan, and Zimmerman, 1967, 1975). Of

primary astrophysical interest are the abundances of all levels that will decay

to the ground state after final cooling in the stellar event. Therefore, the sums

over 𝜇 and 𝜈 include all bound states up to an energy at which the levels become

unbound and decay primarily via particle emission. Similar statements apply

to the reverse reaction 2 + 3→ 0 + 1. An explicit expression for NA⟨𝜎𝑣⟩∗01→23
that is applicable to the special case of narrow resonances will be derived in

Section 3.2.4.

It is frequently overlooked that the stellar “enhancement” factor can be smaller

than unity.This may occur, for example, if a significant fraction of target nuclei, 0,

reside in excited states and if, at the same time, the reaction rates involving

these excited states for some reason (e.g., angular momentum, parity, or isospin

selection rules) are much smaller than the ground state rate. For the same reason,

a value of SEF ≈ 1 does not necessarily imply a negligible rate contribution from

excited target states: the interplay of significant excited target state popula-

tion, P0𝜇 , and small reaction rates from excited target states, NA⟨𝜎𝑣⟩𝜇→𝜈01→23, can
give rise to a stellar enhancement factor near unity.

To quantify the fractional contribution of the laboratory rate to the stellar rate,

we introduce the stellar rate ground state fraction (GSF), defined by (Rauscher

et al., 2011)

GSF ≡ P0g.s.NA⟨𝜎𝑣⟩01→23
NA⟨𝜎𝑣⟩∗01→23 =

P0g.s.
∑
𝜈 NA⟨𝜎𝑣⟩g.s.→𝜈01→23∑

𝜇

P0𝜇
∑
𝜈

NA⟨𝜎𝑣⟩𝜇→𝜈01→23 = 1

Gnorm
0

SEF
(3.41)

The range of possible values amounts to 0 ≤ GSF ≤ 1. The limiting value of
GSF = 1 is obtained for P0g.s. = 1, and the stellar rate becomes equal to the

laboratory rate, implying SEF = 1. It is apparent that the stellar rate ground

state fraction contains more information than the stellar enhancement factor.

It is also apparent that the interplay of population, P0𝜇 , and reaction rates,

NA⟨𝜎𝑣⟩𝜇→𝜈01→23, involving excited target states, 𝜇, may give rise to a significant
overall contribution of excited target states to the total rate (GSF < 1), although

the stellar enhancement factor may not be affected (SEF = 1). Numerical values

of the stellar enhancement factor and the stellar rate ground state fraction versus

temperature for about 100 charged-particle-induced reactions involving stable

and unstable target nuclei in the A ≤ 40 range are shown in Figure 3.8. With a
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Figure 3.8 Values of (a) stellar enhance-

ment factor (SEF) and (b) ground state frac-

tion (GSF) versus stellar temperature for

about 100 charged-particle-induced reac-

tions on A ≤ 40 target nuclei. Only those

data points are shown for which either value

deviates from unity; this applied to 20% of

the cases. The data are adopted from Sal-

laska et al. (2013).

few exceptions, values of SEF range from 0.5 to 1.8, while GSF is typically larger

than 0.3 in this target mass range. See also Problem 3.7.

It is interesting to point out that, at a given temperature, the SEFs for photodis-

integration reactions, (𝛾 ,p), (𝛾 ,𝛼), (𝛾 ,n), are usually considerably larger than those

for particle-induced reactions. This can be explained as follows. The population

of excited states decreases exponentially with increasing excitation energy,

according to Eq. (3.36). At the same time, however, this effect is compensated by

the larger number of photons available with a smaller energy sufficient to initiate

the photodisintegration, according to Eq. (3.17). Thus, many thermally populated

levels may have comparable contributions to the total stellar photodisintegration

rate. In other words, the ground state (or laboratory) reaction rate may represent

only a small fraction of the total stellar photodisintegration rate. Typically, at ele-

vated temperatures in excess of ≈ 1 GK one finds stellar enhancement factors of

≈ 100–10000 for photon-induced reactions on heavy target nuclei (Mohr, Fülöp,

and Utsunomiya, 2007). This cancellation effect is absent for either charged-

particle or neutron-induced reactions since the astrophysically most important

bombarding energy range is not altered by the energy of the excited state, as will

be explained in Section 3.2.Thus, the impact of excited states on the total reaction

rate generally decreases with increasing excitation energy and, as a result, the

stellar enhancement factors are considerably smaller than for photodisintegration

reactions.

The relationships between forward and reverse reaction rates derived in

Section 3.1.4 assume that all interacting nuclei are in their ground states. They

also need to be modified to take thermally excited states into account. As a simple

example, consider the situation shown in Figure 3.9. A laboratory measurement
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Figure 3.9 Reactions between the pairs of

nuclei 0 + 1 and 2 + 3. (a) In the laboratory,

the nuclei 0 and 1 are in their ground states

and transitions may occur to excited levels

of nuclei 2 and 3. (b) In the stellar plasma,

excited levels participate in the reaction in

both the entrance and the exit channel. Only

a single excited state is shown in each chan-

nel for reasons of clarity.

of the cross section for the reaction 0 + 1 → 2 + 3 at a constant bombarding
energy E considers only target nuclei 0 in their ground state and sums over all

transitions to the ground state or to excited states in the final nucleus 3. In a

stellar plasma, on the other hand, both the target and the residual nucleus may

be thermally excited, and all possible transitions between excited states 𝜇 and 𝜈

in nuclei 0 and 3, respectively, have to be taken into account.

Suppose that there are a number of excited states in nucleus 0 and in nucleus 3

that are all in thermal equilibrium with their respective ground states. Further-

more, assume that the light particles 1 and 2 have no excited states. The stel-

lar rates for forward and reverse reactions are then obtained by appropriately

averaging over initial states and summing over final states. The expression for

the forward stellar rate is given by Eq. (3.38), while for the reverse stellar rate

one has

NA⟨𝜎𝑣⟩∗23→01 = ∑
𝜈

P3𝜈
∑
𝜇

NA⟨𝜎𝑣⟩𝜈→𝜇23→01
=

∑
𝜈 g3𝜈e

−E3𝜈∕kT
∑
𝜇 NA⟨𝜎𝑣⟩𝜈→𝜇23→01∑

𝜈 g3𝜈e
−E3𝜈∕kT

(3.42)

Into this expression, we substitute our earlier result (see Eq. (3.31))

NA⟨𝜎𝑣⟩𝜈→𝜇23→01
NA⟨𝜎𝑣⟩𝜇→𝜈01→23 =

g0𝜇g1(1 + 𝛿23)

g3𝜈g2(1 + 𝛿01)

(
m01
m23

)3∕2
e−Q

𝜇→𝜈
01→23∕kT (3.43)

We also make the nonrelativistic approximations m01 = m
𝜇

01
and m23 = m𝜈

23
.

For the ground states, we have e−E0∕kT = e−E3∕kT = 1. By using Q01→23 =

Q
𝜇→𝜈
01→23 + E3𝜈 − E0𝜇 (Figure 3.9b), one obtains from Eqs. (3.38), (3.42), and (3.43)

NA⟨𝜎𝑣⟩∗23→01
NA⟨𝜎𝑣⟩∗01→23 = (1 + 𝛿23)

(1 + 𝛿01)

(
m01
m23

)3∕2 g0g1Gnorm0
g2g3G

norm
3

e−Q01→23∕kT (3.44)

where the quantity Q01→23 denotes the Q-value connecting the ground states.
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Equation (3.44) holds for any number of excited states in the target and residual

nucleus. It is also independent of the reaction mechanism (e.g., nonresonant ver-

sus resonant process, number and properties of narrow resonances, and so on).

We can easily generalize this result by allowing for excitations in the nuclei 1 and 2.

Numerically, we find from Eq. (3.44) for reactions involving only particles with

rest mass

NA⟨𝜎𝑣⟩∗23→01
NA⟨𝜎𝑣⟩∗01→23 = (2j0 + 1)(2j1 + 1)(1 + 𝛿23)

(2j2 + 1)(2j3 + 1)(1 + 𝛿01)

×

(
Gnorm
0

Gnorm
1

Gnorm
2

Gnorm
3

)(
M0M1
M2M3

)3∕2
e−11.605Q∕T9 (3.45)

and from Eq. (3.35) for reactions involving photons

𝜆∗
𝛾
(3→ 01)

NA⟨𝜎𝑣⟩∗01→𝛾3 = 9.8685 × 109 T3∕29 (2j0 + 1)(2j1 + 1)

(2j3 + 1)(1 + 𝛿01)

×

(
Gnorm
0

Gnorm
1

Gnorm
3

)(
M0M1
M3

)3∕2
e−11.605Q∕T9 (3.46)

with ji and Mi being the ground-state spins and masses (in u) of the nuclei, Q

the ground-state Q-value of the forward reaction 0 + 1 → 2 + 3 or 0 + 1→ 𝛾 +

3 (in MeV), and T9 ≡ T∕109 K. In the following sections, we will mostly suppress

the asterisk, with the understanding that rates or decay constants must take into

account the effects of thermally excited states if appropriate.

Example 3.2

Evaluations of experimental thermonuclear reaction rates (Angulo et al., 1999;

Iliadis et al., 2010; Sallaska et al., 2013) list laboratory reaction rates and have

to be modified for use in stellar model calculations. Consider the 32S(p,𝛾)33Cl

reaction at a stellar temperature of T = 10 GK (T9 = 10). For the laboratory reac-

tion rate (assuming that the 32S target nuclei are in the ground state), a value of

NA⟨𝜎𝑣⟩32S+p = 1.23 × 103 cm3mol−1s−1 is reported in Iliadis et al. (2010). Calcu-
late the stellar rate for the forward reaction and the stellar decay constant for the

reverse reaction.

The stellar reaction rate (considering thermally excited 32S nuclei) is given by

NA⟨𝜎𝑣⟩∗32S+p = SEF ⋅ NA⟨𝜎𝑣⟩32S+p
= 0.83 ⋅ 1.23 × 103 cm3mol−1s−1 = 1.02 × 103 cm3mol−1s−1

with a value of SEF = 0.83 adopted from Rauscher and Thielemann (2000).

The corresponding stellar decay constant for the photodisintegration of
33Cl is obtained from the spins j32S = 0, jp = 1∕2, j33Cl = 3∕2, the value

Q32S+p = 2.2765 MeV, and from the normalized partition functions G
norm
32S

= 1.6,
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Gnorm
p

= 1, Gnorm33Cl
= 1.9 (Rauscher andThielemann, 2000)

𝜆∗
𝛾
(33Cl → 32S + p) =

𝜆∗
𝛾
(33Cl → 32S + p)

NA⟨𝜎𝑣⟩∗32S+p NA⟨𝜎𝑣⟩∗32S+p
= 9.8685 × 109 ⋅ 103∕2

1 ⋅ 2
4 ⋅ 1

(
1.6 ⋅ 1
1.9

)(
32.0 ⋅ 1.0
33.0

)3∕2
× e−11.605⋅2.2765∕10 ⋅ 1.02 × 103 cm3mol−1s−1

= 9.11 × 1012 s−1

3.1.6

Reaction Rate Equilibria

Consider a forward and reverse reaction involving four particles with rest mass,

0 + 1→ 2 + 3 and 2 + 3→ 0 + 1. The overall reaction rate for 0 + 1 ↔ 2 + 3 is
then given by

r = r01→23 − r23→01 =
N0N1⟨𝜎𝑣⟩01→23

(1 + 𝛿01)
−

N2N3⟨𝜎𝑣⟩23→01
(1 + 𝛿23)

(3.47)

For equilibrium conditions (r = 0), we find fromEqs. (3.45) and (3.47) for the ratio

of nuclide abundances

N2N3
N0N1

=
(1 + 𝛿23)

(1 + 𝛿01)

⟨𝜎𝑣⟩01→23⟨𝜎𝑣⟩23→01
=
(2j2 + 1)(2j3 + 1)

(2j0 + 1)(2j1 + 1)

Gnorm
2

Gnorm
3

Gnorm
0

Gnorm
1

(
m23
m01

)3∕2
eQ01→23∕kT (3.48)

Similarly, for reactions involving photons we find for the overall reaction rate 0 +

1↔ 𝛾 + 3

r = r01→𝛾3 − r𝛾3→01 =
N0N1⟨𝜎𝑣⟩01→𝛾3

(1 + 𝛿01)
− 𝜆𝛾 (3)N3 (3.49)

and for equilibrium conditions (r = 0), we obtain from Eqs. (3.23), (3.46), and

(3.49) the expression

N3
N0N1

=
1

(1 + 𝛿01)

⟨𝜎𝑣⟩01→𝛾3
𝜆𝛾 (3)

=
1

(1 + 𝛿01)

1

N1

𝜆1(0)

𝜆𝛾 (3)

=

(
h2

2𝜋

)3∕2
1(

m01kT
)3∕2 (2j3 + 1)

(2j0 + 1)(2j1 + 1)

Gnorm
3

Gnorm
0

Gnorm
1

eQ01→𝛾3∕kT

(3.50)

The last expression is referred to as the Saha statistical equation.

The equilibrium condition can also be expressed in terms of abundance evo-

lutions. Suppose that 0 and 3 denote heavy nuclei and 1 and 2 represent light

particles (protons, neutrons, or α-particles).The partial rates of change of isotopic
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abundancesN0 andN3 that are caused by the processes 0 + 1 → 2 + 3 and 2 + 3 →
0 + 1, respectively, are given by (see Eq. (3.20))(

dN0
dt

)
01→23

= −r01→23 (3.51)(
dN3
dt

)
23→01

= −r23→01 (3.52)

We may visualize these processes by flows of material from species 0 to 3 and

vice versa. Therefore, the partial rates of change of abundances, (dN0∕dt)01→23
and (dN3∕dt)23→01, are referred to as abundance flows. The net abundance flow

f between two species 0 and 3 is given by the difference between forward and

reverse abundance flow

f03 ≡
|||||
(
dN0
dt

)
01→23

−

(
dN3
dt

)
23→01

||||| = ||r01→23 − r23→01
||

= ||N0N1⟨𝜎𝑣⟩01→23 − N2N3⟨𝜎𝑣⟩23→01|| (3.53)

The equilibrium condition can be expressed by either of the following relations:(
dN0
dt

)
01→23

≈

(
dN3
dt

)
23→01

≫ f03 ≈ 0 (3.54)

𝜙03 ≡
||r01→23 − r23→01

||
max(r01→23, r23→01)

≈ 0 (3.55)

In this case, the net abundance flow is considerably smaller in absolute magni-

tude than either the forward flow or the reverse flow. Contrary to the steady-state

assumption (Section 3.1.3), the equilibrium condition does not imply constant

abundances N0 or N3. Those may change if nuclei 0 and 3 are linked to other

species by nuclear processes.The equilibrium condition refers to the (near) equal-

ity of forward and reverse abundance flows between a pair of nuclei.When a group

of several pairs of nuclei comes into equilibrium, for example, via the processes

(p,𝛾)↔ (𝛾 ,p), (n,𝛾)↔ (𝛾 ,n), and (𝛼,𝛾)↔ (𝛾 ,𝛼), the resulting solution of the reac-
tion network is called a quasi-equilibrium. For more information on equilibria,

see Arnett (1996).

In the following, we will discuss reactions involving photons in more detail.

During the complex interplay involving several different nuclear reactions and

β-decays, it happens frequently that a particular reaction converting nucleus A by

particle capture to nucleus B (A + a → B) exhibits a small Q-value. If the stellar

plasma can attain sufficiently high temperatures, then the photodisintegration of

nucleus B has to be taken into account and may significantly alter the nucleosyn-

thesis.

Consider Figure 3.7b, showing a number of different nuclei involved in proton

captures, photodisintegrations, and β+-decays. Suppose now that the Q-value for

the capture reaction A(a, 𝛾)B is relatively small (less than a few hundred kilo elec-

tron volt) and that the stellar temperature is high. An equilibrium between the
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abundances of nuclei A and B is established for two necessary conditions,

𝜆A→B > 𝜆A→A′ (3.56)

𝜆B→A > 𝜆B→C + 𝜆B→B′ (3.57)

If the first condition is not fulfilled, nucleus B is bypassed altogether. If the second

condition is not fulfilled, there is no process that creates nucleus A after it has

been destroyed. We will also assume that the photodisintegration of C is negligi-

ble (i.e., 𝜆C→C′ > 𝜆C→B), so that C does not come into equilibrium with A and B.

It is now of interest to determine which path the nucleosynthesis will follow,

either bypassing the nucleus B via β+-decay (A → A′), or via the competing

reaction sequence through nucleus B to either C or B′ [A → B → (C or B′)]. The

latter process, A → B → C, is referred to as sequential two-particle capture. For

a distinction between sequential and direct two-particle capture, see Grigorenko

and Zhukov (2005).

Suppose that an equilibrium between the abundances of nuclei A and B has

been established. The reaction rate for conversion of nucleus A to either C (via

capture of particle a) or B′ (via β+-decay) is then given by the expressions (see

Eq. (3.21))

rA→(C or B′) = Ne
B
𝜆B→C + Ne

B
𝜆B→B′ (3.58)

rA→(C or B′) = Ne
A
𝜆A→B→C + Ne

A
𝜆A→B→B′ = Ne

A
𝜆A→B→(C or B′) (3.59)

where Ne
A
and Ne

B
denote the equilibrium abundances of A and B, respectively.

From Eqs. (3.58) and (3.59), we obtain

𝜆A→B→(C or B′) =
Ne

B

Ne
A

(𝜆B→C + 𝜆B→B′ ) (3.60)

For the equilibrium abundance ratio Ne
B
∕Ne

A
, we use the Saha equation (see

Eq. (3.50))

NB

NANa

=
⟨𝜎𝑣⟩A→B

𝜆B→A

=
1

Na

𝜆A→B

𝜆B→A

=

(
h2

2𝜋

)3∕2
1(

mAakT
)3∕2 (2jB + 1)

(2jA + 1)(2ja + 1)

Gnorm
B

Gnorm
A

Gnorm
a

eQA→B∕kT

(3.61)

Thus,

𝜆A→B→(C or B′) =
𝜆A→B

𝜆B→A

(
𝜆B→C + 𝜆B→B′

)
= Na

(
h2

2𝜋

)3∕2
1(

mAakT
)3∕2 (2jB + 1)

(2jA + 1)(2ja + 1)

×
Gnorm

B

Gnorm
A

Gnorm
a

eQA→B∕kT
(
𝜆B→C + 𝜆B→B′

)
(3.62)
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Numerically, we find

𝜆A→B→(C or B′) = 1.0133 × 10
−10𝜌

Xa

Ma

(
MB

MAMa

)3∕2
gB
gAga

(
Gnorm

B

Gnorm
A

Gnorm
a

)
× T

−3∕2

9
e11.605QA→B∕T9

(
𝜆B→C + 𝜆B→B′

)
(3.63)

where the normalized partition functions account for the influence of thermally

excited levels and theQ-value is in mega electron volts.The quantity 𝜆A→B→(C or B′)

introduced in Eq. (3.59) has a slightly different meaning from the usual decay

constant of Eq. (3.19). The latter describes the decay probability of a particular

nucleus per time, while the former represents the probability for the conversion

of nucleus A along a specified path (A → B → (C or B′), in this case). This distinc-

tion becomes important for identical particles. If the process A → B → (C or B′)

destroys two (or three) identical particlesA, the right-hand sides of Eqs. (3.62) and

(3.63) must be multiplied by a factor of 2 (or 3) to calculate the decay constant of

nucleus A.

The path A → B → (C or B′) becomes more important with increasing values

of 𝜆A→B, 𝜆B→C , or 𝜆B→B′ , and decreasing values of 𝜆B→A. It must be emphasized

that the ratio 𝜆A→B∕𝜆B→A is independent of the cross section, and depends mainly

on the value of QA→B. Also, we replaced the equilibrium abundance N
e
B
∕Ne

A
by

the ratio 𝜆A→B∕𝜆B→A, which in turn is determined by the reciprocity theorem

(Section 3.1.4). Thus, we made no assumptions regarding the specific processes

occurring between nuclei A and B. Those include, for example, particle capture

and photodisintegration, or particle inelastic scattering and particle decay. Con-

sequently, the above expression is also valid for negative values of QA→B, that is,

if nucleus B decays by direct particle emission. The factor 𝜌 eQA→B∕T implies that

𝜆A→B→(C or B′) becomes smaller for a decreasing Q-value or an increasing temper-

ature, but becomes larger for increasing density. It will be shown in Chapter 5

how the interplay of temperature, density, Q-values, half-lives, and reaction rates

influences sensitively the most likely nucleosynthesis path.The decay constant for

the case that three nuclei A, B, and C come into equilibrium will be addressed in

Problem 3.1. See also Schatz et al. (1998).

Example 3.3

The following situation occurs in hydrogen burning environments at high

temperatures (thermonuclear explosions). Consider the specific case shown in

Figure 3.10a. The reaction 21Mg + p→ 𝛾 + 22Al has a small estimated Q-value

of Q21Mg+p = 163 keV. At T = 0.6 GK, 𝜌 = 104 g/cm3 and XH∕MH = 0.7, the

following decay constants are obtained from tabulated reaction rates and β-decay

half-lives:

𝜆A→B = 𝜆21Mg→22Al = 1.1 × 10
3 s−1

𝜆A→A′ = 𝜆21Mg→21Na = 5.6 s
−1
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(p,γ) (α,γ)

(γ,α) (γ,p)
(β+ν)
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9Be8Be

10B

7Be

4He

7Li6Li

11B

12C

Figure 3.10 Sections of the nuclide chart depicting reaction rate equilibria involving (a)

(p,𝛾)↔(𝛾 ,p) reactions and (b) the 3𝛼 reaction. In each case, equilibrium has been achieved

between the two nuclei shown as gray squares.

𝜆B→A = 𝜆22Al→21Mg = 3.4 × 10
7 s−1

𝜆B→C = 𝜆22Al→23Si = 3.1 × 10
4 s−1

𝜆B→B′ = 𝜆22Al→22Mg = 26.2 s
−1

The above decay constants fulfill the conditions of Eqs. (3.56) and (3.57). Thus, an

equilibrium between the abundances of 21Mg and 22Al is quickly established. We

would like to determine if the nucleosynthesis proceeds via 21Mg β+-decay or via

sequential two-proton capture to 23Si. From Eq. (3.62), we obtain

𝜆21Mg→22Al→(23Si or 22Mg) =
𝜆21Mg→22Al

𝜆22Al→21Mg

(
𝜆22Al→23Si + 𝜆22Al→22Mg

)
=
1.1 × 103 s−1

3.4 × 107 s−1

(
3.1 × 104 s−1 + 26.2 s−1

)
= 1.0 s−1

which has to be compared to

𝜆21Mg→21Na = 5.6 s
−1

Hence, the nucleosynthesis path via 21Mg(𝛽+𝜈)21Na is favored by a factor of

5.6∕1.0 = 5.6.

Example 3.4

One of the most important reactions involving α-particles is the triple-𝛼 reaction

(3𝛼). It proceeds in two steps: (i) 𝛼 + 𝛼→ 8Be, and (ii) 8Be + 𝛼→ 12C.TheQ-value

for the first step is Q𝛼+𝛼→8Be = −92.1 keV and, therefore, 8Be is particle unstable
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(i.e., it decays by breaking up into two α-particles). This breakup is considerably

faster than the fusion of two α-particles into 8Be and, consequently, an equilibrium

is established between the abundances of 4He and 8Be. The second step involves

the capture of another α-particle on the small equilibrium abundance of 8Be, as

shown in Figure 3.10b. Estimate the decay constant, 𝜆𝛼+𝛼+𝛼→12C, for the 3𝛼 reac-

tion at a temperature of T = 0.3 GK and density of 𝜌 = 105 g/cm3, assuming a

mass fraction ofX𝛼 = 1 andNA⟨𝜎𝑣⟩𝛼+8Be→12C = 1.17 × 10−2 cm3mol−1s−1 (Caugh-
lan and Fowler, 1988).

From Eqs. (3.62) and (3.63), one finds

𝜆𝛼+𝛼+𝛼→12C = 3N𝛼

(
h2

2𝜋

)3∕2
1(

m𝛼𝛼kT
)3∕2 g8Beg𝛼g𝛼

e
Q𝛼+𝛼→8Be∕kT𝜆8Be+𝛼→12C

= 1.0133 × 10−10𝜌
X𝛼
M𝛼

3

(
M8Be

M𝛼M𝛼

)3∕2
g8Be

g𝛼g𝛼
T
−3∕2

9

× e
11.605Q𝛼+𝛼→8Be∕T9𝜆8Be+𝛼→12C

Since three identical particles are destroyed by the 3𝛼 reaction, we have 3r𝛼𝛼𝛼 =

N𝛼𝜆𝛼𝛼𝛼 and a factor of three has been included in the above expression. At this

temperature we adopt for all normalized partition functions a value of Gnorm
i

= 1

(Rauscher andThielemann, 2000).The spins of the α-particle and of 8Be are ji = 0,

thus gi = 1.

With the substitution 𝜆8Be+𝛼→12C = 𝜌(X𝛼∕M𝛼)NA⟨𝜎𝑣⟩8Be+𝛼→12C (see Eq. (3.23)), we
find

𝜆𝛼+𝛼+𝛼→12C = 1.0133 × 10
−10(105)2

(
1

4.0

)2
3
(
8.0

4.0 ⋅ 4.0

)3∕2
(0.3)−3∕2

× e−11.605⋅0.0921∕0.3 ⋅ 1.17 × 10−2 = 1.35 × 10−4 s−1

At very low (T < 100 MK) and very high (T > 2 GK) stellar temperatures, the decay

constant for the 3𝛼 reaction cannot be calculated with the above expression and

the formalism becomes more involved (Nomoto, Thielemann, and Miyaji, 1985;

Angulo et al., 1999).

3.1.7

Nuclear Energy Generation

Suppose that the forward reaction 0 + 1→ 2 + 3 is exothermic. The nuclear
energy released per reaction is given by the Q-value. The energy production per

unit time and unit mass is then given by

𝜀01→23 =
Q01→23r01→23

𝜌
=

Q01→23
𝜌

N0N1⟨𝜎𝑣⟩01→23
(1 + 𝛿01)

(3.64)
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Similarly, for the endothermic reverse reaction, we obtain

𝜀23→01 = −
Q01→23
𝜌

N2N3⟨𝜎𝑣⟩23→01
(1 + 𝛿23)

(3.65)

𝜀𝛾3→01 = −
Q01→23
𝜌

N3𝜆𝛾 (3) (3.66)

At higher temperatures, the reverse reaction has to be taken into account and

the overall energy generation for the process 0 + 1↔ 2 + 3 is 𝜀01→23 + 𝜀23→01 for
reactions involving particles with rest mass and 𝜀01→𝛾3 + 𝜀𝛾3→01 if species 2 is a

photon.

If reactions produce electrons, positrons, or γ-rays, then their energy is retained

in the stellar plasma. Neutrinos, on the other hand, interact so weakly with the

medium that they escape from the site of thermonuclear burning (except in spe-

cial circumstances, such as the big bang or core collapse supernovae). Since the

neutrino energy is usually not deposited in the star, it has to be subtracted from

the Q-value when calculating the nuclear energy generation.

The energy generation rate can also be expressed using Eqs. (3.20), (3.21), and

(3.64) as

𝜀01→23 =
Q01→23
𝜌

N0𝜆1(0)

(1 + 𝛿01)
= −

Q01→23
𝜌(1 + 𝛿01)

(
dN0
dt

)
1

(3.67)

The total (time-integrated) released energy is obtained from

∫ 𝜀01→23 dt = −

N0,final

∫
N0,initial

Q01→23
𝜌(1 + 𝛿01)

(dN0)1 =
Q01→23
𝜌(1 + 𝛿01)

(ΔN0)1 (3.68)

with (ΔN0)1 = N0,initial − N0,final the change in the abundance of nucleus 0 because

of reactions with nucleus 1. Numerically we find from Eq. (1.14)

∫ 𝜀01→23 dt =
NAQ01→23
M0(1 + 𝛿01)

(ΔX0)1 (MeV∕g) (3.69)

where Q01→23 andM0 are in units of MeV and u, respectively.

3.2

Nonresonant and Resonant Thermonuclear Reaction Rates

In the previous sections, we defined thermonuclear reaction rates, derived expres-

sions for reaction rate ratios for forward and reverse reactions, and discussed

reaction rate equilibria. In none of the expressions derived so far, have we made

specific reference to the nuclear reaction cross section 𝜎(E). However, this quan-

tity is essential for calculating the reaction rate. In the following, we will discuss
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how to derive the thermonuclear reaction rate for particle- and photon-induced

reactions.

The reaction rate for a particle-induced reaction is given by (see Eq. (3.10))

NA⟨𝜎𝑣⟩ = (
8

𝜋m01

)1∕2
NA

(kT)3∕2 ∫
∞

0

E 𝜎(E) e−E∕kT dE (3.70)

Once the cross section 𝜎(E) has either been measured or been estimated theo-

retically, the quantity NA⟨𝜎𝑣⟩ can be found by solving the above integral numer-
ically. If the cross section has a complicated energy dependence, there is usually

no alternative to this procedure. On the other hand, if the energy dependence

of the cross section is relatively simple, then the reaction rate can be calculated

analytically. In this section, we will discuss such analytical expressions for several

reasons. First, an analytical rather than numerical description provides additional

insight into stellar fusion reactions. Second, in certain situations (e.g., for narrow

resonances) the cross-section curve is not known explicitly, and hence the rate

cannot be integrated numerically. Third, an analytical description also allows for

improved estimates in cases where the reaction rate has to be extrapolated to the

region of interest.

Two extreme cases will be discussed in detail, which apply to a large number

of nuclear reactions. The first case refers to cross sections that vary smoothly

with energy (nonresonant cross sections). The second case applies to cross

sections that vary strongly in the vicinity of a particular energy (resonant cross

sections).

3.2.1

Nonresonant Reaction Rates for Charged-Particle-Induced Reactions

Themeasured cross section for the 16O(p,𝛾)17F reaction is shown in Figure 3.11a.

The cross section varies smoothly at higher energies, but drops at low energies

by several orders of magnitude because of the decreasing transmission proba-

bility through the Coulomb barrier. The reaction rates may be obtained either

using by numerical integration or by using analytical expressions that will be

derived in this section. At this point, we introduce the astrophysical S-factor, S(E),

defined by

𝜎(E) ≡ 1
E
e−2𝜋𝜂 S(E) (3.71)

This definition removes both the 1∕E dependence of nuclear cross sections

(see Eq. (2.49)) and the s-wave Coulomb barrier transmission probability (see

Eq. (2.125)). Recall that the Gamow factor e−2𝜋𝜂 is only an approximation for

the s-wave transmission probability at energies well below the height of the

Coulomb barrier. However, even if a particular fusion reaction proceeds via

p- or d-partial waves, the removal of the strongly energy-dependent, s-wave
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Figure 3.11 (a) Experimental cross section

and (b) astrophysical S-factor of the
16O(p,𝛾)17F reaction. Note the strongly vary-

ing cross section on a logarithmic scale in

part (a) and the smooth behavior of the

S-factor on a linear scale in part (b). Data

from Angulo et al. (1999).

transmission probability from the cross section will result in an S-factor with

a greatly reduced energy dependence. This is demonstrated in Figure 3.11b,

showing the S-factor for the 16O(p,𝛾)17F reaction. The S-factor varies far less

with energy than the cross section. For reasons that will become clear later in

this section, the S-factor is also a useful concept in the case of broad resonances.

For example, Figure 3.12a shows the cross section for the 13C(p,𝛾)14N reaction,

while the corresponding S-factor is displayed in Figure 3.12b. The much reduced

energy dependence of the S-factor compared to the cross section is again

evident. The above arguments are analogous to those we made in Section 2.4.2

in connection with the simple square-barrier potential and the removal of

the transmission probability from the wave intensity in the nuclear interior

(Figure 2.14).
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Figure 3.12 (a) Experimental cross

section and (b) astrophysical S-factor of

the 13C(p,𝛾)14N reaction. Note the con-

siderably reduced energy dependence in

part (b). The low-energy S-factor tail of the

broad resonance at E ≈ 0.5 MeV can also be

described by the nonresonant reaction rate

formalism, as shown in this section. A narrow

resonance at E = 0.45 MeV has been omit-

ted from the figure. Data from Angulo et al.

(1999).

With the definition of the S-factor, we write for the nonresonant reaction rate

(see Eqs. (2.125) and (3.70))

NA⟨𝜎𝑣⟩ = (
8

𝜋m01

)1∕2 NA

(kT)3∕2 ∫
∞

0

e−2𝜋𝜂 S(E) e−E∕kT dE

=

(
8

𝜋m01

)1∕2
NA

(kT)3∕2 ∫
∞

0

exp

(
−
2𝜋

ℏ

√
m01
2E

Z0Z1 e
2

)
S(E) e−E∕kT dE

(3.72)

with Zi the charges of target and projectile. First, suppose that the astrophysical

S-factor is constant, S(E) = S0. We find
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NA⟨𝜎𝑣⟩ = (
8

𝜋m01

)1∕2
NA

(kT)3∕2
S0 ∫

∞

0

e−2𝜋𝜂 e−E∕kT dE (3.73)

with

kT = 0.086173324T9 (MeV) (3.74)

2𝜋𝜂 = 0.98951013Z0Z1

√
M0M1

M0 +M1

1

E
(3.75)

where the relative atomic massesMi and the energy E are in units of u and MeV,

respectively. Atomic masses should be replaced by nuclear masses for precision

work (Section 1.5.3). The integrand has an interesting energy dependence. The

factor e−E∕kT , originating from the Maxwell–Boltzmann distribution, approaches

zero for large energies, whereas the term e−1∕
√
E , reflecting the Gamow factor,

approaches zero for small energies. The major contribution to the integral will

come from energies where the product of both factors is near its maximum.

Figure 3.13a illustrates the situation for the reaction 12C(𝛼,𝛾)16O atT = 0.2 GK.

The dashed and the dashed-dotted lines show the factor e−E∕kT and e−2𝜋𝜂 , respec-

tively. The solid line shows the integrand e−E∕kT e−2𝜋𝜂 . Note the logarithmic scale,

indicating the small magnitude of the integrand compared to the Gamow and

Maxwell–Boltzmann factors. The solid line in Figure 3.13b shows the integrand

on a linear scale, displaying a relatively sharp peak. Part (b) also indicates the

maximum of theMaxwell–Boltzmann distribution (arrow), which occurs at kT =

17 keV. However, the integrand peaks at an energy of E0 = 315 keV, which is con-

siderably larger than kT , indicating that most of the reactions occur in the high-

energy tail of the Maxwell–Boltzmann distribution. It appears that the Gamow

factor effectively shifts the integrand to higher energies and, therefore, the inte-

grand is commonly referred to as the Gamow peak. The Gamow peak represents

the relatively narrow energy range over which most nuclear reactions occur in a

stellar plasma.

The location E0 of themaximum of the Gamow peak can be found from the first

derivative of the integrand in Eq. (3.73) with respect to E,

d

dE

(
−
2𝜋

ℏ

√
m01
2E

Z0Z1 e
2 −

E

kT

)
E=E0

=
𝜋

ℏ
Z0Z1 e

2

√
m01
2

1

E
3∕2

0

−
1

kT
= 0 (3.76)

Thus,

E0 =

[(
𝜋

ℏ

)2 (
Z0Z1 e

2
)2 (m01

2

)
(kT)2

]1∕3
= 0.1220

(
Z2
0
Z2
1

M0M1
M0 +M1

T2
9

)1∕3
(MeV) (3.77)
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Figure 3.13 (a) Maxwell–Boltzmann fac-

tor (e−E∕kT ; dashed line) and Gamow factor

(e−2𝜋𝜂 ; dashed-dotted line) versus energy for

the 12C(𝛼,𝛾)16O reaction at a temperature of

T = 0.2 GK. The product e−E∕kT e−2𝜋𝜂 , referred

to as the Gamow peak, is shown as solid line.

(b) The same Gamow peak shown on a linear

scale (solid line). The maximum occurs at

E0 = 0.32 MeV while the maximum of the

Maxwell–Boltzmann distribution is located

at kT = 0.017 MeV (arrow). The dotted line

shows the Gaussian approximation of the

Gamow peak.

where in the numerical expressionMi are the relative atomic masses of projectile

and target in units of u.

The energy E0 is the most effective energy for nonresonant thermonuclear

reactions. Figure 3.14 shows the Gamow peak energy E0 versus temperature

for a number of proton- and α-particle-induced reactions. The Gamow peak

energy increases with increasing target–projectile charge. The open circles

indicate the height VC of the Coulomb barrier. Notice that, except for the highest

temperatures near T = 10 GK, we find E0 ≪ VC and thus the interacting charged

nuclei must always tunnel through the Coulomb barrier.

Figure 3.15 shows the Gamow peak at a temperature of T = 30 MK for three

reactions: (i) p + p, (ii) 12C + p, and (iii) 12C + 𝛼. It demonstrates a crucial aspect
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barrier height, VC = 1.44 Z0Z1∕R0, with VC
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(Section 2.4.3).

of thermonuclear burning in stars. Not only does the Gamow peak shift to

higher energies for increasing target and projectile charges, but the area under

the curves decreases rapidly as well. Suppose, for example, that a mixture of

different nuclei is present in the stellar plasma at a particular time. Then those

reactions with the smallest Coulomb barrier account frequently for most of the

nuclear energy generation and will be consumed most rapidly, while reactions

with larger Coulomb barriers usually do not contribute significantly to the energy

production.

The Gamow peak may be approximated by a Gaussian function having a

maximum of the same size and of the same curvature at E = E0. From Eq. (3.77),
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Figure 3.15 Gamow peaks for the p + p, 12C + p, and 12C + 𝛼 reactions at a temperature

of T = 0.03 GK.

we write

exp

(
−
2𝜋

ℏ

√
m01
2E

Z0Z1e
2 −

E

kT

)
= exp

(
−
2E
3∕2

0√
EkT

−
E

kT

)

≈ exp

(
−
3E0
kT

)
exp

[
−

(
E − E0
Δ∕2

)2]
(3.78)

where the 1∕e width Δ of the Gaussian is obtained from the requirement that the

second derivatives match at E0. Thus,

d2

dE2

(
2E
3∕2

0√
EkT

+
E

kT

)
E=E0

=
3

2

1

E0kT
(3.79)

d2

dE2

(
E − E0
Δ∕2

)2
E=E0

=
2

(Δ∕2)2
(3.80)

Setting the right-hand sides of the last two expressions equal and solving for Δ

gives

Δ =
4√
3

√
E0kT = 0.2368

(
Z2
0
Z2
1

M0M1
M0 +M1

T5
9

)1∕6
(MeV) (3.81)

Since usually kT ≪ E0, it is apparent that the width Δ of the Gamow peak is

smaller than E0. Figure 3.16 shows the Gamow peak width Δ versus temperature

for a number of proton- and α-particle-induced reactions. It can be seen that the

Gamow peak width increases with increasing Coulomb barrier. Thermonuclear

reactions occur mainly over an energy window from E0 − Δ∕2 to E0 + Δ∕2,

except in the case of narrow resonances (see below). For increasing charges of

target or projectile, this window shifts to higher energies and becomes broader.
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The nonresonant thermonuclear reaction rates can be calculated by replacing

the Gamow peak with a Gaussian. From Eqs. (3.73) and (3.78), one finds

NA⟨𝜎𝑣⟩ = (
8

𝜋m01

)1∕2
NA

(kT)3∕2
S0 ∫

∞

0

e−2𝜋𝜂e−E∕kT dE

≈

(
8

𝜋m01

)1∕2 NA

(kT)3∕2
S0e

−3E0∕kT ∫
∞

0

exp

[
−

(
E − E0
Δ∕2

)2]
dE

(3.82)

The lower integration limit can be extended to minus infinity without introducing

a significant error.The value of the integral over the Gaussian is then
√
𝜋Δ∕2. For

a constant S-factor, we obtain

NA⟨𝜎𝑣⟩ = NA

√
2

m01

Δ

(kT)3∕2
S0e

−3E0∕kT (3.83)

Alternatively, one finds with the substitution 𝜏 ≡ 3E0∕(kT) and Eqs. (3.77)
and (3.81)

NA⟨𝜎𝑣⟩ = NA

√
2

m01

Δ

(kT)3∕2
S0e

−𝜏𝜏2
(kT)2

9E2
0

=
1

3

(
4

3

)3∕2 ℏ
𝜋

NA

m01Z0Z1e
2
S0𝜏
2e−𝜏

(3.84)

One of the most striking features of thermonuclear reaction rates is their

temperature dependence. The temperature dependence of NA⟨𝜎𝑣⟩ and of the
energy production rate 𝜀 near some energy T = T0 can be derived by introducing

a power law

NA⟨𝜎𝑣⟩T = NA⟨𝜎𝑣⟩T0 ( T

T0

)n

(3.85)

where

lnNA⟨𝜎𝑣⟩T = lnNA⟨𝜎𝑣⟩T0 + n(lnT − lnT0) (3.86)

𝜕 lnNA⟨𝜎𝑣⟩T
𝜕 lnT

= n (3.87)

With 𝜏 = 3E0∕(kT) = cT2∕3∕T = cT−1∕3 and NA⟨𝜎𝑣⟩T = c′T−2∕3e−𝜏 , we may also

write

lnNA⟨𝜎𝑣⟩T = ln c′ −
2

3
lnT − 𝜏 (3.88)

n =
𝜕 lnNA⟨𝜎𝑣⟩T

𝜕 lnT
= −
2

3
−

𝜕𝜏

𝜕 lnT
= −
2

3
− 𝜏

𝜕 ln(cT−1∕3)

𝜕 lnT
= −
2

3
+
𝜏

3
(3.89)

Hence,

NA⟨𝜎𝑣⟩T = NA⟨𝜎𝑣⟩T0 ( T

T0

)(𝜏−2)∕3

(3.90)
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Figure 3.16 Width of the Gamow peak versus temperature for a number of proton-

induced (top) and α-particle-induced (bottom) reactions.

The parameter 𝜏 = 3E0∕(kT) is numerically given by

𝜏 = 4.2487

(
Z2
0
Z2
1

M0M1
M0 +M1

1

T9

)1∕3
(3.91)

Values of 𝜏 are shown in Figure 3.17 versus temperature for a number of reactions.

For example, at T = 15 MK one obtains 𝜏 = 13.6 for the p + p reaction, yielding

for the exponent of T a value of n ≈ 3.9. On the other hand, at T = 200 MK

we obtain 𝜏 = 54.88 for the 12C + 𝛼 reaction, resulting in n ≈ 17.6. The striking

temperature dependence of thermonuclear reaction rates has an important

impact on stellar models. Small temperature fluctuations, which are likely to

occur during stellar evolution, will cause dramatic changes in energy production.

Therefore, an effective mechanism must exist to stabilize the star; otherwise,
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Figure 3.17 Numerical values of the parameter 𝜏 versus temperature for a number of

proton- and α-particle-induced reactions. Note that 𝜏 is dimensionless.

in circumstances where this is not possible, a thermonuclear explosion is likely

to occur.

Two corrections to the nonresonant reaction rate formalism derived so far will

now be considered. The first correction is necessary since we have replaced the

asymmetric Gamow peak by a symmetric Gaussian (see Eq. (3.78)) where the area

under the latter function is given by e−𝜏
√
𝜋Δ∕2 (see Eq. (3.83)). Figure 3.13b com-

pares the two functions for the reaction 12C(𝛼,𝛾)16O at T = 0.2 GK.The solid line

shows the Gamow peak while the dotted curve displays the Gaussian approxima-

tion. The reaction rate must be multiplied by a correction factor that represents

the ratio of the areas under these two curves,

F(𝜏) =
∫ ∞

0
exp

(
−
2𝜋

ℏ

√
m01

2E
Z0Z1e

2 −
E

kT

)
dE

e−𝜏
√
𝜋Δ∕2

=
2√

𝜋
√
E0kT

√
3

4
e𝜏 ∫

∞

0

exp

(
−
2E
3∕2

0

kT

1√
E0𝜖

−
E0𝜖

kT

)
E0 d𝜖

=

√
𝜏

𝜋

e𝜏

2 ∫
∞

0

exp

[
−
𝜏

3

(
𝜖 +
2√
𝜖

)]
d𝜖 (3.92)

where we have introduced the dimensionless variable 𝜖 ≡ E∕E0. It can be seen that

the correction factor F is a function of 𝜏 only. It is also clear from Figure 3.17 that

𝜏 is usually a relatively large number. Therefore, it is of advantage to expand F in

terms of a small parameter that varies inversely with 𝜏 . The result is (see Prob-

lem 3.2)

F(𝜏) ≈ 1 +
5

12𝜏
(3.93)



3.2 Nonresonant and Resonant Thermonuclear Reaction Rates 173

12C + α

16O + p

3He + 3He

p + p

1.3

1.2

1.1

0.01 0.1 1 10

Temperature (GK)

C
o

rr
e

c
ti
o

n
 f

a
c
to

r 
F

 (
τ)

1

Figure 3.18 Correction factor F(𝜏) versus temperature for a number of reactions.

Figure 3.18 shows values of F(𝜏) versus temperature for a number of reactions.

It can be seen that the correction factor is usually small (less than a few percent) at

low temperatures. Its magnitude increases with rising temperature and lowering

of the Coulomb barrier.

A second correction is necessary since for many nonresonant reactions the

S-factor is not constant, but varies with energy. In most cases, it is sufficient to

expand the experimental or theoretical S-factor into a Taylor series around E = 0,

S(E) ≈ S(0) + S′(0)E +
1

2
S′′(0)E2 (3.94)

where the primes indicate derivatives with respect toE. Substitution of this expan-

sion into Eq. (3.72) yields a sum of integrals, where each integral can be expanded

into powers of 1∕𝜏 . As a result of this procedure, which is not given here explicitly,

one has to replace in Eq. (3.84) the constant S0 by an effective S-factor. The result

is (Fowler, Caughlan, and Zimmerman, 1967)

NA⟨𝜎𝑣⟩ = 13 (43)3∕2 ℏ𝜋 NA

m01Z0Z1e
2
Seff𝜏

2e−𝜏 (3.95)

Seff(E0) = S(0)

[
1 +

5

12𝜏
+

S′(0)

S(0)

(
E0 +
35

36
kT

)
+
1

2

S′′(0)

S(0)

(
E2
0
+
89

36
E0kT

)]
(3.96)

The first terms in the square bracket correspond to the factor F(𝜏) caused by

the asymmetry of the Gamow peak, while the other terms arise from corrections

caused by the S-factor variation with energy. Numerically, one finds (Lang, 1974)

NA⟨𝜎𝑣⟩ = C1

T
2∕3

9

e−C2∕T
1∕3

9

(
1 + C3T

1∕3

9
+ C4T

2∕3

9

+C5T9 + C6T
4∕3

9
+ C7T

5∕3

9

)
(cm3mol−1s−1) (3.97)
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C1 = 7.8324 × 10
9

(
Z2
0
Z2
1

M0M1
M0 +M1

)1∕6
S(0)

√
M0 +M1
M0M1

C2 = 4.2475

(
Z2
0
Z2
1

M0M1
M0 +M1

)1∕3
C3 = 9.810 × 10

−2

(
Z2
0
Z2
1

M0M1
M0 +M1

)−1∕3

C4 = 0.1220
S′(0)

S(0)

(
Z2
0
Z2
1

M0M1
M0 +M1

)1∕3
C5 = 8.377 × 10

−2 S
′(0)

S(0)

C6 = 7.442 × 10
−3 S

′′(0)

S(0)

(
Z2
0
Z2
1

M0M1
M0 +M1

)2∕3
C7 = 1.299 × 10

−2 S
′′(0)

S(0)

(
Z2
0
Z2
1

M0M1
M0 +M1

)1∕3
whereMi is the relative atomic mass in u, and the quantities S(0), S

′(0), and S′′(0)

are in units of MeV⋅b, b, and b/MeV, respectively.
Figure 3.19 shows schematically three situations that are frequently encoun-

tered in practice. The data shown in Figure 3.9a display a very slowly varying

S-factor. In this case, a linear Taylor expansion (solid line) seems appropriate for

describing the data. If the Gamow peak is located, say, around E = 0.7 MeV, then

the nonresonant reaction rates may be calculated from the fit coefficients S(0)

and S′(0) to high accuracy. Depending on the hydrodynamical conditions at the

astrophysical environment, however, the Gamow peak may be located at ener-

gies not directly accessible with present experimental techniques (say, below E =

0.3 MeV in part (a) of the figure). In this case, the Taylor expansion may be used

to extrapolate the S-factor to the energy range of the Gamow peak at low ener-

gies. This procedure represents the simplest way to estimate the reaction rates

from cross section data obtained at higher energies if no data are available in the

Gamowpeak region. Although frequently applied in practice, one has to be careful

with this method, and a more reliable S-factor extrapolation based on theoretical

nuclear models (Chapter 2) is desirable in this case.

A different situation is shown in Figure 3.19b. Here, the data below

E = 0.65 MeV may be best described by a quadratic Taylor expansion and

the reaction rates are then evaluated using Eq. (3.97). However, at higher energies

the Taylor expansion will diverge (in this case positively) and does no longer

describe the data. Thus, the calculated reaction rates become inaccurate at

temperatures where a substantial fraction of the Gamow peak is located beyond

E = 0.65 MeV. For this reason, the nonresonant reaction rate expression (see

Eq. (3.97)) is sometimes multiplied by a cutoff factor (Fowler, Caughlan, and

Zimmerman, 1975)

fcutoff ≈ e−(T9∕T9,cutoff)
2

(3.98)
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Figure 3.19 Schematic representation of the S-factor versus energy for (a) a very slowly

varying S-factor curve; (b) an energy-dependent S-factor; and (c) a broad resonance. See dis-

cussion in the text.

with T9,cutoff corresponding to the temperature where a substantial fraction of

the Gamow peak lies in an energy region at which the S-factor parametriza-

tion starts to deviate from the data (the vertical dotted line in Figure 3.19b).

Beyond this temperature, the reaction rates have to be evaluated by different

means.

Consider now the situation shown in Figure 3.19c. In this case, the data

display a resonance at E = 0.8 MeV corresponding to an S-factor, which varies

strongly with energy. However, it can be seen that below E ≈ 0.55 MeV the wing

of the resonance varies rather slowly. Therefore, if one is mainly interested in

stellar temperatures at which the Gamow peak is located below E = 0.55 MeV,

then one can apply the nonresonant reaction rate formalism to the low-energy
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tail of the broad resonance (see Eq. (3.97)). As was the case before, the calcu-

lated reaction rate has to be cut off at higher temperatures corresponding to

energies where the S-factor expansion deviates from the data (dotted line in

Figure 3.19c).

The S-factor for nonresonant reactions sometimes shows a strong energy

dependence such that a Taylor series expansion is no longer applicable. Although

analytical descriptions are reported in the literature for such cases (see, e.g.,

Fowler, Caughlan, and Zimmerman, 1975), it is usually more reliable to integrate

the reaction rates numerically (see Eq. (3.70)).

Example 3.5

The measured S-factor for the reaction 12C(p,𝛾)13N below E = 0.5 MeV is shown

in Figure 3.20. A broad resonance appears at E ≈ 0.4 MeV. The S-factor below

E = 0.23 MeV varies smoothly with energy and has been expanded around E = 0

into a quadratic Taylor series, with coefficients of S(0) = 1.34 × 10−3 MeV⋅b,
S′(0) = 2.6 × 10−3 b, and S′′(0) = 8.3 × 10−2 b/MeV (Adelberger et al., 1998).

(i) For a temperature of T = 0.03 GK, determine the location and width of the

Gamow peak, and the temperature sensitivity of the reaction rates. (ii) Determine

the maximum temperature at which the reaction rates can be calculated reliably

with the S-factor parametrization given above.

From Eqs. (3.77), (3.81), (3.90), and (3.91), we find

E0 = 0.1220
(
1262
1.0 ⋅ 12.0
1.0 + 12.0

0.032
)1∕3

MeV = 0.038MeV
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S(E) = S(0) + S ′(0)·E + 0.5·S′′(0)·E2
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at T = 0.2 GK

Figure 3.20 Experimental S-factor ver-

sus energy for the 12C(p,𝛾)13N reaction. The

solid line represents an S-factor expansion

that describes the data below E = 0.23 MeV.

The dashed line shows the Gamow peak for

a temperature of T = 0.2 GK. Data are from

Angulo et al. (1999).
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Δ = 0.2368
(
1262
1.0 ⋅ 12.0
1.0 + 12.0

0.035
)1∕6

MeV = 0.023MeV

𝜏 = 4.2487
(
1262
1.0 ⋅ 12.0
1.0 + 12.0

1

0.03

)1∕3
= 44.0

and thus NA⟨𝜎𝑣⟩T ∼ (T∕T0)
(44.0−2)∕3 = (T∕T0)

14.0.

The quadratic S-factor expansion describes the data reliably only below E =

0.23 MeV. We seek the temperature range for which an insignificant fraction of

the Gamow peak lies beyond E = 0.23 MeV, that is, E0(T) + Δ(T) = 0.23 MeV.

From Figures 3.14 and 3.16, it can be seen that this condition is fulfilled only

at T ≤ 0.2 GK. Therefore, we expect that the reaction rates calculated with the
given S-factor parameterization are reliable below this temperature.The situation

is illustrated in Figure 3.20.

3.2.2

Nonresonant Reaction Rates for Neutron-Induced Reactions

Neutrons that are produced in a star quickly thermalize and their velocities are

given by a Maxwell–Boltzmann distribution. For a smoothly varying neutron

cross section, the reactions are most likely to occur near the maximum of the

Maxwell–Boltzmann distribution, that is, at thermal energies of ET = kT or

thermal velocities of 𝑣T =
√
2kT∕m01 (see Section 3.1.1 and Figure 3.1a). For

s-wave neutrons (𝓁 = 0) of low velocity, the reaction cross section is inversely

proportional to the neutron velocity (see Eq. (2.207)),

𝜎 ∼
1

𝑣
∼
1√
E

(3.99)

Strictly speaking, if charged particles are released in neutron-induced processes,

the cross section ismodified by the transmission probability of the emitted particle

through the Coulomb and centripetal barriers. However, since many neutron-

induced reactions are exothermic withQ-values in excess of several mega electron

volt, the transmission coefficient of the charged particle is approximately constant.

Under these circumstances, the 1∕𝑣 law applies not only to (n,𝛾) reactions but

also to reactions such as (n,p) or (n,𝛼) (Figure 4.15a). Furthermore, the 1∕𝑣 law

is also valid in certain cases where resonant contributions give rise to a smoothly

varying reaction cross section for s-wave neutrons. For example, suppose that a

neutron-induced reaction proceeds through the low-energy wing of a broad reso-

nance. Setting E ≪ Er in the Breit–Wigner formula (see Eq. (2.185)) and using the

low-energy dependence of the neutron partial width, assuming that the partial

width for the exit channel is approximately constant, yields 𝜎𝓁=0 ∼ (1∕𝑣2)Γ𝓁=0 ∼

(1∕𝑣2)𝑣 ∼ 1∕𝑣. Neutron capture by heavy nuclei with large Qn𝛾 values is another

important example. In this case, the reaction proceeds through many broad and

overlapping resonances. These resonances are difficult to resolve experimentally

so that a measurement yields an average cross section that varies smoothly with
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energy. The cross section is then given by 𝜎𝓁=0 = 𝜎
max
𝓁=0 ⋅ T̂ ∼ 1∕𝑣 (see Eq. (2.207)),

where T̂ is the s-wave transmission coefficient.

For 𝜎 ∼ 1∕𝑣, or S ≡ 𝜎𝑣 = const, we obtain (see Eqs. (3.3) and (3.4))

NA⟨𝜎𝑣⟩ = NA ∫
∞

0

𝑣P(𝑣)𝜎(𝑣) d𝑣 = NA𝜎𝑣 = NAS = const (3.100)

The reaction rate is independent of temperature and, in principle, could be deter-

mined from 𝜎 measured at any velocity 𝑣. In practice, however, the nonresonant

neutron cross section does not always follow the simple 1∕𝑣 law for any of the

following reasons: (i) the s-wave neutron energies are no longer small, (ii) a new

reaction channel becomes energetically accessible, and (iii) higher partial waves

may contribute to the neutron cross section.

In the latter case, the velocity or energy dependence can be found from the

expression 𝜎𝓁 ∼ (1∕𝑣2)Γ𝓁 . At low energies, we can use Γ𝓁(E) ∼ (𝑣R)2𝓁+1 ∼ E𝓁+1∕2

(Section 2.5.4) and obtain 𝜎𝓁 ∼ 𝑣
−1, 𝑣, 𝑣3 (or 𝜎𝓁 ∼ E−1∕2,E1∕2,E3∕2) for 𝓁 = 0, 1, 2,

respectively. Again, the above dependences on 𝑣 (or E) do not apply in exceptional

situations where the neutron binding energy (or Qn𝛾 ) becomes comparable to the

neutron kinetic energy since in such cases the influence of the exit channel must

also be taken into account. With the above energy dependences of the different

partial waves, the reaction rate is

NA⟨𝜎𝑣⟩ = (
8

𝜋m01

)1∕2
NA

(kT)3∕2 ∫
∞

0

E𝜎(E) e−E∕kT dE ∼ ∫
∞

0

E𝓁+1∕2e−E∕kT dE

(3.101)

The integrand,E𝓁+1∕2e−E∕kT , represents the stellar energywindow inwhichmost of

the nonresonant neutron-induced reactions take place. It is plotted in Figure 3.21

for different 𝓁-values (solid lines) and is compared to the Maxwell–Boltzmann
factor, E e−E∕kT (dashed line). All curves are plotted for kT = 30 keV and are nor-

malized to the same maximum value. It can be seen that the centripetal barrier

shifts the window of effective stellar energies. The maximum of the integrand

occurs at Emax = (𝓁 + 1∕2)kT . The influence of the centripetal barrier on non-
resonant neutron-induced reaction rates is far smaller than the influence of the

Coulomb barrier on nonresonant charged-particle reactions. As an approximate

rule, it can be assumed that the Maxwell–Boltzmann distribution provides a reli-

able estimate for the effective energy window in the case of nonresonant neutron-

induced reactions.

If the product S ≡ 𝜎𝑣 is not constant but varies with velocity, itmay be expanded

into a Taylor series around E = 0 in terms of 𝑣 or
√
E,

𝜎𝑣 = S(
√
E) ≈ S(0) + Ṡ(0)

√
E + 1

2
S̈(0)E (3.102)

where the dots indicate derivatives with respect to
√
E ∼ 𝑣, and S(0), Ṡ(0), S̈(0) are

empirical constants. The energy dependence of the cross section is then given by

𝜎(E) ≈

√
m01
2E

(
S(0) + Ṡ(0)

√
E +
1

2
S̈(0)E

)
(3.103)
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Figure 3.21 The factor E𝓁+1∕2e−E∕kT ver-

sus neutron energy, representing the stellar

energy window in which most of the nonres-

onant neutron-induced reactions take place,

for different values of the orbital angular

momentum 𝓁. The dashed curve shows the

Maxwell–Boltzmann factor Ee−E∕kT for com-

parison. All curves are calculated for kT =

30 keV.

Substitution into Eq. (3.10) yields for the reaction rate (Problem 3.3)

NA⟨𝜎𝑣⟩ = NA

(
S(0) +

2√
𝜋
Ṡ(0)

√
kT +

3

4
S̈(0)kT

)
(3.104)

Numerically, we find

NA⟨𝜎𝑣⟩ = 6.022 × 1023S(0)
×

(
1 + 0.3312

Ṡ(0)

S(0)

√
T9 + 0.06463

S̈(0)

S(0)
T9

)
(cm3mol−1s−1) (3.105)

with Ṡ(0)∕S(0) and S̈(0)∕S(0) in units of MeV−1∕2 and MeV−1, respectively.

For many neutron-induced reactions, especially neutron captures, the

reaction rate is expressed in terms of the Maxwellian-averaged cross section

(Section 3.1.1),

NA⟨𝜎𝑣⟩ = NA⟨𝜎⟩T𝑣T = NA
4

𝑣T
√
𝜋 ∫

∞

0

𝑣𝜎(𝑣)

(
𝑣

𝑣T

)2
e−(𝑣∕𝑣T )

2

d𝑣 (3.106)

For s-wave neutrons at low energy, where 𝜎𝑣 = 𝑣T𝜎(𝑣T ) = 𝑣T𝜎T = const, it

follows

NA⟨𝜎⟩T𝑣T = NA
4

𝑣T
√
𝜋
𝑣T𝜎(𝑣T )∫

∞

0

(
𝑣

𝑣T

)2
e−(𝑣∕𝑣T )

2

d𝑣 = NA𝑣T𝜎(𝑣T ) (3.107)

and the Maxwellian-averaged cross section, ⟨𝜎⟩T , is equal to the cross section
measured at thermal velocity, 𝜎T . For different velocity dependences, for
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example, 𝜎 = const or 𝜎 ∼ 1∕𝑣2, direct substitution into the above equation yields⟨𝜎⟩T = 1.13𝜎T , while for p-wave capture (𝜎 ∼ 𝑣) one obtains ⟨𝜎⟩T = 1.5 𝜎T . Thus,

for a smoothly changing cross section, a measurement of 𝜎 at a single velocity, 𝑣T ,

provides a reaction rate that is not too far off from its true magnitude. However,

to obtain precise values for the reaction rate, the cross section is measured

in practice over a range of neutron energies in the effective stellar window

that is given by the Maxwell–Boltzmann distribution. For more details, see

Beer, Voss, and Winters (1992).

3.2.3

Nonresonant Reaction Rates for Photon-Induced Reactions

Themajority of astrophysically important photodisintegration reactions, 𝛾 + 3 →
0 + 1, have not been measured directly. Their reaction rates are most conve-

niently derived from the corresponding reverse particle-induced reaction rate

by applying the reciprocity theorem (Section 3.1.4). Nevertheless, a number of

photodisintegration reactions have been measured directly and it is interesting to

investigate some general properties of their decay constants. From Eqs. (3.18)

and (3.28), we find

𝜆𝛾 (3) =
8𝜋m01
h3

(2j0 + 1)(2j1 + 1)

(2j3 + 1) ∫
∞

0

E𝛾 − Q01→𝛾3

eE𝛾∕kT − 1
𝜎01→𝛾3 dE𝛾 (3.108)

with E01 = E𝛾 − Q01→𝛾3. Recall that the above expression applies only to the

forward and reverse reaction for a specific pair of initial and final states

(Section 3.1.4). For simplicity, we will assume that the photodisintegration

proceeds between the ground states of nuclei 3 and 0, while nucleus 1 denotes a

light particle (p, n, or 𝛼). In this case, Q01→𝛾3 is the ground-state Q-value of the

forward reaction. With the approximation eE𝛾∕kT − 1 ≈ eE𝛾∕kT (Section 3.1.4) one

obtains

𝜆𝛾 (3) =
8𝜋m01
h3

(2j0 + 1)(2j1 + 1)

(2j3 + 1) ∫
∞

0

(E𝛾 − Q01→𝛾3) e
−E𝛾∕kT𝜎01→𝛾3 dE𝛾 (3.109)

Wemust distinguish between the emission of charged particles, (𝛾 ,p) or (𝛾 ,𝛼), and

the emission of neutrons, (𝛾 ,n). For nonresonant charged-particle emission, the

cross section is given by Eq. (3.71). For a nearly constant S-factor, the decay con-

stant is

𝜆𝛾 (3) ∼ ∫
∞

0

(E𝛾 − Q01→𝛾3) e
−E𝛾∕kT

e−2𝜋𝜂

E01
S(E01) dE𝛾

∼ S(E0) e
−Q01→𝛾3∕kT ∫

∞

0

e−2𝜋𝜂e−E01∕kT dE01 (3.110)

The integrand is equal to the Gamow peak (Section 3.2.1) for the forward reac-

tion.The concept of a Gamowpeak is also useful for photodisintegration reactions

involving the emission of charged particles. Since the Gamow peak is located at

E0 and has a 1∕e width of Δ (see Eqs. (3.77) and (3.81)), we expect that for the



3.2 Nonresonant and Resonant Thermonuclear Reaction Rates 181

photodisintegration reaction the γ-ray energy range of effective stellar burning is

centered at

Eeff
𝛾
= E0 + Q01→𝛾3 (3.111)

and has a width of Δ. For rising temperature, E0 will increase and thus E
eff
𝛾
will

shift to a larger value. It is also apparent from Eq. (3.110) that, compared to the

rate of the forward capture reaction (see Eq. (3.73)), the decay constant 𝜆𝛾 (3) has

an additional temperature dependence through the term e−Q∕kT .

The situation is very different if a neutron is emitted in a nonresonant pho-

todisintegration reaction. For small neutron energies, we found that the energy

dependence of the (n,𝛾) cross section is given by 𝜎𝓁 ∼ E𝓁−1∕2 (Section 3.2.2).

This cross-section behavior was derived under the assumption of relatively small

neutron energies compared to the neutron binding energy. Most (n,𝛾) reactions

have relatively large Q-values and, therefore, we can substitute this expression

into Eq. (3.109). Thus,

𝜆𝛾 (3) ∼ ∫
∞

0

(E𝛾 − Q01→𝛾3) e
−E𝛾∕kTE

𝓁−1∕2
01

dE𝛾

∼ ∫
∞

0

e−E𝛾∕kT (E𝛾 − Q01→𝛾3)
𝓁+1∕2 dE𝛾 (3.112)

It was already mentioned that for neutron-capture reactions the energy window

of effective stellar burning is located at Eeff
n
= (𝓁 + 1∕2)kT (Figure 3.21). Hence,

we expect that the effective energy window for the reverse (𝛾 ,n) reaction is

located at Eeff
𝛾
= (𝓁 + 1∕2)kT + Qn𝛾 (Problem 3.4). For example, Figure 3.22

shows the integrand in Eq. (3.112) for the 148Gd(𝛾 ,n)147Gd reaction. The two

curves correspond to temperatures of T = 2 and 3 GK and are calculated assum-

ing emission of s-wave neutrons (𝓁 = 0). The Q-value for the 147Gd(n,𝛾)148Gd

reaction amounts to Qn𝛾 = 8.984 MeV. Thus, the photodisintegration reaction

can only proceed for γ-ray energies in excess of the threshold value E𝛾 = Qn𝛾 .

Between T = 2 and 3 GK, the maximum of the integrand shifts by only ≈ 43 keV,

a value barely noticeable in the figure. Therefore, the effective energy window

for (𝛾 ,n) reactions of astrophysical interest is located closely to the reaction

threshold, independent of the temperature. This behavior is in stark contrast

compared to the considerably larger energy shift of the Gamow peak in (𝛾 ,p) or

(𝛾 ,𝛼) reactions. Also, the magnitude of the integrand increases by more than a

factor of 107 between T = 2 and 3 GK, emphasizing the dramatic temperature

dependence of decay constants for (𝛾 ,n) reactions.

3.2.4

Narrow-Resonance Reaction Rates

In the previous sections, reaction rates for smoothly varying S-factors were

discussed. In this section, we will discuss the other extreme case, that is, strongly

varying S-factors caused by resonances. We will consider here resonances
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Figure 3.22 Integrand in Eq. (3.112) ver-

sus γ-ray energy at two temperatures (T = 2

and 3 GK) for the photodisintegration reac-

tion 148Gd(𝛾 ,n)147Gd. The ground-state Q-

value for the (forward) capture reaction is

Qn𝛾 = 8.984 MeV (Wang et al., 2012). This

value is equal to the neutron separation

energy of 148Gd. Both curves are plotted for

the emission of s-wave neutrons (𝓁 = 0). The

integrand represents the γ-ray energy win-

dow of effective stellar burning.

that are isolated and narrow. The first condition implies that the level density

in the compound nucleus is relatively small so that the resonances do not

overlap significantly in amplitude. Several different definitions are used in the

literature for a narrow resonance. Here, a resonance is called narrow if the

corresponding partial widths are approximately constant over the total resonance

width.

An isolated resonance is conveniently described by the one-level Breit–Wigner

formula (see Eq. (2.185))

𝜎BW(E) =
𝜆2

4𝜋

(2J + 1)(1 + 𝛿01)

(2j0 + 1)(2j1 + 1)

ΓaΓb

(Er − E)2 + Γ2∕4
(3.113)

where ji are the spins of target and projectile, J andEr are the spin and energy of the

resonance, Γi are the resonance partial widths of entrance and exit channel, and Γ

is the total resonance width. Each partial width has to be summed over all possible

values of orbital angular momenta and channel spins.The wave number is substi-

tuted by the de Broglie wavelength 𝜆 = 2𝜋∕k = 2𝜋ℏ∕
√
2m01E to avoid confusion

with the symbol for the Boltzmann constant.The factor (1 + 𝛿01) is included since

the cross section for identical particles in the entrance channel increases by a fac-

tor of two. In the above expression the widths are expressed in terms of observed

quantities (i.e., the Thomas approximation is used; see Section 2.5.5) since it will

simplify the calculations substantially. For most narrow resonances, this approxi-

mation introduces a negligible error.

The reaction rates for a single narrow resonance can be calculated using

Eqs. (3.10) and (3.113),
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NA⟨𝜎𝑣⟩ = (
8

𝜋m01

)1∕2
NA

(kT)3∕2 ∫
∞

0

E𝜎BW(E)e
−E∕kT dE

= NA

√
2𝜋ℏ2

(m01kT)
3∕2
𝜔∫

∞

0

ΓaΓb

(Er − E)2 + Γ2∕4
e−E∕kTdE (3.114)

where 𝜔 ≡ (2J + 1)(1 + 𝛿01)∕[(2j0 + 1)(2j1 + 1)]. For a sufficiently narrow res-

onance, the Maxwell–Boltzmann factor e−E∕kT and the partial widths Γi are

approximately constant over the total width of the resonance. They may be

replaced by their value at Er and the integral can be calculated analytically. Thus,

NA⟨𝜎𝑣⟩ = NA

√
2𝜋ℏ2

(m01kT)
3∕2

e−Er∕kT𝜔
ΓaΓb

Γ
2∫

∞

0

Γ∕2

(Er − E)2 + Γ2∕4
dE

= NA

√
2𝜋ℏ2

(m01kT)
3∕2

e−Er∕kT𝜔
ΓaΓb

Γ
2𝜋

= NA

(
2𝜋

m01kT

)3∕2
ℏ2e−Er∕kT𝜔𝛾 (3.115)

where we used the definition 𝜔𝛾 ≡ 𝜔ΓaΓb∕Γ. The quantity 𝜔𝛾 is proportional to

the area under the resonance cross section, or equivalently, to the product of max-

imum cross section, 𝜎BW(E = Er) = (𝜆2
r
∕𝜋)𝜔ΓaΓb∕Γ

2, and the total width Γ of the

resonance,

Γ ⋅ 𝜎BW(E = Er) = Γ ⋅
𝜆2
r

𝜋
𝜔
ΓaΓb

Γ2
=
𝜆2
r

𝜋
𝜔𝛾 (3.116)

Therefore,𝜔𝛾 is referred to as the resonance strength.The reaction rates for narrow

resonances depend only on the energy and the strength of the resonance, but not

on the exact shape of the cross section curve. This is a fortunate circumstance

since, as we shall see, for most narrow resonances the partial and total widths are

experimentally not known.

If several narrow and isolated resonances contribute to the cross section, their

contributions to the reaction rate add incoherently. Numerically, one finds

NA⟨𝜎𝑣⟩ = 1.5399 × 1011(
M0M1
M0+M1

T9

)3∕2 ∑
i

(𝜔𝛾)ie
−11.605Ei∕T9 (cm3mol−1s−1) (3.117)

where i labels different resonances, (𝜔𝛾)i and Ei are in units of MeV, and Mi are

the relative atomic masses in u.

The temperature dependence of the reaction rate for a single narrow resonance

can be found by performing a calculation similar to the one that was applied to the

nonresonant case. Starting from Eqs. (3.85) and (3.87), we find with NA⟨𝜎𝑣⟩T =

cT−3∕2e−c
′Er∕T

lnNA⟨𝜎𝑣⟩T = ln c −
3

2
lnT − c′

Er

T
(3.118)

n =
𝜕 lnNA⟨𝜎𝑣⟩T

𝜕 lnT
= −
3

2
− c′Er

𝜕(T−1)

𝜕 lnT
=

c′Er

T
−
3

2
(3.119)
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Figure 3.23 Temperature sensitivity of narrow-resonance reaction rates for various values

of the resonance energy.

Hence,

NA⟨𝜎𝑣⟩T = NA⟨𝜎𝑣⟩T0 (T∕T0)c′Er∕T−3∕2 = NA⟨𝜎𝑣⟩T0 (T∕T0)11.605Er∕T9−3∕2 (3.120)

where Er in the last term is given in units of mega electron volts. Figure 3.23 shows

the exponent n versus temperature for several values of the resonance energy

Er . The temperature sensitivity of narrow-resonance reaction rates increases for

decreasing temperatures and increasing resonance energies. Depending on the

values of T and Er , narrow-resonance reaction rates may even be more tempera-

ture sensitive than nonresonant reaction rates.

In the following, we will discuss the influence of the partial widths Γa and Γb on

the reaction rates of a single narrow resonance using a capture reaction (0 + 1 →
𝛾 + 3) as an example. Suppose further that only two channels are open, the particle

channel (Γa) and the γ-ray channel (Γ𝛾 ). The total width is Γ = Γa + Γ𝛾 . Experi-

mental γ-ray partial widths typically amount to ≈ 1 meV–eV. Most neutron par-

tial widths are in the range of ≈ 10 meV–keV. Neither of these partial widths are

very sensitive to the value of Er . Charged-particle partial widths, on the other

hand, are governed by the transmission probability through the Coulomb bar-

rier and are very sensitive to the resonance location, especially at low energies

(Section 2.5.4).

Suppose first that the charged-particle width is smaller than the γ-ray partial

width, a situation typical for low resonance energies (say, below Er ≈ 0.5 MeV).

Since Γa ≪ Γ𝛾 we obtain from the definition of the resonance strength

𝜔𝛾 = 𝜔
ΓaΓ𝛾

Γa + Γ𝛾
≈ 𝜔

ΓaΓ𝛾

Γ𝛾
= 𝜔Γa (3.121)
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Thus, the resonance strength depends only on the charged-particle partial

width. Depending on the precise value of the resonance energy, and to a lesser

extent on the spectroscopic factor (see Eq. (2.197)), the resonance strength

may become very small. Experimental studies of such low-energy resonances

in charged-particle reactions represent a difficult challenge for the nuclear

experimentalist (Chapter 4). For a very narrow resonance, only the small energy

region near Er contributes to the reaction rate. Nevertheless, the concept of a

Gamow peak is also useful for narrow resonances if the resonance strength is

determined by the charged-particle partial width. This can be seen by expressing

the narrow-resonance reaction rates for Γa ≪ Γ𝛾 (and Γ ≈ Γ𝛾 ) as

NA⟨𝜎𝑣⟩ ∼ ∫
∞

0

E𝜎BW(E)e
−E∕kT dE

∼ ∫
∞

0

E
1

E

ΓaΓ𝛾

(Er − E)2 + Γ2
𝛾
∕4

e−E∕kT dE

∼ ∫
∞

0

P𝓁(E)Γ𝛾

(Er − E)2 + Γ2
𝛾
∕4

e−E∕kT dE

∼ ∫
∞

0

Γ𝛾

(Er − E)2 + Γ2
𝛾
∕4

e−2𝜋𝜂e−E∕kT dE (3.122)

where the energy dependence of the penetration factor P𝓁(E) is approximated by

the Gamow factor e−2𝜋𝜂 . Hence, the integrand can be written as a product of

two factors: (i) the Gamow peak e−2𝜋𝜂e−E∕kT , and (ii) a resonant S-factor curve

of Lorentzian shape. The Lorentzian has a FWHM of Γ𝛾 and a maximum height

of 4∕Γ𝛾 . Thus, for a narrow resonance, a change in Γ𝛾 has no influence on the area

under the Lorentzian curve. It follows from Eq. (3.122) that, if a reaction cross

section exhibits a number of narrow resonances, those resonances located in the

region of the Gamow peak (at energies between E0 − Δ∕2 and E0 + Δ∕2) will be

the major contributors to the total reaction rates. In other words, if there are res-

onances are located in the Gamow peak, other resonances located either below or

above the Gamow peak are of minor importance. The situation is represented in

Figure 3.24a.The dashed line shows theMaxwell–Boltzmann factor e−E∕kT , calcu-

lated for T = 0.4 GK, whereas the dashed-dotted line displays the Gamow factor.

The solid lines show the Gamow peak and the narrow resonance S-factors. In this

example, the narrow resonances at Er = 0.2 MeV, 0.4 MeV, and 0.6 MeVwill dom-

inate the total reaction rates, while the resonances at Er = 0.05 MeV and 0.8 MeV

will be far less important.

Suppose now that the γ-ray partial width is smaller than the particle width,

Γa ≫ Γ𝛾 . This situation typically occurs for charged particles at higher resonance

energies (say, above Er ≈ 0.5 MeV, where the particle partial width is frequently

Γa ≫ 1 eV), or for neutrons (except perhaps at very low energies). In this case, we

obtain from the definition of the resonance strength

𝜔𝛾 = 𝜔
ΓaΓ𝛾

Γa + Γ𝛾
≈ 𝜔

ΓaΓ𝛾

Γa
= 𝜔Γ𝛾 (3.123)
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Figure 3.24 The influence of narrow res-

onances on reaction rates for the case

(a) Γ𝛾 ≫ Γa; (b) Γ𝛾 ≪ Γa. The Maxwell–

Boltzmann and Gamow factors are shown

as dashed and dashed-dotted lines, respec-

tively. The solid line in part (a) displays the

Gamow peak. The sharp peaks indicate only

the position of narrow resonances. In part

(a), the displayed resonances have differ-

ent strengths, while those in part (b) are

assumed to have similar strengths.

The resonance strength depends only on the γ-ray partial width and will typ-

ically be on the order of 1 meV–eV. The precise value is determined by the

complicated nuclear configurations involved in the reaction. Notice that “a most

important energy window,” such as the Gamow peak for charged particles or

the Maxwell–Boltzmann distribution for neutrons, does not exist if Γa ≫ Γ𝛾 .

Figure 3.24b shows, for example, the factor e−E∕kT at T = 0.4 GK (dashed line)

together with three narrow resonances (solid lines) at locations of Er = 0.2 MeV,

0.4 MeV, and 0.6 MeV. The resonances are assumed to have similar strengths,

𝜔𝛾 ≈ Γ𝛾 . For each resonance, only the region over the narrow resonance peak

will contribute to the reaction rate. The reaction rate contribution of a narrow

resonance increases rapidly for decreasing resonance energy, according to the
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factor e−E∕kT . Hence, the resonance at Er = 0.2 MeV will dominate the total

reaction rate (note the vertical logarithmic scale in Figure 3.24b). The smaller

the resonance energy, the larger the reaction rate contribution, as long as

Γa ≫ Γ𝛾 . Consequently, it becomes very important to locate all of the low-energy

resonances.

It is often stated that in charged-particle reactions all resonances located

within the Gamow peak (E0 ± Δ∕2) may contribute significantly to the total

reaction rates. Based on the above discussion, it is clear that this assumption

represents an oversimplification, since it applies only to those resonances for

which the total width is dominated by the γ-ray partial width (Γa ≪ Γ𝛾 ). With

increasing energy, a point will be reached in any capture reaction, where the

particle partial width will dominate over the γ-ray partial width (Γa ≫ Γ𝛾 ), and

for these resonances a Gamow peak does not exist. Therefore, one should not

assume that all resonances located throughout the region E0 ± Δ∕2 contribute

significantly to the total rates. The assumption is especially unjustified at

higher stellar temperatures. This is demonstrated in Figure 3.25, showing the

fractional contribution of each resonance to the total rate, NA⟨𝜎𝑣⟩i∕NA⟨𝜎𝑣⟩total,
versus resonance energy for: (i) 27Al(p,𝛾)28Si at T = 3.5 GK, and (ii) 24Mg(𝛼,𝛾)28Si

at T = 2.5 GK. All known resonances with center-of-mass energies in the

range of Ei = 0.2–3.8 MeV in part (a) and Ei = 1.1–4.3 MeV in part (b) have

been included. The dotted curves show the corresponding Gamow peaks. The

main contribution to the total reaction rate derives from resonances located

below the center of the Gamow peak, that is, Ei < E0. The same applies to

other (p,𝛾) and (𝛼,𝛾) reactions on targets in the mass range A = 20–40 at

temperatures of T = 0.5–10 GK. In the following chapters, we will still use

the Gamow peak (E0 ± Δ∕2) as the conventional effective energy window,

but the reader should keep in mind that this represents a crude estimate,

especially at higher temperatures. For more information, see Newton et al.

(2007).

Narrow resonances in the range of effective stellar energies have a dramatic

effect on reaction rates. Therefore, it is important to locate all narrow resonances

that could contribute to the total reaction rates. The situation is shown in

Figure 3.26. As a first step, one typically measures the reaction of astrophysical

interest, 0 + 1, down to an energy of Emin, representing the smallest energy

achievable in the laboratory (the dotted line in Figure 3.26). Charged-particle

cross sections below an energy of Emin become so small because of Coulomb

barrier considerations that present experimental techniques are not sensitive

enough for direct measurements. In a second step, therefore, the energy range

between E = 0 and Emin is investigated by means of indirect measurements.

Such studies populate the astrophysically important levels in the compound

nucleus C using reactions X+x other than the one of direct astrophysical interest

(Section 4.1). From the measured nuclear properties (excitation energies, spins,

parities, spectroscopic factors, and so on) of the compound levels close to

the particle threshold, the resonance energies and strengths of astrophysically

important resonances can be estimated.
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Figure 3.25 The fractional contribution of

narrow resonances to the total reaction rate

versus resonance energy for (a) 27Al(p,𝛾)28Si

at T = 3.5 GK and (b) 24Mg(𝛼,𝛾)28Si at T =

2.5 GK. The main contribution arises in both

cases from resonances with energies of

Ei < E0. The Gamow peak is shown as a

dotted line. The resonance energies and

strengths are adopted from Endt (1990) and

Iliadis et al. (2001). (Reprinted with permis-

sion from J. R. Newton et al., Phys. Rev. C,

Vol. 75, 045801 (2007). Copyright (2007) by

the American Physical Society.)

For the influence of experimental uncertainties of Er , 𝜔𝛾 , and C2S on the

resulting narrow-resonance reaction rates, the reader is referred to Thompson

and Iliadis (1999) and Iliadis et al. (2010).

Example 3.6

Suppose that four hypothetical narrow s-wave resonances occur at low ener-

gies in the 20Ne(p,𝛾)21Na reaction. The resonance energies are Er = 10 keV,

30 keV, 50 keV, and 100 keV. The corresponding resonance strengths are

𝜔𝛾 = 7.24 × 10−33 eV, 3.81 × 10−15 eV, 1.08 × 10−9 eV, and 3.27 × 10−4 eV. Each

of these values has been obtained by assuming Γp ≪ Γ𝛾 and C2S = 1. Which

resonance do you expect to dominate the total reaction rates at T = 0.02 GK and

0.08 GK?
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Er

Emin

X + x

C

G.P.

σ0+1

Figure 3.26 Energy level diagram, showing

narrow resonances in the reaction 0 + 1 (left-

hand side) and the corresponding levels in

the compound nucleus C. The locations of

two Gamow peaks (G.P.) at different temper-

atures are displayed as hatched bars. Below

an energy of Emin (dotted line) charged-

particle measurements are not feasible. In

this case, one may estimate the reaction

rates by measuring nuclear structure prop-

erties of levels in nucleus C via a reaction

X + x.

At T = 0.02 GK, the Gamow peak location (see Eqs. (3.77) and (3.81)) is

E0 ± Δ∕2 = 40 ± 10 keV. Only the resonances at Er = 30 keV and 50 keV are

located in the Gamow peak and, therefore, these will dominate the reaction

rates. At T = 0.08 GK, we obtain E0 ± Δ∕2 = 100 ± 30 keV. Only the resonance

at Er = 100 keV is located in the Gamow peak and thus will dominate the total

reactions rates. See also Problem 3.5.

We will now consider two issues that are important at elevated temperatures

when a capture reaction, for example, (p,𝛾), (n,𝛾), or (𝛼,𝛾), proceeds through nar-

row resonances. The first concerns the influence of excited target states on the

reaction rates. From Eq. (3.38), we find for the stellar rate of the capture reaction

0 + 1→ 𝛾 + 3

NA⟨𝜎𝑣⟩ = ∑
𝜇

P0𝜇NA⟨𝜎𝑣⟩𝜇 = ∑
𝜇 g0𝜇e

−E0𝜇∕kTNA⟨𝜎𝑣⟩𝜇∑
𝜇 g0𝜇e

−E0𝜇∕kT
(3.124)

where 𝜇 sums over the levels in the target nucleus 0 including the ground state,

while excited states in the light particle 1 are neglected (a safe assumption for

protons, neutrons or α-particles). The subscript “01→ 23” is suppressed for clar-
ity and it is assumed that the reaction rate NA⟨𝜎𝑣⟩𝜇 has already been properly
summed over transitions to excited final states 𝜈 in nucleus 3. All other symbols

have exactly the same meaning as in Section 3.1.5. Suppose now that the reaction

rate NA⟨𝜎𝑣⟩𝜇 for a specific target state 𝜇 is determined by a number of narrow
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resonances that are labeled by 𝜌. From Eq. (3.115), we find

NA⟨𝜎𝑣⟩𝜇 = ∑
𝜌

NA⟨𝜎𝑣⟩𝜇𝜌 = ∑
𝜌

NA

(
2𝜋

m01kT

)3∕2
ℏ2e−E𝜌𝜇∕kT (𝜔𝛾)𝜌𝜇

=
∑
𝜌

NA

(
2𝜋

m01kT

)3∕2
ℏ2e−E𝜌𝜇∕kT

g𝜌

g0𝜇g1

Γ𝜌𝜇Γ𝜌𝛾

Γ𝜌
(3.125)

where g𝜌, g0𝜇 , and g1 are the statistical weights of the resonance, of the level in

target nucleus 0 and of the light particle 1, respectively, with 𝜔𝜌𝜇 ≡ g𝜌∕(g0𝜇g1);

Γ𝜌𝜇 , Γ𝜌𝛾 , and Γ𝜌 are the particle partial width for resonance formation from target

level 𝜇, the (decay) γ-ray partial width, and the total width, respectively, of reso-

nance 𝜌; E𝜌𝜇 is the energy of resonance 𝜌 for target level 𝜇 and E𝜌𝜇0 = E𝜌𝜇 + E0𝜇
is the energy of resonance 𝜌 for the target ground state 𝜇0. An energy level dia-

gram is shown in Figure 3.27. From Eqs. (3.36), (3.37), (3.124), and (3.125), we

obtain

NA⟨𝜎𝑣⟩ =
∑
𝜇 g0𝜇e

−E0𝜇∕kT
∑
𝜌NA

(
2𝜋

m01kT

)3∕2
ℏ2e−E𝜌𝜇∕kT

g𝜌

g0𝜇g1

Γ𝜌𝜇Γ𝜌𝛾

Γ𝜌∑
𝜇 g0𝜇e

−E0𝜇∕kT

=
1

Gnorm
0

∑
𝜌

NA⟨𝜎𝑣⟩𝜇0𝜌 ∑
𝜇

Γ𝜌𝜇

Γ𝜌𝜇0
(3.126)

Hence, the total stellar rate is given by a sum over narrow resonance ground-

state rates, NA⟨𝜎𝑣⟩𝜇0𝜌 , where each resonance term is modified by a factor of (1 +
Γ𝜌𝜇1∕Γ𝜌𝜇0 + Γ𝜌𝜇2∕Γ𝜌𝜇0 + · · ·), with Γ𝜌𝜇∕Γ𝜌𝜇0 denoting the ratio of particle partial

widths for excited target level 𝜇 and the target ground state 𝜇0. The inclusion

of excited target states in the total reaction rate introduces no additional tem-

perature dependence other than a weak dependence through the quantity Gnorm
0
.

For charged-particle reactions and low resonance energies, the penetration factor

(and hence the particle partial width) varies strongly with energy (Section 2.5.4).

Therefore, we expect in this case a negligible influence of excited target states on

the total rate, that is, Γ𝜌𝜇 ≪ Γ𝜌𝜇0 , unless the target excitation energy E0𝜇 is very

small, implying E𝜌𝜇 ≈ E𝜌𝜇0 or Γ𝜌𝜇 ≈ Γ𝜌𝜇0 (for similar values of the corresponding

reduced widths; see Figure 3.27). It is also clear that in charged-particle reactions

at higher resonance energies or in neutron-induced reactions, where the particle

partial widths are less sensitive to energy variations, the ratio Γ𝜌𝜇∕Γ𝜌𝜇0 can be rel-

atively large. Under such conditions, excited target states may dominate the total

stellar reaction rates. See, for example, Vancraeynest et al. (1998) and Schatz et al.

(2005).

The second issue concerns photodisintegration rates. Forward and reverse rates

are related by Eqs. (3.35) or (3.46). Rewriting that expression by using the above

notation yields

𝜆𝛾 (3)

NA⟨𝜎𝑣⟩ =
(
2𝜋

h2

)3∕2 (m01kT)3∕2
NA

g0𝜇0g1

g3𝜈0

(
Gnorm
0

Gnorm
3

)
e−Q01→𝛾3∕kT (3.127)
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where for the sake of simplicity, we omitted the Kronecker delta (we assume non-

identical nuclei 0 and 1) and setGnorm
1

= 1 (we disregard excited states in the light

particle 1); g0𝜇0 , g1, and g3𝜈0 are the statistical weights of the target ground state,

of light particle 1, and of the ground state of the residual nucleus, respectively;

Q01→𝛾3 denotes the Q-value for the ground states of nuclei 0, 1, and 3. If the for-

ward reaction proceeds predominantly through isolated and narrow resonances,

the rates for the (reverse) photodisintegration can be found by substitution of

Eq. (3.126) into Eq. (3.127),

𝜆𝛾 (3) =
(
2𝜋

h2

)3∕2 (m01kT)3∕2
NA

g0𝜇0g1

g3𝜈0

1

Gnorm
3

e−Q01→𝛾3∕kT
∑
𝜌

NA⟨𝜎𝑣⟩𝜇0𝜌 ∑
𝜇

Γ𝜌𝜇

Γ𝜌𝜇0

=
1

ℏ

g0𝜇0g1

g3𝜈0

1

Gnorm
3

∑
𝜌

e−E𝜌x∕kT
g𝜌

g0𝜇0g1

Γ𝜌𝜇0Γ𝜌𝛾

Γ𝜌

∑
𝜇

Γ𝜌𝜇

Γ𝜌𝜇0

=
1.519 × 1021

Gnorm
3

g0𝜇0g1

g3𝜈0

∑
𝜌

e−11.605E𝜌x∕T9 (𝜔𝛾)𝜌𝜇0

∑
𝜇

Γ𝜌𝜇

Γ𝜌𝜇0
(cm3mol−1s−1)

(3.128)

where the excitation energy in the compound nucleus 3 (corresponding to reso-

nance 𝜌) is equal to the sum of the resonance energy for the target ground state

and the ground-state Q-value, E𝜌x = E𝜌𝜇0 + Q01→𝛾3 (see Figure 3.27). In the above

numerical expression, the resonance energies and strengths are in units of mega

electron volts. The photodisintegration rate depends exponentially on the excita-

tion energies E𝜌x of compound levels corresponding to resonances through which

the forward reaction proceeds.The excitation energies also enter implicitly via the

particle partial widths Γ𝜌𝜇 and Γ𝜌𝜇0 , and via the resonance strengths (𝜔𝛾)𝜌𝜇0 for the

target ground state. A numerical example is given in Problem 3.8.

0 + 1

3

Q01→γ3

E0μ

Eρμ0

Eρμ

Eρx

E3ν

ρ

γ γ

Figure 3.27 Energy level diagram for nar-

row resonances in the 0 + 1 → 𝛾 + 3 capture

reaction, showing thermally excited states in

the target and the final nucleus. For clarity,

only a single narrow resonance (𝜌) and one

excited state is shown for the target 0 and

the final nucleus 3. All vertical arrows repre-

sent γ-ray transitions. In the forward reaction

0 + 1 → 𝛾 + 3, the level 𝜌 may be populated

either from the target ground state or from

the excited target state.
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3.2.5

Broad-Resonance Reaction Rates

The results derived in the last section are independent of the precise shape of the

resonance cross section.The formalism of narrow-resonance reaction rates is not

applicable in cases for which the explicit energy dependence of the cross section

is important. As an example, a charged-particle reaction will be discussed in the

following. Three common situations are schematically displayed in Figure 3.28,

showing in each case the Maxwell–Boltzmann factor (dashed line), the Gamow

factor (dashed-dotted line), the Gamow peak (dotted line), and the cross section

of a broad resonance (upper solid line). The reaction rates are proportional to the

area under the lower solid line, that is, the product of the Maxwell–Boltzmann

distribution and the cross section. The curves are obtained for the 24Mg(p,𝛾)25Al

reaction at T = 0.05 GK. For simplicity, the resonant cross sections are calculated

using an arbitrary constant γ-ray partial width; angular momenta are neglected

and the penetration factor is approximated by the Gamow factor e−2𝜋𝜂 .

Part (a) shows a fictitious broad resonance at Er = 0.1 MeV with a width of Γ =

5 keV, located inside the Gamow peak. It can no longer be assumed that the par-

tial widths, the de Broglie wavelength, and the Maxwell–Boltzmann distribution

are constant over the width of the resonance. The energy dependence of these

quantities has to be taken into account. The product of Maxwell–Boltzmann dis-

tribution and cross section is now a complicated function of energy (lower solid

line) and can no longer be integrated analytically. Instead, the reaction rates have

to be calculated numerically by solving (see Eqs. (3.70) and (3.113))

NA⟨𝜎𝑣⟩ = √
2𝜋

NA𝜔ℏ
2

(m01kT)
3∕2 ∫

∞

0

e−E∕kT
Γa(E)Γb(E + Q − Ef )

(Er − E)2 + Γ(E)2∕4
dE (3.129)

where the partial width for the exit channel, Γb, has to be calculated at the energy

E23 = E01 + Q01→23 − Ef available to the pair 2 + 3. The above expression involves

a transition from the resonance to a specific final state Ef . If the reaction involves

transitions to several final states, the different contributions to the total cross

section add incoherently. As a useful rule, if the resonancewidth is small compared

to the width of the Gamow peak, Γ≪ Δ, the reaction rates may be calculated

using the narrow resonance formalism (Section 3.2.4). Otherwise, the reaction

rates have to be obtained from a numerical integration of Eq. (3.129).

Figure 3.28b shows a fictitious resonance at Er = 0.25 MeV with a width of

Γ = 0.6 keV. It can be seen that the resonance is located outside the Gamow

peak. We concluded in the last section that in such cases the contribution

of this resonance to the total reaction rates is negligible compared to other

narrow resonances that are located in the Gamow peak. But suppose that no

other narrow resonances exist below E = 0.25 MeV. Notice that it would be

incorrect in this case to calculate the reaction rates using the narrow resonance

formalism (see Eq. (3.115)). The latter expressions were derived assuming a

negligible energy dependence of the partial widths, de Broglie wavelength, and

Maxwell–Boltzmann distribution over the total width of the resonance.The value

of the Maxwell–Boltzmann distribution at the resonance energy, Er , appears in
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Figure 3.28 The influence of broad res-

onances on reaction rates for (a) a broad

resonance located in the Gamow peak;

(b) a broad resonance located outside the

Gamow peak; and (c) a high-energy wing

of a subthreshold resonance. In each panel,

the Maxwell–Boltzmann factor, Gamow fac-

tor, and Gamow peak are shown as dashed,

dashed-dotted, and dotted lines, respectively.

The Breit–Wigner cross sections are displayed

as upper solid lines and the product of cross

section and Maxwell–Boltzmann factor as

lower solid lines. The latter product deter-

mines the reaction rates (see Eqs. (3.70) and

(3.129)). In part (c) the S-factor instead of the

cross section is shown for clarity.
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the narrow-resonance reaction rate expression, which takes only the reaction

rate contribution at the resonance energy into account. However, the product

of Maxwell–Boltzmann distribution and cross section (lower solid line) gives

rise to another maximum at lower energies caused by the low-energy wing of

the resonance. In this example, it is apparent that the first maximum gives a

far larger contribution to the reaction rates than the second maximum at Er .

The reason is that the Maxwell–Boltzmann distribution has a stronger energy

dependence than the cross section, as can be seen by comparing the magnitude

of both functions at the positions of the two maxima of the lower solid line.

As an approximate rule, if a resonance at Er is located within the energy range

between E0 − 2Δ and E0 + 2Δ, the narrow resonance formalism is applicable

(Section 3.2.4). Otherwise, the wing of the resonance has to be taken explicitly

into account, even if the resonance is narrow in the sense that Γ≪ Δ. In the latter

case, the reaction rates can be calculated either by numerical integration or, if the

S-factor of the resonance wing varies smoothly over the energy range of interest,

by expanding the S-factor into a Taylor series and by applying the nonresonant

reaction rate formalism.

Figure 3.28c shows a fictitious subthreshold resonance, corresponding to a com-

pound nucleus level, located below the proton threshold. For reasons of clarity, the

lower solid line displays the S-factor rather than the cross section. In this case

the high-energy wing of the resonance has to be taken explicitly into account.

The S-factor (or cross section) can be calculated using the one-level Breit–Wigner

formula (see Eq. (2.185) and Example 2.1). Again, the reaction rates are then eval-

uated either by numerical integration or, if the S-factor varies smoothly over the

energy range of interest, by using the nonresonant reaction formalism.

For the explicit calculation of broad-resonance reaction rates, it is of advantage

to express the S-factor in terms of measured quantities. Using the one-level Breit–

Wigner formula, the cross section can be written as

𝜎BW(E) =
𝜋ℏ2𝜔

2m01E

Γa(E)Γb(E + Q − Ef )

(Er − E)2 + Γ(E)2∕4
(3.130)

Numerically, we find 𝜋ℏ2∕(2m01) = 0.6566 (M0 +M1)∕(M0M1)MeV⋅b. Suppose
first that the partial widths of the broad resonance at Er , Γa(Er) and Γb(Er), are

known experimentally. We may parametrize the particle partial width using

Γi(E) ∼ Pi(E) (see Eq. (2.175)) and the γ-ray partial width by Γ𝛾 (E𝛾 ) ∼ E2L+1
𝛾
,

where E𝛾 and L denote the energy and multipolarity, respectively, of the emitted

γ-ray (see Eq. (1.22)). Although approximate expressions exist for the calcula-

tion of the penetration factors (see, e.g., Clayton, 1983), it is more reliable to

obtain Pi(E) directly from numerical computations of Coulomb wave functions

(Section 2.5.4 and Appendix A.3). For reactions involving particles with rest

mass, one finds from Eq. (3.130)

𝜎BW(E) =
𝜋ℏ2𝜔

2m01E

Pa(E)

Pa(Er)
Γa(Er)

Pb(E+Q−Ef )

Pb(Er+Q−Ef )
Γb(Er + Q − Ef )

(Er − E)2 + Γ(E)2∕4
(3.131)
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and for reactions involving photon emission

𝜎BW(E) =
𝜋ℏ2𝜔

2m01E

Pa(E)

Pa(Er )
Γa(Er)

[
E+Q−Ef

Er+Q−Ef

]2L+1
Γ𝛾 (Er + Q − Ef )

(Er − E)2 + Γ(E)2∕4
(3.132)

For many broad resonances, the partial widths Γi have not been measured, but

only the resonance strength 𝜔𝛾 and the total width Γ, both measured at Er , are

known experimentally. With the definition of the resonance strength

𝜔𝛾 ≡ 𝜔
Γa(Er)Γb(Er + Q − Ef )

Γ(Er)
(3.133)

the cross section is given by

𝜎BW(E) =
𝜋ℏ2

2m01E

Pa(E)

Pa(Er)

Γb(E + Q − Ef )

Γb(Er + Q − Ef )

𝜔𝛾Γ(Er)

(Er − E)2 + Γ(E)2∕4
(3.134)

where the ratio of partial widths Γb is given as before: either by the ratio of

penetration factors, Pb(E + Q − Ef )∕Pb(Er + Q − Ef ), for reactions involving

particles with rest mass, or by the factor [(E + Q − Ef )∕(Er + Q − Ef )]
2L+1 for

reactions emitting photons. The cross section for subthreshold resonances

is calculated similarly (Example 2.1). It can be seen from the Breit–Wigner

expression (see Eq. (3.130)) that broad resonances with an energy Er close to E0
and with large partial widths (i.e., a large value of C2S and a small value of orbital

angular momentum 𝓁) will make the largest contributions to the total reaction
rates.

Example 3.7

The s-wave resonance at Er = 214 keV (J
𝜋 = 1∕2+) in 24Mg(p,𝛾)25Al has a

measured strength of 𝜔𝛾 = 1.3 × 10−2 eV, a proton width of Γp = 1.4 × 10
−2 eV, a

γ-ray partial width of Γ𝛾 = 1.4 × 10
−1 eV, and a total width of Γ = 1.5 × 10−1 eV

(Powell et al., 1999). All widths are observed quantities. No other channels

are open, hence Γ = Γp + Γ𝛾 . Suppose that the resonance decays via a dipole

transition (L = 1) to the Ef = 452 keV state (J
𝜋 = 1∕2+) in 25Al with a branching

ratio of 100%. A level diagram is shown in Figure 3.29a. Calculate the reaction

rate contribution of this resonance at temperatures between T = 0.01 GK and

1 GK using: (i) the narrow resonance formalism, and (ii) the broad resonance

formalism (that is, by explicitly taking the energy dependence of the S-factor into

account).

To calculate the narrow-resonance reaction rate, only the resonance energy Er

and strength 𝜔𝛾 is needed. The numerical results are shown as the dashed line

in Figure 3.29b and have been obtained directly from Eq. (3.117). The resonant
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S-factor is calculated from Eqs. (3.71) and (3.132),

SBW(E) = E𝜎BW(E)e
2𝜋𝜂

=
𝜋ℏ2

2m01
e2𝜋𝜂𝜔

Pa(E)

Pa(Er )
Γa(Er)

[
E+Q−Ef

Er+Q−Ef

]2L+1
Γ𝛾 (Er + Q − Ef )

(Er − E)2 + Γ(E)2∕4

The penetration factors are obtained from numerically computed Coulomb

wave functions for 𝓁 = 0 (s-wave), using a radius parameter of r0 = 1.25 fm. The

broad-resonance reaction rates can then be calculated by numerical integration

of Eq. (3.70). The results are shown as the solid line in Figure 3.29b.

It can be seen that above a temperature of T = 0.05 GK the narrow- and broad-

resonance reaction rates are in agreement. The result is expected since for this

temperature region theEr = 214 keV resonance is located inside theGamowpeak.
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Figure 3.29 (a) Level diagram of 25Al and (b) reaction rates for 24Mg(p,𝛾)25Al versus tem-

perature. The solid and dashed curves in part (b) are calculated with the reaction rate for-

malism for broad resonances and narrow resonances, respectively.
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Below T = 0.05 GK, the resonance is located outside the energy window E0 ±

2Δ and, therefore, the narrow resonance formalism underestimates the reaction

rates considerably. The low-energy wing of the resonance provides a consider-

ably larger reaction rate contribution than the contribution at Er . Figure 3.29b

displays at T = 0.05 GK a change in the slope of the reaction rates, reflecting the

different temperature dependences of the narrow-resonance reaction rate expres-

sion (because of the contribution at the resonance energy Er alone) and the broad-

resonance reaction rate formalism (because of the additional contribution from

the Gamow peak near E0).

3.2.6

Electron Screening

The formalism discussed so far for calculating thermonuclear reaction rates

involving two charged particles is based on the assumption that Coulomb

interactions with electrons or with other nuclei are negligible. However, in

a fully ionized stellar plasma electrons are attracted to a particular nucleus,

while other nuclei are repelled. In other words, each nucleus will polarize its

neighborhood. We may imagine that each nucleus is surrounded by an imaginary

sphere containing an inhomogeneously charged cloud. Therefore, in a nuclear

reaction, the potential seen by either one of the colliding nuclei is modified from

the simple Coulomb form. The effective barrier for the nuclear fusion reaction

becomes thinner and, therefore, both the tunneling probability and the reaction

rate increase over their values obtained for the same reaction taking place in a

vacuum. This effect is referred to as electron screening. The ratio of the reaction

rate in the plasma to the vacuum rate is called the screening factor fs and will be

derived in the following.

Consider a nearly perfect gas at relatively low density for which the average

Coulomb energy between two neighboring nuclei is considerably smaller than

their thermal energy. In this case, the screened potential for two colliding nuclei 0

and 1 is given by (Salpeter, 1954)

Vs(r) =
Z0Z1e

2

r
e−r∕RD (3.135)

where RD is the Debye–Hückel radius

RD =

√
kT

4𝜋e2𝜌NA𝜁
2
= 2.812 × 10−7𝜌−1∕2T

1∕2

9
𝜁−1 (cm) (3.136)

and

𝜁 ≡
√√√√∑

i

(Z2
i
+ Zi𝜃e)Xi

Ai

(3.137)

with 𝜃e the electron degeneracy factor. The sum is over all types of positive ions

present in the plasma and the density in the numerical expression is in units of

grams per cubic centimeter.
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The Debye–Hückel radius is a measure for the size of the charged cloud sur-

rounding each nucleus. Beyond a distance of r = RD the screened potential van-

ishes quickly. The condition of a weak Coulomb energy compared to the thermal

energy defines the weak screening regime. It is equivalent to the assumption that

the Debye–Hückel radius is considerably larger than the average distance between

neighboring nuclei.This condition, which holds formost thermonuclear reactions

in stars, can be numerically expressed as (Clayton, 1983)

T ≫ 105𝜌1∕3𝜁2 (3.138)

with T and 𝜌 in units of kelvin and grams per cubic centimeter, respectively.

Consider now a nonresonant reaction for which the cross section is given by

Eq. (3.71). The energy dependence of 𝜎(E) is mainly given by the Gamow factor,

while the S-factor varies smoothly with energy. The s-wave transmission coeffi-

cient for the unscreened Coulomb potential can be found from

T̂ ≈ exp

(
−
2

ℏ

√
2m∫

Rc

0

√
Z0Z1e

2

r
− E dr

)

= exp

(
−
2

ℏ

√
2m

E
Z0Z1e

2 ∫
1

0

√
1

z
− 1 dz

)

= exp

(
−
2𝜋

ℏ

√
m

2E
Z0Z1e

2

)
≡ e−2𝜋𝜂 (3.139)

This derivation is simpler than that in Section 2.4.3 because we assume here that,

for low bombarding energies compared to the Coulomb barrier height, the classi-

cal turning point is considerably larger than the radius of the square-well potential,

Rc ≫ R0 (Figure 2.17). The lower integration limit for r is then R0 → 0, while that
for z is R0∕Rc → 0. Consequently, the Gamow factor is directly obtained without
the correction of Eq. (2.124). For the screened Coulomb potential, the classical

turning point is defined by

E = (Z0Z1e
2∕Rc)e

−Rc∕RD (3.140)

Proceeding in exactly the samemanner as in Section 2.4.3, we find for themodified

transmission coefficient (Problem 3.9)

T̂ ≈ ex𝜋𝜂−2𝜋𝜂 (3.141)

where the variable x = x(E) = Rc∕RD depends explicitly on energy through Rc.

Equation (3.141) is derived assuming that x is a small number, RD ≫ Rc, which

is frequently the case (see below). Substitution of the modified transmission coef-

ficient into the expression for nonresonant reaction rates (see Eq. (3.72)) gives

NA⟨𝜎𝑣⟩ = (
8

𝜋m01

)1∕2 NA

(kT)3∕2 ∫
∞

0

S(E) ex𝜋𝜂e−2𝜋𝜂e−E∕kT dE (3.142)

Both x and 𝜂 depend on energy, but the above expression can be approximated

by evaluating the factor ex𝜋𝜂 at the most effective energy of the interaction in the
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plasma, that is, the Gamow energy E0. With e
x𝜋𝜂 ≈ e(x𝜋𝜂)E0 ≡ fs one obtains

NA⟨𝜎𝑣⟩ = (
8

𝜋m01

)1∕2
NA

(kT)3∕2
fs ∫

∞

0

S(E) e−2𝜋𝜂e−E∕kT dE (3.143)

and, consequently, the screened reaction rate is simply obtained bymultiplying the

unscreened reaction rate by the screening factor fs = e(x𝜋𝜂)E0 .The small corrections

introduced by a more rigorous calculation, in which the integral in Eq. (3.142) is

evaluated by taking the energy dependence of the factor ex𝜋𝜂 into account, are

discussed in Bahcall et al. (1998) and Liolios (2000). Numerically one finds

x(E0) = (Rc∕RD)E0 =
Z0Z1e

2

E0

√
4𝜋e2𝜌NA

kT
𝜁

= 4.197 × 10−6(Z0Z1)
1∕3

(
M0M1

M0 +M1

)−1∕3√
𝜌T

−7∕6

9
𝜁 (3.144)

(x𝜋𝜂)E0 = (Rc∕RD)E0 (𝜋𝜂)E0 =
Z0Z1e

2

RD

(𝜋𝜂)E0
E0

=
Z0Z1e

2

RDkT

= 5.945 × 10−6
√
𝜌Z0Z1T

−3∕2

9
𝜁 (3.145)

fs = e(x𝜋𝜂)E0 = eZ0Z1e
2∕(RDkT) = e5.945×10

−6
√
𝜌Z0Z1T

−3∕2

9
𝜁 (3.146)

where it is assumed that the classical turning points for the screened and

unscreened potentials are approximately equal. All nonresonant rate expressions

for charged-particle reactions derived in this chapter have to be multiplied by fs
if the nuclear reaction takes place under the conditions of weak screening.

For increasing densities at a given temperature, a point is eventually reached

where the average Coulomb energy of neighboring nuclei, ⟨Ec⟩, is no longer
small compared to the thermal energy kT . The condition ⟨Ec⟩ ≈ kT defines

the intermediate screening regime, while strong screening refers to the regime⟨Ec⟩ ≫ kT . Approximate expressions for the corresponding screening factors

can be found, for example, in DeWitt, Graboske, and Cooper (1973) and

Graboske et al. (1973).

Example 3.8

Calculate the electron screening correction for the nonresonant reaction p + p →
e+ + 𝜈 + d (Section 5.1.1) in the region where the Sun’s nuclear energy production

is at maximum. Assume for the temperature and density values of T = 0.0135 GK

and 𝜌 = 93 g/cm3, respectively. The mass fractions of hydrogen, helium, and oxy-

gen in this region amount toX(1H) = 0.52, X(4He) = 0.46, and X(16O) = 0.01. For

the electron degeneracy factor, assume a value of 𝜃e = 0.92.
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First, the parameter 𝜁 is computed

𝜁 ≡
√√√√∑

i

(Z2
i
+ Zi𝜃e)Xi

Ai

=

√
(12 + 1 ⋅ 0.92)0.52

1
+
(22 + 2 ⋅ 0.92)0.46

4
+
(82 + 8 ⋅ 0.92)0.01

16

=
√
0.998 + 0.672 + 0.045 = 1.31

Since 105𝜌1∕3𝜁2 = 8 × 10−4 GK≪ 0.0135 GK, the condition for the weak screen-

ing regime is fulfilled. For the Debye–Hückel radius, we find a value of

RD = 2.812 × 10−7(93)−1∕2(0.0135)1∕2(1.31)−1 = 2.58 × 10−9 cm = 25 800 fm

The parameter x(E0) amounts to

x(E0) = 4.197 × 10
−6(1 ⋅ 1)1∕3

(
1 ⋅ 1
1 + 1

)−1∕3√
93(0.0135)−7∕61.31 = 0.010

It is small compared to unity and thus the linear expansion of Eq. (3.141) is justified

in this case. The screening factor is

fs = exp[5.945 × 10
−6
√
93 ⋅ 1 ⋅ 1(0.0135)−3∕21.31] = e0.0479 = 1.049

Other examples are given in Liolios (2000).

We have discussed so far only nonresonant reactions. The electron screening

correction for a narrow resonance depends on the relative magnitude of the

incoming (Γa) and outgoing (Γb) partial widths. Consider for example a capture

reaction A(a,𝛾)B. If Γa ≫ Γ𝛾 , then exactly the same screening correction factor

as in Eq. (3.146) is obtained, even though in this case the reaction rate is inde-

pendent of the penetration factor for the incoming channel. This counterintuitive

result can be explained by revisiting the derivation of the narrow-resonance

reaction rate (Section 3.2.4). The screening potential (see Eq. (3.135)) can be

approximated by

Vs(r) =
Z0Z1e

2

r
e−r∕RD ≈

Z0Z1e
2

r
−

Z0Z1e
2

RD

=
Z0Z1e

2

r
+Us (3.147)

The first term is the Coulomb potential, while the second term represents a per-

turbing potential caused by the shielding charge density. The latter potential is

negative (attractive) and thus effectively increases the kinetic energy of the pro-

jectile by an amount |Us| = Z0Z1e
2∕RD (Figure 2.17). Without electron shielding,

only those projectiles with energies near E = Er will be able to excite the reso-

nance. But in a plasma it is the projectiles with smaller energies near E′ = Er +Us

that give rise to the population of the resonance. Hence, for the conditionΓa ≫ Γ𝛾 ,

Eq. (3.115) must be replaced by

NA⟨𝜎𝑣⟩ = NA

(
2𝜋

m01kT

)3∕2
ℏ2e−(Er+Us)∕kT𝜔Γb (3.148)
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This expression differs from Eq. (3.115) only by a screening factor of fs = e−Us∕kT =

eZ0Z1e
2∕(RDkT), that is, the same factor that appears in Eq. (3.143). An example for the

applicability of this result is the 3𝛼 reaction, where the condition Γa ≫ Γb holds

for each of the two successive interactions (Example 3.4 and Section 5.2.1). For

the opposite case, Γa ≪ Γb, the screening factor has a more complicated form.

See Salpeter and Van Horn (1969) and Mitler (1977).

We end the discussion by noting that the electrons of target nuclei also introduce

screening effects in laboratorymeasurements of nuclear reactions if the bombard-

ing energy is sufficiently low. As was the case for a plasma, the screened laboratory

cross section is larger than the unscreened one. In cases where such effects are

found to be significant, the measured cross sections have to be divided by the

appropriate screening factors, which differ from those derived for a stellar plasma,

to calculate the laboratory cross section for bare nuclei (Assenbaum, Langanke,

and Rolfs, 1987; Raiola et al., 2002, and references therein). In a second step, the

latter cross sectionmay then be corrected for plasma screening effects when com-

puting the screened reaction rates.

3.2.7

Total Reaction Rates

For the calculation of the total reaction rates, all processes contributing signifi-

cantly to the reaction mechanism in the effective stellar energy range have to be

taken into account. The effective energy range is given by the Gamow peak or the

Maxwell–Boltzmann distribution for reactions induced by charged particles or

neutrons, respectively. The details will be different for each nuclear reaction, but

some general statements are useful at this point. We will use a capture reaction as

an example.

Consider first low stellar temperatures corresponding to effective energies

close to the particle threshold. For light target nuclei, the density of resonances in

this energy region is relatively small and they can be resolved experimentally. For

charged particles, the resonance strengths are usually determined by the small

charged-particle partial width Γa (since 𝜔𝛾 ≈ 𝜔Γa). For neutrons, on the other

hand, 𝜔𝛾 ≈ 𝜔Γ𝛾 . All contributions of narrow resonances have to be measured

or estimated, since they may strongly influence the total reaction rates. If the

resonances are too weak or if none are located at the effective stellar energies,

then other processes, such as high-energy wings of subthreshold resonances, low-

energy wings of broad resonances located at higher energies, and nonresonant

reaction contributions, are likely to dominate the total rates. As already noted,

charged-particle measurements are typically performed down to an energy of

Emin. Direct measurements at lower energies are difficult, if not impossible, with

present experimental techniques. In this case, any expected narrow resonances

have to be investigated indirectly by nuclear structure studies (Figure 3.26), while

nonresonant cross sections or wings of broad resonances have to be extrapolated

from measurements at higher energies. In neutron-induced reactions, on the

other hand, an experimental cutoff energy Emin does not exist since the Coulomb
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barrier is absent. Hence, the cross section can in principle be measured directly

at the effective stellar energies.

For increasing stellar temperatures, the density of resonances in the effective

energy range will become larger. These resonances are located at higher energies

so that, for charged-particle reactions, the particle partial width may exceed the

γ-ray partial width (Γa ≫ Γ𝛾 ), and hence 𝜔𝛾 ≈ 𝜔Γ𝛾 . The strengths or cross

sections of narrow or broad resonances with energies of up to a few mega

electron volts have been measured for many reactions.

At even higher energies, corresponding to effective energies in excess of a few

MeV, the number of resonances and their total widths become so large that they

strongly overlap. This situation pertains already at low energies in the case of

neutron-induced reactions on heavy target nuclei when the Qn𝛾 value is large. In

some reactions, individual resonances are no longer resolved and the total cross

section gives rise to a continuum that varies smoothly with energy. In other reac-

tions, individual resonances may still be resolved, but their density in the effective

stellar energy window is so large that only the energy-averaged cross section is

of interest. Cross sections for some reactions have been measured directly in this

energy regime.

As will be explained in Chapter 5, the nucleosynthesis in certain burning

processes can involve a large number of reactions (from several hundred in the

case of silicon burning to several thousands in the case of the p-process), many

of which involve unstable target nuclei. Only a small fraction of these reactions

has been measured and in the vast majority of cases the cross sections need to

be estimated using theoretical models. The most widely used among these is

the Hauser–Feshbach statistical model (Section 2.7). It assumes that near the

incident energy there is a large number of levels for each J𝜋 value in the compound

nucleus through which the reaction can proceed. The Hauser–Feshbach formula

(see Eq. (2.219)) predicts a cross section reliably if the input parameters, such

as transmission coefficients and level densities, are fine-tuned for the reaction

of interest. In reality, however, the number of unmeasured reactions is very

large and thus it becomes important to compute the desired cross sections

with global instead of local parameters. For proton- and neutron-induced

reactions, such global Hauser–Feshbach calculations yield cross sections and

reaction rates that are reliable within a factor of ≈ 2–3, provided that the level

density in the compound nucleus is sufficiently large (say, at least 10 compound

levels in the effective stellar energy window). For α-particle-induced reactions,

however, the theoretical predictions are less reliable because of difficulties in

constructing appropriate global optical model potentials. For comparisons of

Hauser–Feshbach predictions with measured cross sections, see Rauscher et al.

(1997), Sargood (1982), and Arnould and Goriely (2003). Another advantage of

the Hauser–Feshbach model is that it can include the effects of thermally excited

target states (Section 3.1.5).

The various contributions to the total reaction rates can be added incoherently

if interferences are negligible, so that
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NA⟨𝜎𝑣⟩total = ∑
i

NA⟨𝜎𝑣⟩inarrow
resonances

+
∑
k

NA⟨𝜎𝑣⟩kbroad
resonances

+ NA⟨𝜎𝑣⟩nonresonant + NA⟨𝜎𝑣⟩continuum (3.149)

To a good approximation, interference effects are negligible for narrow resonances

(Γ < 1 eV). No interference effects are expected between two broad resonances of

different J𝜋 values, or between a resonance and a nonresonant process of differ-

ent incoming orbital angular momenta. In other situations, interference effects

usually need to be taken into account in Eq. (3.149).

Examples for measured charged-particle-induced reaction cross sections

have already been discussed in connection with the (p,𝛾) reactions on 13C and
16O (Figures 3.11 and 3.12). Both of these cross sections have relatively simple

energy dependences. In many other charged-particle reactions, however, the

total cross section has a complex structure. A schematic example for a typical

S-factor is displayed in Figure 3.30, showing nonresonant contributions, narrow

and broad resonances, and a continuum at higher energies caused by many

overlapping contributions. The S-factor rather than the cross section is shown

in Figure 3.30 since the latter quantity falls rapidly for decreasing energy. Total

reaction rates NA⟨𝜎𝑣⟩ of charged-particle-induced reactions depend strongly on
temperature, as shown in Sections 3.2.1 and 3.2.4. The reaction rates fall rapidly

for decreasing temperature in most reactions of astrophysical interest when the

effective energies are below the height of the Coulomb barrier. Examples for

reaction rates have already been discussed (Figure 3.29b).
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Figure 3.30 Schematic representation of

an S-factor versus energy for a charged-

particle-induced reaction. At low energies,

narrow resonances (NR), wings of subthresh-

old resonances (SR), tails of broad resonances

(TBR), and nonresonant processes (NNR) may

typically contribute to the total S-factor. At

higher energies, the S-factor is typically dom-

inated by broad resonances (BR) and by

overlapping narrow and broad resonances

(OBR + ONR).
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Figure 3.31 Cross sections for neutron capture on 7Li, 31P, and 90Zr versus energy. The

curve in the upper panel shows a 1∕𝑣 behavior, while resonances are visible in the middle

and lower panels.

Examples of cross sections for neutron capture on a light, medium, and heavy

target nucleus are shown in Figure 3.31. The cross section for the 7Li(n,𝛾)8Li

reaction (Qn𝛾 = 2.0 MeV) follows the 1∕𝑣 law over the entire neutron energy

range shown (En = 1–100 keV). For
31P(n,𝛾)32P (Qn𝛾 = 7.9 MeV), the cross

section varies smoothly up to about E = 20 keV, where a few narrow isolated

resonances start to appear. For 90Zr(n,𝛾)91Zr (Qn𝛾 = 7.2 MeV), many narrow and

broad resonances are apparent. The density of resonances increases for larger

neutron energies and they start to overlap strongly beyond an energy of ≈ 10 keV.

The vastly different energy dependence of neutron reaction cross sections

compared to charged-particle-induced reactions (Figures 3.11 and 3.12) is caused
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Figure 3.32 Maxwellian-averaged cross sections versus kT for 7Li(n,𝛾)8Li, 31P(n,𝛾)32P, and
90Zr(n,𝛾)91Zr. Data from Bao et al. (2000).

by the absence of the Coulomb barrier. The corresponding Maxwellian-averaged

cross sections, ⟨𝜎𝑣⟩∕𝑣T , versus kT are displayed in Figure 3.32. It is apparent that
neutron reaction rates are far less temperature sensitive than charged-particle

reaction rates.

Problems

3.1 Consider a situation where the three species A, B, and C achieve equilib-

rium at elevated temperatures via the reactionsA + a ↔ B + 𝛾 andB + b ↔
C + 𝛾 (Figure 3.7). In addition to Eqs. (3.56) and (3.57), the two conditions

𝜆C→B > 𝜆C→C′ and 𝜆B→C > 𝜆B→B′ must be fulfilled in order for such an equi-

librium to be established. Derive an expression for 𝜆A→B→(C→C′ or B′), that is,

the decay constant of species A for consumption via the paths A → B →
C → C′ or A → B → B′.

3.2 Derive the correction factor F(𝜏) for nonresonant charged-particle-

induced reaction rates (see Eq. (3.93)). Start by expressing F in terms of

the new variables y ≡ √
𝜖 − 1, 𝛽 ≡ √

3∕𝜏 and 𝜁 ≡ y∕𝛽. Then expand F(𝛽)

into a quadratic Taylor series.

3.3 Derive the thermonuclear rate for nonresonant neutron-induced reactions

when S ≡ 𝜎𝑣 depends on velocity (see Eq. (3.104)).

3.4 For an arbitrary value of𝓁, find the γ-ray energy at which the decay constant
for nonresonant (𝛾, n) reactions (that is, the integrand in Eq. (3.112)) has a

maximum.

3.5 Consider the narrow resonances described in Example 3.6. Calculate the

reaction rates numerically forT = 0.02 GK andT = 0.08 GK and show that

the arguments based on the Gamow peak concept are valid.
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3.6 Find the temperature at which the reaction rate contribution of a single

narrow resonance, located at an energy of Ei, is at maximum.

3.7 In a hypothetical reaction, only the target ground state and one excited

state, at 50 keV excitation energy, can participate in the stellar burning.

Assume for the ground state and the excited state reaction rate values

of 40.0 cm3s−1mol−1 and 30.0 cm3s−1mol−1, respectively, at a stellar

temperature of T = 1 GK. Set all statistical weights equal to unity. Calcu-

late the population probability of the ground and excited state, the stellar

reaction rate, and the stellar rate ground state fraction. Compare your

answer to Sallaska et al. (2013).

3.8 Consider the 20Ne(𝛾 ,𝛼)16O photodisintegration reaction at a tempera-

ture of T = 1.5 GK. The lowest lying narrow resonances in the forward
16O(𝛼,𝛾)20Ne reaction (Q = 4730 keV) are located at Ecm

r
= 891 keV,

1058 keV, and 1995 keV, corresponding to 20Ne levels at Ex = 5621 keV,

5788 keV, and 6725 keV, respectively (Figure 5.28). Their (ground-state)

strengths amount to 𝜔𝛾 = 1.9 × 10−3 eV, 2.3 × 10−2 eV, and 7.4 × 10−2 eV,

respectively (Angulo et al., 1999). Which level do you expect to dominate

the stellar 20Ne(𝛾 ,𝛼)16O reaction rates? Calculate and compare the indi-

vidual level contributions to the total photodisintegration reaction rates.

The spins of 4He, 16O, and 20Ne are all ji = 0; the normalized partition

functions for these nuclei are equal to unity at T = 1.5 GK (see Rauscher

and Thielemann, 2000). Also, the first excited state in 16O is located at a

relatively high energy (Ex = 6049 keV; Tilley, Weller, and Cheves, 1993)

and, therefore, the (forward) capture reaction from excited target states is

negligible at this temperature.

3.9 Derive the transmission coefficient (see Eq. (3.141)) for the screened

Coulomb potential (see Eq. (3.135)). Assume that the variable x =

x(E) = Rc∕RD is a small number and use the expansions e
x ≈ 1 + x and√

1 − x ≈ 1 − x∕2. Retain only the terms that are linear in x.

3.10 Calculate the electron screening correction for the 12C + 12C reaction

under typical hydrostatic carbon burning conditions (T = 0.9 GK and

𝜌 = 105 g/cm3; Section 5.3.1). The mass fractions of carbon, oxygen,

and neon are given by X(12C) = 0.25, X(16O) = 0.73, X(20Ne) = 0.01, and

X(22Ne) = 0.01. Assume that the reaction is nonresonant and disregard

the electron degeneracy factor (𝜃e = 1).
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4

Nuclear Physics Experiments

4.1

General Aspects

In this chapter, experimental techniques and procedures are discussed that are

frequently applied in investigations of astrophysically important reactions. A

vast number of different experimental procedures are used in the field of nuclear

astrophysics. These can be divided into two groups, that is, direct and indirect

measurements. A measurement of a cross section or a resonance strength in a

given reaction of astrophysical interest is referred to as direct measurement.

All other studies that are performed to improve the thermonuclear rates of

this particular reaction, for example, elastic scattering, particle transfer, charge-

exchange, and so on, represent indirect measurements (see also Section 3.2.4 and

Figure 3.26). Here, we will focus our attention on direct measurements of nuclear

reactions and a number of topics will be discussed in some depth. In most of this

chapter, with the exception of Sections 4.8 and 4.9, all quantities are given in the

laboratory system, unless mentioned otherwise. Expressions that relate kinematic

quantities in the center-of-mass system and the laboratory system can be found

in Appendix C.

Figure 4.1 shows schematically some major experimental components involved

in nuclear reaction measurements. An accelerator provides collimated beams of

well-defined energy. The beam is directed to a target containing the target nuclei

involved in the nuclear reaction.The target has to be stable under beam bombard-

ment. The nuclear reaction takes place in the target. Radiative capture reactions,

A(a, 𝛾)B, are among the most important types of reactions occurring in stars, but

reactions involving only particles with rest mass, A(a, b)B, are of importance as

well. The reaction products (e.g., γ-rays or light particles) emitted from the target

aremeasured by a suitable detector of high efficiency. From themeasured energies

and intensities, the nuclear properties of interest (resonance and excitation ener-

gies, cross sections, spins and parities, lifetimes, branching ratios, angular correla-

tions, and so on) are deduced. Frequently, unwanted background will contribute

to the signal count rate of interest. This background must be reduced through

various means to tolerable levels.

Nuclear Physics of Stars, Second Edition. Christian Iliadis.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Accelerator

Target
Detector

Detector
shield

Figure 4.1 Basic components for the measurement of astrophysically important nuclear

reactions. The shield must surround the detector as completely as possible.

A discussion of sources, accelerators and beam transport systems can be found

in Rolfs and Rodney (1988). Here, we will briefly summarize some of the key

requirements for beams in nuclear astrophysics measurements.

4.1.1

Charged-Particle Beams

The effective ion energies in a stellar plasma depend both on the temperature and

the charges of the projectile and target nucleus involved in the reaction. It has been

shown in Section 3.2 that thermonuclear reactionsmost likely proceed at energies

below the Coulomb barrier height (Figures 3.13 and 3.14).Therefore, accelerators

have to cover the energy range below a few mega electron volts for direct mea-

surements of reactions. Indirect measurements, which investigate the structure

of astrophysically important nuclei, are typically performed above the Coulomb

barrier (i.e., in the tens of mega electron volts range). Most measurements of

charged-particle reactions in nuclear astrophysics have been carried out using

ion beams from electrostatic accelerators. Different types of electrostatic acceler-

ators, such as Van de Graaff, Cockcroft–Walton, Dynamitron, and Pelletron, are

widely used.

Cross sections of charged-particle reactions in general decrease rapidly with

decreasing beam energy because of the Coulomb barrier (Figures 3.11 and

3.12). Therefore, measurements far below the Coulomb barrier require high ion

beam currents up to and beyond the milliampere range to initiate a statistically

significant number of nuclear reactions. For example, a 1 mA current of singly

charged protons or α-particles corresponds toi∕t = I∕e = (1 × 10−3 A)∕(1.6 ×

10−19 C) = 6.25 × 1015 incident particles per second, where e = 1.6 × 10−19 C is

the elementary charge. At higher energies (say, above 1 MeV) smaller currents

in the 0.1–10 μA range are of advantage if detector count rates become limited

by the intense radiation from contaminant reactions. Ion energy spreads of about

1 keV or better are usually necessary to resolve complex resonance structures.

The ion beam energy should be variable in steps of at least a few 100 eV to mea-

sure precise resonance energies. The beam should also be well collimated. Low-

energy measurements far below the Coulomb barrier require a beam spot size
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of a few square centimeters cross-sectional area (for solid targets) to reduce tar-

get heating and degradation to tolerable levels. Indirect measurements at higher

energies usually require beam spots of considerably smaller size (a few squaremil-

limeters). The beam should also be as free of contaminants as possible.

The absolute energy calibration of the electrostatic accelerator is an important

quantity for the determination of thermonuclear reaction rates. The precise

energy of narrow resonances enters sensitively in the narrow resonance reaction

rate formalism (see Eq. (3.117)). Furthermore, nonresonant cross sections are a

steep function of energy below the Coulomb barrier and, thus, systematic shifts

in absolute beam energy may cause large errors in the nonresonant reaction rates.

We will illustrate this effect with two examples.

Consider first the Er = 151 keV resonance in the
18O(p,𝛾)19F reaction corre-

sponding to an energy of 143 keV in the center-of-mass system (see Eq. (C.24)).

Suppose, that a measurement of Er yields an erroneous value of 148 keV (or

140 keV in the center-of-mass system). At a temperature of T = 0.06 GK, the

resulting narrow resonance reaction rates (see Eq. (3.117)) will then be too large

by a factor of

NA⟨𝜎𝑣⟩Er−ΔE

NA⟨𝜎𝑣⟩Er

=
e−11.605(0.143−0.003)∕0.06

e−11.605⋅0.143∕0.06
≈ 1.80 (4.1)

corresponding to a change of 80%. The variation will increase for lower tempera-

tures.

As an example for a nonresonant reaction, consider 16O(p,𝛾)17F at 100 keV

in the center-of-mass system. If the measurement is erroneously performed at

a center-of-mass energy of 103 keV, then the cross section (see Eqs. (3.71) and

(3.75)) will be too large by a factor of

𝜎(E + ΔE)

𝜎(E)
=

1

0.103
exp

(
−0.9895 ⋅ 1 ⋅ 8

√
16⋅1
16+1

1

0.103

)
1

0.100
exp

(
−0.9895 ⋅ 1 ⋅ 8

√
16⋅1
16+1

1

0.100

) = 1.40 (4.2)

corresponding to a variation of 40%. For this estimate, we assumed a negligible

energy dependence of the S-factor (see Eq. (3.11)).

Frequently, a magnetic analyzer with input and output slits is used to define the

beam energy. For an ideal system, the magnetic field strength B and the particle

energy E are related by (Marion, 1966)

B =
k

q

√
2mc2E + E2 (4.3)

where mc2 and q are the rest energy and the charge state of the ion, respectively.

The calibration constant k cannot be calculated precisely from the magnet geom-

etry since B is not necessarily constant along the particle trajectory through the

magnet and, furthermore, the magnetic field along the trajectory may not be pro-

portional to the field measured at some reference point (e.g., using an NMR or a

Hall probe). Therefore, k must be obtained through a calibration of the magnet
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Table 4.1 Laboratory energies and widths of narrow

resonances commonly used for ion beam calibrations.

Reaction E𝐥𝐚𝐛 (keV) 𝚪 (eV)

18O(p,𝛼)15N 150.82(9)c 130(10)c

19F(p,𝛼𝛾)16O 223.99(7)a 985(20)a

483.91(10)a 903(30)a

23Na(p,𝛾)24Mg 308.75(6)a < 36a

24Mg(p,𝛾)25Al 222.89(8)a < 32a

26Mg(p,𝛾)27Al 292.06(9)a < 37a

27Al(p,𝛾)28Si 222.82(10)a < 34a

293.08(8)a 59(16)a

326.97(5)a < 38a

405.44(10)a < 42a

991.756(17)b 70(14)d

1316.87(3)b 35(4)d

The error is given in parenthesis and refers to the last

significant digit(s). For example, 150.82(9) stands for

150.82 ± 0.09.

Sources: a Uhrmacher et al. (1985), b Bindhaban et al.
(1994), c Becker et al. (1995), and d Endt (1998).

using energies of well-known nuclear reactions. For this purpose, narrow reso-

nances are frequently used below E ≈ 2 MeV, while (p,n) threshold energies are

utilized at higher energies.

Absolute resonance energies of selected resonances below 1.5 MeV energy are

listed in Table 4.1. It is interesting to point out that almost all published resonance

energies are directly or indirectly related to the energy of the Er = 992 keV reso-

nance in 27Al(p,𝛾)28Si. The table also lists total resonance widths, which should

be small (< 1 keV) for energy calibration standards. The determination of precise

resonance energies frommeasurements of the reaction yield versus energy will be

discussed in Section 4.8.

4.1.2

Neutron Beams

For measurements of neutron-induced reactions on stable or long-lived target

nuclei (Section 5.6.1), neutron beam energies between a fraction of a kilo electron

volts and several hundred kilo electron volts are of primary interest. Neutrons

can be produced using a variety of techniques, including linear electron or proton

accelerators, and electrostatic accelerators.

At linear electron accelerators, neutrons are produced via (𝛾 ,n) reactions by

bombarding heavy metal targets with pulsed electron beams of ≈ 50 MeV energy

and repetition rates of ≈ 0.5 kHz. The neutrons are released with energies rang-

ing from the subthermal region up to 50 MeV. They are slowed down by a mod-

erator (Section 4.2.3) and are collimated before they impinge on the sample of
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interest. The primary electron beam produces a very intense background caused

by bremsstrahlung and thus the metal target area needs to be shielded well. The

astrophysically important neutron energy range corresponds only to a small win-

dow of the entire neutron spectrum. Neutrons with a similar broad energy distri-

bution are produced with high-energy proton beams at linear accelerators. In this

case, the primary beam is incident on a suitable target and neutrons are produced

via spallation reactions. Fluxes on the order of≈ 106 neutrons s−1cm−2, integrated

over an energy range of 1–300 keV, are typically achieved at both kinds of facilities

(Koehler, 2001). Reaction measurements with these moderated neutron sources

are performed using time-of-flight techniques (Section 4.6.3).

Charged-particle beams from electrostatic accelerators can be utilized to pro-

duce neutrons via nuclear reactions (Hanson, Taschek, and Williams, 1949). For

relatively low neutron energies of astrophysical interest, a frequently employed

reaction is 7Li(p,n)7Be (Q = −1.644 MeV). It follows from the kinematics of

this endothermic reaction that at the threshold (Ethresh
p

≈ −Q(mn +m7Be)∕

m7Be = 1.881 MeV; Eq. (C.8)) neutrons are released with an energy of 30 keV

and are emitted in the forward direction only. For proton bombarding energies

up to Ep = 1.92 MeV, neutrons are emitted into a cone of limited angle in the

forward direction. At each angle within this cone, two groups of neutrons with

different energies are emitted. The cone widens with increasing proton energy

until it includes the forward hemisphere. For Ep > 1.92 MeV, neutrons of only

one discrete energy are emitted at each angle in the complete sphere about the

target. A detailed discussion of the kinematics of endothermic reactions is given

in Appendix C.1. The energy resolution of the released neutrons depends on the

energy spread of the incident protons, the finite thickness of the 7Li target, and

the finite angle subtended by the sample to be irradiated.

An interesting technique has been applied in a number of neutron-induced

reactions by bombarding a ≈ 10 μm thick metallic lithium target with protons

of energy Ep = 1912 keV, only 31 keV above the reaction threshold. The released

neutrons are emitted in the forward direction in a cone with an opening angle of

120∘. In this case, the angle-integrated energy distribution of emitted neutrons

closely resembles a Maxwell–Boltzmann distribution at kT = 25 keV, as shown

in Figure 4.2. If the irradiation sample is mounted very close to the lithium tar-

get, then the energy distribution of neutrons incident on the sample is given by

the same Maxwell–Boltzmann distribution. The measured average cross section

gives then directly the Maxwellian-averaged cross section or the reaction rate

(Section 3.2.2), as will be shown in Section 4.9.3. With typical proton beam cur-

rents of 50–100 μA, integrated yields of ≈ 108–109 neutrons/s are achieved (Beer

and Käppeler, 1980). This technique is useful because the energy of kT = 25 keV

is close to the effective energy range of some s-process scenarios (Section 5.6.1).

A similar procedure, but using the 3H(p,n)3He or 18O(p,n)18F reactions instead

of 7Li(p,n)7Be, yields Maxwell–Boltzmann distributions of neutron energies at

kT = 52 keV (Käppeler, Naqvi, and Al-Ohali, 1987) or 5 keV (Heil et al., 2005),

respectively. Direct measurements of Maxwellian-averaged cross sections are fre-

quently performed using the activation method (Section 4.6.2).
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Figure 4.2 Angle-integrated neutron energy

distribution resulting from the bombard-

ment of a ≈ 10 μm thick metallic lithium

target with Ep = 1912 keV protons. The neu-

trons are emitted in the forward direction in

a cone with an opening angle of 120∘ . The

angle-integrated energy distribution of emit-

ted neutrons closely resembles a Maxwell–

Boltzmann distribution at kT = 25 keV.

(Reprinted with permission from Ratynski

and Käppeler (1988). Copyright (1988) by the

American Physical Society.)

Cross sections of neutron-induced reactions are usually larger than those of

charged-particle-induced reactions (Figures 3.11, 3.12, and 3.31), thus compen-

sating for the lower intensities available for neutron beams compared to charged

particle beams.

4.2

Interaction of Radiation with Matter

Radiation interacts with matter and thereby loses part or all of its energy. This

aspect is important for a number of experimental considerations. First, a partic-

ular incident particle may lose energy in the target prior to initiating a nuclear

reaction. An exact knowledge of the energy loss is required to determine the effec-

tive energy and the probability with which the reaction takes place. Second, the

energy or intensity of emitted reaction products may be influenced by interac-

tions in the target or the surrounding material. Third, the reaction products have

to be detected to determine the reaction cross section, that is, the probability with

which the reaction occurs. Thus, knowledge of the processes by which radiation

interacts with matter is of paramount importance for the design and performance

of radiation detectors.

Figure 4.3 indicates schematically some experimental locations where radiation

typically interacts with matter: (i) incident particle energy loss in the target,

(ii) reaction product energy or intensity loss in the target, target holder, detector

dead layer, and so on, and (iii) energy deposition of reaction products in the active
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Dead layer of 
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Emitted 
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Figure 4.3 Schematic setup showing a beam incident on a target. The locations where the

primary (beam) or secondary (emitted particle or photon) radiation typically interacts with

matter are circled.

volume of the detector. The processes responsible for the interaction of radiation

with matter depend on the type of radiation. In the following, interactions of

heavy charged particles (e.g., protons and α-particles), photons, and neutrons are

discussed in more detail. We will refer to the material in which the interactions

occur as an absorber.

A frequently used quantity for the considerations of the present chapter is the

number density N of atoms (in units of atoms per cubic centimeter). For a solid

absorber with mass density 𝜌, consisting of atoms with relative atomic mass M

(in units of u), there are NA∕M atoms per gram of absorber material. The number

density of atoms is then given by

N = 𝜌
NA

M
(4.4)

For an absorber gas at pressure P and temperatureT , the number density of atoms

can be calculated from

N = 𝜈L
P

760Torr

273K

T
(4.5)

with the Loschmidt constant L = 2.68678 × 1019 cm−3 and 𝜈 the number of atoms

per molecule.

4.2.1

Interactions of Heavy Charged Particles

Heavy charged particles, such as protons or α-particles, interact with matter pri-

marily through: (i) inelastic collisions with atomic electrons of absorber atoms,

and (ii) elastic scattering on absorber nuclei. These interactions cause an energy

loss of the incident particle and a deflection of the particle from its incident direc-

tion.The former interaction occurs more frequently than the latter, except at very
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low projectile energies where the contribution of elastic scattering on absorber

nuclei has to be taken into account.

A heavy (positively) charged particle moving through matter interacts simulta-

neously with many electrons. Cross sections for these collisions are typically in

the 10−17–10−16 cm2 range (corresponding to 107–108 b). In each encounter, an

electron feels the attractive Coulomb force as the charged particle passes in close

vicinity. Energy is transferred from the particle to an absorber atom, causing either

excitation of an atomic electron to higher lying shells (soft collision) or complete

removal of an electron, that is, ionization (hard collision). The maximum energy

that can be transferred in each collision is a small fraction of the particle’s total

energy, but the number of collisions per path length is very large. At any given time,

the particle interacts with many electrons, causing an almost continuous energy

loss until the particle is stopped. The paths of heavy particles in matter are rela-

tively straight because the particle is not strongly deflected by any one collision.

After ionization, the electrons tend to recombine with positive ions. Most types

of radiation detectors suppress the recombination process and utilize the number

of created electron–ion pairs as a basis for the detector response (see Eq. (4.4)). In

certain very close encounters, sufficient energy may be transferred to an electron

that it can create electron–ion pairs in subsequent collisions. These high-energy

electrons are referred to as 𝛿 (or knock-on) electrons.

4.2.1.1 Stopping Power

The collisions of heavy charged particles with absorber atoms are statistical in

nature. Since the number of collisions per path length is very large, the fluctua-

tions in the total energy loss are small. Thus, the slowing down process may be

described in terms of an average energy loss per unit path length.The ratio of dif-

ferential energy loss and differential path length is called linear stopping power,

and is defined by

SL(E) ≡ −
dE

dx
(4.6)

in units, for example, of eV/cm.The linear stopping power depends on the number

density of electrons in the absorber or, equivalently, the absorber mass density 𝜌.

The related quantity

SM(E) ≡ −
1

𝜌

dE

dx
(4.7)

is called mass stopping power with units, for example, of eV cm2/g. The stopping

power may also be given per absorber atom. For an absorber of number densityN

(in units of atoms per cubic centimeter), we obtain

SA(E) ≡ −
1

N

dE

dx
(4.8)

in units, for example, of eV cm2/atom. The quantity SA(E) is called stopping cross

section. For a given projectile of energy E, it is found that SM(E) and SA(E) vary

relatively little over a wide range of absorber materials. In numerical calculations,
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we will mainly be using the quantity SA(E) and simply refer to it as stopping

power.

The theoretical calculation of stopping powers is complicated. For high pro-

jectile energies (> 0.6 MeV/u) the Bethe–Bloch formula, with a few empirically

determined parameters, describes the energy loss accurately. For nonrelativistic

projectile energies, the electronic stopping power (i.e., the contribution caused

by inelastic collisions between projectile and atomic electrons) is given by

(Knoll, 1989)

−
dE

dx
≈
4𝜋e4

me

Z2
p

𝑣2

(
NA𝜌

Zt

Mt

)
ln

(
2me𝑣

2

I

)
(4.9)

where Zp, 𝑣, Zt , and Mt are the charge and velocity of the projectile, the atomic

number and the relative atomic mass of the absorber, respectively;me is the elec-

tron rest mass, e the electron charge, and I represents an average excitation and

ionization potential of the absorber, which is treated as an empirical parameter.

The equation holds if the projectile velocity is large compared to the electron

velocities in the absorber atoms. Over a wide energy range, excluding very high

energies where the logarithmic term in Eq. (4.9) dominates, the magnitude of the

stopping power decreases with increasing projectile energy as 1∕𝑣2 or 1∕E. This

behavior can be explained by the projectile spending a greater time in the vicinity

of a given electron if its velocity is small and, consequently, the energy trans-

fer becomes large. The stopping power increases with Z2
p
. Hence, α-particles will

experience a larger energy loss than protons in the same absorber medium. The

stopping power also depends linearly on the absorber density 𝜌.

At very low projectile energies (E < 30 keV/u), where the projectile velocity

is smaller than the electron velocities in the absorber atoms, the Bethe–Bloch

formula is no longer applicable.This situation occurs in the slowing down process

of recoil nuclei, for example, during implantation or in lifetime measurements.

In this case, the projectile energy is too small to cause significant ionization

of the absorber atoms. Also, the positively charged projectile tends to pick up

electrons from the absorber. As a result, its effective charge and the stopping

power are reduced. For this energy range, the electronic stopping power is usually

calculated by the LSS theory (Lindhard, Scharff, and Schiott, 1963), which is

not as accurate as the Bethe–Bloch formula. The electronic stopping power is

given by

−
dE

dx
= k

√
E (4.10)

where the constant k is a function of the masses and charges of projectile and

absorber atoms. In addition, the contribution from elastic scattering of projec-

tiles on absorber nuclei (nuclear stopping power) has to be taken into account at

low energies.The intermediate energy range (30 keV/u< E < 0.6 MeV/u) is poorly

covered by theory and a number of different formulas are in use.

The stopping power is shown schematically in Figure 4.4. At very low energies, it

is influenced by the nuclear component (dotted line) and, with increasing energy,
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Figure 4.4 Schematic representation of total stopping power (solid line) and different com-

ponents (dashed or dotted lines) versus particle energy.

follows the
√
E behavior predicted by the LSS theory (dashed–dotted line). Amax-

imum occurs where the velocities of the projectile and the atomic electrons of

the absorber are comparable. For higher energies beyond the maximum, the stop-

ping power is given by the Bethe–Bloch formula (dashed line). For nonrelativistic

projectile energies, the stopping power is dominated by the 1∕E dependence and

decreases until 𝑣 ≈ 0.96c, where a minimum is reached. At this point, the projec-

tiles are calledminimum ionizing.This minimum value of dE∕dx is approximately

constant for all particles of the same charge Zp. Beyond this point, the stopping

power increases because of the logarithmic term in the Bethe–Bloch formula.

In practice, measured values of stopping powers are fit over a broad energy

range by expressions containing the proper low- and high-energy behaviors.

These fits may then be used for interpolations to obtain stopping powers for

absorbers for which no experimental information exists. Tabulated stopping

powers, including compilations of experimental values, can be found in Paul and

Schinner (2002) or Ziegler (2003). For example, Figure 4.5 shows stopping powers

in units of eV cm2/atom for hydrogen and helium projectiles in various absorber

elements versus energy.

It will become apparent later in this chapter that stopping power values enter

in most experimental determinations of charged-particle cross sections and res-

onance strengths. Therefore, a reliable estimate of stopping power errors is very

important. Errors of stopping powers calculated using the computer code SRIM

(Ziegler, 2003) amount to a few percent at higher energies where the Bethe–Bloch

formula is applicable. However, at lower energies important for direct nuclear

astrophysics measurements, the errors are typically larger. The uncertainties of

calculated stopping powers for a given projectile-absorber combination can be

estimated from the average deviation between calculated and measured values

and from the scatter in the measured data. Table 4.2 lists stopping power uncer-

tainties for several projectiles and absorbers. The errors are estimated by con-

sidering tabulated stopping powers, obtained with the code SRIM, together with

all measured data in a projectile energy range that is of primary importance for
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10−15 eV cm2/atom) of (a) hydrogen and

(b) helium projectiles versus particle energy
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direct measurements in nuclear astrophysics.The results are given in terms of the

quantities Δ and 𝜎 (both given in percent), which are defined in Paul and Schin-

ner (2005). In brief, Δ represents the systematic difference between tabulated and

experimental stopping powers, while 𝜎 is the random error that provides infor-

mation regarding the experimental scatter. It can be seen that in most cases Δ is

close to zero and, therefore, the SRIM tabulation is reliable. Only in the case of

heavy projectiles incident on H2 gas is there a systematic deviation, amounting

to Δ ≈ −3%. The experimental scatter is seen to depend on the physical state of

the absorber. For protons and α-particles incident on gaseous absorbers, one finds

values of 𝜎 ≈ 3 − 4%, while for solid absorbers the experimental scatter amounts

to 𝜎 ≈ 5 − 8%. Similar values are obtained for heavy projectiles incident on H2
gas. The stopping power errors are expected to be larger for projectile-absorber

combinations for which no data exist.
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Table 4.2 Uncertainties of stopping powers.

Projectile Energy Absorber Number 𝚫 𝝈

(MeV/u) of points (%) (%)

Protons 0.01–1.0 Al, B, Be, C, Ca, Co, Cr, Fe, 2518 0.7 8.0

Li, Mg, Mn, Ni, Se, Si, Ti, V

Protons 0.01–1.0 Ar, Cl2, N2, Ne, O2 504 0.1 3.9

α-particles 0.1–1.0 Al, B, Be, C, Ca, Co, Cr, Fe, 975 0.7 4.7

Li, Mg, Mn, Ni, Si, Ti, V

α-particles 0.1–1.0 Ar, Cl2, N2, Ne, O2 428 −0.1 3.2

Ar, B, C, Cl, Li, Mg, 0.2–20 H2 gas 136 −3.0 8.4

N, Na, Ne, S

The quantity Δ represents the systematic difference between tabulated and experimental values,

while 𝜎 is the random error that provides information regarding the experimental scatter (Paul and

Schinner, 2005). Tabulated and measured stopping power values are considered here only for the

indicated projectile energy ranges appropriate for direct nuclear astrophysics measurements.

Source: Courtesy of Helmut Paul.

Figure 4.6b shows schematically a beam of projectiles with energy E0 incident

on an infinitely thick absorber,meaning the projectiles are stopped in themedium.

Figure 4.6a displays the stopping power versus energy. As the charged projec-

tiles slow down in matter, their stopping power increases, that is, more energy

is deposited per path length for an increasing length of the track.This may also be

seen in a plot of dE∕dx versus distance Figure 4.6c. Near the end of the track (at

energy E1) the charge of the projectile is reduced because of electron pickup and

the curves fall off. The maximum, called the Bragg peak, indicates that projectiles

lose the largest part of their energy toward the end of their path. Figure 4.6d shows

the intensity of the projectiles in the absorber versus distance. For the largest

distance over the projectile path, the intensity is constant. In other words, the pro-

jectiles slow down but their number does not change. Toward the end of the path,

the intensity does not drop immediately to zero, but slopes down over a certain

path length. This phenomenon is known as range straggling. It is caused by the

statistical nature of the slowing down process, since two projectiles of the same

mass and energy will, in general, not penetrate the absorber to exactly the same

distance. The distance at which the projectile intensity falls by 50% is called the

mean range.

The mean path length traveled by projectiles of incident energy E0 can be cal-

culated from

R = ∫
E0

0

dE

(dE∕dx)
(4.11)

The obtained value will differ from the straight-line penetration distance because

each projectile is deflected slightly in each of the many collisions with absorber

atoms. Figure 4.7 shows ranges versus incident energy for light ions in a silicon

absorber. For example, if a silicon counter is used for measuring the total energy
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Figure 4.6 Schematic representation of a

beam of projectiles with energy E0 incident

on an infinitely thick absorber (part b). (a)

Stopping power versus projectile energy. (c)

Stopping power versus distance. (d) Intensity

of projectiles in absorber versus distance;

the mean range corresponds to the distance

where the projectile intensity falls to 50%

of its initial value. The projectiles lose the

largest part of their energy toward the end

of the path. The maximum in parts (a) and

(c), corresponding to an energy E1, is called

the Bragg peak. Note that the mean range

is not equal to the straight-line penetration

distance.

of incident charged particles (Sections 4.4.2 and 4.5.1), then its active thickness

must be larger than the particle range.

The stopping power is also useful in cases where the projectiles lose only a frac-

tion of their energy in an absorber. The thickness d of the absorber (in units of

length) is related to the total energy loss of projectiles with incident energy E0 by

d = ∫
E0

E0−ΔE

dE

(dE∕dx)
(4.12)

For a very thin absorber (target or detector), the energy lost by the projectile is rel-

atively small and the stopping power is approximately constant over the absorber

thickness. We obtain in this case

d =
1

(dE∕dx)E0
∫

E0

E0−ΔE

dE =
ΔE

(dE∕dx)E0
(4.13)



220 4 Nuclear Physics Experiments

101

4 6 8 10 30

Particle energy (MeV)

102

103

104
R

a
n

g
e

 i
n

 S
i 
(μ

m
)

t

d
p

4He

3He

Figure 4.7 Range in silicon versus incident laboratory energy of light ions. Data from

Skyrme et al. (1967).

or

ΔE =

(
dE

dx

)
E0

d =

(
1

N

dE

dx

)
E0

Nd =

(
1

𝜌

dE

dx

)
E0

𝜌d (4.14)

whereN denotes the number density of atoms andNd is the number of atoms per

square centimeter.

4.2.1.2 Compounds

We have discussed so far stopping powers for pure elements. For compounds,

approximate stopping powers may be obtained by a weighted average over the

individual stopping powers according to the fraction of electrons belonging to

each element. This approximation is called Bragg’s rule. For a compound XaYb
consisting of two elements X and Y , where a and b are the number of atoms per

molecule of elementX and Y , respectively, one obtains for the stopping power per

molecule

1

Nc

(
dE

dx

)
c

= a
1

NX

(
dE

dx

)
X

+ b
1

NY

(
dE

dx

)
Y

(4.15)

where Nc is the number density of molecules and (1∕Ni)(dE∕dx)i is in units, for

example, of eV cm2 per atom (for pure elements) or per molecule (for the com-

pound). Equivalently, we find with Eq. (4.4)

1

𝜌c

(
dE

dx

)
c

=
aMX

Mc

1

𝜌X

(
dE

dx

)
X

+
bMY

Mc

1

𝜌Y

(
dE

dx

)
Y

(4.16)

where (1∕𝜌i)(dE∕dx)i is in units, for example, of eV cm
2/g, with Mc = aMX +

bMY . Caution should be exercised when using Bragg’s rule since for certain com-

pounds experimental stopping powers differ by 10–20% from those calculated

with Eqs. (4.15) and (4.16) (Knoll, 1989).
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For projectiles of incident energyE0, the energy loss in a thin absorber consisting

of a compound XaYb is obtained from Eqs. (4.14) and (4.15) as

ΔEc =
1

Nc

(
dE

dx

)
c,E0

Ncd = a
1

NX

(
dE

dx

)
X

Ncd + b
1

NY

(
dE

dx

)
Y

Ncd

=
1

NX

(
dE

dx

)
X

NXd +
1

NY

(
dE

dx

)
Y

NYd (4.17)

where NX = aNc and NY = bNc.

Example 4.1

Calculate the energy loss of a 500 keV proton beam moving through a 1 μm thick

layer of ice. The stopping powers at E0 = 500 keV, calculated with the computer

code SRIM (Ziegler, 2003), amount to (1∕NH )(dE∕dx)H = 1.8 × 10−15 eV cm2

and (1∕NO)(dE∕dx)O = 8.1 × 10−15 eV cm2. Assume that the stopping powers

are approximately constant over the thickness of the absorber. All of the above

quantities are given in the laboratory system.

The density of ice (H2O) is about 1 g/cm
3, corresponding to 3.3 × 1022 H2O

molecules/cm3 (since 18 g contain 6.022 × 1023 H2O molecules). Equation (4.17)

gives

ΔE = a
1

NH

(
dE

dx

)
H

NH2O
d + b

1

NO

(
dE

dx

)
O

NH2O
d

= 2(1.8 × 10−15 eV cm2)(3.3 × 1022 cm−3)(10−4 cm)

+ 1(8.1 × 10−15 eV cm2)(3.3 × 1022 cm−3)(10−4 cm) = 39 keV

The same result is obtained from the number densities of H and O atoms,

NH = 2 ⋅ NH2O
= 6.6 × 1022 cm−3 and NO = 1 ⋅ NH2O

= 3.3 × 1022 cm−3. Hence

ΔE =
1

NH

(
dE

dx

)
H

NHd +
1

NO

(
dE

dx

)
O

NOd

= (1.8 × 10−15 eV cm2)(6.6 × 1022 cm−3)(10−4 cm)

+ (8.1 × 10−15 eV cm2)(3.3 × 1022 cm−3)(10−4 cm) = 39 keV

4.2.1.3 Energy Straggling

So far, we considered the mean energy loss of a projectile passing through an

absorber. Suppose that the projectiles are represented by an initially monoener-

getic beam.When a projectile penetrates into the absorber, it will undergo a large

number of independent interactions, causing the projectile to slow down. Statis-

tical fluctuations in the number of collisions and in the energy transferred per

collision give rise to an energy distribution of the beam, centered around a value

of E0 − ΔE, that is, the incident energy minus the mean energy loss.
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X

Figure 4.8 Schematic representation of

energy distribution functions f (E, x) for a

beam of charged particles with a small ini-

tial energy spread as they move through an

absorber along a path of length x; E is the

particle energy. From Knoll (1989). (Reprinted

with permission. Copyright ©1989 John Wiley

& Sons, Inc.)

The maximum energy that a nonrelativistic heavy charged particle of mass m

and kinetic energy E can transfer to a free atomic electron withmassme in a single

collision is of the order (Problem 4.2)

4E[mem∕(me +m)2] ≈ 4E(me∕m) ≈ 4E∕(2000M) = 2 × 10−3E∕M (4.18)

withM in units of u. For example, a 10 MeV proton losing a total energy of 1 MeV

in an absorber can transfer a maximum energy of 20 keV to a single electron and

undergoes at least, and very likely many more than, (1MeV)∕(20 keV) = 50 col-

lisions. If the number of collisions is large, the energy distribution function will

approach a Gaussian shape (Leo, 1987). If the number of collisions is not very

large, the energy distribution function of projectiles passing through an absorber

of a certain thickness will be skewed. A schematic representation of energy dis-

tribution functions f (E, x) as the projectiles move through the absorber is shown

in Figure 4.8, where x denotes the path length of the projectiles. A beam of pro-

jectiles with a small initial energy spread shows a broad and skewed distribution

early on in the slowing down process. For increasing path length, corresponding

to an increasing number of collisions between each projectile and the atomic elec-

trons of the absorber, the energy spread increases, but the skewness weakens so

that the energy distribution function resembles a Gaussian shape after a certain

path length. Further energy loss close to the end of the projectile range results

in a decreasing energy spread until all projectiles come eventually to rest in the

absorber.
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A useful approximation for the width of the Gaussian energy distribution func-

tion was derived by Bohr, assuming that the number of collisions between a non-

relativistic projectile and the absorber electrons is very large and that, at the same

time, the mean energy loss is small compared to the initial projectile energy (i.e.,

for relatively thin absorbers). The full width at half maximum (FWHM) of the

energy distribution function is then given by (Bohr, 1915)

FWHM = 2
√
2 ln 2

√
4𝜋e4Z2

p
ZtNd = 1.20 × 10

−12
√

Z2
p
ZtNd (MeV) (4.19)

where in the numerical expression N and d are in units of atoms per cubic cen-

timeter and centimeter, respectively.

4.2.2

Interactions of Photons

Photons interact with matter through processes that are fundamentally differ-

ent from those involving charged particles. The main interactions of γ-rays in

matter are: (i) the photoelectric effect, (ii) Compton scattering, and (iii) pair pro-

duction. All of these processes may transfer either the entire energy or a substan-

tial fraction of the photon energy to an electron of an absorber atom in a single

interaction. Therefore, the photon either disappears or significantly deflects from

its original direction of motion. These considerations have two important conse-

quences. First, γ-rays are far more penetrating in matter than charged particles.

Second, a beam of photons passing throughmatter is reduced in intensity depend-

ing on the absorber thickness. However, the photons that pass straight through

the absorber did not undergo any interactions and hence possess their original

energy.

The energetic electron, leaving the atom after the interaction, slows down in the

absorber and thereby creates more charge carriers (electron–ion or electron–hole

pairs). Gamma-ray detectors take advantage of these charge pairs to determine,

for example, the total energy deposited by the incident photon in the absorber.

Interaction processes involving photons are discussed in more detail below.

4.2.2.1 Photoelectric Effect

In the photoelectric effect, a photon transfers its entire energy to a single electron

of an absorber atom and hence it disappears. The electron, called a photoelectron,

is ejected from the atom with an energy of

Ee = E𝛾 − Eb (4.20)

where E𝛾 and Eb are the incident photon energy and the binding energy of the

photoelectron, respectively. A free electron cannot absorb a photon and at the

same time conserve linear momentum. Hence, the photoelectric effect always

involves bound electrons, with the whole atom absorbing the recoil momentum.

For photon energies above 100 keV the photoelectron most likely originates from

the K shell (the most tightly bound shell) of the atom.
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The photoelectric effect transforms a neutral atom into an electron–ion pair.

The vacancy in the ion is quickly filled through the capture of a free electron origi-

nating fromother absorber atoms or by the rearrangement of electrons fromother

shells in the ion. During these secondary processes, characteristic X-ray photons

or Auger electrons may be generated. In most cases, the X-rays undergo further

photoelectric absorption near the primary photon–electron interaction site and

thus their energy is retained in the absorber (Knoll, 1989).

The photoelectric effect is difficult to treat theoretically. A useful approxima-

tion for the probability per absorber atom of photoelectric absorption for photon

energies above 100 keV is given by (Evans, 1955; Knoll, 1989)

pphoto ∼
Zn

E
7∕2
𝛾

(4.21)

where Z is the atomic number of the absorber and n varies between 4 and

5 over the γ-ray energy region between 0.1 and 5 MeV. As will be seen later,

the photoelectric effect is the predominant interaction process for photons of

relatively low energy. The strong Z-dependence in Eq. (4.21) is the reason for

using high-Z materials, such as lead, for shielding against background γ-rays. For

the same reason, high-Z materials are preferred as the active volume of γ-ray

detectors.

A graph of the photoelectric absorption probability (in units of centimeter

square per gram; see later) for lead is shown in Figure 4.9. For decreasing

photon energies, the probability increases, while the photon energy approaches

the electron-binding energy of the most tightly bound shell (the K shell) in

the absorber atom. For slightly smaller photon energies, the probability drops
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Figure 4.10 Representations of the (a)

Compton effect, and (b) pair production.

In part (b), neither the electron nor the

positron existed before the interaction.

The atom is only a spectator and facilitates

the simultaneous conservation of energy and

linear momentum.

drastically since the K electrons are no longer available for the photoelectric

effect. This rapid decrease is called the K absorption edge. For even smaller pho-

ton energies, the probability increases again while the next shell (the L shell) is

approached.

4.2.2.2 Compton Effect

The scattering of a photon by a free electron is referred to as the Compton effect.

Although the absorber electrons are bound to atoms, they can be considered to

be nearly free if the γ-ray energy is large compared to the electron binding energy.

The process is shown schematically in Figure 4.10a.The electron is assumed to be

initially at rest. A photon of incident energy E𝛾 transfers a fraction of its energy to

the electron and is deflected by an angle 𝜃 with respect to its original direction,

while the recoil electron emerges from the scattering center under an angle 𝜙. All

scattering angles are possible and, therefore, the transferred energy varies from

zero to a large fraction of the incident photon energy.

The energies of the scattered photon and recoil electron can be obtained by

solving simultaneously the equations for the conservation of energy and linear

momentum. One finds (Leo, 1987)

E′
𝛾
=

E𝛾

1 +
E𝛾

mec
2
(1 − cos 𝜃)

(4.22)

Ke = E𝛾 − E′
𝛾
= E𝛾

E𝛾

mec
2
(1 − cos 𝜃)

1 +
E𝛾

mec
2
(1 − cos 𝜃)

(4.23)

wheremec
2 = 511 keV is the electron rest energy. For the special case of a photon-

scattering angle of 𝜃 = 0∘ the recoil electron energy is zero and, therefore, the scat-

tered photon loses no energy. The maximum energy transfer occurs at 𝜃 = 180∘,



226 4 Nuclear Physics Experiments

where the energies of the recoil electron and scattered photon are given by

Kmax
e

= E𝛾

2
E𝛾

mec
2

1 + 2
E𝛾

mec
2

(4.24)

(E′
𝛾
)min =

E𝛾

1 + 2
E𝛾

mec
2

(4.25)

The cross section for Compton scattering is given by the Klein–Nishina for-

mula (see, e.g., Leo, 1987). A polar plot of the angular distribution of scattered

photons is shown in Figure 4.11a for different energies of incident photons that

approach the scattering center from the bottom. It can be seen that the distribu-

tion is symmetric around 𝜃 = 90∘ for small photon energies (E𝛾 < 1 keV), whereas

scattering into the forward direction is strongly preferred for large γ-ray energies.

The Klein–Nishina formula also predicts the energy distribution of recoil elec-

trons. The result is shown in Figure 4.11b for incident photons with energies of

E𝛾 = 0.5 MeV, 1.0 MeV, and 1.5 MeV. Each curve displays a maximum recoil elec-

tron energy Kmax
e
, called the Compton edge, corresponding to a photon-scattering

angle of 𝜃 = 180∘. These recoil electrons are usually stopped in the absorber and,

1
0

 M
e

V

9
0

°

9
0

°

R
e
la

ti
v
e
 i
n
te

n
s
it
y

Recoil electron energy (MeV)

2
 M

e
V

1
 k

e
V

1
0

0
 k

e
V

Incident
photon

5
0

0
 k

e
V

(a)

(b)

0
°

θ

0.5 1.0 1.5

Figure 4.11 (a) Polar plot of the angular

distribution of Compton-scattered photons

for different incident energies. The incident

photons approach the scattering center

from the bottom. (b) Schematic graph of

the energy distribution of recoil electrons

after Compton scattering (solid lines). The

dashed lines indicate the energies of the
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tons (E𝛾 = 0.5 MeV, 1.0 MeV, and 1.5 MeV).

The maxima of the distributions are referred

to as Compton edges. They correspond to a

photon-scattering angle of 𝜃 = 180∘ .
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therefore, the graphs also represent the distribution of energy deposited by the

incident photons in the absorber (e.g., a γ-ray detector). For E𝛾 ≫ mec
2, the energy

difference between incident photon and maximum recoil electron energy is E𝛾 −

Kmax
e

≈ mec
2∕2 = 256 keV. It has been assumed so far that the Compton scatter-

ing process involves an electron that is initially free. A proper consideration of the

electron-binding energy prior to scattering results in a rounding-off of the sharp

Compton edge displayed in Figure 4.11b.

The probability per absorber atom of Compton scattering increases with the

number of electrons available as scattering targets and is approximately given by

pCompton ∼
Z

E𝛾
(4.26)

This probability (in units of centimeter square per gram) is shown for lead in

Figure 4.9. The Compton scattering probability varies moderately with incident

photon energy. At an energy of E𝛾 ≈ 500 keV (for lead) it becomes comparable to

the photoelectric absorption probability and dominates over the latter at higher

energies.

4.2.2.3 Pair Production

The process involving the transformation of a photon into an electron–positron

pair is referred to as pair production, and is shown schematically in Figure 4.10b.

The photon must have at least an energy of twice the electron rest energy (2 ×

511 keV = 1022 keV) for this process to occur. Also, pair productionmust involve

a third body, usually the nucleus of an absorber atom. Otherwise, total energy and

linear momentum are not simultaneously conserved. The fraction E𝛾 − 2mec
2 of

the incident photon energy is transferred to the kinetic energies of the electron

and positron, that is,

E𝛾 = (Ke− +mec
2) + (Ke+ +mec

2) (4.27)

Both of these particles slow down in the absorber. The positron will subsequently

annihilate with another electron. Thus, two annihilation photons of 511 keV

energy, emitted into opposite directions, are produced as a byproduct of the

interaction.

Theoretical expressions for the probability of the pair production process are

rather complicated (Leo, 1987). The probability is approximately proportional to

Z(Z + 1) and rises with increasing incident photon energy. The pair production

probability (in units of centimeter square per gram) for lead is shown in Figure 4.9.

It can be seen that pair production dominates over photoelectric absorption and

Compton scattering above an energy of E𝛾 ≈ 5 MeV.

4.2.2.4 Photon Attenuation

So far we considered individual photon interaction processes. We will now

discuss the combined effect of multiple interactions for monoenergetic incident

photons. Consider Figure 4.12 showing the interaction processes discussed in

the previous sections for photons incident on an absorber. Cases (a), (b), and (d)
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Figure 4.12 Possible interactions of monoenergetic photons incident on an absorber. See

discussion in the text.

correspond to photons that undergo photoelectric absorption, Compton scatter-

ing, and pair production, respectively. More complicated interaction sequences

are possible. For example, the Compton scattered photon in case (b) may in turn

undergo photoelectric absorption, producing an X-ray photon, which leaves the

absorber (case e). A complete description of all possible interactions involving

the directions and energy distributions of scattered photons and electrons is

rather complicated and can be achieved only by a Monte Carlo calculation.

However, the most important information frequently of interest is the fraction

of monoenergetic photons that traverse the absorber without any interaction

(case c). As already pointed out, these photons possess their original energy and

direction.The fraction of attenuated photons refers to those γ-rays that are either

absorbed or scattered in the absorber.

Each process is characterized by the probability of the occurrence of the inter-

action, or equivalently, by the probability per unit path length in the absorber that

a photon is removed from the incident beam by an interaction. This probabil-

ity is called linear absorption coefficient. The total linear absorption coefficient 𝜇

is given by the sum of the partial absorption coefficients involving the different

photon processes. Thus,

𝜇 = 𝜇photo + 𝜇Compton + 𝜇pair (4.28)

If a beam of monoenergetic photons is incident perpendicular to the surface of an

absorber, the fractional intensity loss, dI∕I, in traversing a thickness dx is

dI

I
= −𝜇 dx (4.29)
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Hence, we obtain for the ratio of the number of transmitted and incident photons

I

I0
= e−𝜇x (4.30)

where 𝜇 has dimensions of inverse length. The absorption coefficient is related to

the mean free path 𝜆, defined as the average distance traversed in the absorber

before an interaction takes place, by

𝜆 =
∫ ∞

0
xe−𝜇x dx

∫ ∞

0
e−𝜇x dx

=
1

𝜇
(4.31)

Values of 𝜆 typically amount to ≈ 10−3–10−1 m in solid absorbers for common

γ-ray energies.

The probability for any photon interaction to occur depends on the absorber

density, for example, whether the absorber is present in solid, liquid, or gaseous

form.The density dependence is removed by introducing the quantity 𝜇∕𝜌, called

mass attenuation coefficient, which is widely used. Equation (4.30) can be writ-

ten as

I

I0
= e−(𝜇∕𝜌)𝜌x (4.32)

where 𝜇∕𝜌 is in units, for example, of centimeter square per gram.The product 𝜌x

is calledmass thickness and is in units of mass per area.

If the absorber consists of a compound XaYb, the mass attenuation coefficient

can be calculated from an expression similar to Bragg’s rule (see Eq. (4.16)) by

replacing the mass stopping power by the mass attenuation coefficient,(
𝜇

𝜌

)
c

=
aMX

Mc

(
𝜇

𝜌

)
X

+
bMY

Mc

(
𝜇

𝜌

)
Y

(4.33)

where Mc = aMX + bMY . Total mass attenuation coefficients for two common

γ-ray shieldingmaterials (Fe andTa) and two common γ-ray detector crystalmate-

rials (NaI and Ge) are displayed in Figure 4.13.

Certain geometrical considerations require careful consideration when using

photon attenuation coefficients. Figure 4.14a shows γ-rays that are emitted from

a point source and traverse an absorber. It can be seen that the γ-rays traverse

the absorber at different angles. Therefore, the average path length through the

absorber, rather than the absorber thickness, must be estimated and used in the

calculation of the γ-ray attenuation. Figure 4.14b shows a typical detector arrange-

ment. Gamma-rays from a point source are detected in the active volume of a

detector. With the knowledge of the crystal size, the distance between source and

crystal, and the number of photons emitted from the source, the total number of

photons detected in the crystal can be calculated using the attenuation coefficient.

However, massive absorbers such as lead are frequently used to shield the detec-

tor from unwanted γ-ray background. Consequently, the detector may respond

not only to γ-rays coming directly from the source, but also to those reaching the

detector after scattering in the shielding material, or to other types of secondary
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Figure 4.13 Total mass attenuation coefficients for the (a) common γ-ray shielding mate-

rials Fe and Ta, and (b) the common γ-ray detector crystal materials NaI and Ge. Data from

Boone and Chavez (1996).

radiations induced by the source γ-rays in the shielding material. Thus, the num-

ber of photons counted in the detector will be larger compared to a setup without

the shielding material. This effect has to be taken into account when estimating

detector efficiencies (Section 4.5.2).

4.2.3

Interactions of Neutrons

Neutrons carry no charge and, therefore, cannot interact in matter via the

Coulomb force. Instead, neutrons interact with absorber nuclei via the strong

force. The range of this force is short and an interaction can occur only if the

neutron comes within ≈ 10−15 m of a nucleus. As a result, neutron interactions

are relatively rare and thus they can penetrate absorbers of many centimeter

thickness without interaction. A neutron may interact with a nucleus via a
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Figure 4.14 (a) Photons emitted by a point source traversing an absorber at different

angles. (b) Photons reaching the detector after scattering in nearby shielding material.

number of different processes including: (i) elastic scattering (n,n), (ii) inelastic

scattering (n,n′), (iii) radiative capture (n,𝛾), and (iv) reactions that produce

charged particles such as (n,p) or (n,𝛼). The relative importance of the various

interaction types depends strongly on the neutron energy. In the following,

neutrons with energies above and below ≈ 0.5 eV will be designated as fast

neutrons and slow neutrons, respectively (Knoll, 1989).

Slow neutrons that are incident on an absorber may undergo elastic scattering.

After many collisions have occurred, the neutrons are in thermal equilibrium

with the absorber material before other types of interactions take place. These

neutrons are referred to as thermal neutrons, corresponding to an average

energy of kT = 0.025 eV at room temperature (Section 3.1.1). For many absorber

materials, radiative capture is the most likely neutron-induced reaction that

has important implications for neutron shielding considerations. The majority

of slow neutron detectors, on the other hand, are based on the detection of

secondary charged particles that are emitted in reactions of type (n,p), (n,𝛼),

and so on.

The cross section for the majority of neutron-induced reactions decreases

rapidly with increasing neutron energy. Therefore, elastic scattering becomes the

most likely process for fast neutrons. In this case, the neutron can transfer in

each interaction a significant amount of energy to the recoil nucleus. As a result

of many collisions, the incident neutron slows down. This process is referred

to as moderation. Hydrogen is the most efficient moderator since, according to

scattering kinematics (Appendix C), the neutron can lose all its energy in a single

collision. Most fast neutron detectors rely on the detection of the (charged) recoil

nuclei. For sufficiently high neutron energies, inelastic scattering may also occur.

In this case, the recoil nucleus is left in an excited state and de-excites quickly via

emission of secondary γ-rays. Inelastic scattering is an important process for the

shielding of high-energy neutrons.

The total cross section for the interaction of neutrons with matter is given by

the sum of the cross sections for the individual interactions,

𝜎T = 𝜎(n,n) + 𝜎(n,n′) + 𝜎(n,𝛾) + 𝜎(n,p) + 𝜎(n,𝛼) + · · · (4.34)
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Figure 4.15 (a) Cross section versus neu-

tron energy for reactions of interest to neu-

tron detection. Below a neutron energy of

En ≈ 1 keV, the cross sections follow the

1∕𝑣 law (Eq. 2.207). Data from Knoll (1989).

(b) Total cross section versus neutron energy

for common neutron shielding materials.

Data from Leo (1987).

Cross sections versus neutron energy for some reactions of interest to neutron

detection are shown in Figure 4.15a. Below a neutron energy of En ≈ 100 keV, the

cross sections follow the 1∕𝑣 law (see Eq. (2.207)). Total cross sections for common

neutron shielding materials are displayed in Figure 4.15b.

The product of the total cross section and the number density of atoms in the

absorber, N𝜎T , has dimensions of inverse length. This quantity represents the

probability per path length in the absorber medium that any type of interaction

will occur or, equivalently, that a neutron is removed by an interaction from

the incident beam. It has the same physical meaning for neutrons as the linear

absorption coefficient has for photons (Section 4.2.2). In analogy to photons,

a beam of monoenergetic neutrons incident perpendicular to the surface of

an absorber of thickness x will be attenuated exponentially. The transmission

T (which is not related to the transmission coefficient T̂ of Chapter 2) is

given by

T =
I

I0
= e−N𝜎T x (4.35)

where I and I0 are the measured intensities with and without absorber, respec-

tively, between incident neutron beam and detector. The neutron mean free path

is accordingly (see Eq. (4.31))

𝜆 =
1

N𝜎T
(4.36)

Values of 𝜆 in solid absorbers typically amount to ≈ 1 cm and ≈ 10 cm for slow

and fast neutrons, respectively. As was the case for γ-rays, the exponential attenu-

ation (see Eq. (4.35)) applies only to a collimated beam of neutrons. For situations
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in which neutrons can reach a detector after scattering in the material surround-

ing the active volume, corrections are necessary to predict the true number of

transmitted neutrons.

If the incident neutrons are not monoenergetic, but are represented by a distri-

bution where f (E) is the fraction of incident neutrons having energies between E

and E + dE per unit energy interval with ∫ f (E) dE = 1, then the transmission is

given by

T = ∫
∞

0

f (E)e−n𝜎T (E) dE (4.37)

where n = Nx is the number of sample (or absorber) nuclei per unit area. If

𝜎T (E) = const over the neutron distribution, then we obtain again Eq. (4.35). If,

on the other hand, 𝜎T (E) ≠ const and the sample is very thin (n𝜎T ≪ 1), then one
obtains from an expansion of the integrand in Eq. (4.37)

T ≈ ∫
∞

0

f (E)[1 − n𝜎T (E)] dE = 1 − n∫
∞

0

f (E)𝜎T (E) dE

≈ exp

(
−n∫

∞

0

f (E) 𝜎T (E) dE

)
= e−n𝜎T (4.38)

where we defined an average total cross section by 𝜎T ≡ ∫ f (E)𝜎T (E) dE.

If the absorber consists of a compound, the transmission is given by the product

of the transmissions for hypothetical absorbers made of the individual elements

alone, each containing the same number of nuclei per area as are present in the

compound. The same procedure applies for pure elements containing more than

one isotope.

Example 4.2

Calculate the attenuation of thermal neutrons (En = 0.025 eV) in a
10BF3 gas

region of 30 cm length. The gas pressure and temperature are P = 600 Torr and

T = 20∘C, respectively. Assume that the only process absorbing neutrons from

the incident beam is the 10B(n,𝛼)7Li reaction, which has a cross section of 3840 b

for thermal neutrons.

The number of 10B atoms per cubic centimeter is calculated from Eq. (4.5),

N = 1 ⋅ (2.68677 × 1019 cm−3) ⋅
(
600Torr

760Torr

)(
273K

293K

)
= 1.98 × 1019 cm−3

It follows

I

I0
= e−(1.98×10

19 cm−3)(3840×10−24 cm2)(30 cm) = 0.10

Thus, about 90% of the incident neutrons are absorbed in the gas by the (n,𝛼)

reaction, while 10% traverse the absorber without undergoing an interaction.
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4.3

Targets and Related Equipment

In the laboratory, a nuclear reaction is initiated by a beam bombarding a suit-

able target and the nuclear reaction takes place at the target position. Targets and

associated equipment (target holders, chambers, and backings) have to be pre-

pared and designed carefully for nuclear astrophysics experiments. Solid targets

or backings can either be sufficiently thin for an ion beam to pass through, or can

be relatively thick and stop the ion beam. These targets are referred to as trans-

mission and beamstop targets, respectively. Targets in gaseous form are also being

used. To avoid confusion, we will be using the term sample instead of target for

neutron-induced reaction studies. The type of target or sample to be used in an

experiment depends on the nuclear reaction and the observable to bemeasured. In

the following, issues related to targets or samples for nuclear astrophysics experi-

ments will be discussed in more detail.

4.3.1

Backings

The vast majority of targets that are used for charged-particle reaction studies are

prepared by depositing the target material on some sort of backing. Exceptions

are self-supporting targets and gas targets. There are several requirements for the

backing material: (i) the target material should adhere uniformly to the backing,

(ii) the backing should not cause unwanted background radiation if exposed to

the ion beam, and (iii) for beamstop targets, the backing must provide efficient

cooling to prevent target degradation.

Commonmaterials used for beamstop target backings are tantalum, nickel, and

copper.They have a high atomic number and thus do not initiate nuclear reactions

at low bombarding energies.Their melting points are high and hence they are sta-

ble under intense ion bombardment. Before the deposition of the target material,

the backing has to be cleaned to reduce surface contaminations. Common pro-

cedures are the etching of backings by a suitable mixture of acids to remove part

of the surface (Vermilyea, 1953), and the subsequent resistive heating to temper-

atures above ≈ 1200∘C to drive out remaining contaminants. Backings for beam-

stop targets are typically ≈ 0.5–2 mm thick. These are especially convenient for

the study of capture reactions since they attenuate the capture γ-rays very lit-

tle. For example, a 0.5 mm thick tantalum sheet has a 90% and 96% transmission

for 0.5 MeV and 5 MeV γ-rays, respectively (Problem 4.3).This circumstance sim-

plifies the setup considerably, since the γ-ray detector can be placed outside the

vacuum chamber in very close geometry to the target, thus optimizing the count-

ing efficiency.

Beamstop target backings produce a large number of Coulomb-scattered

ions and, therefore, are not suitable for measurements of elastic scattering

cross sections. Furthermore, at bombarding energies in excess of several mega

electron volts, nuclear reactions induced by contaminants in the backing become
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significant. In such instances, the use of transmission targets can be of advantage.

However, these targets are difficult to cool and, therefore, they have to be suffi-

ciently thin so that the heat deposited by the ion beam does not damage either the

target or the backing. On the other hand, the backing has to be thick enough to

allow for the deposition of the target material without damage. Frequently used

backings for transmission targets are carbon foils of ≈ 5–40 μg/cm2 thickness,

mounted on suitable metal frames.

In certain instances, the backingmay be eliminated altogether. Examples are gas

targets or self-supporting transmission targets. However, these can be prepared

only for a restricted number of target elements. In the latter case, they are also

easily destroyed in experiments at low energies involving high-intensity ion beams

since they cannot be cooled efficiently.

For studies of neutron-induced reactions, requirements on sample backings are

not as stringent since neutrons are far more penetrating than charged particles

(Section 4.2.3) and the number of incident neutrons is considerably smaller than

typical charged-particle beam currents. A variety of materials is used to support

or contain the sample material, including carbon foils, thin-walled aluminum or

stainless steel cans, adhesive tape, and pressurized stainless steel spheres for noble

gas samples. The material of the backing or the containment vessel should not

contribute significantly to the background and should be sufficiently thin to min-

imize neutron attenuation, scattering, and absorption of the reaction products.

Also, self-supporting samples are more common in neutron work compared to

charged-particle measurements.

4.3.2

Target Preparation

Theyield of a nuclear reaction induced by charged particles is obtained by integrat-

ing the ratio of cross section and stopping power over the thickness of the target,

as will be shown in Section 4.8. In most cases, the ion beam is not completely

stopped, but loses only a fraction of its energy (typically < 10%) moving through

the target. Such targets are relatively thin and, as a consequence, the nuclear reac-

tion of interest takes place in a localized region within the target with a rather

well-defined interaction energy.

In neutron-induced reaction studies, on the other hand, each depth in a thin

sample is exposed to the same neutron energy distribution. In general, samples

can be made thicker (see below) to increase count rates. Requirements for the

preparation of samples for neutron irradiation are less restrictive, resulting in a

larger variety of sample materials in use, including metal foils, powders, com-

pressed tablets and pellets, and implanted samples. If the sample reacts with air,

it may be sealed in a tight thin-walled can.

4.3.2.1 Evaporated and Sputtered Targets

Solid targets are frequently prepared by evaporating or sputtering a thin layer of

material containing the target nuclei in vacuum onto suitable backings (Holland,
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1956;Maxman, 1967). Target preparation by evaporation or sputtering is an exten-

sive subject and different researchers have different recipes. An 27Al target, for

example, is easily prepared by evaporating a thin layer of Al metal onto a backing.

Aluminum targets are rather stable under ion bombardment and, furthermore,

contain only a single isotope (27Al).Thepreparation of suitable 23Na targets, on the

other hand, is more complicated. In this case, compounds, such as NaCl, NaBr, or

Na2WO4, have to be used in the evaporation. All of these targets degrade to a cer-

tain degree at low bombarding energies with beam currents in excess of 100 μA.

Also, the inactive atoms in these compounds (i.e., the atoms of elements other

than the target element of interest) will also contribute to the slowing down pro-

cess of the beam. Thus, for the same value of target thickness (in energy units)

there will be fewer target atoms present in a chemical compound compared to

a pure target. Consequently, the nuclear reaction yield will decrease. This unde-

sirable effect becomes more pronounced with increasing number and charge of

inactive atoms in the compound. On the other hand, the smaller the charge of the

inactive atoms, the larger the probability that they contribute to unwanted beam-

induced background radiation. Depending on the circumstance, a compromise

has to be found.

Similar arguments hold for elements with more than one stable isotope. For

example, the evaporation of natural magnesium will produce a target containing
24Mg (79%), 25Mg (10%), and 26Mg (11%). Even if a pure Mg target is fabricated,

the ion beam will very likely induce nuclear reactions involving the isotopes

other than the one of interest. To avoid these unwanted contributions to the

count rate, targets can be fabricated using isotropically enriched material that

is commercially available. Such targets will also produce a higher reaction yield

than a target made from a natural isotopic mixture. It should be emphasized

that, when chemical compounds are evaporated, one should not assume that

the composition of the target is the same as that of the original compound. A

number of cross sections and resonance strengths reported in the literature

are erroneous because of this unjustified assumption, as will be shown in

Section 4.8.4.

4.3.2.2 Implanted Targets

Evaporated targets are in certain situations unsuitable for nuclear reaction

studies. First, it may happen that none of the targets produced by evaporat-

ing chemical compounds are sufficiently stable under bombardment with a

high-intensity ion beam. Second, even if the targets are stable and consist of

a single element, isotopes other than that of interest may cause intolerable

background radiation. Third, certain elements cannot be evaporated at all (e.g.,

noble gases). These problems are frequently solved using implanted targets. In

this case, the target ions of interest are accelerated and mass separated using

an electromagnetic isotope separator. Only ions of the isotope of interest are

directed onto a suitable backing. These target nuclei are hence implanted into

the backing. The accelerating voltage determines the range of the ions in the

substrate and thus the effective target thickness for the subsequent nuclear
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reaction study. Both implanted transmission targets and beamstop targets have

been used extensively in nuclear reaction studies. In the latter case, the backings

are usually directly water cooled if high-intensity ion beams are used during

the implantation process. Implanted samples are also employed in studies of

neutron-induced reactions.

Several factors limit the number of ions that can be implanted into a substrate.

These include the sputtering yield, the range and mobility of the ions in the sub-

strate, the number of incident ions per unit area, and the substrate temperature.

Sputtering, which releases atoms from the substrate upon ion impact, is the dom-

inant limiting mechanism at low substrate temperatures. Tantalum is frequently

chosen as a substrate for beamstop targets since it has a relatively low sputtering

yield (Almen and Bruce, 1961), and since diffusion velocities of various elements

are small in tantalum. For transmission targets, carbon foils with thicknesses of

≈ 10–40 μg/cm2 can be used as substrates. During the implantation process the

beam power deposited in the carbon foil has to be limited (< 25 mW/cm2; see

Smith et al., 1992) to avoid rupture of the foil. Several procedures may be applied

to extend the lifetime of thin carbon foils during implantation (Fifield and Orr,

1990; Smith et al., 1992).

Table 4.3 provides information about some implanted targets and samples used

in nuclear astrophysics studies. It lists incident ion energies and doses, as well

as the measured number of implanted ions (either as stoichiometry for beamstop

targets or in units of atoms per square centimeter for transmission targets or sam-

ples). The table also includes a few examples of implanted radioactive targets and

samples. Many targets or samples become saturated during implantation. In other

words, they reach a stage at which target atoms are lost because of sputtering and

diffusion at the same rate as they are implanted into the substrate. On the other

hand, for a number of ion species the sputtering ratio (the number of released

atoms per incident ion) is small for collisions between ions and substrate atoms,

and at the same time it is less than unity for ion–ion collisions (self-sputtering). In

such cases, saturation is never reached and a pure layer of targetmaterial builds up

on the substrate surface (e.g., for C, Si, and Ca implantation into tantalum; Almen

and Bruce, 1961).

It has also been shown that for relatively small incident ion energies, the dis-

tribution of implanted atoms extends to the front surface of the backing (Selin,

Arnell, and Almen, 1967). Hence, in the nuclear reaction study there is usually no

substrate dead layer inwhich charged projectiles lose energy or neutrons are atten-

uated before reaching the target material. Implanted targets can also be stored for

years without noticeable loss of target material (Selin, Arnell, and Almen, 1967;

Geist et al., 1996).

4.3.2.3 Gas Targets

In certain situations, it is desirable to use gaseous instead of solid targets.

First, it can be seen from the Table 4.3, that the stoichiometries achieved for

implanted noble gas targets are unfavorable since they contain more substrate

atoms than target nuclei. Therefore, the reaction yield will be reduced compared
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Table 4.3 Properties of implanted targets and samples.

Target Backinga Doseb Energy Stoichiometry References

(mC/cm2) (keV) or (ions/cm2)c

12C Ta 400 110 12C3Ta2 Seuthe et al. (1987)
14N Ta 784 120 14N3Ta2 Seuthe et al. (1987)
19F Fe 31 37 19F1Fe8 Ugalde (2005)
20Ne C 15–40 2.2×1017 Smith et al. (1992)
22Ne Ta 100 100 22Ne2Ta5 Keegan Kelly, priv. comm.
22Na Ni 25–80 nA 60 5.7×1015 Schmidt et al. (1995)
22Na C 25–80 nA 60 7.6×1016 Schmidt et al. (1995)
23Na Ni 96 50 23Na5Ni1 Seuthe et al. (1987)
24Mg Ta 426 100 24Mg3Ta1 Powell et al. (1999)
28Si Ta 190 80 28Si3Ta1 Iliadis (1996)
31P Ta 180 80 31P3Ta2 Iliadis (1996)
32S Ta 108 80 32S1Ta1 Iliadis (1996)
33S C 400 nA 300 1.6×1016 Schatz et al. (1995)
36S C 50 2×1017 Fifield and Orr (1990)
35Cl Ta 180 80 35Cl1Ta6 Iliadis (1996)

C 70 60 1×1017 Iliadis (1996)
36Ar Ta 44 80 36Ar1Ta5 Iliadis (1996)
135Cs C 1.8×1015 Patronis et al. (2004)

a For beamstop targets, the range of backing thicknesses was 0.1–0.5 mm; for transmission targets,

30–75 μg/cm2 carbon foils were used; the 33S and 135Cs ions were implanted into 0.7 mm and

0.1 mm thick C disks, respectively. b Incident dose of singly charged ions in mC/cm2; for 22Na and
33S the incident beam current is quoted (in nA). c For beamstop targets the stoichiometry is given,

while for transmission targets (and for 33S) the total number of implanted target nuclei per square

centimeter is listed.

to a pure target. Second, the backing may produce intolerable beam-induced

background radiation. Third, in nuclear reaction studies that are performed in

inverse kinematics (by directing a heavy ion beam onto hydrogen or helium target

nuclei), it may prove impossible to prepare targets of sufficient purity other than

gaseous targets.

Early gas target designs involved small cells containing a pure gas, with thin

entrance and exit window foils for transmitting the ion beam.These foils have the

undesirable effects of reducing the ion beam energy and of broadening the beam

spread. Furthermore, they are sources of unwanted beam-induced background

radiation. More sophisticated designs involve windowless gas targets. The ion

beam is usually stopped sufficiently far away behind the target and detector

region that the beam-induced background is kept small. Windowless gas targets

involve several stages of high pumping speed to lower the gas pressure from

typical target chamber pressures (≈ 10−2 Torr to 10 Torr) down to 10−6 Torr

in the beamline. Therefore, gas target designs are more complex compared to

solid targets. High pumping speeds are achieved using large roots blowers and
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turbo pumps (Rolfs and Rodney, 1988). Gas targets are either of the extended

type (i.e., the gas is contained in a differentially pumped chamber) or are nearly

point-like (e.g., a gas jet of small diameter streaming from a nozzle perpendic-

ular to the beam direction). They have been used in several charged-particle

reaction studies that would have been difficult to perform with solid targets

(Rolfs and Rodney, 1988). Using gas jets, target thicknesses of ≈ 1019 atoms/cm2

for H, N, and Ar have been achieved (Bittner, Kretschmer, and Schuster,

1979).

For neutron-capture studies, pressurized gas samples in stainless steel spheres

of 2 cm diameter and 0.5 mm wall thickness have been employed, with sample

masses of a few grams (Beer, 1991).

4.3.2.4 Target Thickness and Stability

The choice of target thickness depends on the type of experiment one wishes

to perform. There is no apparent advantage to choosing a target thickness

(in energy units) that is smaller than the ion beam resolution (≈ 1 keV). If a

charged-particle reaction is measured over an energy range containing previously

observed resonances, the target thickness should be chosen to be smaller than the

energy separation of the resonances. Below an ion energy of 1 MeV, typical target

thicknesses are ≈ 5–20 keV, while at E = 1–2 MeV the density of resonances

increases and target thicknesses are usually smaller (≈ 1–5 keV). In searches

for resonances at low bombarding ion energies, it is frequently of advantage

to use thicker targets (≈ 20–40 keV) to study the energy range of interest in a

reasonable amount of time. Target thicknesses are conveniently determined by

measuring yield curves of narrow, well-known resonances in charged-particle-

induced reactions, as will be explained in Section 4.8.3. The target thickness

should also be uniform if the ion beam spot has a smaller diameter than the

target.

The stability of a particular target depends not only on the ion beam intensity,

but also on the ion type. Targets that are stable under bombardment with high

intensity (> 100 μA) proton beams will likely degrade to some degree if bom-

barded with a high intensity α-particle beam. Blistering is a particularly trouble-

some effect where the beam α-particles are implanted into the target and then

move quickly to lattice defects. Eventually, high pressure gas blisters are formed,

which rupture and thereby degrade the target locally (Cole and Grime, 1981). In

some cases, there may be no alternative other than replacing the target after sub-

stantial degradation.

For neutron-induced reaction studies, the physical stability of the sample is

usually of lesser concern. Samples must be thick enough to provide sufficiently

high count rates, but have to be thin enough to minimize the attenuation and

scattering of incident neutrons and the absorption of reaction products. Sam-

ple thicknesses for neutron work are typically in the range of ≈mg/cm2–g/cm2,

which significantly exceeds the target thicknesses used in charged-particle reac-

tion studies.
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4.3.3

Contaminants

Studies of nuclear reactions are frequently hampered by the presence of con-

taminants in either the target or the backing. Although the concentration of

contaminants is usually very small, their cross section for reactions induced by

the incident beam may be very large. Therefore, they may either contribute to, or

obscure altogether, the count rate of interest. If both the reaction of interest and

a given contaminant reaction proceed through narrow resonances of different

energies, then it may be possible to adjust the beam energy so that the contam-

inant resonance is not excited. Alternatively, if the reaction of interest proceeds

through a narrow resonance and the contaminant reaction proceeds either

through a broad resonance or a nonresonant process, then it is often possible

to measure the count rate just below, on top, and just above the resonance of

interest. The difference between the on- and off-resonance spectra can then be

used to estimate the contaminant contribution.This procedure is not applicable if

both the reaction of interest and the contaminant reaction proceed through broad

resonances or nonresonant processes. In such cases, it is useful to estimate the

background contributions by comparing the count rates from different runs using

the target plus backing and the backing alone (or gas in–gas out for gas targets).

For proton-induced reactions, one of the most troublesome contaminants is
19F, which gives rise to γ-rays and α-particles through the 19F(p,𝛼𝛾)16O reaction.

Another common contaminant is 11B, which produces α-particles through the
11B(p,𝛼)2𝛼 reaction and γ-rays via 11B(p,𝛾)12C. Experience shows that the con-

centration of 19F and 11B, which remains in the backing after common cleaning

procedures, varies greatly. Therefore, it is useful to test backing materials from

different suppliers for minimum 19F and 11B concentrations. Proton captures on
12C and 13C also contribute to γ-ray background. Considerable care needs to be

taken in preparing, storing, and handling targets to ensure that no additional con-

taminants are added to their surface.

An important contaminant for reactions induced by α-particles is 13C, which

produces neutrons via the 13C(𝛼,n)16O reaction. The neutrons contribute either

directly to the detector background count rate, or indirectly by producing sec-

ondary γ-rays in the surrounding material via neutron inelastic scattering or neu-

tron capture.

Carbon contamination generally builds up on the target during ion bom-

bardment. Hydrocarbons from organic components of the vacuum system (e.g.,

vacuum sealing O-rings) diffuse into the beam and are subsequently transported

onto the target. This carbon layer not only contributes to beam-induced γ-ray

background, but also causes a reduction of the incident beam energy before the

projectiles strike the target. Carbon deposition can be reduced substantially

by having the beam move through a liquid-nitrogen cooled metal tube that is

placed close to the target (Section 4.3.4). Table 4.4 lists common contaminant

reactions induced by low-energy (E < 1 MeV) proton and α-particle beams and,

if applicable, the energies of their characteristic discrete γ-rays.
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Table 4.4 Common contaminant reactions and their

discrete characteristic γ-ray energies.

Contaminant Reaction E𝜸 (keV)

19F 19F(p,𝛼𝛾)16O 6130
11B 11B(p,𝛾)12C 4439

11B(p,𝛼)2𝛼
15N 15N(p,𝛼𝛾)12C 4439
12C 12C(p,𝛾)13N
13C 13C(p,𝛾)14N 2313

13C(𝛼,n)16O
16O 16O(p,𝛾)17F 495
23Na 23Na(p,𝛾)24Mg 1369

23Na(p,𝛼𝛾)20Ne 1634
27Al 27Al(p,𝛾)28Si 1779

In studies of neutron-induced reactions, accurate cross section and transmis-

sion measurements require precise knowledge of the sample composition. Oxi-

dization is a potential problem when metal samples are used. The composition

may also change as a result of hygroscopy, that is, the absorption of moisture

from the air. Increases in sample weight by 16% because of hygroscopy have been

observed for powdered samples (Mizumoto and Sugimoto, 1989). The water not

only increases the weight of the sample but also gives rise to an additional energy

loss for charged particles that are emitted in a neutron-induced reaction, caus-

ing an increased tailing in the pulse height spectrum. In neutron-capture studies,

a fraction of the incident neutrons slows down via scattering on hydrogen. For

the scattered neutrons, the reaction is induced at lower energies where either

the capture cross section is higher, or the cross section fluctuates rapidly because

of resonances. In both cases, the capture rate may increase drastically. In some

instances, the moisture can be removed by heating in vacuum, as indicated by the

weight loss of the sample.

4.3.4

Target Chamber and Holder

Targets are mounted in a target chamber which represents the location where

the nuclear reactions take place. The specific design of the chamber depends

on the type of target used (beamstop target, transmission target, or irradiation

sample) and the type of detector employed (γ-ray detector, charged-particle

detector, or neutron counter). For charged-particle-induced reaction studies,

target chambers must provide an accurate measurement of the integrated ion

beam charge and they also have to accommodate radiation detectors. The cham-

ber has to hold a vacuum of ≈ 10−6 Torr or lower to minimize the interaction

of the ion beam with residual gas molecules and to reduce the condensation
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Figure 4.16 Typical target chamber design

used in radiative capture reaction studies.

The beam passes through a defining colli-

mator and is incident on a directly water-

cooled beamstop target. A copper tube,

cooled to liquid-nitrogen (LN2) temperature,

reduces the buildup of contaminants (such

as 12C and 13C) on the target. The chamber

is electrically insulated from the rest of the

beamline and thus acts as a Faraday cup for

the integration of the total charge accumu-

lated by the beam on the target. A negative

voltage is applied to the copper tube to sup-

press the emission of secondary electrons.

The small (full and open) circles show the

location of vacuum O-ring seals.

of contaminants on the target surface. Figure 4.16 shows a target chamber

designed for (p,𝛾) and (𝛼,𝛾) reaction measurements at low energies (E < 1 MeV)

with high intensity beams (currents of I ≈ 0.1–1 A). The design will be dis-

cussed below because it takes several important considerations into account.

Examples of experimental setups used for studies of other charged-particle-

induced reactions or of neutron-induced reactions will be discussed in later

sections.

The target shown in Figure 4.16 is a beamstop target. The beam loses its entire

energy in the target and backing. The beam power (energy per time) deposited

by the beam is given by the product of voltage and current, that is, P = U ⋅ I. For
example, for a singly charged ion beam of 100 keV energy and 1 mA current, the

power amounts to P = (0.1 MV) (1000 μA) = 100 W. If the beam spot on the tar-

get is too small, say, only a few square millimeters, then the locally produced heat

will quickly destroy the target or backing. Therefore, it is important to defocus

the beam sufficiently. Even with a defocused beam, the heat produced by the ion

beam will degrade the target, unless efficient cooling is provided. Therefore, the

backside of the target backing is directly water cooled. The water reservoir has

to be large enough and the water flow strong enough to provide efficient cooling.

On the other hand, the target holder thickness should be kept small so that the γ-

ray detector can be placed as close as possible to the target to maximize counting

efficiency. Furthermore, capture γ-rays are not attenuated substantially in a thin

target holder before reaching the detector.

The chamber design shows several features that minimize beam-induced γ-ray

background. A beam-defining aperture is mounted some distance away from the

target and ensures that the beam hits only the target, but not other parts of the
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target holder or chamber.Thebuildup of contaminants, such as 12C and 13C, on the

target is reduced by having the beam move through a metal tube that is directly

cooled by liquid nitrogen. Thus, troublesome hydrocarbons that are released by

vacuum O-ring seals condense on the cold surface of the metal tube instead of

the target. Since the target holder design involves several O-ring seals, the tube

should extend as close as possible to the target without touching it.

The target chamber also represents a Faraday cup for integrating the ion beam

current. If the charge state of the ion beam, q, is known, the total number of ions

incident on the target,i, can be easily calculated fromi = Q∕(qe), where Q is

the total accumulated charge (or integrated beam current). The most important

systematic error in the beam current integration arises from secondary electrons

that are emitted from surfaces hit by the beam. For example, a singly charged pos-

itive ion hitting the target will deposit one elementary charge on the Faraday cup.

At the same time, however, secondary electrons are emitted and these may move

away from the target without being collected on the Faraday cup. Thus, the mea-

sured current will yield an overestimate for the number of positive ions hitting

the target (since removing an electron from the Faraday cup has the same effect

as adding a positive charge). For this reason, a reliable target chamber designmust

account for secondary electron suppression. In Figure 4.16, a negative voltage of

several hundred volts (Rolfs and Rodney, 1988) is applied to the metal tube, thus

repelling secondary electrons that are emitted from the target or the collimator.

Also, possible current losses through the target cooling water need to be checked

carefully.

4.4

Radiation Detectors

4.4.1

General Aspects

Nuclear reactions are studied by measuring the reaction products (e.g., protons,

neutrons, α-particles, or γ-rays) with suitable detectors. Different types of radia-

tion interact differently with matter and, therefore, the type of detector to be used

will depend on the identity of the radiation of interest. Most detectors produce,

directly or indirectly, a given amount of electric charge as a result of energy depo-

sition by the radiation.The charge is collected by applying an electric field and, as

a result, an electric signal is produced. The precise shape of this signal depends

on, among other things, how and where the charge is produced in the active vol-

ume, how fast the charge is collected, and the characteristics of the electric circuit

to which the detector is connected (e.g., preamplifier or photomultiplier tube).

Although the signal shape varies strongly from one detector type to another, the

amplitude of the signal pulse is usually directly proportional to the charge gener-

ated within the active volume or, equivalently, the energy deposited by the radi-

ation in the detector. Furthermore, the rate at which such pulses occur depends
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on the corresponding rate of radiation interactions within the active volume.This

rate is directly proportional to the number of nuclear reactions occurring per time

interval. If a large number of such pulses is examined, their amplitudes will not all

be the same. Variations in pulse heights are caused by a number of effects: (i) the

radiation incident on the detector may not be monoenergetic; (ii) even for inci-

dent monoenergetic radiation, different amounts of energy may be deposited in

the detector; and (iii) fluctuations in the intrinsic detector response.

In practice, the output signal from a preamplifier or a photomultiplier tube

is further amplified and shaped by additional electronic circuits (spectroscopy

amplifiers) while still preserving the pulse height information. The data are then

displayed as a differential pulse height distribution (or pulse height spectrum),

showing the pulse height on the horizontal axis and the number of pulses observed

within a pulse height interval, divided by the interval width, on the vertical axis.

Physical interpretations almost always involve areas under the spectrum, or total

counts, between two given pulse height values. Through careful energy and effi-

ciency calibrations, the information displayed in a differential pulse height distri-

bution can be related to the energies and intensities of the incident radiation.The

latter information is then used to determine nuclear reaction cross sections.

A schematic pulse height spectrum (differential number of pulses per pulse

height interval, dI∕dH , versus pulse height,H) is shown in Figure 4.17a.The shape

of the spectrum can be complicated and depends on the nature and energy of

the incident radiation as well as the intrinsic detector response. The latter has

to be well understood to relate the spectrum shape to properties of the incident

radiation. Relatively narrow peaks in a spectrum frequently indicate that incident

α-particles, protons, neutrons, or photons deposited their entire discrete energy

in the active detector volume. Suppose that a sharp peak occurs at a pulse height

of H0, which is proportional to the energy of the incident radiation. The peak is

superimposed on a background, representing a relatively flat part of the spectrum.

The net intensity of the peak (shaded area labeled ), which is proportional to the
number of radiation quanta of specific incident energy, is calculated by subtract-

ing the background (area labeled B) from the total number of counts in the region

of interest between H1 and H2,

 = T − B (4.39)

The background B can be estimated from the number of counts in regions on the

left- and right-hand side of the peak. Counts in nuclear physics experiments are

distributed according to a Poisson probability density function, with the standard

deviation given by the square root of the number of counts. Thus, we obtain for

the error (one standard deviation) in the number of net counts

Δ =
√
(ΔT)2 + (ΔB)2 =

√
T + B (4.40)

In more complicated cases, including overlapping peaks and nonlinear back-

ground structures, sophisticated fitting programs are usually employed. Elaborate

discussions of statistical data analysis in nuclear counting experiments can be

found in Leo (1987) and Knoll (1989).
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Figure 4.17 (a) Schematic pulse height

spectrum. The net intensity of the peak cen-

tered around pulse height H0 (area labeled

 ) is obtained by subtracting the number of

background counts (area labeled B) from the

total number of counts between H1 and H2.

The FWHM of the peak, as measured relative

to the background level (dashed horizontal

line) indicates the detector energy resolution.

(b) Pulse height spectrum illustrating the dif-

ference between total and peak efficiencies.

The former and latter quantities are calcu-

lated by dividing total and peak , respec-

tively, by the total number of quanta emitted

by the source. Below the detection threshold

(leftmost vertical dashed line) the spectrum

is dominated by noise.

The full width at half maximumof the narrow peak (FWHM), asmeasured from

the background level, is in general determined by the energy distribution of the

incident radiation aswell as the intrinsic response of the detector. Suppose that the

spectrum shown in Figure 4.17a has been obtained by measuring monoenergetic

incident radiation so that the observed FWHM of the peak is a measure for the

intrinsic energy resolution of the detector. It is highly desirable that this peak width

is as small as possible for two reasons. First, the detector will be able to better

separate closely spaced peaks. Second, the detector will have a better sensitivity

for observing weak peaks in the presence of a broad (background) continuum.

The energy resolution is quantitatively defined by the ratio of FWHM and the

location of the peak centroid H0,

R ≡ FWHM

H0
(4.41)

and is frequently expressed in percent. The energy resolution is influenced by

a number of factors that are present even if each incident radiation quantum

deposits precisely the same amount of energy in the detector. These include

pulse height drifts during the measurement, random noise from the detector

and associated electronics, and statistical fluctuations in the number of created

charge carriers. The last contribution sets an inherent limit on the detector

performance (Knoll, 1989). For example, semiconductor detectors generate a

very large number of charge carriers per event. Since this implies relatively

small statistical fluctuations in the number of charge carriers, these types of

detectors have excellent energy resolutions. In general, if several independent
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factors contribute to the intrinsic detector energy resolution, then the overall

detector response function will tend toward a Gaussian shape according to the

central-limit theorem of statistics.

Another important detector property, called detection efficiency, is related to

the probability of detecting a quantum of radiation emitted by a source (e.g., a

radioisotope or a nuclear reaction). Efficiencies can be determined from the infor-

mation presented in pulse height spectra. Suppose that the spectrum shown in

Figure 4.17b is obtained bymeasuring a source that emits0 monoenergetic radi-
ation quanta. Some incident quanta deposit their entire energy in the spectrum,

corresponding to the observed sharp peak, while others deposit only a fraction

of their energy giving rise to a continuum below the full-energy peak. The left-

most vertical dashed line indicates a threshold belowwhich electronic noise dom-

inates the spectrum.The total efficiency is then defined by the ratio of total counts

recorded in the spectrum above the threshold and the number of radiation quanta

emitted by the source,

𝜂tot ≡ total

0 (4.42)

It is assumed that any background contributions unrelated to the source have been

subtracted fromtotal. Furthermore, we can also define a (full-energy) peak effi-

ciency as the ratio of counts recorded only in the full-energy peak and the number

of quanta emitted by the source,

𝜂peak ≡ peak

0 (4.43)

It is again assumed that any background contributions have been subtracted from

peak . Sometimes, efficiencies are obtained by replacing the total number of emit-

ted quanta in Eqs. (4.42) and (4.43) by the number of quanta that are incident on

the detector.The resulting quantity is referred to as intrinsic (total or peak) detec-

tion efficiency. We write

𝜂 = 𝜂int
Ω

4𝜋
(4.44)

with Ω being the solid angle of the detector in steradian. Note that 𝜂tot and 𝜂peak
include the effective solid angle subtended by the detector as an implicit factor

and, therefore, are of primary interest for our considerations.

In the following, wewill briefly address certain detector types that are frequently

employed in nuclear astrophysics measurements. Extensive discussions of radia-

tion detectors can be found in Leo (1987) and Knoll (1989).

4.4.2

Semiconductor Detectors

The operating principle of semiconductor detectors relies on the formation of a

semiconductor junction. The junction is formed using doped semiconductors,

with silicon and germanium being the most widely used materials. For example,
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at the interface of a p-type and a n-type semiconductor, a region devoid of mobile

charge carriers (electrons or holes) is created. If a reverse bias voltage is applied

to the junction, for example, a negative voltage on the p-side, the depletion zone

representing the active volume of a radiation detector is significantly enlarged.

Incident ionizing radiation will deposit a certain amount of its energy in this

zone and thereby create electron–hole pairs. These are swept out by the electric

field and a current signal proportional to the amount of the deposited energy is

produced.

Amain advantage of semiconductors over other detector types is the very small

average energy needed for the creation of an electron–hole pair. This energy

amounts to only 3.8 eV and 3.0 eV for Si and Ge, respectively, at liquid-nitrogen

temperature (77 K). These values are smaller by more than an order of mag-

nitude compared to other types of radiation detectors, such as gas ionization

chambers or scintillators. Therefore, for the same deposited radiation energy, the

number of created charge carriers will be considerably larger in semiconductors

and the energy resolution is significantly improved. Furthermore, the average

energy needed for the creation of an electron–hole pair is independent of the

radiation energy. Thus, the signal pulse height given by the total number of

created electron–hole pairs is proportional to the amount of deposited energy

and the response of a semiconductor detector is highly linear.

Silicon is the most common semiconductor material used for the detection of

charged particles. The intrinsic efficiency amounts to about 100% since few inci-

dent particles will fail to produce some ionization in the active detector volume.

For measurements of the incident particle energy, the depth of the depletion zone

has to be larger than the particle range. For example, α-particles of 10 MeV energy

have a range of ≈ 70 μm in silicon (Figure 4.7).

For the detection of photons, germanium is preferred over silicon because of its

larger atomic number. However, the average energy for creating an electron–hole

pair is smaller in germanium. As a result, the leakage current through the semi-

conductor junction is larger at room temperature, thus contributing to electronic

noise at the detector output. Therefore, the germanium crystal must be cooled to

liquid-nitrogen temperature.

The bias voltage determines the thickness of the depletion zone. Typical values

for silicon charged-particle detectors amount to 50–300 V, while bias voltages of

a few 1000 V are used for germanium photon detectors.

Semiconductor detectors are subject to radiation damage. Incident ioniz-

ing radiation causes lattice defects by knocking atoms out of their normal

position. These defects can trap charge carriers, leading to incomplete charge

collection. As a result, the leakage current increases and the energy resolution

degrades. For example, significant deterioration in the performance of silicon

charged-particle detectors has been observed for integrated incident fluxes of

1012–1013 protons/cm2 and 1011𝛼-particles/cm2 (Knoll, 1989). For germanium

photon detectors, significant degradation in energy resolution occurs for inte-

grated fast neutron fluxes in excess of 107–109 cm−2, depending on the detector

specifications.
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4.4.2.1 Silicon Charged-Particle Detectors

Themost widely used silicon detectors for charged-particle measurements are sil-

icon surface barrier detectors. In this case, a junction is formed between a doped

semiconductor region and a metal, for example, n-type silicon and gold. Such

junctions are called Schottky barriers. The situation is similar to the pn junction

described above and a depletion zone extending over the entire semiconductor

region is formed. The outer housing and the front surface of a silicon surface bar-

rier detector are grounded, while the output signal is extracted from the back

surface of the silicon wafer. Since usually n-type silicon is used for the produc-

tion of surface barrier detectors, a positive voltage is required for the reverse bias

voltage of the junction. Surface barrier detectors of various depletion zone thick-

nesses (between several micrometers and a few millimeters) and active areas (up

to several tens of square centimeters) have been produced. They are of compact

size and can be placed conveniently in scattering chambers.

Junctions are also produced by forming heavily doped n- or p-layers in semi-

conductor material via ion implantation. The depth profile and concentration of

the impurity ions are controlled by adjusting the implantation energy and cur-

rent. Ion-implanted detectors have improved properties for measuring charged

particles compared to surface barrier detectors.The former have thinner entrance

windows (several tens of nanometers), and the active area is less sensitive to sur-

face contamination.

A typical pulse height spectrumof an implanted silicon detector, obtainedwith a
241Am source, is shown in Figure 4.18.This source emits several discreteα-particle

groups with energies around 5.5 MeV. The detector has an active surface area of

50 mm2 and a resolution of 10 keV (for α-particles of 5.5 MeV). It resolves most of
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Figure 4.18 Pulse height spectrum of α-

particles from an 241Am source, measured

using a high-resolution implanted silicon

detector of 50 mm2 active area and 10 keV

resolution. The source emits several discrete

α-particle groups. Their energies (in keV) are

adopted from the National Nuclear Data Cen-

ter, Brookhaven National Laboratory. Most of

the known α-particle groups are resolved in

the spectrum. (Courtesy of Joseph Newton.)
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the α-particle groups. While energy resolutions of ≈ 10 keV (0.2%) are routinely

achieved with such small silicon charged-particle detectors, resolutions for larger

detectors typically amount to ≈ 15–20 keV.

4.4.2.2 Germanium Photon Detectors

The depletion depths of the semiconductor detectors discussed above are at most

to a few millimeters and thus are too thin for the detection of more penetrat-

ing radiation, such as photons. In this case, larger active detector volumes are

necessary. Gamma-ray detectors are produced from high-purity p- or n-type ger-

manium (HPGe), with impurity concentrations below 1010 atoms/cm3. In coaxial,

closed-ended HPGe detectors, one of the electrical contacts is produced by form-

ing a heavily doped n-type region of several 100 μm thickness (usually via lithium

evaporation and diffusion), while the other contact represents a heavily doped

p-type region of less than 1 μm thickness (formed, e.g., by ion implantation). The

active volume is the entire region between the electrical contacts. The regions of

the contacts do not produce charge carriers and, therefore, are called dead lay-

ers. The detector capsule includes the germanium crystal and the preamplifier.

The germanium crystal is in thermal contact with liquid nitrogen contained in an

insulated dewar, keeping the crystal at a temperature of 77 K.

The excellent energy resolution of semiconductor detectors compared to other

types of γ-ray spectrometers is demonstrated in Figure 4.19. The spectra are

obtained with a 152Eu source using a HPGe detector Figure 4.19a and a NaI(Tl)

scintillator Figure 4.19b. Scintillators will be discussed in Section 4.4.3. The

superior energy resolution of the HPGe detector is striking. The 152Eu source

emits γ-rays of many discrete energies (Table 4.6).The excellent energy resolution

in the HPGe detector spectrum allows the separation of many closely spaced

γ-ray peaks that remain unresolved in the NaI(Tl) spectrum. For this reason,

germanium detectors are used in the majority of γ-ray spectroscopy studies. The

energy resolution varies with energy and, therefore, the values are specified at

a fixed energy. For germanium photon detectors, energy resolutions are usually

quoted for a γ-ray energy of 1333 keV (as provided by a 60Co source). Measured

values of the FWHM typically amount to ≈ 2–3 keV, corresponding to ≈ 0.2%

(see Eq. (4.41)).

Theoutput pulse shape of germaniumdetectors depends on a number of factors,

including the charge collection process and the location in the crystal at which

an incident radiation quantum deposits its energy. The latter effect is shown in

Figure 4.20. The results are obtained from a Monte Carlo simulation and indi-

cate, for a germanium detector, the fraction of the full-energy peak contributed

by different interaction mechanisms. Above an energy of a few 100 keV, which

is of main importance in nuclear astrophysics measurements, the photoelectric

effect is less likely to occur than Compton scattering (Section 4.2.2). Thus, events

contributing to the full-energy peak in this energy range arise mainly from multi-

ple interactions, for example, one or more Compton scattering events followed by

photoelectric absorption of the scattered γ-ray, rather than from a single photo-

electric interaction. Such effects result in a large variation of the pulse rise time and
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Figure 4.19 Pulse height spectra of γ-rays

from a 152Eu source, measured by using a

(a) HPGe detector, and (b) NaI(Tl) detector.

This particular γ-ray source emits photons

of many discrete energies that are listed

in Table 4.6. Far more peaks are visible in

the top compared to the bottom spectrum,

demonstrating the superior energy resolution

of germanium detectors compared to scintil-

lators. (Courtesy of Richard Longland.)

make germanium detectors sometimes less suitable for measurements in which

the precise arrival time difference of two events is of interest.

4.4.3

Scintillation Detectors

Radiation incident on a scintillator deposits energy in the active volume and

thereby excites atoms and molecules. The atoms de-excite mainly by prompt

emission (within ≈ 10−8 s) of light, but delayed emission may also occur if some

excited states are metastable. These processes are referred to as fluorescence

and phosphorescence, respectively. The light strikes a photosensitive surface

(photocathode), releasing at most one photoelectron per incident photon. These

secondary electrons are accelerated and multiplied through a series of electrodes,

called dynodes. They are finally collected on the anode and form the output

pulse of the photomultiplier tube. These processes are shown in Figure 4.21.

Scintillator detectors must have a high probability for converting absorbed

energy into fluorescent light. They must be transparent to their own light,

and the light emission spectrum has to be consistent with the response of the
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photomultiplier. For many scintillators, the light output, and hence the amplitude

of the electrical output signal, is nearly proportional to the absorbed energy.

Therefore, scintillators are suitable as devices for energy measurements, although

their energy resolution and linearity is far inferior compared to semiconductor

detectors (Figure 4.19). On the other hand, scintillators have certain advantages

over semiconductors. First, they have fast response and recovery times and hence

are frequently used if the measurement of the time differences between two

events is of interest. Second, scintillators can be produced in a variety of sizes and

shapes.

For any scintillator, a significant fraction of the light emitted from the track

of the ionizing radiation must be collected. However, many light photons are

reflected one or more times at the scintillator surface before reaching the

photomultiplier tube. If the angle of incidence of the light is less than a certain

value (called the critical angle), then only partial reflection takes place and some

light will escape from the surface. For a given scintillator shape, the fraction of

light lost will in general depend on the location of the radiation track with respect

to the photomultiplier tube. The uniformity of the light collection determines the

variation in signal pulse amplitude and thus the energy resolution of the scintilla-

tor. Therefore, scintillator crystals are usually surrounded by a reflecting surface

(e.g., paint, powder, or foil) to recapture some of the escaping light. In certain

instances, light collection may also be improved by viewing the scintillator with

more than one photomultiplier tube. On the other hand, any internal reflection
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Figure 4.21 Schematic diagram of a scin-

tillation detector. Incident radiation pro-

duces light in the scintillator material. The

light strikes the photocathode and the few

emitted secondary electrons are multiplied in

the photomultiplier tube by a series of dyn-

odes. The output pulse is extracted from the

anode.

must be minimized at the interface between scintillator and the glass end window

of the photomultiplier tube. This is usually achieved by using silicon oil of high

viscosity as an optical coupling fluid. Furthermore, scintillation detectors must

be shielded from room light.

Many different types of scintillators in solid, liquid, or gaseous form are used

in radiation detection studies. Here, we will focus on inorganic scintillators for

photon detection and organic scintillators for counting charged particles and fast

neutrons.

4.4.3.1 Inorganic Scintillator Photon Detectors

Themost common inorganic scintillators are single crystals of alkali halides, such

a NaI. A polycrystalline scintillator would cause light reflections and absorptions

at crystal surfaces and thus a single crystal is needed to achieve light transparency.

To increase the probability for light emission and to reduce self-absorption of

light, small amounts of impurities, called activators, are added to the crystal, with

thallium being a common choice. For NaI(Tl), the high atomic number of thal-

lium (ZTl = 53) results in a larger γ-ray efficiency compared to germanium detec-

tors (ZGe = 32). Therefore, inorganic scintillators are preferred in certain types of

experiments, even though they have an inferior energy resolution (Figure 4.19b).

A disadvantage of NaI(Tl) is the fast crystal degradation in the presence of mois-

ture (hygroscopy). Consequently, these scintillators must be contained in air tight

protective closures.

The energy resolution of NaI(Tl) detectors is customarily quoted at an energy

of 662 keV (as provided by a 137Cs source). For smaller cylindrical detectors, res-

olutions of 6–7% can be achieved, while for more complicated crystal shapes the

light collection is less uniform and the energy resolution becomes worse.

Two pure inorganic scintillators, neither of which require the presence of an

activator element to promote the scintillation process, are bismuth germanate

(Bi4Ge3O12 or BGO) and barium fluoride (BaF2).The very high atomic number of
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bismuth (ZBi = 83) in the BGO material has major advantages for the detection

of γ-rays above 10 MeV energy compared to other detector types, although the

energy and time resolution of BGO detectors is inferior compared to NaI(Tl).The

scintillation light of barium fluoride contains a very fast component with a decay

time of less than 1 ns, which is smaller than decay times achieved even by the

fastest organic scintillators. Therefore, BaF2 detectors are attractive for applica-

tions where large efficiencies and fast timing are required, for example, for the

time-of-flight technique in neutron-capture studies (Section 4.6.3).

4.4.3.2 Organic Scintillator Charged-Particle and Neutron Detectors

Organic scintillators consist of aromatic hydrocarbon compounds that contain

benzene-ring structures. Their most outstanding feature is a very rapid signal

pulse decay time of about 1–2 ns. They can be used in many physical forms,

such as liquid or solid solutions, without loss of their scintillating properties. The

most widely used organic radiation detectors are organic scintillators in a solid

plastic solvent, called plastic scintillators. These are easily shaped and fabricated

to desired forms. Plastic scintillators are produced as sheets, blocks, cylinders,

and thin films of a few micrograms per centimeter square thickness. They are

rugged and resistant to lower alcohols, but not to acetone and body acids and,

therefore, must be handled with care. Liquid solutions of organic scintillators

in an organic solvent, called liquid scintillators, are also widely used. They have

the advantage that they can be loaded easily with certain materials to increase

their efficiency for specific applications. Liquid scintillators are, however, very

sensitive to impurities in the solvent.

It is sometimes of advantage if the scintillator is not directly coupled to the

photomultiplier tube. This may be, for example, because of geometrical consid-

erations or an unusual shape of the scintillator.The coupling can then be achieved

using a transparent solid with a high refractive index, such as lucite, which acts

as a guide for the scintillation light and hence is called a light guide. In principle,

a light guide should transmit all the light that enters at its input but in practice

some light loss will occur. Alternatively, optical fibers may be used as light guides,

allowing for a flexible connection between scintillator and photomultiplier tube

(Longland et al., 2006).

Organic scintillators are not suitable as high-resolution γ-ray spectrometers

because their small atomic number results in greatly reduced γ-ray interaction

probabilities for photoelectric effect and pair production. Recall, that either

of these processes has to occur besides Compton scattering to contribute to

the full-energy peak count rate. Gamma-ray pulse height spectra of organic

scintillators show pronounced Compton edges, but virtually no full-energy peaks.

Organic scintillators are very useful for the detection of γ-rays when fast timing

rather than pulse height resolution is of primary interest, such as in time-of-flight

measurements of neutron-capture reactions (Section 4.6.3).

Figure 4.22 shows a room background spectrum measured with a plastic

scintillator detector. The counter is viewed by a single photomultiplier tube.

The surfaces of plastic scintillators are highly polished to increase internal
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Figure 4.22 Room background spectrum

measured with a plastic scintillator detec-

tor over a period of 14 h at sea level. The

detector dimensions for the length, width,

and thickness are 30 cm, 20 cm, and 5 cm,

respectively. Compton edges of photons

dominate the spectrum at low pulse heights,

while the broad peak at larger pulse heights

is caused by cosmic-ray muons that deposit

a small fraction of their energy traversing the

scintillator. From Longland et al. (2006).

reflection. The scintillator was wrapped first with aluminum foil to increase

external reflection and then with black tape to provide a light-tight layer. A thin

layer of air, having a small refractive index, between scintillator and aluminum

foil also increases internal reflection. The spectrum shown was measured over

a period of 14 h. The structures at low pulse heights represent the Compton

edges of various room background γ-ray lines, while the broad peak at large

pulse heights is caused by cosmic-ray muons that deposit a small fraction of their

energy traversing the scintillator. Plastic scintillators are frequently used as muon

anticoincidence shields around a primary detector (e.g., a germanium crystal).

In such an arrangement, the output of the primary detector is accepted only if,

during a certain time window, no coincident pulse is present at the output of the

plastic scintillator. With this method, the background induced by cosmic rays in

the primary detector can be reduced significantly (Section 4.7).

Liquid organic scintillator detectors are frequently employed for the detection

of fast neutrons. Incident neutrons elastically scatter on the hydrogen contained in

the active detector volume. In each scattering process, a neutron transfers energy

to a recoil proton.The latter particle, in turn, is detected in the scintillator like any

other energetic proton as it slows down in the active volume. Depending on the

scattering angle, the transferred energy can range between zero and the total inci-

dent neutron energy. Furthermore, for incident neutron energies below 10 MeV,

the elastic scattering from hydrogen is nearly isotropic. As a result, the energy dis-

tribution of the recoil protons, and hence the detector response function, should

have a rectangular shape. In reality, several factors distort this simple rectangular

distribution (Knoll, 1989). Some organic scintillators consist of special liquids that

have the characteristic of producing different pulse shapes in response to different

types of incident radiation. For example, a scintillator loaded with NE213 will
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give rise to different pulse shapes for neutrons and γ-rays (Lynch, 1975). Based on

the measured pulse shape differences, events from various radiation types can be

distinguished electronically. This procedure is referred to as pulse shape discrim-

ination. It allows for a substantial reduction of an unwanted γ-ray background in

the detection of fast neutrons. The efficiency of liquid scintillator detectors for

MeV neutrons can be as high as 50%.

4.4.4

Proportional Counters

Aproportional counter consists of a vessel with conducting walls, acting as a cath-

ode, and an anode (e.g., a metal wire) located inside the vessel. The vessel is filled

with a suitable gas and a large positive voltage is applied to the anode. Incident

radiation deposits energy in the counter gas and thereby creates a certain number

of electron–ion pairs. For most gases, on average about one electron–ion pair is

created per 30 eV of energy lost. The mean number of ion pairs created depends

then on the energy deposited by the incident radiation quantum in the gas. The

electrons and ions are accelerated toward the anode and cathode, respectively. If

the electric field strength is sufficiently large, the primary electrons are acceler-

ated toward the anode to energies at which they are also capable of ionizing gas

molecules in the detector.The created secondary electrons, in turn, are also accel-

erated and give rise to still more ionization and so on. The result is an ionization

avalanche, with a total number of electron–ion pairs that is directly proportional

to the number of primary electron–ion pairs.

A frequently used counter gas is a mixture of 90% Ar and 10% CH4 (methane).

The excited Ar ions in the avalanche de-excite by emission of visible or ultra-

violet photons capable of ionizing the cathode and causing further avalanches.

This effect is undesirable since it leads to a loss of proportionality. The methane

molecules act as a quencher by absorbing the emitted photons and then by dis-

sipating this energy through dissociation or elastic collisions. With such a gas

mixture, the factor of proportionality, or multiplication factor, can be as high as

106.Thegas is usually at atmospheric pressure, but higher pressures are sometimes

used to increase the detection efficiency. A potential problem is the relatively large

number of quencher molecules depleted in each detected event, causing changes

in the operational characteristics after a certain total number of events has been

observed. This problem can be avoided by using a continuous gas flow instead of

a sealed vessel.

Proportional counters are used for detecting charged particles and low-energy

X-rays.They are less useful for detecting γ-rays since the probability of interaction

between a photon and the detector gas is very small. Proportional counters can

also be used for neutron detection by choosing a fill gas with a large cross section

for a neutron-induced reaction. The most frequently used fill gases for convert-

ing incident neutrons to directly detectable charged particles are 10BF3 and
3He.

These take advantage of the reactions 10B(n,𝛼)7Li and 3He(n,p)3H, respectively.

If slow neutrons are incident on such a detector, the neutron energy is negligible
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compared to the energy release per reaction.Therefore, the total energy imparted

to the charged reaction products (7Li +𝛼 or 3H + p) for each event is equal to the

Q-value, while any information about the incident neutron energy is lost.

4.4.5

Microchannel Plate Detectors

Microchannel plates consist of a lead glass plate with a large number (≈107) of

microscopic channels, typically 10–50 μm in diameter, oriented parallel to each

other (Wiza, 1979). The inner surfaces of the channels are treated so as to act as

secondary electron emitters. The front and rear surfaces of the plate are coated

with a metallic alloy, such as nichrome (Ni7Cr2Fe3), and act as electrodes so that

a voltage can be applied along the length of the channels. This device has a direct

sensitivity for detecting charged particles (electrons, ions) and energetic photons.

A radiation quantum incident on the front face enters one of the microchannels

and produces secondary electrons upon impact with the channel wall. The sec-

ondary electrons are accelerated along the channel until they eventually strike the

wall again, releasing further electrons, and so on. Typical electron multiplication

factors amount to ≈ 104 for a single microchannel plate. This avalanche of sec-

ondary electrons is collected at the anode and results in a large output pulse. Each

microchannel acts as an independent electron multiplier. Several plates may be

used together to provide a higher overall gain. In this case, the microchannels are

oriented at an angle with respect to the plate surface and to each other in order to

reduce troublesome feedback effects from positive ions that occasionally form in

the channels and that drift back to the plate front face. In this “chevron” geometry,

the ions are made to strike the channel wall before their energy is high enough to

create secondary electrons.

Microchannel plate detectors are not useful for energy measurements because

relatively few secondary electrons are emitted upon impact of the incident radia-

tion.Theirmain advantage is an excellent timing property.The total transit time of

the secondary electrons through a channel is only a few nanoseconds. The timing

performance depends on the spread in transit time and amounts to only≈ 100 ps,

a value that is considerably smaller compared to the fastest plastic scintillators.

Microchannel plate detectors are very robust and have been used in experiments

with count rates of up to ≈ 107 s−1 (Mosher et al., 2001). Their intrinsic efficiency

varies according to the energy and type of the incident radiation (Wiza, 1979). For

ionswithmasses ofA = 3–16 and energies ofE = 0.3–10 MeV,measured intrinsic

efficiencies are 65–90% (Mosher et al., 2001).

4.5

Nuclear Spectroscopy

The science and study of spectra is called spectroscopy. We will be mainly

concerned with detector pulse height spectra induced by nuclear radiation. Most
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important is the analysis of relatively sharp peaks in the spectrum. The energy

of a discrete line corresponds frequently to the energy difference between the

initial and final nuclear states involved in the transition and thus reflects the

origin of the measured radiation. The intensity of a discrete line is proportional

to the number of decaying nuclear states and hence allows for the determination

of nuclear cross sections. The quantitative interpretation of pulse height spectra

requires the knowledge of certain detector properties. First, the signal pulse

height (or channel number) has to be calibrated and expressed in terms of the

radiation energy. Second, the measured peak intensity needs to be corrected for

the detector efficiency. These procedures are referred to as energy and efficiency

calibrations. In the following, we will discuss some typical experimental situations

encountered in charged particle, γ-ray, and neutron spectroscopy.

4.5.1

Charged-Particle Spectroscopy

4.5.1.1 Energy Calibrations

Consider first a radioactive source that emits charged particles. The most com-

mon radioactive charged-particle sources emit α-particles since long-lived proton

emitting sources do not exist. Suppose further that an α-particle source is placed

at some distance from a charged-particle detector, such as a silicon counter. The

α-particles from the nuclear source are emittedwith discrete energies. If the thick-

ness of the active detector volume is larger than the α-particle range (R < 100 μm

forE𝛼 < 10 MeV; Figure 4.7) and since processes that backscatter the incident par-

ticle or otherwise result in partial energy deposition are usually negligible, the

incident radiation will deposit its entire energy in the silicon detector. As a result,

discrete peaks of nearly Gaussian shape appear in the pulse height spectrum, each

corresponding to an α-particle group of discrete energy (Figure 4.23). If the ener-

gies of the α-particles arewell known frompreviousmeasurements, the horizontal

axis of the pulse height spectrum can be calibrated by relating channel numbers

Ci to energies Ei. As already pointed out, semiconductor detectors respond nearly

linearly to the energy of the incident radiation and, therefore, a useful expression

for the calibration is

Ei = aCi + b (4.45)

where a and b are empirical constants. Properties of some α-particle calibration

sources are listed in Table 4.5. For precise energy calibrations, the α-particle

energy loss in the detector dead layer may need to be taken into account. The

thickness of the dead layer can be determined by measuring the energy of a

monoenergetic charged-particle group at several different angles of incidence

(Knoll, 1989). The energy loss in the source itself may also need to be con-

sidered. Most α-particle calibration sources are prepared by depositing a thin

layer of the isotope on the surface of a backing to minimize energy losses and

α-particle absorption. These sources are also protected with a very thin layer

of foil.
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Figure 4.23 Measurement of charged par-

ticles emitted by an α-particle source. (a)

Setup showing the source and the charged-

particle detector; d and a are the source–

detector distance and the radius of the

active detector area, respectively. (b) Typical

pulse height spectrum showing peaks at dis-

crete channel numbers. An energy calibration

of the spectrum is performed by relating the

discrete channel numbers to known ener-

gies of the α-particle groups emitted by the

source.

Itmust be emphasized that small differences in pulse heights fromdifferent inci-

dent light charged particles (e.g., protons and α-particles) of the same energy have

been observed in semiconductor detectors (Knoll, 1989).These differences are on

the order of 1% (≈30 keV for 3 MeV total deposited energy). Therefore, the pulse

height spectrum should be calibrated, if possible, using the same species of par-

ticles as is emitted in the actual reaction measurement. For heavy ions, the pulse

height differences are considerably larger. The effect is referred to as the pulse

height defect.

4.5.1.2 Efficiencies

The intrinsic efficiency of silicon counters for detecting charged particles is close

to unity and, therefore, the peak efficiency is given by the solid angleΩ subtended

by the detector.The efficiency can be measured using a calibration source of well-

known activity. Assuming that the source emits radiation isotropically and that

no attenuation takes place between source and detector, we obtain for the peak

efficiency (see Eqs. (4.43) and (4.44))

𝜂peak =
Ω

4𝜋
=

peak

0 =
peak

AtB
(4.46)

where the solid angle Ω is in units of steradians and peak is the net area of the

full-energy peak; A, t, and B are the activity of the source at the time of the mea-

surement, the measuring time, and the branching ratio of the radiation, respec-

tively. Branching ratios, defined as the fraction of a specific transition per nuclear

decay, for some common calibration sources are listed in Table 4.5. As a test of

consistency, it is often useful to estimate the efficiency without relying on the

activity of radioactive sources. For the common case of a point-like source and

a circular detector positioned with its face normal to the source–detector axis,
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Table 4.5 Properties of some α-particle calibration sources.

Isotope Half-lifea Energies (keV) Branching (%)

148Gd 70.9(10) y 3182.68(2)b 100.0b

230Th 75.4(3) ky 4620.5(15)b 23.4(1)b

4687.0(15)b 76.3(3)b

241Am 432.6(6) y 5442.86(12)c 13.23(10)c

5485.56(12)c 84.45(10)c

242Cm 162.86(8)c d 6069.37(9)c 25.94(7)c

6112.72(8)c 74.06(7)c

The error is given in parenthesis and refers to the last significant digit(s).

Sources: a Wang et al. (2012). b Nichols (1996). c Bé et al. (2013).

the peak efficiency is given by (Knoll, 1989)

𝜂peak =
1

2

(
1 −

d√
d2 + a2

)
(4.47)

where d and a are the distance between source and detector and the detector

radius, respectively. If the distance d is large compared to the radius, d ≫ a, the

peak efficiency reduces to

𝜂peak ≈
𝜋a2

4𝜋d2
=

a2

4d2
(4.48)

4.5.1.3 Elastic Scattering Studies

An example of a setup for the study of elastic scattering is shown in Figure 4.24a.

A proton beam of energy Ep = 440 keV is incident on a transmission target con-

sisting of a thin MgO layer evaporated onto a thin carbon foil. A silicon detector

with a resolution of ≈ 10 keV, positioned at an angle of 𝜃 = 155∘ with respect to

the beam direction, is used for detecting elastically scattered protons. The mea-

sured pulse height spectrum is shown in Figure 4.24b. Three peaks are observed

in the spectrum, corresponding to elastic scattering fromMg, O, and C, the three

elements present in the target.

The observed peak centroids can be used for calibrating the proton energy in the

spectrum if the target is relatively thin so that energy loss effects are negligible. In

this case, the widths of the peaks resulting from proton scattering on Mg and O

are given by the detector resolution.The peak centroids correspond to the energy

Ep′ of the elastically scattered protons which, for a given bombarding energy Ep
and detector angle 𝜃, are determined by the kinematics of the scattering process

(Appendix C.1).

In general, however, the target thickness has to be taken into account and the

widths and centroids of the measured peaks are influenced both by the proton

energy loss in the target and the detector resolution. The energy calculated from

kinematics only applies to those protons that are elastically scattered from the first

target layers. For protons scattered fromMgorOdeeper inside the target, not only
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Figure 4.24 Typical elastic scattering study.

(a) Setup showing a proton beam, a MgO

transmission target evaporated on a thin

carbon backing, and a particle detector

mounted at a back-angle. Detected protons

scattered from the backside of the target

have a smaller energy (E2) than those

scattered from the front side (E1) because of

energy loss effects. (b) Measured spectrum of

elastically scattered protons at an incident

proton energy of Ep = 440 keV. The peaks

correspond to protons scattered from the

target (Mg and O) and the backing (C). Data

adopted from Powell et al. (1999).

the energy loss of the projectiles has to be considered, but that of the scattered

protons on their path through the target as well.The location of the carbon elastic

scattering peak is also influenced by energy loss. To reach the carbon layer, the

projectiles have to traverse the MgO target, while the scattered protons also lose

a fraction of their energy moving through the target on their way to the detector.

Themeasured peak areas may be used to calculate the differential cross sections

of elastic scattering if the number of target nuclei (or the target thickness) and

the detector efficiency are known. Expressions relating measured yields to cross

sections are given in Section 4.8. At sufficiently low bombarding energies, the

cross section will be dominated by Coulomb scattering. This circumstance is fre-

quently utilized to determine the number of target nuclei from themeasured peak

intensity and the calculated Rutherford cross section (see Eq. (4.138)). At higher

energies, resonances may contribute to the elastic scattering process. In this case,

the measured elastic scattering cross section provides information on the reso-

nance parameters, such as resonance energies, partial widths, and quantum num-

bers (Section 2.5).

4.5.1.4 Nuclear Reaction Studies

Figure 4.25a shows an experimental arrangement for measuring the reaction
31P(p,𝛼)28Si at a bombarding energy of Ep = 390 keV. Cross sections of astrophys-

ical interest at low energies are usually small. The charged-particle detector for

measuring the reaction α-particles has to cover as large a solid angle as possible in

order to maximize the count rate. The active area of the silicon detector and the

distance between detector and target are 450 mm2 and 5 cm, respectively. The

energy resolution of the detector amounts to ≈ 20 keV. A directly water-cooled
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Figure 4.25 Study of the 31P(p,𝛼)28Si reac-

tion. (a) Setup showing the proton beam,

the beamstop target consisting of 31P

implanted into Ta, and the particle detector

covered by a foil to reduce the large num-

ber of elastically scattered protons reach-

ing the detector. (b) Measured pulse height

spectrum at a bombarding energy of Ep =

390 keV. The α-particle peak of interest,

arising from a resonance in 31P(p,𝛼)28Si,

occurs at relatively small pulse heights in

a region dominated by protons leaking

through the foil (caused by foil thickness

inhomogeneities). Alpha-particles originating

from (p,𝛼) reactions on the contaminants 11B,
15N, and 18O are visible at higher energies.

Data adopted from Iliadis et al. (1991).

beamstop target is used to allow for high proton beam currents of several

100 μA. The target is produced by implanting 31P ions into a tantalum sheet

and consists of a 31P–Ta layer with a stoichiometry of 3 ∶ 2 (Table 4.3). For a

given beam energy (Ep = 390 keV) and detector angle (𝜃 = 145
∘), the energy of

the emitted α-particles is determined by the kinematics of the nuclear reaction

(Appendix C.1) and amounts to ≈ 2 MeV.

Since the beamstop target consists of a high-Z material (tantalum), the num-

ber of elastically scattered protons becomes very large (> 106 s−1). The protons

are scattered both from the relatively thin 31P–Ta target layer as well as the thick

tantalum backing. Hence, their energies range from a maximum of ≈ 350 keV

(protons scattered by the first target layers without energy loss) down to zero

(protons scattered inside the tantalum backing and losing energy on the path to

the detector). As a result, the detector count rate in the region of the expected

reaction α-particles would be overwhelmed by the pileup of signals caused by the

unwanted scattered protons. Therefore, a foil is placed in front of the charged-

particle detector sufficiently thick to stop the elastically scattered protons, but at

the same time thin enough to transmit the reaction α-particles.

The measured pulse height spectrum is shown in Figure 4.25b. The α-particles

from the 31P(p,𝛼)28Si reaction have lost a significant fraction of their energy in the

foil and are observed in the first part of the spectrum (E𝛼 ≈ 0.5 MeV). Further-

more, the α-particle peak is significantly broadened because of energy straggling

in the foil (ΔE ≈ 100 keV).The steep background at low energies is mainly caused

by elastically scattered protons leaking through the foil. At higher energies, the
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spectrumdisplays contributions from the (p,𝛼) reactions on 11B, 15N, and 18O con-

taminants in the target and backing (Section 4.3.3). These contaminants give rise

to discrete peaks, except in the case of the 11B(p,𝛼)2𝛼 reaction, which emits three

particles in the exit channel and thus produces a continuous background.

The total number of induced reactions, R, can be calculated from the mea-

sured peak intensity using an expression similar to Eq. (4.46). In general, the inten-

sity of the reaction products is not isotropic (Appendix D) and, therefore, the

angular correlationW has to be taken into account. One finds

R =
peak

𝜂peakBW
(4.49)

The quantities 𝜂peak and W are usually obtained at a laboratory detection angle

of 𝜃 and have to be expressed in the center-of-mass system (Appendix C.2). The

branching ratio,B, is nowdefined as the fraction of a specific transition per nuclear

reaction.

4.5.2

𝛄-Ray Spectroscopy

4.5.2.1 Response Function

The response of γ-ray detectors to incident radiation is more complicated

compared to charged-particle detectors. As already noted, γ-rays interact with

matter via the photoelectric effect, Compton scattering and pair production

(Section 4.2.2). The influence of these effects on the measured pulse height

distribution is shown in Figure 4.26. In the following, we will assume that

monoenergetic photons of energy E𝛾 are incident on the detector.

In case (a), an incident photon undergoes photoelectric absorption. The emit-

ted photoelectron travels typically a distance of atmost a fewmillimeters and loses
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Figure 4.26 Response of a γ-ray detec-

tor to monoenergetic incident radiation.

(a) Representation of different photon his-

tories. (b) Pulse height spectrum; the mean-

ings of the labels are: full-energy peak (FEP),

multiple-site events (MSE), Compton edge

(CE), single-escape peak (SEP), double escape

peak (DEP), Compton continuum (CC) and

back-scattering peak (BSP).
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its energy through ionization and excitation of atoms in the active detector vol-

ume and through the emission of bremsstrahlung. For a sufficiently large active

volume, the entire energy of the photoelectron is absorbed in the detector and,

therefore, the resulting pulse height appears in the region of the full-energy peak

(FEP), corresponding to a photon energy of E𝛾 .

In case (b), the incident photon undergoes Compton scattering. The scattered

photon escapes from the active volume and thus only a fraction of the incident

photon energy is deposited in the detector. The precise energy transferred to

the recoil electron depends on the scattering angle. All scattering angles are

possible and, therefore, the energy distribution of the recoil electrons gives

rise to the Compton continuum (CC). The maximum possible value of Kmax
e
,

that is, the Compton edge (CE), corresponds to a photon-scattering angle of

𝜃 = 180∘ (Section 4.2.2). The continuous Compton background is an unwanted

contribution to the pulse height spectrum. It reduces the signal-to-noise ratio for

the detection of weak discrete peaks and it also makes the interpretation of com-

plex γ-ray spectra that result from incident photons of different energies more

difficult.

In case (c), the incident photon is Compton scattered several times at different

locations in the active volume until eventually photoabsorption occurs.The dura-

tion of this more complex history amounts to < 1 ns, a value that is smaller than

the inherent response time of present day γ-ray detectors. Consequently, the dif-

ferent Compton scattering events and the final photoabsorption occur essentially

in time coincidence and exactly the same total energy is deposited in the detector

as if the incident photon had undergone a single photoelectric absorption. Such

events appear then in the region of the full-energy peak. For incident photon ener-

gies above a few 100 keV, most events in the full-energy peak are caused by such

multiple scattering histories (Figure 4.20). It has been pointed out in Section 4.2.2

(see also Figure 4.11) that there is an energy gap between the full-energy peak

and the Compton edge. In measurements, this gap is partially filled in by multiple

Compton scattering events (MSE) that are followed by photon escape.

In case (d), an incident photon with an energy of E𝛾 > 2mec
2 undergoes pair

production. The created electron and positron lose all their kinetic energy in the

active detector volume. Subsequently, the positron will annihilate with another

electron and two photons, each of 511 keV energy, are produced. Again, the

annihilation radiation appears virtually in time coincidence with the original pair

production event. If both 511 keV photons are absorbed by the detector (e.g.,

via photoelectric effect), then the resulting pulse height will appear in the region

of the full-energy peak at E𝛾 . If only one 511 keV photon is absorbed, while the

other one escapes detection, then the resulting pulse height will give rise to a

discrete peak at an energy of E𝛾 − 511 keV called the single-escape peak (SEP).

If both 511 keV photons escape from the detector, a discrete peak appears at an

energy of E𝛾 − 1022 keV, called the double-escape peak (DEP). More complicated

histories involving Compton scattering of the annihilation quanta occur as well.

Such events contribute to a continuum in the pulse height spectrum between the

double-escape and full-energy peaks.
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Figure 4.27 Computed-tomography (CT)

image of a p-type closed end bulletized

high-purity germanium detector, obtained

using X-rays of 140 kVp and 350 mAs. Notice

the slight misalignment of the crystal inside

the end cap. (Reprinted from Carson et al.

(2010). Copyright (2010), with permission

from Elsevier.)

Finally, a broad peak is frequently observed in pulse height spectra at an energy

of ≈ 200–250 keV. It is caused by photons that Compton scatter in material sur-

rounding the active volume before detection. The peak is referred to as back-

scattering peak (BSP).

The response of a real γ-ray detector will depend on the size, shape, and com-

position of the active volume. It can be simulated theoretically usingMonte Carlo

calculations that track numerically the histories of many different events taking

place in the detector. For accurate simulations, however, the exact geometry of

the active volume must be known. For example, Figure 4.27 shows a computed-

tomography (CT) image of a germanium detector. The precise crystal diameter,

length, bulletization of the edges, and so on, can be extracted from such images

and can be used in the simulations. For more images, see Carson et al. (2010).

4.5.2.2 Energy Calibrations

Full-energy peaks are of major interest in γ-ray spectroscopy studies. They corre-

spond to the full-energy deposition of the incident photon energy and, therefore,

their location in the spectrum is not influenced by any photon energy losses. The

pulse heights in a γ-ray spectrum can be calibrated using absolute energy stan-

dards. Some useful γ-ray energy standards are provided in Table 4.6.The errors of

the calibration energies are less than 0.001%.The listed radioactive sources are all

commercially available and cover an energy range up to ≈ 3.5 MeV. Furthermore,

the two γ-ray lines from 40K and 208Tl (1460.8 keV and 2614.5 keV, respectively)

are themost prominent room background peaks in γ-ray spectra and thus provide

a convenient internal calibration without using radioactive sources. The energy

range may be extended up to ≈ 5 MeV using the radioisotope 66Ga, although its

half-life is rather short (T1∕2 = 9.5 h). Therefore, the region above 3.5 MeV is fre-

quently calibrated using γ-rays emitted in nuclear reactions.These energies can be
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Table 4.6 Properties of common γ-ray calibration sources.

Source Half-life Energy (keV) Branching ratioa (%)

152Eu 13.522(16) y 121.7817(3) 28.41(13)

244.6974(8) 7.55(4)

344.2785(12) 26.59(12)

411.1165(12) 2.238(10)

778.9045(24) 12.97(6)

867.380(3) 4.243(23)

1085.837(10) 10.13(6)

1089.737(5) 1.73(1)

1112.076(3) 13.41(6)

1212.948(11) 1.416(9)

1299.142(8) 1.633(9)

1408.013(3) 20.85(8)
56Co 77.236(26) d 846.7638(19) 99.9399(23)

1037.8333(24) 14.03(5)

1175.0878(22) 2.249(9)

1238.2736(22) 66.41(16)

1360.196(4) 4.280(13)

1771.327(3) 15.45(4)

2015.176(5) 3.017(14)

2034.752(5) 7.741(13)

2598.438(4) 16.96(4)

3201.930(11) 3.203(13)

3253.402(5) 7.87(3)

3272.978(6) 1.855(9)

3451.119(4) 0.942(6)
57Co 271.80(5) d 122.06065(12) 85.51(6)

136.47356(29) 10.71(15)
198Au 2.6943(3) d 411.80205(17) 95.62(6)
137Cs 30.05(8) y 661.657(3) 84.99(20)
54Mn 312.13(3) d 834.838(5) 99.9746(11)
88Y 106.626(21) d 898.036(4) 93.90(23)

1836.052(13) 99.32(3)
60Co 5.2711(8) y 1173.228(3) 99.85(3)

1332.492(4) 99.9826(6)
22Na 2.6029(8) y 1274.537(7) 99.94(13)
40K 1460.822(6) 10.55(11)
208Tl 2614.511(10) 99.755(4)

a γ-Ray yield (%) per disintegration. The error is given in parenthesis and refers to the last

significant digit(s).

Source: Bé et al. (2013).

calculated precisely from the kinematics of the reaction (Appendix C.1) if certain

quantities (such as the bombarding energy, themasses of projectile and target, and

the detector angle) are well known. The resulting calibration energies are not as

precisely determined as those from radioisotopes. One also has to be careful since
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many γ-rays emitted in nuclear reactions are Doppler shifted (see Eq. (C.12)).

If capture reactions (e.g., (p,𝛾) or (𝛼,𝛾) reactions) are used for the energy cali-

bration, it is of advantage to position the detector at an angle of 𝜃 = 90∘, where

the Doppler shift is zero to first order. Sometimes it may be possible to use the

single- and double-escape peaks for calibrations since their energies relative to

the location E𝛾 of the corresponding full-energy peak are well known (E𝛾 −mec
2

and E𝛾 − 2mec
2, respectively). However, small systematic shifts in the location

of the escape peaks have been observed. The deviations can amount to several

100 eV and seem to depend on the type and geometry of the detector (Endt et al.,

1990). This effect has to be considered if γ-ray energies of high precision are of

interest.

When several energy calibration points have been established over the region of

interest, a calibration curve relating energies to channel numbers can be derived

from a least-squares fit. With germanium detectors it is frequently sufficient to

represent the energy as a linear function of the channel. Deviations from linear-

ity depend primarily on nonlinearities of the electronic amplifier–analyzer system

andmay amount to several hundred electron volts. It is sometimes even appropri-

ate to use for a linear energy calibration only two well-known peaks with energies

E1 and E2 and channel centroids C1 and C2,

Ei = aCi + b = E1 +
E2 − E1
C2 − C1

(Ci − C1) (4.50)

If higher precision is desired, the energy calibration can be obtained from a cubic

least-squares fit. Higher order polynomials may be necessary if NaI(Tl) detectors

are used since their response is far less linear compared to germanium detectors.

4.5.2.3 Efficiency Calibrations

Measurements of cross sections require knowledge of detection efficiencies.

Furthermore, the accuracy of the derived cross sections depends directly on the

uncertainty of the efficiencies. Full-energy peak efficiencies may be calculated

with Monte Carlo procedures if the crystal dimensions and the geometry of the

setup are precisely known. However, for germanium detectors this is rarely the

case. Crystals are not standardized to any degree and, furthermore, crystal dimen-

sions supplied by manufacturers have been found to be inaccurate by several

millimeters (Helmer et al., 2003). Also, long-term changes in the charge collection

process can cause the detector efficiency to vary with time. Consequently, it

is recommended that users perform their own efficiency measurements. The

measurements of the efficiency and of the cross section should be carried out in

the same geometry, that is, the same distance and orientation of the detector with

respect to the source or target. The same argument applies to any γ-ray absorbing

material between source or target and detector (e.g., the target holder). Such

effects are expected to bemost important at relatively low γ-ray energies (<1 MeV;

Section 4.2.2).

Typically, detector efficiencies are needed for an energy range between

≈ 100 keV and≈ 15 MeV. Since no single process covers this entire energy region,
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γ-rays from several different processes have to be used. The peak efficiency is

related to the full-energy peak intensity by Eq. (4.46). A reliable determination of

detector efficiencies requires accurate knowledge of the γ-ray branching ratios,

B, defined as the fraction of a specific γ-ray transition per nuclear decay. Several

radioactive sources for which very precise branching ratios are known (with rela-

tive errors of< 1% formost transitions) are listed in Table 4.6. Especially useful are

the radioisotopes 152Eu and 56Co, which cover the energy ranges of 0.1–1.4 and

0.8–3.5 MeV, respectively. For higher energies, efficiencies have to be obtained

using γ-rays from nuclear reactions. If charged-particle beams are available,

frequently used calibration standards are provided by the 655 and 992 keV

resonances in 27Al(p,𝛾)28Si, covering the energy range of 1–11 MeV. The errors

in the reported branching ratios are < 3% (Endt, 1990). At lower bombarding

energies, the 293 and 327 keV resonances in the same reaction may be used,

although the reported branching ratio errors are larger (< 10%; Iliadis et al.,

1990). The relevant data are summarized in Table 4.7. The 278 keV resonance in

the 14N(p,𝛾)15O reaction is also useful in this respect. This particular resonance

emits photons in the range of 0.8–7 MeV and has a simple γ-ray decay scheme,

with almost all decays proceeding via cascades that consist of two γ-rays only.

Since the number of photons for each transition in a given cascade is the same,

the measured intensity ratio of the two γ-rays is equal to the ratio of the corre-

sponding efficiencies.The branching ratio data and the relevant decay scheme are

shown in Table 4.8 and Figure 4.28, respectively. Furthermore, the γ-ray emission

from this resonance is isotropic (J = 1∕2) and hence angular correlation effects

are negligible (Appendix D). If thermal neutrons are available, precise γ-ray effi-

ciencies can be obtained from the 14N(n,𝛾)15N capture reaction.The prompt γ-ray

emission probabilities per neutron-capture event from this reaction are listed in

Table 4.9.

The following strategy is frequently employed to determine a composite γ-ray

efficiency curve. The data from radioactive calibration sources are analyzed and

plotted first. Their well-known activity also provides a normalization of the abso-

lute efficiency scale. In a subsequent step, the reaction data are analyzed. The

resulting efficiencies from each reactionmeasurement are vertically adjusted until

they agree with the radioactive source values in the overlap region. An efficiency

curve obtained in thismanner is shown in Figure 4.29a. In this case, aHPGe detec-

tor of 582 cm3 volume is positioned at a distance of 1.6 cm between source or

target and detector. It can be seen that the peak efficiency drops drastically with

increasing energy, because both photoelectric absorption andCompton scattering

become less likely at higher energies (Section 4.2.2).

Once the efficiency of a detector has been measured at several energies,

a fit to the data can be performed to determine efficiency values between

measured points by interpolation. Frequently used analytical fitting functions

are polynomials, but more complicated functions are also in use (Debertin and

Helmer, 1988).

The full-energy peak efficiency cannot be calculated analytically since it depends

on the γ-ray energy in a complicated way.We alreadymentioned thatMonte Carlo
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Table 4.7 γ-Ray branching ratios (fraction of a specific transition per proton capture event)

of low-energy resonances in 27Al(p,𝛾)28Si.

Er
a: 293d 327d 655e 992e

Exf
b: Exi

c: 11867 11900 12216 12541

0

1779 42.1(10) 76.4(4)

4618 60.4(14) 72.2(8) 4.09(12)

6276 4.5(2) 2.15(7)

6879 1.63(9) 0.70(2)

6889 12.4(8) 12.1(5) 0.294(9)

7381 0.187(6)

7416 1.82(10) 0.297(9)

7799 8.5(3)

7933 6.4(2) 3.96(12)

8259 1.60(9)

8328 1.27(7)

8413 5.9(4)

8589 5.3(5) 3.36(13) 0.173(6)

9165 5.1(3) 0.147(5)

9316 2.09(9) 0.047(2)

9382 29.1(9)

9417 2.8(2) 0.79(3)

9479 1.11(4)

9765 3.2(3) 0.195(7)

10182 0.085(3)

10209 0.146(5)

10311 0.061(3)

10376 0.52(3)

10540 2.3(2)

10596 1.39(7)

10668 0.288(9)

10900 0.63(4)

11195 0.089(3)

11265 0.082(3)

Branching ratios are given in percent. The error is given in parenthesis and refers to the last

significant digit(s). a Resonance energy in keV. b Excitation energy of final state in keV. c Excitation

energy of initial state in keV.

Sources: d Iliadis et al. (1990). e Endt et al. (1990).

techniques may be used to calculate individual photon histories. Although in the

end peak efficiencies should be measured directly for the reasons given above,

the Monte Carlo calculations are useful for estimating relative peak efficiencies.

Uncertainties in crystal dimensions or interaction parameters (i.e., cross sections

for photoelectric absorption, Compton scattering and pair production) have a

comparatively small effect on these relative values.Therefore, Monte Carlo calcu-

lations can provide the shape of the peak efficiency curve and aid in the interpo-

lation between calibration points. An interesting application of the Monte Carlo
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Table 4.8 Branching ratios (%) of 15O levels.

Exf : Exi : 5183 5241 6176 6793 6859 7276 7556

0 100 100 100 100 <10 3.8(12) 1.52(3)

5183 <2.5 <3 <4 <4 17.44(10)

5241 <2.5 <3 100 96.2(12) 0.16(3)

6176 <7 <0.4 <2 58.13(20)

6793 22.75(20)

Exi and Exf denote the excitation energies (in keV) of the initial and final states, respectively,

involved in the transition. See also Figure 4.28a. The error is given in parenthesis and refers to the

last significant digit(s).

Sources: From Ajzenberg-Selove (1991), unless noted otherwise. Branching ratios for the level at

Exi = 7556 keV, corresponding to a resonance at Elab
r

= 278 keV in 14N(p,𝛾)15O, are from Runkle

et al. (2005), Imbriani et al. (2005), Marta et al. (2011), and Art Champagne, private

communication.

method to obtain very precise germanium detector efficiencies can be found in

Helmer et al. (2003).

So far, we have only discussed the determination of full-energy peak efficiencies.

There are situations where the precise knowledge of total efficiencies becomes

also important. For example, total efficiencies are typically needed for estimating

coincidence summing corrections for germanium detectors (see below) or coinci-

dence efficiencies for γγ-detection techniques (Section 4.7.3). In contrast to peak

efficiencies, the calculation of total efficiencies is in principle straightforward.The

probability that an incident photon traversing a path length x in the active volume

is not detected, that is, does not undergo any interaction in the crystal, is given by

P = ∕0 = e−𝜇x (see Eq. (4.30)), where and0 denote the total number of
transmitted and incident quanta, respectively. Equivalently, we may calculate the

probability that this incident photon will undergo any interaction and deposit any

energy in the crystal from P = 1 − P = 1 − e−𝜇x. In general, the path length x will

depend on the angle of photon emission with respect to the crystal.Therefore, the

total efficiency can be found by integrating over the solid angle Ω subtended by

the detector,

𝜂tot =
1

4𝜋 ∫ (1 − e−𝜇x) dΩ (4.51)

For the case of a cylindrical detector of radius R and length t, and a point source

located on the detector axis at a distance d (Figure 4.30) we obtain (Debertin and

Helmer, 1988)

𝜂tot =
1

2 ∫
𝜃1

0

[
1 − e−(𝜇t∕ cos 𝜃)

]
sin 𝜃 d𝜃

+
1

2 ∫
𝜃2

𝜃1

[
1 − e−(𝜇R∕ sin 𝜃)+(𝜇d∕ cos 𝜃)

]
sin 𝜃 d𝜃 (4.52)
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Figure 4.28 Energy level diagrams of (a) 15O, and (b) 60Ni. The γ-ray branching ratios of 15O

levels are presented in Table 4.8. The β-decay and γ-ray branching ratios for the 60Co → 60Ni

decay are adopted from Firestone and Shirley (1996).

with 𝜃1 = arctan[R∕(d + t)] and 𝜃2 = arctan(R∕d). An unscattered photon emit-

ted at an angle of 𝜃1 (as measured from the detector axis) passes through the

detector backside, while an unscattered photon emitted at angles between 𝜃1 to 𝜃2
passes through the detector sides. The above integrals can be solved numerically.

Frequently, the detector crystal geometry is not a simple cylinder. For example,

coaxial germanium detectors have an insensitive cylindrical core that reduces

the calculated total efficiency. Or, sources may be placed inside annular NaI(Tl)

detectors (Section 4.7.3) to maximize counting rates. In these cases, total

efficiencies can be calculated by using more complicated analytical expressions

(Longland et al., 2006). Interactions in any absorbing material located between

source or target and detector can additionally be taken into account by calculating

the γ-ray attenuation. The total efficiency of a HPGe detector estimated in this

manner is displayed in Figure 4.29b. The detector crystal has a length and

diameter of 93 and 90 mm, respectively, and the insensitive core a length and

diameter of 79 and 9 mm, respectively. The detector–source distance is 16 mm.

The solid line is obtained from an analytical expression, while the diamonds

represent the results of a Monte Carlo simulation. It can be seen that 𝜂tot varies

smoothly beyond a γ-ray energy of ≈ 3 MeV. The results from the analytical

expression agree with those from the Monte Carlo calculation within 3%

(Longland et al., 2006).

The above considerations apply only to an ideal measuring geometry with no

photon scattering in the surroundings of the detector. Photons that are originally

emitted in a direction outside the solid angle of the detector could be scattered in

the surrounding material and may thus reach the active detector volume. These

photons will then contribute to the total efficiency (but not to the full-energy

peak efficiency; see also Figure 4.14b). Although calculated values of 𝜂tot are use-

ful for estimates of relative total efficiencies, it is preferable to measure absolute
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Table 4.9 γ-Ray emission probabilities per neutron-capture event from the
14N(n,𝛾)15N reaction induced by thermal neutrons.

E𝜸 (keV) B (%) E𝜸 (keV) B (%)

1678 7.96(9) 5269 29.94(20)

1885 18.72(20) 5298 21.27(18)

2000 4.05(5) 5533 19.66(21)

2520 5.68(7) 5562 10.66(12)

2831 1.72(3) 6322 18.45(14)

3532 9.09(9) 7299 9.56(9)

3678 14.70(15) 8310 4.17(5)

4509 16.63(17) 10829 14.0(3)

The error is given in parenthesis and refers to the last significant digit(s).

Source: Raman et al. (2000).

total efficiencies in a geometry identical to that used for the cross section mea-

surement. Experimental 𝜂tot values can be obtained using single-line γ-ray emit-

ters, such as 137Cs or 54Mn. In the data analysis, the background intensity (with-

out source) needs to be subtracted appropriately and, in addition, the spectrum

has to be extrapolated beyond the discriminator threshold to zero pulse height

(Figure 4.17b). Alternatively, two-line γ-ray emitters, such as 60Co, can be used

to measure total efficiencies (see below). Multiple-line γ-ray emitters are not as

useful for this purpose because of coincidence summing effects, which will be

described below.

4.5.2.4 Coincidence Summing

In many cases of practical interest, nuclear levels de-excite to the ground state via

the sequential emission of two or more photons, rather than by emitting only a

single γ-ray. Suppose that two coincident photons, belonging to the same γ-ray

cascade, interact simultaneously with the detector. The resulting summed pulse

will appear in the spectrum in a region that is different from the full-energy peak of

either photon. Furthermore, the coincident photons that give rise to the summed

signal are missing from the full-energy peaks of the individual photons.The effect

is referred to as coincidence summing and has to be properly accounted for to avoid

errors when efficiencies and cross sections are measured. It is particularly severe

for a nuclear level with a complicated decay scheme, that is, if the level can decay

through a large number of lower lying states.

Notice that coincidence summing is not related to the phenomenon of pulse

pileup. The latter effect is also referred to as random summing and occurs when

photons belonging to different cascades sum their energies randomly because of

relatively high pulse rates (Knoll, 1989). Coincidence summing, on the other hand,

is independent of the pulse rate, but depends on the distance between detector

and source. In principle, coincidence summing effects can always be reduced to

insignificant levels by increasing the detector–source distance. This procedure,

however, may decrease the counting efficiency to intolerable levels, especially in
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Figure 4.29 Efficiencies for a HPGe detector

of 582 cm3 volume, positioned at a distance

of 1.6 cm between source (or target) and

detector. (a) Experimental peak efficiencies;

the curve is constructed by using calibra-

tion sources (56Co and 152Eu) and calibration

resonances [14N(p,𝛾)15O and 27Al(p,𝛾)28Si].

The displayed efficiencies are corrected for

coincidence summing. (Courtesy of Robert

Runkle.) (b) Calculated total efficiencies; the

solid line is obtained from an expression sim-

ilar to Eq. (4.52), but additionally taking into

account the insensitive detector core. The

results agree with those from Monte Carlo

simulations (shown as diamonds) using the

computer code MCNP (Briesmeister, 1993).

(Courtesy of Chris Fox and Richard Long-

land.)

measurements of very weak cross sections. The experimentalist has frequently

little choice but to maximize the counting efficiency by minimizing the detector–

source distance and, at the same time, to properly account for coincidence sum-

ming effects.

As a simple example, consider Figure 4.31 showing a decay scheme involving

three levels in nucleus Y. Level 2 is populated, say, by a capture reaction. It may

either decay directly to the ground state (2→ 0) via emission of photon 𝛾20 with
a branching ratio of B20, or to level 1 (2→ 1) via emission of photon 𝛾21 with a
branching ratio of B21. Subsequently, level 1 decays to the ground state (1→ 0)
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Figure 4.30 Geometry for the calculation of the total γ-ray efficiency of a cylindrical detec-

tor according to Eq. (4.52); d is the distance between source and detector front face, t is the

length of the detector crystal, and R is the crystal radius.

via emission of photon 𝛾10 with a branching ratio of 100% (B10 = 1). Note that

B20 + B21 = 1. Angular correlations between γ-rays will be neglected in the fol-

lowing. With the total number of nuclei in the second excited state given by ,
the number of detected photons 𝛾21 in the full-energy peak is equal to

21 = B21𝜂
P
21
−B21𝜂

P
21
𝜂T
10
= B21𝜂

P
21
(1 − 𝜂T

10
) (4.53)

with 𝜂P
21
and 𝜂T

10
the (full-energy) peak and total efficiency of photon 𝛾21 and

𝛾10, respectively. The intensity of the full energy peak is reduced by the amountB21𝜂
P
21
𝜂T
10
, which corresponds to the probability that photon 𝛾21 is fully detected

and, at the same time, the coincident photon 𝛾10 leaves any measurable amount of

energy in the detector (e.g., through Compton scattering). Equivalently, the term

B21𝜂
P
21
(1 − 𝜂T

10
) corresponds to the probability that photon 𝛾21 is fully detected

and, at the same time, photon 𝛾10 escapes detection. If both photons 𝛾21 and 𝛾10
are detected simultaneously, then counts are removed from the full energy peak

of photon 𝛾21. This effect, which depends on both the peak and total detector

efficiency, is referred to as summing-out. Similarly, we obtain for the number of

detected photons 𝛾10 in the full-energy peak

10 = B21𝜂
P
10
−B21𝜂

P
10
𝜂T
21
= B21𝜂

P
10
(1 − 𝜂T

21
) (4.54)

On the other hand, the number of detected photons 𝛾20 in the full energy peak is

20 = B20𝜂
P
20
+B21𝜂

P
21
𝜂P
10

(4.55)

The intensity of the full energy peak is increased by the amountB21𝜂
P
21
𝜂P
10
, which

corresponds to the probability that both photons 𝛾21 and 𝛾10 are fully absorbed in

the detector.This effect, which depends only on the peak efficiency of the detector,

is referred to as summing-in.

Coincidence summing effects become significant for large efficiency values or,

equivalently, for close detector–source geometries. For example, if the ground-

state transition via emission of photon 𝛾20, is weak (B20 ≈ 0), the measured

intensity 20 may arise entirely from summing-in. Consequently, neglecting
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Figure 4.31 Coincidence summing of γ-rays.

(a) Scheme of three levels (0, 1, 2). Level 2 is

populated either in a capture reaction or by

β-decay. It can γ-decay either to level 1 or to

the ground state 0. The intermediate level

1 can only decay to the ground state. (b)

Corresponding pulse height spectrum. The

peaks labeled “𝛾21” and “𝛾10” are affected

by summing-out, while the peak labeled

“𝛾20, 𝛾21 + 𝛾10” is influenced by summing-in.

coincidence summing corrections may cause large systematic errors in the

interpretation of the γ-ray decay scheme. If the decay shown in Figure 4.31 is

used for determining the peak efficiencies of photons 𝛾21 and 𝛾10, then we obtain

from Eqs. (4.53) and (4.54)

𝜂P
21
=

21
B21(1 − 𝜂

T
10
)
, 𝜂P

10
=

10
B21(1 − 𝜂

T
21
)

(4.56)

A comparison of Eqs. (4.43) and (4.56) shows that, in the presence of coincidence

summing, the efficiency expression has to be modified by the total detection effi-

ciency factor (1 − 𝜂T
ij
). Similar arguments hold if this decay is used for determining

the number of decaying levels 2 (proportional to the source activity or the cross
section) from the measured peak intensities of 𝛾21 or 𝛾10. A proper account for

summing corrections gives (see Eqs. (4.53) and (4.54))

 =
21

B21𝜂
P
21
(1 − 𝜂T

10
)
=

10
B21𝜂

P
10
(1 − 𝜂T

21
)

(4.57)

In more complicated cases involving different multiple-γ-ray cascades, β-decays

to intermediate levels, internal conversion transitions, angular correlations and so

on, summing corrections can no longer be calculated analytically. Positron decays

to excited levels in the daughter nucleus give rise to annihilation quanta that are

coincident with γ-rays from the de-excitation of those levels and thus have to be

considered carefully as well (even for single-line γ-ray sources). General numer-

ical methods have been developed for such cases (Debertin and Helmer, 1988;

Semkow et al., 1990).

Coincidence summing effects are frequently apparent from a visual inspection

of the (uncorrected) full-energy peak efficiency curve if data are taken in close

geometry. Some efficiency values will lie on a smooth curve, corresponding
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to noncoincident photons, while other data points that are affected by coinci-

dence summing will lie away from the curve. Based on this information, the

experimentalist can decide if corrections need to be applied to achieve the

desired precision. Coincidence summing not only influences peak intensities in

the pulse height spectrum, but also impacts the total intensities since two (or

more) photons are registered by the detector as one pulse.

4.5.2.5 Sum Peak Method

The importance of absolute normalization of the peak and total efficiency curves

has been stressed in previous sections. For some commercially available γ-ray

sources, absolute activities can be quoted to about 1% precision. In many cases,

however, a set of absolutely calibrated sources may not be available to the experi-

mentalist. Here we will describe a method that not only provides simultaneously

absolute peak and total efficiencies without knowledge of the source activity, but

the derived results will also be automatically corrected for coincidence summing

effects.The technique is referred to as the sum peak method and utilizes the coin-

cidence summing of photons that belong to a two-γ-ray cascade.

Consider again the decay scheme in Figure 4.31. Level 2 is populated by

some process (e.g., β-decay of a parent nucleus), but assume now that it decays

exclusively to the intermediate level 1 (B21 = 1, B20 = 0) and, subsequently, to

the ground state 0 (B10 = 1). The measured intensities of the full-energy peaks

(21,10), the sum peak (20), and the total intensity in the spectrum (t) are

given by

21 =  𝜂P
21

(
1 −W𝜂T

10

)
(4.58)

10 =  𝜂P
10

(
1 −W𝜂T

21

)
(4.59)

20 =  𝜂P
21
𝜂P
10
W (4.60)

t =  (
𝜂T
21
+ 𝜂T
10
− 𝜂T
21
𝜂T
10
W

)
(4.61)

These relationships take explicitly the angular correlation W of photons 𝛾21
and 𝛾10 into account, but otherwise the first three expressions are identical to

Eqs. (4.53)–(4.55). The term 𝜂T
21
𝜂T
10
W in the last expression corresponds to the

probability that each of the coincident photons deposits some amount of energy

in the detector. In this case, the two photons are registered in the detector as

one pulse and, consequently, the total intensity in the spectrum is reduced. As

already pointed out, it is assumed that the intensity t has been corrected for

the background (without source) and is extrapolated to zero pulse height.

The above equations can be solved iteratively until convergence in the solutions

is achieved. However, in certain important cases (e.g., 60Co; see below) the ener-

gies of the two emitted photons are very similar. Hence, we can replace in the

above expressions the total efficiencies 𝜂T
21
and 𝜂T

10
by their average value 𝜂T ≈

(𝜂T
21
+ 𝜂T
10
)∕2. With this approximation, one obtains after some algebra

 =

(2110
20 +t

)
W (4.62)
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𝜂P
21
=
1

W

√ 21 2
20

1020t +21 2
10

(4.63)

𝜂P
10
=
1

W

√ 10 2
20

2120t +10 2
21

(4.64)

𝜂T =
1

W
−
1

W

√ 2110
20t +2110 (4.65)

These expressions for the total number of decaying nuclei ( ) and the absolute
peak and total efficiencies (𝜂P

21
, 𝜂P
10
, 𝜂T ) depend, apart from the factorW , only on

the measured intensities21,10,20, andt .

As a specific example, consider the decay scheme of the radioisotope 60Co

(Figure 4.28b). The β-decay populates the 2506 keV level in the daughter nucleus
60Ni. This level, in turn, γ-decays to the first excited state at 1333 keV by emission

of a 2506–1333 keV = 1173 keV photon. Subsequently, this state de-excites to

the ground state by emission of a 1333 keV photon. Other β- and γ-decays are

very weak and, therefore, this decay represents an almost ideal realization of the

schematic case discussed above. The angular correlation for the two coincident

photons from the decay of 60Co is given by (Example D.1)

W (𝜃) = 1 +
5

49
Q21
2
Q10
2
P2(cos 𝜃) +

4

441
Q21
4
Q10
4
P4(cos 𝜃) (4.66)

where Pn(cos 𝜃) denotes a Legendre polynomial of order n and Q
ab
n
is the solid

angle attenuation factor for photon 𝛾ab; 𝜃 is the angle between the directions of

the two photons. In this case, 𝜃 = 0∘ and hence P2(cos 𝜃) = P4(cos 𝜃) = 1 (see

Eqs. (A.12) and (A.14)). The factors Qab
n
can be estimated from the efficiency

and the detector crystal geometry using, for example, Monte Carlo simulations

(Appendix D.5). Strictly speaking, the factors Qab
n
also depend on the type of

event (full-energy peak efficiency solid angle attenuation factor versus total

efficiency solid angle attenuation factor). For example, Eq. (4.58) must in principle

be replaced by

21 =  𝜂P
21

[
1 −

(
1 +
5

49
Q21,P
2

Q10,T
2

+
4

441
Q21,P
4

Q10,T
4

)
𝜂T
10

]
(4.67)

In practice, the distinction between the factors Qab,P
n
and Qab,T

n
is found to have

a negligible effect on the final results if the distance between detector and source

is small (< 1% change in the derived efficiencies for distances < 1 cm). However,

at larger distances this distinction may need to be taken into account (Kim, Park,

and Choi, 2003; Longland et al., 2006).

4.5.2.6 𝛄-Ray Branching Ratios

The γ-ray decay probability for a transition from a given initial state to a specific

lower lying final state, normalized to the total γ-ray decay probability of the initial
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Figure 4.32 Level scheme showing primary

(thick solid arrows) and secondary (thin solid

and dashed arrows) γ-ray transitions. The

thick solid arrows originate from level i that

is directly populated in the capture reaction

X + a → Y. The thin solid arrows correspond

to those secondary transitions that proceed

to the ground state of nucleus Y.

level, is called the γ-ray branching ratio. It is defined by the ratio of the γ-ray

partial width for a specific transition and the total γ-ray partial width of the initial

state (see Eq. (1.30)). Branching ratios contain important information regarding

the nuclear structure of the initial and final nuclear states. They are also needed

to calculate from the measured intensities of specific transitions the total number

of populated compound levels. This number is equal to the total number of

reactions that occurred and thus determines the reaction cross section

(Sections 4.8 and 4.9).

Consider the schematic level diagram shown in Figure 4.32. An initial level i

in nucleus Y is populated by some fusion reaction X + a. The initial state can

directly decay either to the ground state (0) or to three lower lying excited states

(1, 2, 3). These transitions (thick solid arrows) are referred to as primary γ-ray

decay branches. The corresponding primary γ-ray branching ratios are experi-

mentally given by

Bij ≡
ij∕(𝜂

P
ij
Wij)∑

j

ij∕(𝜂
P
ij
Wij)

(4.68)

withij, 𝜂
P
ij
, andWij the measured full-energy peak intensity, peak efficiency, and

angular correlation, respectively, for the transition leading from the initial level

i to a specific final state j. It is assumed that ij and 𝜂
P
ij
have been corrected for

coincidence summing effects.There are further decay possibilities involving levels

other than the initial state i. These transitions (indicated by thin solid and dashed

arrows) are referred to as secondary γ-ray decay branches.

The total number of compound nuclei created in the fusion reaction, that is,

the total number of initially populated levels i, can be obtained either from the

primary branching ratios (thick solid arrows),

i =
∑

j=0,1,2,3

ij

𝜂P
ij
Wij

=
ij

Bij𝜂
P
ij
Wij

(4.69)
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or from all transitions leading to the ground state (thin solid arrows plus the pri-

mary ground-state branch),

i =
∑

j=1,2,3,i

j0

𝜂P
j0
Wj0

(4.70)

The proper interpretation of a γ-ray spectrum can be challenging if the decay

scheme is complex. Sometimes it is found that peaks originating from the reac-

tion of interest overlap with escape peaks, room background lines, or peaks from

reactions involving target or beam contaminants. For the analysis of reaction data,

it is frequently of advantage to compare spectra obtained with beam on target

with those measured without beam (room background) or with beam on a blank

backing.

It is sometimes possible to determine ratios of partial widths from the observed

intensity balance of primary and secondary γ-ray transitions. For example, con-

sider Figure 4.33 showing a level scheme of 25Al and a germanium γ-ray spec-

trummeasured in the 24Mg(p,𝛾)25Al reaction.The reaction populates a resonance

located at Er = 1616 keV, corresponding to a level at Ex = 3823 keV in the com-

pound nucleus. This level decays via several primary γ-ray transitions. One of
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Figure 4.33 Study of the 24Mg(p,𝛾)25Al

reaction at a proton bombarding energy of

Ep = 1620 keV. (a) Level scheme of 25Al. The

capture reaction populates a level at Ex =

3823 keV, which γ-ray decays to a state at

Ex = 2485 keV. The latter state decays either

via proton emission or via γ-ray transitions

to lower-lying levels (Ex = 452 or 945 keV).

(b) Measured pulse height spectrum. The

γ-ray transitions populating or decaying from

the Ex = 2485 keV state are indicated by

solid circles. See discussion in the text. Data

adopted from Powell et al. (1999).
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these primary transitions proceeds to the proton unbound Ex = 2485 keV level.

This state, in turn, has three possibilities of decay: (i) a γ-ray transition to the

Ex = 452 keV state; (ii) a γ-ray transition to the Ex = 945 keV state, and (iii) a tran-

sition to the 24Mg ground state via emission of a proton. The partial width ratio

Γ𝛾∕Γ of the Ex = 2485 keV state is then given by the ratio of the total number

of γ-ray transitions decaying from this level (2485→ 452, 2485→ 945) and the
number of γ-ray transitions feeding this level (3823→ 2485),

Γ𝛾

Γ
=

Γ𝛾

Γp + Γ𝛾
=
(2485→452∕𝜂P2485→452) + (2485→945∕𝜂P2485→945)

(3823→2485∕𝜂P3823→2485)
= 0.91 ± 0.04 (4.71)

Angular correlation effects are negligible in this case. The measured value pro-

vides important input information for the extrapolation of the 24Mg(p,𝛾)25Al cross

section to low energies (Powell et al., 1999).

4.5.2.7 4𝝅 Detection of 𝛄-Rays
The interpretation of a complex γ-ray spectrum to determine the branching

ratios of individual γ-ray transitions, and eventually cross sections, can be a

very time-consuming task. Such investigations are especially tedious if a large

number of resonances has to be measured in a specific reaction. Furthermore,

if the Q-value of the capture reaction is large and if the target nucleus is heavy,

then incident charged-particles or neutrons may excite a number of overlapping

resonances simultaneously, giving rise to a multitude of capture γ-rays lines in the

pulse height spectrum. The experimental information on individual γ-ray tran-

sitions is not necessarily required to determine the number of nuclear reactions

that took place during the experiment. All that is needed from the astrophysical

point of view is the total number of γ-ray cascades initiated by the reaction of

interest.

Consider, for example, the setup shown in Figure 4.34. The target or sample is

located at the center of a large detector crystal covering a solid angle of nearly 4𝜋.

If every single γ-ray of a specific cascade emitted by the target is fully absorbed

by the detector, then each radiative capture would result in a single pulse. The

system would have a detection efficiency of unity for each radiative capture, inde-

pendent of the cascade structure. The pulse height spectrum will show a peak at

an energy equal to the sum of the Q-value and the center-of-mass bombarding

energy, Esum
𝛾

= Q + Ecm. Not only does such a technique greatly simplify the data

analysis, but it has the additional advantage that angular correlation effects are

negligible. Furthermore, contaminant reactions will give rise to sum peaks at dif-

ferent locations in the spectrum since their Q-values are likely to differ from the

Q-value of the reaction of interest. This technique takes advantage of coincidence

summing.

The 4𝜋 detection method has been successfully applied in a number of investi-

gations, including charged-particle and neutron-capture reactions (Lyons, Toevs,

and Sargood, 1969;Wisshak et al., 1990; Harissopulos, 2004). Complications arise
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Figure 4.34 4𝜋 detection of cascading

γ-rays. (a) Level scheme showing a cascade

consisting of three photons (𝛾1, 𝛾2, and 𝛾3).

(b) Summing crystal covering a solid angle

close to 4𝜋. The target is located at the

center of the detector. Photons emitted in

the direction of the beam pipe escape detec-

tion. (c) Schematic pulse height spectrum

showing a sum peak corresponding to an

energy of E(𝛾1) + E(𝛾2) + E(𝛾3).

since any crystal of finite dimensions has a total detection efficiency of less than

unity for any given photon. Some photons may escape through openings of the

detector (e.g., the beam pipe). Others may be absorbed by the target chamber or

may simply traverse the detector without interaction. Such effects cause incom-

plete summing and give rise to a continuum of pulses below the sum peak. Also,

the efficiency for detecting a cascade (summing efficiency) is no longer constant

and will depend on the γ-ray decay scheme. In practice, it is found, with suffi-

ciently large detector crystals, that the summing efficiency depends only slightly

on the cascade structure and that this dependence can be modeled using Monte

Carlo transport codes (Tsagari et al., 2004).

4.5.3

Neutron Spectroscopy

Neutrons must be observed through nuclear interactions (reactions or scattering)

in the detection medium that result in energetic charged-particles (Section 4.2.3).

The cross section for these processes depends in most cases strongly on neutron

energy. Consequently, very different devices are in use for detecting neutrons in

different energy regions. A detailed discussion of the various types of neutron

detectors can be found in Knoll (1989). It has already been pointed out that

astrophysically important reactions frequently have very small cross sections
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Figure 4.35 Measurement of thermal neu-

trons (En = 0.025 eV) with a 3He gas pro-

portional counter. (a) Histories of neutron

interactions in the detector. (b) Pulse height

spectrum. The full-energy peak occurs at

the Q-value of the 3He(n,p)3H reaction (Q =

764 keV). The steps at 191 keV and 573 keV

are caused by the wall effect. The discrimi-

nator threshold is indicated by the vertical

dashed line.

and thus detectors with high efficiencies are required for these measurements.

Most neutron measurements in nuclear astrophysics have been performed

using moderated proportional counters. In the following, we will focus on this

detector type. Scintillators also have high efficiencies for neutron detection

(Section 4.4.3) but are also sensitive to beam-induced and room-background

γ-rays. Although it is possible with scintillators to suppress unwanted γ-ray sig-

nals via pulse shape discrimination techniques, the remaining γ-ray background

is not negligible. For this reason, moderated proportional counters achieve

usually higher sensitivities than scintillators in measurements of weak cross

sections.

4.5.3.1 Response Function

We start with a discussion of the response function of proportional counters. As

a specific example, a detector filled with 3He gas is chosen. Similar arguments

will hold for 10BF3 proportional counters. Suppose that thermal neutrons (En =

0.025 eV) are incident on such a detector, as shown in Figure 4.35a.TheQ-value of

the 3He(n,p)3H reaction amounts to 764 keV. Since the incoming neutronmomen-

tum is very small, the reaction products (protons and tritons) are emitted in oppo-

site directions and the total reaction energy is imparted to the fragments as kinetic

energy according to the ratio of their masses (Ep = 573 keV, Et = 191 keV). If both

particles are stopped in the counter gas (case a), then themagnitude of the current

output pulse corresponds to 764 keV.These events appear in the full-energy peak

(FEP) of the pulse height spectrum (Figure 4.35b). However, if one of the parti-

cles strikes the counter wall, then a smaller pulse is produced. This phenomenon

is referred to as the wall effect. For example, case (b) shows a reaction occurring

close to the counter wall. The proton is completely stopped in the gas, while the

entire energy of the triton is absorbed by the wall. The corresponding event then

appears in the pulse height spectrumat an energy of 573 keV. If the reaction occurs
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at some distance from thewall (case c), so that the triton can deposit at least a frac-

tion of its energy in the gas, then a larger pulse is produced. Similar arguments

hold for the opposite case (case d), that is, when the energy of the triton is fully

absorbed in the gas while only partial proton energy deposition occurs. The wall

effect gives rise to steps at 191 keV and 573 keV in the pulse height spectrum, cor-

responding to the individual energies of the proton and triton fragments. It also

depends on the geometry and size of the counter and is less pronounced for larger

detectors and for higher gas pressures. The wall effect can be reduced by adding

a small amount of a heavier gas (e.g., Kr) to the 3He since then the ranges of the

charged particles become smaller.

The resolution of the full-energy peakmeasured with 3He or 10BF3 proportional

counters amounts typically to several percent for thermal neutrons. It should be

clear from the above considerations that for incident thermal neutrons, the pulse

height spectrum measured with proportional counters provides no information

regarding the neutron energy.

An important property of proportional counters is their ability to discriminate

neutrons from room or beam-induced background γ-rays. Photons interact

mainly with the counter walls by creating secondary electrons. These electrons

have relatively large ranges in gases and thus will deposit only a small fraction of

their energy in the active volume before reaching the counter wall. As a result,

most γ-rays will produce pulses of considerably smaller amplitude than those

induced by neutrons. In practice, a discriminator threshold level (dashed line in

Figure 4.35b) is set just below the structure caused by the wall effect. By accepting

only events located above the threshold, all the neutrons are counted, while low

amplitude events caused by electronic noise, γ-rays and so on, are rejected.

4.5.3.2 Moderated Proportional Counters

In analogy to the case of γ-rays (Section 4.5.2), the detection probability for an

incident neutron traversing a path length of x in the active detector volume is given

by P = 1 − e−N𝜎x, with 𝜎 being the cross section of the reaction that converts the

incoming neutron to charged particles, and N being the number density of active

detector nuclei (10B or 3He). For example, for a 30 cm long cylindrical 10BF3 pro-

portional counter of 600 Torr gas pressurewe obtain a total efficiency of about 90%

for thermal neutrons incident along the detector axis (Example 4.2). However, in

astrophysically important reactions the neutrons are typically emitted with ener-

gies in the kilo electron volts to mega electron volt range rather than with thermal

energies. The cross sections of the reactions 3He(n,p)3H and 10B(n,𝛼)7Li decrease

rapidly for increasing neutron energies, as can be seen from Figure 4.15a. Conse-

quently, the efficiency of proportional counters for directly detecting fast neutrons

is small, making such detectors unsuitable for measuring weak cross sections of

astrophysical interest. The detection efficiency of proportional counters for fast

neutrons can be substantially improved by surrounding the detector with a suit-

able moderator, such as polyethylene or paraffin. The incident fast neutrons slow

down in the moderating medium before reaching the counter and are detected

with a significantly higher efficiency.
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Figure 4.36 Moderated proportional

counter. Several 3He or 10BF3 proportional

detectors (open circles) are arranged in a

concentric ring around the target cham-

ber (shown as full circle). The detectors are

embedded in polyethylene, which acts as

a moderator for beam-induced fast neu-

trons. After moderation, these neutrons are

more efficiently detected. The inner detector

core is surrounded by layers of cadmium

and boron–paraffin. These act as shields for

unwanted contributions from background

neutrons. The entire assembly may be sur-

rounded by plastic scintillator veto shields

(Section 4.4.3) to reduce the background

induced by cosmic-ray muons.

Figure 4.36 shows a typical setup of a system with a high efficiency for detecting

fast neutrons. It consists of several 3He- or 10BF3-filled proportional counters,

arranged in a concentric ring around the target chamber. The counters are

embedded in a cylindrical polyethylene moderator and are surrounded by

layers of boron–paraffin and cadmium. The latter materials act as shields by

moderating room background neutrons in the paraffin and by absorbing the

moderated neutrons in the boron or cadmium layer before they can reach the

active detector volume. The (beam-induced) reactions of interest take place in

the target chamber, located close to the center of the entire detector. The total

efficiency of such devices can amount to ≈ 20–30% for neutron energies between

0.5 and 10 MeV (Section 4.7.4). The choice between 3He and 10BF3 as filler gas is

usually governed by considerations of efficiency and γ-ray sensitivity (East and

Walton, 1969). When the largest detection efficiency is required, 3He counters

are preferable to 10BF3 tubes since the former can be operated at higher pressures.

On the other hand, the latter are less sensitive to γ-ray background because the
10B(n,𝛼)7Li reaction has a higher Q-value than the 3He(n,p)3H reaction.

4.5.3.3 Efficiency Calibrations

Most efficiency calibrations of neutron detectors are performed with calibrated

neutron sources. Radioisotopes that emit neutrons with discrete energies are

practically not available as sources and thus laboratory neutron sources are based

either on spontaneous fission or on nuclear reactions.
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Many transuranium elements decay by spontaneous fission and thereby release

fast neutrons, fission fragments, β- and γ-radiation.Thematerial is usually encap-

sulated in a relatively thick container so that only neutrons and γ-rays emerge

from the source. The most common type of this source is 252Cf (T1∕2 = 2.65 y).

The energy spectrum of the neutrons is continuous up to about 10 MeV with a

maximum at ≈ 0.6 MeV. The neutron yield amounts to about 2.3 × 106 s−1μg−1

(Knoll, 1989). Compared to other neutron sources, 252Cf can be made in relatively

small sizes.

Neutron sources can also be produced by mixing an α-emitting isotope with a

substance such as 9Be, which exhibits a relatively large (𝛼,n) reaction cross section.

One of the most common sources of this type consists of a 239Pu–Be mixture in

which α-particles of 5.14 MeV energy from the decay of 239Pu initiate the reaction
9Be(𝛼,n)12C.The neutron transitions occur either to the ground state or to various

excited states in 12C.The α-particles lose some of their initial energy in the source

before reacting with the 9Be nuclei and, therefore, the neutron energy spectrum

is continuous up to about 11 MeV. Similar arguments hold for other (𝛼,n) neutron

sources. A 239Pu–Be source yields about 60 neutrons per 106 primary α-particles.

The neutron yield of these sources should decay according to the half-life of the

α-emitting nuclei. However, this assumption does not necessarily hold if the

source contains contaminants that either emit directly α-particles or decay to

α-emitting daughter nuclei. Such contaminants can even cause the neutron yield

to increase with time (Knoll, 1989).

Similarly, γ-ray emitters are sometimes used to produce neutrons via the pho-

toneutron reactions 9Be(𝛾 ,n)8Be (Q = −1.66 MeV) or 2H(𝛾 ,n)p (Q = −2.23 MeV).

Suitable γ-ray emitters must provide photons of relatively large energies to initiate

(𝛾 ,n) reactions. An example for such a neutron source is a mixture of 88Y–Be.

Since the γ-rays are emitted with discrete energies and are not slowed down in

the source, the emitted neutrons will also be monoenergetic, apart from a small

kinematic energy spread. The disadvantage of (𝛾 ,n) neutron sources is that high

γ-ray activities are required to achieve reasonable neutron intensities. As a result,

the neutrons are accompanied by a large γ-ray background.

Specific examples for the types of sources discussed above, together with their

neutron energy regions, are listed in Table 4.10. Neutrons can also be produced

directly at accelerators in reactions such as d(d,n)3He (Q = 3.27 MeV) and
7Li(p,n)7Be (Q = −1.64 MeV). In addition, theoretical calculations of neutron

detector efficiencies are routinely performed using Monte Carlo simulations

(Briesmeister, 1993).

4.6

Miscellaneous Experimental Techniques

A number of experimental techniques are used in direct measurements of astro-

physically important reactions that require special equipment and procedures.

In this section, we will focus on three particularly important examples:
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Table 4.10 Properties of neutron calibration sources.

Source Type Half-lifea E𝐧
b (MeV)

252Cf spon. fission 2.645(8) y < 10c

239Pu–Be (𝛼,n) 24110(30) y < 11
241Am–Be (𝛼,n) 432.6(6) y < 10c

88Y–Be (𝛾 ,n) 106.626(21) d 0.152

0.949
124Sb–Be (𝛾 ,n) 60.20(3) d 0.023

Sources: a Wang et al. (2012). b Knoll (1989), unless mentioned otherwise.
c Lorch (1973).

(i) radioactive ion beams, (ii) the activation method, and (iii) the time-of-flight

technique. The last two are used both in charged-particle and neutron-induced

reaction studies, but in nuclear astrophysics their main (although not exclusive)

application is in the field of neutron-induced reactions. For other interesting

techniques, such as accelerator mass spectrometry (Wallner et al., 2006) or the

use of etched track detectors (Somorjai et al., 1998), the reader is referred to the

literature.

4.6.1

Radioactive Ion Beams

Proton- and α-particle-induced reactions in a stellar plasma at elevated temper-

atures do not only involve stable nuclides, as will become apparent in the next

chapter, but unstable nuclides also participate in the nucleosynthesis. The insta-

bility of one of the interacting nuclei represents a significant challenge for the

experimentalist. If the half-life exceeds a few days, then it may be possible to

fabricate a radioactive target and to measure directly the reaction of interest by

bombarding the target with protons or α-particles using the experimental tech-

niques and procedures described so far. Examples for such studies are the mea-

surements of proton capture reactions on the radioactive species 22Na (Seuthe

et al., 1990; Stegmüller et al., 1996) and 26Alg (Buchmann et al., 1984; Vogelaar,

1989) with half-lives of T1∕2 = 2.6 y and 7.2 × 10
5 y, respectively. However, if the

half-life of a species amounts to a fewminutes or less, the fabrication of a radioac-

tive target is not feasible. A direct measurement of such reactions is nevertheless

possible if the role of target and projectile are interchanged. Consider a reaction

between a light particle x (proton or α-particle) and a short-lived heavy nucleus

X. The bombardment of target X with projectiles x may not be feasible. How-

ever, it may be possible to produce a beam of radioactive nuclei X that is directed

onto a stationary target consisting of the light nuclei x. Such measurements are

referred to as inverse kinematics studies. For example, suppose one would like

to measure the proton capture cross section of the p + X reaction at a center-

of-mass energy of Ecm = 0.5 MeV, where the short-lived nucleus X has a mass
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number of A = 20. The laboratory beam energy of X must then be Elab(
20X) =

Ecm(mp +mX)∕mp = 10.5 MeV (see Eq. (C.24)). The time of flight of X over a dis-

tance of ≈ 100 m amounts only to ≈ 10 μs and, therefore, a measurement of the

reaction p + X is in principle feasible if the half-life of X is not too short (say, in

this example, T1∕2 > 10 μs).

The production, transport, and acceleration of radioactive ion beams suitable

for nuclear astrophysics measurements requires substantial resources and efforts.

Several different techniques have been developed that are complementary in

their capabilities. In the simplest case, the radioactive material of interest is

produced offline at a nuclear reactor or accelerator and is then converted into a

suitable chemical form before installation in an ion source of a second accelerator

capable of accelerating the radioactive heavy ions. This method, called the batch

mode technique, is suitable only for beams of relatively long-lived nuclei. It has

been applied, for example, in studies of the 7Be(p,𝛾)8B and 44Ti(𝛼,p)47V reactions

(Gialanella et al., 2000; Sonzogni et al., 2000).Themost direct approach, however,

is the online production of radioactive nuclei, their ionization and extraction

from an ion source, and their subsequent acceleration. This method, referred

to as the isotope separator online (ISOL) technique, has been used extensively

in nuclear astrophysics measurements. In the following we will briefly describe

this method. More specific information can be found in Smith and Rehm

(2001) and Blackmon, Angulo, and Shotter (2006). Other techniques involving

measurements with (low-energy) unaccelerated radioactive ion beams or with

high-energy radioactive beams produced via projectile fragmentation are mainly

used in indirect studies of important nuclear structure properties. Since they are

usually not suitable for direct measurements of low-energy nuclear reactions,

they will not be discussed here. The reader can find more information on the

latter topics in Mueller and Sherrill (1993).

The isotope separator online (ISOL) technique is shown schematically in

Figure 4.37. A beam of stable nuclei from a production accelerator bombards

a thick target and produces radioactive nuclei. These diffuse out of the target,

through a transfer tube, and into an ion source where they are ionized and

continuously extracted. The radioactive ions are then mass separated from

other, undesired, isotopes. At this stage they represent a beam of unacceler-

ated, low-energy radioactive ions. Subsequently, they are accelerated by a post

accelerator, which allows a tuning of the beam energy to the desired value. This

accelerated radioactive ion beam is finally incident on a hydrogen or helium

target. The radiation emitted in the reaction of interest is then observed using

suitable detectors. Beams from ISOL facilities have excellent beam qualities

(resolution and spread).The success of an experiment depends on the radioactive

ion beam intensity, which is limited by the primary production cross section, the

diffusion velocity of the radioactive ions in the production target, the effusion

of radioactive ions out of the target, and the ionization efficiency in the ion

source. Unfortunately, no single combination of production beam, thick target,

and ion source can produce all radioactive species of astrophysical interest.

More typically, each radioactive ion beam experiment requires an extensive
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Figure 4.37 Basic components of an iso-

tope separator online (ISOL) facility for

the production of accelerated radioactive

ion beams. The dashed square marks the

location of the reaction measurement of

astrophysical interest. In a reaction of type

X(a,b)Y, detectors 1 or 3 detect the emit-

ted light particle b. Alternatively, the light

particle b and the corresponding heavy

residual nucleus Y may be detected in coin-

cidence. In a capture reaction, X(a,𝛾)Y, the

heavy residual nucleus Y may be detected

in a recoil separator (detector 2). Alterna-

tively, the residual nuclei may be detected

by detector 2 in coincidence with the corre-

sponding prompt γ-rays in detectors 1 or 3.

and time-consuming effort of beam development where the composition and

chemistry of the production target is varied until the intensity of the radioactive

species of interest is maximized. Beams of some elements, for example, noble

gases or alkali metals, can be produced with relatively high intensities, while

beams of refractory elements are difficult to extract from the production target

and are thus available only with considerably lower intensities. Some of the

issues related to the production of radioactive beams at ISOL facilities are

discussed in Dombsky, Bricault, and Hanemaayer (2004). At present, even

under favorable circumstances, the radioactive beam intensities delivered to an

experiment amount to at most ≈ 1010 ions/s. Comparison to a value of 6 × 1014

particles/s for a 100 μA proton beam in a typical normal kinematics experiment

reveals that a radioactive ion beam facility must be carefully designed and

optimized to avoid any intensity losses of the precious radioactive beam. In

addition, it is imperative that the detection system has a large detection efficiency

and large discriminating power against unwanted beam-induced background

contributions.
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We will first briefly discuss some important components of ISOL facilities

before describing a specific experiment in more detail. In a star, most charged-

particle reactions involving radioactive ions are induced by protons or α-particles.

Therefore, hydrogen and helium are the most important target materials in direct

radioactive ion beam measurements. The target requirements differ somewhat

from those appropriate for normal kinematics experiments (Section 4.3). In

the case of hydrogen, thin polyethylene [(CH2)n] foils have been employed

successfully in several measurements. They are mechanically stable, even if

stretched to thicknesses of 20–1000 μg/cm2, and they have been used with beam

intensities of up to 109 particles/s without significant degradation. However,

the carbon content may give rise to an intense beam-induced background

dominated by elastic scattering. Gas targets are a choice for helium, and are also

advantageous for hydrogen. Gas cells with thin entrance and exit windows are

easy to handle but the window foils degrade the beam energy resolution and

induce background reactions. Windowless gas targets are the preferred choice

(Section 4.3.2) although they are bulky and expensive since they require many

pumping stations to reduce the pressure to the 10−7 Torr range.

Radioactive beam experiments are performed in inverse kinematics. For the

reaction products, this has the interesting consequence that the solid angle in

the center-of-mass system is compressed into a significantly smaller solid angle

in the laboratory reference frame (Appendix C.2). Detection systems used in

radioactive ion beam experiments take advantage of this circumstance to increase

the efficiency and sensitivity. Light charged particles from (p,𝛼) or (𝛼,p) reactions

have been measured using arrays of silicon strip detectors, arranged to cover a

large solid angle around the target. These are highly segmented, with well over

100 elements, and provide excellent energy and angle resolution. Thicknesses for

these counters amount to 50–1000 μm and arrays can be stacked to allow for

particle identification by measuring both energy loss (ΔE) and total energy (E).

In some cases, the heavy reaction products Y have been detected in coincidence

using additional detectors placed downstream of the target. Such experiments

require typically radioactive ion beam intensities in excess of 105 particles/s to

achieve sufficient counting statistics.

Radiative capture reactions of type (p,𝛾) or (𝛼,𝛾) can in principle be studied by

the in-beam measurement of γ-rays (Section 4.5.2) or by the activation method

(Section 4.6.2). Both of these techniques have drawbacks. The direct detection of

γ-rays alone is especially difficult for proton-rich radioactive beams that give rise,

after scattering and positron decay in and near the target chamber, to a high back-

ground from 511 keV photons. The activation measurement is useful only if the

observed decay is a signature of the reaction of astrophysical interest. The best

method of studying capture reactions is by directly detecting the recoil nuclei Y.

This technique is particularly well suited to radioactive ion beam measurements

in inverse kinematics. The outgoing γ-ray transfers a very small momentum to

the compound nucleus, which is therefore typically emitted within an angle of

𝜙lab ≈ 1
∘ with respect to the beam direction (Problem 4.9).This allows for an effi-

cient detection of the heavy reaction products, provided that they can be separated



4.6 Miscellaneous Experimental Techniques 289

from the incident radioactive beam moving into the same direction. The incident

projectiles and the heavy reaction products have the same linear momentum and

differ in mass and velocity by only a few percent. In addition, the cross sections

of interest are usually small and thus the number of beam projectiles exceeds the

number of reaction products by very large factors (1010–1015). Recoil separators

are sophisticated devices that facilitate the detection of reaction products in the

presence of an overwhelming background of beam particles. Mass separation and

beam rejection are accomplished using an arrangement of dipole magnets, elec-

trostatic deflectors, and Wien filters. The reaction products are collected at the

focal plane of the device and are dispersed according to theirmass-to-charge ratio.

A variety of detection schemes may be employed, for example, time-of-flight, Z

identification or delayed activity detection.Thedetection sensitivitymay be signif-

icantly improved bymeasuring the heavy recoils at the focal plane of the separator

in coincidence with prompt γ-rays detected near the target. Typically, radioactive

ion beam intensities in excess of ≈ 107 particles/s are required for such experi-

ments to accumulate sufficient counting statistics.

The first nuclear astrophysics experiment with an accelerated radioactive ion

beam was the measurement of the 13N(p,𝛾)14O reaction at Louvain-la-Neuve

(Delbar et al., 1993). Since this pioneering study, several astrophysically impor-

tant reactions have been measured directly or indirectly at a number of different

radioactive ion beam facilities worldwide. A discussion of some of these exper-

iments is given in Smith and Rehm (2001) and Blackmon, Angulo, and Shotter

(2006) and will not be repeated here. Radioactive ion beam facilities have opened

a window of previously unavailable capabilities in nuclear astrophysics. The

results obtained from these measurements have a crucial impact on predictions

of explosive nucleosynthesis. Therefore, it is worthwhile to discuss as an example

one particular experiment in more detail.

The 21Na(p,𝛾)22Mg reaction is important for the production of the long-lived

γ-ray emitter 22Na in classical novae (Section 5.5.2). The reaction was directly

measured (D’Auria et al., 2004) at the TRIUMF-ISAC facility, located in Vancou-

ver, Canada, in the energy range of the nova Gamow peak (E0 ± Δ∕2 = 270 ±

100 keV at T = 0.3 GK). A 500 MeV proton beam of ≤ 30 μA intensity from the
TRIUMF cyclotron bombarded a thick SiC production target. Spallation reactions

on Si produced 21Na, which diffused from the hot target through a transfer tube

and was ionized in a surface ionization source. After mass separation, the low-

energy 21Na beam was accelerated to energies variable between 0.15 MeV/u and

1.5 MeV/u using a radiofrequency quadrupole (RFQ) accelerator and a drift-tube

linac. The intensity of the 21Na beam delivered to the experiment was up to 109

21Na ions per second. The radioactive 21Na beam was then incident on a win-

dowless hydrogen gas target. Prompt γ-rays were detected in an array of 30 BGO

scintillator detectors, packed tightly around the gas target, with an almost 4𝜋 solid

angle coverage. The 22Mg nuclei were separated from the intense beam using the

DRAGON recoil separator (Engel et al., 2005) andwere detected in the focal plane

by a double-sided silicon strip detector. A coincidence requirement between the
22Mg nuclei detected at the focal plane and the corresponding γ-rays measured
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Figure 4.38 Pulse height spectrum of heavy

ions detected at the focal plane of a recoil

separator in the study of the Ecmr = 207 keV

resonance in 21Na(p,𝛾)22Mg. The dashed his-

togram shows the singles spectrum and is

dominated by 21Na beam particles leaking

through the separator. The shaded spec-

trum displays those heavy ions that are in

coincidence with prompt γ-rays detected in a

BGO array surrounding the hydrogen gas tar-

get. These correspond to the reaction prod-

ucts 22Mg, since 21Na beam particles are not

in coincidence with prompt γ-rays. (Reprinted

with permission from D’Auria et al. (2004).

Copyright (2004) by the American Physical

Society.)

near the target by the BGO array allowed for a very high detection sensitivity,

even though the 22Mg nuclei had low energies. A pulse height spectrum of heavy

ions detected at the focal plane of the recoil separator at a bombarding energy

in the region of the lowest lying resonance (Ecm
r

= 207 keV) in 21Na(p,𝛾)22Mg is

shown in Figure 4.38. The dashed histogram displays the singles spectrum and is

dominated by unwanted 21Na beam particles leaking through the separator. The

shaded histogram shows only those heavy ions that are in coincidence with γ-rays

(E𝛾 ≥ 3 MeV) detected in the BGO array.These correspond to 22Mg ions since the
21Na beam particles are not expected to be in coincidence with prompt γ-rays.

The clean identification of 22Mg recoils allowed for a precise measurement of the

energy and strength of this resonance, which dominates the total 21Na(p,𝛾)22Mg

reaction rates at typical nova temperatures.

4.6.2

Activation Method

We already discussed the prompt detection of reaction products, that is, the

direct detection of the emitted particles or γ-rays in reactions of type X(a,b)Y

or X(a,𝛾)Y, respectively. From their measured intensity, we can infer the total

number of reactions that took place. This information is used to calculate cross

sections or resonance strengths (Sections 4.8 and 4.9). There are instances

where such a reaction will produce a radioactive nucleus Y in its ground state
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(or a long-lived isomeric state). Instead of detecting the prompt radiation b,

one could count the number of nuclei Y by observing the delayed residual

radioactivity after the bombardment of the target or sample with projectiles has

stopped. This technique is referred to as the activation method. In nuclear astro-

physics measurements, it is mainly used for studies of neutron-capture reactions

(Käppeler, 1999). For applications to charged-particle-induced reaction studies

see, for example, Sauter and Käppeler (1997) or Gyuerky et al. (2003).

The activation method has certain advantages. For example, consider a capture

reaction that gives rise to a complicated γ-ray decay scheme. The determination

of prompt γ-ray intensities and branching ratios to infer the number of nuclear

reactions that took placemay become very challenging in this case (Section 4.5.2).

However, all these γ-ray cascades will eventually make transitions to the ground

state (or a long-lived isomeric state) of nucleusY. Counting the number of radioac-

tive nuclei Y via the activity provides directly the information of astrophysical

interest, independent of the details of decay branchings or angular correlation

effects. Furthermore, since the activity is measured after the irradiation took

place, there is no prompt beam-induced background and the counting setup can

be optimized more easily for efficiency since geometrical complications, such as

target chambers and beam pipes, are absent in the offline measurement. Finally,

the activation method is selective for specific reactions, that is, by measuring

the energies of the radioactive decay products or the time evolution of the

radioactive decay, one can infer the identity of the radioactive nuclei Y. It is

sometimes even possible to determine cross sections for several different reac-

tions in a single measurement. The activation method is suitable for radioactive

reaction products with half-lives between several years and fractions of a second

(Beer et al., 1994).

The rate of change in the number of radioactive nuclei Y is given by the differ-

ence of production and decay rates,

dY (t)

dt
= P(t) − 𝜆YY (t) (4.72)

withY and 𝜆Y = ln 2∕T1∕2 the number and decay constant of nuclei Y, respec-

tively. The production rate is given by

P(t) = X ∫ 𝜎(E)𝜙(E, t) dE = X �̂� ∫ 𝜙(E, t) dE = X �̂�𝜙(t) (4.73)

withX the number of target nuclei X, 𝜎 the cross section for the X(a,b)Y reac-

tion, and 𝜙(t) the incident particle flux (in particles per area per time). A number

of assumptions have been made in the above expression: (i) the number of target

or sample nuclei X does not change during the irradiation (i.e., the target does not

deteriorate and the fraction of target nuclei destroyed is negligible), and (ii) the

target or sample is sufficiently thin so that the energy loss of incident charged

particles in the target, or the attenuation of incident neutrons in the sample,

is small. The quantity �̂� represents a cross section averaged over the energy

distribution of incident projectiles (and over the target thickness for charged
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particles). For the general case of a varying incident particle flux, Eq. (4.72) has

to be integrated numerically. For the special case of a constant flux, 𝜙(t) = const,

we can solve Eq. (4.72) analytically. For the initial condition Y (t = 0) = 0, the

solution is

Y (t) =
X �̂�𝜙

𝜆Y

(
1 − e−𝜆Y t

)
(4.74)

If 𝜆Y t ≪ 1, we find Y (t) ≈ X �̂�𝜙[1 − (1 − 𝜆Y t)]∕𝜆Y = X �̂�𝜙t, that is, Y (t)

increases linearly for small irradiation times. For 𝜆Y t ≫ 1, we obtain Y (t) ≈X �̂�𝜙∕𝜆Y = X �̂�𝜙T1∕2∕ ln 2 =  S
Y
and Y (t) reaches a saturation value,  S

Y
,

where the production rate becomes equal to the destruction rate. At the end of

the irradiation period, t = t0, the number of nuclei Y is Y (t0) = X �̂�𝜙(1 −

e−𝜆Y t0 )∕𝜆Y . Since nuclei Y are no longer produced for t > t0, the production rate

is zero and the time evolution ofY (t) is given by

Y (t) = Y (t0)e
−𝜆Y (t−t0)

=
X �̂�𝜙

𝜆Y

(
1 − e−𝜆Y t0

)
e−𝜆Y (t−t0) for t > t0

(4.75)

If the sample is counted between t1 and t2, the number of disintegrations in that

period is given by the integral over the activity AY (t) = Y (t)𝜆Y ,

D(t1, t2) = ∫
t2

t1

𝜆YY (t) dt = X �̂�𝜙
(
1 − e−𝜆Y t0

)
∫

t2

t1

e−𝜆Y (t−t0) dt

=
X �̂�𝜙

𝜆Y

(
e𝜆Y t0 − 1

) (
e−𝜆Y t1 − e−𝜆Y t2

)
(4.76)

Hence, the cross section �̂� can be determined from the number of disintegrations,

the number of target nuclei, and the total flux of incident particles. Equation (4.76)

can also be used to determine an unknown neutron flux from a well-known cross

section.

Figure 4.39 shows schematically the time evolution of the number of radioac-

tive nuclei Y. In this example, the incident particle flux is constant, 𝜙(t) = const.

The irradiation of the target starts at t = 0 and stops at t0 = 6T1∕2, whereY (t)

is close to the saturation value [Y (t)∕ S
Y
= 0.984]. After some waiting period

between t0 and t1, the activity is counted between t1 and t2, whenY (t) decays

exponentially. The relationship between the number of disintegrations (or the

measured number of counts) and the cross section is discussed in Sections 4.8

and 4.9.

Targets or samples must be sufficiently thick to achieve reasonable counting

statistics. But they should not be too thick or otherwise: (i) incident neutrons may

be attenuated significantly or undergo multiple scattering and the effects may be

difficult to correct for; (ii) the cross section for incident charged particles will be

integrated over too large an energy range and cannot be determined with a rea-

sonable energy resolution; and (iii) the self-absorption of the emitted delayed radi-

ation (e.g., electrons or photons) may become significant. The loss of radioactive

nuclei Y caused by sputtering or backscattering is another problem when targets
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Figure 4.39 Evolution of the number of

radioactive nuclei Y (in units of the satura-

tion value  S
Y
) versus time (in units of the

half-life T1∕2). Here, the incident particle flux

is assumed to be constant. The irradiation of

the target starts at time t = 0 and stops at

t0 = 6T1∕2, when the ratio Y (t)∕ S
Y
is close

to unity. After some waiting period, t1 − t0,

the activity is counted between t1 and t2
when Y (t) decays exponentially.

are bombardedwith intense charged-particle beams. Such losses can bemeasured

and accounted for by surrounding the target with a catcher foil. Furthermore, one

must ensure that the radioactive nuclei Y of interest are not produced during the

irradiation via some other nuclear reaction,Z(c,d)Y, involving contaminants in the

beam or the target. For example, a measurement of the 27Al(n,𝛾)28Al reactionmay

be complicated by the presence of a 28Si contamination in the aluminum sample

since the 28Si(n,p)28Al reaction also produces 28Al and hence interferes with the

measurement.

4.6.3

Time-of-Flight Technique

The time-of-flight method provides neutron beams with a resolution that is far

superior compared to most other techniques. Consider Figure 4.40 showing a

pulsed proton or electron beam incident on a neutron production target, as

described in Section 4.1.2. With each pulse, a group of neutrons with a broad

energy distribution is produced. The neutrons travel to the irradiation sample

located at a distance of L from the neutron-producing target. Neutron-induced

reactions take place in the sample and the prompt radiation produced in

the interaction is detected using a suitable counter. For example, detector 1 in

Figure 4.40 is a γ-ray detector for the study of (n,𝛾) reactions.The neutron velocity

is determined by the measured length of the flight path and the time difference,

t = tstop − tstart , between the arrival time of the primary electron or proton pulse

at the neutron-producing target and the time of detection of the prompt reaction

products (provided that the latter time is practically simultaneous with the arrival
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Figure 4.40 Neutron time-of-flight tech-

nique. A pulsed proton or electron beam

is incident on a neutron production target.

With each pulse, a neutron group with a

broad energy distribution is produced. The

neutrons travel a distance of L to the irradia-

tion sample. Prompt radiation, for example,

γ-rays from an (n,𝛾) reaction induced in

the sample, is detected by counter 1, while

counter 2 represents a neutron detector for

measuring the transmission (Section 4.2.3).

The incident neutron energy is given by the

flight path length L and the time difference,

t = tstop − tstart , between the primary electron

or proton pulse arrival time at the neutron-

producing target and the detection time of

the prompt reaction products in counter 1

(or of the transmitted neutrons in counter 2).

of the neutrons at the sample). The neutron energy is given by

E =
1

2
mn𝑣

2 =
1

2
mn

(
L

t

)2
(4.77)

with mn the neutron mass. The use of this nonrelativistic expression introduces

an error of less than 0.2% at E = 1 MeV. In practice, the events are sorted elec-

tronically into a histogram displaying the flight time on the horizontal axis (i.e., a

particular channel corresponds to flight times between ti and ti+1). Subsequently,

the flight time scale is converted to a neutron energy scale. From Eq. (4.77) we find

numerically

t

L
=
72.3√

E
(4.78)

with t, L, and E in units of microsecond, meter, and electron volt, respectively.

For example, for a flight path of 10 m and neutrons of 1 keV energy the flight

time amounts to≈ 23 μs. For a broad energy distribution of incident neutrons, the

time-of-flight technique allows a measurement of the intensity of reaction prod-

ucts as a function of the incident neutron energy in a single experiment.

According to Eq. (4.77), the energy resolution of the neutron beam is given by

ΔE

E
= 2

√(
ΔL

L

)2
+

(
Δt

t

)2
(4.79)

The uncertainty in the flight path (e.g., because of the finite sizes of the neutron-

producing target and the detector) can be reduced by increasing L, although the

intensity of the neutron beam at the sample position will simultaneously decrease.
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Figure 4.41 Measured count rate versus time of flight in the vicinity of the 4.9 eV reso-

nance in the 197Au(n,𝛾)198Au reaction. Data adopted from Macklin, Halperin, and Winters

(1979).

In most cases, the uncertainty in flight time will dominate the energy resolution.

One finds numerically

ΔE = 0.028
Δt

L
E3∕2 (4.80)

The uncertainty Δt is influenced by a number of factors, including the time

width of a neutron group after a particular proton or electron burst (< 100 ns),

the pulse rise time of the detector (< 5 ns), and the uncertainty in the neutron

slowing down time if the neutron-producing target is surrounded by a moderator.

The primary requirements for the detector are fast timing properties, relatively

high efficiency and low sensitivity to neutron-induced background radiation. For

neutron-capture studies, organic scintillators or BaF2 detectors are frequently

used, while ionization chambers or solid-state counters are the detectors of

choice for (n,p) or (n,𝛼) type experiments. With time-of-flight techniques,

energy resolutions of better than 1 eV have been obtained for neutron energies

up to a few kilo electron volts (i.e., ΔE∕E ≈ 0.001). For example, Figure 4.41

shows the measured count rate versus time of flight in the vicinity of the 4.9 eV

resonance in the 197Au(n,𝛾)198Au reaction. Other examples of transmission and

neutron-capture yield curves obtained with the time-of-flight technique are

shown in Figure 4.61.

4.7

Background Radiation

All radiation detectors used in fusion reactionmeasurements will record a certain

number of pulses that are caused by natural radioactivity in the environment or

by cosmic radiation. For relatively large reaction cross sections, the background
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count rate may be negligible compared to the signal count rate. However,

astrophysically important reactions have frequently very small cross sections at

the energies of interest. In such cases, the experiment has to be designed carefully

so that the signal is not obscured by the background. It has to be kept in mind

that in nuclear counting experiments the sensitivity for detecting a signal above

background is approximately directly proportional to the signal count rate, but

inversely proportional to the square root of the background count rate (Knoll,

1989). For example, a background reduction by a factor of 100 corresponds to

an improvement in sensitivity by only a factor of 10. Thus, a substantial effort of

reducing the background is required in order to observe very weak cross sections

or resonance strengths. For developing detection techniques that reduce the

background, it is first necessary to understand the nature of the background in

more detail. A comprehensive review of these issues can be found in Knoll (1989)

and Heusser (1995). Here, we will discuss the influence of natural radioactivity

and cosmic rays on detectors that are used in nuclear astrophysics measure-

ments.We are especially interested inmethods of background suppression. Other

important sources of background, for example, from electronic noise or from

beam-induced processes (Section 4.3.3 and Table 4.4), are not discussed in this

section.

4.7.1

General Aspects

Figure 4.42 shows a typical experimental setup consisting of accelerator, target

chamber, detector, and shielding. The most important sources of background

radiation are indicated. Terrestrial radiation near the Earth’s surface and in

ordinary construction materials (walls, detector, shielding materials, air, and so

on) is caused by naturally occurring radioisotopes. In particular, Th, U, and Ra

are members of radioactive decay series and lead to a large number of daughter

nuclei that emit α-, β-, and γ-radiation. Among these daughter products are the

short-lived radioactive gases 220Rn and 222Rn that are present in the ambient air.

The background from radon and progenitors may be reduced by replacing

the air surrounding the detection setup with a radon-free gas (e.g., nitrogen).

Furthermore, spontaneous fission (in particular of 238U) contributes to the

γ-ray and neutron background. Another important source of terrestrial β- and

γ-radiation originates from the decay of 40K (T1∕2 = 1.3 × 10
9 y). The activity of

certain fission products that originate from past nuclear weapons testing also

contributes to the background (e.g., 137Cs).

The activity levels in common materials vary substantially (Knoll, 1989).

In demanding low-background applications, the construction and shielding

materials have to be selected carefully. One may ordinarily expect that the

background count rate is inversely proportional to the thickness of the detector

shield. However, beyond a certain optimum thickness the background will not

decrease any further because a more massive shield represents a larger target for

cosmic-ray-induced background (see below).
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Figure 4.42 Sources of environmental background in a typical nuclear physics counting

experiment. Other sources, such as electronic noise or beam-induced background radiation,

are not shown. See discussion in the text.

Primary cosmic radiation consists mainly of protons and α-particles with

extremely high kinetic energies. They hit the upper atmosphere with an intensity

of about 103 m−2s−1. Through interactions with air molecules, a large number

of different (secondary) elementary particles with energies extending into the

100 MeV range are produced. Among the secondary radiation, protons, electrons,

and pions are easily absorbed by the concrete floors of a building. The most

relevant components for low level background measurements are muons and

neutrons.

The muon-induced background arises from direct ionization events in

the detector volume, radioisotope production via interactions with nuclei
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(e.g., spallation), muon bremsstrahlung, production of 𝛿 electrons, muon decay

(𝜇± → e± + 𝜈 + 𝜈), and electron–positron pair production. The latter three

processes also give rise to bremsstrahlung. Secondary neutrons originate from

primary cosmic radiation, while tertiary neutrons are produced by slow muons

via the capture reaction p(𝜇−,𝜈𝜇)n and by fast muons via (𝛾 ,n) reactions and

photofission. Neutron background originates not only from cosmic-ray interac-

tions but also from terrestrial radioisotopes via (𝛼,n) reactions and spontaneous

fission of 238U. Fast neutrons react with nuclei via (n,n’𝛾) reactions, while thermal

neutrons interact via (n,𝛾) reactions.

Muons are very penetrating particles and large shielding depths (e.g., several

100 m of earth) are required to attenuate their intensity substantially. For

this reason, low-level detection systems are sometimes operated deep under-

ground. Such a laboratory, dedicated to nuclear astrophysics experiments, is

described in Bemmerer et al. (2005). Alternatively, in measurements near sea

level, it is usually possible to surround the primary detector (e.g., germanium)

with a secondary (guard) counter (e.g., plastic scintillator). If both detectors

are operated in anticoincidence mode, that is, if events are rejected when

both counters respond at the same time, then the background is significantly

reduced.

The magnitude of some background components can change with time. Such

fluctuations may arise from variations in cosmic-ray intensity or in airborne

radioactivity depending on the meteorological conditions. For the analysis

of pulse height spectra obtained with beam on target, it is therefore helpful

to carry out background measurements (without beam) before and after the

experiment.

4.7.2

Background in Charged-Particle Detector Spectra

We will focus in this section on semiconductor charged-particle detectors. The

extreme degree of purity required of semiconductor crystals results in relatively

low levels of inherent radioactivity. However, radioactive impurities in the con-

struction materials of the setup (detector holder, target chamber, shielding, and

so on)will contribute to themeasured background.This backgroundwill extend to

several mega electron volts, corresponding to typical energies of α-particles from

terrestrial radioisotopes. For example, commercial aluminum shows a low-level

α-activity of ≈ 0.3 𝛼-particles h−1cm−2 above 250 keV energy (Knoll, 1989). The

α-particle emission rate of stainless steel is about an order of magnitude lower.

For low-level background measurements, it is thus important to select the con-

struction materials carefully.

Terrestrial γ-radiation and cosmic-ray-induced γ-rays, charged particles, and

neutrons will also contribute to the background in charged-particle detector spec-

tra. These components can effectively be reduced through the use of appropriate

shielding such as low-activity lead or mercury. Cosmic-ray muons, on the other

hand, are only weakly absorbed in the shield. The muons are minimum ionizing
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Figure 4.43 (a) Background spectrum mea-

sured with a silicon charged-particle detec-

tor of 300 μm thickness. The active detector

surface is positioned parallel to the sur-

face of the Earth. The muon peak, which

has the same origin as the one shown in

Figure 4.22, occurs at about 120 keV. (b)

Same as part (a), but with rejection of all

events corresponding to simultaneous signals

from the silicon detector and a NaI(Tl) active

shield counter that was positioned above the

silicon detector. The substantial reduction of

the muon background is evident. (Reprinted

from Walter and Boshart (1966). Copyright

(1966), with permission from Elsevier.)

(Section 4.2.1) and lose energy in silicon at a rate of dE∕dx ≈ −400 keV/mm. The

spatial distribution of the muons is at maximum in a direction perpendicular to

the Earth’s surface. Therefore, the energy deposited by the muons in the detector

is approximately equal to the product of dE∕dx and the effective thickness of the

active detector volume. Since some muons will pass at oblique angles through

the sensitive region, the background peak in the pulse height spectrum will

exhibit a high-energy tail. This general behavior is displayed in Figure 4.43a,

showing a background spectrum measured with a silicon detector of 300 μm

thickness, with its active surface positioned parallel to the surface of the Earth.

In order to reduce the terrestrial background, the detector was mounted in a

high-purity aluminum oxide insulator and the detector container was made

from low-contamination copper. The muon peak in the spectrum is expected to

occur at about (400 keV/mm)(0.3mm) = 120 keV, consistent with observation.

The spectrum in Figure 4.43b was obtained by rejecting all events corresponding

to simultaneous signals from the silicon detector and a NaI(Tl) active shield

counter that was positioned above the silicon detector. The muon background is

substantially reduced using anticoincidence techniques.

Figure 4.44 shows the measured background of a 300 μm thick silicon detector

in the energy range of 50–400 keV versus mode of operation. The results are

given in units of counts per minute (cpm) and per square centimeter of the active

detector surface that is oriented parallel to the Earth’s surface. The background
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Figure 4.44 Measured background (in

counts per minute and per square centime-

ter) of a 300 μm thick silicon detector in the

energy range of 50–400 keV versus mode

of operation: (1) no passive or active shield-

ing; (2) Passive shield of 2.5 cm thick lead;

(3) Passive shield of 5.1 cm thick low-activity

lead; (4) Additional use of an (active) antico-

incidence shield. The muon-induced back-

ground rate, given by the difference of

histogram heights in mode 3 and 4, amounts

to ≈ 0.8 cpm/cm2 in the energy range of 50–

400 keV at sea level. Data from Walter and

Boshart (1966).

count rate amounts to ≈ 3.5 cpm/cm2 without passive or active shielding.

Surrounding the setup with lead of 2.5 cm thickness shields the detector from

terrestrial and cosmic-ray-induced γ-radiation and reduces the background

count rate to ≈ 1.4 cpm/cm2. A further improvement is achieved using 5.1 cm

of low-background lead for a passive shield (≈ 0.97 cpm/cm2). Finally, the

additional use of an anticoincidence shield reduces the background count rate

to ≈ 0.16 cpm/cm2. We can infer from these results that the muon-induced

background rate at sea level amounts to (0.97–0.16) cpm/cm2 ≈ 0.8 cpm/cm2 in

the energy range of 50–400 keV.

In certain reactions with relatively large Q-values, it is sometimes of advantage

to use two instead of one silicon detector.Thenuclear reaction products of interest

deposit a fraction of their energy in a thin front (“ΔE”) detector and are completely

stopped in a thick rear (“E”) counter. By requiring a coincidence between the two

detector signals, events that are caused by terrestrial α-, β-, and γ-radiation and

that deposit energy in only one of the detectors are rejected. The muon-induced

background can then be suppressed either by locating the setup deep underground

(Junker et al., 1998) or by surrounding the setupwith a suitable active veto counter.

This technique is not applicable to the study of reactions withQ-values of less than

several mega electron volts since in this case the emitted nuclear reaction prod-

ucts will have insufficient energies to penetrate even the thinnest commercially

available ΔE detectors.
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Figure 4.45 Room background γ-ray spec-

trum, recorded for 15 h without beam on

target using a HPGe detector of 582 cm3

volume. Two prominent peaks occur at

1461 keV and 2615 keV. They originate from

the decays of the radioisotopes 40K and 208Tl,

respectively. All the other peaks originate

from the sources shown in Figure 4.42. The

γ-ray background beyond E𝛾 ≈ 2.6 MeV is

continuous and shows no discrete peaks.

4.7.3

Background in 𝜸-Ray Detector Spectra

The background in γ-ray spectra is usually higher compared to charged-particle

spectra for two reasons. First, γ-ray detectors have a larger volume and second,

the nature of the γ-ray background is rather complex. A typical background γ-ray

spectrum, recorded without beam on target with a HPGe detector of 582 cm3

volume for 15 h, is shown in Figure 4.45. A large number of discrete peaks can

be observed. Most of these originate from radionuclides that occur naturally in

the material of the detector and the surroundings. The two most intense room

background γ-ray peaks occur at 1461 keV and 2615 keV and originate from the

decays of the radioisotopes 40K and 208Tl, respectively (Table 4.6 and Figure 4.46).

The nucleus 40K β-decays to the 1461 keV level in 40Ar which, in turn, decays

to the ground state by emission of a single photon. The nucleus 208Tl β-decays

to several 208Pb levels with excitation energies between 3 MeV and 4 MeV.

Subsequently, these states decay through the first excited state at 2615 keV to

the ground state via γ-ray cascades (i.e., by emission of two or more coincident

photons). Compilations of other background peaks can be found in Debertin

and Helmer (1988) and Knoll (1989). The analysis of a spectrum obtained with

beam on target requires a careful identification of room background peaks.

Furthermore, the peaks are superimposed on a continuous background, caused

by Compton scattering of room background photons and by cosmic-ray-induced

processes. In nuclear astrophysics measurements, the cross sections are fre-

quently very small and, therefore, it is ultimately this continuous background
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Figure 4.46 Level schemes of (a) 40Ar and (b) 208Pb. The decay of 40K produces a single

photon (1461 keV), while the decay of 208Tl gives rise to the emission of two or more coin-

cident photons. Data from Firestone and Shirley (1996).

that is the major obstacle in observing the peaks from the nuclear reactions of

interest.

Similar to the case of silicon detectors, the inherent activity of high-purity ger-

manium is very small. However, radioimpurities in constructionmaterials includ-

ing the aluminumcrystal housing, stainless steel and copper cooling rod, electrical

solder in the preamplifier, and so on, may contribute to the γ-ray background. In

scintillation counters, the glass envelope of the photomultiplier tube and the tube

base are a potential source of background. In low-background detectors, the con-

tribution from these sources is substantially reduced by a careful selection of the

construction materials.

The vast majority of γ-rays from terrestrial or cosmogenic background sources

have energies of less than 3.0 MeV, although some γ-rays with energies of up

to 7 MeV are produced in the spontaneous fission of 238U. Contributions from

these sources can be reduced by surrounding the detector with metal shields

of high purity. Because of its high density and large atomic number, specially

refined lead with a low concentration of the radioisotope 210Pb (T1∕2 = 22.3 y)

is the best choice for a γ-ray shield. Iron and copper are also used but have

higher cross sections for the cosmogenic production of radionuclides compared

to lead. Beyond a certain optimum shielding thickness (≈ 10–15 cm for lead),

the background is not reduced any further because of an increase in secondary

radiation caused by cosmic-ray interactions in the shield. Most γ-rays from

neutron inelastic scattering and radiative neutron capture on the detector

material have energies of less than about 3 MeV, although neutron capture on

iron can produce γ-rays with energies of about 10 MeV. The neutron-induced

component is sometimes reduced by an additional neutron absorber in the shield

(e.g., borated polyethylene). When the detector shield contains hydrogen (e.g.,

concrete), neutron capture sometimes gives rise to a discrete γ-ray of 2.2 MeV

energy in the spectrum.
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The continuous γ-ray background caused by cosmic-ray muons arises from sev-

eral different types of interactions and it is not apparentwhich of the processes dis-

cussed in Section 4.7.1 dominates. Monte Carlo simulations have been performed

to investigate this issue. It is found (Vojtyla, 1995) that bremsstrahlung from 𝛿

electron production dominates the background at energies below E ≈ 5 MeV. At

higher energies, the background is dominated by direct ionization events that give

rise to a broad peak between 10 and 40 MeV, with the exact location depending

on the crystal size.The observed broad peaks in Figures 4.22 and 4.43a are caused

by the same process.

Gamma-ray background count rates, measured by specially designed low-

background germanium detector systems, are compared in Figure 4.47.The hori-

zontal axis displays the location (shielding depth) of the apparatus in units ofmeter

water equivalent (m w.e.) and the vertical axis shows the measured total count

rate in the energy region below 3 MeV in units of counts per hour per 100 cm3

detector volume. The construction materials for all of these detection systems

were carefully selected to reduce radioimpurities. Passive shields consisted

of several layers of different low-activity materials (Pb, Cu, Fe, and so on). In

some cases (shown as triangles), plastic scintillators or multiwire proportional
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Figure 4.47 Comparison of γ-ray back-

ground count rates in the energy region

below E𝛾 = 3 MeV (in units of counts per

hour per 100 cm3 detector volume) versus

shielding depth (in units of meter water

equivalent). The data indicated by the cir-

cles (passive shielding only) and triangles

(passive and active shielding) are adopted

from Semkow et al. (2002). All these spec-

trometers are specially designed for ultralow

background measurements. The two dashed

lines are to guide the eye. The γ-ray (sin-

gles) background in this energy range can be

reduced by at least two orders of magnitude

by placing the apparatus deep underground.

Results from γγ-coincidence measurements

using conventional detectors (Rowland et al.,

2002b) are shown as square (no shielding)

and diamond (active shielding).



304 4 Nuclear Physics Experiments

chambers have been used for active cosmic-ray background discrimination. It

can be seen that in laboratories located at sea level (shielding depths < 1 m w.e.)

the lowest achieved background count rates are ≈ 1000 counts/h.This represents

already an improvement by orders of magnitude compared to the background

shown in Figure 4.45, which was obtained using a conventional detector and

setup. At moderate shielding depths of 10–15 m w.e., background count rates of

≈ 100 counts/h have been measured. Another order of magnitude can be gained

by locating the apparatus deep underground (shielding depths of several 1000 m

w.e.), where measured background count rates amount to ≈ 10 counts/h.

4.7.3.1 𝜸𝜸-Coincidence Techniques

In many nuclear reactions of astrophysical interest, two or more photons are

emitted in a cascade. In such cases, the background can be reduced substantially

through the use of coincidence techniques. Consider a simple setup consisting of

two γ-ray detectors. Most background events will occur only in one detector at

a time and, therefore, are eliminated by demanding a coincidence between the

signal outputs of both detectors.

An example for a setup is shown in Figure 4.48a. A HPGe detector is positioned

in very close geometry to the target to maximize the peak efficiency and a NaI(Tl)

annulus surrounds both the target and the germanium crystal. Figure 4.48b

shows for coincidence events the energy deposited in the HPGe detector versus

the energy deposited in the NaI(Tl) detector. We will first discuss the simple case
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Figure 4.48 γγ-Coincidence technique.

(a) Setup consisting of a HPGe detector and

a NaI(Tl) annulus surrounding the target

chamber. (b) Two-dimensional histogram dis-

playing the energy deposited in the HPGe

detector (horizontal axis) and the NaI(Tl)

detector (vertical axis). The inset shows a

simple decay scheme consisting of a two-

photon cascade (E𝛾1 = 9 MeV −1 MeV =

8 MeV; E𝛾2 = 1 MeV). If two photons are

detected in coincidence, and only if those

events located between the solid and

dashed lines are accepted, then the environ-

mental background is substantially reduced.

The events located below the solid line

are mainly caused by room background

(E𝛾 < 4 MeV), while those located above the

dashed line originate from cosmic-ray inter-

actions.
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of a two-γ-ray cascade. Assume that a capture reaction populates an initial state of

9 MeV excitation energy and that this state decays through an intermediate level

at 1 MeV to the ground state. The two diagonal lines correspond to a total energy

deposition (in both the HPGe and NaI(Tl) detector) of 4 MeV and 9.5 MeV.

Events located above the dashed line (EGe
𝛾
+ ENaI

𝛾
> 9.5 MeV) can immediately

be excluded from the analysis since any event that originates from the capture

reaction of interest can at most have a total energy of 9 MeV (apart from a small

energy spread caused by the finite detector resolutions). Such high-energy events

originate, for example, from cosmic-raymuons that traverse and deposit energy in

both detectors. Most room background coincidence events appear in the region

below the solid line (EGe
𝛾
+ ENaI

𝛾
< 4 MeV). These include 1461 keV photons from

40K decay that deposit energy in both detectors via Compton scattering, as well

as coincident γ-rays (including 2615 keV photons) from 208Tl decay (Figure 4.46).

By accepting only events located in the region between the solid and the dashed

lines, the background is significantly reduced.

Suppose now that the primary 8 MeV γ-ray is observed in the NaI(Tl) detector,

while the secondary 1 MeV photon is counted in the HPGe detector. Events

corresponding to the full-energy peaks of both incident photons are located

in the dark-shaded oval region of the two-dimensional energy spectrum. The

oval shape is caused by the far better energy resolution of the HPGe detector. If

only these events are accepted in the data analysis, the background is drastically

reduced. However, at the same time the efficiency of the coincidence apparatus,

given by the product of HPGe and NaI(Tl) peak efficiencies, is significantly

reduced compared to the peak efficiency of a single detector. This result is

undesirable in view of the very weak cross sections of astrophysical interest.

The problem is solved by accepting all events located between the two diagonal

lines, including those caused by Compton scattering and pair production in

the NaI(Tl) detector. In this particular mode, the HPGe detector provides the

spectroscopic information of interest (peak energies and intensities), while

the main function of the NaI(Tl) annulus is to provide a large coincidence

efficiency.

The power of the coincidence method is demonstrated in Figure 4.49. It shows

three HPGe pulse height spectra in the energy range between 0.8 MeV and

2.5 MeV, measured at the weak Er = 227 keV resonance in the
26Mg(p,𝛾)27Al

reaction. Each spectrumwas recordedwith a proton beam intensity of only 1.5 μA

for a measuring time of 10 h. The vertical dashed lines indicate the locations

of expected secondary γ-ray transitions in 27Al at 1014 keV and 2211 keV. The

spectrum shown in part (a) was obtained without detector shielding. All observed

γ-ray peaks are caused by environmental background contributions. The middle

spectrum (part b) was measured by shielding the detector with 5 cm thick lead.

The background is reduced by about one order of magnitude, but still no peaks

originating from the 26Mg(p,𝛾)27Al reaction can be identified. The spectrum in

part (c) was measured in coincidence with γ-rays observed in a NaI(Tl) annulus.

The coincidence requirement was 4 MeV < EGe
𝛾
+ ENaI

𝛾
< 9 MeV. No shielding

was used in this case. Compared to the unshielded singles HPGe spectrum
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Figure 4.49 HPGe γ-ray spectra in the

energy range between 0.8 MeV and

2.5 MeV, measured at the weak Er =

227 keV resonance in the 26Mg(p,𝛾)27Al

reaction (Q = 8271 keV). Each spectrum

was recorded with a proton beam intensity

of 1.5 μA for a running time of 10 h. The

vertical dashed lines indicate the location

of expected secondary γ-ray transitions in
27Al at 1014 keV and 2211 keV. (a) No

detector shielding; (b) passive 5 cm thick

lead shielding; (c) coincidence requirement

of 4 MeV < EGe𝛾 + ENaI𝛾 < 9 MeV (without

shielding). The background is reduced by

more than three orders of magnitude and

the expected secondary transitions induced

by the weak 26Mg(p,𝛾)27Al resonance are

clearly observed. The peak close to a γ-ray

energy of 2211 keV shown in parts (a) and

(b) originates from room background (214Bi)

and not from decays in 27Al. (Reprinted from

Rowland et al. (2002b). Copyright (2002),

with permission from Elsevier.)

(part a), the γ-ray background is reduced by more than three orders of magnitude

and all the discrete peaks originating from environmental radioactivity have

disappeared. The resonant γ-rays from the decays of the 1014 keV and 2211 keV

levels in 27Al are now clearly observed.

The remaining continuous background in the coincidence spectrum is caused

by cosmic-ray-induced bremsstrahlung and by muons that directly ionize both

detectors. The measured coincidence background count rate, shown as a square

in Figure 4.47, compares favorably with singles background count rates measured

with specially designed low-level detection systems that are located deep under-

ground. The coincidence background count rate can be further reduced using a
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muon veto shield (e.g., plastic scintillators; see Rowland et al., 2002b), as indi-

cated by the diamond in Figure 4.47. Notice that coincidence techniques will not

improve the detection sensitivity significantly if the background is mainly induced

by contaminant reactions that produce two or more photons of sufficient energy

in coincidence (as is the case for the troublesome 11B(p,𝛾)12C reaction; Table 4.4).

The need for targets and backings that are almost free of contaminants has already

been pointed out in Section 4.3.3.

The total number  of compound nuclei created in a fusion reaction can be
calculated from the peak intensity measured in a coincidence spectrum using

an expression similar to Eq. (4.69). The factor B𝜂W has to be replaced by the

quantity f (B, 𝜂,W ), which is a function of branching ratios, detection efficien-

cies, and angular correlations. Consider, for example, the level diagram displayed

in Figure 4.50a, showing the decay of a compound nucleus to the ground state via

several different γ-ray cascades. First, suppose that photon 𝛾10 is fully absorbed in a

HPGe detector and that other photons belonging to the same cascade are detected

in coincidence in a NaI(Tl) annulus. Neglecting angular correlation effects (i.e.,

assumingW = 1), the contribution of the two-γ-ray cascade (a) to the peak inten-

sity of 𝛾10 in the HPGe coincidence spectrum is given by

Ge,C,a
10

= B31B10𝜂
Ge,P
10

𝜂NaI,T
31

= B31B10𝜂
Ge,P
10

[
1 −

(
1 − 𝜂NaI,T

31

)]
(4.81)

where the product of branching ratios B31B10 represents the probability that the

compound nucleus decays via the cascade 3→ 1→ 0; 𝜂NaI,T
31
is the total NaI(Tl)

a b c

X + x X + x

Transition
observed
in HPGe

Transition
observed
in HPGe

(a) (b)
Y

0

1

2

3
1 k

i + 2

i + 1

i

j

j−1

0
Y

Figure 4.50 (a) Level scheme showing three

different γ-ray decays from excited level 3

to the ground state 0. It is assumed that

the transition 1 → 0 is observed in a HPGe

detector and that other photons of the same

cascade are detected in coincidence in a

NaI(Tl) annulus. (b) General case; the tran-

sition i → j is observed in a HPGe detector,

while coincident photons are detected in a

NaI(Tl) detector.
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efficiency. Similarly, we obtain for the contribution of the three-γ-ray cascade (b)

 Ge,C,b
10

= B32B21B10𝜂
Ge,P
10

[
𝜂NaI,T
32

(
1 − 𝜂NaI,T

21

)
+ 𝜂NaI,T
21

(
1 − 𝜂NaI,T

32

)
+ 𝜂NaI,T
32

𝜂NaI,T
21

]
= B32B21B10𝜂

Ge,P
10

[
1 −

(
1 − 𝜂NaI,T

32

)(
1 − 𝜂NaI,T

21

)]
(4.82)

The term 𝜂NaI,T
32

(1 − 𝜂NaI,T
21

) corresponds to the probability that photon 𝛾32 is

observed in the NaI(Tl) annulus and, at the same time, photon 𝛾21 escapes

detection in the NaI(Tl) annulus. The term (1 − 𝜂NaI,T
32

)(1 − 𝜂NaI,T
21

) is equal to the

probability that neither photon 𝛾32 nor 𝛾21 is detected in the NaI(Tl) annulus.

Equivalently, the term 1 − (1 − 𝜂NaI,T
32

)(1 − 𝜂NaI,T
21

) corresponds to the total proba-

bility of detecting photon 𝛾32 or 𝛾21. Cascade (c) does not contribute to the peak

intensity of 𝛾10.

The above expressions can be generalized (Figure 4.50b) to find the total full-

energy peak intensity of photon 𝛾ij in the HPGe coincidence spectrum,

 Ge,C

ij
=  𝜂Ge,P

ij

∑
k

⎧⎪⎨⎪⎩
[∏
i′>j′

Bi′j′,k

] ⎡⎢⎢⎢⎣1 −
∏
i′>j′

i↛j

(
1 − 𝜂NaI,T

i′j′,k

)⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ (4.83)

where the sum is over all cascades k containing the transition i → j.The first prod-

uct is over the branching ratios of all transitions in cascade k and represents the

probability that the initial level will decay via this particular cascade. The second

product is over the total NaI(Tl) detector efficiencies for all transitions in cascade

k, except the branch i → j that is observed in the HPGe detector. Hence, we obtain

for the total number of compound nuclei created in the fusion reaction

 =
Ge,C

ij

𝜂Ge,P
ij

f (Bi′ j′,k , 𝜂
NaI,T

i′j′,k
)
=

Ge,C

ij

𝜂Ge,P
ij

∑
k

⎧⎪⎨⎪⎩
[∏
i′>j′

Bi′ j′,k

] ⎡⎢⎢⎢⎣1 −
∏
i′>j′

i↛j

(
1 − 𝜂NaI,T

i′j′,k

)⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭
(4.84)

Equations (4.82)–(4.84) need to bemodified if the totalNaI(Tl) efficiency has been

obtained using an energy gate (Problem 4.7).

The total NaI(Tl) efficiency for a particular energy range selected by a gate

in the two-dimensional spectrum of EGe
𝛾
versus ENaI

𝛾
, 𝜂NaI,T

i′j′,k
, can be obtained in

the following way. For example, consider again a two-γ-ray cascade 3→ 1→ 0
(Figure 4.50a). The intensities of photons 𝛾10 and 𝛾31 observed in the singles and

coincidence HPGe spectrum are given by expressions similar to Eqs. (4.53) and

(4.81). Neglecting coincidence summing corrections, we find

Ge
10

= B31B10𝜂
Ge,P
10

 Ge
31

= B31𝜂
Ge,P
31

 Ge,C
10

= B31B10𝜂
Ge,P
10

𝜂NaI,T
31

 Ge,C
31

= B31B10𝜂
Ge,P
31

𝜂NaI,T
10

(4.85)



4.7 Background Radiation 309

and thus

𝜂NaI,T
31

=
Ge,C
10

 Ge
10

and 𝜂NaI,T
10

=
 Ge,C
31

 Ge
31

(4.86)

In the derivation of Eq. (4.86), we explicitly assumed that cascades consisting of

three or more γ-rays do not contribute to the measured intensities in the HPGe

coincidence spectrum (i.e.,B31 = 1 andB10 = 1). It can be seen that the above rela-

tions provide absolute totalNaI(Tl) detector efficiencies without using the activity

of calibrated radioactive sources or the cross section of capture reactions. If the

γ-ray source or the target is located very close to both detectors, then Eq. (4.86)

becomes inaccurate because of coincidence summing (Section 4.5.2). In this case,

a Monte Carlo simulation of the detection setup must be performed (Longland

et al., 2006).

4.7.4

Background in Neutron Detector Spectra

The neutron background originates from (𝛼,n) reactions induced by terres-

trial α-particle emitters, spontaneous fission of 238U, and cosmic-ray-induced

processes. Different principles apply to the shielding of neutrons compared

to the shielding of charged particles or γ-rays. Neutrons need to be quickly

moderated and absorbed in a medium of a high absorption cross section. The

most effective moderators consist of light nuclei and contain preferably hydrogen

(Section 4.2.3). Frequently used materials include paraffin, polyethylene, or water.

Mean free paths of fast neutrons amount typically to several tens of centimeters

and, therefore, thicknesses of about 1 m are required to moderate fast neutrons

effectively. After moderation, the neutrons have to be captured. Since the capture

cross section of hydrogen is relatively small, another component with a large

neutron absorption cross section (e.g., 10B, 6Li, or Cd) is added, either as a

homogeneous mixture with the moderator or as an absorbing layer between

moderator and detector. The (n,𝛼) reaction on 10B and the (n,𝛾) reaction on Cd

produce secondary γ-rays, while the (n,𝛼) reaction on 6Li proceeds directly to the

ground state. Thus, 6Li is preferred as neutron absorber material in applications

that are sensitive to γ-ray background. The importance of other background

sources depends on the type and the constructional details of the neutron

detector. For example, for 10BF3 or
3He proportional counters (Section 4.5.3) the

intrinsic α-radioactivity of the detector itself may cause a significant background

count rate if the construction materials have not been selected carefully.

Figure 4.51 shows the neutron flux (number of neutrons per second per square

centimeter) from various sources, together with the muon flux, versus shielding

depth in meter water equivalent. Without any shielding, the contribution from

secondary neutrons dominates the background. This intensity decreases rapidly

with increasing shielding depth and becomes smaller than the neutron intensity

from (𝛼,n) reactions and spontaneous fission beyond a moderate shielding

depth of ≈ 10 m w.e. The figure also shows for comparison the intensity of
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Figure 4.51 Neutron fluxes (number of

neutrons per second per square centime-

ter) from various sources (solid lines) ver-

sus shielding depth (in units of meter water

equivalent). The muon flux is shown as

a dashed line. Secondary neutrons are

produced by primary cosmic rays. The solid

line labeled “Tertiary neutrons” represents

the flux of neutrons produced by muons in

a typical lead shield; the label “S.F.” refers

to neutrons from spontaneous fission. Data

from Heusser (1995).

tertiary neutrons produced by muons in a typical lead shield. This background

contribution dominates the neutron flux at shielding depths of 2–100 m w.e.

Consequently, the use of massive shields should be avoided in this shielding depth

region, if possible.

Thebackground count ratemeasured by a neutron detector depends strongly on

the location, measuring geometry, and constructional details. Thus, one has to be

very careful when comparing experimental background rates measured by differ-

ent detectors. Nevertheless, such a comparison is interesting since relatively little

information on this subject is given in the literature. Table 4.11 compares back-

ground count rates measured in four different studies. Other parameters, such as

efficiency, location, and the type of shielding, are also given. In each case, the setup

consisted of 3He proportional countersmoderated by either polyethylene or paraf-

fin. At sea level and without active shielding, the measured background count rate

is≈ 10 cpm.With active shielding, the background is substantially suppressed and

amounts to ≈ 2 cpm. It is likely that a further reduction can be achieved by locat-

ing the setup underground, although the results listed in the table are inconclusive

if adjusted for differences in total efficiencies or the size of the analyzed region in

the pulse-height spectrum.

Finally, a word may be added regarding the suppression of muon-induced neu-

trons via anticoincidence techniques. With polyethylene or paraffin as moderator,

it takes on average ≈ 200 μs for a fast neutron to be thermalized and captured

in the neutron detector. Thus, if the anticoincidence counter indicates a muon
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Table 4.11 Comparison of low-background neutron spectrometers.

Reference Giesen et al.
(1993)

Wang, Vogelaar, and

Kavanagh (1991)

Stella et al.
(1995)

Mayer et al.
(1993)

Detector 3He 3He 3He 3He

Moderator Polyethylene Polyethylene Polyethylene Paraffin

Number of counters 31 12 2a 18

Efficiency (%) 20 22 6a 22

Calibration source Am-Li 252Cf M.C.b natUO

Location (m w.e.) Sea level Sea level 3950c 50d

Passive shield Yes Yes Yes Yes

Active shield No Yese No No

Background (cpm) 11f 2f 0.6f (0.06g) 0.06h

a Full detector consists of seven 10BF3 and two 3He counters; the 10BF3 counters are not listed here

for comparison because of their higher background count rate. b Result of Monte Carlo simulation.
c At Gran Sasso underground laboratory. d On a conventionally powered submarine. e Plastic

scintillator. f Total counts above discriminator threshold. g Counts in a region of the spectrum

representing 95% of thermal neutron peak intensity. h Counts in a region of the spectrum

representing 70% of thermal neutron peak intensity.

hit, the signals from the neutron detector have to be vetoed for several 100 μs to

suppress such events effectively.

4.8

Yields and Cross Sections for Charged-Particle-Induced Reactions

Thecalculation of thermonuclear reaction rates requires knowledge of the nuclear

reaction cross section. However, what is usually determined experimentally is the

total number of nuclear reactions that occurred and the total number of incident

beam particles. The ratio of these two quantities,

Y ≡ total number of nuclear reactions

total number of incident beam particles
=

R

b

(4.87)

is called the yield of the reaction. Comparison to Eq. (2.1) shows that the yield is

related, but not equal, to the cross section 𝜎. In this section, we will derive rela-

tionships for these two quantities. We will also discuss how to derive resonance

strengths (i.e., integrated cross sections) frommeasured yields. A function of yield

versus bombarding energy is referred to as yield curve or excitation function.

The following, definitions will be used for the stopping power (in units of

eV cm2/atom),

𝜀(E) ≡ SA(E) = −
1

N

dE

dx
(4.88)

and for the concentration of target nuclei,

n ≡ Nd =
t

A
(4.89)
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The quantitiest andN denote the total number of target nuclei and the number

density of target nuclei (atoms per unit volume), respectively (Section 4.2.1); d is

the target thickness (in units of length). Hence, n is the number of target nuclei

per unit area. All quantities in this section will be expressed in the center-of-mass

system, unless mentioned otherwise.

4.8.1

Nonresonant and Resonant Yields

Suppose that a beam of energy E0 is incident on a target.The target can be divided

into a number of slices of thickness Δxi, and it can be assumed that the energy

lost by the beam in each slice,ΔEi, is small. In other words, both the cross section,

𝜎i, and the stopping power, 𝜀i, are constant over Δxi. With Eqs. (2.1), (4.87), and

(4.89) we obtain for the yield from a particular slice in the target

ΔYi =
R,i

b

= 𝜎i
t,i

A
= 𝜎iNiΔxi (4.90)

The total yield is given by integrating over all target slices,

Y (E0) = ∫ 𝜎(x)N(x) dx = ∫ 𝜎(x)N(x) dx
dE(x)

dx

dx

dE(x)

= ∫
E0

E0−ΔE

𝜎(E)

𝜀(E)
dE (4.91)

The quantity ΔE is the total energy lost by the beam in the target, that is, the tar-

get thickness in energy units. The above expression applies either to total cross

sections and total yields or to differential cross sections and differential yields

(yield per steradian). The expression neglects the effects of beam resolution and

straggling that will be discussed later. The cross section 𝜎 = 𝜎(E) can be found

from the measured yield by solving Eq. (4.91) numerically. In special cases, which

occur frequently in practice, the above integral can be evaluated analytically. Such

cases will be addressed below.

4.8.1.1 Constant 𝝈 and 𝜺Over Target Thickness

Suppose that the cross section is approximately constant over the target thick-

ness.This may be the case, for example, if the reaction proceeds via a nonresonant

mechanism or a broad resonance. Furthermore, we assume that the energy lost by

the beam in the target is small so that the stopping power is nearly constant as

well. The situation is displayed as case (a) in Figure 4.52.The yield follows directly

from Eqs. (4.14) and (4.91),

Y (E0) =
𝜎(Eeff )

𝜀(E0) ∫
E0

E0−ΔE

dE =
ΔE(E0)

𝜀(E0)
𝜎(Eeff ) = n𝜎(Eeff ) (4.92)

The effective or average energy in the target is Eeff = E0 − ΔE∕2 and, therefore,

we can assign this energy to the cross section obtained from Eq. (4.92).The above

assumption of a constant cross section implies that reactions will occur over the
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Figure 4.52 Yield for (a) constant cross

section, and (b) moderately energy-

dependent cross section. The yield is given

by the area under the cross section curve

(shaded areas in the top part). The inte-

gration is performed from the bombarding

energy E0 to an energy of E0 − ΔE, with ΔE

the target thickness in energy units. In sit-

uation (a), the shape of the yield and cross

section curves are identical. In situation (b),

the cross section depends approximately lin-

early on energy and the effective energy is

given by Eeff = E0 − ΔE∕2.

entire thickness of the target. Furthermore, the shapes of themeasured yield curve

and the cross section will be similar. The situation is schematically shown as case

(a) in Figure 4.52. Similarly, for differential cross sections, (d𝜎∕dΩ)𝜃 , and differ-

ential yields, (dY∕dΩ)𝜃 , one finds[
dY (E0)

dΩ

]
𝜃

=
ΔE(E0)

𝜀(E0)

[
d𝜎(Eeff )

dΩ

]
𝜃

= n

[
d𝜎(Eeff )

dΩ

]
𝜃

(4.93)

We assumed so far that the target consists of a pure element. If instead the target

consists of a compound XaYb with nX active nuclei per square centimeter (the

target nuclei of interest) and nY inactive nuclei per square centimeter (nuclei that

do not participate in the reaction of interest), then we obtain from Eqs. (4.17),

(4.88), and (4.89)

ΔEc

nX
=
𝜀XnX + 𝜀YnY

nX
= 𝜀X +

nY
nX
𝜀Y ≡ 𝜀eff (4.94)
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where nY∕nX = b∕a. The quantity 𝜀eff , which is different from the total stopping

power for a compound (see Eq. (4.15)), is referred to as the effective stopping power.

The total and differential yields are given by Eqs. (4.92)–(4.94) as

Y (E0) = nX𝜎(Eeff ) =
ΔEc(E0)

𝜀eff (E0)
𝜎(Eeff ) (4.95)[

dY (E0)

dΩ

]
𝜃

= nX

[
d𝜎(Eeff )

dΩ

]
𝜃

=
ΔEc(E0)

𝜀eff (E0)

[
d𝜎(Eeff )

dΩ

]
𝜃

(4.96)

As long as the stopping power is constant over the target thickness, it follows that

the yield is calculated in the same way as for a pure target (see Eqs. (4.92) and

(4.93)), except that the stopping power is replaced by 𝜀eff . Similar arguments apply

to yield expressions obtained for other assumptions (e.g., resonances) as will be

seen below.

Example 4.3

Suppose that a beamof singly charged protonswith a laboratory energy of 200 keV

and 1 μA intensity is incident on a 5 keV thick (in the laboratory system) natu-

ral carbon target for a period of one hour. Calculate the total number of photons

originating from the 13C(p,𝛾)14N capture reaction, assuming that one photon is

emitted per reaction. Assume further that both the cross section and the stop-

ping power are approximately constant over the target thickness.The cross section

amounts to 𝜎13C(p,𝛾)(Elab = 200 keV) = 10
−7 b and the stopping power of protons

in carbon, calculated using the computer code SRIM (Ziegler, 2003), is given by

𝜀p→C(Elab = 200 keV) = 11.8 × 10
−15 eV cm2∕atom.

The target consists of active 13C (1.1%) and inactive 12C (98.9%) nuclei. If we

assume that the stopping power of hydrogen in 12C and 13C is the same, we obtain

for the effective stopping power (see Eq. (4.94))

𝜀eff = 𝜀p→13C +
98.9

1.1
𝜀p→12C = 𝜀p→C

(
1 +
98.9

1.1

)
= (11.8 × 10−15 eV cm2∕atom)

(
1 +
98.9

1.1

)
= 1.0 × 10−12 eV cm2∕atom

The yield is then given by

Y =
ΔEc

𝜀eff
𝜎 =

5 × 103 eV

1.0 × 10−12 eV cm2∕atom
(10−7 ⋅ 10−24 cm2)

= 5.0 × 10−16 =
𝛾

p

Thetotal number of incident protons can be calculated from the total accumulated

charge Q and the elementary charge e (Section 4.3.4). The value of Q is given by

the beam intensity and the measuring time,

p =
Q

e
=

It

e
=
(1 × 10−6A)(3600 s)

1.6 × 10−19 C
= 2.25 × 1016
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Thus, for a measuring time of one hour, we obtain for the number of emitted pho-

tons at a laboratory bombarding energy of Elab = 200 keV

𝛾 = Yp = (5.0 × 10−16)(2.25 × 1016) ≈ 11

In this example, the yield is obtained from the ratio of the two quantities ΔEc and

𝜀eff that are both given in the laboratory system. The ratio ΔEc∕𝜀eff = nX is inde-

pendent of the reference frame.Multiplication of the numerator and denominator

by the center of mass to the laboratory frame conversion factor MX∕(MX +Mp)

(see Eq. (C.24); MX and Mp are the relative atomic masses of the active target

nuclei and the projectiles, respectively) shows that the tabulated effective stop-

ping power has to be multiplied by this factor if the yield is calculated from the

target thickness in the center-of-mass system.

4.8.1.2 Moderately Varying 𝝈 and Constant 𝜺Over Target Thickness

If the stopping power is constant, but the cross section varies over the target thick-

ness, then the yield is given by (see Eq. (4.91))

Y (E0) =
1

𝜀(E0) ∫
E0

E0−ΔE

𝜎(E) dE (4.97)

We will assume that the cross section does not vary drastically, that is, we exclude

narrow-resonance cross sections, which will be discussed later. The situation is

shown as case (b) in Figure 4.52. If the above integral is replaced by the product

𝜎(Eeff )ΔE(E0), we obtain again the expression (see Eq. (4.92))

Y (E0) =
ΔE(E0)

𝜀(E0)
𝜎(Eeff ) (4.98)

With this substitution, the effective energy, Eeff , is defined as the energy at which

the cross section, evaluated at this energy, equals the cross section averaged over

the target thickness. As was the case before, reactions occur over the entire thick-

ness of the target, but the number of reaction products emitted from different

target depths is no longer constant.

In general, the effective beam energy must be obtained numerically, but in

special cases analytical approximations may be used. Following Brune and Sayre

(2013), we assume again that the stopping power is constant over the target thick-

ness and that the energy dependence of the cross section is at most quadratic.

Expansion around an energy at the center of the target, Eh = E0 − ΔE∕2, yields

𝜎(E) = 𝜎(Eh) +

(
d𝜎

dE

)
Eh

(E − Eh) +

(
d2𝜎

dE2

)
Eh

(E − Eh)
2 (4.99)

With the definitions,

R1 ≡ 1

𝜎(Eh)

(
d𝜎

dE

)
Eh

and R2 ≡
(d2𝜎∕dE2)Eh

(d𝜎∕dE)Eh

(4.100)
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the right-hand sides of Eqs. (4.97) and (4.98) can be set equal to solve for the effec-

tive energy. The result is

Eeff = E0 −
ΔE

2
+

√
1 + R2

2
(ΔE)2∕12 − 1

R2
(4.101)

If the cross section depends linearly on energy, then R2 = 0, and the effective

energy becomes Eeff = E0 − ΔE∕2.

Sometimes it may be of advantage to adopt an energy that differs from the effec-

tive energy introduced above. Alternative formulations involve the mean (or cross

section weighted) energy, or the median energy (i.e., the energy at which half of

the total yield is obtained). In such cases, the yield must be divided by a correction

factor before the cross section can be extracted from Eq. (4.98). For more infor-

mation, see Wrean, Brune, and Kavanagh (1994), Lemut (2008), and Brune and

Sayre (2013).

4.8.1.3 Breit–Wigner Resonance 𝝈 and Constant 𝜺Over Resonance Width

Suppose that a resonant cross section is given by the Breit–Wigner formula (see

Eq. (2.185)). It is also assumed that the stopping power 𝜀, the de Broglie wave-

length 𝜆, and the partial widths Γi of the resonance are independent of energy

over the resonance width. Hence, these quantities can be evaluated at the reso-

nance energy Er . With the substitutions 𝜔 ≡ (2J + 1)(1 + 𝛿01)∕[(2j0 + 1)(2j1 + 1)]

and𝜔𝛾 ≡ 𝜔ΓaΓb∕Γ (Section 3.2.4), we obtain fromEqs. (3.113) and (4.91) (Fowler,

Lauritsen, and Lauritsen, 1948)

Y (E0) =

E0

∫
E0−ΔE

1

𝜀(E)

𝜆2

4𝜋
𝜔

ΓaΓb

(Er − E)2 + Γ2∕4
dE

=
𝜆2
r

2𝜋

𝜔𝛾

𝜀r

Γ

2

E0

∫
E0−ΔE

dE

(Er − E)2 + (Γ∕2)2

=
𝜆2
r

2𝜋

𝜔𝛾

𝜀r

[
arctan

(
E0 − Er

Γ∕2

)
− arctan

(
E0 − Er − ΔE

Γ∕2

)]
(4.102)

where 𝜆r and 𝜀r denote the de Broglie wavelength and the stopping power at

the resonance energy Er , respectively. With the expressions tan(x − y) = [tan(x) −

tan(y)]∕[1 + tan(x) tan(y)] and d(arctan x)∕dx = 1∕(1 + x2), one finds after some

algebra

E0,max = Er +
ΔE

2
(4.103)

Ymax = Y (E0,max) =
𝜆2
r

𝜋

𝜔𝛾

𝜀r
arctan

(
ΔE

Γ

)
(4.104)

E0,50% = Er +
ΔE

2
±
1

2

√
Γ2 + ΔE2 (4.105)

FWHM =
√
Γ2 + ΔE2 (4.106)
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with E0,max, Ymax, E0,50%, and FWHM the location of the maximum, the maxi-

mum yield, the energies corresponding to one half of the maximum yield, and the

FWHM of the resonance yield curve, respectively. For the de Broglie wavelength

(in the center-of-mass system), we find numerically

𝜆2
r

2
= 2𝜋2

ℏ2

2m01Er

=

(
M0 +M1

M1

)2
4.125 × 10−18

M0E
lab
r

(cm2) (4.107)

withm01,M0, andM1 the reducedmass of the projectile–target system, the projec-

tile mass (u), and the target mass (u), respectively; Elab
r
is the laboratory resonance

energy in units of electron volts.

These results are illustrated in Figure 4.53, showing a Breit–Wigner cross

section (Figure 4.53a) and the corresponding yield (Figure 4.53b) of a resonance

at Er = 500 keV with a total width of Γ = 15 keV for different values of the target
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Figure 4.53 (a) Cross section and (b) yield

curve for a Breit–Wigner resonance with

energy-independent partial widths. The res-

onance is located at E = 500 keV and has

a width of Γ = 15 keV. The yield depends

strongly on the bombarding energy and the

target thickness. The shaded areas (part a)

and corresponding open circles (part b)

depict the situation for two different sets

of conditions (E0 = 495 keV, ΔE = 5 keV on

the left-hand side, and E0 = 550 keV, ΔE =

50 keV on the right-hand side). The symbol

∞ in part (b) labels the resonant yield for an

infinitely thick target.
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thickness ΔE. If the target thickness is considerably smaller than the resonance

width, ΔE ≪ Γ, the shape of the yield curve corresponds to the shape of the

cross section (i.e., a Lorentzian shape). The maximum yield is located close to the

resonance energy, E0,max ≈ Er , and the width of the yield curve is given by the res-

onance width, FWHM≈ Γ. For example, at a bombarding energy of E0 = 495 keV

and a target thickness of ΔE = 5 keV (shaded area on the left-hand side in

Figure 4.53a) the target integrates only over a small region of the cross section

(i.e., between 490 and 495 keV). The resulting yield is shown as the open circle at

495 keV in Figure 4.53b. In this case, reactions occur over the entire thickness of

the target. On the other hand, if the target thickness is considerably larger than the

total resonance width, ΔE ≫ Γ, the shape of the yield curve is determined by the

arctan function. The yield curve shows a flat plateau with a maximum located at

E0,max = Er + ΔE∕2 and the width is FWHM ≈ ΔE. For example, at E0 = 550 keV

and ΔE = 50 keV (shaded region on right-hand side in Figure 4.53a) the target

integrates over almost half of the entire cross section curve (i.e., between 500 and

550 keV).The resulting yield, shown as the open circle at 550 keV in Figure 4.53b,

represents about 50% of the maximum yield at the plateau height. In this case,

the number of reactions varies strongly over the thickness of the target.

For an increasing target thickness ΔE, both the maximum yield Ymax and the

width of the yield curve will increase since the target integrates the cross section

over a larger energy region. In the limit of an infinitely thick target, ΔE → ∞, the

yield in Eq. (4.102) becomes

YΔE→∞(E0) =
𝜆2
r

2𝜋

𝜔𝛾

𝜀r

[
arctan

(
E0 − Er

Γ∕2

)
+
𝜋

2

]
(4.108)

and Eqs. (4.104) and (4.105) give

Ymax,ΔE→∞ =
𝜆2
r

2

𝜔𝛾

𝜀r
(4.109)

E0,50%,ΔE→∞ = Er (4.110)

The yield YΔE→∞ for a resonance at E0 = 500 keV with a total width of Γ = 15 keV

is also shown in Figure 4.53b. The difference between the energies at which the

yield for an infinitely thick target is at 75% and 25% of its maximum value is equal

to the total resonance width, that is,

E0,75%,ΔE→∞ − E0,25%,ΔE→∞ = Γ (4.111)

It is interesting to investigate the ratios Ymax∕Ymax,ΔE→∞, FWHM∕ΔE, and (Er −

E0,50%)∕Γ as a function of ΔE∕Γ. The results are shown in Figure 4.54. The thicker

the target, the closer the yield resembles that of an infinitely thick target. For

example, suppose that the target thickness is 10 times larger than the total res-

onance width (ΔE∕Γ = 10). The maximum yield at the plateau is then 94% of the

yield for an infinitely thick target and the FWHM is equal to the target thickness

within 0.5%. Furthermore, the difference of energies at which the yield is at 50% of

its maximum and the resonance energy amounts to 0.025Γ (see Eq. (4.105)). This

deviation is only 0.37 keV for a total resonance width of Γ = 15 keV.



4.8 Yields and Cross Sections for Charged-Particle-Induced Reactions 319

10−3

10−3 10−2 10−1 100

ΔE/Γ
101 102

10−2

10−1

100

R
a

ti
o

101

102

103

FWHM/ΔE

(Er−E0,50%)/Γ

Ymax/Ymax,ΔE→∞

Figure 4.54 Ratios Ymax∕Ymax,ΔE→∞, FWHM∕ΔE, and (Er − E0,50%)∕Γ as a function of ΔE∕Γ

for a Breit–Wigner resonance with energy-independent partial widths.

4.8.2

General Treatment of Yield Curves

We neglected so far the influence of certain experimental factors on the mea-

sured yield. These include the finite beam energy resolution, beam straggling in

the target, target nonuniformities, and the thermal motion of target atoms. To

account for such effects, we have to replace Eq. (4.91) by the general expression

(Gove, 1959)

Y (E0) = ∫
E0

E0−ΔE

dE′ ∫
∞

Ei=0

dEi ∫
Ei

E=0

𝜎(E)

𝜀(E)
g(E0,Ei)f (Ei,E,E

′) dE (4.112)

where g(E0,Ei) dEi is the probability that a particle in the incident beam of mean

energy E0 has an energy between Ei and Ei + dEi; f (Ei,E,E
′) dE is the probability

that a particle incident on the target at an energy Ei has an energy between E and

E + dE at a depth inside the target corresponding to the energy E′ (i.e., E0 − ΔE <

E′ < E0).The functions g(E0,Ei) and f (Ei,E,E
′) are assumed to be normalized.The

cross section 𝜎(E) can be found numerically from the measured yield Y (E0) using

deconvolution procedures (see, e.g., McGlone and Johnson, 1991).

For a constant cross section and stopping power, the triple integral reduces to

our earlier result (see Eq. (4.92)), as can be seen using the normalizations of g and

f , and by carrying out the integrations in the order E, Ei, and E
′. It follows that

the yield for nonresonant cross sections (𝜎 ≈ const) and thin targets (𝜀 ≈ const)

is not affected by the beam resolution and beam straggling. In other words, all

projectiles in the beam can in principle contribute to the yield.
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In the following, resonance yield curves will be discussed in more detail. We

will make a few assumptions that apply frequently in practice: (i) the energy distri-

bution of particles in the beam is a function of E0 − Ei only, g(E0,Ei) = g(E0 − Ei),

that is, the beam spread is independent of the mean energy E0; (ii) the distri-

bution describing energy loss and straggling is a function of Ei − E and E′ only,

f (Ei,E,E
′) = f (Ei − E,E′), that is, the spread in f is independent of the energy

Ei; (iii) the functions g, f , and 𝜎 vanish on both sides of their maximum values;

and (iv) the stopping power is constant over the total width of the resonance

and the total width of the target, 𝜀(E) = 𝜀r . The latter condition implies that the

target is uniform. Otherwise, if the target consists of a compound with changing

stoichiometry, the energy and depth dependence of the effective stopping power,

𝜀eff (E), has to be taken explicitly into account. With the above assumptions,

Eq. (4.112) becomes

Y (E0) =
1

𝜀r ∫
E0

E0−ΔE

dE′ ∫
∞

Ei=0

dEi ∫
Ei

E=0

𝜎(E)g(E0 − Ei)f (Ei − E,E′) dE (4.113)

A typical situation is represented in Figure 4.55. A beam of initial mean energy E0,

with an energy distribution given by g(E0 − Ei), traverses a target of thickness ΔE.

The energiesE andE′ represent the projectile energy at a fixed depth x in the target

and themean energy of the beam, respectively.The vertical thick line indicates the

position of a narrow resonance with Er < E0. At position (a) near the target sur-

face, all projectile energies are too large to excite the resonance and the yield will

be negligible. At position (b) inside the target, the beam has slowed down so that

the maximum of the projectile energy distribution coincides with the resonance

Beam

f(E,x)

a

b

c

Er

E0

Ei

E

E

E′(x)

E0–ΔE

g(E0–Ei)

Figure 4.55 Slowing down process of a

beam with initial mean energy E0 and an

energy distribution given by g(E0 − Ei),

traversing a target of thickness ΔE. The

energies E and E′ represent the projectile

energy at a fixed depth x in the target and

the mean energy of the beam, respectively;

E′ decreases as the target is traversed. The

z-axis represents the magnitude of the prob-

ability distribution f . The vertical thick line

indicates the position of a narrow resonance

with Er < E0. Positions (a), (b), and (c) indi-

cate different depths within the target. The

largest contribution to the resonance yield

arises from position (b).
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energy and, consequently, the largest contribution to the yield arises from this

depth in the target. At position (c) near the back side of the target, most projec-

tiles have slowed to energies below Er . Only a few projectiles on the high-energy

tail of the distribution f can excite the resonance. The contribution of this target

depth to the yield is larger than for position (a), but less than for position (b).

4.8.2.1 Target of Infinite Thickness

For an infinitely thick target, ΔE → ∞, the lower integration limit of E′ in

Eq. (4.113) is zero. The shape of the yield curve can be obtained using the

normalization of the function f , since the probability of finding a projectile that

experienced a specific energy loss of Ei − E anywhere in the target is unity. Thus,

YΔE→∞(E0) =
1

𝜀r ∫
E0

E′=0

f (Ei − E,E′) dE′ ∫
∞

Ei=0

dEi ∫
Ei

E=0

𝜎(E)g(E0 − Ei) dE

=
1

𝜀r ∫
∞

Ei=0

g(E0 − Ei) dEi ∫
Ei

E=0

𝜎(E) dE (4.114)

The yield depends on both the cross section (e.g., the total resonance width) and

the beam spread, but is independent of beam straggling. The maximum yield for

an infinitely thick target can be obtained in the limit E0 → ∞. In this case, the

only contribution from the integration over Ei results from Ei → ∞. Using the

normalization of the distribution g we find

Ymax,ΔE→∞ =
1

𝜀r ∫
∞

E=0

𝜎(E) dE (4.115)

It follows that the maximum yield for an infinitely thick target is not affected by

the beam resolution, beam straggling, or the total resonance width. The value of

Ymax,ΔE→∞ depends only on the stopping power and the integrated cross section.

If the target consists of a compound, 𝜀r has to be replaced by 𝜀eff ,r (see Eq. (4.94))

and, consequently, Ymax,ΔE→∞ depends on the stoichiometry of the target com-

pound. If the cross section is given by the Breit–Wigner formula with constant

partial widths and de Broglie wavelength over the width of the resonance, the

integration over 𝜎 yields

Ymax,ΔE→∞ =
1

𝜀r

𝜆2
r

2
𝜔𝛾 (4.116)

which is identical to our earlier result (see Eq. (4.109)).

4.8.2.2 Target of Finite Thickness

For a target of finite thickness, the area under the resonance yield curve is obtained

by evaluating the expression

AY = ∫
∞

E0=0

Y (E0) dE0

=
1

𝜀r ∫
∞

E0=0

dE0 ∫
E0

E0−ΔE

dE′ ∫
∞

Ei=0

dEi ∫
Ei

E=0

𝜎(E)g(E0 − Ei)f (Ei − E,E′) dE

(4.117)
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The multiple integral can be solved using the normalizations of g and f , and by

carrying out the integrations in the order E0, Ei, and E
′. The integral over E can

be taken with an upper limit of infinity since the beam energy varies between zero

and infinity. Thus,

AY =
1

𝜀r ∫
∞

E0=0

g(E0 − Ei) dE0 ∫
E0

E0−ΔE

dE′ ∫
∞

Ei=0

dEi ∫
Ei

E=0

𝜎(E)f (Ei − E,E′) dE

=
1

𝜀r ∫
∞

Ei=0

f (Ei − E,E′) dEi ∫
E0

E0−ΔE

dE′ ∫
∞

E=0

𝜎(E) dE (4.118)

The probability that, at a target depth corresponding to E′, a projectile of energy

E has an initial energy of Ei anywhere between zero and infinity is unity and,

therefore,

AY =
1

𝜀r ∫
E0

E0−ΔE

dE′ ∫
∞

E=0

𝜎(E) dE

=
ΔE

𝜀r ∫
∞

E=0

𝜎(E) dE = n∫
∞

E=0

𝜎(E) dE

(4.119)

We obtain the important result that the area under a resonance yield curve for

a target of finite thickness is independent of beam resolution, straggling, target

thickness, stopping power, and total resonance width. The value of AY depends

only on the total number of target nuclei per square centimeter and the integrated

cross section. If the target consists of a compound, then n has to be replaced by the

number of active target nuclei, nX = ΔEc∕𝜀eff (see Eq. (4.94)). It has been shown

(Palmer et al., 1963) that the above expression also holds for nonuniform targets

(e.g., targets of varying stoichiometry). From Eqs. (4.115) and (4.119), we find that

the area under the resonance yield curve is equal to the product of maximum yield

for an infinitely thick target and the target thickness,

AY = Ymax,ΔE→∞ΔE (4.120)

For example, for a Breit–Wigner cross section with constant partial widths and de

Broglie wavelength over the width of the resonance, one obtains with Eq. (4.116)

AY =
ΔE

𝜀r

𝜆2
r

2
𝜔𝛾 = n

𝜆2
r

2
𝜔𝛾 (4.121)

We will now discuss the influence of beam resolution and straggling on the

shape of resonance yield curves for targets of finite thickness. We are specifically

interested to investigate the changes of the quantities Ymax, E0,50%, and FWHM

(see Eqs. (4.104)–(4.106)) caused by these effects. In the following, results will be

discussed that are obtained by solving Eq. (4.113) numerically, assuming specific

distributions for 𝜎, g, and f . For these calculations, the following assumptions will

be made: (i) the cross section is given by the Breit–Wigner formula with constant

partial widths and de Broglie wavelength over the total resonance width; the res-

onance is located at an energy of Er = 500 keV and the area under the resonance

cross section (i.e., the resonance strength) is fixed; (ii) the beam profile is approx-

imated by a Gaussian with a full width at half maximum of Δbeam; and (iii) the
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distribution f is also approximated by aGaussian, which is an appropriate assump-

tion if the number of collisions is large. The full width at half maximum of f can

be approximated by Eq. (4.19), which is applicable for relatively thin absorbers.

Assuming a constant stopping power over the total resonance width, one finds

from Eqs. (4.14) and (4.19)

Δstragg = 1.20 × 10
−9
√

Z2
p
Zt(E0 − E′)∕𝜀 (keV)

= const
√
E0 − E′ (keV) (4.122)

We adopt here arbitrary values ofZp = 1,Zt = 10, and 𝜀 = 10×10
−15 eV cm2/atom,

yielding const = 1.2. The resulting calculated yield curves are shown in Fig-

ure 4.56.

Figure 4.56a shows the effect of varying the beam energy spread Δbeam. For

the target thickness, total resonance width, and beam straggling, values of

ΔE = 10 keV, Γ = 0, and Δstragg = 0, respectively, are adopted. The curves are

obtained for values of Δbeam = 0, 1, 3, 5, and 8 keV. The rectangular yield curve

corresponds to the case of Γ = 0, Δstragg = 0, and Δbeam = 0. It can be seen that

the beam spread causes a decrease in the slope of both the low-energy and the

high-energy edge of the yield curve. If the beam spread is small compared to

the target thickness, Δbeam∕ΔE < 0.5, then the beam resolution is equal to the

difference of energies at which the yield reaches 12% and 88% of its maximum

value (assumingΔbeam ≫ Γ), which is appropriate for a Gaussian distribution. For

ratios in excess of Δbeam∕ΔE ≈ 0.5, the quantities Ymax, E0,50%, and FWHM are

all influenced by the beam resolution. The maximum yield decreases, the energy

at which the yield reaches 50% of its maximum value shifts below the resonance

energy Er , and the value of FWHM becomes larger than the target thickness. For

example, for Δbeam = 8 keV the energy difference Er − E0,50% is ≈ 0.5 keV. The

influence of the beam spread on the shape of the yield curve has to be taken into

account if the resonance strength 𝜔𝛾 is derived from the observed value of Ymax
using Eq. (4.104).

Figure 4.56b demonstrates the influence of beam straggling. For the total res-

onance width, beam energy resolution, and straggling constant, values of Γ = 0,

Δbeam = 0, and const = 1.2, respectively, are adopted. The curves are obtained for

target thicknesses of ΔE = 1, 3, 5, and 10 keV. The rectangular yield curve corre-

sponds again to the case of Γ = 0, Δbeam = 0, and Δstragg = 0. It can be seen that

straggling has no effect on the low-energy edge of the yield curve and, therefore,

the energy difference Er − E0,50% is negligible (assuming Γ = 0). However, strag-

gling causes a decrease in the slope of the high-energy edge of the yield curve.

The value of Δstragg (at E0 − E′ = ΔE) is approximately equal to the difference of

energies at which the yield reaches 12% and 88% of its maximum value (assuming

Δstragg ≫ Γ and Δstragg ≫ Δbeam). Straggling will reduce the maximum yield if the

target becomes too thin (ΔE < 3 keV in our specific case). As was the case for the

beam spread, the effects of straggling have to be taken into account if𝜔𝛾 is derived

from the observed value of Ymax. The value of FWHM is relatively insensitive to

straggling.
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Figure 4.56 General shape of resonance

yield curves, obtained by solving Eq. (4.113)

numerically. See the text for specific assump-

tions. The curves are obtained for the follow-

ing conditions of target thickness ΔE, total

resonance width Γ, beam straggling Δstragg ,

and beam energy spread Δbeam: (a) ΔE=

10 keV, Γ = 0, Δstragg = 0, Δbeam = 0, 1, 3,

5, 8 keV; (b) Γ = 0, Δbeam = 0, const = 1.2,

ΔE = 1, 3, 5, 10 keV; (c) the target thick-

ness amounts to ΔE = 10 keV for each curve;

Γ = 0, Δbeam = 0, Δstragg = 0; Γ = 0.5 keV,

Δbeam = 0, Δstragg = 0; Γ = 0.5 keV, Δbeam =

1.5 keV, Δstragg = 0; Γ = 0.5 keV, Δbeam =

1.5 keV, const = 1.2. The areas under all

curves shown in part (c) are identical.
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Figure 4.56c shows the combined effects of the total resonance width, beam

resolution, and beam straggling on the shape of a resonance yield curve for

specific sets of parameters. For the target thickness, a value of ΔE = 10 keV is

adopted.The rectangular profile is obtained with the values Γ = 0,Δbeam = 0, and

Δstragg = 0. Since ΔE∕Γ → ∞, the plateau height corresponds to the maximum

yield for an infinitely thick target (see Eq. (4.109)). The dotted line is calculated

by using the values Γ = 0.5 keV, Δbeam = 0, and Δstragg = 0. Since ΔE∕Γ = 20, the

plateau height decreases to 0.97Ymax,ΔE→∞, consistent with the results shown

in Figure 4.54. In addition, the slopes of the high- and low-energy edges of the

yield curve decrease. The solid line obtained with the values of Γ = 0.5 keV,

Δbeam = 1.5 keV, and Δstragg = 0 includes the effects of a finite beam energy

resolution. Since we have Δbeam ≪ ΔE, the maximum yield Ymax is only slightly

affected by the beam spread, but the low- and high-energy edges become less

steep. Finally, the solid line calculated with Γ = 0.5 keV, Δbeam = 1.5 keV, and

const = 1.2 for the straggling constant shows the effects of straggling. It causes

the high-energy edge of the yield curve to become less steep. Since we have

Δstragg ≪ ΔE, the value of Ymax is little affected by beam straggling. The values of

E0,50% and FWHM are very close to Er and ΔE, respectively. The areas under all

curves shown in Figure 4.56c have the same value according to Eq. (4.121).

4.8.3

Measured Yield Curves and Excitation Functions

We will now discuss what kind of information may be extracted from the prop-

erties of a measured yield curve, that is, its observed width (FWHM), the slope

of the low-energy edge, the maximum yield (Ymax), the energy at which the yield

reaches 50% of its maximum value (E0,50%), and the area under the yield curve

(AY ). To properly interpret the data, some information must be known a priori.

We will assume in the following that the data represent the yield curve of an iso-

lated, well-resolved resonance and that the total resonance width Γ is known from

independent sources.

Consider a first example, Figure 4.57a, showing a yield curve for the 151 keV

resonance in the 18O(p,𝛾)19F reaction. The yield is obtained from the measured

intensity of a specific primary transition. This resonance has a total width of Γ =

130 ± 10 eV (Table 4.1).The target was produced by anodizing a tantalum backing

in 18O-enriched water. Such targets are known to consist of a 18O–Ta compound

(Vermilyea, 1953).

The yield curve shows a structure with an observed width of FWHM = 34 keV.

The beam spread influences the slopes of the low-energy and high-energy edges

of the yield curve, while straggling contributes only to the slope of the high-energy

edge. Both edges extend over energy regions that are smaller than the observed

width of the yield curve. In addition, the flat plateau indicates that the plateau

height is not influenced by the beam resolution or by straggling. Otherwise, the

yield maximum would show a round shape (Figure 4.56). From these arguments,

it follows that FWHM ≫ Δbeam and FWHM ≫ Δstragg. Furthermore, we have
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FWHM≫ Γ, and thus we conclude that the observed width is equal to the target

thickness, FWHM = ΔE = 34 keV.

The low-energy edge extends over an energy range of several kilo electron

volts. Since Γ is very small, the slope reflects the resolution of the beam.

From the difference of energies at which the yield reaches 12% and 88% of its

maximum value, we find Δbeam = 4.0 keV. The Doppler effect caused by the

thermal motion of the target atoms also contributes to the slopes of yield curve

edges (Rolfs and Rodney, 1988). The beam spread together with the Doppler

broadening can be described by a Gaussian with a full width at half maximum

of Δbeam+Dopp = (Δ2
beam

+ Δ2
Dopp

)1∕2. In practice, one finds ΔDopp ≤ 100 eV and,
unless beams of very high resolution are used, we have Δbeam+Dopp ≈ Δbeam. The

energy at which the yield reaches 50% of its maximum value is in this case neither

influenced by the total resonance width (since ΔE ≫ Γ; see Eq. (4.105)), nor by

the beam spread (since the ratio Δbeam∕ΔE = 4.0 keV/34 keV = 0.11 is small; see

Figure 4.56). Thus, we find E0,50% = Er = 150.5 keV.

We concluded that the plateau height is not influenced by beam spread and

straggling effects. From the ratio ΔE∕Γ = 34 keV/130 eV ≈ 260, we find with

Eqs. (4.104) and (4.109) that the maximum yield Ymax is equal to 0.998Ymax,ΔE→∞

and, therefore, represents the yield of an infinitely thick target to within 0.2%.

Furthermore, the area AY under the yield curve depends only on the number of

active target nuclei (18O) and on the resonance strength 𝜔𝛾 (see Eq. (4.121)).

Similar arguments apply to the data displayed in Figure 4.57b, showing a yield

curve of the 918 keV resonance in 36Ar(p,𝛾)37K. The yield is obtained from the

intensity of the primary transition to the 37K ground state. This resonance has a

total width ofΓ = 300 ± 50 meV (Endt, 1998).The targetwas prepared by implant-

ing 36Ar ions into a tantalum sheet. Consequently, the target consists of an 36Ar–Ta

compound (Table 4.3). The width of the structure (FWHM = 6.5 keV) is cosider-

ably larger than the total resonance width. The energy region of the leading edge

is small compared to the value of FWHM and, therefore, the beam spread neither

reduces the maximum yield nor contributes to the observed width of the yield

curve. Furthermore, straggling does not influence the leading edge or the observed

value of FWHM. Thus, we extract from the yield curve values of ΔE = 6.5 keV,

Δbeam = 1.0 keV, and Er = 917.5 keV.

There is an important difference between the two yield curves shown in

Figure 4.57. In Figure 4.57b, a flat plateau is not observed and the high-energy

edge displays a pronounced tail. This effect is partly caused by proton beam

straggling, but also reflects the range straggling of the implanted 36Ar ions in

the tantalum backing. Although these straggling effects will not influence the

deduced values ofΔE,Δbeam, and Er , we can no longer conclude that the influence

of straggling on the maximum yield height Ymax is negligible.

Narrow resonance yield curves also provide information on the number of

active target nuclei and on the stoichiometry of the target compound if the

resonance strength is well known. According to Eq. (4.121), the number of active

target nuclei per square centimeter for pure targets or compounds is given by

nX = 2AY∕(𝜆
2
r
𝜔𝛾). For a target compound XaYb, the effective stopping power can
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Figure 4.57 (a) Measured yield curve

of the Elabr = 151 keV resonance in the
18O(p,𝛾)19F reaction, obtained from the inten-

sity of the primary transition to the Ex =

3908 keV state. The total resonance width

is Γ = 130 ± 10 eV (Table 4.1). The target

was produced by anodizing a tantalum

backing in 18O-enriched water (Vermilyea,

1953). (b) Measured yield curve of the Elabr =

918 keV resonance in 36Ar(p,𝛾)37K, obtained

from the intensity of the primary transition

to the 37K ground state. The total resonance

width is Γ = 300 ± 50 meV (Endt, 1998). The

target was prepared by implanting 36Ar ions

into a tantalum sheet (Table 4.3).

be found from the measured target thickness by using Eq. (4.94). This procedure

does not rely on the maximum yield Ymax, which may be influenced by straggling

effects. The stoichiometry nY∕nX can then be derived from the effective stopping

power (see Eq. (4.94)).

A yield curve over a narrow resonance provides a wealth of information, includ-

ing the resonance energy, beam energy resolution, target thickness, number of

active target nuclei per square centimeter, and the target stoichiometry. Alterna-

tively, if the beam energy spread is small compared to the total resonance width

(Δbeam ≪ Γ) and if Γ≪ ΔE, then the difference in energies at which the yield

reaches 25% and 75% of its maximum value will be equal to Γ (see Eq. (4.111)).
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Figure 4.58 Measured yield versus labora-

tory bombarding energy for the 24Mg(p,𝛾)25Al

reaction at energies near 1.6 MeV. The yield

is obtained from the intensity of the sec-

ondary 945 keV → 0 transition in 25Al. The

target was produced by evaporating 24Mg

onto a tantalum backing. The narrow struc-

ture at ≈ 1.65 MeV shows the yield curve

over a narrow resonance (Elabr = 1654 keV,

Γ = 0.1 keV), while the broad structure at

≈ 1.62 MeV corresponds to the yield curve

of a broad resonance (Elabr = 1616 keV, Γ =

36 keV). (Reprinted from Powell et al. (1999).

Copyright (1999), with permission from

Elsevier.)

Such techniques are frequently applied formeasuring the quantities Er ,Δbeam,ΔE,

nX , nY∕nX , and Γ.

As a final example, consider the yield curve displayed in Figure 4.58, which was

measured in the 24Mg(p,𝛾)25Al reaction at bombarding energies near 1.6 MeV.The

yield was obtained from the intensity of a secondary transition.Themeasurement

was performed using an evaporated, enriched 24Mg target. The narrow structure

at ≈ 1.65 MeV shows the yield curve over a narrow resonance (Er = 1654 keV,

Γ = 0.1 keV), similar to the examples discussed above.The full width at half max-

imum of about 3 keV, as measured with respect to the underlying continuum,

reflects the target thickness, since ΔE ≫ Γ. The broad structure at ≈ 1.62 MeV

corresponds to the yield curve of a broad resonance (Er = 1616 keV, Γ = 36 keV).

Since in this case we have ΔE ≪ Γ, the yield curve reflects the shape of the cross

section curve, as discussed in Section 4.8.1.

4.8.4

Determination of Absolute Resonance Strengths and Cross Sections

The importance of absolute cross sections and resonance strengths for the cal-

culation of thermonuclear reaction rates has been stressed in Chapter 3. What is

directly measured in experiments are yields rather than cross sections or reso-

nance strengths, as we have seen in previous sections. We will now discuss meth-

ods of deriving absolute values of 𝜎 and 𝜔𝛾 from measured yields. It is again

assumed that the stopping power is approximately constant over the width of the
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target. The assumption is justified if the target thickness is less than a few tens of

kilo electron volts. In this case, the target thickness and stopping power are related

by Eqs. (4.14) or (4.17).

4.8.4.1 Experimental Yields

Yields of nuclear reactions are usuallymeasuredwith detectors located at a certain

detection angle 𝜃 with respect to the incident beam direction and cover a solid

angle Ω. The total yield is experimentally given by Eqs. (4.49), (4.69), and (4.87),

Y =
R

b

=


bB𝜂W
(4.123)

with R the total number of reactions that occurred, b the total number of

incident projectiles, and B, , 𝜂, andW the branching ratio (probability of emis-
sion per reaction), the total number of detected particles or photons, the detector

efficiency, and the angular correlation, respectively, for a specific nuclear transi-

tion.The latter three quantities depend, in general, on the detection angle 𝜃. If the

reaction proceeds to only one final state, or if the yield is presented for a specific

transition rather than for the total number of reactions, then B = 1.

The differential yield for a nonresonant cross section is usually given for a spe-

cific transition (B = 1). With Eqs. (4.44) and (4.123) we write(
dY

dΩ

)
𝜃

=


b𝜂intΩ
(4.124)

where 𝜂int denotes the intrinsic detection efficiency (e.g., 𝜂int = 1 for silicon

charged-particle detectors; Section 4.5.1) and Ω is the detector solid angle in

steradians.

4.8.4.2 Absolute Resonance Strengths and Cross Sections

With few exceptions, most experimental resonance strengths have been deter-

mined using the plateau height of thick target yields (see Eq. (4.109)),

𝜔𝛾 =
2𝜀r
𝜆2
r

Ymax,ΔE→∞ =
2𝜀r
𝜆2
r

max,ΔE→∞

bB𝜂W
(4.125)

where the subscript r indicates that the corresponding quantities relate to the res-

onance energy Er . The quantities B, 𝜂, and W are usually constant over a given

resonance yield curve. Notice that the resonance strength in the above expression

does not depend on the absolute number of target nuclei, but only on the stop-

ping power, and the stoichiometry if the target consists of a compound. When

using Eq. (4.125), one has to verify carefully that the maximum observed yield is

not affected by the beam spread, straggling, or the total resonance width. Since

the area under the yield curve is independent of such effects (see Eq. (4.119)), it

is usually more reliable to deduce the resonance strength from Eq. (4.121) instead

of Eq. (4.125). From Eqs. (4.121) and (4.123), one finds

𝜔𝛾 = 2
AY

n𝜆2
r

=
2

𝜆2
r

𝜀r

ΔE ∫
∞

0

Y (E0) dE0 =
2

𝜆2
r

𝜀r

ΔE

1

B𝜂W ∫
∞

0

 (E0)

b(E0)
dE0 (4.126)
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The subscript r is omitted for the target thickness ΔE, although this quantity also

refers to an energy near Er . Similarly, we may use Eqs. (4.92) and (4.123) for deter-

mining slowly varying absolute cross sections,

𝜎(Eeff ) =
Y (E0)

n
= Y (E0)

𝜀(E0)

ΔE(E0)
=

𝜀(E0)

ΔE(E0)

 (E0)

b(E0)B(E0)𝜂(E0)W (E0)

(4.127)

Determinations of absolute 𝜔𝛾 and 𝜎 values by using Eqs. (4.126) and (4.127) are

difficult. These procedures require knowledge of the absolute number of incident

particles, absolute detector efficiencies, absolute branching ratios, and so on. In

particular, absolute stopping powers carry relatively large errors (Section 4.2.1).

Furthermore, if the target consists of a compound, then the effective stopping

power 𝜀eff has to be used in the above expressions and, consequently, the target

stoichiometry has to be accurately known (see Eq. (4.94)).

Uncertainties of measured 𝜔𝛾 and 𝜎 values are typically in the 10–20% range,

where the effective stopping power contributes frequently the major fraction of

the error. In some cases, the 𝜔𝛾 values for a given resonance, measured by differ-

ent research groups, deviate from each other by factors of 2–4. Similar arguments

apply to some cross sections. These deviations reflect the difficulties in measur-

ing the absolute magnitudes of quantities entering into the resonance strength

or cross section calculations. For example, the absolute beam intensity is usually

determined from the total charge deposited by the beamon a Faraday cup, but sys-

tematic errors are likely if secondary electron emission is not properly accounted

for (Section 4.3.4).

A major problem for the determination of absolute 𝜔𝛾 and 𝜎 values is the

incomplete knowledge of the target stoichiometry. If evaporated targets are

used (Section 4.3.2) it is frequently assumed that the composition of the target

during the nuclear reaction measurement is the same as the composition of the

raw material used before the evaporation took place. This assumption is rarely

valid since the target composition can change either during evaporation or later

during ion beam bombardment. For example, Mg targets are frequently prepared

by reductive evaporation of MgO (Takayanagi et al., 1966) and, therefore, such

targets are expected to consist of a pure layer of Mg. However, measurements

have shown (Iliadis et al., 1990) that these targets consist of a compound Mg5O,

indicating either incomplete oxygen reduction during target preparation or

oxidization in air before the experiment. Another striking example is NaCl

targets. It was shown (Paine, Kennett, and Sargood, 1978) that such targets

change their stoichiometry during proton bombardment from NaCl to Na17Cl10
after an accumulated charge of only ≈ 1 × 10−4 C.

4.8.4.3 Relative Resonance Strengths and Cross Sections

It is considerably simpler and more reliable to obtain resonance strengths and

cross sections relative to some absolute, carefully measured, standard resonance

strength or cross section. Using the expression for the maximum yield of an

infinitely thick target (see Eq. (4.125)) we obtain



4.8 Yields and Cross Sections for Charged-Particle-Induced Reactions 331

𝜔𝛾1
𝜔𝛾2

=
𝜀r,1

𝜀r,2

𝜆2
r,2

𝜆2
r,1

Ymax,ΔE→∞,1

Ymax,ΔE→∞,2

=
𝜀r,1

𝜀r,2

𝜆2
r,2

𝜆2
r,1

max,ΔE→∞,1

max,ΔE→∞,2

b,2

b,1

B2
B1

𝜂2
𝜂1

W2
W1
(4.128)

where the subscripts 1 and 2 correspond to the resonance of interest and the stan-

dard resonance, respectively. The error of the resonance strength 𝜔𝛾1 depends on

the accuracy of the 𝜔𝛾2 value of the standard resonance. Otherwise, only ratios of

stopping powers, efficiencies, numbers of incident particles, and so on, enter in

Eq. (4.128), thus minimizing the influence of potential sources of error. If we use

instead the respective areas under the yield curves (see Eq. (4.126)), then

𝜔𝛾1
𝜔𝛾2

=
AY ,1

AY ,2

𝜆2
r,2

𝜆2
r,1

𝜀r,1

𝜀r,2

ΔE2
ΔE1

=
𝜆2
r,2

𝜆2
r,1

𝜀r,1

𝜀r,2

ΔE2
ΔE1

∫ ∞

0
Y 1(E0,1) dE0,1

∫ ∞

0
Y2(E0,2) dE0,2

=
𝜆2
r,2

𝜆2
r,1

𝜀r,1

𝜀r,2

ΔE2
ΔE1

B2𝜂2W2
B1𝜂1W1

∫ ∞

0

1(E0,1)
b,1(E0,1)

dE0,1

∫ ∞

0

2(E0,2)
b,2(E0,2)

dE0,2

(4.129)

The above expression does not depend on the stopping power or the target thick-

ness if 𝜔𝛾1 is determined relative to a standard resonance in the same reaction

when using the same target, since then 𝜀r,1∕ΔE1 = 𝜀r,2∕ΔE2 = n.

Similarly, we find from Eq. (4.127) for slowly varying cross sections

𝜎1(Eeff ,1)

𝜎2(Eeff ,2)
=
𝜀1(E0,1)

𝜀2(E0,2)

ΔE2(E0,2)

ΔE1(E0,1)

Y1(E0,1)

Y2(E0,2)

=
𝜀1(E0,1)

𝜀2(E0,2)

ΔE2(E0,2)

ΔE1(E0,1)

1(E0,1)
2(E0,2)

b,2(E0,2)

b,1(E0,1)

B2(E0,2)

B1(E0,1)

𝜂2(E0,2)

𝜂1(E0,1)

W2(E0,2)

W1(E0,1)

(4.130)

where the subscripts 1 and 2 refer to the nonresonant cross section of interest and

the standard cross section, respectively. Again, the stopping powers and target

thicknesses cancel if both cross sections are measured in the same reaction using

the same target.

A nonresonant cross section 𝜎 can also be determined relative to a well-known

resonance strength 𝜔𝛾 (or vice versa). We obtain, for example, from Eqs. (4.125)

and (4.127)

𝜎1(Eeff ,1)

𝜔𝛾2
=

𝜆2
r,2

2ΔE1(E0,1)

𝜀1(E0,1)

𝜀r,2

1(E0,1)
max,ΔE→∞,2

×
b,2

b,1(E0,1)

B2
B1(E0,1)

𝜂2
𝜂1(E0,1)

W2
W1(E0,1)

(4.131)

or from Eqs. (4.126) and (4.127)

𝜎1(Eeff ,1)

𝜔𝛾2
=
𝜆2
r,2

2

𝜀1(E0,1)

𝜀r,2

ΔE2
ΔE1(E0,1)

B2
B1(E0,1)

𝜂2
𝜂1(E0,1)

W2
W1(E0,1)

×
1(E0,1)

b,1(E0,1) ∫ ∞

0

2(E0,2)
b,2(E0,2)

dE0,2

(4.132)
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where in the last two expressions the subscripts 1 and 2 refer to the nonresonant

cross section and the resonance, respectively.

Example 4.4

For the narrow Elab
r

= 317 keV resonance in the 25Mg(p,𝛾)26Al reaction

(Γ < 40 eV), a yield curve is measured using the intensity of the primary

γ-ray transition to the 417 keV state in 26Al (R → 417 keV). An evaporated
25Mg5O target has a thickness of ΔE = 15 keV. The beam spread amounts to

Δbeam = 0.5 keV. Calculate the resonance strength from the measured values

given below. Neglect angular correlation effects (WR→417 = 1).

max,R→417 = 3480 ± 63 γ-ray intensity on the yield curve plateau

Q = (0.090 ± 0.005) C accumulated ion beam charge on target

𝜂R→417 = (7.34 ± 0.30) × 10−4 peak efficiency for R → 417 keV

BR→417 = (33 ± 1)% branching ratio of R → 417 keV

Assume that the stopping power is constant over the thickness of the tar-

get. Use the following values (with 10% errors) for protons in Mg and O, as

obtained from the computer code SRIM (Ziegler, 2003): 𝜀p→Mg(E
lab
r

= 317 keV) =

12.8 × 10−15 eV cm2/atom, 𝜀p→O(E
lab
r

= 317 keV) = 10.6 × 10−15 eV cm2/atom.

With a stoichiometry of nMg ∶ nO = 5 ∶ 1, we obtain for the effective stopping

power (see Eq. (4.94))

𝜀eff =
M25Mg

M25Mg +MH

[
𝜀25Mg +

nO
nMg

𝜀O

]
=

24.985

24.985 + 1.008

[
(12.8 × 10−15 eV cm2∕atom)

+
1

5
(10.6 × 10−15 eV cm2∕atom)

]
= 1.43 × 10−14 eV cm2∕atom (±10%)

The de Broglie wavelength is given by (see Eq. (4.107))

𝜆2
r

2
=

(
Mp +Mt

Mt

)2
4.125 × 10−18

MpE
lab
r

(cm2)

=
(
1.008 + 24.985

24.985

)2 4.125 × 10−18
(1.008)(317000)

cm2 = 1.40 × 10−23 cm2

The total number of incident protons (assuming a positively charged proton beam,

q=1) amounts to

p =
Q

qe
=
(0.090 ± 0.005) C

1 ⋅ (1.6 × 10−19 C)
= 5.63 × 1017 (±6%)
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If we neglect the influence of the beam spread (which is small compared to the tar-

get thickness), straggling, and total resonance width (Γ≪ ΔE) on the maximum

yield, then the observed plateau height corresponds to the maximum yield of an

infinitely thick target, Ymax,ΔE→∞. With Eq. (4.125) one finds

𝜔𝛾 =
2𝜀eff ,r

𝜆2
r

max,ΔE→∞

bB𝜂W

=
1.43 × 10−14 eV cm2

1.40 × 10−23 cm2
3480

(5.63 × 1017)(0.33)(7.34 × 10−4)

= 2.61 × 10−2 eV (±13%)

All energies in the general yield expression of Eq. (4.91) are given in the center-

of-mass system. The quantity dx = dE∕(dE∕dx) is independent of the reference

frame. Multiplication of numerator and denominator by the center of mass to lab-

oratory frame conversion factor Mt∕(Mt +Mp) (see Eq. (C.24); Mt and Mp are

the relative atomic masses of the active target nuclei and the projectiles, respec-

tively) shows that the effective stopping power measured in the laboratory or cal-

culated with SRIMmust be multiplied by this factor before it can be used in yield

calculations.

4.8.4.4 Determination of Resonance Strengths and Cross Sections Relative to

Rutherford Scattering

It is apparent from the above discussion that measurements of absolute resonance

strengths and cross sections are difficult to perform since a variety of experimen-

tal artifacts, such as beam spread, straggling, stoichiometries, stopping powers,

integrated beam charge, and so on,may lead to substantial systematic errors. Nev-

ertheless, for a number of resonances, careful measurements of their absolute

strengths have been performed. The results are given in Table 4.12. This set of

recommended 𝜔𝛾 values can be used as an absolute standard for the determi-

nation of other resonance strengths or nonresonant cross sections according to

Eqs. (4.128)–(4.132).

Almost all the 𝜔𝛾 values listed in the table have been determined relative to

the intensity of Rutherford-scattered projectiles. The experimental details vary

from study to study, but such techniques essentially eliminate the influence of

at least some experimental artifacts on the 𝜔𝛾 values. Consequently, we expect

that these results are more reliable than those obtained from Eqs. (4.125)–

(4.127). In the following, a method will be discussed that eliminates almost all

experimental artifacts. This technique provides absolute resonance strengths

and cross sections that depend almost exclusively on measured intensities and,

in particular, does not require knowledge of beam or target properties. The

method is based on certain quantities cancelling in the determination of 𝜔𝛾 if the

nuclear reaction products and Rutherford-scattered beam particles are measured

simultaneously.
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Table 4.12 Recommended resonance strengths.

Reaction E𝐥𝐚𝐛
r

J𝝅 𝝎𝜸𝐜𝐦 (eV) Error

(keV) (%)

14N(p,𝛾)15O 278 1/2+ 1.287(38) × 10−2 a 3.0
18O(p,𝛾)19F 151 1/2+ 9.7(5) × 10−4 b 5.2
22Ne(p,𝛾)23Na 479 1/2+ 5.24(51) × 10−1 c 9.7
23Na(p,𝛼)20Ne 338 1− 7.16(29) × 10−2 d 4.0
23Na(p,𝛾)24Mg 512 (1,2+) 9.13(125) × 10−2 e 13.7
24Mg(p,𝛾)25Al 223 1/2+ 1.27(9) × 10−2 f 7.1

419 3/2+ 4.16(26) × 10−2 g 6.2
25Mg(p,𝛾)26Al 435 4− 9.42(65) × 10−2 g 6.9

591 1+ 2.28(17) × 10−1 h 7.4
26Mg(p,𝛾)27Al 338 3/2− 2.73(16) × 10−1 g 5.9

454 1/2+ 7.15(41) × 10−1 g 5.7

1966 5/2+ 5.15(45) e 8.7
27Al(p,𝛾)28Si 406 4+ 8.63(52) × 10−3 g 6.0

632 3− 2.64(16) × 10−1 e 6.1

992 3+ 1.91(11) e 5.7
30Si(p,𝛾)31P 620 1/2− 1.95(10) e 5.1
31P(p,𝛾)32S 642 1− 5.75(50) × 10−2 e 8.7

811 2+ 2.50(20) × 10−1 e 8.0
34S(p,𝛾)35Cl 1211 7/2− 4.50(50) e 11.1
35Cl(p,𝛾)36Ar 860 3− 7.00(100) × 10−1 e 14.3
36Ar(p,𝛾)37K 918 5/2+ 2.38(19) × 10−1 i 8.0
37Cl(p,𝛾)38Ar 846 1− 1.25(16) × 10−1 e 12.8
39K(p,𝛾)40Ca 2042 1+ 1.79(19) e 10.6
40Ca(p,𝛾)41Sc 1842 7/2+ 1.40(15) × 10−1 e 10.7

The absolute error is given in parenthesis and refers to the last significant digit(s).

Sources: aWeighted average of Becker et al. (1982), Imbriani et al. (2005), Bemmerer et al. (2006),
and Art Champagne, private communication; bWeighted average of Wiescher et al. (1980), Becker
et al. (1982), and Vogelaar et al. (1990); c Longland et al. (2010); d Rowland et al. (2002a); e Paine
and Sargood (1979); f Powell et al. (1999); g Powell et al. (1998); h Anderson et al. (1980); iWeighted

average of Goosman and Kavanagh (1967), and Mohr et al. (1999).

We start with Eq. (4.126), which relates the resonance strength to the area under

the resonance yield curve,

𝜔𝛾1 = 2
AY ,1

n𝜆2
r,1

=
2

n𝜆2
r,1

1

B1𝜂1W1 ∫
∞

0

1(E0,1)
b,1(E0,1)

dE0,1 (4.133)

where the subscript 1 is used for all quantities related to the measurement of the

resonance. As already noted, the above expression is independent of the beam

spread, straggling, and the total resonance width. For the derivation of this result,

we used the assumptions that the resonant cross section is given by the Breit–

Wigner formula with constant partial widths and de Broglie wavelength over the

total resonance width, and that the stopping power is approximately constant over

the width of the target (Section 4.8.2).
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Suppose the projectiles that are Rutherford-scattered by the active target nuclei

are measured in a second detector located at an angle of 𝜃2 with respect to the

incident beam direction. If the target is sufficiently thin (say, <10 keV), so that the

variation of the Rutherford-scattering cross section over the target thickness is

small, we obtain from Eq. (4.93)[
dY2(E0,2)

dΩ

]Ruth
𝜃2

= n

[
d𝜎2(Eeff ,2)

dΩ

]Ruth
𝜃2

(4.134)

where the subscript 2 refers to all quantities related to the measurement of the

Rutherford-scattered beam particles by the second detector. Solving for n, one

finds with Eq. (4.124) (assuming 𝜂int,2 = 1 for silicon charged-particle detectors)

n =

[
dY2(E0,2)

dΩ

]Ruth
𝜃2[

d𝜎2(Eeff ,2)

dΩ

]Ruth
𝜃2

=

2(E0,2)
b,2(E0,2)Ω2[

d𝜎2(Eeff ,2)

dΩ

]Ruth
𝜃2

(4.135)

It follows that the ratio of differential yield and differential cross section for

Rutherford scattering is constant (i.e., equal to n) and thus may be measured

at any bombarding energy. If the resonant reaction products are measured

simultaneously with the Rutherford-scattered particles, so that E0,1 = E0,2 ≡ E0
andb,2(E0,2) = b,1(E0,1), we obtain from Eqs. (4.133) and (4.135)

𝜔𝛾1 =
2

𝜆2
r,1

1

B1W1

Ω2

𝜂1 ∫
∞

0

1(E0)
2(E0)

[
d𝜎2(Eeff ,2)

dΩ

]Ruth
𝜃2

dE0 (4.136)

The resonance strength in this expression is independent of the properties of

the target (stoichiometry, stopping power, uniformity) and the beam (current

integration, straggling). It depends on (i) the observed number of resonant

reaction products (particles or photons) and Rutherford-scattered particles,

1(E0) and 2(E0); (ii) the calculated Rutherford scattering cross section,
[d𝜎2(Eeff ,2)∕dΩ]

Ruth
𝜃2
; and (iii) the de Broglie wavelength, branching ratio, and

angular correlation of the resonant reaction products (𝜆2
r,1
, B1, W1). Also, 𝜔𝛾1

depends on the ratio Ω2∕𝜂1 and, consequently, is independent of the knowledge

of absolute detection properties.

If a nonresonant reaction cross section is measured relative to Rutherford scat-

tering, we find similarly

𝜎1(Eeff ,1) =
1

B1(E0)W1(E0)

Ω2

𝜂1

1(E0)
2(E0)

[
d𝜎2(Eeff ,2)

dΩ

]Ruth
𝜃2

(4.137)

For (p,𝛼) or (𝛼,p) type reactions, we can substitute in Eqs. (4.136) and (4.137) 𝜂1 =

Ω1∕(4𝜋), assuming that the intrinsic efficiency for detecting the resonant particles

is unity (𝜂int,1 = 1). In general, we have Eeff ,1 ≠ Eeff ,2 as can be seen, for example,

from Eq. (4.101).
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The theoretical Rutherford scattering cross section is given by (Evans, 1955)[
d𝜎(E)

dΩ

]Ruth
𝜃

=

(
ZpZte

2

4E

)2
1

sin4(𝜃∕2)

= 1.296

(
ZpZt

E

)2
1

sin4(𝜃∕2)
(mb∕sr) (4.138)

with Zp and Zt the atomic numbers of projectile and target, respectively. In the

numerical expression, the energy E is in units of mega electron volts.

The method of measuring absolute resonance strengths and cross sections

described above depends on the assumption that the intensity of elastically

scattered beam particles at the energy of the resonance, or in the region of

the nonresonant cross section, is well described by the Rutherford formula.

However, at higher bombarding energies (E > 0.5 MeV) and for relatively broad

resonances (Γ > 1 keV) the elastic scattering cross section generally deviates from

Rutherford scattering since it is influenced by resonant scattering (Section 2.5.3).

The above technique is most useful at low bombarding energies and for relatively

narrow resonances, a situation that is frequently of interest for thermonuclear

reactions. In any case, one has to verify experimentally through careful mea-

surements that the elastic scattering cross section is indeed described by the

Rutherford formula.

For example, consider the measurement of the Elab
r

= 338 keV resonance (Γ =

0.7 keV) in the 23Na(p,𝛼)20Ne reaction.The setup is shown in Figure 4.59a. It con-

sists of two silicon charged-particle detectors (𝜂int = 1). The first detector, posi-

tioned at 140∘, covers a relatively large solid angle and is used for measuring the

resonant α-particles. A thin metal foil is placed in front of this counter to prevent

the large number of elastically scattered protons from interfering with the detec-

tion of the α-particles (Section 4.5.1). The second detector, placed at 155∘, covers

a very small solid angle and is used formeasuring the elastically scattered protons.

A proton beam of a few 100 nA intensity is incident on a transmission target that

was prepared by evaporating NaCl on a thin carbon foil.

Typical α-particle and proton spectra, measured at Elab
p

= 341 keV and 400 keV,

respectively, are shown in Figure 4.59b,c. In the proton spectrum, only the inten-

sity of the peak corresponding to protons elastically scattered from (the active)
23Na nuclei is of interest here. The resonant α-particle yield curve is displayed in

Figure 4.60a. It can be seen that the target is about 6 keV thick. Figure 4.60b shows

the measured yields of elastically scattered protons from 23Na at a fixed detector

angle as a function of bombarding energy over the region of the Elab
r

= 338 keV

resonance. The solid line represents the calculated Rutherford yield, normalized

to the data. It is apparent that the data are well described by the Rutherford

formula.

The value of the resonance strength measured with this technique and derived

from Eq. (4.136) is listed in Table 4.12. It is significantly smaller compared to

previous 𝜔𝛾 values that have been determined by using the maximum yield of

thick targets (see Eq. (4.125)). The disagreement is caused by previous studies
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Figure 4.59 Measurement of the Elab
r

=

338 keV resonance (Γ = 0.7 keV) in the
23Na(p,𝛼)20Ne reaction. (a) Setup showing

the proton beam (≈ 100 nA), the transmis-

sion target prepared by evaporating NaCl

(6 keV thick) on a thin carbon foil, and two

silicon charged-particle detectors. The first

detector is used for measuring resonant α-

particles and is covered by a thin metal foil.

The second detector is used for measuring

elastically scattered protons. (b) α-Particle

spectrum measured in the region of the

resonance at a laboratory proton energy

of 341 keV. (c) Spectrum of elastically scat-

tered protons, measured at a laboratory

proton energy of 400 keV. (Reprinted with

permission from Rowland et al. (2002a).

Copyright (2002) by the American Physical

Society.)

erroneously assuming a target stoichiometry of Na1Cl1, whereas the technique

described above is independent of the target stoichiometry (Rowland et al.,

2002a).

4.9

Transmissions, Yields, and Cross Sections for Neutron-Induced Reactions

In this section, the relationships between directly measured quantities (yields and

transmissions) and cross sections or resonance strengths are given for neutron-

induced reactions. Examples for measured transmission and yield curves

will be presented, and the determination of absolute cross sections is briefly

discussed.
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Figure 4.60 (a) Resonant α-particle yield

versus proton energy for the Elabr = 338 keV

resonance in 23Na(p,𝛼)20Ne; (b) yield of

elastically scattered protons from 23Na

versus energy; the solid line represents the

calculated Rutherford yield, normalized to

the data. Both yield curves were measured

with the setup shown in Figure 4.59.

4.9.1

Resonance Transmission

Of particular interest are transmissionmeasurements of resolved resonances.The

shape of the measured transmission curve depends not only on the total cross

section, but also on other factors, such as the Doppler effect or the resolution of

the neutron detector (Beckurts and Wirtz, 1964). The quantity of interest, how-

ever, is usually not the energy dependence of the total resonance cross section, but

the determination of the resonance properties that enter in the expression for the

resonant reaction rate (Section 3.2.4).

Consider the simplest case of an isolated resonance. Suppose that (i) the reso-

nance cross section is given by the Breit–Wigner formula, (ii) only the neutron

and γ-ray channels are open, and (iii) the energy dependence of the partial

widths over the total resonance width can be neglected. In the vicinity of an

isolated resonance, the total neutron-induced cross section can be written as

(Section 2.5.5)

𝜎T ,BW(E) =
𝜆2

4𝜋
𝜔

ΓnΓ

(Er − E)2 + Γ2∕4
= 𝜎T ,max

Γ

2

Γ∕2

(Er − E)2 + Γ2∕4
(4.139)
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with 𝜎T ,max = 𝜎T ,BW(E = Er) = (𝜆2
r
∕𝜋)𝜔Γn∕Γ denoting the maximum total cross

section. For an incident beam ofmonoenergetic neutrons, the transmission is (see

Eq. (4.37))

T(E) = exp

[
−n𝜎T ,max

Γ

2

Γ∕2

(Er − E)2 + Γ2∕4

]
(4.140)

with n the number of sample nuclei per unit area. For the area abo𝑣e the trans-

mission curve, one finds

AT = ∫
∞

0

{
1 − exp

[
−n𝜎T ,max

Γ

2

Γ∕2

(Er − E)2 + Γ2∕4

]}
dE (4.141)

which reduces for the limiting case of a thin sample (n𝜎T ,max ≪ 1) to

A
n𝜎T ,max≪1

T
= ∫

∞

0

n𝜎T ,max
Γ

2

Γ∕2

(Er − E)2 + Γ2∕4
dE

=
𝜋

2
n𝜎T ,maxΓ =

𝜆2
r

2
n𝜔Γn

(4.142)

Hence, a measurement of the transmission curve provides an estimate of the neu-

tron partial width Γn. This expression also holds if the instrumental resolution

and the Doppler effect change the shape of the transmission curve. For thin sam-

ples, the area above the transmission curve is independent of these effects. More

information on transmission curves can be found in Lynn (1968).

4.9.2

Resonant and Nonresonant Yields

The general expression for the yield of a neutron-induced reaction can be derived

from the expression for the transmission (see Eq. (4.37))

Y = ∫
∞

0

f (E)
[
1 − e−n𝜎T (E)

] 𝜎(E)
𝜎T (E)

dE (4.143)

with 𝜎(E) and 𝜎T (E) the cross section for the reaction of interest and the total

cross section (see Eq. (4.34)), respectively, and f (E) the fraction of incident neu-

trons having energies between E and E + dE per unit energy interval. For either

a monoenergetic incident neutron beam or for constant cross sections 𝜎T (E) and

𝜎(E), one finds

Y = (1 − e−n𝜎T )
𝜎

𝜎T ∫
∞

0

f (E) dE = (1 − e−n𝜎T )
𝜎

𝜎T
(4.144)

If the cross sections 𝜎T (E) and 𝜎(E) are not constant, but if the sample is very thin

(n𝜎T ≪ 1), Eq. (4.143) becomes

Yn𝜎T≪1
= ∫

∞

0

f (E)
[
1 −

(
1 − n𝜎T (E)

)] 𝜎(E)
𝜎T (E)

dE = n∫
∞

0

f (E)𝜎(E) dE = n𝜎

(4.145)

where we defined an average reaction cross section by 𝜎 ≡ ∫ f (E)𝜎(E) dE. A few

specialized expressions for the thin-sample yield are given below.
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4.9.2.1 Constant 𝝈 Over Neutron Energy Distribution

This situation occurs, for example, for a smoothly varying cross section and a

nearly monoenergetic neutron beam. The yield is given by

Yn𝜎T≪1
= n𝜎 ∫

∞

0

f (E) dE = n𝜎 (4.146)

This expression also applies to an isolated resonance when the total width is large

compared to the neutron beam resolution (Γ≫ ΔEn). The yield is then directly

proportional to the cross section and the resulting excitation function has a reso-

nance shape. In the latter case, wemay describe the resonance by theBreit–Wigner

formula. Suppose that only the neutron and γ-ray channels are open, as is fre-

quently the case, and that the partial widths are energy independent. The area

under the resonance neutron-capture yield curve for a thin sample follows from

Eq. (4.146),

A
n𝜎T≪1

Y
= n∫

∞

0

𝜎BW(E) dE = n∫
∞

0

𝜆2

4𝜋
𝜔

ΓnΓ𝛾

(Er − E)2 + Γ2∕4
dE

=
𝜆2
r

2𝜋
n𝜔𝛾 ∫

∞

0

Γ∕2

(Er − E)2 + Γ2∕4
dE = n

𝜆2
r

2
𝜔𝛾 (4.147)

Exactly the same result was obtained for the area under a resonance yield curve in

charged-particle-induced reactions (see Eq. (4.121)).

4.9.2.2 Narrow Resonance with 𝚪 ≪ 𝚫E𝐧
If a narrow resonance located atEr has a small total width compared to the neutron

beam resolution, one finds from the Breit–Wigner formula

Yn𝜎T≪1
= n∫

∞

0

f (E)𝜎BW(E) dE = nf (Er)∫
∞

0

𝜎BW(E) dE

=
𝜆2
r

2𝜋
nf (Er)𝜔𝛾 ∫

∞

0

Γ∕2

(Er − E)2 + Γ2∕4
dE = n

𝜆2
r

2
f (Er)𝜔𝛾 (4.148)

with f (Er) the fraction of neutrons per unit energy interval at the resonance energy.

In contrast to charged-particle reaction studies (see Eq. (4.116)), the narrow res-

onance yield for neutron-induced reactions depends on the absolute number of

sample nuclei per unit area.

4.9.3

Effective Cross Section

If the incident neutrons are not monoenergetic, an effective cross section is some-

times introduced that is defined in terms of the neutron current density, or neu-

tron flux, instead of the number density of neutrons. If we divide the neutron

energy distribution into thin slices, then the number of reactions per volume and

per time from each slice is given by Eq. (3.1),

(R,i∕V )

t
=

t

V
𝜎i𝑣i

𝜈,i

V
(4.149)
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witht∕V and𝜈,i∕V the target density and neutron density, respectively. Inte-

grating over all energies, we find

(R∕V )

t
=

t

V ∫
∞

0

𝜎(E)𝑣
𝜈(E)

V
dE =

t

V ∫
∞

0

𝜎(E)𝜙(E) dE (4.150)

The neutron flux is defined by 𝜙(E) ≡ 𝑣𝜈(E)∕V and the total flux for all neutron

energies is 𝜙 = ∫ 𝜙(E) dE (in units of neutrons per area per time). Alternatively,
we may express the total number of reactions per volume and per time in terms

of an effective reaction cross section �̂� by

(R∕V )

t
=

t

V
�̂� ∫

∞

0

𝑣
𝜈(E)

V
dE =

t

V
�̂� ∫

∞

0

𝜙(E) dE =
t

V
�̂�𝜙 (4.151)

Equating the above two expressions, we obtain for the effective cross section

�̂� =
∫ ∞

0
𝜎(E)𝑣

𝜈 (E)

V
dE

∫ ∞

0
𝑣
𝜈 (E)

V
dE

=
∫ ∞

0
𝜎(E)𝜙(E) dE

∫ ∞

0
𝜙(E) dE

=
Nn ∫ ∞

0
𝜎(E)𝑣f (E) dE

Nn ∫ ∞

0
𝑣f (E) dE

(4.152)

where we used𝜈(E)∕V = f (E)Nn, withNn the total number density of neutrons.

If the energies of the incident neutrons are given by a Maxwell–Boltzmann dis-

tribution (Section 4.1.2 and Figure 4.2), one finds with Eq. (3.8) for the flux

𝜙 = ∫
∞

0

𝜙(E) dE = Nn ∫
∞

0

𝑣f (E) dE

= Nn ∫
∞

0

√
2E

m01

2√
𝜋

1

(kT)3∕2

√
Ee−E∕kT dE = Nn

2√
𝜋

√
2kT

m01
=
2√
𝜋
Nn𝑣T

(4.153)

The effective cross section is given by Eqs. (3.8), (3.70), (4.152), and (4.153),

�̂� =
Nn ∫ ∞

0
𝜎(E)𝑣f (E) dE

Nn
2√
𝜋
𝑣T

= ∫
∞

0

𝜎(E)

√
2E

m01

1

𝑣T (kT)
3∕2

√
Ee−E∕kT dE

=
1

(kT)2 ∫
∞

0

𝜎(E)Ee−E∕kT dE =

√
𝜋

2

⟨𝜎𝑣⟩
𝑣T

(4.154)

Hence, the measured effective reaction cross section gives directly the reaction

rate (Section 4.1.2).

4.9.4

Measured Yields and Transmissions

The transmission can be expressed either in terms of intensities (see Eq. (4.35)) or

in terms of count rates,

T ≡ I

I0
=

dC∕dt

dC0∕dt
(4.155)
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where dC∕dt and dC0∕dt are the measured count rates with and without

sample, respectively, between incident neutron beam and detector. The trans-

mission is independent of absolute detection efficiencies. The expressions for

T given above is strictly valid only if neutrons that undergo an interaction

in the sample are not counted by the detector. However, for any sample and

detector of finite size, neutrons scattered forward in the sample toward the

detector will be counted as if no interaction had occurred. Corrections for this

in-scattering effect (Miller, 1963) can be obtained most reliably fromMonte Carlo

simulations.

In terms of experimental quantities, the yield can be expressed by

Y =
R

𝜈

=
C

𝜂Bf𝜈

=
C

𝜂BfΦA
(4.156)

where 𝜈 and C are the total number of incident neutrons and the measured

total number of counts induced by the nuclear reaction of interest, respectively;

Φ = ∫ 𝜙(t) dt is the time-integrated neutron flux (in units of particles per area);
A is the area of the sample exposed to the beam; 𝜂 is the detection efficiency; B is

the branching ratio (probability of emission per nuclear reaction); and the factor f

takes any necessary corrections into account (e.g., for multiple neutron scattering

in the sample, self-absorption of reaction products, and so forth). Depending

on the experimental procedure, the yield may also need to be corrected for

angular correlation effects (Appendix D). Multiple elastic scattering of neutrons

may become a serious problem for thicker samples. Scattered neutrons have a

higher chance of undergoing a reaction than the incident neutrons because of an

increase in the average path length in the sample. The situation becomes even

more complex when the total and the reaction cross section exhibit a narrow

resonance structure. In this case, incident neutrons with energies somewhat

higher than the location of the narrow resonance are scattered and thereby lose

a fraction of their energy. These scattered neutrons may then undergo reactions

in the region of the resonance. Consequently, the measured reaction yield can

become larger than the true reaction yield caused by the incident (unscattered)

neutrons. Such effects can be corrected by using Monte Carlo procedures

(Poenitz, 1984).

Examples of a yield curve and a transmission curve, both measured in the
144Sm+n reaction, are shown in Figure 4.61. The data have been obtained

with the time-of-flight technique (Section 4.6.3) using the Oak Ridge Electron

Accelerator (ORELA). The neutron-capture data are fitted with Breit–Wigner

expressions, while the transmission data are analyzed using the R-matrix method

to account for the additional complication of potential scattering (Section 2.5).

Necessary corrections caused by Doppler broadening, multiple scattering, and

instrumental resolution were applied to both data sets. The shapes of the narrow

resonance at the lowest energy are dominated by the instrumental resolution

and by Doppler broadening, while the shapes of the broad resonances at higher

energies are dominated by their total widths.
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Figure 4.61 (a) Yield curve for the
144Sm(n,𝛾)145Sm reaction; (b) Transmission

curve for 144Sm + n. The data have been

obtained with the time-of-flight technique

(Section 4.6.3) using the Oak Ridge Electron

Accelerator (ORELA). The neutron-capture

data (top) are fitted with Breit–Wigner

expressions, while the transmission data

(bottom) are analyzed using the R-matrix

method. (Reprinted with permission from R.

L. Macklin et al., Phys. Rev. C, Vol. 48, p. 1120

(1993). Copyright (1993) by the American

Physical Society.)

4.9.5

Relative and Absolute Cross Sections

We will first discuss the determination of an unknown cross section relative

to a standard value. The activation method (Section 4.6.2) will be chosen as an

example. The situation is shown in Figure 4.62a. A proton beam is incident on a

Li target that is mounted on a water-cooled Cu backing. The irradiation sample

is mounted close to a foil consisting of a material relative to which the neutron

cross section is being measured (e.g., a gold foil). For the sake of simplicity, we

will assume that the incident neutron flux is constant, 𝜙(t) = const (see Beer and

Käppeler (1980) for a time-dependent flux). After the irradiation period is over,

at t = t0, the samples are moved to an off-line detection system for counting the

delayed activity between t1 and t2 (Figure 4.62b).
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Figure 4.62 Example for the measurement

of a neutron cross section using the acti-

vation technique (Section 4.6.2). (a) A pro-

ton beam is incident on a Li target that is

mounted on a water-cooled Cu backing. The

irradiation sample is mounted close to a foil

consisting of a material (gold foil) relative to

which the neutron cross section is measured.

(b) After the irradiation period, the samples

are moved to an offline detector system for

counting the delayed activity.

The number of disintegrations between t1 and t2, D(t1, t2), is related to the net

number of counts, C, in the region of interest in the offline pulse height spec-

trum by

D(t1, t2) =
C

𝜂Bf
(4.157)

with 𝜂 and B the detection efficiency and the branching ratio of a particular tran-

sition, respectively; the factor f takes any necessary corrections into account (self-

absorption of γ-rays in the sample, multiple elastic scattering of neutrons, and so

on). Using Eqs. (4.76) and (4.157) and solving for the effective cross section gives

�̂� =
C𝜆

𝜂Bf𝜙 (
e𝜆t0 − 1

) (
e−𝜆t1 − e−𝜆t2

) (4.158)

where 𝜆 denotes the decay constant of the residual radioactive nuclei and  is
the number of sample nuclei. The ratio of effective cross sections for the sample

of interest, i, and the standard material, s, is then

�̂�i
�̂�s

=
Ci𝜆i𝜂sBsfss

(
e𝜆st0 − 1

) (
e−𝜆st1 − e−𝜆st2

)
Cs𝜆s𝜂iBifii

(
e𝜆it0 − 1

) (
e−𝜆it1 − e−𝜆it2

) (4.159)

The relative determination of an effective cross section according to Eq. (4.159)

has the advantage that the total neutron flux, 𝜙(t) = Φ∕t0 = const, cancels if the

sample of interest and the standard sample are irradiated simultaneously (correc-

tions are necessary for a time-dependent flux). Furthermore, only relative detec-

tion efficiencies are required if the sample of interest and the standard sample are

measuredwith the same experimental setup. However, the number of nuclei in the
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two samples,i ands, have to be determined carefully. The number of sample

nuclei is given by (see Eq. (1.14))

 =
msampleNA

M
X (4.160)

with msample andM the mass and relative mass of the sample, respectively. If the

sample consists of a compound, thenmsample,M, and the mass fraction X refer to

the active sample nuclei, that is, the nuclei participating in the reaction of inter-

est. Masses of self-supporting samples are frequently determined by weighing,

whereas masses of deposited samples can be found from the weight difference

between the backing and the combined sample-plus-backing. For compounds or

samples consisting of more than one isotope, a chemical or isotopic analysis is

required to obtain the number of nuclei (Wagemans, 1989).
The 197Au(n,𝛾)198Au capture reaction provides one of the most widely used

absolute cross section standards in the kilo electron volt neutron energy range,

that is, the region of astrophysical interest. We will describe in the following

a method for determining this cross section standard by using the activation

method. For more information, see Ratynski and Käppeler (1988). Suppose that

in Figure 4.62 a proton beam of Ep = 1912 keV energy is incident on a thick Li

target that is mounted on a water-cooled Cu backing. As pointed out previously

(Section 4.1.2), under such circumstances the neutron energy distribution closely

resembles a Maxwell–Boltzmann distribution at kT = 25 keV (Figure 4.2) and

all the neutrons are kinematically focused in the forward direction into a cone

with an opening angle of 120∘. A gold sample covers the entire solid angle of the

neutron emission cone. It consists of a homogeneous spherical segment instead of

a flat foil, so that the sample appears equally thick for all neutrons passing through

it. The number of Au nuclei is determined by carefully measuring the weight and

the thickness of the sample. The half-life of 198Au amounts to T1∕2 = 2.6 d and

the decay produces a γ-ray of 412 keV energy. We will again assume for simplicity

that the neutron flux is constant, that is, 𝜙(t) = const. According to Eqs. (4.76)

and (4.157), we find for the total number of disintegrations during the measuring

interval between t1 and t2

DAu(t1, t2) =
CAu

(𝜂Bf )Au

=
(Au∕A)�̂�Au𝜈(t0)

𝜆Aut0

(
e𝜆Aut0 − 1

) (
e−𝜆Aut

Au
1 − e−𝜆Aut

Au
2

)
(4.161)

where we used 𝜙 = Φ∕t0 = 𝜈(t0)∕(At0). The quantity𝜈(t0) is the total number

of incident neutrons after irradiation time t0 and A denotes the area covered by

the sample.

Since the 7Li(p,n)7Be reaction is used as a source of neutrons, one 7Be nucleus

(T1∕2 = 53 d) is produced for each emitted neutron. Hence, the total number of

neutrons emitted from the Li target, and that are incident on the Au foil, can be

deduced by measuring the 478 keV γ-rays emitted by the radioactive decay of 7Be

in the Li target. The proton energy loss in the Li production target amounts to
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about 100 keV.Therefore, the production rate of 7Be is given by Eq. (4.112) rather

than Eq. (4.73).Wewill simply assume that the incident proton current, and hence

the production rate of 7Be, is constant. The total number of neutrons, or the total

number of 7Be nuclei, produced after a time t0 is then given byBe(t0) = 𝜈(t0) =

PBet0. For the number of disintegrations during a measuring interval between t1
and t2, we obtain from Eqs. (4.76) and (4.157)

DBe(t1, t2) =
CBe

(𝜂Bf )Be
=

PBe
𝜆Be

(
e𝜆Bet0 − 1

) (
e−𝜆Bet

Be
1 − e−𝜆Bet

Be
2

)
=

𝜈(t0)

𝜆Bet0

(
e𝜆Bet0 − 1

) (
e−𝜆Bet

Be
1 − e−𝜆Bet

Be
2

)
(4.162)

From Eqs. (4.161) and (4.162), one finds for the 197Au(n,𝛾)198Au cross section

�̂�Au =
1

(Au∕A)

CAu(𝜂Bf )Be𝜆Au
CBe(𝜂Bf )Au𝜆Be

(
e𝜆Bet0 − 1

) (
e−𝜆Bet

Be
1 − e−𝜆Bet

Be
2

)
(
e𝜆Aut0 − 1

) (
e−𝜆Aut

Au
1 − e−𝜆Aut

Au
2

) (4.163)

In this expression, the number of neutrons cancels and only relative detection

efficiencies are needed if the same setup is used for counting the delayed

activities of 198Au and 7Be. The measured average cross section amounts to

�̂�197Au(n,𝛾)198Au = 586 ± 8 mb (Ratynski and Käppeler, 1988) and corresponds to

a (quasi-)Maxwellian neutron energy distribution at kT = 25 keV. The error

represents an uncertainty of only 1.4%. This standard has been used for the

determination of a large number of astrophysically important neutron-capture

cross sections. Other standard cross sections are provided by the 6Li(n,𝛼)3H,
10B(n,𝛼)7Li, and 10B(n,𝛼𝛾)7Li reactions. More information can be found in Bao

et al. (2000).

Problems

4.1 The energy loss of charged particles is calculated in Example 4.1 using the

thin-absorber approximation, that is, by assuming that the stopping power

is approximately constant over the absorber thickness. If the stopping

power is not constant, the energy loss can always be obtained from a

numerical integration of Eq. (4.12). If a graph of range versus energy is

available, however, a simpler method can be used by expressing Eq. (4.12)

in terms of ranges. Explain this method and use it to estimate from

Figure 4.7 the energy loss of a 10 MeV cosmic-ray proton incident on a

400 μm thick silicon detector.

4.2 Derive Eq. (4.18) from the expressions for energy and linear momentum

conservation (see Eqs. (C.1)–(C.3)) in the elastic scattering of an incident

particle on an electron at rest. Assume a head-on collision for maximum

energy transfer.

4.3 Calculate the attenuation of 0.5 MeV and 5 MeV γ-rays in (i) a tanta-

lum absorber (𝜌Ta = 16.7 g/cm
3) of 0.5 mm thickness, and (ii) a lead
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absorber (𝜌Pb = 11.4 g/cm
3) of 1.3 cm thickness. Assume the following

numerical values for the mass attenuation coefficients: (𝜇∕𝜌)Ta,0.5MeV =

0.13 cm2∕g, (𝜇∕𝜌)Ta,5.0MeV = 0.041 cm2∕g, (𝜇∕𝜌)Pb,0.5MeV = 0.16 cm
2∕g,

(𝜇∕𝜌)Pb,5.0MeV = 0.041 cm
2∕g.

4.4 Estimate the thickness of water (𝜌 = 1.0 g/cm3) necessary to reduce the

intensity of incident neutrons with an energy of 300 keV by a factor of 1010.

Assume for the total neutron cross section at this energy a value of 60 b.

4.5 Solve the equations for the total energy and linear momentum conserva-

tion in α-decay when the decaying nucleus is at rest. Apply the expres-

sions to the α-decay of 241Am and calculate the total energy release (or

theQ-value) using the information given in the α-particle spectrum shown

in Figure 4.18. Assume that the α-particle group with the largest kinetic

energy populates the ground state of the daughter nucleus 237Np and con-

sider only this particular transition.What is the kinetic energy of the daugh-

ter nucleus?

4.6 Suppose that an excited nuclear level (2) decays to the ground state (0)

via a two-γ-ray cascade through an intermediate state (1), that is, B21 =

B10 = 1 and B20 = 0 (Figure 4.31). The energies of the photons are E21 =

1 MeV and E10 = 2 MeV. Their measured peak intensities are 21 = 357
and 10 = 237. The values for the peak and total efficiencies amount to
𝜂P
21
= 0.043, 𝜂T

21
= 0.21, 𝜂P

10
= 0.030, 𝜂T

10
= 0.17. (i) Calculate the total num-

ber of decaying levels 2 with and without coincidence summing correc-
tions. (ii) What do you expect for the intensity of the sum peak at 3 MeV?

4.7 Consider again Figure 4.50 and Eq. (4.82), which apply to the total NaI(Tl)

efficiency. However, as explained in Section 4.7.3, the environmental back-

ground can be significantly reduced by gating on the energy in the NaI(Tl)

pulse height spectrum. By introducing the quantity fij ≡ 𝜂NaI,G
ij

∕𝜂NaI,T
ij
, that

is, the ratio of the gated to the total NaI(Tl) detection efficiencies, find the

term by which Eq. (4.82) has to be corrected when a particular energy gate

is selected in the two-dimensional histogram of EGe
𝛾
versus ENaI

𝛾
.

4.8 A gold sample with a mass of 10 g is irradiated with a thermal neutron

flux of 1014 cm−2 s−1. The cross section for the 197Au(n,𝛾)198Au reaction

amounts to 99 b and the half-life of 198Au is T1∕2 = 2.7 d. (i) Calculate the

saturation value for the number of radioactive 198Au nuclei. (ii) What is the

irradiation time necessary until the number of 198Au nuclei achieves 90% of

the saturation value?

4.9 Consider a measurement of the 21Na + p → 22Mg +𝛾 radiative capture

reaction in inverse kinematics, that is, by bombarding a stationary

hydrogen target with radioactive 21Na nuclei. The Q-value amounts to

Q = 5504.2 keV. Suppose that the reaction excites the astrophysically

important resonance at Ecm
r

= 206.8 keV. Calculate for the γ-ray transition

to the ground state (branching ratio of 14%): (i) the laboratory bombarding

energy, disregarding any energy losses in the target; (ii) the energy of the

photon emitted at a laboratory angle of 𝜃 = 0∘. What are the magnitudes of

the full Doppler and recoil energy shifts? Neglect any energy losses of the
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22Mg recoil nuclei in the target; (iii) the maximum laboratory angle 𝜙max of

the 22Mg recoil emission direction. Use the following values for the masses:

M(1H) = 1.0078250 u,M(21Na) = 20.9976546 u,M(22Mg) = 21.9995706 u

(Mukherjee et al., 2004).

4.10 Calculate the number of p(p,e+𝜈)d reactions that occur if a pure hydrogen

target with a thickness of 1020 protons/cm2 is bombarded with a proton

beam of 1 MeV laboratory energy and 1 A intensity. The S-factor is given

by Eq. (5.4).

4.11 An α-particle beam of 15 MeV bombarding energy and 1 μA intensity is

incident on a 1 μm thick, pure 12C target (𝜌 = 1.9 g/cm3) for a duration of

one hour. Each incident α-particle has a charge of 2+ (4He2+). Neutrons are

produced via the 12C(𝛼,n)15O reaction. The cross section at this bombard-

ing energy amounts to 25 mb. A neutron detector has an efficiency of 1%.

Assume that both the cross section and the stopping power are constant

over the target thickness. How many neutrons are detected?
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5

Nuclear Burning Stages and Processes

In the previous sections, we considered the thermonuclear rate of individual

nuclear reactions and the relationship of forward and reverse reactions. In

general, however, different nuclear processes take place simultaneously in the

stellar plasma. Nuclides that are created by some fusion reactions are destroyed

by other reactions. Thus, when discussing stellar nucleosynthesis, it is more

appropriate to consider a network of nuclides linked by different, and frequently

competing, nuclear processes. In this chapter, we will discuss the interplay of

nuclear processes in the stellar plasma.

It was pointed out in Section 1.4.3 that nuclear reactions give rise to the

necessary internal pressure preventing stars from collapsing gravitationally. All

stable stars maintain a hydrostatic equilibrium between the internal pressure

and the force of gravity. We showed earlier (Figure 3.15) that, for a given

temperature and composition of the stellar plasma, those reactions with the

smallest Coulomb barriers will proceed most rapidly and will account for most

of the nuclear energy generation. Consequently, we expect nuclear reactions

involving hydrogen and helium to be the main energy sources in most stars. It is

tempting to consider the simplest processes among these nuclides, for example,

p + p → 2He, p + 4He → 5Li, and 4He + 4He → 8Be, as the most likely nuclear

reactions. However, the newly created 2He, 5Li, and 8Be nuclei are unstable and

decay back into the entrance channel after very short time periods. Therefore, we

have to consider more complicated processes.

Thermonuclear reactions change the composition of the stellar gas. When

the nuclei with the smallest nuclear charges have been consumed, a star will

contract under the influence of gravity. The temperature steadily increases until

nuclei with the next lowest Coulomb barriers, which were previously inactive,

are consumed. The nuclear energy produced by the burning of the new fuel

stabilizes the star against further contraction. Depending on its total mass, a star

may experience several of these nuclear burning stages, referred to as hydrogen

burning, helium burning, carbon burning, neon burning, oxygen burning, and

silicon burning (Section 1.4.3). When the ignition of the new fuel gives rise to

an advanced burning stage in the stellar core, the previous burning stage does

not completely disappear, but continues in a shell surrounding the core. We will

discuss the nuclear physics aspects of these stages in detail in the next sections.

Nuclear Physics of Stars, Second Edition. Christian Iliadis.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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The advanced burning stages, carbon through silicon burning, will be described

with the aid of reaction network calculations performed at constant temperature–

density conditions representative of the hydrostatic core burning stages for a

solar-metallicity star with an initial mass of M = 25M☉. Stars of this mass have

been shown to produce elemental abundances similar to observed solar system

abundances.

The different nuclear burning stages have a profound influence on the structure

and evolution of the star. The temperature–density evolution for the center of a

star with solar initial composition and an initial mass ofM = 25M☉ is shown in

Figure 5.1a. The circles indicate the T–𝜌 conditions representative of a particular

burning stage in the core. Most of the burning occurs near the location of the

circles, where the star spends most of its time during a particular burning stage. It

can be seen that the temperature and density vary by about two and eight orders

of magnitude, respectively, between hydrogen and silicon burning.

Hydrogen burning releases far more energy per unit fuel consumed (≈ 6 ×

1024 MeV/g or ≈ 1019 erg/g) compared to helium burning (≈ 6 × 1023 MeV/g

or ≈ 1018 erg/g) or more advanced burning stages (≈ 3 × 1023 MeV/g or

≈ 5 × 1017 erg/g for carbon and oxygen burning). Thus, a star will consume

its hydrogen fuel more slowly than other fuel to balance both gravity and the

energy radiated from its surface. There is also a fundamental difference in how

the nuclear energy generated in the stellar interior is transformed and radiated

from the surface. For hydrogen and helium burning, nuclear energy is almost

exclusively converted to light. When the temperature exceeds T = 0.5 GK during

later burning stages, the thermonuclear energy released is almost entirely radiated

as neutrino–antineutrino pairs, produced via electron–positron pair annihilation

(e− + e+ → 𝜈 + 𝜈) or the photo-neutrino process (e− + 𝛾 → e− + 𝜈 + 𝜈), and the

light radiated from the star’s surface represents only a very small fraction of the

total energy release. Neutrino energy losses rise strongly with temperature (Clay-

ton, 1983). Since the temperature increases from one advanced burning stage to

the next (Figure 5.1a), the fuel consumption rapidly accelerates during carbon,

neon, oxygen, and silicon burning. This can be seen in Figure 5.1b, showing the

duration of various burning stages in the stellar core versus initial stellar mass for

solar metallicity models. For example, silicon burning in the core of a 25M☉ star

lasts only for one day. The advanced burning stages in the stellar core proceed

so quickly that the stellar surface cannot keep pace with the evolution of the

interior. Frequently, the appearance of the massive star – luminosity and effective

emission temperature – does not change until the end of hydrostatic silicon

burning. It also follows from these considerations that hydrogen burning lasts

longer than helium burning or any of the advanced burning stages. Thus, perhaps

as many as 90% of the observed stars are burning hydrogen. In other words, the

probability of observing stars in their advanced stages of evolution is very small.

Although most of a star’s life is spent in the hydrogen burning stage, it is the later

burning stages that account for the synthesis of the majority of heavy elements in

the A = 16–64 mass range.
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Figure 5.1 (a) Central temperature–density

evolution of a M = 25 M☉ star with solar ini-

tial composition. The circles indicate condi-

tions that are representative of a particular

hydrostatic burning stage in the stellar core.

(b) Durations of various hydrostatic burning

stages in the stellar core versus initial stel-

lar mass for solar metallicity models. Data

adopted from Woosley, Heger, and Weaver

(2002).

The synthesis of the heavier nuclides (A > 60) requires a drastically different

mechanism.Their observed abundances cannot be explained by charged-particle

fusion reactions, since the transmission probability through the Coulomb barrier

becomes negligibly small at these higher nuclear charges. Such nuclides are

synthesized instead, unhindered by the Coulomb repulsion, via the capture

of neutrons. Two distinct neutron capture processes, the s-process and the

r-process, will also be discussed. A subsequent section describes the synthesis of
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those heavy nuclides (p-nuclides) that cannot be accounted for by neutron capture

processes.

Toward the end of this chapter, two non-stellar nucleosynthesis processes will

be discussed. The first covers the nucleosynthesis in the early universe, and the

second addresses cosmic-ray nucleosynthesis. The last section summarizes infor-

mation on the origin of the solar system nuclides.

Many of the reaction rates used here are adopted from published evaluations

(Angulo et al., 1999; Iliadis et al., 2001; Sallaska et al., 2013). They are based on

currently available experimental information (cross sections, resonance energies

and strengths, excitation energies, spectroscopic factors). These evaluations

do not only present reaction rates versus stellar temperature, but also report

uncertainties for each individual rate. Reaction rate uncertainties may strongly

influence stellar model predictions and, therefore, significant experimental

efforts are underway to improve the accuracy of many important reaction rates.

An investigation of how reaction rate uncertainties influence predictions of

isotopic abundances or energy generation is beyond the scope of this book (see,

e.g., Bahcall et al., 1982; The et al., 1998; Hoffman, Woosley, and Weaver, 2001;

Iliadis et al., 2002; Jordan, Gupta, and Meyer, 2003). Unless noted otherwise, we

are not concerned here with reaction rate uncertainties, but will use the latest

published recommended reaction rates to illustrate how the different burning

stages influence the nucleosynthesis and the nuclear energy generation. Values

for masses, Q-values, and particle separation energies used in this chapter are

adopted from Wang et al. (2012). Reaction rates, stellar enhancement factors,

and normalized partition functions derived from the Hauser–Feshbach statis-

tical model are adopted from Rauscher and Thielemann (2000), unless noted

otherwise.

Many different nuclear processes take part in the nucleosynthesis, especially

during the advanced and explosive burning stages. In those situations, we will

visualize the nucleosynthesis paths by introducing the time-integrated net abun-

dance flow between two specific nuclides i and j,

Fij = ∫ fij dt = ∫
[(

dNi

dt

)
i→j

−

(
dNj

dt

)
j→i

]
dt (5.1)

where (dNi∕dt)i→j is the partial rate of change of the number density Ni induced

by all processes converting nucleus i to j (Section 3.1.3). For example, if we are

interested in the nuclear activity caused by transformations between 24Mg and
25Al (Figure 3.4), thenwe only need to take into account the 24Mg(p,𝛾)25Al capture

reaction and the (reverse) 25Al(𝛾 ,p)24Mg photodisintegration. Hence, the time-

integrated net abundance flow is

F24Mg25Al = ∫
[(

d24Mg

dt

)
24Mg(p,𝛾)

−

(
d25Al

dt

)
25Al(𝛾,p)

]
dt (5.2)
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Large values of Fij indicate an enhanced nuclear activity between two species,

thereby helping to identify important links. It is advantageous to express Eqs. (5.1)

and (5.2) in terms of mole fractions, Yi = Ni∕(𝜌NA), rather than number densities,

Ni, if the density 𝜌 changes during the nucleosynthesis. Variations in Yi (or Xi)

are independent of density and reflect only nuclear transformations, as pointed

out in Section 1.5.4. We will mostly consider net abundance flows that are inte-

grated over the entire duration of the network calculation. Such flows represent

gross properties of the nucleosynthesis, but do not reveal details at any particular

instant of time. Nevertheless, they are very useful for providing an overview of the

nucleosynthesis.

5.1

Hydrostatic Hydrogen Burning

Hydrogen is the most abundant isotope in the universe. The fusion of four 1H

nuclei to the tightly bound 4He nucleus is called hydrogen burning. Independent

of the details of this transformation, the process releases an energy (Section

1.5.3) of

Q = 4(M.E.)H − (M.E.)4He = 4 ⋅ (7288.97 keV) − (2424.92 keV)

= 26.731MeV (5.3)

But precisely how does this fusion process takes place? Early estimates showed

that the probability for the simultaneous interaction of four protons in the stellar

plasma is far too small to account for the observed luminosity of stars. Instead,

sequences of interactions involving two particles in the entrance channel are con-

siderably more likely to occur. The two principal mechanisms whereby hydrogen

is converted to helium in hydrostatic hydrogen burning are called the proton–

proton chains and theCNO cycles.These processes were first suggestedmore than

70 years ago (Atkinson, 1936; Bethe and Critchfield, 1938; von Weizsäcker, 1938;

Bethe, 1939) and will be described in this section. It is useful for the following

discussion to keep in mind that, depending on the stellar mass and metallicity,

typical temperatures in core hydrogen burning are in the range of T ≈ 8–55 MK,

while the hydrogen burning shells in AGB stars achieve temperatures of T ≈ 45–

100 MK. The central temperature of the Sun, for example, is T = 15.6 MK

(Bahcall, 1989). On the other hand, far higher temperatures are attained in

explosive hydrogen burning, which will be discussed in later sections. As we

shall see, the details of the nuclear processes depend sensitively on the stellar

temperature.

5.1.1

pp Chains

The following three sequences of nuclear processes are referred to as proton–

proton (or pp) chains:
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pp1 chain pp2 chain pp3 chain

p(p,e+𝜈)d p(p,e+𝜈)d p(p,e+𝜈)d

d(p,𝛾)3He d(p,𝛾)3He d(p,𝛾)3He

3He(3He,2p)𝛼 3He(𝛼,𝛾)7Be 3He(𝛼,𝛾)7Be

7Be(e−,𝜈)7Li 7Be(p,𝛾)8B

7Li(p,𝛼)𝛼 8B(𝛽+𝜈)8Be

8Be(𝛼)𝛼

T1∕2:
8B (770 ms)

The different pp chains are also displayed in Figure 5.2. Each of these chains starts

with hydrogen and converts four protons to one 4He nucleus (or α-particle).

The first two reactions are the same for each chain. Other nuclear reactions

involving the light nuclides 1H, 2H, 3He, and so on, are less likely to occur in stars

(Parker, Bahcall, and Fowler, 1964).

The p(p,e+𝝂)d reaction

The first reaction of each pp chain, 1H + 1H → 2H + e+ + 𝜈, fuses two protons to

one deuteriumnucleus.The reaction releases an energy ofQ = 1.442 MeV, includ-

ing the annihilation energy of the positron with another electron from the envi-

ronment (Example 1.3). The p(p,e+𝜈)d reaction represents a special case since it

converts a proton into a neutron, a process that closely resembles a β-decay.Thus,

unlike almost all other stellar fusion reactions that are governed exclusively by the

strong nuclear force and the Coulomb force, the p(p,e+𝜈)d reaction is influenced

by the weak nuclear force as well. Since this process involves two charged parti-

cles in the entrance channel, the overall energy dependence of the cross section is

mainly determined by the transmission through the Coulomb barrier. The abso-

lute magnitude of the cross section, however, is relatively small because of the

influence of the weak nuclear force. A calculation of the p(p,e+𝜈)d cross section is

presented, for example, in Bahcall and May (1969) and is not repeated here. The

theoretical S-factor varies smoothly with energy and is given by (Angulo et al.,

1999)

S(E) = 3.94 × 10−25 + 4.61 × 10−24E + 2.96 × 10−23E2 (MeVb) (5.4)

For example, at a center-of-mass energy of 0.5 MeV (corresponding to a labo-

ratory proton bombarding energy of 1 MeV) the above S-factor translates into

a cross section of about 𝜎pp = 8 × 10
−48 cm2. With this cross section, a 1 MeV

proton beam of 1 A intensity (6.3 × 1018 protons/s) incident on a dense proton

target (1020 protons/cm2) will produce a single p + p reaction in about 6 years

(Problem 4.10). Such a small event rate seems immeasurably small in the forsee-

able future and, therefore, the S-factor is based entirely on theory. Nevertheless,

the different factors that determine the S-factor can be calculatedwith confidence.

The quoted reaction rate errors (Angulo et al., 1999) amount to only a few percent
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Figure 5.2 Representation of the pp chains

in the chart of the nuclides. Each arrow rep-

resents a specific nuclear interaction con-

necting the initial with the final nucleus.

For example, the reaction 3He(𝛼,𝛾)7Be is

represented by an arrow extending from
3He to 7Be (middle and bottom panel). Each

of the pp chains effectively fuses four pro-

tons to one 4He nucleus. Stable nuclides are

shown as shaded squares.

and are significantly smaller than the rate errors of most measured stellar fusion

reactions.

The energy of 1.442 MeV released in the p + p reaction is shared among the reac-

tion products.The neutrino, however, has a large probability for escaping from the

star and, hence, its energy is carried away and is not converted into heat. From the

detailed shape of the neutrino energy spectrum, one obtains an average neutrino

energy of about 265 keV (Bahcall, 1989). The nuclear energy available from this

reaction for conversion into heat is then 1442 keV − 265 keV = 1177 keV.
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Alternative processes to the p(p,e+𝜈)d reaction have been proposed. For

example, the reaction 1H + 1H + e− → 2H + 𝜈, referred to as the pep reaction,

also fuses two hydrogen nuclei to one deuterium nucleus. Calculations have

shown that this process can compete with p(p,e+𝜈)d only at stellar densities in

excess of 104 g/cm3 (Bahcall and May, 1969). Therefore, the pep reaction plays

no significant role in hydrostatic hydrogen burning. However, it may contribute

to the energy production in the early stages of explosive hydrogen burning

(Section 5.5.2).

The d(p,𝜸)3He Reaction

The deuterium produced in the p(p,e+𝜈)d reaction can, in principle, be destroyed

by a number of different interactions. The d(p,𝛾)3He reaction is by far the most

important among these. Other reactions, such as d + d → p + t or d + d → n +
3He, may have higher cross sections. However, recall that the reaction rate does

not only depend on the cross section, but also on the abundances of the inter-

acting nuclei (see Eq. (3.6)). Since there are far more protons available compared

to the few deuterium nuclei produced by the very slow p + p reaction, the d + p

interaction is far more likely to occur compared to the d + d interaction.

The d(p,𝛾)3He reaction (Q = 5.493 MeV) has been measured at center-of-mass

energies aboveEcm ≈ 10 keV. For the calculation of the reaction rates at all temper-

atures of practical interest, the data can be extrapolated to zero energy by using,

for example, the direct capture model of nuclear reactions. The S-factor is given

by (Angulo et al., 1999)

S(E) = 0.20 × 10−6 + 5.60 × 10−6E + 3.10 × 10−6E2 (MeVb) (5.5)

This reaction depends only on the electromagnetic and the strong nuclear force.

As a result, the S-factor and the reaction rate are many orders of magnitude larger

compared to the p + p reaction. Reaction rate uncertainties amount to about 30–

40%. Such errors are typical for many stellar fusion reactions.

pp1 Chain

The 3He nuclei created by the two processes discussed above can, in principle,

fuse with the abundant protons to form 4He via the process 3He + p → 𝛾 + 4Li →
𝛾 + 4He + e+ + 𝜈. However, the 4Li nucleus is unstable, with a proton separation

energy of about −2.5 MeV, and decays back to 3He after a very short time period.

It turns out that the 3He(3He,2p)4He reaction is the most likely 3He destroying

process, and it completes the conversion of four protons to one 4He nucleus in

the pp1 chain. It is not so obvious to see why the 3He(3He,2p)4He reaction is more

important compared to another 3He destroying reaction, 3He(d,p)4He, especially

considering that both of these reactions have similar cross sections. This ques-

tion will be addressed, among other issues, in this section. The S-factor of the
3He(3He,2p)4He reaction is given by (Angulo et al., 1999)

S(E) = 5.18 − 2.22E + 0.80E2 (MeVb) (5.6)
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Although this S-factor is larger compared to that of the d(p,𝛾)3He reaction (see

Eq. (5.5)), the 3He(3He,2p)4He reaction rate per particle pair is actually smaller

because of the larger value of the productZpZt , resulting in a considerably reduced

transmission through the Coulomb barrier. This circumstance has an important

consequence for the mean lifetimes of deuterium and 3He in the stellar plasma, as

will be shown below.

In the following, we will investigate how the 2H and 3He abundances evolve in

the pp1 chain. The isotope 2H is created by the p + p reaction and is destroyed

via the d + p reaction, while 3He is created by the d + p reaction and destroyed

via the 3He + 3He reaction. Disregarding at first other reactions, we find by using

Eqs. (3.20) and (3.26) for the time dependence of the 2H and 3He abundances the

differential equations

dD

dt
= rpp − (1 + 𝛿dp)rdp =

H2⟨𝜎𝑣⟩pp
(1 + 𝛿pp)

− (1 + 𝛿dp)
HD⟨𝜎𝑣⟩dp
(1 + 𝛿dp)

=
H2

2
⟨𝜎𝑣⟩pp −HD⟨𝜎𝑣⟩dp (5.7)

d(3He)

dt
= rdp − (1 + 𝛿3He3He)r3He3He

= DH⟨𝜎𝑣⟩dp − (3He)2⟨𝜎𝑣⟩3He3He (5.8)

To avoid confusion, we use italic symbolsH ,D, and 3He for the number densities of

the isotopes 1H (or p), 2H (or d), and 3He, respectively. Also, no Kronecker symbol

occurs in front of the first term on the right-hand side of the above equations since

a single p + p reaction or a single d + p reaction creates only one 2Hor 3Henucleus,

respectively.

We start with the abundance of 2H. If no deuterium is initially present in the

stellar plasma, the second term on the right-hand side of Eq. (5.7) is zero. With

increasing time, the deuterium abundance builds up because of the p + p reaction.

Themore deuterium is created, the larger the second term describing the destruc-

tion of deuterium via the d + p reaction will become. Eventually, an equilibrium,

dD∕dt = 0, is established. Alternatively, if for some reason the initial deuterium

abundance is very large, then the second term on the right-hand side of Eq. (5.7)

will dominate the first term.With progressing time, the deuterium abundance will

decrease and hence, the second term will become smaller. This continues until an

equilibrium, dD∕dt = 0, is established. The above equation has been called self-

regulating (Clayton, 1983) since the deuteriumabundance always seeks an equilib-

rium value. The equilibrium ratio (D∕H)e, obtained for the condition dD∕dt = 0,

is given by(
D

H

)
e
=

⟨𝜎𝑣⟩pp
2⟨𝜎𝑣⟩dp = NA⟨𝜎𝑣⟩pp

2NA⟨𝜎𝑣⟩dp = 𝜏p(d)

2𝜏p(p)
(5.9)

The quantity (D∕H)e is determined by the ratio of the p + p and d + p reaction

rates and is shown in Figure 5.3a versus stellar temperature. It can be seen that the
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Figure 5.3 (a) Equilibrium abundance

ratio (D∕H)e versus stellar temperature.

(b) Time evolution of the abundance ratio

(D∕H) for the conditions T = 15 MK, 𝜌 =

100 g/cm3, and XH = 0.5. The dashed and

solid lines are obtained for initial deuterium

abundances of (D∕H)0 = 0 and (D∕H)0 =

10−5, respectively. In either case, the deu-

terium abundance reaches equilibrium in a

time negligible compared to the lifetime of

stars.

(D∕H)e value amounts to about (D∕H)e ≈ 10
−18–10−17 over most of the relevant

temperature range.

We can bemore specific and ask how long it takes for the deuterium abundance

to achieve equilibrium. It was shown above that the deuterium lifetime against

destruction via the d + p reaction is very short compared to the hydrogen lifetime

against destruction via that p + p reaction. Thus, the deuterium abundance will

change more quickly compared to the hydrogen abundance. The difference in the

respective lifetimes is so large that it is safe to assume that the deuterium abun-

dance achieves equilibrium in a time too short for the hydrogen abundance to

change significantly. With this approximation of a constant hydrogen abundance,

Eq. (5.7) can be solved, and we obtain

d(D∕H)

dt
=

H

2
⟨𝜎𝑣⟩pp −H

(
D

H

) ⟨𝜎𝑣⟩dp (5.10)

With the substitutions x = (D∕H), a = (H∕2)⟨𝜎𝑣⟩pp, and b = H⟨𝜎𝑣⟩dp, we write
dx

dt
= a − bx (5.11)

With y = a − bx and dy∕dx = −b, we obtain, assuming y = y0 at t = 0,

dy

y
= −b dt and y = y0e

−bt (5.12)

Thus, with Eqs. (3.23) and (5.9) one finds

H⟨𝜎𝑣⟩dp (D

H

)
t
=

H

2
⟨𝜎𝑣⟩pp − [

H

2
⟨𝜎𝑣⟩pp −H⟨𝜎𝑣⟩dp (D

H

)
0

]
e−H⟨𝜎𝑣⟩dpt(

D

H

)
t
=

(
D

H

)
e
−

[(
D

H

)
e
−

(
D

H

)
0

]
e−t∕𝜏p(d) (5.13)
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The deuterium abundance approaches its equilibrium value exponentially with a

1∕e time of 𝜏p(d).The time evolution of the quantity (D∕H) for the conditions T =

15 MK, 𝜌 = 100 g/cm3, and XH = 0.5 is shown in Figure 5.3b. The two lines are

obtained for (i) a zero initial deuterium abundance, (D∕H)0 = 0, and (ii) a value of

(D∕H)0 = 10
−5. The deuterium abundance reaches equilibrium in a time negligi-

ble compared to the lifetime of stars.

The very small deuterium-to-hydrogen ratio of (D∕H)e = 10
−18–10−17 that is

established in the hydrogen burning cores of stars has interesting astrophysical

implications. Any significant deuterium abundance that might be present when

a star forms will be quickly depleted during the hydrogen burning stage. Since

there are no other stellar sites that produce deuterium in significant amounts,

deuterium is destroyed as the universe evolves and interstellar gas is cycled

through generations of stars. Observations of the deuterium abundance in the

universe will thus provide lower limits on the primordial deuterium abundance

that was established before stellar formation took place. Observations indicate a

primordial deuterium abundance of about (D∕H)prim ≈ 3 × 10−5. It is commonly

assumed that primordial deuterium was produced during the nucleosynthesis

in the early universe and, therefore, the observed (D∕H)prim value provides an

important test of standard big bang nucleosynthesis (Section 5.7.1). Furthermore,

if stars are born from interstellar matter with a (D∕H) ratio on the order of 10−5,

then the deuterium abundance is sufficiently large for initiating the d(p,𝛾)3He

reaction already at relatively low temperatures during the stellar contraction

phase, that is, before the hydrogen burning stage. Therefore, the d(p,𝛾)3He

reaction is the first thermonuclear energy source in some stars. This process

is referred to as deuterium burning and will not only slow the contraction of

the newly forming star, but may also provide an important source of 3He in the

young star.

We will next discuss the evolution of the 3He abundance. Since the deuterium

abundance achieves equilibrium in a negligible amount of time, Eq. (5.8) can be

simplified using Eq. (5.9),

d(3He)

dt
=

H2

2
⟨𝜎𝑣⟩pp − (3He)2⟨𝜎𝑣⟩3He3He (5.14)

This expression is also self-regulating in the sense that the 3He abundance will

seek an equilibrium value. The equilibrium ratio (3He∕H)e is again obtained for

the condition d(3He)∕dt = 0, with the result(
3He

H

)
e

=

√ ⟨𝜎𝑣⟩pp
2⟨𝜎𝑣⟩3He3He =

√
NA⟨𝜎𝑣⟩pp
2NA⟨𝜎𝑣⟩3He3He (5.15)

The quantity (3He∕H)e is determined by the ratio of the p + p and 3He + 3He

reaction rates and is shown in Figure 5.4a versus stellar temperature. Since the
3He(3He,2p)4He reaction rate is smaller compared to the d(p,𝛾)3He reaction

rate, the 3He abundance builds up to a larger value compared to the deuterium

abundance to achieve equilibrium.
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Figure 5.4 (a) Equilibrium abundance ratio (3He∕H)e versus stellar temperature. (b) Time

required for 3He to reach 99% of its equilibrium abundance versus temperature. The curve is

calculated for the conditions 𝜌 = 100 g/cm3 and XH = 0.5.

The time it takes for the 3He abundance to achieve equilibrium can be calculated

assuming that the hydrogen abundance stays nearly constant. It can be seen from

Figure 5.4a that this is a reasonable assumption for temperatures aboveT = 6 MK

where (3He∕H)e < 0.01. With the approximation of a constant hydrogen abun-

dance, Eq. (5.14) can be solved, and we obtain

d(3He∕H)

dt
=

H

2
⟨𝜎𝑣⟩pp −H

(
3He

H

)2 ⟨𝜎𝑣⟩3He3He (5.16)

Using the substitutions x = (3He∕H), a = (H∕2)⟨𝜎𝑣⟩pp, and b = H⟨𝜎𝑣⟩3He3He we
write

dx

dt
= a − bx2 or

1

a

dx

dt
= 1 −

b

a
x2 (5.17)

From y = x
√
b∕a and dy∕dx =

√
b∕a, we obtain

dy

1 − y2
= a

√
b

a
dt or y = tanh(t

√
ab) (5.18)

assuming y = 0 at t = 0. From Eqs. (3.23) and (5.15), we find(
3He

H

)
t

=

√ ⟨𝜎𝑣⟩pp
2⟨𝜎𝑣⟩3He3He tanh

(
t

√
H

2
⟨𝜎𝑣⟩ppH⟨𝜎𝑣⟩3He3He)

=

(
3He

H

)
e

tanh

(
t

[𝜏3He(
3He)]e

)
(5.19)

We have explicitly assumed that the initial 3He abundance is zero (y = 0 at t = 0).

The quantity [𝜏3He(
3He)]e denotes the mean lifetime of

3He against destruction via



5.1 Hydrostatic Hydrogen Burning 361

the 3He(3He,2p)4He reaction after 3He has reached its equilibrium value.The time

required for the 3He abundance to achieve a fraction f = (3He∕H)t∕(
3He∕H)e of

its equilibrium abundance is obtained from

tf = [𝜏3He(
3He)]e arctanh(f ) =

arctanh(f )

𝜌
XH
MH

NA⟨𝜎𝑣⟩3He3He ( 3HeH

)
e

(5.20)

This time is shown in Figure 5.4b at temperatures above T = 6 MK (where the

hydrogen abundance is approximately constant) for the conditions f = 0.99,

𝜌 = 100 g/cm3, and XH = 0.5. It can be seen that the value of tf exceeds 10
9 years

below T ≈ 8 MK and becomes comparable to the lifetime of some stars. For

sufficiently small temperatures, the 3He abundance will never reach equilib-

rium. For a temperature of T = 15 MK, on the other hand, the 3He abundance

increases gradually and reaches an equilibrium value of (3He∕H)e = 10
−5 after

about 106 years.

It is interesting to compare the mean lifetimes 𝜏p(p), 𝜏p(d), 𝜏𝛼(
3He), [𝜏d(d)]e,

[𝜏d(
3He)]e, [𝜏3He(d)]e, and [𝜏3He(

3He)]e. The first three quantities are given by the

usual relation (see Eq. (3.22)), while, for example, the fifth quantity denotes the

mean lifetime of 3He against destruction via the 3He(d,p)4He reaction after the

deuterium abundance has reached an equilibrium value. From Eqs. (3.22), (5.9),

and (5.15), we find

[𝜏d(d)]e =

(
NA⟨𝜎𝑣⟩pp
2NA⟨𝜎𝑣⟩dp 𝜌 XHMH NA⟨𝜎𝑣⟩dd)−1

(5.21)

[𝜏d(
3He)]e =

(
NA⟨𝜎𝑣⟩pp
2NA⟨𝜎𝑣⟩dp 𝜌 XHMH NA⟨𝜎𝑣⟩3He d)−1

(5.22)

[𝜏3He(d)]e =

(√
NA⟨𝜎𝑣⟩pp
2NA⟨𝜎𝑣⟩3He3He 𝜌 XHMH NA⟨𝜎𝑣⟩3He d)−1

(5.23)

[𝜏3He(
3He)]e =

(√
NA⟨𝜎𝑣⟩pp
2NA⟨𝜎𝑣⟩3He3He 𝜌 XHMH NA⟨𝜎𝑣⟩3He3He)−1

(5.24)

The subscripts pp, dp, dd, 3Hed, and 3He3He denote the reactions p(p,e+𝜈)d,

d(p,𝛾)3He, d(d,n)3He, 3He(d,p)4He, and 3He(3He,2p)4He, respectively. The mean

lifetimes are calculated for the conditions 𝜌 = 100 g/cm3, XH = XHe = 0.5, and

are shown in Figure 5.5a. Several important points can be made. First, it can be

seen that 𝜏p(d)≪ [𝜏3He(d)]e ≪ [𝜏d(d)]e, and hence the assumption of Eq. (5.7),

that deuterium is predominantly destroyed via the d(p,𝛾)3He reaction, is justified.

Second, we have [𝜏3He(
3He)]e ≪ [𝜏d(

3He)]e and thus
3He is predominantly

destroyed via the 3He(3He,2p)4He reaction, while the 3He(d,p)4He reaction

plays no significant role after 3He has reached its equilibrium value. We suspect

that the 3He(d,p)4He reaction is more likely to occur than the 3He(3He,2p)4He

reaction only before 3He reaches equilibrium, when its abundance is still very

small. Under such conditions, however, the production rate of 3He via the two

reactions p(p,e+𝜈)d and d(p,𝛾)3He is far larger compared to the destruction rate
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Figure 5.5 Mean lifetimes versus stel-

lar temperature, calculated for the condi-

tions 𝜌 = 100 g/cm3 and XH = XHe = 0.5. In

(a) the operation of only the pp1 chain is

considered, while in (b) all three pp chains

are assumed to operate simultaneously. For

hydrostatic hydrogen burning, only tempera-

tures below T = 0.1 GK are of interest.

and the latter can be neglected. Therefore, the assumption of Eq. (5.8) that 3He

is predominantly destroyed in the pp1 chain via the 3He(3He,2p)4He reaction is

justified.

The energy production rate in the pp1 chain can be expressed as a sum of

two parts. The first step involves the p(p,e+𝜈)d and d(p,𝛾)3He reactions. Their

cumulative effect is to convert three protons to one 3He nucleus at a rate that

is given by the very slow p(p,e+𝜈)d reaction. The produced energy is calculated

according to Eq. (1.11) from the atomic mass excesses and amounts to 6.936 MeV.

Subtracting an average neutrino energy of 0.265 MeV (see above) yields an
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energy of 6.671 MeV available to the star. In the second step, the 3He(3He,2p)4He

reaction releases an energy of 12.861 MeV. The total energy production rate in

the pp1 chain is then given by (see Eq. (3.64))

𝜀pp1 =
6.671MeV

𝜌
rpp +

12.861MeV

𝜌
r3He3He

=
6.671MeV

2𝜌
H2⟨𝜎𝑣⟩pp + 12.861MeV

2𝜌
H2

(
3He

H

)2 ⟨𝜎𝑣⟩3He3He (5.25)
The energy generation rate depends on whether the 3He abundance has achieved

equilibrium or not. In the general case, when equilibrium has not been reached

yet, the 3He abundance and the corresponding energy generation rate are

changing with time and both quantities have to be computed numerically.

Alternatively, for the conditions of a constant temperature, for (3He∕H)e < 0.01

(i.e., a constant hydrogen abundance) and a zero initial 3He abundance, the

ratio (3He∕H) can be approximated by Eq. (5.19). The expression for the energy

generation rate simplifies considerably after the 3He abundance has achieved

equilibrium. From Eqs. (5.15) and (5.25), we find

𝜀e
pp1

=
6.671MeV

2𝜌
H2⟨𝜎𝑣⟩pp + 12.861MeV

2𝜌

H2

2

NA⟨𝜎𝑣⟩pp
NA⟨𝜎𝑣⟩3He3He ⟨𝜎𝑣⟩3He3He

= 6.551NA⟨𝜎𝑣⟩pp ( XH
MH

)2
𝜌NA (MeVg−1s−1) (5.26)

The energy generation rate in the pp1 chain at 3He equilibrium is determined

by the p + p reaction rate. The temperature dependence of 𝜀e
pp1
is thus given by

Eq. (3.90). For example, near T0 = 15 MK we obtain 𝜏 = 13.6 for the p(p,e
+𝜈)d

reaction, implying

𝜀e
pp1
(T) = 𝜀e

pp1
(T0)

(
T∕T0

)(𝜏−2)∕3
= 𝜀e

pp1
(T0)

(
T∕T0

)3.9
(5.27)

The quantity 𝜀e
pp1
will be presented versus temperature in Section 5.1.2 and will be

compared to the energy generation rate from the CNO cycles.

pp2 and pp3 Chains

So far we have disregarded reactions other than 3He(3He,2p)4He that destroy
3He. Figure 5.5a also compares the quantity [𝜏3He(

3He)]e with the lifetime of
3He

against destruction via the 3He(𝛼,𝛾)7Be reaction, 𝜏𝛼(
3He). It can be seen that the

3He(𝛼,𝛾)7Be reaction becomes the dominant destruction mechanism for 3He

if the temperature and the 4He abundance are sufficiently large. The 4He may

either be produced during hydrogen burning or may be of primordial origin.

Following the 3He(𝛼,𝛾)7Be reaction, the 7Be nucleus can β-decay to 7Li and the

subsequent 7Li(p,𝛼)4He reaction completes the conversion of four protons to one
4He nucleus. This reaction sequence is referred to as the pp2 chain (Figure 5.2).

The β-decay of 7Be has interesting properties. In the laboratory, 7Be has a half-life

of T1∕2 = 53 d and decays by capture of an atomic electron,
7Be + e− → 7Li + 𝜈.

In the stellar plasma, on the other hand, 7Be is partially ionized and the decay
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can occur either by capture of one of the remaining atomic electrons or of a

free electron from the surrounding continuum (Section 1.8.4). A calculation

of the electron capture rate of 7Be in the stellar environment can be found in

Bahcall and Moeller (1969). To calculate the decay constant, the tabulated values

for the rate have to be multiplied by ne−∕NA, where ne− denotes the electron

density (see Eq. (1.68)). It will be shown below that this decay rate depends only

weakly on temperature, in contrast to the strong temperature dependence of

charged-particle reactions. In particular, at sufficiently high temperatures, the
7Be(p,𝛾)8B reaction instead of 7Be(e−,𝜈)7Li becomes the dominant 7Be destruc-

tion mechanism. The β+-decay of 8B to 8Be and the subsequent breakup of the

particle-unstable 8Be nucleus, 8Be → 𝛼 + 𝛼, complete the pp3 chain (Figure 5.2).

The pp2 and pp3 chains have an output of two α-particles, but require an input

of one α-particle. The net effect is the formation of one 4He nucleus per reaction

sequence and, hence, one of the α-particles acts only as a catalyst allowing the
3He(𝛼,𝛾)7Be reaction to take place. The total energy released in any of the chains

is the same (26.731 MeV), but the amount of energy carried away by the neutrinos

will be different in each case. The nuclear energy available to the star for conver-

sion to thermal energy for each chain is given by

Qpp1 = 26.73MeV − 2E
pp

𝜈
= 26.19MeV (5.28)

Qpp2 = 26.73MeV − E
pp

𝜈
− E

7Be

𝜈
= 25.65MeV (5.29)

Qpp3 = 26.73MeV − E
pp

𝜈
− E

8B

𝜈
= 19.75MeV (5.30)

The average neutrino energies E
i

𝜈
are adopted from Bahcall (1989). The neutrino

losses in the pp1, pp2, and pp3 chains amount to 2%, 4%, and 26%, respectively.

In a hydrogen-burning star that contains a significant 4He abundance, all three

pp chains will operate simultaneously. The contributions of the different chains

to the energy production and the nucleosynthesis depend on the conditions

of temperature, density, and composition. If we consider a situation where

convection, expansion, and mixing in the stellar plasma can be disregarded, then

nuclear transformations are the only source of abundance changes. In this case,

one obtains the following set of nonlinear coupled differential equations

dH

dt
= 2

(3He)2⟨𝜎𝑣⟩3He3He
2

− 2
H2⟨𝜎𝑣⟩pp
2

−HD⟨𝜎𝑣⟩pd
−H(7Be)⟨𝜎𝑣⟩p7Be −H(7Li)⟨𝜎𝑣⟩p7Li (5.31)

dD

dt
=

H2

2
⟨𝜎𝑣⟩pp −HD⟨𝜎𝑣⟩pd (5.32)

d(3He)

dt
= HD⟨𝜎𝑣⟩pd − 2 (3He)2⟨𝜎𝑣⟩3He3He2

− (3He)(4He)⟨𝜎𝑣⟩𝛼3He (5.33)

d(4He)

dt
=
(3He)2⟨𝜎𝑣⟩3He3He

2
+ 2H(7Be)⟨𝜎𝑣⟩p7Be + 2H(7Li)⟨𝜎𝑣⟩p7Li

− (3He)(4He)⟨𝜎𝑣⟩𝛼3He (5.34)
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d(7Be)

dt
= (3He)(4He)⟨𝜎𝑣⟩𝛼3He − (7Be)𝜆e7Be −H(7Be)⟨𝜎𝑣⟩p7Be (5.35)

d(7Li)

dt
= (7Be)𝜆e7Be −H(7Li)⟨𝜎𝑣⟩p7Li (5.36)

The factor of two, for example, in the numerator of the first term on the right-hand

side of Eq. (5.31) appears because two protons are created in one 3He(3He,2p)4He

reaction. The term 𝜆e7Be denotes the decay constant for
7Be electron capture.

The 8B and 8Be abundances have been eliminated because both decays have very

short mean lifetimes (1.1 s and 4 × 10−22 s, respectively). Therefore, the sequence
7Be(p,𝛾)8B(𝛽+𝜈)8Be(𝛼)𝛼 can be considered a single step, 7Be + p → 2𝛼 + 𝜈. This
set of equations can be solved numerically. It is instructive, however, to calculate

analytical solutions using certain approximations. We have seen in the discussion

of the pp1 chain that several important results can be expressed in terms of the
3He equilibrium abundance. Therefore, we will first focus on this quantity and

will then estimate the overall energy generation in the pp chains.

It is again safe to assume that the deuterium abundance will achieve equilibrium

in a negligible amount of time (seconds to hours) compared to the evolution-

ary timescale of the star. Hence, dD∕dt = 0 in Eq. (5.32), and HD⟨𝜎𝑣⟩pd can be
replaced in Eq. (5.33) by H2⟨𝜎𝑣⟩pp∕2, with the result

d(3He)

dt
=

H2

2
⟨𝜎𝑣⟩pp − 2 (3He)2⟨𝜎𝑣⟩3He3He2

− (3He)(4He)⟨𝜎𝑣⟩𝛼3He (5.37)

We will also assume that the 3He abundance has reached equilibrium. The (3He)e
abundancewill be smaller compared towhat it was during the operation of the pp1

chain alone because of an additional 3He destroying reaction.With d(3He)∕dt = 0

we find

(3He)2
e
⟨𝜎𝑣⟩3He3He = H2

2
⟨𝜎𝑣⟩pp − (3He)e(

4He)⟨𝜎𝑣⟩𝛼3He (5.38)

Solving for (3He)e yields the expression

(3He)e =
−(4He)⟨𝜎𝑣⟩𝛼3He +√

(4He)2⟨𝜎𝑣⟩2
𝛼3He

+ 2H2⟨𝜎𝑣⟩pp⟨𝜎𝑣⟩3He3He
2⟨𝜎𝑣⟩3He3He (5.39)

It is apparent that for a zero hydrogen abundance (H → 0), the (3He)e abundance
also vanishes. Furthermore, for a zero 4He abundance, implying no destruction of
3He via the 3He(𝛼,𝛾)7Be reaction, the above expression reduces to Eq. (5.15). The

ratio of (3He)e values obtained from Eq. (5.39) to that resulting from the operation

of the pp1 chain alone (see Eq. (5.15)) is shown in Figure 5.6 for a composition

of XH = X𝛼 = 0.5.The ratio amounts to unity for temperatures below T = 10 MK

and decreases rapidly for increasing temperature because of the operation of the

pp2 and pp3 chains (see below).

We are now in a position to investigate the competition between the pp1, pp2,

and pp3 chains. The pp2 and pp3 chains will dominate over the pp1 chain when

the 3He(𝛼,𝛾)7Be reaction becomes more likely than the 3He(3He,2p)4He reaction.
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Figure 5.6 Values of (3He)e obtained from

the operation of all three pp chains, divided

by (3He)e values derived from the operation

of the pp1 chain only. The curve is obtained

for a composition of XH = X𝛼 = 0.5. The

ratio of (3He)e values shown is unity below

T = 10 MK and decreases rapidly for increas-

ing temperatures because of the operation

of the pp2 and pp3 chains.

Similarly, the pp3 chain will dominate over the pp2 chain when the 7Be(p,𝛾)8B

reaction becomes more likely than the competing electron capture 7Be(e−,𝜈)7Li.

According to Eqs. (3.22) and (5.39), the corresponding mean lifetimes are

𝜏𝛼(
3He) =

(
𝜌
X𝛼
M𝛼

NA⟨𝜎𝑣⟩𝛼3He)−1

(5.40)

[𝜏3He(
3He)]e =

⎛⎜⎜⎝−
𝜌

2

X𝛼
M𝛼

NA⟨𝜎𝑣⟩𝛼3He
+
𝜌

2

√√√√ X2
𝛼

M2
𝛼

(NA⟨𝜎𝑣⟩𝛼3He)2 + 2 X2H
M2
H

NA⟨𝜎𝑣⟩ppNA⟨𝜎𝑣⟩3He3He⎞⎟⎟⎠
−1

(5.41)

𝜏p(
7Be) =

(
𝜌
XH
MH

NA⟨𝜎𝑣⟩p7Be)−1

(5.42)

𝜏e− (
7Be) =

(
𝜆e7Be

)−1
(5.43)

The mean lifetimes are calculated from the above expressions for the condi-

tions 𝜌 = 100 g/cm3 and XH = XHe = 0.5. To calculate 𝜆e7Be, the approximation

ne−∕NA ≈ 𝜌(1 + XH)∕2 is used (Fowler, Caughlan, and Zimmerman, 1975), which

is applicable for a fully ionized gas. The results are shown in Figure 5.5b. We find

that, for the conditions assumed, 𝜏𝛼(
3He) ≈ [𝜏3He(

3He)]e at T ≈ 18 MK. Above

this temperature, the pp2 and pp3 chains will dominate over the pp1 chain.

Furthermore, we obtain 𝜏p(
7Be) ≈ 𝜏e− (

7Be) at T ≈ 25 MK, implying that the pp3

chain will dominate over the pp2 chain at temperatures in excess of this value.
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These two temperature values are independent of density, as can be seen from

Eqs. (5.40)–(5.43).

Finally, the nuclear energy generated by all the pp chains operating together

is estimated under the assumption that 3He has achieved an equilibrium abun-

dance. Remember that the neutrino losses are different in each chain. The energy

generation rate, corrected for neutrino losses, can be written as the product

𝜀pp =
Q4H→4He

𝜌

d(4He)

dt

(
fpp1Fpp1 + fpp2Fpp2 + fpp3Fpp3

)
(MeVg−1s−1) (5.44)

with Q4H→4He = 26.73 MeV the energy release per
4He nucleus produced and

d(4He)∕dt the production rate of 4He. The factor fppi is the fraction of the total

energy Q4H→4He retained in the star if the
4He nucleus is produced in the ppi

chain (fpp1 = 0.98, fpp2 = 0.96, fpp3 = 0.74; see above). The quantity Fppi denotes

the fraction of 4He nuclei produced by the ppi chain (with Fpp1 + Fpp2 + Fpp3 = 1).

The production rate of 4He is given by Eq. (5.34). The mean lifetimes of 7Be and
7Li are less than a year at most temperatures and densities of interest. Thereafter,

both abundances will follow the buildup of 3He. With d(7Be + 7Li)∕dt ≈ 0 one

finds from Eqs. (5.35) and (5.36)

H(7Be)⟨𝜎𝑣⟩p7Be +H(7Li)⟨𝜎𝑣⟩p7Li = (3He)(4He)⟨𝜎𝑣⟩𝛼3He (5.45)

This expression is satisfied long before 3He achieves equilibrium. Substitution of

Eq. (5.45) into Eq. (5.34) yields a simplified expression for the 4He production rate,

d(4He)

dt
=
(3He)2⟨𝜎𝑣⟩3He3He

2
+ (3He)(4He)⟨𝜎𝑣⟩𝛼3He (5.46)

When 3He achieves equilibrium, we obtain with Eq. (5.38)

d(4He)

dt
=

H2

4
⟨𝜎𝑣⟩pp + 12 (3He)e(4He)⟨𝜎𝑣⟩𝛼3He (5.47)

The fraction of 4He nuclei produced by the pp1 chain can be written as the ratio

of reaction rates (see Eq. (3.6)),

Fpp1 =
r3He3He

r3He3He + r𝛼3He
=

(3He)e⟨𝜎𝑣⟩3He3He
(3He)e⟨𝜎𝑣⟩3He3He + 2(4He)⟨𝜎𝑣⟩𝛼3He (5.48)

Similarly, one finds for the fraction of 4He nuclei produced in the pp2 chain

Fpp2 = (1 − Fpp1)
re7Be

re7Be + rp7Be
= (1 − Fpp1)

𝜆e7Be

𝜆e7Be +H⟨𝜎𝑣⟩p7Be (5.49)

with (1 − Fpp1) the probability that the
4He nucleus is not produced in the pp1

chain. Furthermore, the fraction of 4He nuclei produced by the pp3 chain is given

by Fpp3 = 1 − Fpp1 − Fpp2.The fractions Fppi, which are independent of density, are

shown in Figure 5.7a assuming a composition ofXH = X𝛼 = 0.5 and a fully ionized

gas. It is again apparent that for temperatures belowT = 18 MK the 4He nuclei are

mainly produced via the pp1 chain. The pp2 chain takes over above this tempera-

ture value, while for T > 25 MK the pp3 chain is the main producer of 4He.

The energy production rate of the pp chains, after 3He has achieved an equilib-

rium abundance, 𝜀e
pp
, can now be calculated fromEqs. (5.44) and (5.47)–(5.49) as a
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Figure 5.7 (a) Fraction of 4He nuclei pro-

duced by the pp1, pp2, and pp3 chains,

which are the main producers of 4He at

temperatures of T < 18 MK, T = 18–25 MK,

and T > 25 MK, respectively. (b) Ratio of the

energy generation rate by all three pp chains

to that by the pp1 chain alone versus tem-

perature. The ratio is unity for T < 10 MK,

where the pp1 chain dominates. The maxi-

mum at T ≈ 23 MK is caused by the domi-

nant operation of the pp2 chain. About 90%

of the Sun’s energy is produced by the pp1

chain. All curves shown are independent of

density and are calculated for a composition

of XH = X𝛼 = 0.5 and a fully ionized gas.

function of temperature and composition. The ratio of the energy generation rate

by the pp chains to the pp1 chain alone, 𝜀e
pp
∕𝜀e

pp1
, is displayed in Figure 5.7b for a

composition of XH = X𝛼 = 0.5 and a fully ionized gas. The ratio is independent of

density and amounts to unity at temperatures below T = 10 MK where the pp1

chain is the dominant process. Recall that in the pp1 chain two p + p reactions are

necessary for the production of one 4He nucleus. On the other hand, in the pp2

and pp3 chains, the creation of one 4He nucleus requires only one p + p reaction,

causing an increase in d(4He)∕dt (by a factor of two) and in 𝜀e
pp
(by a factor of two

minus neutrino losses) compared to the operation of the pp1 chain alone. This

can be seen at temperatures above T = 40 MK, where the pp3 chain dominates,

yielding a ratio of 𝜀e
pp
∕𝜀e

pp1
= 2(fpp3∕fpp1) = 2(0.74∕0.98) = 1.51. The maximum at

T ≈ 23 MK is caused by the dominant operation of the pp2 chain, for which the

neutrino losses are considerably smaller less compared to those of the pp3 chain.

In the center of the Sun, the temperature amounts to T = 15.6 MK. Averaged

over the entire hydrogen burning region, it turns out that about 90% of the Sun’s

energy is produced in the pp1 chain.The remainder is mostly provided by the pp2

chain, while the energy contributions from other processes (e.g., the pp3 chain,

pep reaction, and CNO cycle) are very small. This result agrees with the direct

detection of solar neutrinos from the p+p reaction in the Borexino experiment

(Bellini et al., 2014).

We conclude the discussion of the pp chains with a few final remarks. The

evolution of the 3He abundance is more complicated compared to the deuterium

abundance. We already discussed that any initial deuterium nuclei are quickly

converted inside stars to 3He, thus increasing the 3He abundance. Compared
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to the deuterium destroying d(p,𝛾)3He reaction, the 3He consuming reactions
3He(3He,2p)4He and 3He(𝛼,𝛾)7Be involve higher Coulomb barriers and, there-

fore, have smaller cross sections. In the cooler outer layers of most stars and

throughout most of the volume of cooler low-mass stars, 3He will thus survive.

However, in the hotter stellar regions, 3He is converted to 4He via the pp chains.

The situation becomes more complex because the outer cooler layers of a star

may be mixed to the hotter interior regions, a process that will contribute to the

destruction of 3He. There is a delicate balance between stellar 3He production

and destruction. Whether or not this 3He will survive and, after ejection, enrich

the interstellar medium is controversial (see the review by Tosi, 2000).

The isotope 7Li is produced in the pp2 chain. However, the cross section of

the 7Li(p,𝛼)𝛼 reaction is very large, and hence, the 7Li abundance at any time

during the operation of the pp chains becomes very small [(7Li∕H)pp ≈ 2 × 10
−9;

Parker, Bahcall, and Fowler, 1964]. There is strong evidence that a large fraction

of the 7Li abundance observed in the solar system [(7Li∕H)☉ ≈ 2 × 10−9] is not

produced in stars, but originates from high-energy spallation reactions involving

cosmic rays and the interstellar medium, and from primordial nucleosynthesis

(Section 5.7). Nevertheless, models of Galactic chemical evolution require a stel-

lar source that produces the remaining, unexplained fraction of the 7Li abundance

(Romano et al., 2001). In these sources, 7Be is produced by the 3He(𝛼,𝛾)7Be reac-

tion and is transported via convection from the hot burning zone to the outer,

cooler layers where it decays by electron capture to 7Li. This beryllium transport

process is referred to as the Cameron–Fowler mechanism (Cameron and Fowler,

1971) and explains the lithium enrichments observed in certain red giants and

AGB stars.

Finally, we comment on the cross sections of the reactions that are part of the pp

chains. All these reactions exhibit nonresonant cross sections in the energy range

important to hydrostatic hydrogen burning. Direct cross section measurements

for d(p,𝛾)3He, 3He(3He,2p)4He, 3He(𝛼,𝛾)7Be, 7Be(p,𝛾)8B, and 7Li(p,𝛼)𝛼 have been

performed down to center-of-mass energies of 10 keV, 15 keV, 100 keV, 70 keV,

and 10 keV, respectively (Angulo et al., 1999). In comparison, the centers of the

solar Gamow peaks (T☉ = 15.6 MK; see Eq. (3.77)) for these reactions are located

at 7 keV, 22 keV, 23 keV, 18 keV, and 15 keV, respectively. Thus, measurements of

the d(p,𝛾)3He, 3He(3He,2p)4He, and 7Li(p,𝛼)𝛼 reactions cover the energy range

important to hydrogen burning in stars with masses of M ≥ M☉. In other cases

(e.g., for 3He(𝛼,𝛾)7Be and 7Be(p,𝛾)8B at solar temperature, or for all of the above

reactions at lower temperatures that are typical of stars withM < M☉), the astro-

physical S-factor has to be extrapolated down to the energy range of interest,

either by a polynomial expansion or by using a suitable nuclear reaction model

(Section 3.2.1).

5.1.2

CNO Cycles

If a star consists exclusively of hydrogen and helium, then significant amounts of

energy can only be generated during the hydrogen burning stage via the operation
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Figure 5.8 Representation of the four CNO cycles in the chart of the nuclides. Stable

nuclides are shown as shaded squares. Each reaction cycle fuses effectively four protons to

one 4He nucleus.

of the pp chains. Most stars, however contain heavier nuclides, particularly those

in the C, N, and Omass region. Hence, these nuclides can participate in hydrogen

burning. The resulting four sets of reactions that convert hydrogen to helium are

referred to as the CNO cycles. They are listed below (together with the β-decay

half-lives) and are shown in Figure 5.8.

CNO1 CNO2 CNO3 CNO4

12C(p,𝛾)13N 14N(p,𝛾)15O 15N(p,𝛾)16O 16O(p,𝛾)17F

13N(𝛽+𝜈)13C 15O(𝛽+𝜈)15N 16O(p,𝛾)17F 17F(𝛽+𝜈)17O

13C(p,𝛾)14N 15N(p,𝛾)16O 17F(𝛽+𝜈)17O 17O(p,𝛾)18F

14N(p,𝛾)15O 16O(p,𝛾)17F 17O(p,𝛾)18F 18F(𝛽+𝜈)18O

15O(𝛽+𝜈)15N 17F(𝛽+𝜈)17O 18F(𝛽+𝜈)18O 18O(p,𝛾)19F

15N(p,𝛼)12C 17O(p,𝛼)14N 18O(p,𝛼)15N 19F(p,𝛼)16O

T1∕2:
13N (9.965 min); 15O (122.24 s); 17F (64.49 s); 18F (109.77 min)

These cycles have interesting properties. The result of each process is the same

as for the pp chains, that is, 4H → 4He + 2e+ + 2𝜈. In each cycle, C, N, O, or F

nuclei act only as catalysts, in the sense that the total abundance of the heavy

nuclei is not altered while only hydrogen is consumed. Therefore, a substantial

amount of nuclear energy can be generated even if the total abundance of the

heavy nuclei is relatively low. The operation of a particular cycle will change the

abundance of the individual heavy nuclei. Consider theCNO1 cycle as an example.

If there are initially only 12C nuclei present in the stellar gas, then some of these
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will be converted to other CNO nuclei, and the individual abundances will evolve

depending on the magnitude of the reaction rates involved. The energy gener-

ation rate depends on the abundance of the catalysts and the time it takes to

complete the cycle.

The various CNO cycles exist because for the proton-induced reactions involv-

ing the nuclei 15N, 17O, 18O, and 19F, both the (p,𝛾) and (p,𝛼) channels are ener-

getically allowed. In contrast, the proton-induced reactions on the nuclei 12C, 13C,
14N, and 16O can only proceed via the (p,𝛾) reaction. A (p,𝛼) reaction will convert a

heavier nucleus to a lighter one, thereby giving rise to a cycle of nuclear processes.

At each of the branch point nuclides 15N, 17O, 18O, and 19F, the (p,𝛼) reaction will

compete with the (p,𝛾) reaction. The branching ratio, or the ratio of probabili-

ties for the occurrence of the (p,𝛼) and (p,𝛾) reaction, is then given by the ratio of

the corresponding reaction rates, Bp𝛼∕p𝛾 = NA⟨𝜎𝑣⟩(p,𝛼)∕NA⟨𝜎𝑣⟩(p,𝛾). The branch-
ing ratios versus temperature are displayed in Figure 5.9. The solid lines show the

upper and lower limits of Bp𝛼∕p𝛾 , caused by presently unknown contributions to

the reaction rates (e.g., unobserved resonances). Despite the rate uncertainties,

it can be seen that for the target nuclei 15N, 17O, 18O, and 19F the (p,𝛼) reaction

is faster than the (p,𝛾) reaction over the entire temperature range (except per-

haps for 17O and 18O at very low temperatures of T < 20 MK). An impression

regarding the relative likelihood of the various CNO reactions can be obtained

from Figure 5.10, showing the reaction rates normalized to the rate of the slowest

reaction, 16O(p,𝛾)17F.

A few important points need to be stressed before continuing the discussion.

First, at relatively low temperatures characteristic of hydrostatic hydrogen

burning (T ≤ 55 MK), β+-decays of unstable nuclei in the CNO mass range
proceed on considerably faster time scales compared to the competing proton-

induced reactions. Thus, reactions involving unstable nuclei are unimportant

under such conditions. At temperatures above T = 100 MK, additional reac-

tions not listed above (those involving unstable target nuclei) take place in the

CNOF mass region and the properties of the cycles change substantially. In

this section, we will concentrate on the temperature range T < 100 MK, while

the hydrogen burning in the CNOF mass region at higher temperatures is

discussed in Section 5.5.2. Second, the relative initial abundance of the various

CNOF isotopes is important for describing the detailed operation of the CNO

cycles. These seed nuclei are produced at the helium burning stage in a previous

generation of stars.Themost abundant nuclides produced during helium burning

(see Section 5.2.2) are 12C, 16O, and, to a lesser extent, 14N. For example, the

solar ratio of these isotopes is 12C:14N:16O = 10:3:24. Hence, the CNO cycles

will most likely operate with 12C and 16O as seed nuclei. Third, consider now

the different fate of these two nuclides. The 12C nuclei will initiate the CNO1

cycle. At 15N, there is a small chance of about 1 : 1000, according to Figure 5.9,

that catalytic material leaks into the CNO2 cycle via the 15N(p,𝛾)16O reaction.

However, most of the catalytic material will be transformed back to 12C via the

dominant (p,𝛼) reaction. On the other hand, 16O is transformed to 17O, but the

subsequent processing is more complicated. A large fraction of 17O nuclei will be
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NA⟨𝜎𝑣⟩(p,𝛼)∕NA⟨𝜎𝑣⟩(p,𝛾) versus temperature

for the reactions (a) 15N + p, (b) 17O + p, (c)
18O + p, and (d) 19F + p. The two solid lines

in each panel represent the upper and lower

boundaries of Bp𝛼∕p𝛾 . The area between the

solid lines indicates the uncertainty in Bp𝛼∕p𝛾
that is caused by unknown contributions to

the (p,𝛾) and (p,𝛼) reaction rates.

destroyed by the (p,𝛼) reaction, leading to the formation of 14N and the further

operation of the CNO1 and CNO2 cycles. But another fraction, depending on

the stellar temperature, will be converted to 18F, thus initiating the CNO3 and

CNO4 cycles.

To gain insight into the operation of the CNO cycles, we will proceed as follows.

It is first assumed that only 12C, 13C, 14N, or 15N seed nuclei are present in the

stellar plasma and that the CNO1 cycle is closed, that is, the (p,𝛾) reaction on
15N is negligible compared to the competing (p,𝛼) reaction. The corresponding

set of differential equations describing the evolution of isotopic abundances will

then be solved for the equilibrium operation of the CNO1 cycle. In a second step,

the interplay of all CNO cycles is considered for different assumptions of initial
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seed abundances by solving the equations describing the abundance changes

numerically.

Steady-State Operation of the CNO1 Cycle

Assuming that nuclear transformations are the only source of abundance changes,

the following set of coupled differential equations can be obtained for a closed

CNO1 cycle (also called CN cycle):

d(12C)

dt
= H(15N)⟨𝜎𝑣⟩15N(p,𝛼) −H(12C)⟨𝜎𝑣⟩12C(p,𝛾) (5.50)

d(13N)

dt
= H(12C)⟨𝜎𝑣⟩12C(p,𝛾) − (13N)𝜆13N(𝛽+𝜈) (5.51)

d(13C)

dt
= (13N)𝜆13N(𝛽+𝜈) −H(13C)⟨𝜎𝑣⟩13C(p,𝛾) (5.52)

d(14N)

dt
= H(13C)⟨𝜎𝑣⟩13C(p,𝛾) −H(14N)⟨𝜎𝑣⟩14N(p,𝛾) (5.53)

d(15O)

dt
= H(14N)⟨𝜎𝑣⟩14N(p,𝛾) − (15O)𝜆15O(𝛽+𝜈) (5.54)

d(15N)

dt
= (15O)𝜆15O(𝛽+𝜈) −H(15N)⟨𝜎𝑣⟩15N(p,𝛼) (5.55)

At the temperatures of interest here (T < 0.1 GK), the β-decay lifetime of 13N is

considerably shorter compared to the lifetime of 12C versus destruction by the

(p,𝛾) reaction (i.e., the preceding step). For all practical purposes, the abundances

of H and 12C will be constant over the short time it takes 13N to reach steady state.
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Hence, Eq. (5.51) can be solved with the same method used to derive Eq. (5.10).

With (13N)t=0 = 0 we obtain

(13N)t =
H⟨𝜎𝑣⟩12C(p,𝛾)
𝜆13N(𝛽+𝜈)

(12C) −

[
H⟨𝜎𝑣⟩12C(p,𝛾)
𝜆13N(𝛽+𝜈)

(12C)

]
e−𝜆13N(𝛽+𝜈)t

=
𝜏𝛽(
13N)

𝜏p(
12C)

(12C)
[
1 − e−t∕𝜏𝛽 (

13N)
]

(5.56)

The result shows that the 13N abundance approaches its steady-state value

(13N∕12C)e = 𝜏𝛽(
13N)∕𝜏p(

12C) in times on the order of 𝜏𝛽(
13N), that is, in a few

minutes. The same arguments hold for the 15O abundance. Therefore, we can set

the time derivaties in Eqs. (5.51) and (5.54) equal to zero and eliminate 13N and
15O from the system of equations. After a few minutes, the nuclear burning in

the CNO1 cycle is described by the system of equations

d(12C)

dt
= H(15N)⟨𝜎𝑣⟩15N(p,𝛼) −H(12C)⟨𝜎𝑣⟩12C(p,𝛾) (5.57)

d(13C)

dt
= H(12C)⟨𝜎𝑣⟩12C(p,𝛾) −H(13C)⟨𝜎𝑣⟩13C(p,𝛾) (5.58)

d(14N)

dt
= H(13C)⟨𝜎𝑣⟩13C(p,𝛾) −H(14N)⟨𝜎𝑣⟩14N(p,𝛾) (5.59)

d(15N)

dt
= H(14N)⟨𝜎𝑣⟩14N(p,𝛾) −H(15N)⟨𝜎𝑣⟩15N(p,𝛼) (5.60)

Several observations are immediately apparent. First, since d(12C)∕dt +

d(13C)∕dt + d(14N)∕dt + d(15N)∕dt = 0, the sum of CNO1 abundances is con-

stant,
∑
CNO1 = const. Second, after the CNO1 cycle has reached steady state,

all time derivatives in the above expressions are zero. As a result, the rates of all

CNO1 reactions become equal, while the ratio of any two nuclidic abundances is

given by the inverse ratio of their reaction rates (or the ratio of mean lifetimes).

For example,(
14N
12C

)
e

=
⟨𝜎𝑣⟩12C(p,𝛾)⟨𝜎𝑣⟩14N(p,𝛾) = 𝜏p(

14N)

𝜏p(
12C)

(5.61)

The fractional abundance, for example, of 12C is

(12C)e∑
CNO1

=
(12C)e

(12C)e + (13C)e + (14N)e + (15N)e

=

(
1 +

⟨𝜎𝑣⟩12C(p,𝛾)⟨𝜎𝑣⟩13C(p,𝛾) + ⟨𝜎𝑣⟩12C(p,𝛾)⟨𝜎𝑣⟩14N(p,𝛾) + ⟨𝜎𝑣⟩12C(p,𝛾)⟨𝜎𝑣⟩15N(p,𝛼)
)−1

=
𝜏p(
12C)

𝜏p(
12C) + 𝜏p(

13C) + 𝜏p(
14N) + 𝜏p(

15N)
(5.62)

The CNO1 abundance ratios and fractional abundances are shown in Figure 5.11

versus temperature.
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Figure 5.11 (a) Abundance ratios and (b) fractional abundances versus temperature. The

curves are calculated by assuming steady-state operation of a closed CNO1 cycle.

The net effect of the CNO1 cycle operation is the conversion of carbon and

nitrogen seed nuclei to 14N, which becomes by far the most abundant heavy

nuclide when steady state is reached. This result is a consequence of the fact that

the 14N destroying reaction, 14N(p,𝛾)15O, is the slowest process in the CNO1

cycle for temperatures of T < 0.1 GK, as can be seen from Figure 5.10. Also, not

all abundances are constant with time, even under steady-state conditions, since

hydrogen is continuously converted to helium [dH∕dt < 0 and d(4He)∕dt > 0].

The energy generation rate from the operation of the CNO1 cycle at constant

temperature and density can be expressed as (see Eq. (3.64))

𝜀CNO1 =
∑
i→j

𝜀i→j =
1

𝜌

∑
i→j

(Qi→j − E
i→j

𝜈
)ri→j (5.63)

where the sum is over all relevant processes i → j, and E𝜈 denotes the average

energy of the neutrinos released in the β-decays. Since the β+-decays of 13N and
15O occur on negligibly small time scales, we can consider them together with the

preceding reactions 12C(p,𝛾)13N and 14N(p,𝛾)15O, respectively. The reaction and

decay energies available to the star are given by

Q12C(p,𝛾)13N(𝛽+𝜈) − E
13N(𝛽+𝜈)

𝜈
= (1.944 + 2.220 − 0.706)MeV

= 3.458MeV (5.64)

Q13C(p,𝛾) = 7.551MeV (5.65)

Q14N(p,𝛾)15O(𝛽+𝜈) − E
15O(𝛽+𝜈)

𝜈
= (7.297 + 2.754 − 0.996)MeV

= 9.055MeV (5.66)

Q15N(p,𝛼) = 4.966MeV (5.67)

The average neutrino energies E
i

𝜈
are adopted from Bahcall (1989) (see also

Eq. (1.48) and Problem 1.9). For the equilibrium operation of the CNO1 cycle,
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we obtain from Eq. (5.63)

𝜌𝜀e
CNO1

= (3.458MeV)H(12C)e⟨𝜎𝑣⟩12C(p,𝛾) + (7.551MeV)H(13C)e⟨𝜎𝑣⟩13C(p,𝛾)
+ (9.055MeV)H(14N)e⟨𝜎𝑣⟩14N(p,𝛾) + (4.966MeV)H(15N)e⟨𝜎𝑣⟩15N(p,𝛼)
= (3.458MeV)

(12C)e

𝜏p(
12C)

+ (7.551MeV)
(13C)e

𝜏p(
13C)

+ (9.055MeV)
(14N)e
𝜏p(
14N)

+ (4.966MeV)
(15N)e

𝜏p(
15N)

(5.68)

From Eq. (5.62), we find

(12C)e
𝜏p(
12C)

=
(13C)e
𝜏p(
13C)

=
(14N)e
𝜏p(
14N)

=
(15N)e

𝜏p(
15N)

=

∑
CNO1

𝜏p(
12C) + 𝜏p(

13C) + 𝜏p(
14N) + 𝜏p(

15N)
(5.69)

Hence, the energy generation rate at equilibrium can be written as

𝜀e
CNO1

=
25.030MeV

𝜌

∑
CNO1

𝜏p(
12C) + 𝜏p(

13C) + 𝜏p(
14N) + 𝜏p(

15N)
(5.70)

The sum of the lifetimes in the denominator is called the cycle time, and is almost

entirely dominated by the long 14N lifetime. Hence,

𝜀e
CNO1

≈
25.030MeV

𝜌

∑
CNO1

𝜏p(
14N)

=
25.030MeV

𝜌
(
∑

CNO1)H⟨𝜎𝑣⟩14N(p,𝛾)
= 25.030NA⟨𝜎𝑣⟩14N(p,𝛾) (∑

i

Xi

Mi

)
XH
MH

𝜌NA (MeVg−1s−1) (5.71)

where the sum is over all CNO1 nuclides.The energy generation rate in the CNO1

cycle at steady state is determined by the 14N(p,𝛾)15O reaction rate.This reaction is

nonresonant for temperatures below T = 0.1 GK and, therefore, the temperature

dependence of the energy generation rate is obtained fromEq. (3.90). For example,

at T = 25 MK, characteristic of CNO burning on the upper main sequence, we

obtain 𝜏 = 51.96 and hence,

𝜀e
CNO1

(T) = 𝜀e
CNO1

(T0)
(
T∕T0

)(𝜏−2)∕3
= 𝜀e

CNO1
(T0)

(
T∕T0

)16.7
(5.72)

We are now in a position to compare the equilibrium energy generation rates of

the pp1 chain and the CNO1 cycle. These processes will compete with each other

in hydrogen-burning stars that contain initial CN seed nuclei. In Figure 5.12,

the quantities 𝜀e
pp1
∕(𝜌X2

H
) from Eq. (5.26) and 𝜀e

CNO1
∕(𝜌X2

H
) from Eq. (5.71) are

displayed versus temperature.The former expression is a function of temperature

only (through the p(p,e+𝜈)d reaction rate), while the latter depends both on

temperature (through the 14N(p,𝛾)15O reaction rate) and on the mass fractions

of the CNO1 isotopes relative to the hydrogen mass fraction. For illustration

purposes, values of XH = 0.711, X12C = 2.46 × 10
−3, X14N = 7.96 × 10

−4, and

X13C = 2.98 × 10
−5 are chosen, which are representative of the solar system and
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tion rates of the pp1 chain and the CNO1

cycle. The curve for the CNO1 cycle is cal-

culated for a solar system composition (Lod-

ders, 2003). For a different composition, the

CNO1 curve shifts vertically. The rate of the

14N(p,𝛾)15O reaction is adopted from Runkle

et al. (2005). The pp1 chain and the CNO1

cycle dominate for temperatures below

and above T = 20 MK, respectively. The

pp1 chain is the primary energy source in

the Sun.

population I stars (Lodders, 2003). These initial seed abundances can be used

in Eq. (5.71) since we assumed a closed CNO1 cycle [
∑
(X∕M) = const]. For

other values of Xi∕Mi, the CNO1 curve shown in Figure 5.12 will shift vertically.

For these conditions, the pp1 chain generates most of the nuclear energy for

temperatures below T = 20 MK. At higher temperatures, most of the energy is

produced in the CNO1 cycle. The temperature in the stellar interior depends on

the stellar mass. We conclude that the pp chains dominate the energy production

in all hydrogen burning stars with insignificant CNO seed abundances. In stars

with significant CNO seed abundances, the pp chains will dominate in the cores

of low-mass stars, while in stars of higher mass (slightly more massive than the

Sun; Section 1.4.3) the CNO cycles are the dominant source of energy in the

stellar core.

The different temperature dependence for the energy generation rate of the pp

chains compared to the CNO cycles has a profound influence on the internal

structure of a star. For example, if helium is mainly synthesized by the pp chains,

then energy is transported through the central regions by radiation. In contrast,

the rate of the CNO cycles is so sensitive to temperature that, when it is the dom-

inant process, the energy-generating regions are unstable to convection, which

becomes the main energy transport mechanism to the outer regions of the star.

Approach to Steady State in the CNO Cycles

We have so far considered only the steady state operation of the CNO1 cycle and

will now investigate nonequilibrium situations. Two aspects are of special inter-

est: (i) the approach to steady state in the CNO1 cycle, and (ii) the simultaneous
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operation of all CNO cycles. The system of coupled differential equations

describing the abundance changes of all CNO nuclides is similar in structure to

Eqs. (5.50)–(5.55), but it is more complex because of the inclusion of oxygen and

fluorine isotopes. Such a system of equations represents an example of a nuclear

reaction network (Section 3.1.3). It can only be solved analytically if a number

of simplifying assumptions are made (Clayton, 1983). With one exception, we

will not make such assumptions but will instead compute the time evolution

of CNO abundances numerically. For the numerical calculations described in

this section, the assumption of constant temperature and density conditions

is made. It must be emphasized that the internal temperature of a real star is

changing during its evolution on the main sequence. However, in hydrostatic

burning environments these changes occur slowly over long time periods.

Therefore, the assumption of constant T and 𝜌, although not correct for a real

star, is useful for obtaining physical insight into the nucleosynthesis and energy

production.

We first consider the approach to steady state in the CNO1 cycle. The temper-

ature and density are assumed to be T = 25 MK and 𝜌 = 100 g/cm3, respectively.

Such values are typical of CNO burning on the upper main sequence. For the ini-

tial composition, we assume X0
H
= 0.70, X04He = 0.28, and X

0
12C

= 0.02, that is, only
12C is initially present as a CNO seed. The reaction network, including all four

CNO cycles, is solved until the hydrogen concentration falls below XH = 0.001.

The time evolution of abundances is shown in Figure 5.13a. As expected from

the operation of the CNO cycles, the hydrogen abundance declines from its ini-

tial value, while the helium abundance increases. Hydrogen is exhausted after 30

million years. The initial carbon abundance is steadily depleted and converted

to other nuclides. It can be seen that, for the chosen temperature and density

conditions, steady state in the CNO1 cycle is reached after only 4000 years. The

abundances of 12C, 13C, 14N, and 15N remain then constant until the end of the

calculation. The most abundant CNO nuclide in equilibrium is 14N, while the

least abundant one is 15N because of its small lifetime versus destruction by the

(p,𝛼) reaction. For example, from the numerical results shown in Figure 5.13a

one obtains (X12C∕X14N)e = 0.008, and thus the ratio of number abundances is

(12C∕14N)e = 0.008(M14N∕M12C) ≈ 0.01, in agreement with the results obtained

analytically (Figure 5.11a).

The conversion of initial 12C seed nuclei to 14N proceeds at a rate determined by

the 12C lifetime, which, for the chosen conditions, amounts to 𝜏p(
12C) = 350 y. It is

apparent fromFigure 5.13a that the 12C abundance decays with a 1∕e time approx-

imately equal to 𝜏p(
12C), while the CNO1 cycle reaches steady state after several

12C half-lives. There is a small leakage of material from the CNO1 to the CNO2

cycle, as can be seen from the increasing 16O abundance. However, it remains

insignificant compared to the 14N abundance. The time evolution of the nuclear

energy generation rate is shown in Figure 5.13b. The energy generation rate falls

by more than an order of magnitude until equilibrium is reached after about 4000

years. For example, at t = 104 y, we obtain from the numerical results presented

in Figure 5.13b a value of 𝜀CNO ≈ 2.2 × 1010 MeV g−1s−1, in agreement with the
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Figure 5.13 Time evolution of abundances

and nuclear energy generation rate for two

different compositions: (a), (b) X0
H
= 0.70,

X0
4He

= 0.28, X0
12C

= 0.02, and (c), (d) X0
H
=

0.70, X0
4He

= 0.28, X0
12C

= X0
16O

= 0.01. For the

temperature and density, constant values of

T = 25 MK and 𝜌 = 100 g/cm3 are assumed

in both cases. All curves shown are obtained

by solving the reaction network numeri-

cally. The calculations are terminated when

the hydrogen mass fraction falls below

XH = 0.001.

steady state value calculated analytically from Eq. (5.71). For times beyond t =

3 × 105 y, the energy production rate falls because the abundance of the hydrogen

fuel decreases.

We consider next the effects caused by a change in composition. The tempera-

ture and density are the same as before (T = 25 MK, 𝜌 = 100 g/cm3). For the ini-

tial composition, we assumeX0
H
= 0.70,X04He = 0.28,X

0
12C

= 0.01, andX0
16O

= 0.01,

that is, both 12C and 16O are now present with equal concentrations as seed nuclei.

The reaction network is again solved until hydrogen is exhausted (XH < 0.001).
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The results are displayed in Figure 5.13c. The hydrogen and helium abundance

evolves similar as before. The abundances of 12C, 13C, and 14N again reach steady

state after about 4000 years, with 14N by far the most abundant species. The 15N

abundance is omitted in Figure 5.13c since it is very small. At t = 104 y, the ratio

of 12C to 14N mass fractions is the same as in the previous network calculation

[(X12C∕X14N)e = 0.008]. At this point, only vanishingly small amounts of
16O have

been consumed and little else has changed because of the presence of 16O as seed

nucleus. Recall that the 16O(p,𝛾)17F reaction is one of the slowest processes in

the CNO cycles (Figure 5.10). Therefore, it takes a significant time for 16O to be

depleted. Small, but noticeable, changes occur after t = 104 y.The 16O abundance

starts to decline, while at the same time the 17O, 18O, and 19F abundances start

to increase. After t = 105 y, the 12C, 13C, and 14N abundances increase, indicat-

ing a transfer of catalytic material from the CNO2 cycle to the CNO1 cycle by

means of the strong 15N(p,𝛼)12C reaction. After t = 107 y, individual CNO abun-

dances stay constant and steady state has been achieved in all CNO cycles. At this

point, the abundance ratios obtained from Figure 5.13c agree with those calcu-

lated analytically from the ratio of lifetimes (see Eq. (5.61)). For example, one finds

(17O∕16O)e = ⟨𝜎𝑣⟩16O(p,𝛾)∕[⟨𝜎𝑣⟩17O(p,𝛾) + ⟨𝜎𝑣⟩17O(p,𝛼)] = 0.025, consistent with the
value derived from Figure 5.13c.The 18O and 19F abundances are very small, indi-

cating a small leakage from the CNO2 cycle to the CNO3 and CNO4 cycles at

T = 0.025 GK. The presence of 16O seed nuclei has changed the final 12C, 13C,

and 14N abundances by less than 20% compared to the earlier network calculation

with only 12C as seed nucleus (Figure 5.13a). These results show that, despite the

simultaneous operation of all CNO cycles, the initial 12C and 16O seed nuclei are

transformed to 14N if the time is sufficient for achieving steady state.

The time evolution of the energy generation rate is shown in Figure 5.13d. Only

about half of the energy per unit time is produced compared to the results shown

in Figure 5.13b since only half of the initial 12C seed nuclei are present. At times

of t = 105 y, 106 y, and 107 y, the energy generation rate displayed in Figure 5.13d

amounts to 𝜀CNO = 1.2 × 1010 MeVg−1s−1, 1.3 × 1010 MeVg−1s−1, and 2.7 ×

109 MeVg−1s−1, respectively. Interestingly, these values are very close (within

10%) to those calculated analytically from Eq. (5.71) assuming a closed CNO1

cycle in steady state, with only 12C as initial seed nuclei. Hence, after the CNO1

cycle reaches steady state, the energy generation rate of the simultaneous opera-

tion of all CNO cycles is approximately equal to that of the CNO1 cycle alone, that

is, 𝜀CNO ≈ 𝜀e
CNO1
. This circumstance is explained by several factors. First, the (p,𝛼)

reactions on the branching point nuclides 15N, 17O, 18O, and 19F are considerably

faster compared to the competing (p,𝛾) reactions (Figure 5.9), which tends to

increase the CNO1 abundances, and specifically that of 14N, at the expense of the

abundances in the other cycles. Second, the CNO1 cycle reactions involve lower

Coulomb barriers and, therefore, are generally faster compared to the reactions

of the other cycles (Figure 5.10). Third, theQ-values in the CNO1 cycle are larger

compared to the energy released by processes that complete the CNO2 cycle

(Q16O(p,𝛾) = 0.600 MeV; Q17F(𝛽+𝜈) = 2.761 MeV; Q17O(p,𝛼) = 1.192 MeV). Only in

special cases, when the initial oxygen abundance is overwhelmingly larger than



5.1 Hydrostatic Hydrogen Burning 381

10−9

10−5 10−4 10−3 10−2

ΔXH(a) (b) ΔXH

10−1 100 10−5 10−4 10−3 10−2 10−1 100

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1
M

a
s
s
 f
ra

c
ti
o
n
 X

i

16O

12C

13C

18O

19F

17O

14N 16O

12C

13C

17O

18O

19F

14N
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sus the amount of hydrogen consumed for

two different constant temperatures: (a)

T = 20 MK, and (b) T = 55 MK. The density

(𝜌 = 100 g/cm3) and the initial composition

(solar) is the same for both cases. All curves

shown are obtained by solving the reaction

network numerically. The calculations are ter-

minated when the hydrogen mass fraction

falls below XH = 0.001.

the initial carbon or nitrogen abundance, and if oxygen has not yet reached steady

state, will the assumption of 𝜀CNO ≈ 𝜀e
CNO1
be invalid.

The results of two network calculations, performed for different constant tem-

peratures of T = 20 and 55 MK, a constant density of 𝜌 = 100 g/cm3 and a solar

initial composition (X0
H
= 0.706;

∑
X0
CNO

= 0.0137; 12C:14N :16O = 10 : 3 : 24), are

displayed in Figure 5.14. The abundance evolutions are shown versus the amount

of hydrogen consumed, ΔXH = X0
H
− XH(t), with time increasing from left to

right. Some similarities between the two calculations can be noticed. All CNO

abundances reach steady state at the end of the calculations (when XH < 10
−3),

although this is not readily apparent in Figure 5.14a if the 16O, 17O, 18O, and 19F

abundances are plotted versus ΔXH. The
14N abundance increases steadily, first

as a result of 12C to 14N conversion in the CNO1 cycle, and at a later time because

of 16O to 14N conversion in the CNO2 cycle. Thus, 14N is enhanced while 12C and
16O are depleted at the end of the calculation. The abundances of 18O and 19F are

also depleted during the nuclear burning, while the final 13C abundance changes

by less than a factor of two compared to its initial abundance. The evolution of
17O is interesting. At T = 20 MK, the nuclear burning strongly enhances the 17O

abundance by the time hydrogen is exhausted, while at T = 55 MK its abundance

is depleted. The two calculations predict final 17O abundances that differ by

more than three orders of magnitude. In other words, the 17O abundance is very

sensitive to the hydrogen burning temperature. The higher the temperature,

the larger the reaction rates and, hence, the time it takes to reach hydrogen

exhaustion is conaiderably shorter at T = 55 MK compared to T = 20 MK.

There is significant observational evidence for the operation of the CNO cycles

during hydrogen burning. In many stars, the products of the nucleosynthesis
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have been carried by turbulent convection from the stellar interior to the surface.

Consider, for example, the isotopes of carbon. Stars that form from matter with a

solar composition will initially exhibit an abundance ratio of (13C∕12C)☉ = 0.011

at their surface. Once CNO steady state has been achieved, we expect, according

to Figure 5.11a, an abundance ratio of (13C∕12C)e = 0.25 in the hydrogen burning

region. Note that the latter value is insensitive to temperature below T < 0.1 GK.

Many stars show (13C∕12C) surface abundance ratios between these two values,

indicating that a fraction of the hydrogen burning matter has been transported

to the stellar surface. Some stars even display (13C∕12C) surface abundance ratios

close to the steady state value (Sneden, Pilachowski, and Vandenberg, 1986). Such

observations not only provide evidence for CNO burning, but also demonstrate

that most of the matter at the stellar surface must have been cycled through the

hydrogen burning region in the stellar interior. The operation of the CNO cycles

in AGB stars is believed to be a major source of 13C and 14N in the universe (see

Table 5.2).

We will now briefly summarize the experimental situation regarding measure-

ments of CNO-cycle reactions. At the upper temperature range characteristic of

hydrostatic hydrogen burning (T ≈ 55 MK), the Gamow peaks for the 12C+ p and
19F + p reactions are located at E0 ± Δ∕2 = 60 ± 20 keV and 80 ± 24 keV, respec-

tively. From the experimental point of view, the CNO reactions can be divided into

two groups, depending on whether measured cross sections exist in the Gamow

peak or not. For example, the reactions 13C(p,𝛾)14N, 14N(p,𝛾)15O, 15N(p,𝛾)16O,

and 16O(p,𝛾)17F have been measured down to center-of-mass energies of 100 keV,

93 keV, 130 keV, and 130 keV, respectively (Angulo et al., 1999). In these cases,

no data exist in the Gamow peak for hydrostatic hydrogen burning (T ≤ 55 MK)
and, hence, the S-factor has to be extrapolated down to the energy range of

interest, either by a polynomial expansion or by using a suitable nuclear reaction

model (Section 3.2.1). The S-factors for the above reactions are determined

by nonresonant contributions (tails of broad resonances or direct capture) at

E < 100 keV.Measurements of the important 14N(p,𝛾)15O reaction are reported in

Formicola et al. (2004) and Runkle et al. (2005). The 17O(p,𝛾)18F, 18O(p,𝛾)19F, and
19F(p,𝛾)20Ne reactions have also not beenmeasured down to the relevant Gamow-

peak region. In these cases, the reaction rates at T ≤ 55 MK are expected to be
dominated by unobserved (low-lying) narrow resonances. These contributions

have been estimated using all the available nuclear structure information for the

corresponding states in the compound nuclei. On the other hand, the 12C(p,𝛾)13N,
15N(p,𝛼)12C, and 18O(p,𝛼)15N reactions have all been measured down to ener-

gies of about 70 keV, covering at least part of the Gamow peak for the higher

temperatures near T ≈ 55 MK. The first two reactions are nonresonant, while

the latter process is influenced both by resonant and nonresonant contributions

to the reaction mechanism. The 17O(p,𝛼)14N reaction represents an exceptional

case. At temperatures of T = 18–55 MK, the most important contribution to

the reaction rates originates from a narrow resonance located at Ecm
r

= 65 keV.

This particular resonance has been observed and represents one of the weakest

resonances measured in the laboratory (with 𝜔𝛾p𝛼 = (4.7 ± 0.8) × 10−9 eV;
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Blackmon et al., 1995). For uncertainties in CNO reaction rates, the reader is

referred to Angulo et al. (1999) and Sallaska et al. (2013). A discussion of the

influence of reaction rate uncertainties on the evolution of CNO abundances is

presented in Arnould, Goriely, and Jorissen (1999).

5.1.3

Hydrostatic Hydrogen Burning Beyond the CNOMass Region

The nucleosynthesis in hydrostatic hydrogen burning not only involves nuclides

in the CNO mass range, but heavier nuclides as well. The most likely reactions

to occur in the mass region above A = 20 are shown in Figure 5.15. In the fol-

lowing, we will discuss some general properties of hydrostatic hydrogen burning

involving heavier nuclides and will explain why some processes are more likely to

occur than others. It must be stressed that the CNO and A ≥ 20 mass ranges are
disconnected. In other words, preexisting CNO seed nuclei will be transformed

to other nuclei in the CNO mass range only. In principle, the 19F(p,𝛾)20Ne reac-

tion could provide a link between the CNO and A ≥ 20 mass ranges. However,
its reaction rate is at least three orders of magnitude smaller compared to the

competing 19F(p,𝛼)16O reaction (Figure 5.9). Consequently, hydrostatic hydrogen

burning beyond the CNOmass rangemust start from preexisting seed nuclei with

masses of A ≥ 20.
These nuclides are transformed by β-decays, (p,𝛾), and (p,𝛼) reactions, and the

competition between these processes defines the resulting nucleosynthesis paths

in the nuclidic chart. As was the case in the previous section, proton-induced



384 5 Nuclear Burning Stages and Processes

Temperature (GK)

0.01 0.1 1

M
e

a
n

 l
if
e

ti
m

e
 τ

 (
y
e

a
rs

)

10−15

10−10

10−5

100

105

1010

1015

1020

τp(26AIg)

τβ(
26AIg)

τβ(
22Na)

τp(22Na)

Figure 5.16 Mean lifetimes of 22Na (solid

lines) and 26Alg (dashed lines) versus temper-

ature. The curves are calculated for the con-

ditions 𝜌 = 100 g/cm3 and XH∕MH = 1. The

mean lifetimes for the β+-decays, 𝜏𝛽 (
22Na)

and 𝜏𝛽 (
26Alg), are independent of tempera-

ture and density for the conditions of hydro-

static hydrogen burning.

reactions involving unstable target nuclei play no significant role in hydrostatic

hydrogen burning since the competing β-decays are considerably faster (with 𝜏𝛽
of seconds to minutes in most cases). This conclusion applies even to long-lived

nuclides, such as 22Na with a half-life of T1∕2 = 2.6 y. The mean lifetime of
22Na

versus destruction by the (p,𝛾) reaction is compared in Figure 5.16 with the

mean lifetime of the 22Na β+-decay (Example 3.1). A density of 𝜌 = 100 g/cm3

and XH∕MH = 1 are assumed. The quantity 𝜏𝛽(
22Na) is independent of tem-

perature and density for the conditions considered here (Section 1.8.4), while

𝜏p(
22Na) decreases with increasing T and 𝜌 (see Eq. (3.22)). The 22Na(p,𝛾)23Mg

reaction dominates over the competing β+-decay only at T > 0.065 GK, which

is well above the temperature range characteristic of most hydrostatic hydrogen

burning environments. The nucleus 26Al represents an important exception. The

half-life of the ground state is T1∕2 = 7.2 × 10
5 y, which is sufficiently long for

proton capture to compete with the β+-decay. The mean lifetimes 𝜏𝛽(
26Alg) and

𝜏p(
26Alg) are shown in Figure 5.16 (the superscript g labels the ground state).

It is apparent that below T = 37 MK the 26Alg nucleus is mainly destroyed by

β+-decay, while the (p,𝛾) reaction dominates at higher temperatures. In other

words, both processes will be important in hydrostatic hydrogen burning. An

additional complication arises because of the existence of an isomeric state in
26Al at Ex = 228 keV (Figure 1.15).This level, with a half-life of T1∕2 = 6.3 s, is also

produced in hydrogen burning. As explained in Section 1.7.5, the ground state,
26Alg , and the isomeric state, 26Alm, do not come into equilibrium at temperatures

below T = 0.4 GK and hence, have to be treated as two separate species in the

reaction network describing hydrostatic hydrogen burning.
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the (p,𝛾) and (p,𝛼) reaction rates.

For a number of nuclides in the mass A = 20–40 range, most notably 23Na,
27Al, 31P, and 35Cl, the (p,𝛼) reaction channel is energetically allowed and the

(p,𝛾) and (p,𝛼) reactions will compete. If the reaction rate branching ratio

Bp𝛼∕p𝛾 = NA⟨𝜎𝑣⟩(p,𝛼)∕NA⟨𝜎𝑣⟩(p,𝛾) is sufficiently large, reaction cycles similar to
the CNO cycles may develop. These processes are sometimes referred to as

NeNa, MgAl, SiP, and SCl cycles. However, the current (p,𝛾) and (p,𝛼) reac-

tion rate uncertainties have to be considered carefully before drawing such

conclusions. The quantity Bp𝛼∕p𝛾 is displayed in Figure 5.17 for the branching

point nuclides 23Na, 27Al, 31P, and 35Cl. The solid lines in each panel indicate

the upper and lower limits of Bp𝛼∕p𝛾 caused by unobserved narrow resonances

in the (p,𝛾) and (p,𝛼) reactions. Below T = 55 MK, the (p,𝛼) reaction on 23Na

dominates over the competing (p,𝛾) reaction and hence, a NeNa cycle may
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develop (but only if the cycling time is shorter than the duration of hydrogen

burning). The situation is not as clear for the other branching point nuclides. For
27Al, the quantity Bp𝛼∕p𝛾 ranges from about 0.04 to 100 below T = 55 MK and,

therefore, current reaction rate uncertainties do not permit an unambiguous

conclusion regarding the existence of a MgAl cycle. For the nuclides 31P and
35Cl, on the other hand, we obtain Bp𝛼∕p𝛾 < 1 at temperatures characteristic

of hydrostatic hydrogen burning and hence, closed SiP and SCl cycles do

not exist.

The rates of various reactions in the A ≥ 20 mass range are compared in
Figure 5.18 to the 16O(p,𝛾)17F reaction rate. Recall that the latter process

represents the slowest reaction in the CNO mass region (Figure 5.10). It can

be seen that below T = 55 MK, as a result of the increasing Coulomb barrier,

most reactions involving heavier target nuclei are considerably slower than the
16O(p,𝛾)17F reaction. The only two exceptions are the proton captures on 21Ne

and 22Ne. Therefore, we expect reactions in the A ≥ 20 mass range to be insignif-
icant contributors to the overall nuclear energy generation rate in hydrostatic

hydrogen burning. Nevertheless, an understanding of the nucleosynthesis is

important for the interpretation of certain abundance observations that are

discussed below.

The evolution of abundances in the mass range A ≥ 20 versus the amount
of hydrogen consumed is displayed in Figure 5.19. The results are obtained

from two network calculations that are performed for constant temperatures

of T = 25 and 55 MK, a constant density of 𝜌 = 100 g/cm3, and a solar initial

composition (X0
H
= 0.706;

∑
X0
A=20–40

= 0.00375).Themost abundant seed nuclei

in the A = 20–40 mass range are 20Ne, 28Si, 24Mg, 32S, and 22Ne. We will first

discuss the situation at T = 25 MK. At this temperature, hydrogen is exhausted
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(XH < 10
−3) after t ≈ 5 × 107 y. According to Figure 5.18, the fastest reactions

in the A ≥ 20 mass range are 22Ne(p,𝛾)23Na and 25Mg(p,𝛾)26Al. Therefore, the
abundances of 22Ne and 25Mg are depleted, while those of 23Na and 26Alg increase

with time. At this temperature, the nuclide 26Alg is mainly destroyed via β+-decay

(Figure 5.16). Thus, its abundance, after reaching a maximum, starts to decline.

As a result, the abundance of the daughter nucleus 26Mg increases. The 20Ne

abundance stays almost constant during the calculation since the 20Ne(p,𝛾)21Na

reaction is slow. Nevertheless, a small amount of 20Ne is depleted, giving rise to a

noticeable increase in the abundance of the rare isotope 21Ne, which is produced

via 21Na(𝛽+𝜈)21Ne. Other reactions, including 24Mg+ p and 27Al+ p, are too slow

to cause any abundance changes. The same applies to the 23Na + p reactions. At

T = 25 MK, the mean lifetime of 23Na versus destruction by the (p,𝛼) reaction is

𝜏p(
23Na) ≈ 2 × 109 y. This lifetime far exceeds the time for hydrogen exhaustion.

Hence, 20Ne is not produced and, in particular, no NeNa cycle develops, even

though the 23Na(p,𝛼)20Ne reaction is faster than the 23Na(p,𝛾)24Mg reaction

(Figure 5.17). Also, for the assumed conditions, no significant nuclear transfor-

mations occur in the A ≥ 28 mass range. At the end of the network calculation,
21Ne, 23Na, and 26Mg are overproduced, while 22Ne and 25Mg have been

depleted.

We will now discuss the situation at T = 55 MK. At this temperature, hydro-

gen is exhausted after only t ≈ 510 y. The temperature is sufficiently high for

more nuclear reactions to take part in the nucleosynthesis. As was the case

before, 22Ne is converted to 23Na. It can be seen that, contrary to the results

obtained at T = 25 MK, the 22Ne abundance is not entirely destroyed. This

occurs because the 20Ne(p,𝛾)21Na reaction, although still the slowest process
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in the NeNa region (Figure 5.18), is now fast enough to initiate the chain
20Ne(p,𝛾)21Na(𝛽+𝜈)21Ne(p,𝛾)22Na(𝛽+𝜈)22Ne. Indeed, the 20Ne abundance is

slightly depleted, as can be seen in Figure 5.19b. The mean lifetime of 23Na

versus destruction by protons is 𝜏p(
23Na) ≈ 100 y. A fraction of 23Na nuclei is

transformed to 20Ne, although the total 20Ne abundance declines because of

the destruction via 20Ne(p,𝛾)21Na. Nevertheless, a closed NeNa cycle does not

develop since the mean lifetime of 20Ne is 𝜏p(
20Ne) ≈ 600 y, which is close to

the time for hydrogen exhaustion. The leakage out of the NeNa mass region via
23Na(p,𝛾)24Mg is seen in Figure 5.19b as an increase in the 24Mg abundance. The

isotope 24Mg is not destroyed, because the 24Mg(p,𝛾)25Al reaction is the slowest

process in the A ≤ 27 range, with a mean lifetime of 𝜏p(24Mg) ≈ 75 000 y. On the
other hand, 25Mg is converted to 26Alg via the 25Mg(p,𝛾)26Al reaction. At this

temperature, 26Alg is mainly destroyed by the 26Alg(p,𝛾)27Si reaction. However,

the mean lifetime of 26Alg amounts to 𝜏p(
26Alg) ≈ 1000 y and, therefore, it has

little time to decay to 26Mg. The 26Mg(p,𝛾)27Al reaction is now fast enough

to cause the depletion of 26Mg and the production of 27Al, as can be seen in

Figure 5.19b. The 27Al + p reactions play only a minor role [𝜏p(
27Al) ≈ 10 000 y].

As was the case at T = 25 MK, nuclear transformations in the A ≥ 28 mass
range are unimportant. In summary, 23Na, 26Alg , and 27Al are enhanced,

while 21Ne, 22Ne, 25Mg, and 26Mg are depleted at the end of the network

calculation.

Hydrostatic hydrogen burning in the mass A ≥ 20 range is important for
the interpretation of Ne, Na, Mg, and Al abundance observations in stars. The

relative isotopic and elemental abundances depend, as shown above, on the

conditions of temperature and density in the hydrogen burning region. For

these species to be observed, either in stellar atmospheres or in presolar grains,

they have to be transported from the hydrogen burning region to the stellar

surface. Hence, such abundance observations provide important clues regarding

stellar evolution and stellar mixing processes. Accurate thermonuclear reaction

rates are required when comparing abundances from stellar models with those

from observations. Hydrostatic hydrogen burning in the mass A ≥ 20 range is
also of interest for the Galactic origin of the radioisotope 26Al. It seems likely

that a fraction of the observed 26Al originates from Wolf–Rayet stars, where

it is synthesized during hydrostatic core hydrogen burning at temperatures of

T = 35–45 MK (Section 1.7.5).

Finally, we will summarize the experimental situation regarding measurements

of reactions in the NeNa and MgAl region. At the upper temperature range

characteristic of hydrostatic hydrogen burning (T ≈ 55 MK), the Gamow peaks

for the 20Ne + p and 27Al + p reactions are located at E0 ± Δ∕2 = 80 ± 23 keV

and 95 ± 25 keV, respectively. None of the NeNa or MgAl reactions have been

measured down to such low energies. To estimate the total reaction rates at

low temperatures, it becomes therefore important to measure directly, at higher

energies, as many different resonant and nonresonant reaction components

as possible (narrow resonances, broad resonances, and direct processes). In

addition, indirect reaction studies populating compound levels located between
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the proton threshold and the lowest lying observed resonance are of crucial

importance. Despite these time-consuming experimental efforts, it must be

realized that the rates of certain reactions in the mass A = 20–40 range still

have appreciable uncertainties. The 20Ne(p,𝛾)21Na reaction rate is determined

by the tail of a subthreshold state (Example 2.1) and by direct radiative capture.

The present reaction rate uncertainties range from 40% to a factor of two below

T = 55 MK. The 24Mg(p,𝛾)25Al reaction proceeds mainly through an observed

narrow resonance at Ecm
r

= 214 keV (Example 3.7 and Figure 3.29) and via direct

radiative capture. With an uncertainty of ≤ 20% below T = 55 MK, the rate

of this reaction is among the most precisely known in the A = 20–40 region

(Powell et al., 1999). All other reaction rates in the NeNa and MgAl region are

strongly influenced by unobserved narrow resonances, with rate uncertainties

amounting in some cases to orders of magnitude. Significant efforts are at present

underway to detect the most important of these unobserved resonances. Their

resonance strengths are expected to be far smaller compared to the strength

of the Ecm
r

= 149 keV resonance in 26Mg(p,𝛾)27Al, which represents one of the

weakest measured (p,𝛾) resonances [𝜔𝛾p𝛾 = (8 ± 3) × 10−8 eV; Iliadis et al., 1990].

Such experiments are a challenge to the nuclear experimentalist (Chapter 4).

A discussion of the influence of reaction rate uncertainties on the evolution of

abundances in the NeNa and MgAl regions is given in Arnould, Goriely, and

Jorissen (1999).

5.2

Hydrostatic Helium Burning

The second most abundant nuclide in the universe is 4He. In Section 5.1 we dis-

cussed how 4He is synthesized during the hydrogen burning phase. When all the

hydrogen is consumed in the core, the star will contract and the central tempera-

ture will increase. At some point, the helium in the core is ignited and undergoes

nuclear transformations. The end products of these processes are 12C and 16O,

which represent the fourth and third most abundant nuclides, respectively, in the

universe. Helium burning is the last core burning stage for stars in the mass range

of 0.4M☉ ≲ M ≲ 9M☉ (Section 1.4.3 and Figure 1.4).

How exactly the transformation from 4He to 12C and 16O comes about has not

been understood for some time. The observation that no stable nuclides with

mass numbers of A = 5 and A = 8 exist represented a major hurdle in this regard

(Section 1.1). For example, we have seen in Section 5.1.1 that the 3He(𝛼,𝛾)7Li reac-

tion can bridge the A = 5 instability in the pp2 and pp3 chains, giving rise to the

synthesis of small amounts of 7Be, 7Li, and 8B. But at typical hydrogen burning

temperatures none of these nuclides survive since they are all transformed back

into 4He (Figure 5.2). Other ideas involved the formation of 12C as a result of the

simultaneous fusion of three α-particles. However, it was shown that such amany-

particle collision has a very small probability and cannot account for the fusion of
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Figure 5.20 Representation of helium-

burning reactions in the chart of the

nuclides. Stable nuclides are shown as

shaded squares. The key relates an arrow to

a specific interaction. The 3𝛼 reaction and

the (𝛼,𝛾) reactions on 12C and 16O are dis-

played as thick arrows. Other helium-burning

reactions are shown as thinner arrows. The

reaction 14N(𝛼,𝛾)18F is represented by an arc

for reasons of clarity.

4He to 12C and 16O.The problem was solved by taking into account some curious

nuclear properties, as will be seen in this section.

The following reactions take place during helium burning:

4He(𝛼𝛼, 𝛾)12C (Q = 7274.7 keV) (5.73)

12C(𝛼, 𝛾)16O (Q = 7161.9 keV) (5.74)

16O(𝛼, 𝛾)20Ne (Q = 4729.8 keV) (5.75)

20Ne(𝛼, 𝛾)24Mg (Q = 9316.6 keV) (5.76)

These processes are shown schematically in Figure 5.20 and will be discussed

in more detail in the following. It is worth keeping in mind that, depending on

the stellar mass and metallicity, the ranges of temperature and density during

hydrostatic helium burning in massive stars amount to T = 0.1–0.4 GK and 𝜌 =

102–105 g/cm3, respectively. The last reaction listed above only plays a role at the

higher temperatures. Helium burning in massive stars is believed to be the main

source of 16O and 18O in the universe, while helium burning in massive stars

and AGB stars contributes similar amounts to the cosmic 12C abundance (see

Table 5.2).
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5.2.1

Helium-Burning Reactions

The Triple-𝜶 Reaction

Helium burning starts with the 3𝛼 reaction which we already encountered in the

discussion of reaction rate equilibria (Example 3.4). The 3𝛼 reaction represents

a (sequential) two-step process (Salpeter, 1952). In the first step, two α-particles

interact to form 8Be in its ground state. This nucleus is unstable by an energy of

only 92 keV and disintegrates back into two α-particles with a half-life of T1∕2 =

8.2 × 10−17 s (Audi et al., 2012). Over time, a small concentration of 8Be builds up

until the rate of 8Be formation becomes equal to its decay rate,

4He + 4He ↔ 8Be (5.77)

In the second step, a third α-particle interacts with the 8Be nucleus to form 12C via

8Be(𝛼, 𝛾)12C (5.78)

It was pointed out by Fred Hoyle (Hoyle et al., 1953) that the overall conversion

of three α-particles to one 12C nucleus during helium burning would be too slow

unless the second step proceeds via an excited state in 12C near 7.7 MeV exci-

tation energy. This level was experimentally verified by Dunbar et al. (1953) and

its properties were determined by Cook et al. (1957), who showed that the spin-

parity is 0+, corresponding to an s-wave resonance. The 3𝛼 reaction bypasses the

stable nuclides in themassA = 6–11 region.Therefore, these nuclides are not syn-

thesized in stars through thermonuclear reactions. Their extremely low observed

abundances are the result of other processes, such as the big bang nucleosynthesis

and cosmic-ray spallation (Section 5.7).

The energy level diagram for this reaction sequence is shown in Figure 5.21.

The Q-value for the 𝛼 + 𝛼 → 8Be reaction is −91.84 ± 0.04 keV and, there-

fore, 8Be is unstable to α-particle emission. The Q-value of the 8Be(𝛼,𝛾)12C

reaction amounts to 7366.59 ± 0.04 keV. With a value of Ex = 7654.20 ±

0.15 keV (Ajzenberg-Selove, 1990) for the excitation energy of the astrophys-

ically important 12C level, we obtain a center-of-mass energy of Er = Ex −

Q = 287.6 ± 0.2 keV for the corresponding resonance in 8Be(𝛼,𝛾)12C. The

resonance is formed by α-particle capture and decays to the 12C ground

state either by emission of γ-rays or by internal pair formation (Section 1.7.1 and

Example B.4).Thepartial widths for these processes are given byΓ𝛼 = 8.3 ± 1.0 eV

and Γrad = Γ𝛾 + Γpair = (3.7 ± 0.5) × 10−3 eV (Ajzenberg-Selove, 1990). With

J(12C) = j0(𝛼) = j1(
8Be) = 0, we obtain for the resonance strength (Section 3.2.4)

𝜔𝛾8Be(𝛼,𝛾) ≡ (2J + 1)

(2j0 + 1)(2j1 + 1)

Γ𝛼Γrad

Γ
≈ Γrad = (3.7 ± 0.5) × 10−3 eV (5.79)

To derive the decay constant for the 3𝛼 reaction, we start by using the expression

from Example 3.4,

𝜆𝛼+𝛼+𝛼→12C = 𝜆3𝛼 = 3N𝛼

(
h2

2𝜋

)3∕2
1

(m𝛼𝛼kT)
3∕2

eQ𝛼+𝛼→8Be∕kT 𝜆8Be(𝛼,𝛾) (5.80)
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(2012).

The decay constant for the second step, 𝜆8Be(𝛼,𝛾), can be expressed by using

Eq. (3.23),

𝜆8Be(𝛼,𝛾) = 𝜆𝛼(
8Be) = N𝛼⟨𝜎𝑣⟩8Be(𝛼,𝛾) (5.81)

where ⟨𝜎𝑣⟩8Be(𝛼,𝛾) is given by the expression for the reaction rate of a narrow res-
onance (see Eq. (3.115))

⟨𝜎𝑣⟩8Be(𝛼,𝛾) = (
2𝜋

m𝛼8BekT

)3∕2
ℏ2e−Er∕kT𝜔𝛾8Be(𝛼,𝛾) (5.82)

From Eqs. (5.80)–(5.82), it follows

𝜆3𝛼 = 3N𝛼

(
h2

2𝜋

)3∕2
eQ𝛼+𝛼→8Be∕kT(
m𝛼𝛼kT

)3∕2N𝛼

(
2𝜋

m𝛼8BekT

)3∕2
ℏ2e−Er∕kT𝜔𝛾8Be(𝛼,𝛾)

= 3N2
𝛼
33∕2

(
2𝜋

m𝛼kT

)3
ℏ5e−E

′∕kT𝜔𝛾8Be(𝛼,𝛾) (5.83)
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where we defined E′ ≡ Er − Q𝛼+𝛼→8Be. Numerically, one finds

𝜆3𝛼 = 0.23673
(𝜌X𝛼)

2

T3
9

e−11.6048E
′∕T9𝜔𝛾8Be(𝛼,𝛾) (s−1)

= 8.7590 × 10−10
(𝜌X𝛼)

2

T3
9

e−4.4040∕T9 (s−1) (5.84)

where we used E′ = 287.6 keV − (−91.84 keV) = 379.4 keV and 𝜔𝛾8Be(𝛼,𝛾) =

Γrad = 3.7 × 10
−3 eV. This expression is valid only for temperatures of 0.1 ≤

T9 ≤ 2. For lower and higher temperatures, additional contributions to the
reaction rates have to be taken into account (Angulo et al., 1999).

The temperature dependence of the decay constant for the 3𝛼 reaction can be

found from a calculation similar to the one described in Section 3.2.1. One obtains

(see Problem 5.2)

(𝜆3𝛼)T = (𝜆3𝛼)T0 (T∕T0)
(4.4040∕T9)−3 (5.85)

The energy generation rate of the 3𝛼 process is given, according to Eq. (3.64), by

the product of the reaction rate (the number of reactions per second and per

cubic centimeter) and the energy released per reaction,Q3𝛼 = (3m4He −m12C)c
2 =

7.275 MeV. Each 3𝛼 reaction consumes three α-particles and, therefore, the decay

constant (the number of α-particles disappearing each second) is related to the

reaction rate by r3𝛼 = N𝛼𝜆3𝛼∕3. It follows

𝜀3𝛼 =
Q3𝛼
𝜌

r3𝛼 =
Q3𝛼
𝜌

N𝛼𝜆3𝛼

3

=
7.275MeV

𝜌

1

3
8.7590 × 10−10

(
𝜌NA

X𝛼
M𝛼

)
(𝜌X𝛼)

2

T3
9

e−4.4040∕T9

= 3.1771 × 1014
𝜌2X3

𝛼

T3
9

e−4.4040∕T9 (MeVg−1s−1) (5.86)

The 3𝛼 reaction has a remarkable temperature dependence. For example, near

T0 = 0.1 GK, we obtain for the energy generation rate

𝜀3𝛼(T) = 𝜀3𝛼(T0)
(
T∕T0

)(4.4040∕T9)−3 = 𝜀3𝛼(T0) (T∕T0)41.0 (5.87)

Therefore, energy generation via the 3𝛼 reaction in a helium-burning star occurs

predominantly in the regions of highest temperature. Furthermore, if the helium

gas is electron degenerate, then a small rise in temperature will cause a large

release of energy. As a result, the temperature rises faster, producing even more

energy. The cycle continues until the degeneracy is lifted in a thermonuclear

explosion.This helium flash is believed to occur at the onset of hydrostatic helium

burning in some stars (Section 1.4.3).

We will briefly comment on the experimental situation. The 3𝛼 reaction

represents a two-step sequential process and has not been measured yet directly

in the laboratory. Even the second step, the 8Be(𝛼,𝛾)12C reaction, has not been

measured directly since the 8Be half-life is very short (T1∕2 ≈ 10
−16 s). Further-

more, the reverse reaction, 12C(𝛾 ,𝛼)8Be, cannot be measured either because
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the direct γ-ray transition from the 12C ground state (J𝜋 = 0+) to the level at

Ex = 7654 keV (J
𝜋 = 0+) is forbidden (Figure 5.21 and Example B.4). However,

the quantities E′ and 𝜔𝛾8Be(𝛼,𝛾) = Γrad entering the expression for the 3𝛼 reaction

decay rate (see Eq. (5.83)) have been measured by indirect studies (see, e.g.,

Rolfs and Rodney, 1988). In the temperature range important for hydrostatic

helium burning, 0.1 ≤ T9 ≤ 0.4, the total reaction rate of the 3𝛼 reaction (or,
equivalently, the decay constant) has an uncertainty of only 15% (Angulo et al.,

1999). This accuracy is remarkable for a process that cannot be measured

directly in the laboratory. The error is mainly caused by the present uncertainty

in the partial width Γrad = Γ𝛾 + Γpair = (3.7 ± 0.5) × 10−3 eV. Although the

quantity E′ = [Ex(
12C) − Q8Be(𝛼,𝛾)] − Q𝛼+𝛼→8Be = 379.4 ± 0.2 keV enters expo-

nentially in Eq. (5.83), its uncertainty has a negligible effect on the total decay

constant.

The 12C(𝜶,𝜸)16O and 16O(𝜶,𝜸)20Ne Reactions

If the subsequent 12C(𝛼,𝛾)16O reaction would be sufficiently rapid, most

α-particles would be converted to 16O or perhaps heavier nuclei, with no 12C left

at the end of helium burning. However, the ratio of number abundances of 12C

and 16O in the universe amounts to about N(12C)∕N(16O) ≈ 0.4, suggesting that

the 12C(𝛼,𝛾)16O reaction is rather slow and that, as a result, some 12C remains

after helium is exhausted. The presence of comparable amounts of 12C and 16O

also implies that the 12C(𝛼,𝛾)16O reaction gives rise to a sensitive balance of these

two species. In other words, the precise magnitude of the 12C(𝛼,𝛾)16O reaction

rate will strongly influence the relative production of 12C and 16O.

At a typical temperature of T = 0.2 GK, the location and width of the Gamow

peak for the 12C(𝛼,𝛾)16O reaction are E0 = 315 keV andΔ = 170 keV, respectively.

The lowest lying resonance occurs at Ecm
r

≈ 2.4 MeV and corresponds to the

broad Ex = 9585 keV (J
𝜋 = 1−) level in 16O (Figure 5.21). Although a lower lying

level exists in 16O at Ex = 8872 keV (J
𝜋 = 2−), it cannot be excited as a resonance

in the 12C +𝛼 reaction because it has unnatural parity (Example B.1). Thus, no

narrow resonance is located in the Gamow peak and the 12C(𝛼,𝛾)16O reaction

must proceed through other reaction mechanisms that will be necessarily

slower. These mechanisms include the capture into the low-energy wing of the

Ecm
r

≈ 2.42 MeV resonance and the capture into the high-energy wings of the

subthreshold resonances (Example 2.1) at Ecm
r

= −45 keV and Ecm
r

= −245 keV,

corresponding to 16O levels at Ex = 7117 keV (J
𝜋 = 1−) and 6917 keV (J𝜋 = 2+),

respectively (Figure 5.21). Another contribution arises from direct radiative

capture.

The 12C(𝛼,𝛾)16O reaction has been measured down to a center-of-mass energy

of ≈ 1 MeV. The Gamow peak for most situations of astrophysical interest is

located far below this energy (e.g., E0 ≈ 0.3 MeV for T = 0.2 GK). It has been

estimated (Kunz et al., 2002) that the cross section of the 12C(𝛼,𝛾)16O reaction

at energies important for helium burning is of order 𝜎 ≈ 10−17 b, that is, orders

of magnitude below present experimental observation thresholds. Therefore,

the cross section measured at higher energies needs to be extrapolated down
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to the astrophysically important energy range using a suitable nuclear reaction

model (usually an R-matrix description; Section 2.5.5). This extrapolation is not

straightforward because several different amplitudes contribute to the reaction

mechanism, as pointed out already. These amplitudes can interfere with each

other, further complicating the picture. More reliable cross section extrapola-

tions are obtained if the directly measured data are supplemented with other

information for the 12C +𝛼 system.This includes, for example, α-particle reduced

widths (or α-particle spectroscopic factors; Section 1.6.2) of the important 16O

levels that are populated in α-particle transfer studies, or phase shifts measured

in 12C(𝛼,𝛼)12C elastic scattering. An overview of some of the techniques can

be found in Rolfs and Rodney (1988), and Wallerstein et al. (1997). At present,

different rates of the 12C(𝛼,𝛾)16O reaction are in use by stellar modelers. Current

reaction rate uncertainties amount typically to about ±35% (Kunz et al., 2002) at

temperatures of T = 0.12–0.35 GK. The magnitude of the 12C(𝛼,𝛾)16O reaction

rate determines the relative amounts of 12C and 16O at the end of helium burning,

as will be shown below. Subsequent advanced burning stages rely on 12C and
16O fuel. Consequently, the 12C(𝛼,𝛾)16O reaction has a profound influence on

the abundances of many elements up to iron and on the evolution of massive

stars that explode as supernovae (Weaver and Woosley, 1993). Therefore, a more

reliable rate for this reaction is highly desirable.

If the subsequent 16O(𝛼,𝛾)20Ne reaction would be fast, then 16O is converted

to 20Ne or heavier nuclei and little 16O would survive during hydrostatic

helium burning. Since 16O is relatively abundant in the universe, however, we

suspect that this reaction must be rather slow. For example, the Gamow peak

for a temperature of T = 0.2 GK is located at E0 ± Δ∕2 = 390 ± 90 keV. The

Q-value of 16O(𝛼,𝛾)20Ne is Q = 4.73 MeV. The lowest lying resonance, located

at Ecm
r

= 893 keV (Tilley et al., 1998), is formed via incoming f-waves (𝓁 = 3)

and corresponds to the 20Ne level at Ex = 5621 keV (J
𝜋 = 3−). A lower lying

compound level exists at Ex = 4967 keV (J
𝜋 = 2−), but this state cannot be

excited as a 16O+𝛼 resonance because it has unnatural parity (Example B.1).

The subthreshold resonance located closest to the α-particle threshold occurs at

Ecm
r

= −482 keV, and is formed via incoming g-waves (𝓁 = 4). These resonances

are not only located far away from the Gamow peak at T = 0.2 GK, but their for-

mation is also inhibited by the centripetal barrier.The cross section contributions

arising from the wings of these resonances are so small that the direct-capture

process, although inherently slow for (𝛼,𝛾) reactions on even–even, N = Z

target nuclei, dominates the 16O(𝛼,𝛾)20Ne reaction rates for temperatures of

T < 0.25 GK. At higher temperatures, resonances with Ecm
r

≥ 893 keV move into
the Gamow peak and dominate the total reaction rates.

The lowest lying resonance in the 16O(𝛼,𝛾)20Ne reaction has been observed at

Ecm
r

= 893 keV. As already mentioned above, the reaction rates at T < 0.25 GK

are determined by direct capture. However, this process has not been measured

yet in the 16O(𝛼,𝛾)20Ne reaction, neither at energies below Ecm
𝛼

= 1 MeV, nor at

higher energies. Therefore, the reaction rates at these temperatures are largely

based on theoretical model calculations. At temperatures below T = 0.2 GK, the
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Figure 5.22 Mean lifetimes of 4He, 12C, 16O,

and 20Ne versus destruction by α-particles

as a function of temperature for (a) 𝜌X𝛼 =

500 g/cm3, and (b) 𝜌X𝛼 = 104 g/cm3. The

mean lifetime 𝜏3𝛼 (
4He) depends on (𝜌X𝛼)

−2

while the mean lifetimes of 12C, 16O, and
20Ne depend on (𝜌X𝛼)

−1.

present ratio of upper and lower reaction rate limits amounts to about an order

of magnitude (Angulo et al., 1999). Above this temperature, the reaction rate

uncertainties are less than 30%.

Comparison of Mean Lifetimes

Themean lifetimes of 4He, 12C, and 16O versus destruction byα-particles as a func-

tion of temperature are displayed in Figure 5.22 for values of 𝜌X𝛼 = 500 g/cm
3

and 𝜌X𝛼 = 10
4 g/cm3. Although we have not explicitly discussed the next

α-particle capture reaction, 20Ne(𝛼,𝛾)24Mg, the corresponding mean lifetime

𝜏𝛼(
20Ne) is also included in Figure 5.22. The curves are obtained from the

expressions

𝜏3𝛼(
4He) = 1∕𝜆3𝛼(

4He) =

[
8.7590 × 10−10

(𝜌X𝛼)
2

T3
9

e−4.4040∕T9

]−1

(5.88)

𝜏𝛼(
12C) =

[
(𝜌X𝛼)

M𝛼

NA⟨𝜎𝑣⟩12C(𝛼,𝛾)]−1 (5.89)

𝜏𝛼(
16O) =

[
(𝜌X𝛼)

M𝛼

NA⟨𝜎𝑣⟩16O(𝛼,𝛾)]−1 (5.90)

𝜏𝛼(
20Ne) =

[
(𝜌X𝛼)

M𝛼

NA⟨𝜎𝑣⟩20Ne(𝛼,𝛾)]−1 (5.91)

The mean lifetime 𝜏3𝛼(
4He) depends on (𝜌X𝛼)

−2, while the mean lifetimes of
12C, 16O, and 20Ne depend on (𝜌X𝛼)

−1. Hence, carbon production via the 3𝛼

reaction is favored by higher density or, equivalently, by lower stellar mass, as

will be shown later. It can be seen in Figure 5.22 that the mean lifetime 𝜏3𝛼(
4He)

is the shortest for a wide range of temperatures. Only at very low temperatures
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(T < 0.14 GK for 𝜌X𝛼 = 500 g/cm
3, or T < 0.12 GK for 𝜌X𝛼 = 10

4 g/cm3) is the

mean lifetime 𝜏𝛼(
12C) shorter than 𝜏3𝛼(

4He). It is also apparent that 𝜏3𝛼(
4He)

and 𝜏𝛼(
12C) are considerably smaller than 𝜏𝛼(

16O) and 𝜏𝛼(
20Ne) at temperatures

of T < 0.3 GK. Consequently, the destruction of 16O is very slow and most 16O

nuclei will survive under these conditions. At relatively high temperatures of

T > 0.3 GK, all four mean lifetimes become comparable in magnitude.

5.2.2

Nucleosynthesis During Hydrostatic He Burning

In this section, we discuss the evolution of abundances at hydrostatic heliumburn-

ing conditions. Early in the burning, helium will be consumed by the 3𝛼 pro-

cess. As the helium abundance decreases, and since the mean lifetime 𝜏3𝛼(
4He)

depends on (𝜌X𝛼)
−2, α-particle captures on 12C and beyond will become increas-

ingly important. The differential equations for the abundances are

d(4He)

dt
= −3r3𝛼 − (4He)(12C)⟨𝜎𝑣⟩12C(𝛼,𝛾) − (4He)(16O)⟨𝜎𝑣⟩16O(𝛼,𝛾) (5.92)

d(12C)

dt
= r3𝛼 − (4He)(12C)⟨𝜎𝑣⟩12C(𝛼,𝛾) (5.93)

d(16O)

dt
= (4He)(12C)⟨𝜎𝑣⟩12C(𝛼,𝛾) − (4He)(16O)⟨𝜎𝑣⟩16O(𝛼,𝛾) (5.94)

d(20Ne)

dt
= (4He)(16O)⟨𝜎𝑣⟩16O(𝛼,𝛾) − (4He)(20Ne)⟨𝜎𝑣⟩20Ne(𝛼,𝛾) (5.95)

d(24Mg)

dt
= (4He)(20Ne)⟨𝜎𝑣⟩20Ne(𝛼,𝛾) (5.96)

The factors of 3 and 1 in the first term on the right-hand sides of the first two

equations appear because each 3𝛼 reaction consumes three 4He nuclei and creates

one 12C nucleus. The reaction rate r3𝛼 (in units of reactions per second and per

cubic centimeter) is related to the decay constant and the mean lifetime by 3r3𝛼 =

(4He)𝜆3𝛼 = (4He)∕𝜏3𝛼 . We included the
20Ne(𝛼,𝛾)24Mg reaction to account for the

destruction of 20Ne. As will be seen below, this reaction plays a minor role in most

hydrostatic helium burning environments.

The above network is numerically solved for constant temperatures and den-

sities of: (i) T = 0.15 GK, 𝜌 = 5000 g/cm3, and (ii) T = 0.2 GK, 𝜌 = 800 g/cm3.

Such conditions occur typically in core helium burning of stars with initial

masses of 5M☉ and 20M☉, respectively, and are nearly independent of the

initial metallicity of the star (Schaller et al., 1992). It must be emphasized that

our calculations do not represent the situation in real stars. As the helium fuel

is consumed, the energy production rate would also decrease with time if the

burning would take place under constant temperature and density conditions.

To maintain a certain luminosity, the stellar core contracts gravitationally and,

consequently, the temperature and density must increase from the start to the

end of helium burning in a realistic stellar model. Nevertheless, a reasonable qual-

itative estimate of helium burning nucleosynthesis can be obtained by reducing
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Figure 5.23 Evolution of 12C and 16O ver-

sus the amount of helium consumed during

hydrostatic helium burning for constant tem-

peratures and densities of (a) T = 0.15 GK

and 𝜌 = 5000 g/cm3, and (b) T = 0.2 GK and

𝜌 = 800 g/cm3. The results are obtained by

solving the reaction network numerically,

assuming a pure 4He gas at the beginning of

helium burning. The calculation is terminated

when the helium mass fraction falls below

X4He = 0.001. The solid lines are obtained

by adopting recommended 12C(𝛼,𝛾)16O reac-

tion rates, while the dotted and dashed lines

result from using the lower and upper limit

of the 12C(𝛼,𝛾)16O reaction rates, respectively.

a complex situation to its simplest form by assuming constant temperatures and

densities. Furthermore, we will assume a pure 4He gas (X04He = 1) at the beginning

of helium burning. The reaction network is solved until helium exhaustion

(X4He < 0.001).

The abundance evolutions of 12C and 16O at T = 0.15 GK and 𝜌 = 5000 g/cm3

versus the amount of helium consumed, ΔX4He = X04He − X4He(t), are shown in

Figure 5.23a as solid lines (time is increasing from left to right). Initially, as 4He is

depleted by the 3𝛼 reaction, the 12C abundance increases linearly. Eventually, the
12C abundance reaches a maximum and then declines because of the increasing

importance of α-particle captures on 12C. At the same time, the 16O abundance

increases toward the end of the calculation. The end products are 12C and 16O,

with a number abundance ratio of (12C∕16O) = (X12C∕X16O)(M16O∕M12C) ≈ 0.89.

The final mass fractions of heavier nuclides, such as 20Ne and 24Mg, amount

to ≈ 10−6 and ≈ 10−14, respectively, emphasizing the very slow destruction

of 16O via α-particle capture. The total nuclear energy generated amounts to

4.8 × 1023 MeV/g (or 7.6 × 1017 erg/g). The relative contributions of the 3𝛼 reac-

tion and the 12C(𝛼,𝛾)16O reaction to the total nuclear energy production are 66%

and 34%, respectively. It is interesting to consider how the abundances change

when the current reaction rate uncertainties of the 12C(𝛼,𝛾)16O reaction (±35%;

Kunz et al., 2002) are taken into account. The results are indicated by the dotted

and dashed lines, obtained by using the lower and upper limit for the 12C(𝛼,𝛾)16O

reaction rate, respectively. At helium exhaustion, the number abundance ratio
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(12C∕16O) varies significantly, between 0.65 and 1.23. The current uncertainties

in the rates of the 3𝛼 reaction (±15%; Angulo et al., 1999) have a smaller influence

on the 12C/16O ratio.

The abundance evolutions of 12C and 16O atT = 0.2 GK and 𝜌 = 800 g/cm3 ver-

sus the amount of helium consumed, ΔX4He, are shown in Figure 5.23b as solid

lines. Again, the 12C abundance increases, reaches a maximum, and then starts to

decline, while at the same time the 16O abundance grows steadily. However, at this

higher burning temperature and lower density, more 16O and less 12C is produced

compared to the previous case. By the end of the calculation, we obtain a value of

(12C∕16O) = 0.57. The 3𝛼 reaction and the 12C(𝛼,𝛾)16O reaction provide again all

the nuclear energy, with relative contributions of 62% and 38%, respectively. The

influence of the 16O(𝛼,𝛾)20Ne and 20Ne(𝛼,𝛾)24Mg reactions is small.The final mass

fractions of 20Ne and 24Mg amount only to ≈ 10−5 and ≈ 10−11, respectively. The

dotted and dashed lines display the abundance evolutions when the 12C(𝛼,𝛾)16O

reaction rate uncertainties are taken into account. At heliumexhaustion, the abun-

dance ratio (12C∕16O) varies between 0.39 and 0.85. Smaller variations are caused

by current uncertainties in the 3𝛼 reaction rate.

5.2.3

Other Helium-Burning Reactions

Theprevious sections showed that the end products of helium burning are mainly
12C and 16O. The precise abundance ratio depends on the helium-burning condi-

tions (e.g., temperature and density) which, in turn, are determined by the stellar

mass. The more massive the star, the more 16O is produced relative to 12C. The

precise abundance ratio (12C∕16O) is influenced by the rate of the 12C(𝛼,𝛾)16O

reaction. We assumed so far that helium burning starts exclusively with 4He as

fuel in the stellar core. However, at the end of hydrogen burning most stars con-

tain a small, but significant, fraction of 14N as a result of CNO-cycle operation

(Section 5.1.2). During helium burning, 14N will be consumed via the reaction

sequence (Cameron, 1960)

14N(𝛼, 𝛾)18F(𝛽+𝜈)18O(𝛼, 𝛾)22Ne (5.97)

as shown in Figure 5.20. Subsequently, some of the 22Ne nuclei will be converted

by the competing reactions 22Ne(𝛼,𝛾)26Mg (Q = 10.62 MeV) and 22Ne(𝛼,n)25Mg

(Q = −0.48 MeV). The latter reaction has a negative Q-value and is rather slow

in the lower temperature region of T ≈ 0.1–0.2 GK. However, toward the end of

helium burning, when the temperature exceeds T ≈ 0.25 GK, the 22Ne(𝛼,n)25Mg

reaction provides a crucial source of neutrons. These neutrons undergo reactions

and sensitively influence the synthesis of neutron-rich nuclides in the mass

A = 60–90 range. The resulting network of neutron-induced reactions and

β-decays will be discussed in Section 5.6. The above reaction sequence is also

important because it significantly increases the neutron excess parameter 𝜂

during core helium burning (Section 1.8). Helium burning in massive stars

and in AGB stars is the main source of 22Ne production in the universe. It is
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also an important contributor to the cosmic production of 25Mg and 26Mg

(see Table 5.2).

During shell helium burning in massive stars, the sequence of Eq. (5.97) does

not go to completion.The surviving 18O is the main source of 18O in the universe.

Helium burning also contributes to the synthesis of fluorine via the sequence

(Figure 5.20)

18O(p, 𝛼)15N(𝛼, 𝛾)19F (5.98)

with the protons supplied by the 14N(n,p)14C reaction (Meynet and Arnould,

2000).

5.3

Advanced Burning Stages

5.3.1

Carbon Burning

When the helium is consumed in the center of the star, the core contracts gravi-

tationally and the central temperature simultaneously rises until the next nuclear

fuel begins to burn. The ashes of helium burning consist overwhelmingly of 12C

and 16O (Section 5.2.2). Of all the possible fusion reaction involving these two

nuclei, 12C + 12C, 12C + 16O, and 16O + 16O, the first process has the smallest

Coulomb barrier and, therefore, initiates the next burning stage. We mentioned

already in Section 5.2.1 that the precise abundance ratio of 12C to 16O obtained

at the end of core helium burning sensitively influences the future evolution of

the star.

The 12C + 12C fusion reaction is the first process we encounter that involves

two heavy nuclei in the entrance channel. The 24Mg compound nucleus formed

in the fusion of two 12C nuclei is highly excited, with the mass difference between
12C+ 12C and 24Mg amounting to≈ 14 MeV. At such high excitation energies, the

reaction will proceed through a large number of overlapping 24Mg states, and we

expect that for these levels the particle partial widths (for proton, neutron, and

α-particle emission) dominate over the γ-ray partial width. In other words, the

excess energy of the highly excited 12C+ 12C system ismost effectively removed by

emission of light particles. The most likely primary reactions are (Salpeter, 1952;

Hoyle, 1954)

12C(12C, p)23Na (Q = 2241 keV) (5.99)

12C(12C, 𝛼)20Ne (Q = 4617 keV) (5.100)

12C(12C, n)23Mg (Q = −2599 keV) (5.101)

while other processes, such as 12C(12C,𝛾)24Mg or 12C(12C,8Be)16O, are consider-

ably less important at energies of astrophysical interest (see, e.g., Patterson, Win-

kler, and Zaidins, 1969). The 12C(12C,n)23Mg reaction is endothermic, that is, it
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can only occur above a threshold energy of Ecm ≈ 2.6 MeV.The liberated protons,

α-particles, and neutrons will be quickly consumed at elevated temperatures by

initiating secondary reactions involving, for example, the ashes of helium burn-

ing (12C and 16O) and the heavy product nuclei of the primary reactions (23Na

and 20Ne). This network of primary and secondary reactions is referred to as car-

bon burning. Typical temperatures in core carbon burning amount to T = 0.6–

1.0 GK, depending on the mass of the star, while slightly higher temperatures

are achieved in hydrostatic shell carbon burning. Carbon burning is the last core

burning stage for stars in themass range of 9M☉ ≲ M ≲ 11M☉ (Section 1.4.3 and

Figure 1.4).

The total S-factor for 12C + 12C is shown in Figure 5.24. The reaction has been

measured down to a center-of-mass energy of Ecm ≈ 2.5 MeV. The height of the

Coulomb barrier is ≈ 8 MeV (Section 2.4.3). Since the measured energies are not

far below the Coulomb barrier, theGamow factor (see Eq. (2.125)) will not remove

entirely the energy dependence of the cross section and, consequently, the S-factor

shown in Figure 5.24 varies strongly (see also Eq. (2.124)).The open bar on the left

indicates the location of the Gamow peak for T ≈ 0.85 GK, a temperature typi-

cal of core carbon burning (E0 ± Δ∕2 = 2169 ± 460 keV). It can be seen that data

for the 12C + 12C reaction barely touch the Gamow peak region. However, for

explosive carbon burning (T ≈ 2.0 GK), data exist throughout the Gamow peak.

The cross section at the lowest measured energy amounts only to a few nanobarn
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and, hence,measurements at even lower energies represent a serious experimental

challenge. It was already mentioned that the 12C + 12C reaction will most likely

proceed through many overlapping levels of the highly excited 24Mg compound

nucleus. It is reasonable to expect that the cross section or S-factor should vary

smoothly with energy. However, this behavior is not at all reflected in the data,

which show a strongly fluctuating cross section up to an energy of Ecm ≈ 6 MeV.

The origin of this structure remains obscure, although many suggestions have

been made (see the summary given in Rolfs and Rodney, 1988). It must also be

pointed out that the various measurements are in poor agreement at the lowest

energies. The average trend of the data, disregarding the fluctuations, has been

described by a variety of methods to extrapolate the cross section to energies

important for core carbon burning.The fitted total S-factor adopted by Caughlan

and Fowler (1988) is shown in Figure 5.24 as a solid line.

The 12C + 12C reactions populate not only the ground states of the residual
23Na, 20Ne, and 23Mg nuclei, but several excited states as well. Hence, the various

reaction channels can be studied by applying several different experimental

techniques, including the direct measurement of the emitted light particles

(Patterson, Winkler, and Zaidins, 1969; Mazarakis and Stephens, 1973; Becker

et al., 1981), the detection of γ-rays emitted from excited levels in the residual

nuclei (High and Cujec, 1977; Kettner, Lorenz-Wirzba, and Rolfs, 1980), and the

activation method (Dayras, Switkowski, and Woosley, 1977). The data reveal that

the 12C(12C,p)23Na and 12C(12C,𝛼)20Ne reactions dominate the total 12C + 12C

fusion cross section, with about equal probabilities for the proton and α-particle

channels to occur. The branching ratios amount to Bp ≈ B𝛼 ≈ (1 − Bn)∕2, where

Bn is a small number. The measured neutron branching ratios, Bn, amount to

2–10% at energies of Ecm = 3.5–5.0 MeV. For lower energies, the Bn values

decrease, as predicted by an extrapolation of the data using the Hauser–Feshbach

model (Dayras, Switkowski, and Woosley, 1977).

The thermonuclear reaction rates for the various 12C + 12C reaction channels

(Caughlan and Fowler, 1988; Dayras, Switkowski, and Woosley, 1977) are

displayed in Figure 5.25 where, for better comparison, the results are normalized

to the 12C(12C,𝛼)20Ne reaction rate. The 12C(12C,𝛼)20Ne and 12C(12C,p)23Na

rates are approximately equal, while the 12C(12C,n)23Mg reaction rate is far

smaller and declines rapidly for decreasing temperatures. The latter behavior is

expected since the lower integration limit of zero in Eq. (3.70) must be replaced

by the threshold energy for endothermic reactions (Et = 2.6 MeV in this case).

The reaction rates displayed in Figure 5.25 disregard corrections for electron

screening (Section 3.2.6). Such corrections can be significant at temperature

and density conditions of advanced burning stages. The present uncertainties

in the rates of the primary carbon burning reactions near T ≈ 0.85 GK are

difficult to quantify. A crude estimate is a factor of ≈ 3.The rates per particle pair,

NA⟨𝜎𝑣⟩, of most (secondary) proton-, neutron-, or α-particle-induced reactions
exceed the rates of all the primary carbon burning reactions by many orders of

magnitude. For comparison, the rates for the various 12C+ 16O reaction channels

are also shown in Figure 5.25. Because of the larger Coulomb barrier, these are
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considerably smaller compared to those of the primary carbon burning reactions

and are thus of interest only in special situations (Arnett, 1996).

The secondary reactions contribute significantly to the nuclear energy released

by the primary carbon burning reactions. It can be estimated that each 12C + 12C

reaction liberates on average an energy of QC ≈ 10 MeV (see later). The energy

generation rate during hydrostatic carbon burning is then given by Eq. (3.64),

𝜀C =
QC
𝜌

r12C+12C =
QC
𝜌

(N12C)
2⟨𝜎𝑣⟩12C+12C
2

=
NAQC
288

X212C𝜌NA⟨𝜎𝑣⟩12C+12C
= 2.09 × 1022X212C𝜌NA⟨𝜎𝑣⟩12C+12C (MeVg−1s−1) (5.102)

where NA⟨𝜎𝑣⟩12C+12C is the total 12C + 12C reaction rate. The temperature depen-
dence of the 12C + 12C reaction rate and the energy generation rate during car-

bon burning is obtained by using the expression for nonresonant reactions (see

Eq. (3.90)). From Eq. (3.91), we find near a typical temperature of T0 = 0.9 GK a

value of 𝜏 = 87 and thus, neglecting electron screening,

𝜀C(T) = 𝜀C(T0)
(
T∕T0

)(87−2)∕3
= 𝜀C(T0)

(
T∕T0

)28
(5.103)

The total energy released during carbon burning can be found from Eq. (3.69),

∫ 𝜀C(t) dt =
NAQC
2M12C

ΔX12C = 2.51 × 10
23ΔX12C (MeV∕g) (5.104)

where ΔX12C is the mass fraction of the consumed carbon fuel.

We will discuss in the following the results obtained by solving an appropri-

ate reaction network for constant temperature and density. In a given star, carbon
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burning will take place over a range of temperatures and densities, but during

most of the carbon consumption the variations in temperature and density are rel-

atively small (Figure 5.1a).This simplificationwill provide a reasonable estimate of

the nucleosynthesis (see also Arnett and Truran, 1969). Values of T = 0.9 GK and

𝜌 = 105 g/cm3 are chosen for the temperature and density, respectively. These are

close to the results obtained by stellar model calculations for core carbon burn-

ing in stars with an initial mass of M = 25M☉ and with initial solar metallicity

(Woosley, Heger, and Weaver, 2002). The initial abundances at the beginning of

carbon burning are given by the composition of the ashes of the preceding core

helium helium-burning stage (Section 5.2). We expect mainly 12C and 16O, with

smaller amounts of 20Ne (Section 5.2.2) and 22Ne (Section 5.2.3). Small traces of

other elements may also be present, but will be neglected in the following for the

sake of simplicity.We assume values ofX012C = 0.25,X
0
16O

= 0.73,X020Ne = 0.01, and

X022Ne = 0.01, which are similar to those reported in Arnett (1996). The network is

solved until the carbon fuel is exhausted (X12C < 10
−3).The electron screening cor-

rection factor for the 12C + 12C reaction amounts to ≈ 1.2 for the T–𝜌 conditions

adopted here (Problem 3.10).

Net abundance flows and the abundance evolutions of selected nuclides

are shown in Figure 5.26. The dominant abundance flows are caused by the

primary 12C(12C,p)23Na and 12C(12C,𝛼)20Ne reactions, and a large fraction of

the liberated protons andα-particles is consumed by the secondary 23Na(p,𝛼)20Ne

and 16O(𝛼,𝛾)20Ne reactions. Weaker, but still substantial, flows are caused by

the (p,𝛾) reactions on 21Ne, 22Ne, 23Na, 25Mg, 26Mg, the (𝛼,𝛾) reaction on 20Ne,

the (𝛼,n) reactions on 13C, 21Ne, 22Ne, the (n,p) reaction on 22Na, and the

β+-decay of 26Alm. The primary 12C(12C,n)23Mg reaction is also visible as a

weak flow. Removing this link from the network has only minor effects on the

abundances of the major isotopes. However, this reaction may become more

important at higher temperatures typical of shell carbon burning. The most

important source of neutrons is the 22Ne(𝛼,n)25Mg reaction, with a smaller con-

tribution coming from 21Ne(𝛼,n)24Mg. The liberated neutrons initiate a number

of neutron-induced processes, including (n,𝛾) reactions on 12C, 20Ne, 23Na, 24Mg,

and 25Mg. On the other hand, the 13C(𝛼,n)16O reaction is not a net producer of

neutrons, since the species 13C is mainly produced via 12C(n,𝛾)13C and, hence,

one neutron is consumed for each neutron liberated by the (𝛼,n) reaction on 13C.

Neutron-induced nucleosynthesis will be discussed in Section 5.6. The neutron

excess parameter 𝜂 (Section 1.8) increases slightly because of the sequence
20Ne(n,𝛾)21Ne(p,𝛾)22Na(n,p)22Ne(𝛼,n)25Mg(p,𝛾)26Al(𝛽+𝜈)26Mg. Even in a star

with zero initial metallicity, the neutron excess will increase during core carbon

burning because of the sequence 12C(12C,n)23Mg(𝛽+𝜈)23Na.

The number of free protons, α-particles, and neutrons is very small during

carbon burning. At maximum, their mass fractions are only XH = 7 × 10
−16,

X4He = 2 × 10
−11, and Xn = 2 × 10

−19, respectively. This circumstance has

important implications. First, nuclear reactions involving radioactive target

nuclei are unimportant during the nucleosynthesis (Figure 5.26) even though

the temperature is relatively high and the rates NA⟨𝜎𝑣⟩ for many proton
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cal of core carbon burning in stars with

an initial mass of M = 25 M☉ and with

initial solar metallicity. The reaction net-

work is solved numerically until the car-

bon fuel is exhausted (X12C < 10−3 after

≈ 1600 y). Arrows represent net (forward

minus reverse) abundance flows, integrated

over the entire computation time. The mag-

nitude of the abundance flows is represented

by arrows of three different thicknesses:

Fmax ≥ Fij > 0.1Fmax (thick arrows), 0.1Fmax

≥ Fij > 0.01Fmax (intermediate arrows), and

0.01Fmax ≥ Fij > 0.001Fmax (thin arrows),

where Fmax corresponds to the reaction with

the maximum net flow. Shaded squares indi-

cate stable isotopes. A particular nuclide

can be identified from the element symbol

(vertical axis) and neutron number (hor-

izontal axis). The key (middle right) indi-

cates the correspondence between abun-

dance flow arrow direction and reaction

type. The 16O(𝛼,𝛾)20Ne reaction is obscured

by 12C(12C,𝛼)20Ne in part (a).
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and α-particle-induced reactions are rather large. The decay constant for the

destruction of nucleus 0 by a reaction with light particle 1 depends on the mass

fraction X1 (see Eq. (3.23)). Since X1 is a very small number, a radioactive nucleus

will β-decay rather than undergo a reaction, that is, 𝜆𝛽(0)≫ 𝜆1(0). Second, for

the T–𝜌 conditions adopted here, the photodisintegration of 13N prevents 13C

production via the sequence 12C(p,𝛾)13N(𝛽+𝜈)13C (Q12C+p = 1944 keV). The

decay constants for the β+-decay and the photodisintegration of 13N amount

to 𝜆𝛽(
13N) = 1.2 × 10−3 s−1 and 𝜆𝛾 (

13N) = 5.2 × 101 s−1, respectively. Hence,

an equilibrium between 12C and 13N is quickly established. The equilibrium

abundance ratio and the decay constant 𝜆12C→13N→13C are directly proportional to

the mass fraction of protons (see Eqs. (3.50) and (3.63)). Since the proton mass

fraction is very small at all times during the nucleosynthesis, the flow through
12C(p,𝛾)13N(𝛽+𝜈)13C becomes negligible. For lower core carbon burning temper-

atures typical of stars with smaller masses, however, the photodisintegration of
13N is less important and the sequence 12C(p,𝛾)13N(𝛽+𝜈)13C(𝛼,n) may become

the dominant neutron source and give rise to a significant increase in the neutron

excess parameter 𝜂 (Arnett andThielemann, 1985).

While the 12C fuel is consumed, most of the initially present 16O nuclei survive

until the end of the calculation. The 22Ne abundance also declines, but the abun-

dances of many other isotopes increase steadily (Figure 5.26). With progressing

time, the number of liberated protons and α-particles available for capture

by various nuclides decreases and the nucleosynthesis slows down. Beyond

t = 1010 s, the abundances of the major nuclides change little. The 12C fuel is

exhausted (X12C < 0.001) after ≈ 1600 y (t = 5 × 10
10 s). The total nuclear energy

generated amounts to 6.3 × 1022 MeV/g, consistent with the value obtained from

Eq. (5.104), where we assumed an average energy release of≈ 10 MeVper primary
12C + 12C reaction. The most abundant nuclides at the end of the calculation

are 16O (Xf = 0.60),
20Ne (Xf = 0.35),

24Mg (Xf = 0.025), and
23Na (Xf = 0.014).

Many other isotopes with A < 20 and A ≥ 28 are produced with mass fractions
less than X = 5 × 10−4, and their abundance evolutions are not displayed in

Figure 5.26.

We already commented on the experimental situation for the primary 12C + 12C

reactions. Some information regarding important secondary reactions is sum-

marized below. The important neutron sources 13C(𝛼,n)16O and 22Ne(𝛼,n)25Mg

will be discussed Section 5.6.1. We need to consider first the location of the

Gamow peaks. At a temperature of T = 0.9 GK one obtains, for example,

E0 ± Δ∕2 = 555 ± 240 keV and E0 ± Δ∕2 = 1250 ± 360 keV for the 23Na + p

and 20Ne +𝛼 reactions, respectively. Similar values are found for other proton

or α-particle-induced reactions. The rates for the proton-induced reactions on
21Ne, 22Ne, 23Na, 25Mg, and 26Mg are displayed in Figure 5.18. The branching

ratio Bp𝛼∕p𝛾 for
23Na is shown in Figure 5.17. The lowest lying observed reso-

nances in the 21Ne(p,𝛾)22Na, 23Na(p,𝛾)24Mg, 23Na(p,𝛼)20Ne, 25Mg(p,𝛾)26Al, and
26Mg(p,𝛾)27Al reactions are located at Ecm

r
= 120 keV, 241 keV, 170 keV, 190 keV,

and 149 keV, Hence, direct measurements entirely cover the region of the Gamow

peak at T ≈ 0.9 GK. See also the information given at the end of Section 5.1.3.
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The 22Ne(p,𝛾)23Na reaction has only been measured down to a resonance energy

of Ecm
r

= 417 keV, but the expected lower lying resonances do not influence the

reaction rates at T = 0.9 GK (Hale et al., 2001). The lowest lying resonances in

the 16O(𝛼,𝛾)20Ne, and 20Ne(𝛼,𝛾)24Mg reactions are located at Ecm
r

= 893 keV

and 799 keV, respectively (Section 5.1.3 and Angulo et al., 1999), and the region

of the Gamow peak has been covered by direct measurements. At T = 0.9 GK,

typical uncertainties for the rates of the above proton- and α-particle-induced

reactions amount to≈ 10–30%, in contrast to the situation at lower temperatures,

where reaction rate uncertainties can amount to several orders of magnitude

(Section 5.1.3).

5.3.2

Neon Burning

The core burning stages discussed below occur in stars with initial masses in

excess of M ≲ 11M☉ (Section 1.4.3 and Figure 1.4). At the end of core carbon

burning, when most of the 12C nuclei have been consumed, the core consists

mainly of 16O, 20Ne, 23Na, and 24Mg. Other nuclides will be present as well,

but with considerably smaller abundances (Xi < 5 × 10
−3; see Figure 5.26). The

core contracts gravitationally and the temperature and density both increase

(Figure 5.1a). It is reasonable to assume that the next nuclear fuel to ignite is

oxygen via the 16O+ 16O fusion reaction. However, before this happens the

temperature has risen to values where photodisintegration reactions will become

important (T > 1 GK). The proton, neutron, and α-particle separation energies

of the above nuclei are in the range of ≈ 7–17 MeV and, therefore, they are rather

inert against photodisintegration even at high temperatures. The exception is
20Ne, which has a relatively small α-particle separation energy of 4.73 MeV. For

a typical temperature of T = 1.5 GK, the photodisintegration decay constant of
20Ne can be calculated fromEq. (3.46) using the rate of the (forward) 16O(𝛼,𝛾)20Ne

reaction (Angulo et al., 1999).The result is 𝜆𝛾 (
20Ne) = 1.5 × 10−6 s−1 and thus the

20Ne nuclei will photodisintegrate. The liberated α-particles, in turn, induce sec-

ondary reactions involving any of themore abundant nuclei.The rates for themost

important α-particle-consuming reactions are shown in Figure 5.27. Recall that

the decay constant of α-particles for destruction by a reaction with nucleus 1 is

given by 𝜆1(𝛼) = 𝜌(X1∕M1)NA⟨𝜎𝑣⟩𝛼1 (see Eq. (3.23)). For typical values of temper-
ature and density (T = 1.5 GK and 𝜌 = 5 × 106 g/cm3; see below) and assuming

an isotopic composition obtained at the end of carbon burning (Figure 5.26), one

finds decay constants of 𝜆16O(𝛼,𝛾)(𝛼) = 2.3 × 10
4 s−1, 𝜆20Ne(𝛼,𝛾)(𝛼) = 1.6 × 10

4 s−1,

𝜆23Na(𝛼,p)(𝛼) = 5.7 × 10
3 s−1, and 𝜆24Mg(𝛼,𝛾)(𝛼) = 4.1 × 10

2 s−1. Hence, some of

the α-particles will be captured by 16O, again synthesizing 20Ne. But there is

also a good chance that the liberated α-particles will be consumed by reactions

such as 20Ne(𝛼,𝛾)24Mg, 23Na(𝛼,p)26Mg, or 24Mg(𝛼,𝛾)28Si. A number of other

α-particle-induced reactions will occur that release protons and neutrons, and

these light particles will also participate in the nucleosynthesis. Details will be

discussed below.
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Figure 5.27 Rates for α-particle-induced reactions on 16O, 20Ne, 23Na, and 24Mg versus tem-

perature. The vertical dashed line indicates a temperature of T = 1.5 GK typical for core

neon burning in massive stars.

To summarize, the network of reactions consisting of the primary reaction

20Ne(𝛾, 𝛼)16O (Q = −4730 keV) (5.105)

and subsequent secondary reactions

20Ne(𝛼, 𝛾)24Mg(𝛼, 𝛾)28Si (Q20Ne(𝛼,𝛾) = 9316 keV)

(Q24Mg(𝛼,𝛾) = 9984 keV) (5.106)

23Na(𝛼, p)26Mg(𝛼, n)29Si (Q23Na(𝛼,p) = 1821 keV)

(Q26Mg(𝛼,n) = 34 keV) (5.107)

is referred to as neon burning. The primary reaction is endothermic since it

consumes energy. In combination with the subsequent secondary reactions,

however, there is a net production of energy for each 20Ne nucleus destroyed

by photodisintegration, as we shall see. Typical temperatures during core neon

burning are in the range of T = 1.2–1.8 GK, with somewhat higher values during

hydrostatic shell neon burning.

The two most important reactions for the nuclear energy generation are
20Ne(𝛾 ,𝛼)16O and 20Ne(𝛼,𝛾)24Mg. An energy level diagram is displayed in

Figure 5.28. At T = 1.5 GK, the 20Ne(𝛾 ,𝛼)16O reaction proceeds mainly through
20Ne levels at Ex = 5621 keV and 5788 keV (see Problem 3.8), while the

most important 24Mg levels for the 20Ne(𝛼,𝛾)24Mg reaction are located at

Ex = 10 680 keV, 10 917 keV, and 11 016 keV (Endt, 1990). The rearrangement

effectively converts two 20Ne nuclei to 16O and 24Mg. Thus, we have

20Ne + 20Ne → 16O + 24Mg + 4586 keV (5.108)
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Figure 5.28 Energy level diagrams for

the most important nuclides participat-

ing in neon burning. Numbers in square

brackets represent reaction Q-values (Wang

et al. 2012; see also caption to Figure 5.21).

Excitation energies and quantum numbers

are from Tilley et al. (1998) and Endt (1990).

Levels that are not important for neon burn-

ing are omitted.

where the value for the energy release is obtained either from Eq. (1.11) or from

Q20Ne(𝛾,𝛼) + Q20Ne(𝛼,𝛾). Other secondary reactions contribute to the energy produc-

tion as well. It can be estimated from network calculations that each 20Ne + 20Ne

conversion liberates on average an energy of QNe ≈ 6.2 MeV near T ≈ 1.5 GK

(see below). For the total energy release during neon burning, one finds from

Eq. (3.69)

∫ 𝜀Ne(t) dt =
NAQNe
2M20Ne

ΔX20Ne = 9.32 × 10
22ΔX20Ne (MeV∕g) (5.109)

whereΔX20Ne is themass fraction of the consumed
20Ne fuel. Compared to carbon

burning, the total energy release is a factor of ≈ 3 smaller for the same mass of

consumed fuel.

An approximate analytical expression for the energy generation rate during

hydrostatic neon burning can be found by assuming an 16O + 𝛼 ↔ 20Ne + 𝛾

equilibrium. The values of 𝜆16O(𝛼,𝛾)(𝛼), 𝜆20Ne(𝛼,𝛾)(𝛼), and 𝜆23Na(𝛼,p)(𝛼) quoted above

were obtained with X16O = 0.60, X20Ne = 0.35, and X23Na = 0.014, respectively.

The 20Ne and 23Na abundances, however, decline during neon burning while the
16O abundance increases. Hence, 16O(𝛼,𝛾)20Ne will be the dominant α-particle

consuming reaction and the assumption of an 16O + 𝛼 ↔ 20Ne + 𝛾 equilibrium is
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justified. The energy generation rate is then given by (see Problem 5.5)

𝜀Ne ≈ 6.24 × 10
33
(X20Ne)

2

X16O
T
3∕2

9
e−54.89∕T9NA⟨𝜎𝑣⟩20Ne(𝛼,𝛾) (MeVg−1s−1) (5.110)

and is independent of the density. The reaction rate for 20Ne(𝛼,𝛾)24Mg above

T = 1 GK can be described by the analytical expression NA⟨𝜎𝑣⟩20Ne(𝛼,𝛾) =
3.74 × 102T2.229

9
exp(−12.681∕T9) (Angulo et al., 1999). For the temperature

dependence of the energy generation rate during neon burning, one finds from

Eq. (5.110)

𝜀Ne ∼ T1.5
9

T2.229
9

e−54.89∕T9e−12.681∕T9 ∼ T3.729
9

T
67.57∕T9
9

(5.111)

where the term exp(−67.57∕T9) is derived according to the method described by

Eqs. (3.85)–(3.90). Near T0 ≈ 1.5 GK we find

𝜀Ne(T) = 𝜀Ne(T0)
(
T∕T0

)49
(5.112)

and thus neon burning is very temperature sensitive.

Network calculations for neon burning are performed for a constant temper-

ature of T = 1.5 GK and density of 𝜌 = 5 × 106 g/cm3. These values are close to

those obtained from stellar model calculations for core neon burning in stars with

an initial mass of M = 25M☉ and with initial solar metallicity (Woosley, Heger,

andWeaver, 2002). For the initial abundances at the beginning of core neon burn-

ing, we adopt the final abundances obtained at the end of core carbon burning,

that is, mainly 16O (Xi = 0.60) and
20Ne (Xi = 0.35), with smaller contributions

from nuclides in the 21Ne–28Si range (Figure 5.26). The network is solved until

the neon fuel is exhausted (X20Ne < 0.0015).

Net abundance flows are shown in Figure 5.29. The dominant flows are

caused by the reactions 20Ne(𝛾 ,𝛼)16O and 20Ne(𝛼,𝛾)24Mg(𝛼,𝛾)28Si, consis-

tent with our earlier discussion. Smaller, but substantial, flows are caused

by 24Mg(𝛼,p)27Al(𝛼,p)30Si and 23Na(𝛼,p)26Mg. The released protons initiate

a number of different reactions, most notably 26Mg(p,𝛾)27Al, 23Na(p,𝛼)20Ne,

and 25Mg(p,𝛾)26Al(𝛽+𝜈)26Mg. Neutrons are produced by the 21Ne(𝛼,n)24Mg,
25Mg(𝛼,n)28Si, and 26Mg(𝛼,n)29Si reactions. The liberated neutrons undergo

(n,𝛾) reactions involving mainly 20Ne, 24Mg, and 28Si. At maximum, the mass

fractions of the light particles amount to XH = 2 × 10
−17, X4He = 1 × 10

−12, and

Xn = 1 × 10
−21. Changes in the neutron excess parameter 𝜂 are relatively small

during neon burning (Thielemann and Arnett, 1985). For the adopted tem-

perature and density conditions, the stellar decay constants for some β-decays

differ significantly from their terrestrial values (Section 1.8.4). For example, the

laboratory half-life for 24Na(β−𝜈)24Mg amounts to T1∕2 = 15 h compared to

T1∕2 = 0.52 h at neon-burning conditions (Fuller, Fowler, and Newman, 1982).

The evolution of the most abundant nuclides, except for 21Ne, 22Ne, and 23Na,

is also displayed in Figure 5.29. The latter three nuclides are quickly depleted

from their initial abundance values. While the 20Ne fuel is gradually consumed,
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dance flows, and (b) abundance evolutions
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tively. Such conditions are typical of core

neon burning in stars with an initial mass of
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The reaction network is solved numerically

until the neon fuel is exhausted (X20Ne <

0.0015 after ≈ 280 d). The arrows, shaded

squares, and key in the top part have the

same meaning as in Figure 5.26.
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the 16O abundance increases with time. Most of the other nuclides displayed

in Figure 5.29 also increase in abundance, except 25Mg and 26Mg, whose abun-

dances change little during the nucleosynthesis. After t = 2 × 106 s, the number

of liberated protons, α-particles, and neutrons that are available for capture

by various nuclides decreases and the nucleosynthesis slows down. Beyond

t = 1.8 × 107 s the abundances of the major nuclides change little.The 20Ne fuel is

exhausted (X20Ne < 0.0015) after 280 d (t = 2.4 × 10
7 s). The total nuclear energy

generated amounts to 3.3 × 1022 MeV/g. The most abundant nuclides at the end

of the calculation are 16O (Xf = 0.77),
24Mg (Xf = 0.11), and

28Si (Xf = 0.083),

while nuclides in the 25Mg–32S region have final mass fractions in the range of

Xf = 0.002–0.01. All other nuclides that are not shown in the figure have mass

fractions of X ≤ 10−4 throughout the calculation. Similar results are obtained
from a more involved stellar model simulation (Arnett, 1996).

At a temperature of T = 1.5 GK, the Gamow peaks for the reactions
20Ne(𝛼,𝛾)24Mg, 24Mg(𝛼,𝛾)28Si, 23Na(p,𝛼)20Ne, and 25,26Mg(p,𝛾)26,27Al are

located at E0 ± Δ∕2 = 1760 ± 550 keV, 2010 ± 590 keV, 780 ± 370 keV, and

830 ± 380 keV, respectively. For the 16O(𝛼,𝛾)20Ne reaction (i.e., the reverse

of 20Ne(𝛾 ,𝛼)16O; see Problem 5.5), we obtain E0 ± Δ∕2 = 1500 ± 510 keV at

T = 1.5 GK. All of these reactions have been measured directly over the

Gamow peak region. Near this temperature, the reaction rates for 16O(𝛼,𝛾)20Ne,
23Na(p,𝛼)20Ne, 25Mg(p,𝛾)26Al, and 26Mg(p,𝛾)27Al have uncertainties of < 20%

(Angulo et al., 1999; Iliadis et al., 2001). The important 20Ne(𝛼,𝛾)24Mg and
24Mg(𝛼,𝛾)28Si reaction rates, however, may be subject to systematic errors on

the order of a factor of two as can be seen from the different results reported by

Caughlan and Fowler (1988), Angulo et al. (1999), and Rauscher et al. (2000).

5.3.3

Oxygen Burning

After the neon fuel has been consumed, the most abundant nuclides in the stel-

lar core are 16O, 24Mg, and 28Si (Figure 5.29). The core contracts and the tem-

perature increases until the burning of the next fuel starts to generate energy.

Among the reactions induced by combinations of the above nuclides, the 16O

+ 16O fusion reaction is the most likely process to occur since it has the lowest

Coulomb barrier (Hoyle, 1954; Cameron, 1959). The situation resembles carbon

burning, in the sense that a reaction induced by two heavy nuclei in the incoming

reaction channel (16O + 16O) is the primary process sustaining the nuclear burn-

ing. The 32S compound nucleus formed in the fusion of two 16O nuclei is highly

excited, with a mass difference between 16O + 16O and 32S of ≈ 16.5 MeV. The

fusion reaction will then involve many overlapping 32S compound levels. Excess

energy is most effectively removed by emission of light particles (as opposed to

the emission of γ-rays). In contrast to the 12C+ 12C reaction, there are manymore

exit channels possible for the 16O + 16O reaction since the 32S compound nucleus

achieves much higher excitation energies (Spinka and Winkler, 1974). The most

likely primary reactions are
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16O(16O, p)31P (Q = 7678 keV) (5.113)

16O(16O, 2p)30Si (Q = 381 keV) (5.114)

16O(16O, 𝛼)28Si (Q = 9594 keV) (5.115)

16O(16O, 2𝛼)24Mg (Q = −390 keV) (5.116)

16O(16O, d)30P (Q = −2409 keV) (5.117)

16O(16O, n)31S (Q = 1499 keV) (5.118)

The 16O(16O,d)30P and 16O(16O,2𝛼)24Mg reactions are endothermic, that is,

they can only occur above a threshold energy of Ecm = −Q. Also, the deuterons

released in the 16O(16O,d)30P reaction will be immediately photodisintegrated

(d + 𝛾 → p + n) at the elevated stellar temperatures. The liberated light particles

are quickly consumed by secondary reactions involving, for example, the ashes of

neon burning and the heavy product nuclei of the primary reactions.This network

of primary and secondary reactions is referred to as oxygen burning. Typical

temperatures during core oxygen burning are in the range of T = 1.5–2.7 GK,

depending on the stellar mass, with somewhat higher values during shell oxygen

burning.

It should be pointed out that the photodisintegrations of the nuclides 16O, 24Mg,

and 28Si do not contribute significantly to the nuclear energy generation during

hydrostatic oxygen burning. Their proton, neutron, and α-particle separation

energies exceed ≈ 9 MeV, except the α-particle separation energy of 16O, which

amounts to 7.2 MeV. Hence, the 16O(𝛾 ,𝛼)12C reaction is the most likely process

to occur among these photodisintegrations. The decay constants 𝜆i(
16O) for the

reactions 16O+ 16O and 16O(𝛾 ,𝛼)12C are shown versus temperature in Figure 5.30.
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Figure 5.30 Decay constants 𝜆i(
16O) for

the 16O + 16O and 16O(𝛾 ,𝛼)12C reactions ver-

sus temperature. The curve for 16O + 16O

is calculated assuming 𝜌 = 3 × 106 g/cm3

and X16O = 0.5, while the one for 16O(𝛾 ,𝛼)12C

is derived from the 12C(𝛼,𝛾)16O reaction

rate and is independent of 𝜌 and X16O . The

dashed vertical line indicates a temperature

of T = 2.2 GK typical for core oxygen burn-

ing in massive stars.
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Figure 5.31 Total S-factor for the 16O +
16O reaction. The data are adopted from

Spinka and Winkler (1974), Hulke, Rolfs, and

Trautvetter (1980), Wu and Barnes (1984),

and Thomas et al. (1986). The data from

Thomas et al. (1986) are extracted from their

Figures 9 and 10. The open bars indicate

the location of the Gamow peaks for T ≈

2.2 GK (core oxygen burning) and T ≈ 3.6 GK

(explosive oxygen burning). The solid line

shows the fitted total S-factor adopted by

Caughlan and Fowler (1988).

The decay constant for 16O + 16O is obtained from 𝜆16O(
16O) = 𝜌(X16O∕M16O)

NA⟨𝜎𝑣⟩ (see Eq. (3.23)), assuming values of 𝜌 = 3 × 106 g/cm3 and X16O = 0.5,

whereas 𝜆𝛾 (
16O) is calculated from the forward 12C(𝛼,𝛾)16O reaction rate and is

independent of 𝜌 and X16O (see Eq. (3.46)). Under these conditions, the
16O + 16O

fusion is more likely to occur at temperatures below T = 4 GK and thus will be

the dominant 16O depleting process during hydrostatic oxygen burning.

The total 16O + 16O S-factor is shown in Figure 5.31. The reaction has been

measured down to a bombarding energy of Ecm ≈ 6.8 MeV. The height of the

Coulomb barrier is ≈ 13 MeV and, similar to the case discussed in Section 5.3.1,

the total S-factor varies strongly with energy because the Gamow factor does

not remove entirely the energy dependence of the cross section at the measured

energies (see Eq. (2.124)). The two shaded bars indicate the locations of the

Gamow peaks at temperatures typical for core oxygen burning (T ≈ 2.2 GK;

E0 ± Δ∕2 = 6600 ± 1290 keV) and explosive oxygen burning (T = 3.6 GK;

E0 ± Δ∕2 = 9170 ± 1950 keV). It can be seen that the data reach down to the

center of the Gamow peak (Ecm ≈ E0) for T = 2.2 GK, whereas the data cover

entirely the Gamow peak region for T = 3.6 GK. As expected, the total S-factor

varies smoothly with energy since the 16O + 16O reaction proceeds through

many overlapping resonances at each bombarding energy. In particular, the

unexplained cross-section fluctuations observed in the total S-factor of 12C

+ 12C (Figure 5.24) are absent in the 16O + 16O data. However, the various
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measurements are in poor agreement at the lower energies (Ecm < 8 MeV). The

data have been fitted by a number of methods (see, e.g., Wu and Barnes, 1984).

The fitted total S-factor adopted by Caughlan and Fowler (1988) at the lower

energies is shown in Figure 5.31 as a solid line.

The 16O + 16O reaction populates many levels in the residual nuclei. The

different reaction channels have been investigated using a variety of techniques,

including the direct detection of emitted light particles (Spinka and Winkler,

1974), detection of γ-rays emitted from excited levels in the residual nuclei

(Spinka and Winkler, 1974; Wu and Barnes, 1984; Thomas et al., 1986), and the

activation method (Spinka and Winkler, 1974; Wu and Barnes, 1984). The cross-

section data suggest significant contributions from reactions involving three

particles in the exit channel, such as 16O(16O,2p)30Si or 16O(16O,2𝛼)24Mg. These

three-particle exit channel contributions may account for≈ 20% of the total cross

section at the lowest measured energy of Ecm ≈ 6.8 MeV (Spinka and Winkler,

1974).The available data on the partial cross sections are also in poor agreement.

Furthermore, little information is available on the competition between two-

and three-particle exit channels that produce the same kind of particles, for

example, between 16O(16O,p)31P and 16O(16O,2p)30Si, or between 16O(16O,𝛼)28Si

and 16O(16O,2𝛼)24Mg. The average values of the reported branching ratios at

Ecm ≈ 6.8 MeV amount to ≈ 60% for
16O(16O,p)31P and 16O(16O,2p)30Si, ≈ 25%

for 16O(16O,𝛼)28Si and 16O(16O,2𝛼)24Mg, ≈ 10% for 16O(16O,d)30P, and ≈ 5% for
16O(16O,n)31S.

The thermonuclear reaction rates for different 16O + 16O exit channels are

shown in Figure 5.25 (Caughlan and Fowler, 1988). The individual rates are nor-

malized to the yields of the respective emitted light particles (p,𝛼, n) rather than

the number of reactions. For example, the curve labeled “16O(16O,𝛼)” represents

the reaction rate for the production of as many α-particles as are produced by

the reactions 16O(16O,𝛼)28Si and 16O(16O,2𝛼)24Mg combined. Similar arguments

hold for the proton- and neutron-producing reaction channels. In particular, the

curve labeled “16O(16O,n)” represents the reaction rate for neutron production

from both 16O(16O,n)31S and from deuteron breakup after 16O(16O,d)30P. It can

be seen in Figure 5.25 that the proton exit channel dominates at all temperatures.

At T = 2.2 GK, the reaction rate contributions for the emission of protons,

α-particles, and neutrons are ≈ 62%, ≈ 21%, and ≈ 17%, respectively (Caughlan

and Fowler, 1988). The present uncertainties in the rates of the primary oxygen

burning reactions are difficult to quantify. Considering the poor agreement in the

reported total 16O + 16O cross section below Ecm = 8 MeV and our incomplete

knowledge of the branching ratios for the different exit channels, one can

conclude that the rates of the primary oxygen burning reactions at temperatures

below T = 3 GK are uncertain by at least a factor of ≈ 3.

Similar to the case of carbon burning (Section 5.5.1), the secondary reactions

contribute significantly to the nuclear energy released by the primary oxygen

burning reactions. The result of a reaction network calculation near T = 2.2 GK

(see below) yields an average energy release ofQO ≈ 17.2 MeV for each
16O + 16O

reaction (see also Woosley, Heger, andWeaver, 2002). The energy generation rate
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in hydrostatic oxygen burning is then given by Eq. (3.64),

𝜀O =
QO
𝜌

r16O+16O =
QO
𝜌

(N16O)
2⟨𝜎𝑣⟩16O+16O
2

=
NAQO
512

X216O𝜌NA⟨𝜎𝑣⟩16O+16O
= 2.03 × 1022X216O𝜌NA⟨𝜎𝑣⟩16O+16O (MeVg−1s−1) (5.119)

withNA⟨𝜎𝑣⟩16O+16O the total 16O+ 16O reaction rate.The temperature dependence
of the 16O+ 16O rate and of the energy generation rate during oxygen burning can

be found from the expression for nonresonant reactions (see Eq. (3.90)). Near a

typical temperature of T0 = 2.2 GK, one finds a value of 𝜏 = 104.5 (see Eq. (3.91))

and, thus, neglecting electron screening,

𝜀O(T) = 𝜀O(T0)
(
T∕T0

)(104.5−2)∕3
= 𝜀O(T0)

(
T∕T0

)34
(5.120)

The total energy released during oxygen burning can be found from Eq. (3.69),

∫ 𝜀O(t) dt =
NAQO

2M16O

ΔX16O = 3.24 × 10
23ΔX16O (MeV∕g) (5.121)

whereΔX16O is the mass fraction of the consumed oxygen fuel.This value exceeds

the total amount of energy released during either carbon or neon burning (see

Eqs. (5.104) and (5.109)).

The results of a network calculation for a constant temperature T = 2.2 GK and

density 𝜌 = 3 × 106 g/cm3 are shown in Figure 5.32. These values are similar to

those obtained from stellar model calculations for core oxygen burning in stars

with an initial mass of M = 25M☉ and initial solar metallicity (Woosley, Heger,

and Weaver, 2002). For the initial abundances at the start of core oxygen burn-

ing, we adopt the final abundances obtained at the end of core neon burning:
16O (Xi = 0.77),

24Mg (Xi = 0.11), and
28Si (Xi = 0.083), with smaller contribu-

tions from nuclides in the 25Mg–32S range (Figure 5.29). The network is solved

until oxygen exhaustion (X16O < 0.001). The electron screening correction fac-

tor for the primary 16O + 16O reaction amounts to ≈ 1.3 for the T–𝜌 conditions

adopted here.

It can be seen from Figure 5.32 that many different nuclear processes

occur during oxygen burning. Those links with the largest net abundance

flows (represented by the thickest arrows) will be described first. The pri-

mary 16O + 16O reactions produce 28Si and 32S via different sequences:

(i) 16O(16O,p)31P(p,𝛾)32S, (ii) 16O(16O,p)31P(p,𝛼)28Si, (iii) 16O(16O,𝛼)28Si, and

(iv) 16O(16O,n)31S(𝛾 ,p)30P(𝛾 ,p)29Si(𝛼,n)32S. The two (𝛾 ,p) reactions occur because

the proton separation energies of 31S and 30P are relatively small (Sp = 6133 and

5595 keV, respectively) and, consequently, the photodisintegrations dominate

over the competing β+-decays. The decay 31S(𝛽+𝜈)31P, although weaker than
31S(𝛾 ,p)30P, is nevertheless significant, as will be seen below. Some of the 28Si

nuclei are converted to 32S via 28Si(𝛼,𝛾)32S. A fraction of the 32S nuclei is either

transformed back to 31P via 32S(n,𝛾)33S(n,𝛼)30Si(p,𝛾)31P, or is converted to heavier

nuclei via 32S(𝛼,p)35Cl(p,𝛾)36Ar, and so on. Some of the liberated α-particles

deplete the initially abundant 24Mg nuclei via the processes 24Mg(𝛼,𝛾)28Si



5.3 Advanced Burning Stages 417

Ti

Sc

Ca

K

Ar

CI

S

Si

AI

Mg

Na

Ne

F

O

N

C

B

Be

P

10−4

105

Time (s)

104103102 106 107

10−3

10−2

10−1

M
a
s
s
 f
ra

c
ti
o
n
 X

i

100

(a)

(b)

28Si

29Si

31P

34S

33S 42Ca

30Si

35CI 39K

40Ca

36Ar

38Ar

32S

Core oxygen burning

4 6 8 10

12

14

16

18

20

22

24

(γ,α) (n,α)

(p,n)

(n,p)

(α,n)
(p,γ) (α,γ)

(α,p)
(β−ν)

(β+ν)(p,α)

(γ,n) (n,γ)

(γ,p)

Figure 5.32 (a) Time-integrated net abun-

dance flows, and (b) abundance evolu-

tions for a constant temperature and den-

sity of T = 2.2 GK and 𝜌 = 3 × 106 g/cm3,

respectively. Such conditions are typical of

core oxygen burning in stars with an ini-

tial mass of M = 25 M☉ and with initial

solar metallicity. The reaction network is

solved numerically until the oxygen fuel

is exhausted (X16O < 0.001 after ≈ 162 d).

The arrows, shaded squares, and key in

the top part have the same meaning as in

Figure 5.26. The 24Mg(𝛼,𝛾)28Si reaction is

obscured by 16O(16O,𝛼)28Si in part (a).
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and 24Mg(𝛼,p)27Al. Reactions such as 16O(p,𝛾)17F, 16O(𝛼,𝛾)20Ne, 28Si(p,𝛾)29P,
32S(p,𝛾)33Cl, and 36Ar(p,𝛾)37K do not give rise to significant net flows. Their

Q-values are so small (Q = 600 keV, 4730 keV, 2749 keV, 2277 keV, and 1858 keV,

respectively) that in each case the forward rate is considerably smaller than the

reverse photodisintegration rate.

The evolution of the most abundant nuclides is also shown in Figure 5.32.

For reasons of clarity, the nuclides 16O, 24,25,26Mg, and 27Al are not displayed in

the figure. They are quickly depleted with progressing time. While the oxygen

fuel is being consumed, the abundances of 28Si and 32S increase with time. The

abundances of 34S, 35Cl, 36Ar, 38Ar, 39K, 40Ca, and 42Ca also increase, while those

of 29,30Si and 31P decrease from their initial values. The 16O fuel is exhausted

after about 162 days (t = 1.4 × 107 s). The total nuclear energy generated is

2.5 × 1023 MeV/g. The most abundant nuclides at the end of the calculation

are 28Si (Xf = 0.54),
32S (Xf = 0.28),

38Ar (Xf = 0.084),
34S (Xf = 0.044),

36Ar

(Xf = 0.027), and
40Ca (Xf = 0.021), while nuclides in the

29Si–42Ca region have

final mass fractions in the range of Xf = 10
−4–10−3 (see also Arnett, 1996; Chieffi,

Limongi, and Straniero, 1998). All other nuclides not shown in the figure have

mass fractions of X < 6 × 10−5 throughout the calculation.

The neutron excess increases significantly (by a factor of five in the above calcu-

lation) during core oxygen burning. The most important weak interactions that

influence 𝜂 are the positron decays 31S(e+𝜈)31P and 30P(e+𝜈)30Si, and the elec-

tron captures 33S(e−,𝜈)33P, 35Cl(e−,𝜈)35S, and 37Ar(e−,𝜈)37Cl. The neutron excess

becomes so large (𝜂 ≈ 0.007) that the composition of the corematter deviates dra-

matically from a solar system abundance distribution.The products of hydrostatic

oxygen burning are completely reprocessed in the subsequent explosive oxygen

(and explosive silicon) burning phase before being ejected into the interstellar

medium at the end of the massive star evolution.

It is also interesting that some of the weak interactions compete with nuclear

reactions that link the same pair of nuclei. For instance, the net abundance flow

between 33S and 33P is determined by the individual flows from 33S(e−,𝜈)33P,
33S(n,p)33P, and 33P(p,n)33S. In the above network calculation, the latter reaction

gives rise to the largest individual flow among these processes, but the first two

processes have a larger combined flow. Hence, the arrow in Figure 5.32 points

from 33S to 33P.

At temperatures typical of core oxygen burning, the influence of thermally

excited levels on the rates ofmost reactions is relatively small. Almost all reactions

involve stable (or long-lived) target nuclei (Figure 5.32) for the reasons given in

Section 5.3.1 and, with few exceptions, their stellar enhancement factors and nor-

malized partition functions are close to unity at T ≈ 2 GK (see also Section 3.1.5).

The situation is very different for the weak interactions. At T = 2.2 GK and

𝜌 = 3 × 106 g/cm3, the half-life, for example, of 30P(e+𝜈)30Si is reduced from a

laboratory value of T1∕2 = 150 s to a stellar value of T1∕2 = 84 s. As expected,

even more drastic changes occur for electron captures. The stellar half-lives

for 33S(e−,𝜈)33P, 35Cl(e−,𝜈)35S, and 37Ar(e−,𝜈)37Cl at the assumed conditions are
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T1∕2 = 4 × 10
5 s, 2 × 105 s, and 2 × 104 s, respectively, while in the laboratory 33S

and 35Cl are stable and 37Ar is long-lived (T1∕2 = 3.0 × 10
6 s; see Figure 1.18).

We already pointed out that oxygen burning resembles carbon burning in the

sense that the nucleosynthesis is mainly driven by the fusion of two heavy nuclei.

However, these two hydrostatic burning stages differ fundamentally because

of the significantly higher temperature achieved in oxygen burning. In carbon

burning, the number of protons, neutrons, and α-particles that can be captured

by various nuclei decreases toward the end as the 12C fuel is consumed and,

consequently, the nucleosynthesis ceases. In hydrostatic oxygen burning, on

the other hand, the temperature is sufficiently high that photodisintegrations of

nuclei with the smallest particle separation energies provide another source of

light particles, even when the 16O fuel has been consumed. In the above network

calculation, the proton and α-particle abundances are approximately constant

(XH ≈ 10
−13, X4He ≈ 10

−11) throughout the nucleosynthesis. A steady supply

of light particles takes part in reactions, with the result that less tightly bound

nuclides are transformed to more stable species, as discussed in Section 3.1.4.

This aspect is reflected in Figure 5.32, where, toward the end of the calculation,

the abundances of most nuclides do not stay constant, but change as a result of

the nuclear rearrangement. As oxygen burning proceeds, many pairs of nuclides

achieve an equilibrium between forward and reverse (photodisintegration) rate.

Several such pairs eventually come intomutual equilibrium, giving rise to a quasi-

equilibrium cluster (Section 3.1.6). Stellar model calculations demonstrated that,

for progressing time and increasing temperature, more species join this group of

nuclides (Woosley, Arnett, and Clayton, 1973; Chieffi, Limongi, and Straniero,

1998). After oxygen exhaustion and before the ignition of the next nuclear fuel,

the nuclides in the A = 24–46 range form one large quasi-equilibrium cluster.

A second cluster consisting of iron peak nuclides also starts to form at the

end of oxygen burning. It originates from heavier nuclides initially present in

the star that were so far disregarded in our discussion. Most of these nuclides

take part in neutron-induced reactions, especially during core helium burning,

but also during carbon and neon burning (Section 5.6.1). At the temperatures

attained in core oxygen burning, all of these heavy nuclides are destroyed by

(𝛾 ,p), (𝛾 ,𝛼), and (𝛾 ,n) reactions and are transformed to the most tightly bound

nuclides, that is, the iron peak species (Sections 1.5.1). The physics of quasi-

equilibrium clusters will be described in more detail in the next section. See also

Woosley, Arnett, and Clayton (1972).

The experimental information for the primary 16O + 16O reaction has already

been presented. The secondary reactions are too numerous to be discussed

in detail here. We will focus on a few secondary reactions that give rise to

the largest net abundance flows (Figure 5.32). The following discussion will

provide an impression on the sources and the reliability of the nuclear physics

information entering oxygen burning calculations. The rates of reactions such as
31P(p,𝛾)32S, 31P(p,𝛼)28Si, 35Cl(p,𝛾)36Ar, 30Si(p,𝛾)31P, 32S(𝛼,p)35Cl, 24Mg(𝛼,p)27Al,

and 30P(𝛾 ,p)29Si near T = 2.2 GK are based on directly measured resonance

energies and strengths (see Iliadis et al., 2010).The rates of the latter three reverse



420 5 Nuclear Burning Stages and Processes

reactions are calculated from the corresponding forward rates. Branching ratios

for 31P + p and 35Cl + p are displayed in Figure 5.17. Typical uncertainties of the

above reaction rates at T = 2.2 GK amount to ±25%, except for the 32S(𝛼,p)35Cl

reaction where the rates are uncertain by a factor of two. The rates for the

α-capture reactions 24Mg(𝛼,𝛾)28Si, 28Si(𝛼,𝛾)32S, and 32S(𝛼,𝛾)36Ar are also based

on direct experimental information, but may be subject to systematic errors on

the order of factors of ≈ 2–3, as can be seen from the differences in the results

reported by Caughlan and Fowler (1988) and Rauscher et al. (2000). Somewhat

larger uncertainties are expected for the rates of reactions such as 31S(𝛾 ,p)30P,
33S(n,𝛼)30Si, and 29Si(𝛼,n)32S, which are based on Hauser–Feshbach statistical

model calculations (Goriely, 1998; Rauscher andThielemann, 2000).

5.3.4

Silicon Burning

Near the conclusion of core oxygen burning, when the 16O fuel is depleted, the

most abundant nuclides are 28Si and 32S (Figure 5.32). The stellar core contracts

and the temperature increases. Fusion reactions, such as 28Si + 28Si or 28Si +
32S, are unlikely to occur because of Coulomb barrier considerations, even at

the elevated temperatures achieved at the end of the massive star evolution.

Instead, the nucleosynthesis proceeds via photodisintegrations of less tightly

bound nuclei and the capture of the liberated light particles (protons, neutrons,

and α-particles) to create gradually heavier and more tightly bound species, as

described in Section 3.1.4. In this process, many forward and reverse reactions

achieve equilibrium, and with increasing temperature and progressing time

several pairs of nuclides link together to form quasi-equilibrium clusters. The

overall result is another photodisintegration rearrangement process, similar to

neon burning, but on a more extensive scale. We will describe below how 28Si,
32S, and other nuclides in the A = 24–46 region are gradually transformed to

the most tightly bound species, that is, the iron peak nuclides (Section 1.5.1 and

Figure 1.9). This process provides the star with another source of energy and is

referred to as silicon burning. Temperatures during core silicon burning are in the

range of T = 2.8–4.1 GK, depending on the stellar mass, with somewhat higher

values during hydrostatic shell silicon burning.

Some of the fundamental concepts of silicon burning will now be discussed.

For more information, the reader is referred to the pioneering work of Bodan-

sky, Clayton, and Fowler (1968) and Woosley, Arnett, and Clayton (1973).

Suppose first that 28Si and 32S are the only nuclear species present near the

conclusion of oxygen burning. The decay constants for the photodisintegra-

tions of both nuclides are displayed in Figure 5.33. The curves are calculated

from Eq. (3.46) using the rates of the corresponding forward reactions. The

photodisintegration decay constant depends strongly on the particle separation

energy (or the Q-value of the forward reaction), as explained in Section 3.1.4

(see also Figure 3.6). The proton, neutron, and α-particle separation energies

of 32S and 28Si amount to Sp = 8.90 MeV, Sn = 15.00 MeV, S𝛼 = 6.95 MeV, and
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Figure 5.33 Decay constants for the photodisintegrations of 28Si (solid lines) and 32S

(dashed lines) versus temperature. The curves are calculated from the rates of the corre-

sponding forward reactions.

Sp = 11.60 MeV, Sn = 17.20 MeV, S𝛼 = 9.98 MeV, respectively. Hence,
32S is the

more fragile nucleus and is destroyed first. As the core temperature increases

above T ≈ 2 GK, 32S will be consumed via 32S(𝛾 ,𝛼)28Si and 32S(𝛾 ,p)31P. The last

reaction is quickly followed by sequences, such as 31P(𝛾 ,p)30Si(𝛾 ,n)29Si(𝛾 ,n)28Si,

converting effectively 32S to 28Si. The destruction of 32S already starts near the

end of oxygen burning, as can be seen from Figure 5.32.

The temperature increases further until the photodisintegration of 28Si becomes

substantial.The separation energy is not the only factor determining the photodis-

integration rate, as can be seen in Figure 5.33.Thedecay constants for 28Si(𝛾 ,p)27Al

and 28Si(𝛾 ,𝛼)24Mg have comparable magnitudes although the separation energy

for the (𝛾 ,𝛼) reaction is considerably smaller than for the competing (𝛾 ,p) reaction.

Other factors that sensitively influence the photodisintegration rate are the trans-

mission probabilities of the photoejected charged particles through the Coulomb

barrier and the reduced particle widths of the resonances through which the pho-

todisintegration process proceeds.

The resulting nucleosynthesis that transforms Si and other intermediate mass

nuclides to iron peak species is complex. To obtain a first impression, the results

of a reaction network calculation, performed at constant temperature and density,

will now be discussed. Subsequently, several analytical expressions are derived to

gain a deeper understanding of silicon burning. For the network calculation, we

chose a temperature and density of T = 3.6 GK and 𝜌 = 3 × 107 g/cm3, respec-

tively. These values are similar to those obtained from stellar evolution calcu-

lations for core silicon burning in stars with an initial mass of M = 25M☉ and

with initial solar composition (Chieffi, Limongi, and Straniero, 1998; Woosley,

Heger, and Weaver, 2002). The stellar evolution models also predict significant
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abundance variations at elevated temperatures (T > 2.2 GK) between the termi-

nation of oxygen burning and the ignition of silicon burning in the stellar core

(Chieffi, Limongi, and Straniero, 1998). In particular, the 32S abundance decreases,

while the abundances of 30Si and 34S, and hence the neutron excess parameter 𝜂,

increase. As we shall see below, the initial value of 𝜂 at the beginning of silicon

burning sensitively influences silicon burning nucleosynthesis. For the network

calculation, initial abundances of Xi(
28Si) = 0.70 and Xi(

30Si) = 0.30 are chosen.

These translate into a value of 𝜂i = 0.02 for the initial neutron excess parameter,

in approximate agreement with the results presented by Thielemann and Arnett

(1985) and Chieffi, Limongi, and Straniero (1998). Thermally excited levels have

a profound effect at these elevated temperatures, not only on weak interaction

decay constants, as already mentioned in Section 5.3.3, but also on the rates of

many forward and reverse reactions through stellar enhancement factors and nor-

malized partition functions that differ significantly from unity (Section 3.1.5).The

network is solved until silicon exhaustion (X28Si < 0.001).The results are shown in

Figure 5.34.

The time-integrated net abundance flows, Fij, show an interesting pattern. Recall

that the flows Fij are integrated over the entire time until silicon exhaustion and

thus present only the gross properties of the nucleosynthesis. Nevertheless, some

of the most outstanding features of silicon burning are reflected in the global flow

pattern. The fuel consists initially only of 28Si and 30Si. These nuclides are photo-

disintegrated, producing a net downward flow from 24Mg to 4He.The recapture of

the liberated protons, α-particles, and neutrons gives rise to a net upward flow via

a multitude of secondary reactions. A dense flow pattern in the A = 25–40 mass

range, consisting of reactions such as (p,𝛾), (𝛼,𝛾), (n,𝛾), (𝛼,p), (𝛼,n), (n,p), and their

reverses, is apparent. Nuclides in the region A = 46–64 are also linked by numer-

ous processes, giving rise to another dense flow pattern.There is considerably less

nuclear activity between these two groups of nuclides in the A = 40–46 region.

The reader may already suspect that the two groups of nuclides referred to above

(A = 25–40 and A = 46–64) represent quasi-equilibrium clusters that are linked

by reactions involving nuclides in the A = 40–46 region.

The evolution of the most abundant nuclides is shown in Figure 5.34. It is

apparent how the abundances of nuclides in the A < 40 range gradually decrease

(dashed lines), while at the same time the abundances of nuclides in the iron peak

region increase (solid lines). Heavier and more tightly bound nuclides (Figure 1.9)

build up as a result of a relatively small leakage of abundance flows from the

intermediate mass region toward the iron peak. The silicon fuel is exhausted

after t = 4000 s (X28Si < 0.001). At the end of the calculation, most of the matter

(≈ 94% by mass) has been converted to 56Fe (Xf = 0.56),
52Cr (Xf = 0.19),

54Fe

(Xf = 0.11),
55Fe (Xf = 0.050), and

53Mn (Xf = 0.034). Recall, that
56Fe is one of

the most tightly bound nuclides (Section 1.5.1 and Figure 1.9). Similar values of

final abundances have been obtained in stellar evolution calculations (Chieffi,

Limongi, and Straniero, 1998). The abundances of free protons, α-particles, and

neutrons amount to Xp ≈ 10
−7, X𝛼 ≈ 10

−6, and Xn ≈ 10
−11, respectively, during

most of the burning.
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Figure 5.34 (a) Time-integrated net abun-

dance flows, and (b) abundance evolutions

for a constant temperature and density of

T = 3.6 GK and 𝜌 = 3 × 107 g/cm3, respec-

tively. Such conditions are typical of core

silicon burning in stars with an initial mass

of M = 25 M☉ and with initial solar metallic-

ity. The reaction network is solved numer-

ically until the silicon fuel is exhausted

(X28Si < 0.001 after ≈ 4000 s). Abundance

flows are represented by arrows of three

thicknesses: thick, intermediate and thin

arrows show flows of Fmax ≥ Fij > 10−2Fmax,

10−2Fmax ≥ Fij > 10−4Fmax and 10−4Fmax ≥
Fij > 10−5Fmax, respectively, where Fmax cor-

responds to the reaction with the maximum

flow. The abundance flows in part (a) show

the existence of two quasi-equilibrium clus-

ters in the A = 25–40 and A = 46–64 mass

ranges.
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The neutron excess (Section 1.8) remains initially constant (until t ≈ 200 s),

but increases significantly afterward, as can be seen in Figure 5.34 from the

transition of 54Fe to 56Fe as the most abundant species. The behavior of 𝜂

is influenced by the slowness of the weak interactions. They become mainly

important when the iron peak nuclides are reached by the flow. The electron

captures 53Mn(e−,𝜈)53Cr, 54Fe(e−,𝜈)54Mn, 55Fe(e−,𝜈)55Mn, 55Co(e−,𝜈)55Fe, and
56Co(e−,𝜈)56Fe have the largest impact on the evolution of 𝜂. The final neutron

excess amounts to 𝜂f = 0.067. Exactly the same values of Xf are obtained if the

initial abundances are placed in sulfur or argon instead of silicon isotopes, as

long as 𝜂i is kept constant. On the other hand, a variation of 𝜂i strongly influences

the resulting composition of the iron peak species. In any case, the neutron

excess becomes so large that the composition of the core matter deviates strongly

from a solar abundance distribution. The products of hydrostatic silicon burning

are completely reprocessed by the subsequent explosive burning phase before

being (partially) ejected into the interstellar medium at the end of the massive

star evolution. The core collapse and the subsequent supernova explosion

depend critically on the composition, and hence, the neutron excess, of the

matter resulting from core silicon burning. Furthermore, we already pointed

out in the discussion of the previous advanced burning stages that the released

thermonuclear energy is almost entirely radiated as neutrino–antineutrino pairs

that are produced by thermal processes. During silicon burning, however, weak

interactions contribute significantly to the neutrino losses.

The net abundance flows Fij shown in Figure 5.34 are integrated over the entire

running time of the network calculation. Figure 5.34 provides us neither with

information regarding abundance flows at a particular instant in time, nor does it

tell us which pairs (or groups) of nuclides are in equilibrium. Instead of showing

the time-integrated net abundance flows, we can gain further insight into the

nucleosynthesis by displaying the quantity 𝜙ij ≡ |ri→j − rj→i|∕max(ri→j, rj→i) (see

Eq. (3.55)). Recall, that a value of 𝜙ij ≈ 0 characterizes an equilibrium between a

pair of nuclides i and j. On the other hand, for a pair of nuclides that is far from

equilibrium we obtain 𝜙ij ≈ 1. Figure 5.35 shows the flows 𝜙ij at different instants

in time (t = 0.01 s, 1 s, and 100 s) for the same reaction network calculation dis-

played in Figure 5.34. In each panel, the thickest lines show flows with 𝜙ij ≤ 0.01
(approximate equilibrium), those of intermediate thickness represent flows with

0.01 < 𝜙ij ≤ 0.1, and the thinnest lines correspond to flows with 0.1 < 𝜙ij ≤ 1 (no
equilibrium). At early times (t = 0.01 s), we see a dense pattern of the thickest

lines in the A = 28–44 range. For each of these pairs of nuclides, the forward

reaction is partially balanced by the reverse reaction. The net abundance flow is

considerably smaller compared to the corresponding total flows. In other words,

the net abundance flow represents a very small difference between two large

and nearly equal opposing reaction rates (hence, 𝜙ij ≈ 0). These pairs of nuclides

in the A = 28–44 range are linked. They are in mutual equilibrium and form a

quasi-equilibrium cluster (Section 3.1.6).The upper mass boundary of the cluster

can be explained by the doubly-magic nature of 40Ca, since a captured α-particle,

for example, is easily removed by photodisintegration. At later times (t = 1 s), the
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Figure 5.35 Normalized net abundance

flows, 𝜙ij ≡ |ri→j − rj→i|∕max(ri→j, rj→i),

at three different times (t = 0.01 s, 1 s,

100 s) for the same reaction network cal-

culation that is shown in Figure 5.34. In

each panel, the thick lines show flows with

𝜙ij ≤ 0.01 (approximate equilibrium), those

of intermediate thickness represent flows

with 0.01 < 𝜙ij ≤ 0.1, and the thin lines cor-

respond to flows with 0.1 < 𝜙ij ≤ 1 (no equi-

librium). The flows 𝜙ij are not integrated over

time, but provide instead a snapshot for the

evolution of quasi-equilibrium clusters during

the nuclear burning.
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first cluster has grown in size (A = 24–44), while a second cluster appears in the

iron peak region (A = 50–67). These two quasi-equilibrium clusters are not in

mutual equilibrium, that is, they are not linked by the thickest lines. Closer to the

end of the calculation (t = 100 s), the two groups have merged forming one large

quasi-equilibrium cluster in the A = 24–67 region. A discussion of reactions

linking the two clusters, for a range of temperature and density conditions or in

stellar evolution models, can be found in Hix and Thielemann (1996) or Chieffi,

Limongi, and Straniero (1998), respectively.

Reaction network calculations similar to those just discussed provide a reliable

description of silicon burning nucleosynthesis. To gain further insight, we will

now derive a number of analytical expressions, for constant temperature and den-

sity conditions, by focussing our attention mainly on the reaction links between

the even–even N = Z nuclides (or 𝛼-nuclides), such as 12C, 16O, 20Ne, 24Mg, and

so on. Although the following considerations are very helpful, the reader should

be aware that any truncation of the complex problem of silicon burning (i.e., the

restriction to certain nuclides and reactions) will inevitably give rise to oversim-

plifications.

Suppose first, that the fuel consists only of 28Si and that (𝛼,𝛾) and (𝛾 ,𝛼) reac-

tions are the only interactions in the ensuing nuclear rearrangement.The reaction

links between 12C and 40Ca are shown in Figure 5.36b. The numbers next to the

arrows indicate the decay constants 𝜆𝛼 or 𝜆𝛾 (in units of s
−1) at T = 3.6 GK for

(𝛼,𝛾) or (𝛾 ,𝛼) reactions, respectively. The quantity 𝜆𝛼 is calculated from the reac-

tion ratesNA⟨𝜎𝑣⟩ assuming 𝜌 = 3 × 107 g/cm3 andX𝛼 = 10−6 (see Eq. (3.23)).The
latter value is adopted from the network calculation shown in Figure 5.34. Also,

𝜆𝛼 and 𝜆𝛾 for a pair of forward and reverse reactions are related by Eq. (3.46). An

interesting point becomes apparent here. The decay constant for 28Si(𝛾 ,𝛼)24Mg is

considerably smaller than the 𝜆𝛾 values for all other α-nuclides shown. Some of

the liberated α-particles will be captured by 24Mg, a process that is more likely to

occur than the competing photodisintegration of 24Mg [𝜆𝛼(
24Mg)≫ 𝜆𝛾 (

24Mg)].

Hence, the 24Mg and 28Si abundances will quickly seek an equilibrium. Another

fraction of the liberated α-particles is captured by 28Si. The subsequent photodis-

integration of 32S is more likely to occur than the competing 32S(𝛼,𝛾)36Ar reaction

[𝜆𝛼(
32S)≪ 𝜆𝛾 (

32S)]. As a result, the 28Si and 32S abundances will also seek quickly

an equilibrium. The number densities of 24Mg and 28Si, or of 28Si and 32S, are

related by the Saha equation (see Eq. (3.50)),

N3
N0N1

=
1

N1

𝜆1(0)

𝜆𝛾 (3)
=
1

𝜃

(
M0 +M1
M0M1

)3∕2
g3
g0g1

Gnorm
3

Gnorm
0

Gnorm
1

eQ01→𝛾3∕kT (5.122)

with 𝜃 ≡ (2𝜋mukT∕h
2)3∕2 = 5.943 × 1033T

3∕2

9
cm−3; gi denotes the statistical

weights, mu is the atomic mass unit, and the index 1 refers to α-particles for the

pairs of nuclides quoted above (see Problem 5.6).

Similar equilibria are established between pairs of heavier α-nuclides since in

each case the (𝛾 ,𝛼) reaction is more likely to occur than the competing (𝛼,𝛾) reac-

tion (Figure 5.36b). Hence, the number densities of 24Mg, 32S, 36Ar, and so on,
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Figure 5.36 Reaction chains in silicon burn-

ing. (a) The reaction chain 28Si↔32S↔33S↔34S

in equilibrium. (b) (𝛼,𝛾)↔(𝛾 ,𝛼) reaction links

between 12C and 40Ca. The numbers next to

the arrows indicate values of the decay con-

stants 𝜆𝛼 and 𝜆𝛾 (in units of s−1) for (𝛼,𝛾)

and (𝛾 ,𝛼) reactions, respectively, assuming

a temperature of T = 3.6 GK. The quantity

𝜆𝛼 is calculated using 𝜌 = 3 × 107 g/cm3

and X𝛼 = 10-6. The latter value is adopted

from the network calculation displayed in

Figure 5.34. Nuclides located within the

region demarked by the dashed lines are

in quasi-equilibrium. (c) The closed reac-

tion chain 28Si↔32S↔31P↔30Si↔29Si↔28Si in

equilibrium.

are all in quasi-equilibrium with 28Si and the free α-particles. Photodisintegration

reactions of the type (𝛾 ,p) and (𝛾 ,n) do also occur and give rise to the synthesis

of non-α-nuclides that also come into equilibrium with the α-nuclides (and with
28Si in particular) and the free nucleons. As a result, a quasi-equilibrium group of

nuclides comes into existence, which is built around the tightly bound 28Si. This

conclusion remains unchanged if we take the 28Si(𝛾 ,p)27Al reaction into account,

which has been disregarded so far. According to Figure 5.33, the 28Si(𝛾 ,p)27Al reac-

tion is even more likely to occur above T = 2.2 GK than the 28Si(𝛾 ,𝛼)24Mg reac-

tion. Nevertheless, 28Si has by far the smallest total decay constant, 𝜆 = 𝜆𝛾𝛼 +

𝜆𝛾p + 𝜆𝛾n, among all nuclides in the A = 24–67 range. Furthermore, 24Mg comes

into equilibrium with 28Si, thereby greatly slowing the disintegration of 28Si (see

below). In summary, the quasi-equilibriumwith respect to the residual 28Si can be

maintained because the intermediate-mass nuclei capture and emit α-particles,

protons, or neutrons at rates considerably larger than the small net rate of 28Si
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disintegration.The time scale of the process is thus determined by the rate atwhich
28Si can be decomposed.

The quasi-equilibrium abundance of a nuclide A
Z
YN relative to

28Si is given by

(Bodansky, Clayton, and Fowler, 1968, ; see also Problem 5.7)

NY

N28Si
= N

𝛿𝛼
𝛼 N

𝛿p
p N

𝛿n
n

⎛⎜⎜⎝
MY

M28SiM
𝛿𝛼
𝛼 M

𝛿p
p M

𝛿n
n

⎞⎟⎟⎠
3∕2

Gnorm
Y

Gnorm
28Si

gY

2𝛿p+𝛿n

1

𝜃𝛿𝛼+𝛿p+𝛿n

× e[B(Y )−B(
28Si)−𝛿𝛼B(𝛼)]∕kT (5.123)

where A = Z + N ;N𝛼 ,Np, andNn are the number abundances of α-particles, pro-

tons, and neutrons, respectively; 𝛿𝛼 , 𝛿p, and 𝛿n specify the number of α-particles

and nucleons of nuclide A
Z
YN in excess of their number in

28Si.They are computed

relative to the heaviest α-nucleus contained within A
Z
YN . If this heaviest α-nucleus

contains N ′ = Z′ protons and neutrons, then the integers 𝛿i are given by 𝛿𝛼 =

(N ′ + Z′ − 28)∕4, 𝛿p = Z − Z′, and 𝛿n = N − N ′. For example, 34S may be consid-

ered being composed of 32S plus two neutrons, hence, 𝛿𝛼 = (16 + 16 − 28)∕4 = 1,

𝛿p = 16 − 16 = 0, and 𝛿n = 18 − 16 = 2. The exponent B(Y ) − B(28Si) − 𝛿𝛼B(𝛼) is

the energy required to decompose A
Z
YN into

28Si +𝛿𝛼
4He + nucleons, with B(Y )

the binding energy of A
Z
YN . For example, for the ratio N56Ni∕N28Si we obtain from

Eq. (5.123)

N56Ni
N28Si

= N7
𝛼

(
2

47

)3∕2 1
𝜃7

e[B(
56Ni)−B(28Si)−7B(𝛼)]∕kT (5.124)

whereB(56Ni) − B(28Si) − 7B(𝛼) = 49.385 MeV.This result will be used later in the

discussion of the energy generation rate. The free α-particles, protons, and neu-

trons maintain an equilibrium via many different closed reaction chains, such as
28Si↔32S↔31P↔30Si↔29Si↔28Si (Figure 5.36c). The light-particle abundances are
related by (Problem 5.8)

N𝛼 =
1

16
N2
n
N2
p

1

𝜃3

(
M𝛼

M2
p
M2

n

)3∕2
eB(𝛼)∕kT (5.125)

where B(𝛼) = 28.295 MeV is the binding energy of the α-particle. From

Eqs. (5.123) and (5.125), one can see that the equilibrium abundance of each

nucleus relative to 28Si is determined by the abundances of any two light particles.

We also conclude that the quasi-equilibrium abundance of nucleus A
Z
YN is

uniquely specified by the four parameters N28Si, N𝛼 , Np, and T .

The net downward flow from 24Mg to 4He will be considered next (Figure 5.34).

According to Figure 5.35, the lower bound of the silicon quasi-equilibrium cluster

is 24Mg. Nuclides lighter than 24Mg are generally not in equilibriumwith 28Si.This

can also be seen from the decay constants given in Figure 5.36b. The α-captures

on 20Ne and 12C are less likely to occur than the competing (𝛾 ,𝛼) reactions

[𝜆𝛼𝛾 (
20Ne)≪ 𝜆𝛾𝛼(

20Ne) and 𝜆𝛼𝛾 (
12C)≪ 𝜆𝛾3𝛼(

12C)] and, hence, the abundances

of the pairs 20Ne–24Mg and 12C–16O will not quickly seek an equilibrium. The

effective rate of 28Si destruction is then determined by the photodisintegration of
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24Mg. Net flows fi between pairs of the light α-nuclides are given by Eqs. (3.23)

and (3.53),

f24Mg→20Ne = N24Mg𝜆𝛾𝛼(
24Mg) − N20Ne𝜆𝛼𝛾 (

20Ne) (5.126)

f20Ne→16O = N20Ne𝜆𝛾𝛼(
20Ne) − N16O𝜆𝛼𝛾 (

16O) (5.127)

f16O→12C = N16O𝜆𝛾𝛼(
16O) − N12C𝜆𝛼𝛾 (

12C) (5.128)

f12C→4He = N12C𝜆𝛾3𝛼(
12C) − r3𝛼 (5.129)

where r3𝛼 = N𝛼𝜆3𝛼∕3 is the rate of the 3𝛼 reaction, which depends on N3
𝛼
(see

Eq. (5.83)); 𝜆𝛾3𝛼(
12C) is the decay constant for the disintegration 12C → 𝛼 + 𝛼 + 𝛼.

Since the decomposition of 28Si is so slow, and thus determines the overall time

scale of the process, we conclude that the abundances of the light α-nuclides are

small compared to the 28Si abundance. This also means that the abundances of

the light α-nuclides achieve a steady state, that is, the abundance flow into each

of the nuclides 20Ne, 16O, and 12C is balanced by the flow out. Therefore, the

net flows fi are equal, f24Mg→20Ne = f20Ne→16O = f16O→12C = f12C→4He ≡ fan. With this

assumption, the above system of equations can be solved for fan, with the result

(Problem 5.9)

fan =

N24Mg𝜆𝛾𝛼(
24Mg) −

𝜆𝛼𝛾 (
20Ne)

𝜆𝛾𝛼(
20Ne)

𝜆𝛼𝛾 (
16O)

𝜆𝛾𝛼(
16O)

𝜆𝛼𝛾 (
12C)

𝜆𝛾3𝛼(
12C)

r3𝛼

1 +
𝜆𝛼𝛾 (

20Ne)

𝜆𝛾𝛼 (
20Ne)

[
1 +

𝜆𝛼𝛾 (
16O)

𝜆𝛾𝛼 (
16O)

(
1 +

𝜆𝛼𝛾 (
12C)

𝜆𝛾3𝛼(
12C)

)] (5.130)

The above analytical expression gives the effective photodisintegration rate of
24Mg and, hence, the effective rate for the conversion of 28Si into heavier nuclides

as a function of temperature and α-particle abundance. The 24Mg abundance,

N24Mg, can be obtained from Eq. (5.122).

Figure 5.37 compares the total 28Si photodisintegration rate, r28Si+𝛾 =

N28Si[𝜆𝛾𝛼(
28Si) + 𝜆𝛾p(

28Si)], where 𝜆𝛾n(
28Si) is negligible, with the effective

rate fan of
28Si consumption. The curves are computed for the conditions

T = 3.6 GK and 𝜌 = 3 × 107 g/cm3 as a function of the remaining 28Si abundance.

The α-particle abundance is adopted from the numerical results of a network

calculation (Figure 5.34). A few interesting points are apparent. First, it can be

seen that the effective rate of 28Si consumption is two to three orders ofmagnitude

smaller than the total photodisintegration rate of 28Si. This is caused by the 28Si

photodisintegration flow being almost exactly balanced by the flow upward from
24Mg (so that the net flow is small) and supports the above arguments regarding

the very slow conversion of 28Si. Second, it is apparent that the downward

flow, fan, from
28Si decreases with time as 28Si burns. Since the liberated light

particles are used to build up iron peak nuclides, the upward flow from 28Si

also decreases with time as 28Si burns. Third, the long-dashed line shows the

flow fnum = f24Mg→20Ne, which is directly obtained from a network calculation

according to Eq. (5.126). The curves for fan and fnum are in good agreement.

Hence, Eq. (5.130) provides a reliable approximation for the effective rate of 28Si

consumption. This also means that only (𝛾 ,𝛼) or (𝛼,𝛾) reactions between pairs

of α-nuclides are important for the downward flow from 28Si to 4He. However,
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Figure 5.37 Comparison of total 28Si pho-

todisintegration rate (r28Si+𝛾 ; short-dashed

line) with the effective rate of 28Si con-

sumption (fan; solid line). The curves are

computed as a function of the remain-

ing 28Si abundance for the conditions T =

3.6 GK and 𝜌 = 3 × 107 g/cm3. The α-particle

abundance is adopted from the numerical

results of the network calculation displayed

in Figure 5.34. The long-dashed line shows

the flow f24Mg→20Ne = fnum that is directly

obtained from the network calculation.

for different temperature and density conditions, a number of other reactions

play an important role as well (Hix and Thielemann, 1996). Finally, for the

temperature adopted here, the curve for fan is almost indistinguishable from

the values obtained with the approximation f ≈ N24Mg𝜆𝛾𝛼(
24Mg). For increasing

temperature, the α-particle capture on 20Ne becomes important (see Eq. (5.130))

and, consequently, the above approximation deviates from fan.

The total energy release during hydrostatic silicon burning can be estimated

approximately from Eq. (3.69), if we assume that for each two 28Si nuclei that are

destroyed, one 56Fe nucleus is produced (see also Figure 5.34). The photodisinte-

gration of the first 28Si nucleus provides a free α-particle that is then captured by

the second 28Si nucleus. With QSi ≈ Q228Si→56Fe = 17.62 MeV, we find

∫ 𝜀Si(t) dt =
NAQSi
2M28Si

ΔX28Si = 1.90 × 10
23ΔX28Si (MeV∕g) (5.131)

where ΔX28Si is the mass fraction of the consumed silicon fuel. This value is

smaller than what is expected from either carbon or oxygen burning, but exceeds

the total energy released during neon burning (see Eqs. (5.104), (5.109), and

(5.121)).

The nuclear energy generation rate cannot be described precisely by an ana-

lytical expression since the nuclear transformations during silicon burning are

very complex. Reaction network calculations show that the energy generation rate

is sensitive to the temperature and density conditions, but also to the neutron



5.3 Advanced Burning Stages 431

excess (Hix and Thielemann, 1996). In the simplest case, an order-of-magnitude

estimate can be found if one assumes that the initial neutron excess is very small

(𝜂 ≈ 0), that weak interactions are negligible, and that for each two 28Si nuclei

that are destroyed one 56Ni nucleus is produced (Bodansky, Clayton, and Fowler,

1968). Recall from Figure 1.9 that 56Ni is the most tightly bound N = Z nuclide.

As explained above, the rate of 28Si consumption is mainly determined by the
24Mg(𝛾 ,𝛼)20Ne reaction. Starting from Eq. (3.64), one finds

𝜀Si =
Q228Si→56Ni

𝜌
r228Si→56Ni ≈

Q228Si→56Ni
𝜌

r24Mg(𝛾,𝛼)20Ne

=
Q228Si→56Ni

𝜌
N24Mg𝜆𝛾𝛼(

24Mg) (5.132)

The quantity N24Mg can be replaced by the
28Si abundance using Eq. (5.122) (see

also Problem 5.6). The decay constant 𝜆𝛾𝛼(
24Mg) can be expressed in terms of the

corresponding forward reaction rate using Eq. (3.46). The normalized partition

functions for 20Ne, 24Mg, and 28Si in these two expressions are close to unity for

T ≤ 5 GK. Equation (5.122) contains the α-particle abundance, which is derived
from Eq. (5.124). Substitution of these three expressions into Eq. (5.132) gives

𝜀Si = 9.8685 × 10
9 2
3∕14

8

Q228Si→56Ni
𝜌

(
M20NeM

2
𝛼

M28Si

)3∕2
N28Si

(
N28Si
N56Ni

)1∕7
× e11.605[B(

56Ni)−B(28Si)−7B(𝛼)]∕(7T9)e−11.605[Q20Ne(𝛼,𝛾)+Q24Mg(𝛼,𝛾)]∕T9

× T
3∕2

9
NA⟨𝜎𝑣⟩20Ne(𝛼,𝛾) (MeVg−1s−1) (5.133)

If one assumes in addition that most of the matter resides in either 28Si or 56Ni,

then X28Si + X56Ni = 1. Inserting the numerical values ofQ228Si→56Ni = 10.918 MeV,

Q20Ne(𝛼,𝛾) = 9.317 MeV, Q24Mg(𝛼,𝛾) = 9.984 MeV, and [B(
56Ni) − B(28Si) − 7B(𝛼)] =

49.385 MeV, and replacing the number abundances by mass fractions (see

Eq. (1.14)) yields

𝜀Si = 1.2985 × 10
34X28Si

(
2X28Si
1 − X28Si

)1∕7
e−142.12∕T9T

3∕2

9
NA⟨𝜎𝑣⟩20Ne(𝛼,𝛾)

(MeVg−1s−1) (5.134)

where [2X28Si∕(1 − X28Si)]
1∕7 ≈ 1 within a factor of two between X28Si = 0.01 −

0.99. Equation (5.134) is independent of the density. An analytical expression

for the 20Ne(𝛼,𝛾)24Mg reaction rate is given in Section 5.3.2. The temperature

dependence of the energy generation rate during silicon burning is then

𝜀Si ∼ T2.229
9

e−12.681∕T9e−142.12∕T9T1.5
9

∼ T3.729
9

T
154.80∕T9
9

(5.135)

where the term exp(−154.80∕T9) is derived according to the method described by

Eqs. (3.85)–(3.90). For example, near T0 = 3.6 GK we find

𝜀Si(T) = 𝜀Si(T0)
(
T∕T0

)47
(5.136)
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Since so many nuclides achieve quasi-equilibrium, the thermonuclear rates of

most reactions are not important for the nucleosynthesis and energy production

during silicon burning. What is mainly needed in terms of nuclear physics

input are binding energies (or Q-values), nuclear masses, spins (see Eqs. (5.122)

and (5.123)), and stellar weak interaction rates. Binding energies and masses of

nuclides close to stability are well known.The thermonuclear rates are important,

however, for those reactions that are not in quasi-equilibrium for a significant

amount of time during the burning. This applies to reactions that determine

the net downward flow from 24Mg, and to those that mediate between the two

quasi-equilibrium clusters built around 28Si and the iron-peak nuclides. For the

reaction network calculation discussed above, the downward flow from 24Mg is

governed by 24Mg(𝛾 ,𝛼)20Ne, while 42Ca(𝛼,𝛾)46Ti and 45Sc(p,𝛾)46Ti are among the

reactions which link the two clusters. Detailed lists of reactions are given in Hix

and Thielemann (1996) and Chieffi, Limongi, and Straniero (1998). The reverse
24Mg(𝛾 ,𝛼)20Ne reaction rate can be calculated from the forward 20Ne(𝛼,𝛾)24Mg

rate, which has already been discussed in connection with carbon and neon

burning (Sections 5.3.1 and 5.3.2). Near T ≈ 3.6 GK, the 20Ne(𝛼,𝛾)24Mg reaction

rate may be subject to systematic errors of about a factor of two, as can be seen

from the different results reported by Caughlan and Fowler (1988), Angulo

et al. (1999), and Rauscher et al. (2000). Several, but not all, of the reactions

linking the two quasi-equilibrium clusters have been measured directly in the

Gamow peaks appropriate for hydrostatic and explosive silicon burning. Among

the measured reactions are 42Ca(𝛼,𝛾)46Ti, 42Ca(𝛼,p)45Sc (Mitchell et al., 1985),
42Ca(𝛼,n)45Ti (Cheng and King, 1979), 41K(𝛼,p)44Ca (Scott et al., 1991) and
45Sc(p,𝛾)46Ti (Solomon and Sargood, 1978). Typical reaction rate uncertainties

are about ±20% where direct data exist. Other mediating reactions, some of

which involve radioactive target nuclei, such as 41Ca, 44Sc, and 44Ti, have not

been measured yet. In these cases, the Hauser–Feshbach statistical model is

used to estimate the reaction rates theoretically (Goriely, 1998; Rauscher and

Thielemann, 2000).

5.3.5

Nuclear Statistical Equilibrium

As the 28Si disappears at the end of silicon burning, the temperature in the stellar

core increases steadily (Section 1.4.3 and Figure 5.1). At some point, the previ-

ously nonequilibrated reactions in the A < 24 region come into equilibrium as

well (Figures 5.35 and 5.36).The last link to achieve equilibrium is 3𝛼 ↔12C. Every
nuclide in the network is now in equilibrium via strong and electromagnetic inter-

actions and one large quasi-equilibrium group stretches from p, n, 𝛼 to the iron

peak nuclides.This situation is referred to as nuclear statistical equilibrium (NSE).

For a distinction between nuclear statistical equilibrium and the related e-process

(Burbidge et al., 1957), see Wallerstein et al. (1997).

Weak interactions do not participate in the equilibrium. For example, the

reverse link of electron capture on some parent nucleus is neutrino capture on
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the corresponding daughter nucleus. Neutrinos normally escape from the star

without interaction since their mean free path exceeds the stellar radius. Hence, a

true equilibrium involving weak interactions is not achieved. In nuclear statistical

equilibrium, the abundance of any nuclide A
𝜋
Y
𝜈
can be determined by repeated

application of the Saha equation (see Eq. (5.122)). The result is (Clifford and

Tayler, 1965, see also Problem 5.10)

NY = N𝜋
p
N𝜈
n

1

𝜃A−1

(
MY

M𝜋
p
M𝜈

n

)3∕2
gY

2A
Gnorm

Y
eB(Y )∕kT (5.137)

with 𝜃 defined as in Eq. (5.122), B(Y ) the binding energy of A
𝜋
Y𝜈 and A = 𝜋 + 𝜈.

The symbols 𝜋 and 𝜈 are used instead of Z and N for the number of protons

and neutrons, respectively, to avoid confusion with the number density Ni. The

abundance of any isotope is hence given in terms of its nuclear properties (bind-

ing energy, mass, spin, and so on) and the free nucleon abundances, Np and Nn.

The above equation is by itself inadequate to yield the equilibrium abundance NY

sinceNp andNn are not given. But two additional constraints can be applied. One

unknown quantity (say Np) can be eliminated using conservation of mass (see

Eq. (1.13))∑
i

Xi =

∑
i NiMi

𝜌NA

= 1 (5.138)

where the sum i is over all nuclides in the network, including free protons, neu-

trons, and α-particles. Recall that the strong and electromagnetic interactions

occur considerablymore rapidly than weak interactions.Thus, nuclei and photons

come into equilibrium in a relatively short time, while the total numbers of free

and bound protons and neutrons are essentially constant. Conservation of total

charge is frequently expressed by the requirement that the total number densities

of (free and bound) protons and neutrons must preserve the neutron excess (see

Eq. (1.36))∑
i

(𝜈i − 𝜋i)

Mi

Xi =

∑
i Ni(𝜈i − 𝜋i)

𝜌NA

≡ 𝜂 (5.139)

It follows immediately from Eqs. (5.137)–(5.139) that the abundance of any

nuclide in nuclear statistical equilibrium is specified by only three independent

parameters: temperature, density, and neutron excess. Weak interactions may

also occur. They are assumed to be sufficiently slow so that nuclear statistical

equilibrium at a specific value of 𝜂 is established in a considerably shorter time

than the time required for a significant change in the value of 𝜂 to occur. Weak

interactions must be monitored carefully because the composition of the iron

peak depends sensitively on 𝜂, as will be shown below.

In the following, some interesting properties of Eq. (5.137) will be explored.

First, consider the simplest case with 𝜂 ≈ 0. Assume that weak interactions are

negligible, and that the decomposition of 28Si during the preceding silicon burn-

ing stage has mainly produced 56Ni, which is the most tightly bound species with
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N = Z (Figure 1.9). By combining two equations of the form of Eq. (5.137), one for
4He and the other for 56Ni, one finds

N144He
N56Ni

= 𝜃13
242

563∕2
e[14B(

4He)−B(56Ni)]∕kT (5.140)

where g4He = g56Ni = 1 andG
norm
4He

= Gnorm
56Ni

= 1.The latter equality holdswithin 10%

up to T = 5 GK. Furthermore, 14B(4He) − B(56Ni) = −87.853 MeV is the energy

required to separate 56Ni into 14 α-particles. Now, assume that the stellar plasma

consists entirely of 4He and 56Ni. We would like to know the T–𝜌 conditions for

which themass fractions of these two nuclides are equal (X4He = X56Ni = 0.5).This

boundary can be calculated by rewriting Eq. (5.140) in terms ofmass fractions and

by solving for the density 𝜌. The numerical result is

𝜌 = 3.80 × 1011T
3∕2

9
e−78.42∕T9 (g∕cm3) (5.141)

Similarly, another boundary can be obtained assuming instead that the matter

consists entirely of α-particles and (free) nucleons to equal amounts (see Prob-

lem 5.11). These two boundaries are displayed in Figure 5.38. They reflect the

competition between 56Ni, 4He, and nucleons in a plasma at nuclear statistical

equilibrium for 𝜂 ≈ 0. In the lower temperature region (to the left of the solid

line), 56Ni dominates the composition. At intermediate temperatures (between

the solid and the dotted lines), 4He is the dominant nucleus. At higher tempera-

tures (to the right of the dotted line), the composition consists mainly of protons

and neutrons. It is apparent that, with rising temperatures and given density,

an increasing fraction of the composition resides in light particles (𝛼, n, p). This

circumstance is important, both for triggering the collapse of the core of an

evolved massive star and for causing energy losses to the shock wave generated

by the core bounce (Section 1.4.3). Also, for decreasing densities at a given

temperature, an increasing fraction of the composition resides in light particles.

Consider now temperature–density conditionswheremost of thematter resides

in iron peak nuclides (the region to the left of the solid line in Figure 5.38). We

would like to find the dominant constituents favored by nuclear statistical equilib-

rium for a non-zero neutron excess parameter. A value of 𝜂 > 0will allow the dom-

inant nucleus to be one with a neutron excess. If the plasma would consist of only

one species, then 𝜂 must be equal to the individual neutron excess, (N − Z)∕A,

of the nuclide in question. It is then reasonable to assume that the abundance of

each nuclide will be at maximum close to its individual neutron excess. The most

abundant nuclide in a composition of given neutron excess 𝜂 is then, in general, the

one with an individual neutron excess of (N − Z)∕A ≈ 𝜂 and the largest binding

energy (see Eq. (5.137)).

The abundances of the dominant nuclides versus neutron excess parameter 𝜂

in a nuclear statistical equilibrium composition at T = 3.5 GK and 𝜌 = 107 g/cm3

are shown in Figure 5.39. The results are calculated from Eqs. (5.137)–(5.139) by

taking into account individual binding energies, spins, and normalized partition

functions for a large set of nuclides (from H to Zr). As expected, for 𝜂 = 0 the

dominant nucleus is 56Ni [(N − Z)∕A = (28 − 28)∕56 = 0], which has the largest
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Figure 5.38 Temperature–density condi-

tions in a plasma at nuclear statistical equi-

librium with 𝜂 ≈ 0 for X56Ni = X4He = 0.5

(solid line) and X4He = 0.5, Xp = Xn = 0.25

(dotted line). The lines define regions of

the dominant nuclear constituents. The

two boundaries are not sharp since a dis-

tribution of nuclei and nucleons exists at

all T–𝜌 conditions. The above assump-

tions are schematic because a region exists

above the solid line where nuclear statisti-

cal equilibrium favors 54Fe + 2p over 56Ni as

the dominant constituent (Clayton, 1983).

The point here is that, with rising tempera-

tures at a given density, or with decreasing

densities at a given temperature, an increas-

ing fraction of the composition resides in

light particles (𝛼, p, n) and that this transfor-

mation absorbs a large amount of energy.

The boundaries at the higher temperatures

are only approximate since the normalized

partition functions have been set equal

to unity.

binding energy per nucleon among all N = Z species (Figure 1.9). Near 𝜂 = 0.04,
54Fe dominates [(28 − 26)∕54 = 0.037], while 56Fe is the most abundant nucleus

for 𝜂 ≈ 0.07 [(30 − 26)∕56 = 0.071]. For larger values of 𝜂, the equilibrium com-

position shifts to still heavier and more neutron-rich nucildes. Interestingly, the

most tightly bound nuclide with (N − Z)∕A ≈ 𝜂 is not always the most abundant

one. For example, consider the species 54Fe and 58Ni, which have similar values

of (N − Z)∕A. The binding energies per nucleon, B∕A, are almost identical. This

means that the binding energy, B, is larger for 58Ni. Nevertheless, at 𝜂 ≈ 0.04 the

mass fraction of 54Fe exceeds the 58Ni mass fraction by more than a factor of two

in Figure 5.39. Hence, the binding energy is not the only factor influencing the

abundance. In the above example, the A dependences of both 𝜃 and 𝜌 also play an

important role (see Eq. (5.137)).

Interestingly, for the temperature and density conditions shown in Figure 5.39,

the abundance distributions on either side of 𝜂 = 0 display a very different behav-

ior. It can be seen that on the proton-rich side (𝜂 < 0) the nuclide 56Ni remains the

most abundant species.Themain reason is the steeper drop of the binding energy

per nucleon from the peak at 56Ni toward lighter nuclides compared to heavier
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Figure 5.39 Abundances of the domi-

nant species versus neutron excess param-

eter 𝜂 (or electron mole fraction Ye) in a

nuclear statistical equilibrium composition at

T = 3.5 GK and 𝜌 = 107 g/cm3. The abun-

dances on either side of 𝜂 = 0 (Ye = 0.5)

show a different behavior. (Courtesy of Ivo

Seitenzahl.)

nuclides. For nuclear statistical equilibrium compositions at different tempera-

tures, see Seitenzahl et al. (2008).

An extensive discussion of nuclear statistical equilibrium is given in Clifford

and Tayler (1965). It is found that abundances vary rapidly with 𝜂, fairly rapidly

with temperature T , and very slowly with density 𝜌. Furthermore, at lower tem-

peratures there are fewer nuclides with relatively large abundances, whereas the

abundances are spreadmore evenly at higher temperatures, which is also apparent

from the exponential factor eB(Y )∕kT in Eq. (5.137).

A system at any temperature and density will come into equilibrium, provided

it is maintained long enough. When we say that, at a particular temperature of

T , the nuclear reactions are in equilibrium, we mean that this temperature exists

long enough for a good approximation to equilibrium to occur. The nuclear gas

requires a finite amount of time to adjust to equilibrium. The approximate time

(in seconds) to reach nuclear statistical equilibrium for given values of T and 𝜌

can be estimated from the numerical expression (Khokhlov, 1991)

𝜏NSE = 𝜌
0.2e179.7∕T9−40.5 (s) (5.142)

where 𝜌 is in units of gram per cubic centimeter. This time is displayed in

Figure 5.40 versus temperature for two values of the density (𝜌 = 104 g/cm3 and

𝜌 = 1010 g/cm3). At T = 4 GK, for example, nuclear statistical equilibrium is

established in about 1 h, while at T = 6 GK the time is only ≈ 10−3 s. Therefore,

at these higher temperatures, nuclear statistical equilibrium is also achieved in

explosive events (see below). At lower temperatures, however, if thermodynamic
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Figure 5.40 Approximate time to reach nuclear statistical equilibrium versus temperature.

The solid lines are computed for two different densities (𝜌 = 104 g/cm3 and 𝜌 = 1010 g/cm3)

using Eq. (5.142).

conditions vary sufficiently rapidly, nuclear statistical equilibrium may provide a

poor approximation for the abundances.

As already pointed out in Section 5.3.4, the neutron excess at the end of sili-

con burning amounts to 𝜂f = 0.067 for the stellar model considered here. As the

temperature and density increase steadily in the core (Figure 5.1a), weak inter-

actions give rise to a continuous change of the neutron excess parameter and

nuclear statistical equilibrium adjusts the composition accordingly. For the last

pre-supernova model computed by Chieffi, Limongi, and Straniero (1998), the

core temperature and density amount to T = 5.5 GK and 𝜌 = 1.6 × 109 g/cm3,

respectively, with a neutron excess of 𝜂 = 0.13. Consequently, the most abundant

nuclides at this stage in the core are 60Fe, 64Ni, and 54Cr, with individual neutron

excesses of (N − Z)∕A = 0.133, 0.125, and 0.110, respectively.

The structure of a 25M⊙ star of solar metallicity at this stage of its evolution

is schematically shown in Figure 1.7 (left side). It displays the most abundant

nuclides in each layer and, at the bottom, the nuclear burning stage that produced

those particular ashes. The subscripts “C” and “S” stand for core and shell

burning, respectively. The label “Fe” in the core denotes the most abundant iron

peak nuclides at a given value of the neutron excess. In the next layer, on top of

the core, the species 28Si is the most abundant nuclide, which is the product of

oxygen shell burning. The nuclear transformation of 28Si to iron peak nuclides

(silicon shell burning) continues at the intersection of the silicon layer and the

iron core; the transformation of 16O to 28Si (oxygen shell burning) takes place

at the intersection of the oxygen and silicon layers; and so on. The dramatic

processes that take place next in the innermost region of the massive star will be

discussed below.
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5.4

Explosive Burning in Core-Collapse Supernovae (Type II, Ib, Ic)

5.4.1

Core Collapse and the Role of Neutrinos

Core-collapse supernovae are powered by the release of gravitational energy in

the collapse of a massive star’s core to a proto-neutron star. We will now con-

sider the core collapse in more detail. Before the onset of the collapse (t = 0),

temperatures and densities at the center of the iron core amount to T ≈ 10 GK

and 𝜌 ≈ 1010 g/cm3, respectively. Under these conditions, nuclear statistical equi-

librium is established. The silicon burning shell has continuously increased the

mass of the core, which is supported by electron degeneracy pressure. When the

core reaches the Chandrasekhar mass (≈ 1.4M☉), it has no other thermonuclear

energy source available to support the pressure and it becomes unstable to gravi-

tational collapse.

The collapse and the infall dynamics depend sensitively on two parameters,

the electron mole fraction, Ye (see Eq. (1.37)), and the entropy per baryon, s. For

a radiation dominated environment, the entropy per baryon is related to the

photon-to-baryon ratio, 𝜙, via

s ∼ 10𝜙 ∼
T3

𝜌
(5.143)

where T and 𝜌 denote the temperature and density, respectively. In simple terms,

for a small value of the entropy per baryon, nuclear statistical equilibrium favors

a composition of iron peak nuclides that are tightly bound. On the other hand, a

large value of s implies that many photons are available per baryon, which favors

the photodisintegration of heavier nuclei into free nucleons.

During the early stages, the core collapse is accelerated by two effects. First,

as the (electron) density increases, electrons capture onto nuclei, (e−, 𝜈e), hence

removing electrons that were contributing to the pressure. As Ye decreases, the

neutron excess increases in the core and, in addition, a burst of electron neutrinos

is produced. Second, at the very high temperatures the thermal radiation becomes

sufficiently energetic and intense that iron peak nuclides are photodisintegrated

into lighter and less stable species, thus removing energy that could have provided

pressure. Within a fraction of a second, the core with a size of several thousand

kilometers collapses to a proto-neutron star of several tens of kilometer radius.

The most important neutrino interactions during the collapse are (Bruenn

and Haxton, 1991): (neutral current) elastic scattering on nuclei, (𝜈e, 𝜈e);

electron-neutrino scattering, e−(𝜈e, 𝜈e) e
−; inverse β-decay, (𝜈e, e

−); and inelastic

scattering on nuclei, (𝜈e, 𝜈
′
e
). At t ≈ 0.1 s, when the density reaches a value

near ≈ 1012 g/cm3, the neutrino diffusion time becomes longer than the collapse

time and, consequently, the neutrinos become trapped (Bethe, 1990). Inside this

region, called neutrino sphere, the neutrinos are coupled via interactions with

matter and are in thermal equilibrium. Outside, the neutrinos escape almost
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freely, with an average energy that is determined at the radius of the neutrino

sphere, R𝜈 . The location of the neutrino sphere depends both on the neutrino

type and flavor (Section 1.8), and on the neutrino energy. At t ≈ 0.11 s, the inner

core (M ≈ 0.5M☉) reaches nuclear densities (≈ 10
14 g/cm3), bounces, and drives

a shock wave into the infalling matter. At the time of the bounce, the electron

mole fraction in the inner core is relatively small (Ye ≈ 0.3 for M ≲ 0.5M☉) and

increases gradually in the outer core (Ye ≈ 0.45 nearM ≈ 1.0M☉). At t ≈ 0.12 s,

the prompt shock propagates outward, but loses severely energy by dissociating

iron peak nuclei into free nucleons (≈ 9 MeV per nucleon). When the shock

reaches the neutrino sphere, additional electron captures on free protons also

remove energy from the shock, giving rise to a strong burst of electron neutrinos

(prompt 𝜈e burst, corresponding to ≈ 10
46 J/s for a duration of ≈ 10–20 ms). At

t ≈ 0.2 s, the shock stalls at a radius of ≈ 100–200 km in the outer core.

During core collapse, a gravitational binding energy of several 1046 J, rep-

resenting a staggering ≈ 10% of the iron core’s rest mass, is released in form

of neutrino radiation. Therefore, the stalled shock is thought to be revived by

neutrinos and antineutrinos that emerge from the hot and dense proto-neutron

star (Bethe and Wilson, 1985). At the very high temperatures prevailing in the

core, neutrinos and antineutrinos of all flavors (electron, muon, and tau) are

produced, mainly by electron-positron pair annihilation, e− + e+ → 𝜈e + 𝜈e,

neutrino-antineutrino pair annihilation, 𝜈e + 𝜈e → 𝜈𝜇,𝜏 + 𝜈𝜇,𝜏 , and nucleon

bremsstrahlung, N + N → N + N + 𝜈𝜇,𝜏 + 𝜈𝜇,𝜏 (Buras et al., 2003). While the

neutrinos diffuse out of the core, the luminosities and average energies for each

of the different neutrino types evolve with time. First, muon and tau neutrinos

have smaller opacities compared to electron neutrinos since their energies are

too low for charged-current interactions, such as 𝜈𝜇 + p → n + 𝜇+ (because

of the large masses of the 𝜇 and 𝜏 leptons). Thus, the muon and tau neutrinos

decouple at smaller radii, R𝜈 , that is, at higher density and temperature, and hence,

emerge with higher average energies from the proto-neutron star compared to

the electron neutrinos. Second, there are fewer protons than neutrons in the

outer layers of the proto-neutron star and thus the charged-current interaction

n + 𝜈e ↔ p + e− occurs more frequently compared to p + 𝜈e ↔ n + e+. Hence,

electron neutrinos have a higher opacity than electron antineutrinos and thus

decouple at larger radii with smaller average energies.

The situation at this stage is represented in Figure 5.41a. The matter between

the neutrino sphere and the stalling shock front consists mainly of free neutrons

and protons. The gain radius divides this region into two parts: the first is

located closer to the neutrino sphere and is characterized by the dominance of

p + e− → n + 𝜈e and n + e+ → p + 𝜈e over their reverse interactions, thus giving

rise to effective neutrino cooling by neutrino emission; the second is located

closer to the shock, where n + 𝜈e → p + e− and p + 𝜈e → n + e+ dominate over

their reverse interactions, hence giving rise to effective heating via neutrino

absorption. The continuous neutrino energy deposition in the latter region keeps

the pressure high, may rejuvenate the shock, and thereby cause the supernova

explosion (delayed shock model; Wilson and Mayle, 1993). Only a fraction (≈ 1%)
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Figure 5.41 Evolution of the region near

the proto-neutron star (PNS) surface, as a

result of neutrino-induced processes, expan-

sion and cooling. The proto-neutron star

surface can be defined by the radius of

the energy-integrated electron neutrino

sphere. The radii of the various zones dif-

fer from panel to panel and are not to

scale. Approximate temperature ranges

(GK) are indicated. Only the main con-

stituents are given in each zone. Symbols

in open rectangles indicate nucleosynthe-

sis processes: 𝜈p-process (𝜈p); α-process (𝛼);

r-process (r). (a) Region between proto-

neutron star surface and stalled shock,

t ≈ 0.2 s after core collapse. The main

constituents are free protons and neu-

trons. Inside the gain radius neutrino cool-

ing prevails, while outside matter is effec-

tively heated by neutrinos; radii: R𝜈 (neu-

trino sphere); Rg (gain radius); Rs (shock

radius). (b) The early neutrino-driven wind,

t ≈ 1.0 s, is proton-rich, Ye > 0.5, giving rise

to the 𝜈p-process (Section 5.4.2). (c) The later

neutrino-driven wind, t ≈ 10 s, may become

neutron-rich, Ye < 0.5, giving rise to the α-

and r-processes (Section 5.6.2). Note that the

abundances of 9Be and 12C are very small

since these species are destroyed almost as

quickly as they are produced. The label “Fe”

denotes a distribution of seed nuclei in the

A ≈ 50–100 mass range.

of the total gravitational binding energy, deposited by neutrinos as thermal

energy of nucleons, leptons, and photons in this region, would be required to

initiate a powerful shock propagating through the stellar mantle and giving rise

to an explosion. The success of this model depends crucially, among other things,

on the product of neutrino luminosity and neutrino interaction cross sections

(i.e., the square of the average neutrino energy). However, almost none of the

most advanced, self-consistent core-collapse stellar models have produced an

explosion and the exact mechanisms by which neutrinos cause the explosion

remain elusive. Instead, many models artificially change the neutrino properties,

such as the charged-current interaction rates, to increase the neutrino energy

deposition behind the shock. The problem is highly complex, involving energy-

dependent neutrino transport in three dimensions, a convectively unstable

region near a compact hot and dense object, possible diffusive instabilities, and

magneto-rotational effects.

Below, we will consider nucleosynthesis processes that effect the deepest

layers to be ejected in a core-collapse supernova. After the rejuvenated shock

has been launched, the strong electron neutrino and antineutrino fluxes drive a

continuous flow of protons and neutrons from the region near the proto-neutron
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star surface. This outflow of matter is called the neutrino-driven wind (Duncan,

Shapiro, and Wasserman, 1986). Matter in this region expands and cools at high

(possibly supersonic) velocity and eventually collides with the slower earlier

supernova ejecta, resulting in a wind termination (or reverse) shock (Burrows,

Hayer, and Fryxell, 1995).The nucleosynthesis in the early ejecta depends strongly

on the entropy (or photon-to-baryon ratio; Eq. (5.143)), expansion time scale,

and electron mole fraction (or electron-to-baryon ratio; Eq. (1.37)). The first

two quantities depend on the average neutrino energies and total luminosities,

and the properties of the proto-neutron star, given by the equation of state.

The electron mole fraction, Ye, depends on the complicated interplay of the

four (charged-current) electron neutrino and antineutrino interactions with

free nucleons, n + 𝜈e ↔ p + e− and p + 𝜈e ↔ n + e+, in the wind region. If the

neutrino-driven wind is proton-rich, then conditions are favorable for the synthe-

sis of neutron-deficient nuclides (Section 5.4.2), while a neutron-rich wind may

give rise to the production of neutron-rich species (Section 5.6.2).The outcome of

the nucleosynthesis is highly sensitive to the uncertain physical conditions of the

neutrino-driven wind.

5.4.2

𝝂- and 𝝂p-Processes

The large energy release during the core collapse in form of neutrinos gives

likely rise to the neutrino-induced synthesis of certain nuclides in the expanding

mantle of the exploding star. Specifically, neutrinos can interact with nuclei via

inelastic (neutral-current) neutrino scattering, (𝜈,𝜈′). Since 𝜇 and 𝜏 neutrinos

emerging from the proto-neutron star have larger predicted average energies

compared to electron neutrinos, and since the neutrino cross sections scale with

the square of their energy, the interactions of the former neutrino species

with nuclei predominate. On the other hand, electron neutrinos may interact

with nuclei via charged-current interactions, (𝜈e, e
−) or (𝜈e, e

+). All of the

neutrino interactions can populate excited nuclear levels that subsequently

decay via emission of light particles (p, n, 𝛼). The released light particles, in

turn, undergo reactions with nuclei in the high-temperature environment

and thus contribute to the synthesis of certain nuclides. In any given layer

of the star, neutrino-induced nucleosynthesis may occur before the arrival

of the shock, during explosive burning (Section 5.4.3), or after shock passage

when the material expands and cools. This mechanism is referred to as the

𝜈-process (Woosley et al., 1990). Simulations have shown (Heger et al., 2005)

that it may contribute appreciably to the solar abundance of the rare species
11B (made in the carbon–oxygen layer; see right side of Figure 1.7), 19F and
138La (both made in the oxygen–neon layer). Yield predictions from 𝜈-process

calculations are sensitively influenced by current uncertainties in neutrino

interaction cross sections, average neutrino energies of each flavor, total neutrino

luminosity, as well as by the details of the adopted stellar evolution and explosion

models.



442 5 Nuclear Burning Stages and Processes

Some core-collapse simulations that include energy-dependent neutrino trans-

port have obtained a proton-rich (Ye > 0.5) neutrino-driven wind, either at very

early times (Buras et al., 2006) or for an extended time period of up to 20 s (Fischer

et al., 2009). The situation is schematically displayed in Figure 5.41b. The wind is

ejected at temperatures above 10 GK and consists of free neutrons and protons in

nuclear statistical equilibrium. Four distinct phases can be identified during the

ensuing nucleosynthesis: (i) expansion and cooling through the temperature range

of T ≈ 10–5 GK causes all neutrons to combine with protons, leaving a composi-

tion consisting of α-particles and an excess of protons; (ii) further cooling through

temperatures of T ≈ 5–3 GK allows the α-particles to combine to heavier nuclei,

giving mainly rise to the production of the nuclides 56Ni, 60Zn, and 64Ge that con-

sist of an equal number of neutrons and protons (N = Z). Since the slowest link

in this sequence is the triple-𝛼 reaction, the number of synthesized heavy seed

nuclei is equal to the number of produced 12C nuclei. Abundance flows beyond
64Ge are inhibited by strong reverse flows and by its long half-life (T1∕2 = 64 s

in the laboratory); (iii) in the temperature range of T ≈ 3–1.5 GK the (charged-

current) interaction p + 𝜈e → n + e+ on the abundant protons produces free neu-

trons (≈ 1014 cm−3 for several seconds) that participate in the nucleosynthesis.

This aspect is important, because fast (n,p) reactions on waiting point nuclides,

such as 56Ni, 60Zn, and 64Ge, together with subsequent (p,𝛾) reactions allow for

a continuation of the abundance flow toward heavier nuclides on the neutron-

deficient side of the valley of stability. Note that a (n,p) reaction connects the

same pair of nuclides as a corresponding β+-decay; (iv) when the temperature

falls below T ≈ 1.5 GK, the (p,𝛾) reactions freeze out and (n,p) reactions and β+-

decays convert the heavy nuclides to stable, neutron-deficient, daughters. This

nucleosynthesis mechanism is called the 𝜈p-process (Fröhlich et al., 2006).

The 𝜈p-process is not terminated by the exhaustion of free protons, but by the

cooling of matter to temperatures below T ≈ 1 GK. A few studies (e.g., Wanajo,

Janka, and Kubono, 2011) have shown that the 𝜈p-process may account for the

solar abundances of the light p-nuclides up to 108Cd, including 92Mo, 94Mo, 96Ru,

and 98Ru, that are underproduced by the p-process (Section 5.6.3). However, other

studies (Pruet et al., 2006; Fisker, Hoffman, and Pruet, 2009) could not repro-

duce the solar abundances of the light p-nuclides and thus the issue remains con-

troversial. It is also important to stress that, although several model simulations

have predicted an early proton-rich neutrino-drivenwind, the 𝜈p-process is highly

sensitive to the details of the explosion mechanism, the mass, and possibly the

rotation rate of the proto-neutron star. Thus, it is expected that the nucleosyn-

thesis varies considerably from event to event. Currently, the key uncertainties

originate from the neutrino luminosities and average energies, which determine

the electron mole fraction, Ye, in the neutrino-driven wind. A larger value of Ye
will generally give rise to the synthesis of heavier p-nuclides. For example, mod-

els with Ye ≈ 0.6 (i.e., at the onset of the 𝜈p-process, when T ≈ 3 GK) produce

p-nuclides up to A = 152. For even larger values of Ye, the density of free neu-

trons increases as a result of the charged-current interaction between electron

antineutrinos and the large proton abundance. Consequently, the (n,p) reactions
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would not only carry the abundance flow to the valley of 𝛽 stability, but (n,𝛾)

reactions will carry the flow to the neutron-rich side. The protons do not par-

ticipate directly in the nucleosynthesis, but mainly act as a source of free neutrons

(Pruet et al., 2006).

The 𝜈p-process is sensitive to nuclear physics uncertainties. For example, the

slow triple-α-reaction (Section 5.2.1) represents a bottleneck for the synthesis of

the heavy seed nuclei, near T = 3 GK, before the start of the 𝜈p-process. Varying

this rate will impact the production of the p-nuclides in the A = 100–110 mass

region. Changing the rates of the (n,p) reactions on the waiting point nuclides

that control the abundance flow to heavier nuclides, especially 56Ni(n,p)56Co and
60Zn(n,p)60Cu, strongly influences the production of the p-nuclides in theA > 100

mass region. These (n,p) rates are based on theory (Hauser-Feshbach model; see

Wanajo, Janka, and Kubono, 2011), since experimental data are lacking at present.

A study of themodest impact of nuclearmass uncertainties on the 𝜈p-process path

can be found in Weber et al. (2008).

5.4.3

Explosive Nucleosynthesis

In Section 5.3, we discussed the nucleosynthesis processes that occur in the core

of amassive star at different evolutionary stages, with each stage attaining a higher

temperature and density compared to the previous one. We will now address the

processes that occur when the outward moving shock wave compresses and heats

layers of different compositions for short periods of time. An overview of the

nucleosynthesis outcome is shown in Figure 1.7 (right side).

It will be helpful for the following discussion to adopt a simple analytical

parametrization for the temperature-density evolution of the shock. The passing

shock heats a layer of nuclear fuel to a peak temperature, Tpeak, and compresses

thematerial to a peak density, 𝜌peak. If it is assumed that the subsequent expansion

is adiabatic, the time dependence of the temperature and density of this radiation

dominated gas can be approximated by

T(t) = Tpeake
−t∕(3𝜏) and 𝜌(t) = 𝜌peake

−t∕𝜏 (5.144)

where the factor of three in the first expression derives from Eq. (5.143). The

expansion time scale, defined as the time at which the density has fallen to 1∕e

of the peak value, is frequently approximated by the hydrodynamic free-fall time

scale, given by (Fowler and Hoyle, 1964)

𝜏hd ≈
446√
𝜌peak

(s) (5.145)

where the density is in units of grams per cubic centimeter. For example, peak

densities of 𝜌peak = 10
6 g/cm3 and 107 g/cm3 yield free-fall expansion times of

𝜏hd = 0.45 s and 0.14 s, respectively. In this simple model, the thermodynamic

evolution of the zone is specified once values for Tpeak and 𝜌peak are adopted.
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Figure 5.42 Peak temperatures and peak

densities attained in different mass zones

during the outward propagation of burning

fronts in supernova explosion models. The

two lower tracks are from core-collapse (type

II, Ib, Ic) supernova models (CC-16: Young

et al., 2006; CC-25: Limongi and Chieffi,

2003), while the two upper tracks are from

thermonuclear (type Ia) supernova models

(TN-W7: Nomoto, Thielemann, and Yokoi,

1984; TN-DD: Bravo and Martínez-Pinedo,

2012). Regions of predominant nucleosyn-

thesis processes are indicated: complete sil-

icon burning (“comSix (NSE)”, entire region

to the left of dashed-dotted line); normal

freeze-out (above dotted line); α-rich freeze-

out (below dotted line); incomplete silicon

burning (“incSix”), explosive oxygen burn-

ing (“Ox”), and explosive neon-carbon burn-

ing (“NeCx”). The boundaries between the

different regions depend on the explosion

time scale and are only approximate. The

gray shaded area at the top left indicates

the region where electron captures change

the neutron excess significantly during the

explosion (Section 5.5.1). The full and open

circles mark peak temperature and density

conditions adopted for the reaction network

calculations discussed in the text.

More involved analytical expressions can be found in Nadyozhin and Deputovich

(2002). Because of the strong temperature dependence of the reaction rates, we

expect that the temperature evolution will have a considerably stronger impact

on the nucleosynthesis compared to the density evolution. It is implicitly assumed

that the rise of temperature and density to their peak values is instantaneous. As

will become apparent, the neutron excess is crucial for the nucleosynthesis. In

the shells of silicon, oxygen, and neon that will experience explosive burning and

be ejected (Figure 1.7), the neutron excess is on the order of 𝜂 ≈ 0.003 for solar

metallicity stars. We will adopt this initial value in the following reaction network

calculations.

A first impression regarding the explosive nucleosynthesis is given in

Figure 5.42, displaying peak temperatures and peak densities attained in different
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mass zones during the outward propagation of burning fronts in some supernova

models. Each point on a displayed track corresponds to a given mass layer in

the ejecta that is heated and compressed to the given peak temperature and

density, and then cools and expands as a result of the passage of the shock. The

lower two tracks correspond to core-collapse supernovae (CC-16: 16M☉ model

of Young et al., 2006; CC-25: 25M☉ model of Limongi and Chieffi, 2003). The

tracks start, on the left, in a mass zone comprised of the innermost ejecta. The

nearly horizontal or vertical dashed and dotted lines divide the parameter space

into regions dominated by different nucleosynthesis processes. We will focus

here on core-collapse supernovae. Thermonuclear supernovae are discussed

in Section 5.5.1. The peak temperature and peak density conditions adopted

for the network calculations that will be discussed below are marked by the

solid circles.

The first zone encountered by the shock, consisting mainly of 28Si, is heated

to peak temperatures in excess of Tpeak ≈ 5 GK. At these high temperatures, the

rates of all forward and reverse strong or electromagnetic interactions achieve

nuclear statistical equilibrium. Recall from Section 5.3.5 that, for known nuclear

properties, the abundance of any nuclide is then determined by the temperature,

density, and the neutron excess. The initial silicon will be entirely destroyed and

transformed into iron peak species. Hence, this stage is referred to as complete

explosive silicon burning.The region of parameter space dominated by this regime

(labeled “comSix (NSE)”) is located on the left-hand side of the dashed-dotted line

in Figure 5.42. For our assumption of a small neutron excess (𝜂 ≈ 0.003), nuclear

statistical equilibriumwill favor 56
28
Ni28 as themain constituent, since it is themost

tightly bound nuclide with N = Z (Figures 1.9 and 5.39).

The fate of matter in nuclear statistical equilibrium depends on the expansion

time scale as the gas quickly cools, and on the density of free light particles (𝛼, n, p)

when nuclear reactions start to fall out of equilibrium at a certain freeze-out

temperature (Woosley, Arnett, and Clayton, 1973). If the density is high and the

expansion time slow, nuclear statistical equilibrium predicts only very small light

particle abundances. As the temperature falls below the freeze-out temperature,

there is not enough time to produce the light particles necessary to maintain

nuclear statistical equilibrium and hence the equilibrium will be terminated by a

lack of light particles. The first reaction to drop out of equilibrium is the triple-α

reaction.There are so few light particles that their subsequent capture during this

normal freeze-out does not alter the nuclear statistical equilibrium composition,

consisting mainly of 56Ni and other iron peak nuclides. On the other hand, if

the density is low and the expansion time fast, nuclear statistical equilibrium

predicts a significant light particle abundance, especially of α-particles. When

the temperature falls below the freeze-out temperature, the α-particles cannot

be converted fast enough to iron peak nuclides to maintain nuclear statistical

equilibrium. The equilibrium is thus terminated by an excess of α-particles

and their capture by nuclei during freeze-out will alter the nuclear statistical

equilibrium composition. For a small neutron excess, the main product of this

α-rich freeze-out is again 56Ni, as will be shown below, but additional species
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are produced, for example, the important γ-ray emitter 44Ti. No significant

production of nuclides occurs beyond the iron peak in either normal or α-rich

freeze-out.

The two regions just discussed are separated by the dotted line in Figure 5.42.

This boundary is obtained fromnetwork calculations (see below) and corresponds

to Tpeak–𝜌peak conditions for which the final α-particle mass fraction amounts

to X𝛼 = 0.001. Above this line, X𝛼 falls fast, while below this line X𝛼 increases.

The inner ejecta for both core collapse supernova models displayed in Figure 5.42

undergo α-rich freeze-out and never reach the higher densities required for nor-

mal freeze-out. This applies to most models of core collapse supernovae.

Time-integrated net abundance flows and abundance evolutions, obtained with

an exponential T–𝜌 profile (see Eqs. (5.145) and (5.144)) and a peak temperature

and peak density of 6.5 GK and 107 g/cm3, respectively, are shown in Figures 5.43a

and 5.44a. These conditions, indicated by the first solid circle in Figure 5.42, fall

between the two core collapse supernova model trajectories in the region labeled

“comSix (NSE)”. In an actual explosion, the shock gives rise to a continuous dis-

tribution of Tpeak and 𝜌peak values while it moves through different mass layers.

Therefore, the results presented in the figures correspond to the nucleosynthesis

in a single homogeneous region.The initial composition of the zone is assumed to

consist mainly of 28Si, with a small contribution of 30Si to set the neutron excess

equal to 𝜂 = 0.003.Thedestruction of 28Si and the transformation ofmatter to iron

peak nuclides is apparent in Figure 5.43.The reactions mediating between the sili-

con and iron peak regions have abundance flows that are smaller by three orders of

magnitude compared to themaximum flow and hence do not appear in the figure.

The displayed abundance flows are integrated over the entire duration of the net-

work calculation.The abundance flows at an instant when the matter is in nuclear

statistical equilibrium, that is, before freeze-out occurs, would look very similar

to the pattern shown in the lower panel of Figure 5.35.Themost abundant species

at the end of the calculation is 56Ni (Xf = 0.80), with smaller contributions from

other iron peak nuclides (57Ni and 58Ni). Notice the large final α-particle abun-

dance (Xf = 0.06), demonstrating that the freeze-out was of the α-rich variety.

Furthermore, a significant amount of 44Ti is produced, with a final mass fraction

of Xf = 5 × 10
−5.

The next zone encountered by the shock, still composed mainly of 28Si, is

heated to peak temperatures of Tpeak ≈ 4–5 GK. Instead of nuclear statistical

equilibrium, quasi-equilibrium is established. Recall from Sections 5.3.3 and 5.3.4

that the abundance of any nuclide in quasi-equilibrium with, for example, 28Si,

is specified by four parameters (apart from nuclear binding energies, masses, and

spins): temperature, density, neutron excess, and the abundance of 28Si. When

the shock encounters this zone, it starts to dissociate silicon and neighboring

species, quickly forming a cluster in quasi-equilibrium with the dominant species
28Si, which has the largest binding energy of all nuclides in this mass region. Soon

thereafter, another quasi-equilibrium cluster forms in the iron peak region, which

consists of nuclides of even higher binding energies, mediated by reactions in

the A = 40–44 mass range linking the two clusters. The situation is reminiscent
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Figure 5.43 Time-integrated net abun-

dance flows during core-collapse supernova

nucleosynthesis. The network calculations

are performed using exponential T–𝜌 evolu-

tions (see Eq. (5.144)) and a free-fall expan-

sion time scale (see Eq. (5.145)); (a) com-

plete explosive silicon burning with Tpeak =

6.5 GK and 𝜌peak = 107 g/cm3; (b) explosive

neon-carbon burning with Tpeak = 2.5 GK

and 𝜌peak = 3.2 × 105 g/cm3. See the text

for the initial composition. The abundance

evolutions for the two flow diagrams are

shown in Figure 5.44a,d. The arrows have

the same meaning as in Figure 5.26: Fmax ≥
Fij > 0.1Fmax (thick arrows), 0.1Fmax ≥
Fij > 0.01Fmax (intermediate arrows), and

0.01Fmax ≥ Fij > 0.001Fmax (thin arrows),

where Fmax corresponds to the reaction with

the maximum net flow. The abundance flows

are defined here in terms of mole fractions

rather than number densities since the mass

density varies.

of hydrostatic silicon burning (Section 5.3.4). If sufficient temperatures and time

would be available, all of the silicon group species would be transformed to the

iron peak and nuclear statistical equilibrium would be established. However,

the expansion causes the freeze-out to occur before this can happen. Since a

significant amount of 28Si remains, the process is called incomplete silicon burning.
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Figure 5.44 Abundance evolutions for

explosive nucleosynthesis in core collapse

supernovae (type II, Ib, Ic). Results are

obtained using exponential T-𝜌 trajectories

(see Eqs. (5.145) and (5.144)) that approxi-

mate the conditions in the outward moving

shock. Adopted values of Tpeak, 𝜌peak , 𝜏hd
are: (a) 6.5 GK, 107 g/cm3, 0.14 s; (b) 4.8 GK,

3 × 106 g/cm3, 0.26 s; (c) 3.8 GK, 106 g/cm3,

0.45 s; (d) 2.5 GK, 3.2 × 105 g/cm3, 0.79 s.

These conditions correspond to complete

explosive silicon burning, incomplete explo-

sive silicon burning, explosive oxygen burn-

ing, and explosive neon-carbon burning,

respectively, and are marked by solid circles

in Figure 5.42. All results shown are obtained

with an initial neutron excess of 𝜂 = 0.003.

The time evolutions of the most abundant species for representative peak tem-

perature and peak density conditions (4.8 GK and 3 × 106 g/cm3) are displayed in

Figure 5.44b. For the initial composition, we assume againmainly 28Si, with a small

contribution of 30Si. It is apparent that the 28Si abundance declines and iron peak

species are produced. The most abundant nuclide at the end of the calculation is
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again 56Ni (Xf = 0.60), as was the case in complete explosive silicon burning, but

now a significant amount of 28Si remains at the end (Xf = 0.10). Other abundant

species are 32S (Xf = 0.10),
54Fe (Xf = 0.06),

40Ca (Xf = 0.05),
36Ar (Xf = 0.035),

and 55Co (Xf = 0.012). The complete and incomplete silicon burning regions are

separated by the dashed-dotted line in Figure 5.42. It corresponds to Tpeak–𝜌peak
conditions for which a significant 28Si abundance remains after the passage of

the shock.

Subsequently, the shock reaches a zone composed mainly of 16O (Figure 1.7).

Explosive oxygen burning occurs at peak temperatures near Tpeak ≈ 3.5–4 GK.

The process is similar to incomplete silicon burning, in the sense that the fuel

(16O) is dissociated, giving rise to two quasi-equilibrium clusters in the mass

regions of silicon and the iron peak. However, since the peak temperature is lower,

less matter is converted to the iron peak and more material remains locked in the

silicon region. The results of a network calculation for a peak temperature and

peak density of 3.8 GK and 106 g/cm3, respectively, are shown in Figure 5.44c. For

the initial composition, we assumed mainly 16O, with a small contribution of 18O

to set the neutron excess equal to 𝜂 = 0.003. The species 16O is quickly depleted,

and the most abundant nuclides at the end of the calculation are 28Si (Xf = 0.40),
32S (Xf = 0.30),

36Ar (Xf = 0.07),
40Ca (Xf = 0.07), and

54Fe (Xf = 0.07). The first

dashed line in Figure 5.42 separates the regions of incomplete explosive silicon

burning and explosive oxygen burning. It corresponds to Tpeak–𝜌peak conditions

for which 56Ni is significantly depleted (Xf = 10
−4) after the passage of the

shock.

In the above discussion, the explosive burning regimes have been associated

with the shock wave moving through a particular nuclear fuel. For example, we

described how explosive silicon burning occurs in a zone consisting of silicon,

which is the product of hydrostatic oxygen (shell) burning before the core collapse

(see Figure 1.7). Similarly, explosive oxygen burning takes place in a layer consist-

ing of oxygen, which was synthesized in hydrostatic neon burning. However, it

must be emphasized that these explosive burning regimes mainly depend on the

peak temperature and the freeze-out conditions in a particular layer rather than

on the composition of the fuel (Woosley, Arnett, and Clayton, 1973).The reason is

that nuclear statistical equilibrium or quasi-equilibriumwill seek the energetically

most favorable configuration for the nuclear composition. For example, exactly the

same nucleosynthesis products would result in complete explosive silicon burning

if the explosively burning nuclear fuel in this temperature regime would not con-

sist of 28Si, but instead of any other species, as long as the initial neutron excess is

kept near 𝜂 ≈ 0.003. We will return to this issue in Section 5.5.1.

Finally, the shock encounters a zonemainly composed of 16O, 20Ne, and 12C, and

heats it to peak temperatures ofTpeak ≈ 2–3.5 GK. As a result,
20Ne, and to a lesser

extend 12C, burns explosively. The process is referred to as explosive neon-carbon

burning. In this case, the temperature and expansion time scale are too small for

establishing quasi-equilibrium and the forward and reverse nuclear reactions

operate far from equilibrium. Hence, the abundance of a given species does not

only depend on a few parameters, such as temperature and density, but in addition
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is sensitively influenced by the initial composition and the magnitude of the ther-

monuclear reaction rates. Time-integrated net abundance flows and abundance

evolutions for a representative peak temperature and peak density of 2.5 GK

and 3.2 × 105 g/cm3, respectively, are shown in Figure 5.43b and Figure 5.44d.

For the initial composition, we adopt values of 12C (Xi = 0.02),
16O (Xi = 0.50),

20Ne (Xi = 0.34),
24Mg (Xi = 0.07), and

25Mg (Xi = 0.07). These are similar to

the results obtained in a hydrodynamic simulation of a 20M☉ star (Limongi

and Chieffi, 2006). It is apparent that the abundances of both 20Ne and 12C are

depleted by the shock while the composition is rearranged. At the end of the

calculation, the most abundant species are 16O (Xf = 0.70) and
28Si (Xf = 0.15).

Interestingly, a significant amount of 26Al (Xf = 3 × 10
−5) is produced via the

sequence

24Mg(n, 𝛾)25Mg(p, 𝛾)26Al (5.146)

The required neutrons are released by the 25Mg(𝛼,n)28Si and 26Mg(𝛼,n)29Si reac-

tions (Iliadis et al., 2011). Some 26Al nuclei are destroyed via 26Al(n,p)26Mg and, to

a lesser degree, 26Al(n,𝛼)23Na. Hydrodynamicmodels (Limongi and Chieffi, 2006)

predict that explosive neon-carbon burning in core-collapse supernovae is the

most prolific site of 26Al synthesis in the Galaxy (Sections 1.7.5 and 5.4.4). The

second dashed line in Figure 5.42 separates the regions of explosive oxygen burn-

ing and explosive neon-carbon burning. It corresponds to Tpeak–𝜌peak conditions

for which equal mass fractions of 16O and 28Si are obtained after the passage of

the shock.

The time scale is too short at the peak densities typically achieved in the explo-

sive burning of core collapse supernovae for electron captures to change the neu-

tron excess significantly. Unlike the situation in hydrostatic oxygen and silicon

burning, the final neutron excess remains close to its initial value in all of the net-

work calculations displayed in Figures 5.43 and 5.44.

The outer zones of the star are heated to peak temperatures of less than T ≈

2 GK (the region to the right of the third dashed line in Figure 5.42) for very short

periods of time and, as a result, do not experience significant nucleosynthesis in

most stellar explosion models. These layers are ejected with a composition result-

ing fromvarious hydrostatic burning stages prior to the explosion. About one hour

after core collapse, the shock, traveling at an average speed of several thousand

kilometer per second, reaches the stellar surface.

The sequence of events sketched above depends sensitively on all factors that

influence the mass-radius relation (or the density profile) of the pre-supernova

star, since it determines the amount of matter exposed to the four main explosive

burning episodes. For example, the treatment of convection is important in this

regard, because it impacts the size of the convective regions and the mixing

efficiency in those zones. Also, as already mentioned in Section 5.2.1, the
12C(𝛼,𝛾)16O reaction rate determines the 12C/16O abundance ratio at the end

of core helium burning and hence impacts the amount of fuel available for the

subsequent advanced hydrostatic shell burnings and the location of those shells.

Furthermore, the magnitude of the time delay between core collapse and the
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revival of the shock impacts the amount of matter located in each compositional

layer. Besides the mass-radius relation, the neutron excess (or Ye) profile of

the pre-supernova star is crucial to the outcome of those explosive burning

episodes that take place under the conditions of nuclear statistical equilibrium

and quasi-equilibrium. The neutron excess profile, in turn, is influenced by the

treatment of convection, the time delay between core collapse and shock revival,

and the previous hydrostatic evolution of the star.

5.4.4

Observations

Direct evidence for the nucleosynthesis predicted by current core-collapse

supernova models can be obtained from observations of Galactic radioactivity

and neutrinos. For example, among the radioisotopes predicted to be synthesized

by massive stars are 26Al (during explosive neon–carbon burning) and 60Fe

(during carbon and helium convective shell burning, before the core collapse).

Their half-lives (T1∕2 = 7.17 × 10
5 y and T1∕2 = 2.62 × 10

6 y, respectively) are

very long compared to a typical frequency of about two Galactic core-collapse

supernovae per century. Therefore, these nuclides accumulate in the interstellar

medium after ejection from thousands of supernovae. The diffuse γ-ray emis-

sion from the decay of both species has been observed by detectors onboard

satellites (Sections 1.7.5 and 5.6.1; color Figure 12 on page624). The 60Fe/26Al

γ-ray line flux ratios measured by both the RHESSI instrument (Smith, 2004)

and the SPI spectrometer onboard INTEGRAL (Wang et al., 2007) are near

≈ 0.15. Stellar model predictions (Limongi and Chieffi, 2006) are consistent with

observation when the theoretical yields from stars of different initial masses

are folded with a standard distribution of stellar masses (i.e., the initial mass

function).

The best-studied supernova to date, supernova 1987A,most likely resulted from

the core collapse of a progenitor star with amass near 20M☉ (see color Figure 6 on

page 618). A few months after the explosion, the evolution of its brightness (light

curve) closely followed the radioactive decay of 56Co (T1∕2 = 77.2 d), the daugh-

ter nuclide of radioactive 56Ni (T1∕2 = 6.1 d) that is the main product of explosive

silicon burning. Gamma-rays from 56Co decay were also directly detected with

the SMM satellite (Matz et al., 1988). Together, both observations imply a total
56Co mass of ≈ 0.07M☉ in the ejecta (Leising and Share, 1993). Furthermore,

a few hours before the light from supernova 1987A reached Earth, 11 electron

antineutrinos were recorded by the KamiokaNDE-II detector (Hirata et al., 1987)

and 8 electron antineutrinos by the Irvine–Michigan–Brookhaven (IMB) detec-

tor (Bionta et al., 1987). The number of detected neutrinos, their energies, and

the measured burst duration are in agreement with theoretical predictions of the

processes deep inside an exploding massive star.

The radioisotope 44Ti has a half-life (T1∕2 = 60 y) comparable to the Galactic

supernova rate and thus can be used to probe individual supernovae. Gamma-

rays from the decay of 44Ti, with energies of 68 keV and 78 keV, have been detected
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both in the 350-year old supernova remnantCassiopeiaA and in supernova 1987A

(Renaud et al., 2006; Grebenev et al., 2012; Grefenstette et al., 2014), confirming

the theoretical prediction that this nuclide is synthesized in the α-rich freeze-out

during complete explosive silicon burning in core-collapse supernovae.The spatial

distribution of 44Ti in Cassiopeia A is shown in color Figure 8 on page 620. Based

on observations of Cassiopeia A and supernova 1987A, the ejected masses of 44Ti

amount to ≈ 1.6 × 10−4M☉ and ≈ 3.1 × 10
−4M☉, respectively, in agreement with

stellar model predictions. The radioactive decay of 44Ti is also predicted to power

the infrared, optical, and ultraviolet emission of supernova remnants about 3–4

years after the explosion, when the luminosity from the radioactive decays of 56Co

and 57Co fades away.

5.5

Explosive Burning Involving Binary Stars

5.5.1

Explosive Burning in Thermonuclear Supernovae (Type Ia)

The two favored progenitor scenarios for the majority of type Ia supernovae

are the single-degenerate and the double-degenerate model (Section 1.4.4).

Although both models explain key features of the explosion, they also have major

drawbacks.

In the single-degenerate model, a carbon-oxygen white dwarf accretes

hydrogen- or helium-rich matter from a non-degenerate companion (main

sequence star, red giant, or helium star). The mass of the white dwarf increases

until it approaches the Chandrasekhar limit, triggering an explosion by com-

pressional heating near the center of the white dwarf. The model explains why

the majority of type Ia supernovae have similar peak luminosities and early-time

spectra, since the Chandrasekhar limit provides a natural limit for the amount of

fuel that can be burnt to 56Ni. The main problem with the model is that stellar

evolution theory predicts a maximum carbon–oxygen white dwarf mass of

≈ 1.1M☉ (Althaus et al., 2010). Therefore, the white dwarf must accrete about

0.3M☉ before a type Ia supernova can occur. Whether or not the white dwarf

grows in mass depends crucially on the mass-transfer rate: it must be relatively

large to avoid mass loss through a nova-like event (Section 5.5.2), but not too

large since then the system will enter into a common envelope phase. Only for

a narrow range of mass-transfer rates will the accreted matter burn steadily and

increase the white dwarf mass toward the Chandrasekhar limit (Kahabka and van

den Heuvel, 1997).

In the double-degenerate model, two close carbon–oxygen white dwarfs with a

combined mass near or in excess of the Chandrasekhar limit merge as a result of

gravitational wave radiation, and thereby initiate a thermonuclear explosion. The

model naturally explains the absence of hydrogen or helium emission lines in the

spectra of type Ia supernovae. However, it does not easily explain the homogeneity
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in peak luminosity and spectra of the majority of type Ia supernovae, since the

merger mass, and thus the nuclear fuel that can be burnt to 56Ni, has a wide

range (1.1–2.0M☉; Wang and Han, 2010). Furthermore, when the less massive

white dwarf (companion) in the binary system fills its Roche lobe, it may be

rapidly accreted by the more massive white dwarf (primary). As a consequence,

the companion transforms into a disk-like structure around the more massive

white dwarf. The maximum temperature in this configuration occurs at the

interface of the disk and the primary, and hence this is the location where the

carbon fuel is ignited first. The burning front propagates inward, transforming

the carbon–oxygen white dwarf into an oxygen–neon white dwarf, which, as a

consequence of electron captures on 24Mg, could collapse and form a neutron star

instead of producing a type Ia supernova explosion (accretion-induced collapse;

Nomoto and Iben, 1985).

Modeling type Ia supernova explosions is a task of enormous complexity.

Among the ingredients that need to be considered are the stellar evolution,

rotation and mass loss of the progenitor, the accretion process, the ignition

mechanism, and the propagation of the nuclear flames. Despite advances in these

areas, we are still not in a position to explain these titanic explosions from first

principles. In the framework of simplified one-dimensional models, the free

parameters both for the single-degenerate and double-degenerate scenarios are

the chemical structure of the exploding white dwarf, the initial metallicity of the

progenitor on the main sequence, and the accretion rate onto the white dwarf

that determines the central density at the time of ignition. In addition, for the

double-degenerate model, the mass and composition of the companion white

dwarf needs to be added to this list, while for the single-degenerate scenario

the description of the initial deflagration and the magnitude of nuclear burning

before the transition to detonation have to be included as well.

In the following, we will focus on one class of progenitors, the single-degenerate

model, and discuss the nucleosynthesis during the thermonuclear explosion in

more detail. Our goal is not to derive realistic abundances for type Ia explosions,

but to shed some light on the different burning stages that ensue when the flame

moves through different mass layers of the white dwarf. For this purpose, we will

adopt some schematic and simplifying assumptions.

Consider a white dwarf consisting of 12C, 16O, and 22Ne (Domínguez, Höflich,

and Straniero, 2001). The composition of the inner core formed during the prior

convective core helium burning phase (Section 5.2), while the outer layers formed

during the prior shell burning on the asymptotic giant branch (Section 1.4.3).

Suppose that the white dwarf accretes matter at a rate of ≈ 10−7M☉ for millions

of years, thereby increasing the mass until it approaches the Chandrasekhar

limit. The central temperature increases steadily because of compressional

heating and nuclear energy generated by the fusion of carbon (Section 5.3.1).

At the high densities in the core, electron screening becomes important for

the 12C+12C reaction rate (Section 3.2.6 and Problem 3.10). When the cen-

tral temperature and density reach values of ≈ 300 MK and ≈ 2 × 109 g/cm3,

respectively, the energy generation rate from the highly temperature-dependent
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12C+12C reaction (see Eq. (5.103)) starts to exceeds the neutrino cooling rate

and the point of ignition is reached. As the temperature rises, matter near

the core becomes convectively unstable. The convective core grows until it

encompasses the entire star. Several hundred years after ignition, the nuclear

energy generation becomes so vigorous that it cannot be quenched anymore

by convective motion. When the temperature reaches a value of ≈ 700 MK,

the time scales for nuclear burning and convection are of similar magnitude

(≈ 10 s), and a thermonuclear runaway ensues. By the time any fluid element

reaches a temperature near 109 K, the nuclear burning becomes faster than the

time it takes a sound wave to cross a pressure scale height. The surface of such

a fluid element becomes a flame with a well-determined laminar speed. For a

detailed discussion of our incomplete knowledge about this early phase, see

Arnett (1996).

Recall from Section 1.4.4 that a pure (supersonic) detonation flame will most

likely produce iron-peak nuclides only and thus cannot account for the obser-

vation of intermediate mass elements in the spectra of type Ia supernovae. On

the other hand, a pure (subsonic) deflagration flame, resulting in an expansion of

the white dwarf, does not produce enough 56Ni to explain the majority of type Ia

events and leaves toomuch residual carbon and oxygen at low expansion velocities

behind, contrary to observation. The favored single-degenerate scenario involves

an initial deflagration, allowing the star to expand, followed by a detonation, when

the density is on the order of 107 g/cm3 (Khokhlov, 1991). As already mentioned

in Section 1.4.4, the mechanism of the deflagration-detonation transition is not

yet understood. The nuclear energy release takes about one second and rapidly

incinerates the expanded white dwarf.

The explosive nuclear burning near the flame proceeds in different regimes and

thus the chemical structure of the ejecta will reflect the thermodynamic condi-

tions during the explosion. As an illustration, Figure 5.42 shows the peak tempera-

ture and peak density conditions for two thermonuclear supernovamodels (upper

solid and dashed tracks) when the flame reaches different mass zones of the white

dwarf (TN-DD: delayed detonation model of Bravo and Martínez-Pinedo, 2012;

TN-W7: deflagration model of Nomoto,Thielemann, and Yokoi, 1984).Themod-

els evolve from the upper left (near the center of thewhite dwarf ) to the lower right

(the outer white dwarf layers). It is apparent that models of thermonuclear super-

novae achieve considerably higher peak temperatures and densities compared to

core-collapse supernova models.

Similar to the discussion in Section 5.4.3, we will describe the nucleosynthesis

with the aid of numerical network calculations, performed for an exponential

T-𝜌 time evolution (see Eq. (5.144)). For the initial composition, we assume 12C

(Xi = 0.475),
16O (Xi = 0.50), with a small concentration of

22Ne (Xi = 0.025).The

latter species is produced during the prior helium burning stage (see Eq. (5.97)).

Since the production of 22Ne during helium burning depends on the initial

concentration of C, N, and O, the neutron excess is related to the metallicity

of the supernova progenitor (Timmes, Brown, and Truran, 2003). The initial

neutron excess amounts to 𝜂 = 0.0023 for our choice of composition. Recall that
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we approximated the expansion time scale, 𝜏 , by the free-fall time scale, 𝜏hd , in

the core-collapse supernova nucleosynthesis calculations (Section 5.4.3). For the

thermonuclear supernova calculations discussed below, we will use the same

value of 𝜏 = 0.3 s for the expansion time scale. This value agrees approximately

with hydrodynamic model results reported in the literature (Travaglio et al.,

2004a; Meakin et al., 2009; Chamulak et al., 2012).

The flame starts in the central region of the white dwarf at a peak tem-

perature and density near 8.5 GK and 2 × 109 g/cm3, respectively. For such

conditions, nuclear statistical equilibrium (Section 5.3.5) is quickly established

and the nuclear fuel (12C, 16O, 22Ne) is converted to iron peak nuclides, with no

intermediate-mass nuclides (such as 28Si) left behind. The matter in this region

will experience complete explosive silicon burning (labeled “comSix (NSE)”

in Figure 5.42). We already encountered this burning phase in our discussion

of core-collapse supernovae (Section 5.4.3). However, the central densities in

thermonuclear supernovae are considerably higher than in core-collapse super-

novae. This has two interesting consequences. First, while most core-collapse

supernova models experience α-rich freeze-out in the innermost ejecta, models

of thermonuclear supernovae experience mostly normal freeze-out in the inner

layers. The dotted line in Figure 5.42 separates the region of complete explosive

silicon burning (to the left of the dashed-dotted line) into these two freeze-out

regimes. Second, the densities predicted by thermonuclear supernova models

are so high that the large Fermi energy of the electrons leads to electron captures

(Section 1.8.4) on (i) free protons, p + e− → n + 𝜈e, which exist copiously in

nuclear statistical equilibrium under these conditions, and (ii) iron peak nuclei,

even on the short explosive time scales. The electron captures move the nuclear

statistical equilibrium concentrations away from the N = Z line (56Ni), toward

neutron-rich species, that is, they increase the neutron excess, 𝜂, significantly.

The dominant species produced under such conditions depends sensitively on

the value of 𝜂 attained in a given layer, as discussed in Section 5.3.5. The shaded

area at the upper left in Figure 5.42 marks the region where electron captures

are important. Its boundary corresponds to conditions for which the neutron

excess increases by one order of magnitude, starting from 𝜂i = 0.0023, when an

exponential T–𝜌 evolution with an expansion time scale of 𝜏 = 0.3 s is adopted.

Only the innermost zones of the white dwarf, with an enclosed mass of less than

≈ 0.1M☉, are expected to experience a significant neutronization caused by

electron captures.

Results of a network calculation, obtained using Eq. (5.144) with a peak tem-

perature and peak density of 8.5 GK and 2 × 109 g/cm3, respectively, are shown

in Figure 5.45a. These conditions, indicated by the first open circle in Figure 5.42,

fall on the tracks of the two thermonuclear supernova models in the region

labeled “comSix (NSE)”. In an explosion, the flame gives rise to a continuous

distribution of Tpeak and 𝜌peak values while it moves through different mass layers.

Hence, the results presented in Figure 5.45 correspond to the nucleosynthesis in

a single homogeneous region. At the end of the calculation, electron captures

have increased the neutron excess by more than an order of magnitude, from
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Figure 5.45 Abundance evolutions for

explosive nucleosynthesis in thermonu-

clear supernovae (type Ia). Results are

obtained using exponential T–𝜌 trajecto-

ries (see Eq. (5.144)) that approximate the

conditions in the outward moving flame.

Adopted values of Tpeak, 𝜌peak are: (a) 8.5 GK,

2 × 109 g/cm3; (b) 7.0 GK, 3 × 108 g/cm3;

(c) 4.8 GK, 1.5 × 107 g/cm3; (d) 4.0 GK, 8 ×

106 g/cm3. These conditions correspond to

complete explosive silicon burning (upper

two panels), incomplete explosive silicon

burning, and explosive oxygen burning,

respectively, and are marked by open circles

in Figure 5.42. The same value of 𝜏 = 0.3 s

is used for the expansion time scale. The

adopted initial composition is: 12C (Xi =

0.475); 16O (Xi = 0.500); 22Ne (Xi = 0.025),

corresponding to an initial neutron excess of

𝜂 = 0.0023.

an initial value of 𝜂i = 0.0023 to a final value of 𝜂f = 0.043 (corresponding to

Ye = 0.4784). The most abundant species at the end of the calculation are
54Fe

(Xf = 0.58),
58Ni (Xf = 0.19), and

56Fe (Xf = 0.15), in agreement with expectation

since these nuclides have the highest binding energies at individual neutron
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excess parameters of (N − Z)∕A = 0.037, 0.035, and 0.071, respectively. Also,

notice in Figure 5.45a the negligible final α-particle abundance, indicating that

the freeze-out was of the normal variety.

Outside the shaded area in Figure 5.42, but still in the complete explosive sili-

con burning (with normal freeze-out) regime, the densities have dropped to values

where the impact of electron captures has lessened considerably. Since the fuel

consists mainly of 12C and 16O, with equal numbers of protons and neutrons,

nuclear statistical equilibrium will favor 56Ni in these layers, which represents the

most tightly bound nuclide with N = Z (Figures 1.9 and 5.39). The time evolu-

tions of the most abundant species for a peak temperature and peak density of

7.0 GK and 3 × 108 g/cm3, respectively, are displayed in Figure 5.45b.These condi-

tions aremarked by the second open circle in Figure 5.42.The final neutron excess

amounts to 𝜂f = 0.0057, representing an increase by almost a factor of three over

the initial value, but still small enough to favor a nuclide with N = Z as the most

abundant species. It is apparent in the figure that at the end of the calculation the

most abundant species by far is 56Ni (N = Z = 28), with a final mass fraction of

Xf = 0.79. The next abundant nuclide,
54Fe, has a final mass fraction that is lower

by about an order of magnitude. Intermediate-mass elements (Si, S, Ar, Ca) are

not significantly produced.

The next layers encountered by the flame, with a range of enclosed white dwarf

masses of ≈ 0.3–1.0M☉, are heated to peak temperatures of T ≈ 4.5–5.5 GK and

experience incomplete explosive silicon burning (labeled “incSix” in Figure 5.42).

As already discussed in Section 5.4.3, for these conditions quasi-equilibrium, not

nuclear statistical equilibrium, is established. The time-integrated net abundance

flows for a representative peak temperature and peak density of 4.8 GK and

1.5 × 107 g/cm3, respectively, are shown in Figure 5.46a. These conditions are

indicated by the third open circle in Figure 5.42. A cluster in quasi-equilibrium

with 28Si is quickly formed, followed by the formation of a quasi-equilibrium

cluster in the iron-peak region. The expansion causes the freeze-out to occur

before all of the intermediate mass elements can be transformed to iron-peak

species. We expect that the relative abundances of the intermediate-mass

elements and of 56Ni will depend sensitively on the adopted values for the initial

neutron excess and the expansion time scale. The corresponding time evolutions

of the most abundant species are displayed in Figure 5.45c. The most abundant

nuclide at the end of the calculation is again 56Ni (Xf = 0.53), but this time

significant amounts of 28Si (Xf = 0.14),
32S (Xf = 0.14),

36Ar (Xf = 0.041), and
40Ca (Xf = 0.053) remain.The complete and incomplete explosive silicon burning

regions are separated by the dash-dotted line in Figure 5.42. For the adopted

conditions, the neutron excess does not change noticeably over the course of the

calculation.

The layers further out with a range of enclosed white dwarf masses of

≈ 1.0–1.2M☉, when the peak temperature in the flame has declined to T ≈ 3.5–

4.5 GK, experience explosive oxygen burning (labeled “Ox” in Figure 5.42). The

time-integrated net abundance flows for a representative peak temperature and

peak density of 4.0 GK and 8 × 106 g/cm3, respectively, are shown in Figure 5.46b.
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Figure 5.46 Time-integrated net abun-

dance flows during thermonuclear super-

nova nucleosynthesis. The network cal-

culations are performed using exponen-

tial T–𝜌 evolutions (see Eq. (5.144)) and

an expansion time scale of 𝜏 = 0.3 s; (a)

incomplete explosive silicon burning with

Tpeak = 4.8 GK and 𝜌peak = 1.5 × 107 g/cm3;

(b) explosive oxygen burning with Tpeak =

4.0 GK and 𝜌peak = 8 × 106 g/cm3. The ini-

tial composition is: 12C (Xi = 0.475); 16O

(Xi = 0.500); 22Ne (Xi = 0.025). The two flow

diagrams correspond to the abundance evo-

lutions shown in Figure 5.45c,d. The arrows

have the same meaning as in Figure 5.26:

Fmax ≥ Fij > 0.1Fmax (thick arrows), 0.1Fmax ≥
Fij > 0.01Fmax (intermediate arrows), and

0.01Fmax ≥ Fij > 0.001Fmax (thin arrows),

where Fmax corresponds to the reaction with

the maximum net flow. The abundance flows

are defined here in terms of mole fractions

rather than number densities since the mass

density varies.
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These conditions are marked by the fourth open circle in Figure 5.42. Again, two

quasi-equilibrium clusters form in the mass regions of silicon and the iron peak,

but because of the lower peak temperature far less matter is converted to the

iron peak region and most of the material remains locked in the silicon region.

The corresponding abundance evolutions are displayed in Figure 5.45d.The most

abundant species at the end of the calculation are by far 28Si (Xf = 0.58) and
32S

(Xf = 0.28). The neutron excess remains unchanged for these conditions.

We already discussed in Section 5.4.3 that the nucleosynthesis during explosive

burning is mainly determined by the peak temperature and the freeze-out condi-

tions in a particular layer rather than by the composition of the fuel.The reason is

that nuclear statistical equilibrium or quasi-equilibriumwill seek the energetically

most favorable configuration for the nuclear composition. Although the matter

in the layers discussed so far undergoes explosive silicon and oxygen burning, it

must be kept in mind that we assumed for the nuclear fuel a uniform distribu-

tion of mainly 12C and 16O, with a small contribution of 22Ne. Since the neutron

excess of the fuel is very small, themain nucleosynthesis products outside the cen-

tral region, where electron captures play an important role, are N = Z nuclides of

large binding energy per nucleon, that is, 56Ni, 28Si, and so on (Figure 1.9). The

production of minor nuclides will depend sensitively on the value of the adopted

initial neutron excess.

The outer layers of the white dwarf, with an enclosed mass of ≈ 1.2–1.3M☉,

are heated by the flame to peak temperatures of T ≈ 2–3.5 GK and experience

explosive neon-carbon burning (see also Section 5.4.3). Further out, at still lower

peak temperatures, the hydrodynamic time scale is too short for thermonuclear

reactions to take place and the nucleosynthesis ceases.

A few seconds after the explosion the ejecta expand freely. The matter density

decreases with time and the ejecta become increasingly transparent for emitted

photons, allowing for the observation of deeper layers as time progresses. The

observations indicate a layered chemical structure reflecting the different burn-

ing regimes of the flame. Near the center of the ejecta there is a region depleted

in 56Ni and occupied by neutron-rich iron-peak elements (Höflich et al., 2004),

consistent with their production in the complete explosive silicon burning with

electron capture regime. Above this region, there is a volume filled mainly with
56Ni produced during complete and incomplete explosive silicon burning. Farther

out, intermediate mass elements (Si, S, Ar, Ca) and other iron peak species are

the main constituents, which are synthesized during incomplete explosive silicon

burning and explosive oxygen burning.

Most Chandrasekhar mass single-degenerate models produce 56Ni, which

powers the light curves of type Ia supernovae, in a region of mass shells with

≈ 0.2–0.8M☉. The inferred amount of
56Ni synthesized per event is about

0.6M☉. The similarity in peak brightness between different observed type Ia

supernovae (Section 1.4.4) can be understood by assuming that the amount of

fuel, consisting mainly of carbon and oxygen, is similar from event to event (given

by the Chandrasekhar limit) and that most of the fuel burns to iron-peak and

intermediate-mass elements, with little remaining unburned fuel.
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Finally, we briefly address the situation regarding the nuclear physics input.

The high temperatures and densities achieved in the explosion imply that

most nuclear reactions will take part in either nuclear statistical equilibrium or

quasi-equilibrium. Therefore, the nucleosynthesis and nuclear energy generation

will in general not be sensitive to individual reaction rates, but will depend on

reaction Q-values, nuclear spins, and partition functions. The masses of the

nuclides taking part in the nucleosynthesis are well known. We expect current

reaction rate uncertainties to play a role only during the ignition phase (mainly

for 12C+12C) or during freeze-out. However, sensitivity studies (Bravo and

Martínez-Pinedo, 2012; Parikh et al., 2013b) have identified a handful of nuclear

reactions, 12C+12C, 12C(𝛼,𝛾)16O, 20Ne(𝛼,𝛾)24Mg, 24Mg(𝛼,p)27Al, and 30Si(p,𝛾)31P,

that impact the nucleosynthesis in type Ia models in the temperature range of

T ≈ 2–4 GK, although their influence is modest. The importance of stellar weak

interaction rates (Section 1.8.4) for the nucleosynthesis in the inner region of

the exploding white dwarf has already been discussed above. Estimations of the

uncertainties associated with stellar weak rates exist for a handful of interactions

only (Cole et al., 2012) and more work is needed. At the high densities occurring

in type Ia explosions, electron screening corrections (Section 3.2.6) are also

crucial and have to be taken into account for precise predictions (Calder et al.,

2007).

5.5.2

Explosive Hydrogen Burning and Classical Novae

In Section 5.1, we discussed hydrogen burning in the stellar temperature range

of T < 0.06 GK. If, under such conditions, the stellar gas consists of pure

hydrogen, then hydrogen burning must proceed via the pp chains (with perhaps

a contribution from the pep reaction; Section 5.1.1). On the other hand, if a

significant fraction of CNO nuclei is present in the stellar gas, then the CNO

cycles will generate most of the energy above a certain temperature (e.g., above

20 MK for a solar mass fraction of CNO nuclei; see Figure 5.12). There are two

important points that need to be kept in mind regarding hydrogen burning

at temperatures below 0.06 GK. First, a specific radioactive nucleus that is

produced during the burning will be destroyed by its relatively fast β-decay

rather than by the considerably slower competing proton-induced reaction (with

the exceptions of 7Be in the pp3 chain and 26Al in the region of A ≥ 20; see
Figure 5.2 and Section 5.1.3). Second, in the reaction network of the pp chains

or the CNO cycles, all the radioactive decays are faster compared to the slowest

proton-induced reaction and, consequently, the energy generation rate does not

depend on the half-lives of the radioactive decays. At elevated temperatures

typical of explosive hydrogen burning, the situation described above changes

dramatically.

In the following, we will discuss the explosive nucleosynthesis in the A < 20

and A ≥ 20 mass regions at temperatures of T = 0.1–0.4 GK. Another important

point needs to be stressed. So far, we explored the nucleosynthesis in hydrostatic
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burning environments analytically by considering equilibrium burning conditions

or numerically by performing reaction network calculations assuming a constant

temperature and density. These considerations provide a qualitative picture of

the interplay between different nuclear processes. However, the above assump-

tions are not valid for explosive events. First, the time to approach equilibrium

conditions is often comparable to the macroscopic hydrogen burning time scale.

Second, temperatures and densities in an explosive event change dramaticallywith

time. The time evolution of T and 𝜌 depends strongly on the properties of the

exploding star. In this section, the reaction networks for explosive hydrogen burn-

ing are solved numerically, first with the assumption of constant T–𝜌 conditions,

and then by using temperature and density evolutions adopted from simulations

of classical novae.

Hot CNO Cycles

If a star consists of a gas containing a significant fraction of CNO nuclei, then at

elevated temperatures (T = 0.1–0.4 GK) most of the nuclear energy is generated

by the hot CNO cycles (or HCNO cycles). The reactions of the HCNO cycles are

listed below and are shown in Figure 5.47.

Hot CNO1 Hot CNO2 Hot CNO3

12C(p,𝛾)13N 15O(𝛽+𝜈)15N 15O(𝛽+𝜈)15N

13N(p,𝛾)14O 15N(p,𝛾)16O 15N(p,𝛾)16O

14O(𝛽+𝜈)14N 16O(p,𝛾)17F 16O(p,𝛾)17F

14N(p,𝛾)15O 17F(𝛽+𝜈)17O 17F(p,𝛾)18Ne

15O(𝛽+𝜈)15N 17O(p,𝛾)18F 18Ne(𝛽+𝜈)18F

15N(p,𝛼)12C 18F(p,𝛼)15O 18F(p,𝛼)15O

T1∕2:
14O (70.62 s); 15O (122.24 s); 17F (64.49 s)

The hot CNO cycles have a number of important properties in common with

the CNOcycles discussed in Section 5.1.2: (i) each of the hot CNOcycles converts

four hydrogen nuclei to one helium nucleus; (ii) the CNOF nuclei involved in the

hot CNO cycles act as catalysts and their total number is nearly constant; and

(iii) the energy generation rate of the hot CNO cycles depends on the abundances

of the catalysts. It will be shown in Section 5.5.3 that, above a certain temperature

(T ≥ 0.4 GK), catalytic material will be lost from the hot CNO cycles by various
breakout reactions. In this section, we will discuss the operation of the hot CNO

cycles in the temperature region of T = 0.1–0.4 GK.

Wewill start our discussion by considering theCNO1cycle (Figure 5.8) andhow

this cycle is modified when the temperature gradually increases. The 13N nucleus

has the longest half-life (T1∕2 = 9.96 min) among all the β
+-decays in the CNO1

cycle. For an increasing temperature, a pointwill be reachedwhere the destruction

of 13N by proton-capture competes favorably with the β+-decay of 13N. Hence,
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Figure 5.47 Representation of the three

hot CNO cycles in the chart of the nuclides.

Stable nuclides are shown as shaded

squares. Each reaction cycle fuses effec-

tively four protons to one 4He nucleus. In

explosive hydrogen burning, the CNO2 cycle

(Figure 5.8) is more likely to occur than the

HCNO2 cycle since the 17O(p,𝛼)14N reac-

tion rate dominates over the 17O(p,𝛾)18F rate

(Figure 5.9).

instead of the sequence that occurs in the CNO1 cycle,

13N(𝛽+𝜈)13C(p, 𝛾)14N (5.147)

the alternative path

13N(p, 𝛾)14O(𝛽+ 𝜈)14N (5.148)

becomes more likely. The half-life of 14O (T1∕2 = 70.6 s) is less than that of
13N.

Thus, 13N is converted to 14N on a faster time scale for the latter path. Further-

more, it was shown in Section 5.1.2 that the 14N(p,𝛾)15O reaction is the slow-

est process in the CNO1 cycle and, therefore, determines the energy generation

rate. For an increasing temperature, all the rates for proton-induced reactions will
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Figure 5.48 Temperature–density diagram

showing the transition from the CNO1 cycle

(region 1) to the HCNO1 cycle (region 3). The

solid curve represents the T–𝜌 conditions

at which the 13N β+-decay lifetime is equal

to the lifetime of 13N destruction via proton

capture. The dashed (dashed-dotted) curve is

obtained for the condition that the 13N (14N)

lifetime versus destruction by proton cap-

ture is equal to the sum of the 14O and 15O

β+-decay lifetimes. All curves are calculated

for the solar value XH∕MH = 0.70. On the

left-hand side of each curve, the β+-decay is

more likely to occur than the proton-induced

reaction, while the opposite applies on the

right-hand side.

increase strongly. Eventually a point is reached where all (p,𝛾) and (p,𝛼) reactions,

including the 14N(p,𝛾)15O reaction, are faster compared to the β+-decays of 14O

and 15O. As a result of these two modifications, the CNO1 cycle transforms at

higher temperatures into the hot CNO1 cycle (Figure 5.47). It was mentioned

earlier that the energy generation rate of the CNO1 cycle is highly sensitive to

the temperature (see Eq. (5.71)). The HCNO1 cycle, on the other hand, has the

interesting property that the energy generation rate depends on the β+-decays

of 14O and 15O (i.e., the slowest links in the cycle) and hence is independent of

temperature. For this reason, the HCNO1 cycle is also referred to as β-limited

CNO cycle.The time around oneHCNO1 cycle is then at least 𝜏𝛽(
14O) + 𝜏𝛽(

15O) =

T1∕2(
14O)∕ ln 2 + T1∕2(

15O)∕ ln 2 ≈ 278 s. It follows that a significant fraction of

the CNO nuclei will be transformed into 14O and 15O. Proton captures on 14O

and 15O are unlikely to occur since the corresponding compound nuclei 15F and
16F are unstable by proton emission.

The transition from the CNO1 cycle to the HCNO1 cycle can be represented in

a temperature-density diagram (Figure 5.48).The lifetimes of the 13N, 14O, and 15O

β+-decays are given by 𝜏𝛽 = T1∕2∕ ln 2, while the lifetimes of
13N and 14N versus

destruction by protons are 𝜏p = [𝜌(XH∕MH)NA⟨𝜎𝑣⟩]−1.The solid curve represents
the T–𝜌 conditions for which the 13N β+-decay lifetime is equal to the lifetime of
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13N destruction via proton capture, that is

1

𝜌(XH∕MH)NA⟨𝜎𝑣⟩13N(p,𝛾) = T1∕2(
13N)

ln 2
(5.149)

The dashed (or dashed-dotted) curve is obtained for the condition that the 13N

(or 14N) lifetime versus destruction by proton capture is equal to the sum of 14O

and 15O lifetimes,

1

𝜌(XH∕MH)NA⟨𝜎𝑣⟩xN(p,𝛾) = T1∕2(
14O)

ln 2
+

T1∕2(
15O)

ln 2
(5.150)

All curves are calculated for a solar value of XH∕MH = 0.70. On the left-hand side

of each curve, the β+-decays are more likely to occur than the proton-induced

reaction, while the opposite situation prevails on the right-hand side. The

CNO1 cycle operates in region 1 where 13N β+-decays [𝜏𝛽(
13N) < 𝜏p(

13N)] and

where 14N(p,𝛾)15O is the slowest link in the cycle [𝜏𝛽(
14O) + 𝜏𝛽(

15O) < 𝜏p(
14N)].

Suppose we start out in region 1 and slowly increase the temperature by keeping

the density constant, for example, at 𝜌 = 500 g/cm3. When the solid curve is

crossed at T ≈ 0.100 GK, we have 𝜏𝛽(
13N) > 𝜏p(

13N), and the slow 13N β+-decay

is bypassed by the sequence 13N(p,𝛾)14O(β+𝜈)14N (region 2a). When the dashed

curve is crossed at T ≈ 0.113 GK, the 13N proton-capture reaction becomes

faster than the 14O and 15O β+-decays [𝜏𝛽(
14O) + 𝜏𝛽(

15O) > 𝜏p(
13N)]. At this

stage (region 2b), the 14N(p,𝛾)15O reaction is still the slowest link in the cycle and

determines the energy generation rate. Finally, when the dashed-dotted curve is

crossed at T ≈ 0.128 GK, the proton capture on 14N becomes faster than the 14O

and 15O β+-decays [𝜏𝛽(
14O) + 𝜏𝛽(

15O) > 𝜏p(
14N)]. We have now reached region 3,

where the β-limited HCNO1 cycle operates.

For other densities, the situation is similar when increasing the temperature,

although the curvesmay be crossed in different order. For example, at a lower den-

sity of 𝜌 = 5 g/cm3 the solid curve is crossed at T ≈ 0.161 GK (region 2a), while

the dashed-dotted curve is crossed at T ≈ 0.174 GK. At this stage (region 2c), the

sequence 13N(p,𝛾)14O(β+𝜈)14N dominates over the 13N β+-decay and the proton

capture reaction on 14N is faster than the 14O and 15O β+-decays. However, the

dashed curve has not been crossed yet, that is, the 13N(p,𝛾)14O reaction is slower

than the 14O and 15O β+-decays. The proton-capture reaction on 13N is now the

slowest link in the cycle and determines the energy generation rate. Finally, the

dashed curve is crossed at T ≈ 0.185 GK and the CNO cycle becomes again β-

limited (region 3).

The HCNO1 cycle discussed above represents a nearly closed reaction

sequence, in the sense that very little catalytic material is lost. This occurs

because the branching ratio Bp𝛼∕p𝛾 at
15N exceeds a factor of 1000 (Figure 5.9).

Hence, if 12C seed nuclei are present in the gas, they will be converted mostly

to 14O and 15O, assuming that hydrogen is not near exhaustion (see later). We

already pointed out in Section 5.1.2 that in addition to 12C, other seed nuclei,

such as 16O, may be present in the stellar gas. The 16O nuclei are processed in a
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number of different, competing reaction cycles. One possibility of processing is

the CNO2 cycle, which was introduced in Section 5.1.2,

16O(p, 𝛾)17F(𝛽+𝜈)17O(p, 𝛼)14N(p, 𝛾)15O(𝛽+𝜈)15N(p, 𝛾)16O (5.151)

Inspection of Figure 5.9 reveals that the 17O(p,𝛼)14N reaction dominates over

the competing 17O(p,𝛾)18F reaction at temperatures of T = 0.1–0.4 GK by a

factor of ≈ 200. A small fraction of the 16O seed nuclei will be processed via the
17O(p,𝛾)18F reaction, giving rise to the HCNO2 cycle,

16O(p, 𝛾)17F(𝛽+𝜈)17O(p, 𝛾)18F(p, 𝛼)15O(𝛽+𝜈)15N(p, 𝛾)16O (5.152)

The branching ratio Bp𝛼∕p𝛾 at
18F is shown in Figure 5.49a. In the temperature

range of T = 0.1–0.4 GK, the 18F(p,𝛼)15O reaction is faster than the competing
18F(p,𝛾)19Ne reaction bymore than a factor of 1000. Under conditions of explosive

hydrogen burning, the 18F(p,𝛼)15O reaction is also faster than the 18F β+-decay.

This is demonstrated in Figure 5.49b. The dashed line shows the T–𝜌 conditions

(for XH∕MH = 0.70) at which the
18F β+-decay lifetime is equal to the lifetime of

18F destruction via the (p,𝛼) reaction [𝜏p𝛼(
18F) = 𝜏𝛽(

18F)]. For example, at a den-

sity of 𝜌 = 500 g/cm3 the 18F(p,𝛼)15O reaction dominates over the competing β+-

decay for temperatures of T > 0.058 GK. Consequently, once the nucleosynthesis

path in explosive hydrogen burning reaches 18F, the (p,𝛼) reaction is the domi-

nant destruction mode. The solid line in Figure 5.49b shows the T–𝜌 conditions

at which the 17F β+-decay lifetime is equal to the lifetime of 17F destruction via
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Figure 5.49 (a) Branching ratio Bp𝛼∕p𝛾 =

NA⟨𝜎𝑣⟩(p,𝛼)∕NA⟨𝜎𝑣⟩(p,𝛾) versus temperature

for the 18F + p reactions. The two solid lines

represent the upper and lower boundaries

of Bp𝛼∕p𝛾 (de Séréville, Berthoumieux, and

Coc, 2005). The area between the solid lines

indicates the uncertainty in Bp𝛼∕p𝛾 caused by

unknown contributions to the (p,𝛾) and (p,𝛼)

reaction rates. (b) Temperature–density con-

ditions showing the competing destruction

modes of 17F and 18F. The dashed line rep-

resents the conditions at which the 18F β+-

decay lifetime is equal to the lifetime of 18F

destruction via the (p,𝛼) reaction. The solid

line corresponds to the conditions at which

the 17F β+-decay lifetime is equal to the life-

time of 17F destruction via the (p,𝛾) reaction.

The curves in part (b) are calculated assum-

ing XH∕MH = 0.70.
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the (p,𝛾) reaction [𝜏p(
17F) = 𝜏𝛽(

17F)]. Considering again, for example, a density of

𝜌 = 500 g/cm3, it can be seen that the 17F(p,𝛾)18Ne reaction dominates over the

competing β+-decay at temperatures of T > 0.23 GK. Hence, the HCNO3 cycle

develops,

16O(p, 𝛾)17F(p, 𝛾)18Ne(𝛽+𝜈)18F(p, 𝛼)15O(𝛽+𝜈)15N(p, 𝛾)16O (5.153)

which bypasses the isotope 17O.

Network Calculations at Constant Temperature and Density

To gain a better understanding of the nucleosynthesis, we will first solve the reac-

tion network of the HCNO cycles numerically for constant temperature and den-

sity conditions.The extra complications that arise from themore realistic assump-

tions of time-dependent temperatures and densities will be dealt with later. We

assume for the initial abundances values of X0
H
= 0.60, X04He = 0.20, and X

0
12C

=

0.20, that is, only 12C is initially present as seed for the hot CNO cycles. The reac-

tion network is solved until hydrogen exhaustion (XH < 0.001).The time evolution

of 1H and theHCNO1abundances (12C, 13N, 14O, 14N, 15O) is shown in Figure 5.50

for temperatures ofT = 0.15 GK andT = 0.3 GK. For both calculations, a density

of 𝜌 = 200 g/cm3 has been chosen. Although all reactions of the HCNO cycles

have been included in the network, the graphs represent mainly the operation of

the HCNO1 cycle, since the leakage to the other cycles via the 15N(p,𝛾)16O reac-

tion is very small. For the initial conditions chosen, the abundances of 16O, 17O,
17F, and 18F never exceed a value of Xi = 10

−4. Also, the abundance of 15N is very

small because of its strong destruction via the (p,𝛼) reaction and is not displayed

in Figure 5.50.

For a temperature of T = 0.15 GK (Figure 5.50a), 12C is initially converted to
13N via the 12C(p,𝛾)13N reaction. The 13N abundance reaches a maximum after

t = 20 s. The subsequent 13N(p,𝛾)14O reaction causes the 14O abundance to peak

after about t = 80 s. The slow 14O β+-decay increases the 14N abundance, while

the subsequent 14N(p,𝛾)15O reaction is responsible for the growing abundance of
15O. At a time around t = 500 s, the hydrogen abundance has dropped to XH =

0.5 and all CNO abundances achieve equilibrium. The ratio of any two number

abundances is then given by Eq. (5.61),(
A

B

)
e
=

(
XA

XB

)
e

(
MB

MA

)
=
𝜏A
𝜏B

(5.154)

At this stage, the sum of mean lifetimes in the HCNO1 cycle amounts to∑
𝜏CNO1 ≡ 𝜏p(

12C) + 𝜏p(
13N) + 𝜏𝛽(

14O) + 𝜏p(
14N) + 𝜏𝛽(

15O)

= (13 + 63 + 102 + 91 + 176) s = 445 s (5.155)

The nuclide 15O is the most abundant species in the CNOmass range because its

mean lifetime has the largest value. Although the 14O and 15O β+-decays represent

the slowest links in theHCNO1 cycle, the contribution fromproton-induced reac-

tions to the sum of mean lifetimes is significant. Further processing of matter is

influenced by the substantially decreasing hydrogen abundance until exhaustion.
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Figure 5.50 Time evolution of abundances

during the operation of the hot CNO cycles

for different conditions: (a) T = 0.15 GK,

X0
H
= 0.60, X0

4He
= 0.20, and X0

12C
= 0.20;

(b) T = 0.30 GK, X0
H
= 0.60, X0

4He
= 0.20,

and X0
12C

= 0.20; (c), (d) T = 0.30 GK, X0
H
=

0.60, X0
4He

= 0.20, and X0
16O

= 0.20. For the

density, a constant value of 𝜌 = 200 g/cm3 is

assumed. All curves shown are obtained by

solving the reaction network numerically. The

calculations are terminated when the hydro-

gen mass fraction falls below XH = 0.001.

As a result, all the lifetimes for proton-induced reactions increase (see Eq. (3.22)).

For example, at a time of t = 3000 s, the hydrogen abundance has dropped to a

value of XH = 0.18 and we obtain∑
𝜏CNO1 = (34 + 168 + 102 + 252 + 176) s = 732 s (5.156)

with 14N(p,𝛾)15O representing the slowest link in the cycle. With decreasing

hydrogen abundance, the 14O and 15O abundances also decline since their
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β+-decays are now faster than their production via 13N(p,𝛾)14O and 14N(p,𝛾)15O.

The nuclide 14N becomes the most abundant species and its abundance increases

further until the end of the calculation is reached. It is remarkable that hydrogen

is exhausted after only t = 8400 s, a time period that is significantly shorter

compared to the situation prevailing in hydrostatic hydrogen burning environ-

ments. This result is a direct consequence of the strong temperature sensitivity of

charged-particle reaction rates.

At a higher temperature of T = 0.3 GK (Figure 5.50b), the abundances evolve

initially similar to the previous case. The nuclide 12C is first converted to 13N

and then further processed to 14O. The β+-decay of the latter nucleus feeds the

increasing 15O abundance via the sequence 14O(𝛽+𝜈)14N(p,𝛾)15O. Equilibrium

CNO abundances are reached after t = 300 s. At that stage, the hydrogen

abundance has dropped to XH = 0.5 and the sum of all mean lifetimes in the

HCNO1 cycle amounts to∑
𝜏CNO1 = (0.035 + 0.15 + 102 + 0.016 + 176) s

≈ 𝜏𝛽(
14O) + 𝜏𝛽(

15O) = 278 s (5.157)

with a negligible contribution from proton-capture reactions. The reaction cycle

is 𝛽-limited, and the most abundant species are 15O and 14O. For their number

abundance ratio, we obtain(
15O
14O

)
e

=

(
X15O
X14O

)
e

(
M14O

M15O

)
=
𝜏𝛽(
15O)

𝜏𝛽(
14O)

=
176 s

102 s
= 1.7 (5.158)

in agreement with the numerical results displayed in Figure 5.50b. This situation

prevails almost until the end of the calculation. Only at times very close to hydro-

gen exhaustion do themean proton-capture lifetimes sufficiently increase to cause

a slight drop in the 14O and 15O abundances, with a corresponding rise of the
12C, 13N, and 14N abundances. Nevertheless, even at hydrogen exhaustion (XH =

0.001) we have∑
𝜏CNO1 = (18 + 77 + 102 + 8 + 176) s = 381 s (5.159)

and the 14O and 15O β+-decays are still the slowest links in the HCNO1 cycle.

Hydrogen is exhausted after a time of t = 2400 s.This value is significantly shorter

compared to the result obtained in the previous network calculation since the

proton-capture reactions become faster with increasing temperature.

Wewill now consider the nucleosynthesis resulting froma change in initial com-

position. We assume values of X0
H
= 0.60, X04He = 0.20, and X

0
16O

= 0.20, that is,

only 16O instead of 12C is initially present as seed for the hot CNO cycles. For

the temperature and density, we have again assumed values of T = 0.3 GK and

𝜌 = 200 g/cm3, respectively. The results of a network calculation are displayed in

Figure 5.50c,d. The 16O(p,𝛾)17F reaction quickly destroys the 16O seed nuclei and

converts them to 17F, whose abundance peaks after t = 8 s. For the chosen T–𝜌

conditions, the 17F(p,𝛾)18Ne reaction dominates over the competing 17F β-decay

(see Figure 5.49b). Hence, the HCNO3 cycle operates, as can be seen from the
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rising 18Ne abundance. Subsequent to 18Ne(𝛽+𝜈)18F, the fast 18F(p,𝛼)15O reac-

tion feeds the abundance of 15O that increases steadily. A small abundance flow

also proceeds through the CNO2 and HCNO2 cycles, as indicated by the evolu-

tion of the 17O abundance. Further processing of matter is similar to the previous

case of T = 0.3 GK and only 12C present as seed (see Figure 5.50b). All HCNO1

abundances achieve equilibrium after t ≈ 300 s, with 15O and 14O being the most

abundant species. In effect, theHCNO3 cycle feeds theHCNO1 cycle andmost of

the 16O seed nuclei are transformed to 14O and 15O. Hydrogen is exhausted after

t = 3170 s, which is longer than the time obtained in the previous calculation.The

delay is caused by the additional initial processing of matter through the HCNO3

cycle. Finally, it can be seen that the 16O, 17F, and 17O abundances increase toward

the end of the calculation, indicating that a small fraction of matter leaks out of

the HCNO1 cycle via the 15N(p,𝛾)16O reaction.

The total energy generated per HCNO1 cycle that is available to the star is

Q4H→4He − E
14O(𝛽+𝜈)

𝜈
− E

15O(𝛽+𝜈)

𝜈
= 24.827MeV (5.160)

with Q4H→4He = 26.731 MeV and E
i

𝜈
the average neutrino energies released in the

β+-decays (see Eq. (1.48) and Problem 1.9). Since four hydrogen atoms have amass

of 4MH∕NA gram, the total energy generated per gram of consumed hydrogen is

Q4H→4He − E
14O(𝛽+𝜈)

𝜈
− E

15O(𝛽+𝜈)

𝜈

4MH∕NA g
=

24.827MeV

4 ⋅ 1.0078∕6.022 × 1023 g

= 3.71 × 1024MeV∕g (5.161)

For the previously discussed network calculations, we assumed X0
H
= 0.60

and, therefore, the total energy generated until hydrogen exhaustion is

0.60 ⋅ (3.71 × 1024MeV∕g) = 2.2 × 1024 MeV/g (or 3.5 × 1018 erg/g). The same

value is directly obtained from Eq. (3.69). This result does not depend on the

values assumed for the density, 𝜌, or the initial CNO mass fraction, as long as

most of the hydrogen is converted to helium via the HCNO1 cycle. The latter

quantities do, however, influence the time it takes until hydrogen is exhausted.

This time is displayed in Figure 5.51 as a function of temperature, with the

density held constant at a value of 𝜌 = 200 g/cm3. The curves correspond to

different assumptions for the initial CNO abundances. In each case, the time

until hydrogen exhaustion increases with decreasing temperature since the

contribution of proton-induced reactions to the sum of mean lifetimes in the

HCNO1 cycle becomes increasingly important, as explained in the previous

examples. All curves are approximately constant at temperatures in excess of

T = 0.25 GK, where the β+-decays of 14O and 15O alone determine the time

scale for the HCNO1 cycle. Consider now a fixed value of temperature, say,

T = 0.3 GK. The longest time until hydrogen exhaustion (t = 3170 s) is obtained

when only 16O is initially present (X012C = 0.00, X
0
16O

= 0.20). The reason is that

it takes some additional time until 16O is consumed and its abundance can feed

the HCNO1 cycle. Adding even a small amount of 12C (X012C = 0.01, X
0
16O

= 0.20)

noticeably decreases the time until hydrogen exhaustion (t = 2965 s). The rate
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Figure 5.51 Time until hydrogen exhaus-

tion (XH < 0.001) during the operation of

the HCNO cycles. The solid lines corre-

spond to different assumptions for the ini-

tial CNO abundances. For the initial hydro-

gen abundance and the density, values of

X0
H
= 0.60 and 𝜌 = 200 g/cm3 are adopted.

The curves are obtained by performing a

series of numerical reaction network calcu-

lations, with T and 𝜌 held constant in each

calculation.

of hydrogen consumption increases substantially (t = 2398 s) when only 12C

instead of 16O is initially present (X012C = 0.20, X
0
16O

= 0.00). Finally, hydrogen is

consumed even faster (t = 1294 s) if equal amounts of 12C and 16O are initially

present (X012C = X0
16O

= 0.20).

Network Calculations for a Classical Nova: Accreting COWhite Dwarf

We will now discuss the more realistic situation of changing temperature and

density during the nucleosynthesis. Classical novae (Section 1.4.4) represent an

example of explosive hydrogen burning in the temperature region of T = 0.1–

0.4 GK. Figure 5.52a shows a temperature and density profile adopted fromhydro-

dynamic studies (José and Hernanz, 1998) of a thermonuclear runaway caused by

the accretion of solar-like matter onto the surface of a 1.0M☉ white dwarf of CO

composition. The curves represent the temperature and density evolution of the

hottest hydrogen-burning zone, that is, the region inwhichmost of the nucleosyn-

thesis takes place.This particular novamodel achieves amaximum temperature of

T = 0.17 GKafter a time of t ≈ 360 s. At t = 1700 s, the temperature has fallen to a

value ofT ≈ 0.12 GK.Thedensity evolves from 𝜌 = 870 g/cm3 before the outburst

to a value of 𝜌 = 21 g/cm3 at t = 1700 s.The reaction network of theHCNOcycles

will be solved numerically using this T–𝜌 profile. For the initial composition, val-

ues ofX0
H
= 0.35,X04He = 0.15, andX

0
12C

= X016O = 0.25 are assumed.These are sim-

ilar to those used for the calculation of the T–𝜌 profile displayed in Figure 5.52a.

The network calculation is terminated after t = 1700 s.

Time-integrated net abundance flows are shown in Figure 5.53a. The corre-

sponding abundance evolutions are displayed in Figure 5.54a,b. The results are
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Figure 5.52 Temperature and density evo-

lution of the hottest hydrogen-burning zone

during the thermonuclear runaway on the

surface of a white dwarf with (a) M = 1.0 M☉
and CO composition, and (b) M = 1.25 M☉

and ONe composition. The curves are

adopted from hydrodynamic simulations of

classical nova explosions (José and Hernanz,

1998). Abundance flows computed using

these profiles are shown in Figure 5.53.

more complicated compared to the earlier calculations since the rapidly changing

temperature and density keep the CNO abundances far from equilibrium.

Nevertheless, the operation of the HCNO1 cycle is apparent. The isotope 12C is

first transformed into 13N and further processed to 14O, 14N, and 15O. In contrast

to the previous calculations for constant T–𝜌 conditions, a 13C abundance builds

up since for t > 1000 s the temperature and density evolve in a region in which

the decay 13N(𝛽+𝜈)13C is more likely to occur than the 13N(p,𝛾)14O reaction

(Figures 5.48 and 5.52a). For the peak temperature achieved in this nova model,

the 16O(p,𝛾)17F reaction is rather slow and, therefore, only a small fraction of
16O is converted, first to 17F, and then to 17O. For the adopted T–𝜌 profile the

HCNO3 cycle never operates since the decay 17F(𝛽+𝜈)17O is always faster than

the 17F(p,𝛾)18Ne reaction (Figures 5.49b and 5.52a). At the end of the calculation,

the hydrogen abundance has fallen to XH = 0.24 and the most abundant CNO

nuclides are 14N, 16O, 13N, 12C, 17O, and 13C with mass fractions of 0.21, 0.20,

0.046, 0.030, 0.026, and 0.017, respectively. The results agree qualitatively with

observations of large nitrogen and oxygen abundances in the shells of several

classical novae (Warner, 1995).

The final CNO abundances differ substantially from the steady state values

achieved in hydrostatic hydrogen burning. If we assume that short-lived nuclides

present at the end of the network calculation decay to their stable daughter

nuclides (13N to 13C, 14O to 14N, and so on), then we obtain, for example,(
13C
12C

)
=

X13C + X13N
X12C

12

13
=
0.017 + 0.046

0.030

12

13
= 1.9 (5.162)(

15N
14N

)
=

X15N + X15O
X14N + X14O

14

15
=
4.6 × 10−6 + 0.0019

0.21 + 0.00076

14

15
= 0.0085 (5.163)
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Figure 5.53 Time-integrated net abundance

flows during classical nova nucleosynthe-

sis: (a) accretion onto a CO white dwarf; (b)

accretion onto a ONe white dwarf. For each

model, the network calculation is performed

for the hottest zone only, with the T–𝜌 evo-

lution displayed in Figure 5.52. The arrows

have the same meaning as in Figure 5.26:

Fmax ≥ Fij > 0.1Fmax (thick arrows), 0.1Fmax ≥
Fij > 0.01Fmax (intermediate arrows), and

0.01Fmax ≥ Fij > 0.001Fmax (thin arrows),

where Fmax corresponds to the reaction with

the maximum net flow. The abundance flows

are defined here in terms of mole fractions

rather than number densities since the mass

density varies.



5.5 Explosive Burning Involving Binary Stars 473

10−6

101

14O

16O

17F

17O
18F

18Ne

18O

14N

15O 15N

14O

1H

13C

13N

12C

102 103

101
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102 103

Time (s) Time (s)
101

1019

1021

1020

102 103

12C 13C 14N 15N 16O 17O 18O

Isotope(c)(a)

(b) (d)

10−5

10−4

10−3

M
a
s
s
 f
ra

c
ti
o
n
 X

i
M

a
s
s
 f
ra

c
ti
o
n
 X

i

ε 
(M

e
V

 g
−1

s
−1

)

10−2

10−1

100

100

101

10−1

102

103

104

105

R
a
ti
o
 X

i/
X

Figure 5.54 Explosive hydrogen burning

during the thermonuclear runaway on the

surface of a CO white dwarf. The results

show the operation of the HCNO cycles

and are obtained by performing a numer-

ical reaction network calculation using the

temperature and density evolution for the

hottest zone displayed in Figure 5.52a.

Corresponding abundance flows are shown

in Figure 5.53a. (a), (b) Abundance evolutions

in the A < 20 mass region; (c) ratios of final

mass fractions (after all β+-decays have been

completed), and the corresponding solar sys-

tem mass fractions; (d) time evolution of the

energy generation rate.

compared to (13C∕12C)e ≈ 0.25 and (
15N∕14N)e ≈ (1–5) × 10−5 for the equilib-

rium values in hydrostatic hydrogen burning at temperatures of T < 0.1 GK

(Figure 5.11a). It is also interesting to point out that certain nuclides are strongly

overproduced compared to their solar values. Ratios of final mass fractions, after

all β+-decays have been completed, and the corresponding solar mass fractions,

(X∕X☉), are shown in Figure 5.54c. The three most overproduced nuclides are
13C, 15N, and 17O, with overproduction factors in the range of (X∕X☉) ≈ 500–

6000. It has been suggested (Kovetz and Prialnik, 1997) that classical novae are

the predominant source of the latter two nuclides in the universe (see Table 5.2).

Significant amounts of 18F (X18F = 1.4 × 10
−5) are produced as well. The decay of
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18F (T1∕2 = 110 min) produces photons of 511 keV energy when the expanding

nova shell becomes transparent to γ-rays (Hernanz et al., 1999). This signature

from nearby classical novae could be detectable in the future with detectors

onboard satellites.

The time evolution of the energy generation rate is shown in Figure 5.54d. It is

characterized by a continuous increase, a maximum of 𝜀 = 1.3 × 1021 MeV g−1s−1

close to the time of peak temperature (t ≈ 360 s), and afterward a steady decline

as the temperature drops.

The experimental situation regarding reactions involving CNOF nuclei is

summarized below. We already pointed out in Section 5.1.2 that the reactions
13C(p,𝛾)14N, 14N(p,𝛾)15O, 15N(p,𝛾)16O, and 16O(p,𝛾)17F have been measured

down to center-of-mass energies of 100, 93, 130, and 130 keV, respectively.

Compared to the situation in hydrostatic hydrogen burning, the Gamow peaks in

explosive hydrogen burning are located at higher energies. For example, for the
14N + p reaction we obtain E0 ± Δ∕2 = 149 ± 59 keV near T ≈ 0.2 GK. Hence,

for reactions involving stable CNO nuclei, data do generally exist in the Gamow

peak and, as a consequence, the reaction rates at T = 0.1–0.4 GK have relatively

small uncertainties (typically < 30%; Iliadis et al., 2010). The situation is different

for reactions involving unstable nuclei. We have seen that the HCNO cycles are

initiated by the reactions 13N(p,𝛾)14O, 18F(p,𝛼)15O, and 17F(p,𝛾)18Ne. Our knowl-

edge of the corresponding reaction rates has improved substantially as a result of

experiments with radioactive ion beams (Section 4.6.1). The proton capture on
13N was the first astrophysically important reaction that was directly measured

with a radioactive ion beam (Delbar et al., 1993). In that study, the strength of

the broad Ecm
r

= 528 keV resonance was obtained. However, the 13N + p Gamow

peak for temperatures of T ≤ 0.4 GK is located far below this resonance. Hence,
the S-factor has to be extrapolated to astrophysically important energies. Current

reaction rate uncertainties in the range of T = 0.1–0.4 GK amount to a factor of

≈ 2. For the 18F(p,𝛼)15O reaction, at least some data exist in the Gamow peak

at T = 0.3–0.4 GK since the strength of a low-lying resonance at Ecm
r

= 330 keV

has been measured directly (Graulich et al., 1997; Bardayan et al., 2002). These

studies represent the first direct measurements in the nova Gamow peak using

radioactive ion beams. Nevertheless, the current reaction rate uncertainties are

relatively large and amount to factors of 6–30 at temperatures of T = 0.1–0.4 GK

because of additional contributions from unobserved resonances (Figure 5.49a).

The 17F(p,𝛾)18Ne reaction, on the other hand, has not been directly measured

yet. In this case, experiments have been performed (some involving radioactive

beams) that measure nuclear quantities, such as excitation energies, level widths,

and J𝜋-values, from which the reaction rates are partially inferred. The current

reaction rate uncertainties in the range of T = 0.1–0.4 GK amount to at least a

factor of two.

Network Calculations for a Classical Nova: Accreting ONeWhite Dwarf

Hydrogen burning at elevated temperatures also involves nuclides in the A ≥ 20
mass range. As was the case in hydrostatic hydrogen burning environments
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(Section 5.1.3), almost no leakage of material occurs from the CNO region

to the A ≥ 20 mass range at temperatures of T = 0.1–0.4 GK. Reactions that

could provide a link between both regions at T ≥ 0.4 GK will be discussed in
Section 5.5.3. Therefore, the nucleosynthesis must start from preexisting seed

nuclei with masses of A ≥ 20. The character of the burning, however, changes
drastically since proton-induced reactions on short-lived nuclei can compete with

their β+-decays. Reactions that occur in the mass region A ≥ 20 are displayed
in Figure 5.53. Comparison to Figure 5.15 shows that more proton-capture

reactions and β+-decays have to be taken into account at elevated temperatures.

The most likely nucleosynthesis paths will depend on the temperature–density

history of the explosion.

At temperatures of T = 0.1–0.4 GK, reaction cycles play a less prominent role

in the A ≥ 20 range compared to their outstanding importance in the CNOmass
region. From Figure 5.17 it is apparent that the branching ratios Bp𝛼∕p𝛾 for

27Al,
31P, and 35Cl are less than unity and hence, closed MgAl, SiP, and SCl cycles do

not exist for this temperature range. For 23Na, the branching ratio amounts to

Bp𝛼∕p𝛾 ≈ 30 at T ≈ 0.1 GK, but is only Bp𝛼∕p𝛾 ≈ 1 in the range of T ≈ 0.2–0.4 GK.

Thus, a closed NeNa cycle develops only at the lower temperature end. It will be

shown in the following that reactions in themassA ≥ 20 range can also contribute
substantially to the energy generation rate.This energy is generated by building up

heavier nuclei from lighter seed nuclei via proton-captures and β+-decays, rather

than by the conversion of four protons to one 4He nucleus, which takes place in

the HCNO cycles.

The nucleosynthesis in the A ≥ 20 mass range will be explored by considering
again classical novae (Section 1.4.4). Heavier white dwarfs will likely consist of

oxygen and A ≥ 20 nuclides, while the carbon abundance is relatively small since
it was consumed in the progenitor star during core carbon burning (Section 1.4.3

and Figure 1.4). Thermonuclear runaways involving such ONe white dwarfs

achieve higher peak temperatures compared to those involving CO white dwarfs

because the strength of the explosion scales with the surface gravity and the

amount of accreted material. Heavier nuclides, mainly Ne, Na, and Mg, will

participate in hydrogen burning. Figure 5.52b shows temperature and density

profiles adopted from hydrodynamic studies (José and Hernanz, 1998) of a

classical nova explosion caused by the accretion of solar-like matter onto the

surface of a 1.25M☉ white dwarf of ONe composition. The curves represent

again the temperature and density evolution in the hottest hydrogen-burning

zone. This nova model achieves a maximum temperature of T = 0.25 GK after

a time of t ≈ 420 s. Temperature and density evolve from T = 0.10 GK and

𝜌 = 2800 g/cm3 before the outburst to values of T = 0.12 GK and 𝜌 = 38 g/cm3

at t = 1140 s. The network is solved numerically for the temperature–density

evolution shown in Figure 5.52b and is terminated after t = 1140 s. For the

initial composition, values of X0
H
= 0.35, X04He = 0.15, X

0
16O

= 0.26, X020Ne = 0.16,

X023Na = 0.04, X
0
24Mg

= 0.03, and X025Mg
= 0.01 are assumed. These are similar to

those adopted in hydrodynamic studies (José and Hernanz, 1998).
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Time-integrated net abundance flows are shown in the bottom part of

Figure 5.53. We will briefly summarize the nucleosynthesis in the CNO region

and then discuss in more detail the hydrogen burning in the A ≥ 20 region. Since
there are no 12C seed nuclei, hydrogen burning in the A < 20 mass range has

to start with 16O. The temperatures achieved in this nova model are sufficiently

high for 16O to be destroyed by the 16O(p,𝛾)17F reaction. Further processing

via 17F(𝛽+𝜈)17O(p,𝛼)14N and 17F(p,𝛾)18Ne(𝛽+𝜈)18F(p,𝛼)15O quickly initiates the

HCNO1 cycle. Although there are quantitative differences in the evolution of

A < 20 nuclides compared to the CO nova model, the final results are qualita-

tively similar. At the end of the calculation, the hydrogen abundance has fallen

to XH = 0.19, and the most abundant CNO nuclides are
14N, 13N, 12C, 15O, and

17O with mass fractions of 0.081, 0.052, 0.041, 0.020, and 0.014, respectively. For

the carbon and nitrogen isotopic ratios, we obtain values of (13C∕12C) = 1.3 and

(15N∕14N) = 0.22. The most overproduced isotopes are 13C, 15N, and 17O, with

overproduction factors of (X∕X☉) ≈ 1600, 4500, and 3600, respectively.

The abundance evolutions in the A ≥ 20 range are displayed in Figure 5.55a,b.
For the following discussion, it is useful to keep in mind that a peak temperature

of T ≈ 0.25 GK is maintained for about 50 s before the temperature starts to

decrease again (Figure 5.52b). During this time, the hydrogen abundance is

about XH ≈ 0.30, while the density amounts to 𝜌 ≈ 300 g/cm
3. It can be seen in

Figure 5.55 that 23Na seed nuclei are quickly destroyed. Proton-induced reactions

start to deplete 23Na noticeably at t = 200 s when the temperature amounts to

T ≈ 0.1 GK, that is, long before peak temperature is reached. At T ≈ 0.1 GK, the
23Na(p,𝛼)20Ne reaction dominates over the competing 23Na(p,𝛾)24Mg reaction

(Figure 5.17). Therefore, the largest fraction of the 23Na seed nuclei is converted

to 20Ne. Its abundance increases from an initial value of X020Ne = 0.16 to 0.19,

giving rise to the small bump seen at t = 400 s in Figure 5.55a. Around peak

temperature, a fraction of the 20Ne abundance is destroyed by the 20Ne(p,𝛾)21Na

reaction and the flow reaches again 23Na. At T = 0.25 GK, the branching

ratio for 23Na is near Bp𝛼∕p𝛾 ≈ 1 (Figure 5.17) and, hence, about one half of

the 23Na nuclei are transformed to 24Mg. Very little material is processed via
23Mg(p,𝛾)24Al(𝛽+𝜈)24Mg since the 23Mg β+-decay is far more likely to occur at

T ≈ 0.25 GK than the competing (p,𝛾) reaction [𝜏𝛽(
23Mg) = T1∕2∕ ln 2 = 16 s

versus 𝜏p(
23Mg) = [𝜌(XH∕MH)NA⟨𝜎𝑣⟩]−1 ≈ 1370 s]. Once 24Mg is reached, no

process can feed this material back to the NeNa mass region. At the end of

the calculation, most of the 23Na seed nuclei have been transformed to A ≥ 24
nuclei, while the 20Ne abundance has not changed from its initial value. This is

caused by the slow 20Ne(p,𝛾)21Na reaction [𝜏p(
20Ne) ≈ 200 s at T = 0.25 GK].

The other seed nuclei, 24Mg and 25Mg, are rapidly transformed, via proton

captures and β+-decays, to heavier nuclides. We can estimate the nucleosynthesis

path by considering the competition between β+-decays and proton captures

of certain key nuclides. For 25Al and 27Si, the mean lifetimes versus β+-decay

are 𝜏𝛽 ≈ 10 s and 6 s, respectively. The mean lifetimes versus proton capture at

T = 0.25 GK are 𝜏p = 60 s and 24 s, respectively. Thus, both
25Al and 27Si will

preferentially β+-decay rather than undergo proton captures. As a result, around
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Figure 5.55 Explosive hydrogen burning

during the thermonuclear runaway on the

surface of a ONe white dwarf. The results

show the operation of nuclear processes in

the A ≥ 20 region and are obtained from a

numerical reaction network calculation using

the temperature and density evolution for

the hottest zone displayed in Figure 5.52b.

Corresponding abundance flows are shown

in Figure 5.53b. (a), (b) Abundance evolutions

in the A ≥ 20 mass region; (c) ratios of final

mass fractions (after all β+-decays have been

completed), and the corresponding solar sys-

tem mass fractions; (d) time evolution of the

energy generation rate.

peak temperature, the most likely nucleosynthesis path is

24Mg(p, 𝛾)25Al(𝛽+ 𝜈)25Mg(p, 𝛾)26Al(p, 𝛾)27Si(𝛽+ 𝜈)27Al(p, 𝛾)28Si (5.164)

The sum of mean lifetimes for this sequence is

𝜏p(
24Mg) + 𝜏𝛽(

25Al) + 𝜏p(
25Mg) + 𝜏p(

26Alg) + 𝜏𝛽(
27Si) + 𝜏p(

27Al)

= (0.014 + 10.4 + 0.39 + 0.43 + 6.0 + 1.2) s = 18.4 s (5.165)

and is dominated by the β+-decays of 25Al and 27Si. The sequence does not

delay the transformation from 24Mg to 28Si significantly since the sum of mean

lifetimes is considerably smaller than the duration for which hydrogen burning

takes place at peak temperature (50 s). The mean lifetime of 28Si versus proton
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capture at T = 0.25 GK, however, amounts to 𝜏p(
28Si) = 69 s and represents a

significant delay. Nevertheless, a substantial abundance flow occurs beyond 28Si.

The flow effectively ends at 32S since the proton capture on 32S is very process

[𝜏p(
32S) = 11 100 s at T = 0.25 GK]. At the end of the calculation, most of the

23Na, 24Mg, and 25Mg seed nuclei have been converted to 28Si, 32S, 30Si, and 31P

with final mass fractions of 0.056, 0.024, 0.013, and 0.0084, respectively. The

large 20Ne, 28Si, and 32S final abundances appear because the 20Ne(p,𝛾)21Na,
28Si(p,𝛾)29P, and 32S(p,𝛾)33Cl reactions are the slowest proton captures involving

stable target nuclei in the A = 20–32 mass range.These results agree qualitatively

with observations of large neon, silicon, and sulfur abundances in the shells of

several classical novae (Warner, 1995). Ratios of final mass fractions, after all

β+-decays have been completed, and the corresponding solar mass fractions

are shown in Figure 5.55c for A = 20–33 nuclides. The two most overproduced

isotopes in this mass range are 31P and 30Si, with overproduction factors of

(X∕X☉) ≈ 1000 and 590, respectively. The explosive burning of hydrogen also

produces interesting amounts of the radioisotopes 22Na (T1∕2 = 2.6 y) and
26Alg

(T1∕2 = 7.4 × 10
5 y), withmass fractions ofX22Na = 8 × 10

−5 andX26Alg = 2 × 10
−4.

The decay of 22Na produces γ-rays with an energy of E𝛾 = 1275 keV and this sig-

nature from nearby classical novae may be observed in the future with detectors

onboard satellites. Novae could also contribute to the abundance of Galactic 26Alg .

We will next discuss the nuclear energy generation. The total energy produced

amounts to 5.4 × 1023 MeV/g. About 70% of the total energy is generated via reac-

tions and decays involving CNOF nuclei, while theA ≥ 20mass range contributes
≈ 30%. The evolution of the energy generation rate is shown in Figure 5.55d. Its

shape is more complex compared to the case of accretion onto a CO white dwarf

(Figure 5.54d). The heavy solid line represents the total energy generation rate,

while the thinner solid and dotted lines correspond to the energy generated per

time by processes in the CNOF and A ≥ 20 mass regions, respectively. Although
the CNOFmass range generates the largest fraction of the total energy, theA ≥ 20
mass region gives rise to a larger energy generation rate before and near peak

temperature. Before peak temperature is achieved (t < 360 s), most of the energy

is produced by the reactions 23Na(p,𝛼)20Ne, 23Na(p,𝛾)24Mg, and 24Mg(p,𝛾)25Al.

These processes are rather fast and, in particular, their reaction rates at T = 0.1–

0.4 GK are larger than the rate for 16O(p,𝛾)17F, as shown in Figure 5.18. At later

times, two maxima are visible near peak temperature (t = 360–430 s). The first

one is narrow and high, indicating a rapid release of energywithin a short period of

time. It is caused by the sequence 25Mg(p,𝛾)26Alg(p,𝛾)27Si(𝛽+𝜈)27Al(p,𝛾)28Si, which

consists of relatively fast processes. The second one, at later times, is broader

and lower in magnitude. It is caused by reactions and decays in the NeNa mass

region.These are significantly delayed by the slow 20Ne(p,𝛾)21Na reaction. Around

t ≈ 460 s, similar amounts of energy are produced in the CNOF and A ≥ 20 mass
regions. At later times, reactions and decays in the CNOF mass range generate

most of the energy. The half-lives of 14O and 15O sensitively influence the evolu-

tion of the energy generation rate in the CNOFmass region. If both half-lives were
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shorter, the shape of the energy generation rate curve would become narrower

and higher.

The nova model discussed above achieves a peak temperature of Tpeak =

0.25 GK. In this case, the β+-decays of 23Mg, 25Al, and 27Si are faster than the

competing proton-capture reactions and, therefore, the nucleosynthesis path runs

close to the line of stable nuclides. Some models of classical novae involve white

dwarfs of higher masses and achieve larger peak temperatures. For example, at

Tpeak = 0.35 GK, 𝜌 = 300 g/cm
3, and XH = 0.3, we obtain for the 23Mg(p,𝛾)24Al,

25Al(p,𝛾)26Si, and 27Si(p,𝛾)28P reactions mean lifetimes of 𝜏p(
23Mg) = 4.3 s,

𝜏p(
25Al) = 0.35 s, and 𝜏p(

27Si) = 0.44 s. Consequently, the nucleosynthesis path

will run closer to the proton dripline. The exact path depends on the temperature

history during the explosion.

We will now comment on the experimental situation. For a representative peak

temperature of 0.25 GK, the Gamow peaks for the 20Ne + p and 32S + p reac-

tions are located at E0 ± Δ∕2 = 220 ± 80 keV and 304 ± 94 keV, respectively. The
20Ne(p,𝛾)21Na reaction has already been discussed in Section 5.1.3. It was mea-

sured down to an energy of about Ecm = 350 keV and, hence, the data do not reach

the Gamow peak. The reaction rates are determined by the tail of a subthreshold

state and by direct capture. The reaction rate uncertainty at T = 0.25 GK is about

±20% (Iliadis et al., 2010). The lowest lying resonance in the 28Si(p,𝛾)29P reaction

occurs at Ecm
r

= 358 keV. It is located in theGamow peak and determines the reac-

tion rates at classical nova temperatures. Reaction rate uncertainties are about

±10% at T = 0.25 GK (Iliadis et al., 2010). No resonances are expected to occur in

the nova Gamow peak of the 32S(p,𝛾)33Cl reaction and, therefore, this reaction is

very slow. The three lowest lying resonances, located at Ecm
r

= 409 keV, 563 keV,

and 570 keV, dominate the reaction rates at classical nova temperatures. Reaction

rate uncertainties amount to ±10% at T = 0.25 GK (Iliadis et al., 2010). With one

exception, none of the reactions involving unstable target nuclei in theA = 20–40

range have been measured directly. Their reaction rates are estimated indirectly

from nuclear structure information. Hence, rate uncertainties for reactions such

as 23Mg(p,𝛾)24Al, 25Al(p,𝛾)26Si, and 27Si(p,𝛾)29P can amount to an order of mag-

nitude or more. The exception is the 21Na(p,𝛾)22Mg reaction, which influences

the production of 22Na in classical novae. It is the first radiative capture reac-

tion that has been measured directly in the nova Gamow peak using radioactive

ion beams (see Section 4.6.1). All the important resonances in the energy range

Ecm
r

≥ 206 keV have been observed and the reaction rate uncertainties are about
±20% at T = 0.25 GK.

5.5.3

Explosive Hydrogen-Helium Burning and Type I X-Ray Bursts

We argued in Section 3.2.1 that, if a mixture of different nuclides is present in the

stellar plasma, usually those reactions involving the nuclear fuel with the small-

est Coulomb barrier will account for most of the nuclear energy generation and

nucleosynthesis.Therefore, we considered in the previous sections burning stages
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that were mostly characterized by the consumption of one particular type of fuel.

Interesting situations arise, however, if the stellar temperature is sufficiently large

for two different types of fuels, for example, hydrogen and helium, to burn at the

same location. In this section, we will discuss the burning of a mixture of hydro-

gen and helium fuel at temperatures of T > 0.4 GK. At such high temperatures,

several effects will influence the nucleosynthesis. Foremost among these are pho-

todisintegration reactions and the precise location of the proton dripline, that

is, the line that separates proton-bound (Sp ≥ 0) from proton-unbound (Sp < 0)
nuclides.

The nucleosynthesis in hydrogen–helium burning at elevated temperatures

involves many nuclear processes and is complex. First, we will discuss how,

with increasing temperature, certain reaction sequences (breakout sequences)

convert nuclides from the HCNO cycle region to the A = 20–21 mass range.

Second, by performing reaction network calculations for a number of different

constant temperatures, we will investigate the location of the nucleosynthesis

paths between the group of stable nuclides and the proton dripline. Of interest

are the nucleosynthesis time scales, the heaviest nuclides synthesized (endpoints

of nucleosynthesis) and the dependence of the nuclear energy generation rate

on the assumed initial composition. Finally, as an example for a more realistic

situation, we will discuss the nucleosynthesis occurring during a type I X-ray

burst (Section 1.4.4).

Breakout from the HCNO Cycles

For stellar temperatures of T ≤ 0.4 GK, very little material is lost from the oper-
ation of either the cold or the hot CNO cycles (Sections 5.1.2 and 5.5.2, respec-

tively). The reason is that the heaviest nuclides synthesized in the CNO and the

HCNO cycles are 19F and 18F, respectively. As can be seen from Figures 5.9d and

5.49a, the branching ratios Bp𝛼∕p𝛾 for these two nuclides amount to factors of 10
3–

104 in the temperature ranges of the CNO and HCNO cycles (T < 0.1 GK and

T = 0.1–0.4 GK, respectively). Thus, both 19F and 18F are predominantly con-

verted to lighter nuclides via (p,𝛼) reactions. Since α-particle-induced reactions

are unlikely to occur at temperatures of T ≤ 0.4 GK in the presence of hydrogen
fuel, the above reaction cycles are closed.

The situation changes at higher temperatures. For T > 0.5 GK, a number of

reaction sequences involving α-particle-induced reactions will convert 14O or 15O

to nuclides in the mass range of A = 20–21. These nuclei are permanently lost

as catalysts for the HCNO cycles since there are no nuclear processes that can

transform them back to the CNOmass range.The three main breakout sequences

(BOSs) are listed below and are displayed in Figure 5.56.

Sequence 1 Sequence 2 Sequence 3

15O(𝛼,𝛾)19Ne 14O(𝛼,p)17F 14O(𝛼,p)17F

19Ne(p,𝛾)20Na 17F(p,𝛾)18Ne 17F(𝛾 ,p)16O

18Ne(𝛼,p)21Na 16O(𝛼,𝛾)20Ne
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Figure 5.56 Representation of the three

breakout sequences (BOS) from the A < 20

mass region (thick arrows) during hydrogen–

helium burning. Nuclear interactions that

are part of the HCNO cycles are displayed

as thin arrows. Stable nuclides are shown

as shaded squares. Once a nucleus has been

transformed to a species beyond the dotted

line (A = 20) it is permanently lost for the

HCNO cycles since there are no processes

that can transform the species back to the

A < 20 region.

To obtain a first impression, consider Figure 5.57a showing the rates of

these reactions, normalized to the 16O(p,𝛾)17F rates. It is apparent that the
19Ne(p,𝛾)20Na rates exceed the rates of the preceding 15O(𝛼,𝛾)19Ne reaction

by orders of magnitude. Hence, we suspect that the time scale for breakout

sequence 1 is determined by the slower 15O(𝛼,𝛾)19Ne reaction. Furthermore,
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Figure 5.57 (a) Rates that are part of the

three breakout sequences versus temper-

ature. For a better comparison, the val-

ues NA⟨𝜎𝑣⟩ are normalized to the rate

of the 16O(p,𝛾)17F reaction. Rates for the
14O(𝛼,𝛾)18Ne and 17F(𝛼,p)20Ne reactions are

also shown for comparison, but are negligi-

ble in the present context. (b) Temperature–

density conditions for the competition

between β+-decay and nuclear reaction for

unstable nuclides that participate in the

three breakout sequences (solid and dashed

lines). The β+-decay dominates in the region

to the left of a solid or dashed line, while on

the right-hand side the competing proton- or

α-particle-induced reaction is more likely to

occur. The dotted line shows the conditions

at which the decay constants for the com-

peting 17F(p,𝛾)18Ne and 17F(𝛾 ,p)16O reactions

are of equal magnitude. The 17F(p,𝛾)18Ne

reaction dominates on the left-hand side of

the dotted curve, while on the right-hand

side, the 17F(𝛾 ,p)16O reaction is more likely

to occur. All curves are calculated assuming

XH = 0.7 and X4He = 0.3.

both the 18Ne(𝛼,p)21Na and 16O(𝛼,𝛾)20Ne rates are smaller than the rates of

the preceding 14O(𝛼,p)17F reaction. Thus, the former reactions will be more

important compared to the latter reaction for setting the time scale of breakout

sequence 2 or 3. Figure 5.57a also displays reaction rates of some alternative

breakout sequences. It can be seen that the 14O(𝛼,𝛾)18Ne reaction rate is negligible
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compared to the rate of the competing 14O(𝛼,p)17F reaction. Similarly, the rates

of the 17F(𝛼,p)20Ne reaction are far smaller compared to those of the competing
17F(p,𝛾)18Ne reaction, except at high temperatures (T > 1.2 GK) where both rates

become comparable. However, even at T > 1.2 GK, the 17F(𝛼,p)20Ne reaction will

play a role only in the extreme case when the helium mass fraction substantially

exceeds the hydrogen mass fraction (X4He∕M4He > XH∕MH). For the present

discussion, none of these alternative breakout sequences are important.

Next, consider Figure 5.57b showing the temperature–density conditions for

the competition between β+-decay and nuclear reaction for those nuclides that

participate in the three breakout sequences. The solid and dashed curves repre-

sent T–𝜌 conditions for which the decay constants (or mean lifetimes) of the two

competing processes are of equal magnitude, 𝜆1(0) = 𝜆𝛽(0). They are calculated

from the expression (see Eq. (5.149))

𝜌 =
ln 2

T1∕2(0)(X1∕M1)NA⟨𝜎𝑣⟩01 (5.166)

with 0 the nuclide of interest and 1 denoting either hydrogen or helium,

depending on the type of reaction. The relevant β+-decay half-lives are

given by T1∕2(
14O) = 70.62 s, T1∕2(

15O) = 122.24 s, T1∕2(
17F) = 64.49 s,

T1∕2(
18Ne) = 1.67 s, and T1∕2(

19Ne) = 17.26 s (Audi et al., 2012). The β+-

decay dominates in the region to the left of a solid or dashed line, while on the

right-hand side the competing proton- or α-particle-induced reaction is more

likely to occur. Furthermore, the dotted line in Figure 5.57b shows the T–𝜌

conditions at which the decay constants for the competing 17F(p,𝛾)18Ne and
17F(𝛾 ,p)16O reactions are of equal magnitude, 𝜆p(

17F) = 𝜆𝛾 (
17F). The dotted line

is obtained from the expression (see Eqs. (3.23) and (3.46))

𝜌 = 9.8685 × 109T
3∕2

9

(2j16O + 1)(2jp + 1)

(2j17F + 1)

(
Gnorm
16O

Gnorm
p

Gnorm
17F

)(
M16OMH
M17F

)3∕2
×

(
XH
MH

)−1

e−11.605Q16O(p,𝛾)∕T9
NA⟨𝜎𝑣⟩16O(p,𝛾)
NA⟨𝜎𝑣⟩17F(p,𝛾) (5.167)

withQ16O(p,𝛾) = 0.600 MeV.The
17F(p,𝛾)18Ne reaction dominates on the left-hand

side of the dotted curve, while on the right-hand side the competing 17F(𝛾 ,p)16O

reaction is faster. All the curves in Figure 5.57b are calculated using the values of

XH = 0.7 and X4He = 0.3. For the following considerations, it is assumed that
14O

and 15O are themost abundant CNOnuclei as a result of priorHCNOcycle opera-

tion (Section 5.5.2). A density of 𝜌 = 104 g/cm3 is chosen as a representative value

and we are particularly interested in the fate of 14O and 15Owhen the temperature

is slowly increased.

First, consider only breakout sequence 1 (the two solid curves in Figure 5.57b).

We start at T ≈ 0.1 GK, where the HCNO cycles operate (Figure 5.48), and

slowly increase the temperature. The line corresponding to the condition

𝜏p(
19Ne) = 𝜏𝛽(

19Ne) is crossed at T = 0.23 GK. Beyond this temperature, the
19Ne(p,𝛾)20Na reaction becomes more likely than the competing 19Ne β+-

decay. However, no breakout from the hot CNO cycles occurs yet because
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the 15O β+-decay still dominates over the competing 15O(𝛼,𝛾)19Ne reaction

[𝜏𝛼(
15O) > 𝜏𝛽(

15O)]. Further increasing the temperature, the line corresponding

to the condition 𝜏𝛼(
15O) = 𝜏𝛽(

15O) is crossed at T ≈ 0.46 GK. Beyond this tem-

perature, 15O nuclei are lost from the HCNO cycles as a result of the operation

of the breakout sequence 1.

Next, the breakout sequences 2 and 3 (dashed and dotted lines in Figure 5.57b)

will be discussed. For T > 0.18 GK, the nuclide 17F is preferentially destroyed by

the (p,𝛾) reaction rather than by β+-decay (i.e., the HCNO3 cycle starts to operate

beyond T ≈ 0.18 GK; see Figure 5.49b). Increasing the temperature, we cross the

line corresponding to the condition 𝜏𝛼(
14O) = 𝜏𝛽(

14O) at T ≈ 0.43 GK. Beyond

this point, the 14O(𝛼,p)17F reaction dominates over the competing 14O β+-decay.

Although breakout sequences 2 and 3 do not operate yet, the 14O(𝛼,p)17F reaction

is already important at this stage because it provides an additional link between

the HCNO1 and HCNO3 cycles (Figure 5.47). In other words, 14O is converted

to 15O via the sequence 14O(𝛼,p)17F(p,𝛾)18Ne(𝛽+𝜈)18F(p,𝛼)15O. Accordingly, at

T > 0.46 GK, the 14O(𝛼,p)17F reaction increases the fraction of CNO nuclei

that is lost through breakout sequence 1. Further increasing the temperature,

we next cross the dotted line, defined by the condition 𝜏p(
17F) = 𝜏𝛾 (

17F), at

T ≈ 0.5 GK. For T > 0.5 GK, 17F is preferentially destroyed by the (𝛾 ,p) reaction,

and one is tempted to assume that the breakout sequence 3 starts to operate at

this point. This is not the case, however, since the subsequent breakout reaction
16O(𝛼,𝛾)20Ne is considerably slower than the competing 16O(p,𝛾)17F reaction

(Figure 5.57a). The low Q-value of the 16O(p,𝛾)17F reaction (Q = 0.600 MeV)

ensures that an equilibrium is quickly established between the abundances of
17F and 16O. The breakout sequences 2 and 3 must then proceed from these

equilibrium abundances. For example, the rate at which 14O nuclei are lost from

the HCNO cycles through breakout sequence 3 depends on the equilibrium

number of 16O nuclei, given by the temperature (see Eq. (3.50)), and the magni-

tude of the rate for the subsequent 16O(𝛼,𝛾)20Ne reaction. Therefore, breakout

sequence 3 will become increasingly important for higher temperatures. We

will see in the next subsection that breakout sequence 3 operates at T > 1.0 GK

(for 𝜌 = 104 g/cm3).

Finally, the line corresponding to the condition 𝜏𝛼(
18Ne) = 𝜏𝛽(

18Ne) is crossed

atT ≈ 0.81 GK. Beyond this point, the 18Ne(𝛼,p)21Na reaction dominates over the

competing 18Ne β+-decay. Thus, 14O nuclei are lost from the HCNO cycles as a

result of the operation of the breakout sequence 2. Qualitatively similar results are

obtained for other values of the density, although the various lines are crossed at

different temperature values.

Network Calculations at Constant Temperature and Density

We will now turn our attention to the nucleosynthesis that results after breakout

from the HCNO cycles has occurred. A representative value of 𝜌 = 104 g/cm3 is

again chosen for the density. Numerical network calculations are performed for

three different temperatures (T = 0.5 GK, 1.0 GK, and 1.5 GK) and the results
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will be discussed below. To properly account for the nuclear activity at such high

temperatures, the network has to be expanded dramatically in size compared to

our earlier hydrogen- or helium burning calculations. It now consists of ≈ 520

nuclides, including all stable and proton-rich β+-unstable (but proton-stable)

nuclides up to the element palladium. Some proton-unstable nuclides are also

included to account for sequential two-proton captures involving nuclides

at and beyond the proton dripline (Section 3.1.6). Neutron-rich β−-unstable

nuclides are not included in the network since they cannot be synthesized via

hydrogen or helium-induced reactions on stable or proton-rich β+-unstable

nuclei. The different nuclides in the network are linked by ≈ 5500 nuclear pro-

cesses, including β+-decays, (p,𝛾), (p,𝛼), (𝛼,𝛾) reactions, inverse processes such

as photodisintegrations, (𝛼,p) reactions, and so on. For the initial composition,

values of X0
H
= 0.73, X04He = 0.25, X

0
14O

= 0.01, and X0
15O

= 0.01 are assumed. This

assumption is consistent with the earlier result that during the rise to temper-

atures of T ≥ 0.5 GK, 14O and 15O are the most abundant products as a result
of HCNO cycle operation (Section 5.5.2). The network is solved numerically

until a time of t = 100 s is reached. This is considerably shorter compared to our

previous hydrogen- or helium burning network calculations, but is consistent

with the assumption that stellar explosions at elevated temperatures have short

durations.

In the A ≤ 40 mass range, we adopt for the majority of reactions the experi-
mental rates of Angulo et al. (1999) and Iliadis et al. (2001). Above A = 40, how-

ever, very few nuclear reactions have been measured directly or indirectly. For

most reactions in the latter mass region, the reaction rates must be estimated

theoretically. The 56Ni(p,𝛾)57Cu reaction represents an exception (see below). In

the A > 40 range, we will adopt theoretical rates that are calculated using the

Hauser–Feshbach statistical model of nuclear reactions (Section 2.7). It must be

emphasized that, except in special cases such as p(p,e+𝜈)d, reaction rates based

on theory carry larger uncertainties compared to rates based on experimental

input.

Before discussing the results of reaction network calculations, it is instructive

to consider Figure 5.58, showing the chart of the nuclides from Sc (Z = 21) to

Sr (Z = 38). The heavy solid line represents the proton dripline. Nuclides that

are shaded gray are β+-unstable and have half-lives in excess of T1∕2 ≈ 10 s. All

other nuclides shown have half-lives of less than T1∕2 ≈ 3 s. In general, we expect

the nucleosynthesis paths to be located somewhere between the dripline and the

group of gray shaded nuclides, with the exact locations determined by the rela-

tive probability of various processes, such as (p,𝛾) reactions, photodisintegrations,

β+-decays, and so on. If, for some reason, the abundance flow reaches one of

the gray shaded nuclides and can only proceed via a slow β+-decay, presumably

because proton capture is inhibited, then the nucleosynthesis will be significantly

delayed, or in extreme cases, may halt altogether. The most obvious reason for an

inhibited proton capture is a small Qp𝛾 -value since the reverse photodisintegra-

tion process will then quickly remove the proton that was just added to the target
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Figure 5.58 Section of the chart of the

nuclides between Sc (Z = 21) and Sr (Z = 38)

on the proton-rich side of the stability valley.

The proton dripline according to Audi, Wap-

stra, and Thibault (2003) is marked by a thick

solid line. All displayed nuclides are unsta-

ble. Those represented by shaded squares

have half-lives in excess of T1∕2 ≈ 10 s, while

all other nuclides have half-lives of less than

T1∕2 ≈ 3 s. Nuclides with negative or small

positive Qp𝛾 -values and relatively long β+-

decay half-lives are marked by circles (wait-

ing point nuclides). The solid triangles indi-

cate nuclides for which both the (p,𝛾) and

(p,𝛼) reaction channels are open.

nucleus. Nuclides with negative or small positive Qp𝛾 -values and relatively long

β+-decay half-lives are referred to as waiting point nuclides and are marked by

circles in Figure 5.58.

Interestingly, the proton dripline runs very close to the group of gray shaded

nuclides in the Ge–Rb mass region. In particular, the abundance flow must

pass through the potential waiting point nuclides 64Ge, 68Se, 72Kr, and 76Sr

(T1∕2 = 64 s, 36 s, 17 s, and 9 s, respectively). Their slow β
+-decays may, however,

be bypassed via sequential two-proton captures. For example, the negative

Q-value for 64Ge(p,𝛾)65As ensures that an equilibrium is quickly established

between 64Ge and 65As. The relative probability of the two alternative paths,
64Ge(𝛽+𝜈)64Ga and 64Ge(p,𝛾)65As(p,𝛾)66Se, will then depend on the magnitude

of the quantities T1∕2(
64Ge), 𝜌 exp[Q64Ge(p,𝛾)∕kT], and NA⟨𝜎𝑣⟩65As(p,𝛾), as explained

in Section 3.1.6. For the following reaction network calculations, all reverse (𝛾 ,p)

reaction rates are calculated from experimental or theoretical forward (p,𝛾) rates

using Qp𝛾 -values from Audi, Wapstra, andThibault (2003).

For nuclides marked with a solid triangle in Figure 5.58, both the (p,𝛾) and the

(p,𝛼) reaction channels are open (Qp𝛾 > 0 andQp𝛼 > 0). At elevated temperatures,
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(p,𝛼) reactions play a much smaller role because of the increasing Coulomb bar-

rier in the A > 40 mass region compared to the CNO range where they give

rise to reaction cycles. Consider the 71Br(p,𝛼)68Se reaction (Qp𝛼 = 2020 keV)

as an example. At T = 1.5 GK, the Gamow peak is located at E0 = 1700 keV.

Furthermore, suppose that a fictitious resonance is located in the middle of the

Gamow peak, Er ≈ E0. Reaction α-particles from the decay of this resonance

have energies of E𝛼 = Er + Qp𝛼 ≈ 3720 keV. For an orbital angular momentum of

𝓁𝛼 = 0, the single-particle α-width amounts to Γ
68Se+𝛼
𝓁𝛼=0

(E𝛼 = 3720 keV) ≈ 10
−5 eV.

This is smaller than typical γ-ray partial widths and, hence, we find Γ𝛾 ≫ Γ𝛼
or Bp𝛼∕p𝛾 ≪ 1. On the other hand, at very high temperatures, T ≥ 2 GK, the
α-particle widths, Γ𝛼 , increase and may become comparable to, or even exceed,

typical values of Γ𝛾 .

Nucleosynthesis at T = 0.5 GK, 𝝆 = 104 g/cm3, and t = 100 s

Net abundance flows, integrated over a time of t = 100 s, are displayed in

Figure 5.59. Major flows (those with Fmax ≥ Fij > 0.1F
max) are shown as thick

solid arrows, while minor flows (0.1Fmax ≥ Fij > 0.01F
max) are indicated as thin

solid arrows. The direction of the arrows corresponds to the direction of the

abundance flows. The heavy solid line represents the proton dripline, while

stable nuclides are shown as shaded squares. Under these conditions, the break-

out from the HCNO cycles proceeds via 15O(𝛼,𝛾)19Ne(p,𝛾)20Na (sequence 1;

Figure 5.56). After the initiation of breakout, sequences of (p,𝛾) reactions and

β+-decays transform CNO nuclei within t = 100 s to the Fe–Co region. The

resulting network is referred to as the r(apid)p(roton capture)-process (Wallace

and Woosley, 1981). Recall that the amount of energy generated by the HCNO

cycles is independent of temperature since it is limited by the slow 14O and 15O

β+-decays (beyond a certain value of temperature and for a given composition;

see Figure 5.51). The rp-process is important since it circumvents these slow

β+-decays. It will be shown below that the processing of CNO seeds to heavier

nuclei can lead to a significantly larger energy generation rate than given by the

HCNO cycles alone.

The most likely nucleosynthesis path in the rp-process is defined by the

competition between β+-decays, (p,𝛾), and (𝛾 ,p) reactions. During explosive

burning, a specific nucleus will add progressively more protons. With each

proton addition, a nucleus is synthesized that is located closer to the proton

dripline. Eventually a nuclide is reached that β+-decays instead of undergoing

another proton capture. The process of proton addition and β+-decay repeats

itself until the end of the network calculation. Why does the probability of

β+-decay increase compared to proton capture when the proton dripline is

approached? First, by approaching the proton dripline for a fixed neutron

number, one moves away from the valley of stability and, therefore, the β+-decay

half-lives become progressively shorter. Eventually, a β+-decay becomes more

likely than another proton capture, that is, 𝜆𝛽 > 𝜆p𝛾 . Second, nuclides right at the

proton dripline have, per definition, negative Q-values, while some (but not the

majority of ) nuclides close to the dripline have small positive Q-values. In either
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Figure 5.59 Results of numerical reac-

tion network calculations for hydrogen–

helium burning at a constant temperature

of (a) 0.5 GK, (b) 1.0 GK, and (c) 1.5 GK. The

same constant density (𝜌 = 104 g/cm3) and

initial composition is used. Arrows represent

net abundance flows, integrated over the

entire computation time of t = 100 s. Thick

arrows show the strongest time-integrated

net flows (Fmax ≥ Fij > 0.1Fmax). Thin arrows

represent flows that are weaker by an order

of magnitude (0.1Fmax ≥ Fij > 0.01Fmax). The

heavy solid line marks the proton dripline

(Audi, Wapstra, and Thibault, 2003).
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case, photodisintegration will inhibit the addition of another proton. The nucle-

osynthesis must then proceed with a β+-decay, even if the condition 𝜆𝛽 < 𝜆p𝛾
applies.

It can also be seen that below Ti the nucleosynthesis path reaches a number of

nuclides that are located right at the proton dripline (24Si, 29S, 33Ar, 37Ca, 38Ca,
41Ti, and so on). Above Ti, however, the major abundance flows do not reach the

dripline.This is a consequence of decreasing proton capture rates as the Coulomb

barrier increases. The interplay of β+-decays, (p,𝛾), and (𝛾 ,p) reactions near 30S is

addressed in Problem 5.4. See also Example 3.3.

The evolution of the most abundant nuclides is shown in Figure 5.60a.

Only a small amount of hydrogen is consumed over a period of t = 100 s.

The protons are used to produce heavier nuclides via capture reactions, while

the fusion of protons to helium via reaction cycles plays only a minor role

under these burning conditions. Hence, the helium abundance stays constant.

The 15O abundance increases until about t = 20 s because of the sequence
14O(𝛼,p)17F(p,𝛾)18Ne(𝛽+𝜈)18F(p,𝛼)15O. Around this time, a significant fraction of

material breaks out of the CNO region via the 15O(𝛼,𝛾)19Ne(p,𝛾)20Na sequence.

The abundance flow quickly reaches the A ≈ 50 region. The most abundant

nuclides at the end of the calculation in the A > 20 region are 52Fe, 56Ni, and
55Co. These nuclides have long laboratory β+-decay half-lives (T1∕2 = 8.3 h, 6.1 d

and 17.5 h, respectively), although their stellar β+-decay half-lives are expected

to be somewhat smaller (Section 1.8.4). At the same time, their proton-capture

rates are relatively small, yielding mean lifetimes of 𝜏p𝛾 = 120 s, 24 s, and 14 s,

respectively, for the burning conditions adopted here. The latter values are

significant in magnitude compared to the total burning time and, therefore, these

three nuclides represent endpoints for the nucleosynthesis.

Nucleosynthesis at T = 1.0 GK, 𝝆 = 104 g/cm3, and t = 100 s

Flows and time evolutions of the most abundant species are displayed in

Figures 5.59 and 5.60b. The hydrogen abundance declines slightly with

progressing time, whereas the 4He abundance stays almost constant. The

breakout from the CNO mass region proceeds through both sequence 1 and

sequence 2 (Figure 5.56). The tranformation of 14O and 15O to 21Na and 20Na,

respectively, is so fast (within a fraction of a second) that the operation of the

HCNO cycles is not discernible in Figure 5.59. At this higher temperature, the

proton capture rates become considerably faster and, consequently, nuclides

up to the A ≈ 80 region are synthesized via the rp-process. Compared to

the previous case, the abundance flow reaches the dripline at a number of

locations over the entire mass region shown. All the material initially in the

form of 14O and 15O is converted to heavier nuclides, with 60Zn, 64Ge, and
68Se being the most abundant species in the A > 20 region at the end of the

calculation.

It is apparent from Figure 5.59 that the network of nuclear processes is complex.

However, it should be pointed out that the time scale of the nucleosynthesis

is mainly determined by processes involving only a handful of waiting point
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Figure 5.60 Abundance evolutions during

hydrogen–helium burning at a constant tem-

perature of (a) T = 0.5 GK, (b) T = 1.0 GK,

and (c) T = 1.5 GK. The same constant

density (𝜌 = 104 g/cm3) and initial compo-

sition is used. The results are extracted from

the same numerical reaction network calcula-

tions that are displayed in Figure 5.59.



5.5 Explosive Burning Involving Binary Stars 491

nuclides: 22Mg, 26Si, 30S, 34Ar, 56Ni, 60Zn, 64Ge, and 68Se.What these nuclides have

in common are relatively long β+-decay half-lives and small Qp𝛾 -values (between

−450 keV for 68Se and 861 keV for 26Si). Their Qp𝛾 -values are so small that the

proton-capture rate is significantly smaller than the reverse photodisintegration

rate. Hence, photodisintegration will inhibit the proton capture reaction, and the

abundance flow is significantly delayed. The abundance of each waiting point

nuclide increases until somemaximum is reached. Eventually the abundance flow

continues via a β+-decay (although the competing (𝛼,p) and (p,𝛾) reactions are

also important for 22Mg and 26Si, respectively) until the next waiting point nuclide

is reached. The species 60Zn has the largest abundance, apart from hydrogen and

helium, at the end of the calculation because it possesses the longest half-life

(T1∕2 = 2.4 min) among the heaviest waiting point nuclides (Figure 5.58). The

species 56Ni represents an exception. Since its half-life is so long compared to the

burning time, the flow must continue exclusively via the (p,𝛾) reaction. This case

is discussed in detail below. It can be seen in Figure 5.60b that it takes about 10 s

until 60Zn becomes the most abundant nuclide. This time is approximately equal

to the sum of the mean lifetimes of the waiting point nuclides below 60Zn. For

t ≥ 40 s, the abundances of 22Mg, 26Si, 30S, 34Ar, and 56Ni stay constant. This is
caused by the operation of the 3𝛼 reaction as the abundance flows between 4He

and 56Ni attain equilibrium.

Nucleosynthesis at T = 1.5 GK, 𝝆 = 104 g/cm3, and t = 100 s

Results of a network calculation at this higher temperature are shown in

Figures 5.59 and 5.60c.The hydrogen and helium abundances are almost constant

over the duration of the burning. It can be seen that all three breakout sequences

operate under these conditions (Figure 5.56). Once breakout from the A ≤ 20
region is initiated, the abundance flow initially follows two sequences of (𝛼,p) and

(p,𝛾) reactions,

20Na(p, 𝛾)21Mg(𝛼, p)24Al(p, 𝛾)25Si(𝛼, p)28P (5.168)

21Na(p, 𝛾)22Mg(𝛼, p)25Al(p, 𝛾)26Si(𝛼, p)29P(p, 𝛾)30S(𝛼, p)33Cl (5.169)

This part of the network is referred to as the 𝛼p-process (Wallace and Woosley,

1981). In the previously discussed network calculation, the abundance flow in the

A ≤ 30 region had to wait for slow β+-decays of waiting point nuclides since pho-
todisintegration impeded further proton captures.Therefore, themean lifetime of

the waiting point nuclides, and hence, the overall time scale of the nucleosynthesis

in this mass region, was independent of temperature and density. The 𝛼p-process

is important because it bypasses the slow β+-decays. The nucleosynthesis in the

A ≤ 33 region becomes now sensitive to temperature and, therefore, the burn-
ing of hydrogen and helium proceeds at an accelerated pace and larger energy

generation rates can be achieved. For the burning conditions adopted here, the

𝛼p-process switches to the rp-process above mass A = 33, where the Coulomb

barrier impedes reactions induced by α-particles.
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The most important waiting point nuclides are 34Ar, 39Ca, 56Ni, and 60Zn. In

each case, with the exception of 56Ni, the reverse photodisintegration rate domi-

nates over the forward rate and the abundance flow must proceed via a slow β+-

decay. At the end of the calculation, themost abundant nuclides, besides hydrogen

and helium, are 56Ni, 60Zn, and 64Ge.The large final abundance of 56Ni is striking,

especially when compared to the previous calculation, where only a small 56Ni

abundance was left over at t = 100 s. Here, the main abundance flow extends only

to 60Zn, whereas in the previous calculation, atT = 1.0 GK, themain flow reached

considerably farther (to 68Se; see Figure 5.59).This issue will be discussed in detail

below. It is also apparent that for t ≥ 20 s the abundances of 30S, 34Ar, 39Ca, and
56Ni stay constant because of the operation of the 3𝛼 reaction (see discussion

at T = 1.0 GK).

The nucleosynthesis in the A ≥ 20 region depends neither on the precise val-
ues of the rates, nor the identity of the breakout reactions. If we would entirely

remove the reactions 19N(p,𝛾)20Na, 18Ne(𝛼,p)21Na, and 16O(𝛼,𝛾)20Ne from the

network, that is, those reactions which complete the breakout sequences shown in

Figure 5.56, then the A < 20 and A ≥ 20 regions would be bridged by slower reac-
tions, such as 19Ne(𝛼,p)22Na, 19Ne(𝛼,𝛾)23Mg, 18Ne(𝛼,𝛾)22Mg, and 17F(𝛼,p)20Ne,

and the abundance evolutions in the A ≥ 20 region would closely resemble the
results shown in Figure 5.60b,c.

The 56Ni Bottleneck

To understand why the abundance flow is significantly delayed at 56Ni, we need to

consider the properties of this waiting point nuclide. It has a relatively long half-

life of T1∕2 = 6.1 d in the laboratory and decays with 100% probability by electron

capture. At elevated temperatures and densities, the β-decay half-life will change

somewhat (Section 1.8.4; see also Fuller, Fowler, and Newman, 1982). Values of

Qp𝛾 and T1∕2 for nuclides in the vicinity of
56Ni are given in Figure 5.61a. The

Q-value for the 56Ni(p,𝛾)57Cu reaction amounts to only Qp𝛾 = 695 keV. The sub-

sequent 57Cu(p,𝛾)58Zn reaction has a Q-value of Qp𝛾 = 2280 keV. At a density of

𝜌 = 104 g/cm3, the abundance flows will pass through the 56Ni(p,𝛾)57Cu reaction

(Figure 5.59). We are interested in the effective mean lifetime (or decay constant)

of 56Ni. For temperatures below T = 0.77 GK, the photodisintegration of 57Cu

is less likely to occur than the competing β+-decay of 57Cu, that is, 𝜆57Cu(𝛾,p) <

𝜆57Cu(𝛽+𝜈), as can be calculated from the numerical values of NA⟨𝜎𝑣⟩56Ni(p,𝛾) and
T1∕2(

57Cu) (Fig 5.61a). Since photodisintegration plays only a minor role in this

temperature range, we obtain the effective mean lifetime of 56Ni, 𝜏eff = 1∕𝜆eff ,

from (see Eq. (3.23))

𝜆eff (
56Ni) = 𝜌

XH
MH

NA⟨𝜎𝑣⟩56Ni(p,𝛾) (5.170)

Values of the effective mean lifetime are plotted in Figure 5.61b versus temper-

ature for 𝜌 = 104 g/cm3 and XH = 0.73. At T = 0.4 GK, we obtain 𝜏eff (
56Ni) =

185 s. This value is considerably shorter than the laboratory lifetime of 56Ni, but

is large compared to typical macroscopic explosion time scales (t ≤ 100 s). The
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(b) Effective mean lifetime of 56Ni ver-

sus temperature for the conditions 𝜌 =

104 g/cm3 and XH = 0.73. There is a win-

dow at intermediate temperatures (T = 0.77–

1.27 GK), where 56Ni does not represent a

major waiting point for the abundance flow.

56Ni(p,𝛾)57Cu reaction rate increases for higher temperatures and thus the effec-

tive mean lifetime decreases. For example, at T = 0.77 GK, one obtains a value

of 𝜏eff (
56Ni) = 1.7 s. At temperatures of T = 0.77–1.27 GK, the photodisintegra-

tion of 57Cu cannot be disregarded anymore. The 57Cu(𝛾 ,p)56Ni reaction is now

faster than the competing processes 57Cu(p,𝛾)58Zn and 57Cu(𝛽+𝜈)57Ni [𝜆57Cu(𝛾,p) >

𝜆57Cu(p,𝛾) + 𝜆57Cu(𝛽+𝜈)].The conditions of Eqs. (3.56) and (3.57) are fulfilled and, as a

result, the abundances of 56Ni and 57Cu quickly achieve equilibrium.The effective

mean lifetime of 56Ni is then given by Eq. (3.62),

𝜆eff (
56Ni) =

𝜆56Ni(p,𝛾)

𝜆57Cu(𝛾,p)
[𝜆57Cu(p,𝛾) + 𝜆57Cu(𝛽+𝜈)] (5.171)

As the temperature increases from 0.77 to 1.27 GK, the ratio of decay constants

in Eq. (5.171) becomes smaller (see Eq. (3.62)). Simultaneously, the 57Cu(p,𝛾)58Zn

reaction rate increases and, as a result, the effective mean lifetime is approxi-

mately constant, 𝜏eff (
56Ni) ≈ 3.0 s (Figure 5.61b). The use of Eq. (5.171) implies

that the photodisintegration of 58Zn plays a minor role compared to the decay
58Zn(𝛽+𝜈)58Cu (see condition 𝜆C→C′ > 𝜆C→B; Section 3.1.6). At temperatures

in excess of T = 1.27 GK, however, the 58Zn(𝛾 ,p)57Cu reaction becomes faster

than the competing β+-decay of 58Zn. Furthermore, the 57Cu(p,𝛾)58Zn reaction

is faster than the competing β+-decay 57Cu(𝛽+𝜈)57Ni. For these conditions, the

abundances of 56Ni, 57Cu, and 58Zn quickly achieve equilibrium. The effective

mean lifetime of 56Ni is then obtained from (see Problem 3.1)

𝜆eff (
56Ni) =

𝜆56Ni(p,𝛾)

𝜆57Cu(𝛾,p)

(
𝜆57Cu(p,𝛾)

𝜆58Zn(𝛾,p)
𝜆58Zn(𝛽+𝜈) + 𝜆57Cu(𝛽+𝜈)

)
(5.172)
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The decay constants for the two β+-decays are constant with temperature, but

both ratios of decay constants for the forward and reverse reaction are propor-

tional to eQi∕kT and decrease rapidly for increasing temperature. Therefore, the

effective mean lifetime of 56Ni increases steeply beyond T = 1.27 GK, as can be

seen in Figure 5.61b. For example, one obtains 𝜏eff (
56Ni) ≈ 246 s at T = 1.5 GK.

It is interesting that a window exists at intermediate temperatures (T = 0.77–

1.27 GK), where 56Ni does not represent a major waiting point. Consequently, the

abundance flow reaches far beyond the Ni region in Figure 5.59b. At lower and

higher temperatures, the Coulomb barrier of 56Ni + p and two sequential pho-

todisintegration reactions, respectively, are responsible for a substantial increase

in the value of 𝜏eff (
56Ni). Therefore, the abundance flow does not reach as far

(Figure 5.59a,c).

Energy Generation

The rp- and 𝛼p-processes generate energy in a different manner compared to

the HCNO cycles. The former processes consist of sequences of capture reac-

tions and β+-decays. An (𝛼,p) reaction followed by a (p,𝛾) reaction yields the same

product as a single (𝛼,𝛾) reaction. Reaction cycles play only a minor role, and,

therefore, none of the nuclides involved in the nucleosynthesis will act as cata-

lysts. Energy is generated not by the fusion of four protons to one 4He nucleus,

but by using protons and α-particles to build up heavier nuclides starting from

CNO seed nuclei. Also, at these higher temperatures, the 3𝛼 reaction operates

and supplies a fraction of the CNO seeds. The energy generation rate is sensi-

tive to the total mass fraction of CNO seed nuclei and to the initial hydrogen-

to-helium abundance ratio (X0
H
∕X04He), but it is relatively insensitive to the exact

initial CNO composition or the manner by which breakout from the CNO region

proceeds.

Energy generation rates for the previously discussed network calculations

at T = 0.5 GK, 1.0 GK, and 1.5 GK are shown in Figure 5.62. The density

(𝜌 = 104 g/cm3) and initial composition are the same for each calculation. The

solid lines are obtained with the full reaction network. The final hydrogen abun-

dances amount to XH = 0.70, 0.67, and 0.69 at T = 0.5 GK, 1.0 GK, and 1.5 GK,

respectively. The main abundance flow eventually reaches the waiting point

nuclide 52Fe (T = 0.5 GK), 60Zn (T = 1.0 GK), or 56Ni (T = 1.5 GK). The flow

slows down significantly and material accumulates at the waiting point nuclide

(Figure 5.60). As a result, the energy generation rate drops, giving rise to the

broad maxima displayed in Figure 5.62. Furthermore, the higher the temperature,

the faster the CNO seed nuclei are transformed to the final, most abundant

waiting point nuclide. As a result, the maximum in the energy generation rate

occurs at earlier times (tpeak = 33 s, 7.0 s, and 4.3 s at T = 0.5 GK, 1.0 GK, and

1.5 GK, respectively). The dashed lines in Figure 5.62 correspond to the energy

generation rate if the reaction rates of all possible breakout processes are set

equal to zero so that the HCNO cycles and the 3𝛼 reaction are the sole sources of

nuclear energy. It is apparent that the rp- and 𝛼p-processes enhance the energy
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Figure 5.62 Evolution of the energy gener-

ation rate during hydrogen–helium burning

at a constant temperature of (a) T = 0.5 GK

and (b) T = 1.0 GK. The same constant den-

sity (𝜌 = 104 g/cm3) and initial composi-

tion is used. The results are extracted from

the same numerical reaction network cal-

culations that are displayed in Figure 5.59.

Results for T = 1.5 GK are very similar to

those shown in part (b) and are not dis-

played in the figure. The solid lines are

obtained with the full reaction network. The

dashed lines correspond to the energy gen-

eration rate if the reaction rates of all possi-

ble breakout processes are set equal to zero

so that the HCNO cycles and the 3𝛼 reaction

are the sole sources of nuclear energy gener-

ation.

generation rate significantly. For T = 0.5 GK, 1.0 GK, and 1.5 GK, the maximum

enhancement amounts to a factor of 6, 33, and 25, respectively.

If one would repeat the above calculations at T = 1.0 GK or 1.5 GK by setting

all initial CNO abundances equal to zero, then the nucleosynthesis must start

with the 3𝛼 reaction. The newly created CNO nuclei are the seeds for the sub-

sequent rp- and 𝛼p-processes, and the resulting abundance flow patterns in the

A ≥ 20 region would closely resemble those shown in Figure 5.59b,c. Eventually,
the energy generation rate will stay constant with time as the abundance flows

between 4He, 56Ni, and heavier nuclides attain equilibrium. Also, the energy gen-

eration rate would be considerably smaller compared to the results shown as solid

lines in Figure 5.62.

For more information on the rp- or 𝛼p-processes at constant temperature and

density conditions, see, e.g., Schatz et al. (1998).

Network Calculations for a Type I X-Ray Burst: Accreting Neutron Star

We will now consider the more realistic situation of a changing temperature

and density during the nucleosynthesis. Type I X-ray bursts (Section 1.4.4)

represent examples of explosive (thermally unstable) hydrogen–helium burning

at temperatures in excess of T = 0.5 GK. Figure 5.63 shows a temperature

and density profile that is similar to those obtained in stellar model studies

of a thermonuclear runaway caused by the accretion of hydrogen and helium
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Figure 5.63 Time-integrated net abun-

dance flows during a thermonuclear runaway

caused by the accretion of hydrogen and

helium onto the surface of a 1.3 M☉ neutron

star with a radius of 8 km. The evolution

of temperature and density in the nuclear

burning zone during explosive hydrogen–

helium burning, shown in the inset, is similar

to the result obtained from hydrodynamic

simulations of type I X-ray bursts (Koike

et al., 2004). The reaction network calcula-

tion is terminated after t = 100 s. The arrows

and shaded squares have the same mean-

ing as in Figure 5.59. The abundance flows

are defined here in terms of mole fractions

rather than number densities since the mass

density varies.

onto the surface of a 1.3M☉ neutron star with a radius of 8 km (Koike et al.,

2004). The curves represent the temperature and density evolutions in the

hottest nuclear burning zone. In this particular example, the nuclear burning

starts with temperature and density values of T = 0.4 GK and 𝜌 = 106 g/cm3.
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At t = 4 s, a maximum temperature of Tpeak = 1.36 GK and a minimum density

of 𝜌peak = 5 × 10
5 g/cm3 are achieved. After t = 100 s, the temperature has

fallen to T = 0.7 GK and the density increased to 𝜌 = 1.4 × 106 g/cm3. The

density is about two orders of magnitude larger compared to the constant

value assumed in the previous section. Recall that the forward reaction rates

depend on the density, but the photodisintegration rates are independent of 𝜌

(see Eqs. (3.23) and (3.46)). The reaction network is solved numerically using

this T–𝜌 profile. For the initial composition, values of X0
H
= 0.73, X04He = 0.25,

and X014O = X0
15O

= 0.01 are assumed. The network calculation is terminated

after t = 100 s.

The major abundance flows extend from helium all the way up to the end of the

network (palladium), as can be seen from Figure 5.63. Breakout from the CNO

mass region proceeds via sequences 1 and 2 (Figure 5.56). The latter sequence is

more important since the 14O abundance is fed by 𝛼(2𝛼)12C(p,𝛾)13N(p,𝛾)14O.After

breakout, matter is processed via the 𝛼p-process (below the chlorine region) and

the rp-process.The abundance flow reaches the dripline atmany locations over the

entire mass region shown.The major flow then has to wait in most cases for a β+-

decay before continuing.The waiting point nuclides 64Ge, 68Se, 72Kr, and 76Sr rep-

resent interesting cases.TheirQp𝛾 -values are predicted to be negative (Audi et al.,

2012), while their half-lives amount to T1∕2 = 64 s, 36 s, 17 s, and 8 s, respectively.

It can be seen that at 64Ge, the major flow continues via sequential two-proton

capture instead of the very slow β+-decay, which would otherwise terminate the

nucleosynthesis. For the other three waiting point nuclides, the β+-decay is more

likely to occur, for the conditions assumed here, than the competing sequential

two-proton capture. Hence, the abundance flow will be delayed significantly, and

we expect an accumulation of material, especially at 68Se and 72Kr, toward the end

of the calculation.

A significant fraction of 1H and 4He nuclei is consumed during the thermonu-

clear explosion. Their abundances decrease gradually with time until they reach

values of XH = 0.16 and X4He = 0.02 at the end of the calculation. Figure 5.64a

shows the abundance evolution of the most important waiting point nuclides,

that is, for those nuclides that are most abundant at any given time. It is evident

how the flow reaches the nuclides 18Ne, 24Si, 25Si, and so on, in sequence. In each

case, the abundance flow is delayed by a slow process that consumes the waiting

point nucleus (e.g., the (𝛼,p) reaction on 18Ne; β+-decays of 24Si, 25Si; sequential

two-proton captures on 64Ge). As a result, the abundance of a particular waiting

point nucleus increases until a maximum is reached and then decreases with

time. At t = 4 s, when the peak temperature is attained, the most abundant

nuclides (besides 1H and 4He) are 60Zn, 55Ni, 38Ca, 59Zn, and 64Ge, with similar

mass fractions of X ≈ 0.03. Notice that 56Ni is not a major waiting point nucleus.

For the densities adopted here, one finds from Eq. (5.172) a mean lifetime of

only 𝜏eff (
56Ni) = 0.02 s. Therefore, the 56Ni abundance stays relatively small

throughout the calculation. Also, 56Ni cannot be bypassed via the sequence
55Ni(p,𝛾)56Cu(p,𝛾)57Zn, as is sometimes erroneously assumed (Forstner et al.,

2001), since 57Zn decays preferentially (Audi et al., 2012) by β-delayed proton
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Figure 5.64 (a) Abundance evolutions of

the most important waiting point nuclides,

and (b) time evolution of the energy gener-

ation rate during explosive hydrogen–helium

burning. The results are extracted from the

same numerical reaction network calculation

that is displayed in Figure 5.63. The narrow

and broad maxima of the energy generation

rate shown in part (b) are correlated with the

abundance evolution of the waiting point

nuclides displayed in part (a).

emission [57Zn(𝛽+𝜈p)56Ni] rather than by β+-decay [57Zn(𝛽+𝜈)57Cu]. At t = 10 s,
68Se has by far the largest abundance (X68Se = 0.35) among all nuclides except

1H

since the abundance flow must wait for its slow β+-decay, as noted earlier. With

progressing time, 68Se is slowly depleted and the abundances of some nuclides

in the A > 68 region are building up. At t = 100 s, the most abundant nuclides

(besides 1H) are 68Se, 72Kr, 76Sr, and 64Ge. These species will quickly decay to
68Ge (T1∕2 = 271 d),

72Se (T1∕2 = 8.4 d),
76Kr (T1∕2 = 14.8 h), and

64Zn (stable),

respectively, after the thermonuclear explosion has ceased. A significant fraction

of matter (ΣXi = 0.20) has been converted to nuclides in the Zr–Ru mass region.
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The total mass fraction of nuclides located at the end of the network (Rh and

Pd) amounts to ΣXi = 0.16. This material would be converted to even heavier

nuclides if we would not have truncated the network artificially. For a discussion

of abundance evolutions in the mass range above Pd, see Schatz et al. (2001) or

Koike et al. (2004).

It must be emphasized that the nucleosynthesis in the mass range A ≥ 64
depends sensitively on theQ-values for the (p,𝛾) reactions on 64Ge, 68Se, and 72Kr,

and on the reaction rates for the (p,𝛾) reactions on 65As, 69Br, and 73Rb. Consider

the waiting point 64Ge as an example.We adopted a value ofQp𝛾 = −80 ± 300 keV

(Audi, Wapstra, and Thibault, 2003) for 64Ge(p,𝛾)65As and the 65As(p,𝛾)66Se

reaction rate from Goriely (1998). With these values, the mean lifetime of
64Ge versus destruction by sequential two-proton capture at T = 1.34 GK

and 𝜌 = 5.9 × 105 g/cm3 (when the 64Ge abundance reaches a maximum;

Figure 5.64a) amounts to 𝜏2p(
64Ge) = 1.5 s. Two-proton capture is more likely to

occur than the competing β+-decay [𝜏𝛽(
64Ge) = T1∕2(

64Ge)∕ ln 2 = 92 s], and the

relatively short effective lifetime of 64Ge allows for a significant production of

nuclides in the A > 64 range, as discussed above. Repeating the calculation using

a value of Qp𝛾 = −380 keV instead yields 𝜏2p(
64Ge) = 21 s, and 64Ge, rather than

68Se, would be the most abundant nuclide at the end of the network calculation,

with a considerably reduced total abundance of nuclides in the A > 80 range. See

also Problem 5.12.

The time evolution of the energy generation rate is displayed in Figure 5.64b.

Two narrow and two broadmaxima are visible.They are correlated with the abun-

dance evolution of waiting point nuclides.The first narrow maximum (t ≈ 0.29 s)

is caused by the evolution of 18Ne. Shortly after the 18Ne abundance increases

most rapidly, the flow is temporarily delayed, and the 18Ne abundance peaks. Con-

sequently, the energy generation rate decreases, giving rise to the first maximum.

The second (t ≈ 0.33 s) and third (t ≈ 0.74 s) maxima are similarly caused by the

abundance evolutions of 24Si and 29S, respectively.The transformation of the bulk

material from 29S to 38Ca via the rp-process takes only ≈ 1.6 s, while the major

abundance flow reaches the isotope 55Ni after an additional≈ 1.3 s. Subsequently,

matter starts to accumulate at themajor waiting point nuclides 64Ge and 68Se.The

energy generation rate decreases and, as a result, the fourth maximum (t ≈ 3.0 s)

is produced.

For an extensive investigation of type I X-ray burst nucleosynthesis, see Parikh

et al. (2013a). A discussion of thermally stable hydrogen–helium burning on

accreting neutron stars can be found in Schatz et al. (1999).

Experimental Nuclear Physics Information

Among the processes that are part of the breakout sequences (Section 5.4.1 and

Figure 5.56), the 19Ne(p,𝛾)20Na and 18Ne(𝛼,p)21Na reactions have been measured

directly using radioactive ion beams (Groombridge et al., 2002; Couder et al.,

2004). These difficult experiments provided only partial information, however,

and thus the present uncertianties in the reaction rates amount to 1–2 orders

of magnitude at T = 0.5–1.0 GK (with the larger error at the lower temperature
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value).The 14O(𝛼,p)17F reaction rate has been estimated bymeasuring the reverse
17F(p,𝛼)14O reaction (Harss et al., 2002; Blackmon et al., 2003), but the rate

uncertainties still amount to orders of magnitude. The 15O(𝛼,𝛾)19Ne reaction

rate was obtained indirectly using experimental nuclear structure information

(Iliadis et al., 2010).The current reaction rate uncertainties at T = 0.5 and 1.0 GK

amount to a factors of 3 and 2, respectively. The experimental situations for

the 17F(p,𝛾)18Ne and 16O(𝛼,𝛾)20Ne reactions have already been described in

Sections 5.5.2 and 5.2.1, respectively.

After breakout from the HCNO cycles has been achieved, several thousand

nuclear processes take part in the nucleosynthesis (rp- and 𝛼p-processes). The

nuclear physics information necessary to quantitatively describe the nuclear

burning consists of: (i) reaction Q-values, (ii) thermonuclear reaction rates, and

(iii) β-decay half-lives. Precise Q-values are especially necessary for pairs of

nuclides that achieve an equilibrium between forward and backward reaction

at elevated stellar temperatures. For example, the Q-value for 56Ni(p,𝛾)57Cu

is known to reasonable precision (Qp𝛾 = 695 ± 19 keV), but the Q-values for

the (p,𝛾) reactions on the waiting point nuclides 64Ge, 68Se, 72Kr, and 76Sr

carry large uncertainties. We have adopted the values of Qp𝛾 = −80 ± 300 keV,

−450 ± 100 keV, −600 ± 150 keV, and −50 ± 50 keV, respectively. The present

uncertainties are substantial, especially since these Q-values enter exponen-

tially in Eq. (3.63). It should also be pointed out that the errors quoted above

do not represent experimental uncertainties, but have been derived from

systematic trends of measured masses (see Wang et al., 2012, for details).

Hence, the true uncertainties are expected to be somewhat larger than the

quoted values. With the exception of the 21Na(p,𝛾)22Mg reaction (D’Auria

et al., 2004), none of the thermonuclear rates for reactions along the rp- or

𝛼p-process paths have been measured directly. Some of the rates have been

estimated using experimental nuclear structure information (see, e.g., Iliadis

et al., 2010 or Forstner et al., 2001), but the vast majority of reaction rates

are based on the Hauser–Feshbach statistical model (Rauscher and Thiele-

mann, 2000; Goriely, 1998). It must be pointed out that not all the reactions

that are part of the network have an influence on the nucleosynthesis (Iliadis

et al., 1999). Of particular importance are (𝛼,p) reactions on waiting point

nuclides, for example, 22Mg(𝛼,p)25Al, 25Si(𝛼,p)28P, 30S(𝛼,p)33Cl, and second-step

(p,𝛾) reactions in sequential two-proton capture, for example, 57Cu(p,𝛾)58Zn,
65As(p,𝛾)66Se, 69Br(p,𝛾)70Kr, and 73Rb(p,𝛾)74Sr. The half-lives of the (most-

likely proton-unbound) nuclides 65As, 69Br, and 73Rb are predicted to be very

short (170 ms, < 24 ns, < 30 ns, respectively; Audi et al., 2012) and, there-

fore, direct measurements of the proton-capture reactions on these target

nuclei are not feasible yet. All of these reaction rates carry large uncertainties

at present.

For an investigation of the impact of current reaction rate and Q-value uncer-

tainties on the nucleosynthesis during type I X-ray bursts, see Parikh et al. (2008)

and Parikh et al. (2009), respectively.
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5.6

Nucleosynthesis Beyond the Iron Peak

The transmission through the Coulomb barrier decreases drastically with

increasing nuclear charges. For this reason, charged-particle cross sections are far

too small at moderate stellar temperatures to explain the observed solar system

abundances of nuclides with masses beyond A ≈ 60. At very high temperatures,

on the other hand, charged-particle reactions will give rise to abundances that are

described by nuclear statistical equilibrium, either favoring nuclides of the iron

peak group or lighter species (see Figure 5.38). The situation is different when

considering neutron-induced reactions as the mechanism for the synthesis of the

heavy nuclides. There is no Coulomb barrier for neutrons and thus the neutron

capture cross sections, even at moderate stellar energies, are frequently large.The

cross sections for most neutron-induced reactions even increase with decreasing

incident neutron energies (Figure 3.31). It is therefore reasonable to assume that

heavy nuclides can be synthesized by exposing lighter seed nuclei to a source

of neutrons. There is unambiguous evidence for such a mechanism. As will be

seen, it provides a natural explanation for the solar system abundance peaks

near the mass numbers A ≈ 84, 138, and 208 (Figure 5.65), corresponding to the

neutron magic numbers of N = 50, 82, and 126, respectively (Section 1.6.1). It

should be remembered that neutrons are unstable, with a half-life of T1∕2 = 614 s.
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Figure 5.65 Solar system abundances (rel-

ative to 106 Si atoms) of the heavy nuclides.

Adopted from Lodders (2003). Abundances

of different isobars are added together. Nar-

row peaks occur at mass numbers of A ≈ 84,

138, and 208, corresponding to the neu-

tron magic numbers of N = 50, 82, and

126, respectively. Broader peaks are located

approximately 10 mass units below the nar-

row peaks.
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The interstellar medium does not contain a significant concentration of free

neutrons. They must be produced in stars. We have already encountered some

neutron-producing reactions in helium burning (Section 5.2.3) and carbon

burning (Section 5.3.1). We will first concentrate on the properties of neutron

capture nucleosynthesis and afterward discuss the sources of neutrons in

various stellar environments. Unlike previously discussed processes, the neutron

capture processes do not generate any significant amount of energy, as can be

seen from the decline of the binding energy per nucleon beyond the iron peak

(Figure 1.9).

Consider the nuclear transformations that can occur if a stable nucleus, for

example 156Gd, is exposed to a flux of neutrons (Figure 5.66). Successive stable

isotopes of the same element (Gd) will capture neutrons, initiating the sequence
156Gd(n,𝛾)157Gd(n,𝛾)158Gd(n,𝛾)159Gd. The last nuclide, 159Gd, is radioactive

(T1∕2 = 18.5 h). Further suppose that the neutron flux is sufficiently small so that

the β-decay constant of any unstable nucleus created after neutron capture is

large compared to the decay constant of the competing (n,𝛾) reaction (𝜆𝛽 ≫ 𝜆n𝛾 ).

The path will then continue via 159Gd(β−𝜈)159Tb(n,𝛾)160Tb. The last nuclide,
160Tb, is radioactive (T1∕2 = 72.3 d). The process repeats itself, giving rise to

the sequence 160Tb(β−𝜈)160Dy(n,𝛾)161Dy(n,𝛾)162Dy, and so on. In summary,

successive neutron captures by a chain of isotopes occur until a radioactive

isotope is reached, at which point a β−-decay takes place and another successive

chain of neutron captures is initiated.The resulting path is shown as the solid line

158Dy 159Dy
160Dy

159Tb158Tb157Tb

161Dy 162Dy

161Tb160Tb

s,r

s,r

156Gd 157Gd
s,r s,r

158Gd 159Gd
160Gd

s,r r

s,rp s

s-Process path

r-Process induced

Figure 5.66 The s-process path through the

elements Gd, Tb and Dy (solid line). Shaded

squares indicate stable nuclides. Nuclides

reached by the s-process are labeled “s.”

Stable nuclides that are reached via the r-

process (dotted arrows) through β−-decay

chains along A = const after termination

of the neutron flux are labeled “r.” Neither

process can explain the synthesis of the sta-

ble nuclide labeled “p.” Some stable nuclides

can be synthesized only in the s-process or

the r-process, but not by both processes.

These are referred to as s-only or r-only

nuclides. The s-process branchings in this

mass region are weak and have been omit-

ted in the figure.
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in Figure 5.66. This mechanism is referred to as s(low neutron capture)-process

(Burbidge et al., 1957). The s-process path must run close to the group of stable

nuclides. More specifically, it will reach only those stable nuclides that are labeled

“s” in Figure 5.66. It will neither reach very neutron-deficient stable nuclides

(such as 158Dy), nor very neutron-rich stable nuclides (such as 160Gd). The

abundances synthesized by the s-process will depend on the magnitude of the

neutron-capture cross sections involved in the chain. Nuclides with very small

neutron-capture cross sections are expected to pile up in abundance, while

those with large cross sections will be quickly destroyed and achieve only small

abundances. Maxwellian-averaged neutron-capture cross sections on stable and

long-lived nuclides at a thermal energy of kT = 30 keV versus mass number A

are shown in Figure 5.67. Recall that nuclides with a magic neutron number

(N = 50, 82, and 126) have energetically favorable configurations (Section 1.6.1).

The capture of another neutron produces a product nucleus with a relatively

small neutron separation energy and, therefore, the compound nucleus is formed

at a relatively small excitation energy in a region with a small level density. The

reaction must then proceed through a reduced number of compound levels, and

the cross section becomes relatively small, as can be seen from the location of the

minima in Figure 5.67. In other words, we expect that the s-process will produce

these very same nuclides with increased abundances. This is precisely the reason

for the narrow peaks at the neutron magic numbers N = 50, 82, and 126 in the

solar system abundance curve (Figure 5.65).
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Figure 5.67 Maxwellian-averaged neutron-

capture cross sections on stable and long-

lived nuclides at a thermal energy of kT =

30 keV versus mass number A. From Bao

et al. (2000). Nuclides with a magic neutron

number (N = 50, 82, and 126) have ener-

getically favorable configurations and give

rise to relatively small neutron capture cross

sections.
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Consider now the other extreme, that is, a neutron flux so large that the β-decay

constant of an unstable nucleus created after neutron capture is small compared

to the decay constant of the competing (n,𝛾) reaction (𝜆𝛽 ≪ 𝜆n𝛾 ). In this case, the

nucleosynthesis path will run close to the neutron dripline. When the neutron

flux terminates, all neutron-rich radioactive nuclei will undergo successive

β−-decays (dashed arrows in Figure 5.66) along isobaric chains until the most

neutron-rich, stable (or very long-lived) isobar is reached. This nucleosynthesis

process is called the r(apid neutron capture)-process and will be discussed inmore

detail in Section 5.6.2. In the example of Figure 5.66, the r-process synthesizes all

nuclides labeled “r.” It is interesting that certain nuclides (e.g., 156Gd, 157Gd) can

be produced by both the s- and the r-process. Other nuclides, such as 160Gd, are

never reached in the s-process and are referred to as r-only nuclides. The latter

nuclide does not undergo a β−-decay since it is stable. Hence, 160Dy, which is less

neutron-rich than 160Gd, cannot be reached in the r-process. It is called an s-only

nuclide because it is shielded from the r-process.

Some of themost neutron-deficient stable nuclides, such as 158Dy in Figure 5.66,

cannot be synthesized by either the s-process or the r-process. They are shielded

from both neutron-capture processes and are referred to as p-nuclides.Themech-

anism responsible for their synthesis is called the p-process and will be discussed

in Section 5.6.3. It is sufficient to remark here that the abundances of almost all

p-nuclides are considerably smaller compared to those of the s- and r-nuclides of

the same mass number.

Crude estimates for the number densities of neutrons in the s- and r-process

can be obtained by considering typical cross sections for neutron capture.

According to Figure 5.67, the mean value for the Maxwellian-averaged neutron-

capture cross section of nuclides in the A = 60–210 region at a thermal energy

of kT = 30 keV is ⟨𝜎⟩T = ⟨𝜎𝑣⟩∕𝑣T ≈ 100 mb. Since average neutron capture

cross sections do not vary drastically with thermal energy (Figure 3.32), this

value will be adopted as an order-of-magnitude estimate. For the s-process,

typical β−-decay lifetimes of radioactive nuclides near the valley of stability

range from minutes to years. Since 𝜏𝛽 ≪ 𝜏n𝛾 , the mean lifetime for neutron

capture must then typically be 𝜏n𝛾 ≈ 10 y or more. With 𝑣T = (2kT∕m01)
1∕2 ≈

[2 ⋅ 30 keV ⋅ c2∕(mnc
2)]1∕2 ≈ 2.4 × 108 cm/s, we find from Eq. (3.22) a value of

Nn = (𝜏n𝛾⟨𝜎𝑣⟩n𝛾 )−1 ≈ 108 cm−3 for the neutron number density in the s-process.

In the r-process, β−-decay lifetimes for radioactive nuclides far from the valley of

stability range frommilliseconds to seconds. Since 𝜏𝛽 ≫ 𝜏n𝛾 , the mean lifetime for

neutron capture must then typically be 𝜏n𝛾 ≈ 10
−4 s or less. For these conditions,

a value of Nn ≈ 10
21 cm−3 or more is obtained as an order-of-magnitude estimate

for the neutron number density in the r-process. It is interesting that the gross

properties of the solar system abundances in the A > 60 range can be accounted

for in terms of two extreme pictures, that is, by relatively low neutron densities

achieved in the s-process and by very high neutron exposures characteristic of

the r-process. Intermediate exposures between these two extremes seem to play

only a minor role for the solar system abundance distribution.
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5.6.1

The s-Process

Starting from some seed nuclei, the s-process path runs close to the group of stable

nuclides. The majority of neutron captures involves stable target nuclei and all of

these reactions are accessible in the laboratory (Chapter 4). The heaviest nuclides

synthesized by charged-particle reactions are those of the iron peak. Hence, these

nuclei will most likely form the seeds for the s-process. Since 56Fe is by far the

most abundant nuclide in the iron peak (Figure 1.2), we will assume for the sake

of simplicity that it is the sole seed for the neutron captures. The s-process will

eventually reach 209Bi, which is the most massive stable nuclide. Further neu-

tron captures produce radioactive species that decay by α-particle emission.Thus,

heavier nuclides cannot be synthesized by the s-process, and 209Bi represents the

termination point.

Consider Figure 5.68, showing the basic building blocks of the s-process path.

In Figure 5.68a, the stable nucleus with mass number A, shown as shaded square,

is destroyed by neutron capture. The same nucleus is produced by neutron cap-

ture on nucleus A − 1. The same holds true if nucleus A is radioactive, but has

such a long half-life that it can be regarded as being stable for all practical pur-

poses concerning the s-process (i.e., if 𝜆𝛽 ≪ 𝜆n𝛾 ). In Figure 5.68b, nucleus A is

again destroyed by neutron capture, but it is also produced by neutron capture

on nucleus A − 1 and the subsequent β−-decay. We will initially assume that the

β−-decay is so fast that the abundance of the radioactive species can be neglected

since it decays immediately to the stable (or very long-lived) nucleus A. Under

these assumptions, the abundance at each value of the mass number A resides in

precisely one particular nuclide and thus the s-process path is uniquely defined

by the mass number. The abundance evolution of any stable (or very long-lived)

nuclide with mass number A is then given by

dNs(A)

dt
= −NnNs(A)⟨𝜎𝑣⟩A + NnNs(A − 1)⟨𝜎𝑣⟩A−1 (5.173)

A – 1

(a) (b) (c)

A + 1

A – 1 A – 1 A′ A′ +1

A + 1A A + 2

A

A + 1A

Figure 5.68 Basic building blocks of the

s-process path. Stable (or very long-lived)

nuclides are shown as shaded squares,

short-lived nuclides as open squares. In

part (a), the nucleus with mass number A

is destroyed by neutron capture and is pro-

duced by neutron capture on nucleus A − 1.

In part (b), nucleus A is again destroyed by

neutron capture, but is produced by neu-

tron capture on nucleus A − 1 and the sub-

sequent β−-decay. In the s-process, it is

generally assumed that the β−-decay is fast

compared to neutron capture. Part (c) shows

a simple example for an s-process branching.
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where Ns(A) and Nn are the number densities of nucleus A and of free neutrons,

respectively; ⟨𝜎𝑣⟩A is the neutron-capture reaction rate per particle pair of
nucleus A. The free neutron density may vary with time, Nn = Nn(t), depending

on the details of the stellar model. The reaction rate depends on the time only

through variations of the stellar temperature T . As a further simplification, we

will assume that the temperature is constant during a given neutron irradiation

episode, so that ⟨𝜎𝑣⟩i = const, until the neutron source turns off.

The reaction rate per particle pair can be substituted by the Maxwellian-

averaged cross section, ⟨𝜎𝑣⟩A = ⟨𝜎⟩A𝑣T (see Eq. (3.11)). For the heavy target
nuclei participating in the s-process, the reduced mass is nearly equal to the

neutron mass (m01 ≈ mn). Therefore, the thermal velocity, 𝑣T = (2kT∕m01)
1∕2, is

almost independent of the target mass. Hence,

dNs(A)

dt
= −Nn(t)Ns(A)⟨𝜎⟩A𝑣T + Nn(t)Ns(A − 1)⟨𝜎⟩A−1𝑣T
= 𝑣TNn(t)[−Ns(A)⟨𝜎⟩A + Ns(A − 1)⟨𝜎⟩A−1] (5.174)

In Section 4.9.3 it was found that for a Maxwell–Boltzmann distribution of neu-

tron energies, the flux is given by the product of neutron number density and ther-

mal velocity, 𝜙 = (2∕
√
𝜋)Nn𝑣T . We introduce the neutron exposure (with units of

neutrons per area),

𝜏 = 𝑣T ∫ Nn(t) dt or d𝜏 = 𝑣TNn(t) dt (5.175)

which, apart from a factor 2∕
√
𝜋, is equal to the time-integrated neutron fluxΦ =

∫ 𝜙(t) dt (Section 4.9.4). Rewriting Eq. (5.174) by replacing the variable t with 𝜏
yields

dNs(A, 𝜏)

d𝜏
Nn(t)𝑣T = 𝑣TNn(t)

[
−Ns(A, 𝜏)⟨𝜎⟩A + Ns(A − 1, 𝜏)⟨𝜎⟩A−1]

dNs(A, 𝜏)

d𝜏
= −Ns(A, 𝜏)⟨𝜎⟩A + Ns(A − 1, 𝜏)⟨𝜎⟩A−1 (5.176)

with the boundary conditions Ns(56, 0) = fN seed
s

(56) and Ns(A > 56, 0) = 0. The

quantity f is the fraction of the number of 56Fe seed nuclei,N seed
s

(56), that are sub-

jected to an exposure of neutrons. It is clear that Ns(A, 𝜏) decreases if it becomes

too large with respect to Ns(A − 1, 𝜏), and vice versa,

dNs∕d𝜏 < 0 for Ns(A, 𝜏) > [⟨𝜎⟩A−1∕⟨𝜎⟩A]Ns(A − 1, 𝜏)

dNs∕d𝜏 > 0 for Ns(A, 𝜏) < [⟨𝜎⟩A−1∕⟨𝜎⟩A]Ns(A − 1, 𝜏) (5.177)

The coupled equations (see Eq. (5.176)) are self-regulating in the sense that

they attempt to minimize the difference Ns(A − 1, 𝜏)⟨𝜎⟩A−1 − Ns(A, 𝜏)⟨𝜎⟩A.
In the mass regions between the magic neutron numbers, the Maxwellian-

averaged cross sections are relatively large (Figure 5.67) so that the difference
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Ns(A − 1, 𝜏)⟨𝜎⟩A−1 − Ns(A, 𝜏)⟨𝜎⟩A becomes considerably smaller than the magni-
tude of either product Ns(A, 𝜏)⟨𝜎⟩A or Ns(A − 1, 𝜏)⟨𝜎⟩A−1. In other words, for any
nucleus with a mass number removed from closed neutron shells, the abundance

builds up until the destruction rate approximately equals the production rate.

In these mass regions, a steady flow is achieved along the s-process path,

dNs∕d𝜏 ≈ 0, and we find

Ns(A, 𝜏)⟨𝜎⟩A ≈ Ns(A − 1, 𝜏)⟨𝜎⟩A−1 or Ns(A, 𝜏)⟨𝜎⟩A ≈ const (5.178)

This result is called the local (equilibrium) approximation since it is only satisfied

locally in regions between magic neutron numbers.

The prediction of Eq. (5.178) can be tested by considering isotopes of the

element tellurium (Z = 52). Of eight stable isotopes, three belong to the s-only

category (122Te, 123Te, 124Te). Two can be synthesized by both the s- and r-process

(125Te, 126Te), two are r-only isotopes (128Te, 130Te), and 120Te is a p-nuclide. The

product of solar system abundance, N☉(A) (Lodders, Palme, and Gail, 2009),

and Maxwellian-averaged cross section at kT = 30 keV, ⟨𝜎⟩A (Bao et al., 2000),
is shown in Figure 5.69 versus mass number A. It is apparent that for the s-only

nuclides

N☉(122)⟨𝜎⟩122 ≈ N☉(123)⟨𝜎⟩123 ≈ N☉(124)⟨𝜎⟩124 (5.179)
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Figure 5.69 The product N☉(A)⟨𝜎⟩A (in

units of millibarn per 106 Si atoms) versus

mass number A for nuclides of the element

tellurium (Z = 52); 122Te, 123Te, 124Te are s-

only nuclides; 125Te, 126Te are s,r-nuclides; and
128Te, 130Te are r-only nuclides. 120Te is not

synthesized via neutron capture (p-nucleus).

The Maxwellian-averaged cross sections ⟨𝜎⟩A

(in units of millibarn and appropriate for a

thermal energy of kT = 30 keV) are adopted

from Bao et al. (2000) and the solar system

abundances N☉(A) are from Lodders (2003)

(these are relative to 106 Si atoms). Most of

the error bars are smaller than the size of

the symbols. It is apparent that Ns(A)⟨𝜎⟩A ≈
const for the s-only nuclides (dashed line).
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thus confirming the local approximation for the s-process. It is also clear that the

product ⟨𝜎⟩AN☉(A) is not constant for
128Te and 130Te, which are both synthesized

by the r-process only. Furthermore, 125Te and 126Te are overabundant since both

the s- and the r-process contribute to their synthesis, that is, N☉(A) = Ns(A) +

Nr(A). If the averaged neutron capture cross sections are known, one can use the

local approximation to estimate the separate contributions of the s- and r-process

to the total observed solar system abundances (see Problem 5.13).

The local approximation ismost useful for nuclides with adjacentmass numbers

in regions between closed neutron shells, but does not hold over the entire A =

56–209 mass range.This is seen in Figure 5.70, where the symbols show the prod-

uctN☉(A)⟨𝜎⟩A versus mass number A for the s-only isotopes.TheN☉(A)⟨𝜎⟩A val-
ues vary by a factor of ≈ 100. They decrease monotonically with increasing mass

number, with particularly large variations occurring at A ≈ 84, 138, and 208, cor-

responding to closed neutron shells. In the following, an expression forNs(A)⟨𝜎⟩A
will be derived as a function of neutron exposure.Wewill again assume a constant

temperature. It was found (Clayton et al., 1961) that a single neutron exposure 𝜏

would not suffice to explain the observed N☉(A)⟨𝜎⟩A values. Seeger, Fowler, and
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Figure 5.70 The product N☉(A)⟨𝜎⟩A (in

units of millibarn per 106 Si atoms) of solar

system s-process abundance and Maxwellian-

averaged neutron-capture cross section (at a

thermal energy of kT = 30 keV) versus mass

number A. The symbols correspond to s-only

nuclides. The solid curves are obtained by

fitting the data to an expression similar to

Eq. (5.187) but which includes the effects

of significant s-process branchings. The

thick solid line is calculated using a single

exponential distribution of neutron

exposures (main s-process component). For

A ≤ 90, the main component falls below the

data points and a second distribution (weak

s-process component) must be included

in the fit (thin solid line). The sharp struc-

tures result from s-process branchings. At

these mass numbers the solid lines split into

two parts, one corresponding to the more

neutron-rich nuclide and the other one to

the less neutron-rich nuclide. (Courtesy of

Franz Käppeler.)
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Clayton (1965) showed that better agreement could be obtained by adopting an

exponential distribution of neutron exposures. Such a distribution reflects the

physically reasonable assumption of decreased probabilities for increasing neu-

tron exposures, that is, the total exposure experienced by some fraction ofmaterial

relates to the number of times that material had been processed through succes-

sive generations of stars (Clayton, 1983) or through successive burning episodes

in a specific star (Ulrich, 1973).

Suppose that f is the fraction of the number of 56Fe seed nuclei, N seed
s

(56), that

has been subjected to an exponential distribution of neutron exposures, given by

p(𝜏) =
fN seed

s
(56)

𝜏0
e−𝜏∕𝜏0 (5.180)

where p(𝜏) d𝜏 is the fraction of 56Fe seed nuclei having received an exposure in

the range between 𝜏 and 𝜏 + d𝜏 . The parameter 𝜏0 is the mean neutron exposure

and determines how rapidly the exposure distribution falls off. The total number

of irradiated seed nuclei is

∫
∞

0

p(𝜏) d𝜏 = fN seed
s

(56)[−e−𝜏∕𝜏0 ]∞
0
= fN seed

s
(56) (5.181)

The resulting abundances are

Ns(A, 𝜏0) =

∞∫
0

Ns(A, 𝜏)p(𝜏) d𝜏

∞∫
0

p(𝜏) d𝜏

=

∞

∫
0

Ns(A, 𝜏)

𝜏0
e−𝜏∕𝜏0 d𝜏 (5.182)

For the first two nuclides on the s-process path, 56Fe and 57Fe, the abundance evo-

lutions are given by (see Eq. (5.176))

dNs(56, 𝜏)

d𝜏
= −Ns(56, 𝜏)⟨𝜎⟩56 (5.183)

dNs(57, 𝜏)

d𝜏
= −Ns(57, 𝜏)⟨𝜎⟩57 + Ns(56, 𝜏)⟨𝜎⟩56 (5.184)

For an exponential exposure distribution (see Eq. (5.180)), the solutions can be

found analytically. The results are (see Problem 5.14)

⟨𝜎⟩56Ns(56, 𝜏0) =
fN seed

s
(56)

𝜏0

1[
1 +

1

𝜏0⟨𝜎⟩56
] (5.185)

⟨𝜎⟩57Ns(57, 𝜏0) =
fN seed

s
(56)

𝜏0

1[
1 +

1

𝜏0⟨𝜎⟩56
] 1[
1 +

1

𝜏0⟨𝜎⟩57
] (5.186)

and so on.The general solution of Eq. (5.176) is easily deduced from these results.

We find (see also Clayton and Ward, 1974)
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⟨𝜎⟩ANs(A, 𝜏0) =
fN seed

s
(56)

𝜏0

A∏
i=56

1[
1 +

1

𝜏0⟨𝜎⟩i
] (5.187)

Once the capture cross sections ⟨𝜎⟩A are known, a fit of this expression to the
observed solar system values of N☉(A)⟨𝜎⟩A for the s-only nuclides yields the
parameters f and 𝜏0. The magnitude of these parameters, in turn, is important for

identifying the sites and the history of s-process nucleosynthesis. It is interesting

that, according to Eq. (5.187), the relative ⟨𝜎⟩ANs(A, 𝜏0) values for any two

nuclides (beyond the last seed nucleus) on the s-process path are independent

of the true distribution of seed nuclei (Clayton and Ward, 1974). Hence, the

particular choice of pure 56Fe as seed material is as good as any other distribution

of iron peak nuclides. On the other hand, this also means that the observed solar

system N☉(A)⟨𝜎⟩A values for the s-only nuclides are not a sensitive probe of the
initial seed distribution. A useful quantity is the average number of neutrons

captured per 56Fe seed nucleus,

nc =

209∑
A=56

(A − 56)Ns(A, 𝜏0)

fN seed
s

(56)
=
1

𝜏0

209∑
A=56

(A − 56)⟨𝜎⟩A
A∏

i=56

1[
1 + 1

𝜏0⟨𝜎⟩i
] (5.188)

Its magnitude provides another constraint on the physical environment. For two

nuclides of adjacent mass numbers, one finds from Eq. (5.187)

⟨𝜎⟩ANs(A, 𝜏0) =
⟨𝜎⟩A−1Ns(A − 1, 𝜏0)[
1 + 1

𝜏0⟨𝜎⟩A
] (5.189)

Between closed neutron shells, the capture cross section ⟨𝜎⟩A, and thus the
product 𝜏0⟨𝜎⟩A, is large. Therefore, we find from Eq. (5.189) ⟨𝜎⟩ANs(A, 𝜏0) ≈⟨𝜎⟩A−1Ns(A − 1, 𝜏0), consistent with the local approximation discussed above.

Near closed neutron shells the cross section ⟨𝜎⟩A, and thus 𝜏0⟨𝜎⟩A, is relatively
small. Consequently, the denominator in the above expression becomes relatively

large, producing a step in the distribution of ⟨𝜎⟩ANs(A, 𝜏0) values. In other

words, the small capture cross sections of the neutron magic nuclides represent

bottlenecks for a continuous abundance flow. The resulting steps are seen in

Figure 5.70 at mass numbers of A ≈ 84, 138, and 208, corresponding to closed

neutron shells. The height and shape of the steps are sensitive to the magnitude

of the mean neutron exposure 𝜏0, while the fraction f acts as an overall scaling

factor.

The solid curves in Figure 5.70 are obtained by fitting the data for N☉(A)⟨𝜎⟩A
to an expression similar to Eq. (5.187). The sharp structures result from s-process

branchings that will be discussed later. The thick solid line is calculated using a

single exponential distribution of neutron exposures. It describes all the observed

N☉(A)⟨𝜎⟩A values for s-only nuclides in a wide range from A = 90 to A = 205 and

is called the main s-process component. The mean square deviation between the

thick solid line and the data points in Figure 5.70 is only 3% (Käppeler et al., 1990).
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This excellent agreement is remarkable considering that the main component is

represented by a single exponential distribution of neutron exposures with only

the scaling factor and the mean neutron exposure as fitting parameters. The fit

gives values of f ≈ 0.06%, where it is assumed that the number of seed nuclei

is equal to the solar system abundance of 56Fe, 𝜏0 ≈ 0.3 mb
−1 (for cross sections⟨𝜎⟩A at kT = 30 keV), and nc ≈ 10 (Käppeler et al., 1990).These results imply that

the main s-process component was produced by irradiating only 0.06% of the

solar system 56Fe nuclei with neutrons, while each 56Fe seed nucleus captured on

average about 10 neutrons. For mass numbers of A < 90, the thick solid line falls

below the data points. Therefore, a second component is required to explain the

synthesis of the s-process nuclides in this lower mass range. It is called theweak s-

process component and is shown as the thin solid line in Figure 5.70. Käppeler et al.

(1990) find for this component values of f ≈ 1.6%, 𝜏0 ≈ 0.07 mb
−1, and nc ≈ 3,

that is, a lower mean neutron exposure and a higher fraction of irradiated seed

nuclei compared to the main component. Only in the Pb–Bi mass region, close

to the termination point of the s-process, does the two-component model give an

unsatisfactory description. In particular, more than 50% of the solar system 208Pb

abundance cannot be accounted for in this way.Therefore, a third component has

been postulated (Clayton andRassbach, 1967). It is called the strong s-process com-

ponent, for which parameters of f ≈ 10−4%, 𝜏0 ≈ 7 mb
−1, and nc ≈ 140 have been

reported in Käppeler et al. (1990). In this case, the mean neutron exposure is so

large that on average about 140 neutrons are captured per seed nucleus to con-

vert a very small fraction of 56Fe nuclei to nuclides in the mass region between
206Pb and 209Bi. As will be seen below, it is unlikely that these three vastly different

neutron exposures can be obtained in a single astrophysical site. It is more rea-

sonable to assume that different sites are required to explain each of the observed

s-process components.

Both the observed N☉(A)⟨𝜎⟩A values and the calculated solid lines in
Figure 5.70 are obtained for a constant s-process temperature of kT = 30 keV

(or T = 0.35 GK). This particular value is traditionally used in discussions of the

phenomenological s-process model described here. However, a precise value

for the s-process temperature cannot be deduced easily by matching observed

N☉(A)⟨𝜎⟩A values with calculated ⟨𝜎⟩ANs(A, 𝜏0) curves (except when analyzing

branching ratios; see later) because most of the neutron-capture cross sections

vary in a similar manner with temperature (Section 3.2.2 and Figure 3.32).

Instead, the shape of the ⟨𝜎⟩ANs(A, 𝜏0) curve will provide information about the

mean neutron exposure 𝜏0 when the temperature has been selected by other

means (see also Seeger, Fowler, and Clayton, 1965).

In the derivation of Eq. (5.187), it was explicitly assumed that all neutron capture

rates on unstable nuclides are either considerably faster (𝜆𝛽 ≪ 𝜆n𝛾 ) or consider-

ably slower (𝜆𝛽 ≫ 𝜆n𝛾 ) than the competing β
−-decay rates so that the s-process

path is uniquely defined at each mass number A. At certain locations along the

s-process path, however, the abundance flow encounters unstable nuclides with

decay constants (or half-lives) that are comparable in magnitude to the compet-

ing neutron capture rates, 𝜆𝛽 ≈ 𝜆n𝛾 . At these locations the s-process path splits
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into two branches. These s-process branchings can also be incorporated into the

phenomenological s-process model described above if one assumes that the neu-

tron density, Nn(t), in addition to the temperature, is constant with time. In this

case, the s-process branchings can be described analytically (Ward, Newman, and

Clayton, 1976). Otherwise, the abundance evolutionsmust be solved by numerical

integration.

Consider a simple example of the situation shown in Figure 5.68c. At the unsta-

ble nucleus of mass number A′, the abundance flow splits into two parts because

its β−-decay rate is comparable in magnitude to the rate of the competing neutron

capture. The unstable nucleus A′ becomes a branch point for the s-process path.

Only a fraction of the flow passes through stable nucleus A. But the entire flow

passes through stable nucleus A + 1 since we assume that the β−-decay of unsta-

ble nucleus A′ + 1 is considerably faster than the competing neutron capture. If

the branch point is located in a mass region between closed neutron shells, then

Eq. (5.178) has to be replaced by

Ns(A, 𝜏)⟨𝜎⟩A + Ns(A
′, 𝜏)⟨𝜎⟩A′ ≈ Ns(A + 1, 𝜏)⟨𝜎⟩A+1 (5.190)

The ratioNs(A, 𝜏)⟨𝜎⟩A∕Ns(A + 1, 𝜏)⟨𝜎⟩A+1 defines a branching ratio, B, which can
also be expressed in terms of the decay constants of nucleus A′ as

B ≡ Ns(A, 𝜏)⟨𝜎⟩A
Ns(A + 1, 𝜏)⟨𝜎⟩A+1 = 𝜆𝛽(A

′)

𝜆𝛽(A
′) + 𝜆n𝛾 (A

′)

=
ln 2∕T1∕2(A

′)

ln 2∕T1∕2(A
′) + Nn⟨𝜎⟩A′𝑣T

(5.191)

With Nn⟨𝜎𝑣⟩A′ = Nn⟨𝜎⟩A′𝑣T , we obtain

Nn =

[
Ns(A + 1, 𝜏)⟨𝜎⟩A+1

Ns(A, 𝜏)⟨𝜎⟩A − 1

]
1⟨𝜎⟩A′𝑣T

ln 2

T1∕2(A
′)

=
(
1 − B

B

)
1⟨𝜎⟩A′𝑣T

ln 2

T1∕2(A
′)

(5.192)

Hence, the analysis of branchings yields the neutron density, which is an important

parameter for determining the physical conditions during the s-process. A precise

value of Nn provides a strong constraint for stellar models of s-process sites.

Equation (5.192) describes the simplest case of an s-process branching. In

reality, more extensive expressions are required for most branchings since each

one has its own complications, for example, the interplay of several branchings,

or isomeric states. Nevertheless, Eq. (5.192) contains the important physics and,

in particular, emphasizes the input data needed for a reliable extraction of the

physical conditions from branching analyses. The first term, (1 − B)∕B, depends

on the ratio of abundances for the stable nuclides A and A + 1 and on the ratio of

their neutron-capture cross sections. Depending on the value of B, these input

values have to be known to about ±1% for many branchings so that the neutron

density can be extracted with an uncertainty of, say, ±10%. It is of advantage if

A and A + 1 are s-only nuclides, since in this case their abundances do not have
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to be corrected for r-process contributions. Also, since they are isotopes of the

same element their relative abundances are accurately known (Lodders, Palme,

and Gail, 2009). Very precise capture cross section measurements involving these

stable target nuclei are crucial as well (Sections 4.6.2 and 4.6.3; see also Käppeler,

1999). The second term in Eq. (5.192) contains the Maxwellian-averaged capture

cross section for the radioactive branching point nucleus A′. In the past, no data

existed for these reactions, and the cross sections had to be estimated using the

Hauser–Feshbach theory. However, a number of cross section measurements

involving radioactive branching point nuclides have been performed (see,

e.g., Jaag and Käppeler, 1995; Reifarth et al., 2003; Abbondanno et al., 2004).

Also, measured capture cross sections have to be corrected for (theoretical)

stellar enhancement factors since the quantity ⟨𝜎⟩A′ in Eq. (5.191) refers to the

stellar cross section (Section 3.1.5). The third term in Eq. (5.192) represents

the stellar half-life of the branching point nucleus A′ and the corresponding

stellar enhancement factors are based on nuclear theory (Takahashi and Yokoi,

1987). In some cases, no difference exists between the terrestrial and the stellar

half-life value. For other branching point nuclides, however, the stellar half-life

is very sensitive to the precise temperature or density conditions in the plasma

(Section 1.8.4).

There are about 15–20 significant branchings on the s-process path. The fol-

lowing strategy is then employed to derive estimates for the physical conditions

of the s-process. First, the mean neutron density is deduced by analyzing those

branchings that are nearly independent of temperature and density. With this

information, the stellar β-decay half-lives are determined from other branchings

that depend sensitively on temperature (or density). Finally, the known temper-

ature (or density) dependence of these half-lives yields estimates for the mean

s-process temperature (or electron density). By considering several different

branchings together, one can then attempt to derive a set of parameters that

characterizes the average physical conditions during the s-process. The results

thus obtained from the study of s-process branchings (Nn, T , 𝜌) and from the

global fit to the observed N☉(A)⟨𝜎⟩A distribution for s-only nuclides (f , 𝜏0 or nc)
represent important constraints for stellar models and the identification of the

astrophysical sites of the s-process. For more information, see Käppeler (1999).

The empirical s-process described above is called the classical s-process model.

It is very simple since it disregards the time dependence of s-process parameters,

such as neutron density and stellar temperature. It provides a satisfactory descrip-

tion of most observed N☉(A)⟨𝜎⟩A values for s-only nuclides over the entire mass
region of interest, requiring only a relatively small number of adjustable parame-

ters. The classical s-process model makes no assumption on the stellar site or the

specific reactions that act as neutron sources. In view of these restrictions, the

classical model offers remarkable insight into the s-process.

We already pointed out that the shape of the N☉(A)⟨𝜎⟩A distribution for s-only
nuclides is a measure for the total number of neutron captures to which seed

nuclei have been subjected and, therefore, it contains the global history of the s-

process. However, the composition of the interstellar gas out of which the solar
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system formed reflects a mixture of the ejecta of countless stars.The composition

has been homogenized by interstellar mixing to the degree where it represents

the average rate of nucleosynthesis up to the time of solar system formation. The

stars that provided the sites for the s-process had certainly a range of masses and

metallicities. It is clear from these arguments that a single set of average param-

eters (f , 𝜏0, Nn, T , 𝜌) derived from the N☉(A)⟨𝜎⟩A distribution does not corre-
spond directly to the properties of any single model star. For this reason, one

must be careful when using such average parameters to constrain stellar s-process

models.

The limitations of the classical s-process model became apparent with the

availability of precisely measured neutron-capture cross sections (Käppeler,

1999; Bao et al., 2000). It was shown, for example, that the classical model

significantly overproduces 142Nd (Arlandini et al., 1999). Such results imply

that the distribution of neutron exposures during the s-process differs from

a simple exponential function (see Eq. (5.180)). Further evidence came from

s-process branchings. Analyses of the branching point nuclides 147Pm, 185W,

and 192Ir with the classical model gave for the neutron density values of

Nn = (4.94+0.60
−0.50

) × 108 cm−3 (Reifarth et al., 2003), (4.7+1.4
−1.1

) × 108 cm−3 (Mohr

et al., 2004), and (7.0+0.5
−0.2

) × 107 cm−3 (Koehler et al., 2002), respectively. Similarly,

classical analyses of the temperature-sensitive branching point nuclides 176Lu,
151Sm, and 128I yielded values of T = 0.30 ± 0.05 GK (Doll et al., 1999), ≈ 0.4 GK

(Abbondanno et al., 2004), and ≈ 0.093 GK (Reifarth, 2002), respectively. The

classical s-process model provides neither a consistent solution for the neutron

density nor for the temperature. A more sophisticated approach, based on

realistic stellar models, is required to reproduce all the observed s-process

abundances.

We now turn to a discussion of stellar models that currently best reproduce

the observed s-process abundance pattern. The main s-process component is

thought to originate from thermally pulsing, low-mass (1.5–3M☉) AGB stars

(Section 1.4.3; see also Busso, Gallino, and Wasserburg, 1999). After a thermal

pulse and third dredge up event, some protons from the convective envelope mix

into the radiative intershell (see Figure 1.6), which consists mainly of 4He (≈ 75%

by mass) and 12C (≈ 25% by mass). The nature of this mixing mechanism is not

understood at present, and its magnitude is usually described by a free parameter

in stellar models. The protons that are mixed downward initiate the sequence

12C(p, 𝛾)13N(𝛽+𝜈)13C(p, 𝛾)14N (5.193)

giving rise to two separate thin regions near the top of the intershell that are rich

in 13C and 14N and are referred to as the 13C pocket and the 14N pocket, respec-

tively. When the temperature reaches T ≈ 0.09 GK (or kT ≈ 8 keV), the mean

lifetime of 13C versus destruction by the 13C(𝛼,n)16O reaction becomes smaller

than the time between the two thermal pulses. Hence, neutrons are released dur-

ing the inter pulse period within the 13C pocket under radiative conditions and

are captured by preexisting seed nuclei (mainly Fe and s-process material from

the previous pulse) to produce most of the nuclides in the main component of
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the s-process. The neutron flux lasts typically ≈ 20 000 y and produces locally

high neutron exposures (≈ 0.1 mb−1). Since the time scale is long, however, the

neutron density remains low (Nn ≈ 10
7 cm−3). Only a small number of reaction

branchings occur since the β−-decay constant exceeds the neutron-capture decay

constant in most cases. During this time, 13C is entirely consumed in the thin 13C

pocket. The temperature achieved at this evolutionary stage is not sufficient for

initiating the 14N(𝛼,𝛾)18O reaction. During hydrogen-shell burning, the mass of

the intershell increases steadily (and so do temperature and density), up to a point

where theHe at the bottom of the intershell ignites.This thermal He pulse (labeled

“TP” in Figure 1.6) grows outward until it almost reaches the H-burning shell.The

large energy release also causes the stellar envelope to expand and extinguishes

the H-burning shell. The thermal pulse engulfs the ashes of H-shell burning. It

gives rise to higher temperatures (T ≈ 0.27 GK or kT ≈ 23 keV), initiating the

sequence

14N(𝛼, 𝛾)18F(𝛽+𝜈)18O(𝛼, 𝛾)22Ne (5.194)

As a consequence, the 22Ne(𝛼,n)25Mg neutron source is (marginally) activated and

a second neutron burst occurs. Here, the time scale amounts to a few years, with

neutron exposures of ≈ 0.01 mb−1 and a peak neutron density ofNn ≈ 10
10 cm−3.

This second neutron burst does not contribute considerably to the overall pro-

duction of the s-process nuclides. It does, however, significantly influence the s-

process branchings that are operating more efficiently at the higher temperatures.

After the thermal pulse, theHe shell becomes inactive, the envelope contracts, and

the H shell ignites again.The cycle can repeat tens to hundreds of times. For more

information, see Busso, Gallino, and Wasserburg (1999) or Habing and Olofsson

(2004).

Figure 5.71 demonstrates how well current stellar models of thermally puls-

ing AGB stars reproduce the solar system abundance distribution of s-process

nuclides. The results were obtained for a model star with a mass of 1.5M☉ and a

metallicity ofZ = 0.01 (Arlandini et al., 1999). Abundances are shown as overpro-

duction factors, that is, as ratios of predicted abundances and the corresponding

solar system values. The solid circles represent s-only nuclides. The agreement is

remarkable, especially since the solar system s-process abundances of the main

component are most likely the products of countless low-mass AGB stars with a

range of masses andmetallicities. It is also evident that these stars cannot account

for the weak s-process component (A < 90).

Stellar model studies of thermally pulsing, low-mass AGB stars (Gallino

et al., 1998) revealed that variations in stellar metallicity have a strong effect

on the resulting total neutron exposure. In this scenario, the 13C(𝛼,n)16O or
22Ne(𝛼,n)25Mg reactions are referred to as primary neutron sources, because the
13C or 14N (and hence, 22Ne) are produced in the star itself from the available

hydrogen and 12C. For decreasing metallicity, more neutrons per iron seed nuclei

are available from these sources and, consequently, heavier nuclides can be

synthesized. The increased neutron exposure during s-processing in early gener-

ation, metal-poor AGB stars causes an accumulation of material at the end of the
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Figure 5.71 Abundance distribution result-

ing from s-process studies of a thermally

pulsing AGB star of mass 1.5 M☉ and metal-

licity Z = 0.01. Abundances are shown as

overproduction factors, that is, as ratios

of predicted abundances and the corre-

sponding solar system values, normalized

to 150Sm. It is evident that the stellar model

reproduces the solar system abundances

for the s-only nuclides (solid circles) of the

main s-process component (A > 90). Even

the abundances of those s-only nuclides

are reproduced that are partially bypassed

by the flow because of nearby branch-

ings. Crosses represent all the other heavy

nuclides produced in the s-process. Their

overproduction factors are less than unity

since they are also synthesized by the r-

process. (From Arlandini et al. (1999). © IOP

Publishing. Reproduced by permission of IOP

Publishing. All rights reserved.)

s-process path (208Pb and 209Bi). These objects provide a natural explanation for

the strong s-process component (Gallino et al., 1998; Travaglio et al., 2001).

A major fraction of the weak s-process component is believed to originate from

the core helium burning stage in massive stars with M ≥ 13M☉ (Sections 1.4.3

and 5.2.3; see also Peters, 1968). The 14N nuclei produced by the CNO cycles

during the preceding hydrogen burning stage are rapidly transformed to 22Ne via
14N(𝛼,𝛾)18F(𝛽+𝜈)18O(𝛼,𝛾)22Ne at the beginning of the helium burning stage. But

only near helium exhaustion in the core has the temperature risen sufficiently

(T ≥ 0.25 GK or kT ≥ 22 keV) to ignite the 22Ne(𝛼,n)25Mg neutron source. More
massive stars burn at higher core temperature and thus consume a larger quantity

of 22Ne. Therefore, they give rise to a more efficient s-process compared to less

massive stars. Total consumption of 22Ne occurs only in very massive stars. If

some of the 22Ne survives at the end of core helium burning, the 22Ne(𝛼,n)25Mg

neutron source is reactivated during carbon burning by α-particles that are

released by the primary 12C + 12C reaction (Section 5.3.1). Core carbon burning

is not a promising s-process site since, first, the core matter will not be ejected

in the subsequent supernova explosion and, second, any s-process nuclides will

be destroyed later via photodisintegration reactions during core oxygen burning

(Section 5.3.3). However, the situation is different for convective shell carbon

burning, where stellar models predict s-processing with a neutron exposure

comparable to that achieved during the previous core helium burning stage. The

situation is schematically depicted on the left-hand side of Figure 1.7, showing
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the pre-supernova structure of a massive star. Any s-process nuclides present

in the innermost regions outside the iron core will be destroyed during the

subsequent explosive burning stages caused by the passage of the shock.The next

layer, which experienced shell carbon burning including s-processing (labeled

“CS”), will be ejected with a composition almost unchanged by the explosion.The

layer labeled “HeC”, on top of the convective carbon shell, is a remnant of core

helium burning, with a composition unchanged by other hydrostatic burning

stages. These two layers carry the bulk of the weak s-process component. The

layer further out experiences convective shell helium burning (labeled “HeS”) and

may also contribute to the s-process abundances, depending on the temperature

achieved at the bottom of the shell, although stellar models differ in their

predictions. Finally, this shell could also be affected by the passing supernova

shock, since any 22Ne nuclei present would activate the 22Ne(𝛼,n)25Mg neutron

source, and thereby modify the pre-explosion s-process yields.

Three aspects are especially important when discussing the neutron economy

during weak s-process nucleosynthesis: (i) the abundance of the neutron source

nuclei (22Ne), (ii) the abundance of the seed nuclei (56Fe and other iron-peak

species), and (iii) the abundances of any neutron poisons. The latter expression

refers to nuclides which capture neutrons that would otherwise contribute to

the s-process. For example, the neutron source 22Ne(𝛼,n)25Mg is sometimes

called self-poisoning because the product nucleus 25Mg has a relatively high cross

section for neutron capture. A significant fraction of the produced neutrons is

removed in this way without synthesizing nuclides in the A = 65–90 region,

thus constraining the s-process efficiency. In this scenario, the 22Ne(𝛼,n)25Mg

reaction is also referred to as a secondary neutron source since 14N (i.e., the

progenitor of 22Ne) is not produced in the star itself. Both the number of neutrons

released by 22Ne(𝛼,n)25Mg and the amount of iron-peak seed nuclei (mainly
56Fe) scale with stellar metallicity, while the neutron-to-seed ratio is metallicity

independent. On the other hand, 12C and 16O are primary nuclides since they are

produced within the star itself. Their neutron capture cross sections are relatively

small, but their abundances become large during helium burning. Therefore,

the 12C(n,𝛾)13C and 16O(n,𝛾)17O reactions could represent important sinks of

neutrons, especially if the stellar metallicity is small. Detailed calculations have

shown that, independent of metallicity, 12C does not represent an important

neutron poison because the lost neutrons are recycled, and thus recovered,

by the sequence 12C(n,𝛾)13C(𝛼,n)16O. The situation is different for 16O, where

the sequence 16O(n,𝛾)17O(𝛼,n)20Ne competes with 16O(n,𝛾)17O(𝛼,𝛾)21Ne. The

neutrons are recovered in the former case, but are lost for the s-process in the

latter case. Hence, 16O most likely represents an important neutron poison in

low metallicity massive stars (Rayet and Hashimoto, 2000).The strong metallicity

dependence of the weak s-process component is important because it may be

used to study the role of massive stars in the early phase of galactic chemical

evolution.

Some important aspects of the weak s-process component derived from

massive stars will be illustrated in the following. The evolution of central
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temperature and density from the end of core hydrogen burning to the end of

core helium burning for a 25M☉ star with initial solar system composition is

shown in Figure 5.72. At the end of core hydrogen burning, the most abundant

nuclides are 4He (X𝛼 = 0.982),
14N (X14N = 0.0122),

20Ne (X20Ne = 0.0016), and
56Fe (X56Fe = 0.00117). The other abundances are given by their respective solar

system values. Using this temperature–density profile and the initial abundances,

we will perform a core helium burning (postprocessing) reaction network

calculation. The results are presented in Figure 5.72. The neutron capture rates

are adopted from the compilation of Bao et al. (2000), while temperature-

and density-dependent weak interaction rates are taken from Raiteri et al.

(1993). Energy is produced via the helium burning sequence 𝛼(2𝛼)12C(𝛼,𝛾)16O

(Section 5.2.2). At the end of the calculation, the mass fractions of 12C and
16O amount to 0.22 and 0.75, respectively. We will now discuss processes

related to the production and consumption of neutrons. As already noted,

the nuclide 14N is converted via the sequence 14N(𝛼,𝛾)18F(𝛽+𝜈)18O(𝛼,𝛾)22Ne

(Section 5.2.3) while, subsequently, the 22Ne(𝛼,n)25Mg neutron source competes

with the 22Ne(𝛼,𝛾)26Mg reaction. The most important neutron poison reaction

is 25Mg(n,𝛾)26Mg, followed by 22Ne(n,𝛾)23Ne. The sequence 12C(n,𝛾)13C(𝛼,n)16O

shows a significant abundance flow but, in terms of the neutron economy, it is

neither a net producer nor a net destroyer of neutrons (see also Section 5.3.1).

Moving up in mass, a network of (n,𝛾), (n,𝛼), (n,p) reactions and β−-decays

stretches from Al to the iron-peak group. Although the s-process in massive stars

is usually interpreted as a way to produce the weak component, a number of

lighter nuclides in the A = 35–45 mass range is also synthesized. The s-process

in massive stars has been suggested to be a major source of 36S, 37Cl, 40Ar,

and 40K in the universe (see Table 5.2). An increased nuclear activity is seen

in the iron peak region. Starting mainly from 56Fe seed nuclei, sequences of

neutron captures and β−-decays give rise to a typical s-process flow pattern and

synthesize nuclides in the A = 60–90 region, that is, the weak component of the

s-process. Smaller abundance flows extend beyond A = 90 and are not shown in

Figure 5.72. The neutron exposure and peak neutron density typically amount

to ≈ 0.2 mb−1 and Nn ≈ 10
7 cm−3, respectively. Most of the 22Ne consumption

occurs at the end of the burning, with less than 10% of helium remaining in

the core, when the temperature increases from T ≈ 0.27 GK to 0.30 GK, and

the density climbs from 𝜌 = 1800 g/cm3 to 2600 g/cm3 (The, El Eid, and Meyer,

2000). This temperature–density range is labeled “S” in Figure 5.72.

For stars with masses of M < 30M☉, the partial survival of
22Ne at the

end of core helium burning offers the opportunity for another episode of

s-processing during carbon shell burning, as discussed above. The higher

temperatures achieved here (kT ≈ 90) give rise to high peak neutron densities

(Nn ≈ 10
11 cm−3), which significantly alter the weak s-process abundance pattern

established during core helium burning. Figure 5.73 shows overabundances of

nuclides relative to their solar system values. The results are obtained from a

stellar model calculation of a 25M☉ star with solar initial metallicity after the

completion of core helium and shell carbon burning. The diamonds indicate
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Figure 5.72 Time-integrated net abundance

flows during core helium burning. The evo-

lution of central temperature and density,

shown in the inset, from the end of core H

burning (A) to the end of core He burning

(B) is adopted from stellar model studies of

a 25 M☉ star with initial solar system com-

position (The, El Eid, and Meyer, 2000). The

numerical network calculation is terminated

after t = 6 × 1012 s (the time it takes the star

to evolve from A to B). The arrows have the

same meaning as in Figure 5.26, except that

four different thicknesses are used, with each

thickness representing a flow range of two

orders of magnitude. The abundance flows

are defined here in terms of mole fractions

rather than number densities since the mass

density varies. The flow pattern in the A =

60–90 region reflects the weak component

of the s-process. Most of the s-processing

occurs toward the end of He burning for T–

𝜌 conditions that are marked by “S” in the

inset.

s-only nuclides.The large overproduction values in theA = 60–90mass range are

evident. Some lighter nuclides (A < 50) are also overproduced. The efficiency of

the s-process in massive stars declines rapidly beyond A = 90. The two locations

of the weak s-process component, in the carbon–oxygen layer (labeled “HeC”;
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Figure 5.73 Overabundances of heavy

nuclides relative to their solar system val-

ues after the completion of core helium

and shell carbon burning. The results are

obtained from a stellar model calculation

of a 25 M☉ star with solar initial metallicity.

The diamonds indicate s-only nuclides. The

large overproduction values in the A = 60–90

mass range are evident. The efficiency of the

s-process in massive stars declines rapidly

beyond A = 90. (From Raiteri et al. (1991).
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a remnant of core helium burning) and the oxygen–neon layer (resulting from

shell carbon burning), are schematically shown in Figure 1.7 (left side). The latter

layer has been predicted to be a major source of the important γ-ray emitter 60Fe

(Limongi and Chieffi, 2006).

The experimental information for reactions important to s-process nucle-

osynthesis is briefly described below. The 13C(𝛼,n)16O reaction (Q = 2216 keV),

responsible for the synthesis of the main s-process component in low-

mass AGB stars, has been measured down to a center-of-mass energy of

Ecm
𝛼

= 280 keV (Drotleff et al., 1993). The Gamow peak for T ≈ 0.09 GK is

located at E0 ± Δ∕2 = 190 ± 40 keV. The reaction rates in the astrophysically

important temperature range are found by extrapolating the existing low-energy

data, including the high-energywing of a subthreshold resonance (Ecm
r

= −3 keV).

The present uncertainty of this rate is a factor of ≈ 4 at T = 0.09 GK (Angulo

et al., 1999). This uncertainty seems to have a negligible influence on models

of low-mass AGB stars (Cristallo, Straniero, and Gallino, 2005). The situation

is different for the 22Ne(𝛼,n)26Mg neutron source (Q = −478 keV). Here, the

Gamow peak near T ≈ 0.25 GK (the lower temperature limit where this neutron

source becomes operational) is located at E0 ± Δ∕2 = 540 ± 120 keV, while

the lowest lying measured resonance occurs at Ecm
r

= 704 keV. Several studies

have focused on the possible contribution from an undetected natural-parity

resonance near Ecm
r

= 538 keV. However, it could be unambiguously shown that

this resonance has unnatural parity and, consequently, does not contribute to

the 22Ne(𝛼,n)26Mg neutron source (Longland et al., 2009). The rates for this

reaction are controversial at present since several other natural-parity states
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exist in 26Mg between the α-particle threshold and the lowest lying measured

resonance. Jaeger et al. (2001) and Karakas et al. (2006) estimate a factor of ≈ 2

uncertainty for the rate near T ≈ 0.25 GK. Even a factor of two uncertainty in

the rate has a strong influence on the nucleosynthesis, both in low-mass AGB

stars (Pignatari et al., 2005) and massive stars (The, El Eid, and Meyer, 2000).

The 22Ne(𝛼,𝛾)26Mg reaction is also important in this respect since it competes

with the (𝛼,n) reaction in the destruction of 22Ne without producing neutrons.

The recommended rates for the 22Ne(𝛼,n)25Mg and 22Ne(𝛼,𝛾)26Mg reactions

are of similar magnitude at T ≈ 0.25 GK (Longland, Iliadis, and Karakas,

2012), but the present errors are too large to determine which reaction channel

dominates near this temperature value. The ratio of rates for 17O(𝛼,n)20Ne and
17O(𝛼,𝛾)21Ne is also poorly known at present. These reactions are important

for defining the role of 16O as a neutron poison in massive stars (Rayet and

Hashimoto, 2000).

For neutron-induced reactions in various s-process scenarios, Maxwellian-

averaged cross sections have to be known at energies ranging from kT ≈ 8 keV

in low-mass AGB stars to kT ≈ 90 keV during shell carbon burning in massive

stars. The averaged (n,𝛾) cross reactions for the neutron poisons 12C, 16O, 22Ne,

and 25Mg are experimentally known to better than ±10% (Bao et al., 2000). The

most important neutron poison reaction in low-mass AGB stars is 14N(n,p)14C

(Lugaro et al., 2003). In this case, the present uncertainties in the averaged cross

sections are somewhat larger (seeWagemans et al., 2000, and references therein),

and more accurate values are desirable.

For a large number of nuclides in the mass region A ≤ 210, Maxwellian-
averaged neutron-capture cross sections are compiled in Bao et al. (2000) for

s-process conditions.The required data accuracy is different for charged-particle-

induced reaction rates compared to neutron-capture reaction rates. In the former

case, few reaction rates have been determined experimentally with uncertainties

of less than 10%. In the latter case, however, cross sections with uncertainties

of ≤ 5% are essential for modeling s-process scenarios. Recall that nuclides
near the neutron magic numbers N = 50, 82, and 126 act as bottlenecks for the

abundance flow. In this case, the desired accuracy in the neutron capture cross

section is ≤ 3%. Even more accurate capture cross sections (≤ 1%) are required
for s-only isotopes. These nuclides represent crucial normalization points for

the s-process abundance distribution and are also important for the analysis of

s-process branchings. For many of the important neutron-capture reactions the

required level in cross section accuracy has been reached, and the reliability of

current cross section data sets for modeling s-process scenarios is impressive

(Bao et al., 2000). Nevertheless, additional and more accurately measured cross

sections are needed for a number of reactions, including (n,𝛾) reactions on

short-lived branching point nuclides (Jaag and Käppeler, 1995; Reifarth et al.,

2003; Abbondanno et al., 2004). Theoretical reaction rates are also indispensable

for s-process calculations. The (n,𝛾) rates for many short-lived branching point

nuclides are currently based on the Hauser–Feshbach theory (Section 2.7). These

rates can be calculated using local nuclear model parameters that are obtained via
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interpolation from neighboring nuclides. Such results are more reliable compared

to neutron capture rates for nuclides far from the stability valley, where global

parameter sets must be employed. Furthermore, stellar enhancement factors

(Section 3.1.5) must be estimated using theoretical nuclear models. Calculations

indicate that (n,𝛾) reactions on 25% of all nuclides involved in the s-process have

stellar enhancement factors in the range of 2–40% at kT = 30 keV (Bao et al.,

2000). Corrections at this level are significant for stellar models of the s-process.

For more information on the s-process, see Käppeler et al. (2011).

5.6.2

The r-Process

In the previous section, it was shown how well s-process models reproduce the

solar system abundances of s-only nuclides (Figures 5.71 and 5.73). For the major-

ity of the heavy nuclides, both the s-process and the r-process contribute to the

observed abundance. Therefore, one can subtract the well-known s-process con-

tribution from the total solar system abundance of a given nuclide A
Z
X to find the

corresponding solar system r-process abundance,

Nr(A,Z) = N☉(A,Z) − Ns(A,Z) = N☉(A,Z) −
⟨𝜎⟩A,ZNs(A,Z)⟨𝜎⟩A,Z (5.195)

The resulting Nr values versus mass number A are displayed in Figure 5.74a. The

s-process contributions are calculated using the classical model according to

Eq. (5.187) (see also Problem 5.13). It is apparent that the distribution of solar

system r-process abundances is smooth and that it is also consistent with the

abundances of the r-only nuclides shown as solid circles. Interestingly, a very

similar solar system r-process abundance distribution is obtained if the s-process

abundances are calculated using stellar models instead of the classical approach

(Arlandini et al., 1999). The most outstanding features in Figure 5.74a are the two

pronounced peaks at mass numbers A = 130 and 195, which are about 10 mass

units removed from the s-process peaks near A = 138 and 208. The existence

of the r-process abundance peaks and of the long-lived radioisotopes 232Th

(T1∕2 = 1.4 × 10
10 y), 235U (T1∕2 = 7.0 × 10

8 y), and 238U (T1∕2 = 4.5 × 10
9 y),

located beyond the endpoint of the s-process, provide the strongest evidence for

the occurrence of a neutron-induced process that is different from the s-process.

The solar system r-process abundance distribution represents a strong constraint

for models of the r-process. Elemental solar system r-process abundances can

be obtained by summing over isotopic values. These are most useful for com-

parison to results from stellar spectroscopy which, in most cases, only provide

information on elemental abundances. The resulting elemental solar system s-

and r-process abundances are displayed in Figure 5.74b. It is remarkable that two

processes so vastly different as the s- and r-process provide abundances of similar

magnitude.

The most straightforward explanation of the r-process abundance peaks

in Figure 5.74a is that they are caused, like the s-process abundance maxima
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Figure 5.74 (a) Solar system r-process

abundances for A > 90, obtained by sub-

tracting the s-process contribution from the

total solar system abundance. The s-process

abundance is calculated by using the classi-

cal s-process model (Arlandini et al., 1999).

The full circles show abundances of r-only

nuclides, defined here as those species for

which the s-process contribution amounts to

≤ 3%. The influence of the p-process on the

displayed abundances is negligible and has

been disregarded. The error bars are largest

in those regions where the s-process contri-

bution dominates. (b) Elemental solar system

s- and r-process abundances. Data from Bur-

ris et al. (2000).

(Figure 5.65), by the neutron magic numbers N = 50, 82, and 126 (Section 1.6.1).

The large neutron flux drives the matter to the neutron-rich side, far away from

the stability valley, where, for reasons to be discussed later, the abundances of the

neutron magic nuclides accumulate. These neutron magic nuclides are proton
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deficient compared to their counterparts produced in the s-process that are

located close to the valley of stability. After termination of the neutron flux in the

r-process, these neutron magic nuclides undergo sequences of β−-decays along

isobaric chains (A = const) until the most neutron-rich stable (or very long-lived)

isobar is reached (Figure 5.66). Consequently, the r-process produces abundance

maxima in mass regions located below the corresponding s-process abundance

peaks. It must be emphasized that the observed abundances of the r-process

nuclides are not correlated with their neutron-capture cross sections, contrary

to the case for the s-process abundances (Figure 5.69). Instead, the observed

r-process abundances reflect the nuclear properties of radioactive progenitors on

the neutron-rich side, far away from the stability valley.

We will now discuss a simple model for the r-process. Consider seed nuclei, say

iron, that are exposed to a constant temperature of T ≥ 1 GK and a constant neu-
tron density ofNn ≥ 1021 cm−3. In such a hot and neutron-rich environment, both

(n,𝛾) and (𝛾 ,n) reactions are considerably faster than β−-decays. The abundance

evolution of species A
Z
X is then given by

dN(Z,A)

dt
= −NnN(Z,A)⟨𝜎𝑣⟩Z,A + N(Z,A + 1)𝜆𝛾 (Z,A + 1) (5.196)

whereN(Z,A) is the number density of nuclide A
Z
X, ⟨𝜎𝑣⟩Z,A is the neutron-capture

reaction rate per particle pair for A
Z
X, and 𝜆𝛾 (Z,A + 1) is the photodisintegration

decay constant of A+1
Z
X. For sufficiently large values ofNn and T , the rates of neu-

tron capture and reverse photodisintegration are large enough to ensure thermal

equilibrium along the isotopic chain [dN(Z,A)∕dt ≈ 0 for Z = const]. Under such

conditions, the abundance ratios for two adjacent isotopes, A+1
Z
Xand A

Z
X, are given

by the Saha equation (see Eq. (3.50))

N(Z,A + 1)

N(Z,A)
= Nn

(
h2

2𝜋mAnkT

)3∕2 (2jZ,A+1 + 1)

(2jZ,A + 1)(2jn + 1)

Gnorm
Z,A+1

Gnorm
Z,A

eQn𝛾∕kT (5.197)

where Qn𝛾 is the reaction Q-value for the (forward) A
Z
X(n,𝛾)A+1

Z
X reaction or,

equivalently, the neutron separation energy of A+1
Z
X.

It follows from Eq. (5.197) that the abundance ratio N(Z,A + 1)∕N(Z,A)

depends mainly on the Q-value (or neutron separation energy) and is a function

only of the temperature T and the neutron density Nn during the r-process. The

situation is shown in Figure 5.75a. Within a given isotopic chain, (n,𝛾)↔(𝛾 ,n)
equilibria are established. The number abundance of any isotope in the chain can

be found by successive application of the Saha equation, similar to the methods

described in Section 5.3.4. If Nxm
is the number density of isotope xm produced

afterm neutron captures on (an arbitrary) species Nx0
, then (Problem 5.15)

Nxm
= Nx0

Nm
n

𝜃m

(
Mxm

Mx0
Mm

n

)3∕2
gxm
gx0g

m
n

Gnorm
xm

Gnorm
x0

exp

[
1

kT

m−1∑
j=0

Qxj(n,𝛾)

]

≈ Nx0

(
N
n

1.188 × 1034T
3∕2

9

)m

exp

[
11.605

T9

m−1∑
j=0

Qxj(n,𝛾)

]
(5.198)
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Figure 5.75 Basic building blocks of the

r-process path. Part (a) shows an isotopic

chain in (n,𝛾)↔(𝛾 ,n) equilibrium (waiting

point approximation). For reasons of clarity,

it is assumed that most of the abundance

resides in a single isotope (shaded square).

Part (b) shows how β−-decays of the wait-

ing point nuclides transfer matter from one

isotopic chain to the next. The steady flow

approximation assumes that the abundance

of each element Z is inversely proportional

to the total β-decay constant of the chain.

Part (c) shows the special case when the r-

process path encounters a neutron magic

number.

where the symbols have the same meanings as in Section 5.3.4. In the above

numerical expression, the number densities and Q-values are in units of cm−3

and MeV, respectively, while the normalized partition functions and the spins of

the heavy nuclei are set equal to unity. Suppose first that all values of Qn𝛾 in a

given isotopic chain are the same. For a specific temperature and neutron density,

we can then solve Eq. (5.197) for the value of Qn𝛾 that gives rise to the same

abundances throughout the chain, N(Z,A + 1) ≈ N(Z,A). For example, with

T = 1.25 GK and Nn = 10
22 cm−3, and again neglecting spins and normalized
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partition functions, we find a value of Qn𝛾 ≈ 3.0 MeV. Of course, the neutron

capture Q-values are not all equal but decrease on average when moving away

from the stability valley toward the neutron dripline. In other words, closer to the

stability valley, where Qn𝛾 > 3 MeV, we have N(Z,A + 1) > N(Z,A), while closer

to the neutron dripline, where Qn𝛾 < 3 MeV, we obtain N(Z,A + 1) < N(Z,A).

Consequently, the equilibrium abundances are not all the same but will show

a maximum close to that isotope for which the Qn𝛾 -value amounts to about

≈ 3 MeV. For a given temperature and neutron density, the abundance maxima

in all chains will occur at the same neutron captureQ-value (Qn𝛾 ≈ 3 MeV for the

conditions chosen above). According to Eq. (5.197), an increase in Nn shifts the

abundance maxima in all isotopic chains toward the neutron-rich side (to smaller

Qn𝛾-values), while a higher temperature moves the abundance maxima toward

the less neutron-rich side (to larger Qn𝛾 -values). The quantities T and Nn are

correlated in the sense that a variation in temperature can always be compensated

for by a corresponding adjustment in neutron density to keep the location of the

abundance maxima unchanged.

The situation just discussed represents an oversimplification because even–odd

effects in nuclear binding energies caused by the pairing effect (Section 1.6.2) have

been disregarded so far. Nuclides with an even number of neutrons have rela-

tively small values of Qn𝛾 , and those with an odd number of neutrons have rela-

tively largeQn𝛾 -values.Thus, according to Eq. (5.198), the abundancemaximum in

each isotopic chain is identified with nuclides of even neutron number. A specific

example is in order. Equation (5.198) is used to calculate the abundance distri-

bution for neutron-rich selenium isotopes (A = 92–99) with the conditions T =

1.25 GK andNn = 10
22 cm−3.The results are shown in Figure 5.76a.The horizon-

tal line represents a constantQ-value of 3 MeV.TheQn𝛾 values (fromMöller, Nix,

and Kratz, 1997) are shown as a dashed line and display a pronounced odd–even

structure because of the pairing effect. The abundance distribution (solid line)

peaks at that even-N isotope where the average Qn𝛾 -curve falls below 3 MeV, in

this case 96
34
Se62 and, to a lesser degree,

94
34
Se60. A more quantitative criterion will

be derived in Problem 5.16. In practice, it is found that the abundance distribu-

tions are relatively sharp for given values of T and Nn. Only one or two even-N

isotopes exist in any significant amount. On the other hand, if the r-process is

characterized by some spread in temperature and neutron density, then the abun-

dance distributions will be broadened to include more values of A. Equilibrium

may not be achieved throughout the entire isotopic chain. In particular, closer to

the valley of stability theQ-values are large and, therefore, the photodisintegration

rates become smaller.The reverse (𝛾 ,n) reactions cannot balance the forward (n,𝛾)

reactions and these lighter isotopes are rapidly destroyed.This does not represent

a problem for the above model since it is found that the (n,𝛾)↔(𝛾 ,n) equilibrium
condition holds for all isotopes with any significant abundance at equilibrium

(Seeger, Fowler, and Clayton, 1965). Hence, the next step is clear. The even-N iso-

topes with significant abundances in each isotopic chain represent waiting points

for the abundance flow. At these locations, the r-process path can only continue

via β−-decays that are sufficiently slow as to not affect the equilibrium distribution
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Figure 5.76 Neutron capture Q-values

(dashed lines) and abundance distributions

(solid lines) for neutron-rich isotopes of (a)

selenium, (b) palladium, and (c) indium. The

Qn𝛾 -values are adopted from Möller, Nix, and

Kratz (1997) and display a pronounced odd–

even structure caused by the pairing effect.

(For some of the isotopes shown, experimen-

tal values exist; see Wang et al., 2012). The

horizontal lines represent a constant Q-value

of 3 MeV. The abundance distributions are

calculated using Eq. (5.198) assuming con-

ditions of T = 1.25 GK and Nn = 1022 cm−3.

They peak at those even-N isotopes where

the average Qn𝛾 -curve falls below 3 MeV.

Circles mark isotopes with neutron magic

numbers.
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in the isotopic chains (Figure 5.75b). For this reason, the (n,𝛾)↔(𝛾 ,n) equilibrium
condition is also referred to as the waiting point approximation.

The β−-decays transfer matter from one isotopic chain to the next, where again

an independent equilibrium within the chain is established (Figure 5.75b). This

repetitive sequence of events gives rise to the r-process path. The total β−-decay

probability of an isotopic chain with a given value of Z can be defined by

𝜆Z ≡ ∑
A

p(Z,A)𝜆𝛽(Z,A) (5.199)

where p(Z,A) = N(Z,A)∕NZ is the abundance distribution in the chain for given

values of T and Nn, normalized to the total abundance, NZ ≡ ∑
A N(Z,A), of ele-

ment Z. The quantity 𝜆Z depends explicitly on T and Nn through the equilibrium

abundances p(Z,A). The time evolution of the total abundance NZ is given by

dNZ

dt
= −𝜆ZNZ + 𝜆Z−1NZ−1 (5.200)

where the first term describes the destruction of element Z via β−-decay to ele-

ment Z + 1, while the second term represents the creation of element Z via β−-

decay from element Z − 1. The above expressions (see Eqs. (5.199) and (5.200))

determine the elemental abundance of each isotopic chain,while Eq. (5.198) deter-

mines the isotopic equilibrium abundances within each isotopic chain. For the

boundary conditions of Eq. (5.200), one can assume that initially all nuclei are

in a specific isotopic chain Z0: NZ(t = 0) = N0 for Z = Z0 and NZ(t = 0) = 0 for

Z ≠ Z0. The general solution of the above set of differential equations is given by

(Bateman, 1910)

NZ0
(t) = N0e

−𝜆Z0 t (5.201)

NZ(t) = N0

Z∑
i=Z0

e−𝜆it
𝜆i

𝜆Z

∏
j=Z0
j≠i

𝜆j

𝜆j − 𝜆i
for Z ≠ Z0 (5.202)

provided that all values of 𝜆i are different, which is a good assumption if these

values are computed precisely. One sees from Eq. (5.202) that the abundance NZ

varies inversely with the corresponding total β-decay constant 𝜆Z . As was the case

with Eq. (5.176) in the discussion of the s-process, the above coupled equations

(see Eq. (5.200)) are self-regulating, in the sense that they attempt to achieve a

constant β−-decay flow from one isotopic chain to the next, dNZ∕dt ≈ 0. Hence,

after a sufficient time has passed, we obtain

𝜆ZNZ ≈ 𝜆Z−1NZ−1 or 𝜆ZNZ ≈ const (5.203)

This condition is referred to as the steady flow approximation.

The importance of nuclides with neutron magic numbers N = 50, 82, and

126 for the r-process path will now be addressed. The situation is sketched

in Figures 5.75c and 5.77. Suppose the abundance flow reaches the isotopic

chain with the neutron magic nucleus x as a member. This nucleus has an

energetically favorable neutron shell configuration. As a result, the Q-value for
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Figure 5.77 Schematic r-process path near

A ≈ 130 and N ≈ 82. Numbers near diago-

nal arrows represent β−-decay half-lives (in

seconds) and those near horizontal arrows

show branching ratios (in percent) for β-

delayed neutron decay. The quoted values

are adopted from experiment or, when pre-

ceded by “∼”, from nuclear model calcula-

tions. Stable end products of the r-process

(after freeze-out) are shown in circles and

their observed solar system r-abundances are

given in square boxes. More information on

nuclear properties and abundances can be

found in Audi et al. (2012), Möller, Nix, and

Kratz (1997), and Lodders, Palme, and Gail

(2009). Note that 130Cd is the neutron magic

waiting point nucleus with N = 82 that is

located closest to stability. At the next ele-

ment (indium), the r-process path branches

off horizontally toward heavier nuclides.

The nuclide 130Cd is the progenitor of the

stable isobar 130Te situated at the maximum

of the A = 130 peak in the solar system

r-process abundance distribution. (From Kratz

et al. (1988). © IOP Publishing. Reproduced

by permission of IOP Publishing. All rights

reserved.)

the x(n,𝛾) reaction is relatively small, while the Q-value for the preceding (n,𝛾)x

reaction is relatively large. The element palladium (Z = 46) is an example for this

situation. The neutron capture Q-values in the A = 125–131 region are shown

in Figure 5.76b. It is apparent that the neutron magic nucleus 128
46
Pd82 coincides

with the location at which the average Qn𝛾 -curve falls below the 3-MeV line.
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Consequently, 128
46
Pd82 is by far the most abundant species in the chain and repre-

sents a waiting point. After the subsequent β−-decay the process repeats itself in

the next isotopic chain: the average Qn𝛾-value curve crosses the 3-MeV line at the

location of the neutronmagic nucleus (in this specific case, 129
47
Ag82) that becomes

another waiting point. Therefore, a sequence of waiting points is encountered

at the same magic neutron number N . The r-process path has no choice but to

move vertically upward in Z toward the stability valley (Figure 5.75c). Moreover,

the closer the path approaches the group of stable nuclides, the longer the

β−-decay half-lives of the neutron magic nuclides. Typical half-lives along the

r-process path amount to T1∕2 ≈ 0.01–0.05 s, but near neutron magic waiting

point nuclides close to the stability valley (e.g., 130
48
Cd82), they are considerably

longer. Hence, the abundance flow is significantly delayed and these isotopes will

build up to relatively large abundances. An interesting situation occurs when

the neutron magic nucleus y is reached (Figure 5.75c). A specific example is the

element indium, and the corresponding Qn𝛾 -values are shown in Figure 5.76c.

As was the case before, the neutron-capture Q-values drop significantly at the

location of the neutron magic nucleus (131
49
In82). However, this isotope is located

closer to the stability line than the lighter neutron magic nuclides. The extra

stability is reflected in the larger overall neutron-capture Q-values. The average

Qn𝛾-curve now falls below the 3-MeV line at a location beyond the neutron

magic nucleus 131
49
In82 (in this case, at

133
49
In84). In other words, the r-process path

overcomes the group of isotones with neutron magic number N at a location

sufficiently close to the region of the stable nuclides (Figure 5.75c).

At the cessation of the neutron flux, the neutron-rich nuclides β−-decay along

lines of constant A to their stable isobars. Thus, the r-process produces one stable

(or long-lived) isotope for each value of A. In the simplest case, we may assume

that the neutron flux and temperature fall instantly to zero after some time 𝜏 .Then,

knowing the isotopic abundances for each Z at a time 𝜏 when the r-process is

halted, one can find the final r-process abundance at each A by summing

Nr,A =
∑
Z

NZ(𝜏)p(Z,A) (5.204)

To summarize, for given values ofNn, T , and 𝜏 , the r-process path (and, hence, the

abundances Nr,A) can be calculated precisely if the nuclear properties are known.

The neutron-captureQ-values determine the isotopic equilibrium abundances for

each element (see Eq. (5.198)), while the relative amount of material at a given

element Z depends only on the total β−-decay probabilities of the isotopic chains

(see Eq. (5.202)). Cross sections for neutron captures or photodisintegrations are

unimportant since we adopted the waiting point approximation. Furthermore, the

time it takes to establish an (n,𝛾)↔(𝛾 ,n) equilibrium is negligible compared to the
β−-decay half-lives, which determine the time delay of the r-process flow toward

heavier nuclides. The closer the r-process path is located to the neutron dripline,

the shorter the β−-decay half-lives become, resulting in a faster r-process flow.The

longest delays for the abundance flow are expected near the neutron magic wait-

ing point nuclides located closest to stability: 80
30
Zn50,

130
48
Cd82, and

195
69
Tm126. The
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abundances near these locations accumulate and, after termination of the neutron

flux, give rise to the abundance peaks at A = 80, 130, and 195 in the distribution

of observed Nr,A values (see Figure 5.74a).

We assumed in Eq. (5.204) that β−-decays are the only processes responsible

for the decay of nuclides from the r-process path back to the stability valley

after freeze-out of the neutron exposure. There are a number of other processes,

however, that also need to be taken into account. First, β−-decays may not always

populate neutron bound states in the daughter nucleus. If neutron unbound

states are populated, then β-delayed neutron emission may occur (Section 1.8.2).

This process has the tendency to smooth out the strong odd–even signatures in

the equilibrium abundances, caused by the dependence of Qn𝛾 on the neutron

number, that would otherwise be present in the final r-process distribution.

Second, in the higher mass range (Z > 80), spontaneous and β-delayed fission

could become faster than β−-decay and will thus influence the final abundances.

Third, beyond mass A = 210 the decay toward the stability valley reaches

(β-stable) radioactive α-particle emitters. The transmutation of these nuclides

along α-decay chains gives rise to the production of the very long-lived species
232Th, 235,238U, and 244Pu, which are important for nucleochronology (see, e.g.,

Truran et al., 2002).

The termination of the r-process depends, among other things, on the

duration of the neutron exposure and thus on the astrophysical environment.

For relatively short neutron exposures, the r-process terminates because of a

lack of free neutrons before the mass region A ≈ 260 is reached. For longer

neutron exposures, the successive addition of neutrons will continue until the

Coulomb barrier, which is proportional to Z2, becomes so large that the heavy

nuclides decay via neutron-induced or β-delayed fission. Calculations indicate

that this happens near Amax ≈ 260 and Zmax ≈ 94. The precise location depends

sensitively on (yet unmeasured) fission barriers for nuclides far from stability

(Panov et al., 2005). After the fission of a heavy nucleus with mass Amax, two

fragments with masses of roughly Amax∕2 are produced, thereby feeding two

seed nuclei back into the neutron-capture chain and giving rise to a fission

cycle. The number of r-process nuclei is doubled with each cycle. The cycle

time, 𝜏cycle, required to build an average fission fragment back up to Amax may

only take a few seconds or less. If the neutron supply lasts sufficiently long,

𝜏 ≫ 𝜏cycle, the abundances will grow exponentially as nuclei pass around the

fission cycle and large abundances of heavy nuclides can be build up in this way.

Fission can also be incorporated into the phenomenological r-process model

described above by adding a term to Eq. (5.200). Analytical solutions are given in

Seeger, Fowler, and Clayton (1965).

The nuclear properties required to describe the r-process include neutron

captureQ-values (or neutron separation energies), β−-decay half-lives, branching

ratios for β-delayed neutron emission, normalized partition functions, fission

probabilities, and α-decay half-lives. Nuclear masses play a central role for the

r-process since they determine directly or indirectly most of the properties listed

above. Also, recall that the Qn𝛾 -values (which are given by mass differences; see
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Eq. (1.6)) enter exponentially in the determination of the equilibrium abundances

(see Eq. (5.197)) and, therefore, must be known accurately.The nuclear properties

are needed for nuclides that are located far away from the valley of stability.

The available experimental information will be summarized later in this section.

At this point, it is sufficient to mention that, with few exceptions, the required

information is not known from experiments since most of the nuclides on the

r-process path cannot be produced yet in the laboratory. The required nuclear

properties must be estimated using nuclear models. The various models will not

be discussed here (see, e.g., Cowan, Thielemann, and Truran, 1991). In practice,

one attempts to derive semiempirical formulas from the known properties of

nuclides close to stability that can be extrapolated into the region covered by

the r-process path. Such extrapolation procedures are subject to significant

uncertainties even for the most sophisticated models. For example, Möller,

Pfeiffer, and Kratz (2003) estimate an uncertainty of ±0.5 MeV for calculated

values of Qn𝛾 and Q𝛽 , while half-lives and branching ratios for β-delayed neutron

emission can only be predicted within a factor of 2–3 for nuclides far from

stability. It remains to be seen if new global mass models can be developed that

are not subject to these limitations. Any deficiencies in current nuclear models

will have a direct impact on r-process predictions.The associated nuclear physics

uncertainties affect most discussions of the r-process.

The phenomenological model discussed above is referred to as the classical r-

process model. It is simple because it assumes: (i) a constant temperature and neu-

tron density, (ii) an instantaneous termination of the neutron flux after a duration

𝜏 , and (iii) the waiting point and steady flow approximations. The waiting point

approximation will only hold for sufficiently large values of T andNn (Goriely and

Arnould, 1996; Rauscher, 2004). Otherwise, the abundance flow in each isotopic

chain of given elementZ is steadily depleted by β−-decays before the waiting point

in the chain is reached. The steady flow approximation is only valid if the dura-

tion of the neutron exposure exceeds the β−-decay half-lives of nuclides on the

r-process path. Finally, the assumption of a sudden termination of the neutron

density disregards that (n,𝛾) and (𝛾 ,n) reactions will fall out of equilibrium if Nn

decreases over a short, but finite, time.

How the classical model can provide insight into the astrophysical conditions

of the r-process is discussed below. Consider, for example, Figure 5.77 showing

the r-process path near the neutron magic number N = 82. If the waiting point

approximation holds, then the path moves vertically upward through 127
45
Rh82,

128
46
Pd82,

129
47
Ag82, and

130
48
Cd82 before it branches off horizontally toward heavier

nuclides. As discussed earlier, these nuclides are by far the most abundant

species in their respective isotopic chains because of the sudden drop of the

Qn𝛾-value near neutron magic numbers. For the Z = 49 chain, however, most of

the abundance resides in 131
49
In82 and

133
49
In84 (Figure 5.76c). After termination of

the neutron flux, the decays of the nuclides near N = 82 give rise to the observed

A = 130 solar r-abundance peak. The nuclides 130Cd and 131In will β−-decay to

the stable isobars 130Te and 131Xe, respectively. The isotope 133In, on the other

hand, has a large probability for β-delayed neutron decay and thus decays mainly
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to the stable nuclide 132Xe. Assuming in addition a steady flow approximation (see

Eq. (5.203)) for theZ = 48 (cadmium) and 49 (indium) isotopic chains, we can cal-

culate a value of the 130Cd half-life from the observed solar system r-abundances

of 130Te, 131Xe, and 132Xe and the measured half-lives of 131In and 133In (Prob-

lem 5.17). The result is Tcalc
1∕2
(130Cd) ≈ 187 ms, which is close to the experimental

value of T
exp

1∕2
= 162 ± 7 ms (Dillmann et al., 2003). Hence, it appears that the

solar system r-process peak at A = 130 was formed under the conditions of an

(n,𝛾)↔(𝛾 ,n) equilibrium and a steady flow equilibrium. Similar arguments can be
applied to the A = 80 r-process peak. We can also estimate the conditions of tem-

perature and neutron density that gave rise to the observed r-abundances. Earlier

we calculated equilibrium abundances from givenQn𝛾 -values assuming values for

T and Nn (Figure 5.76). The argument can be turned around to derive constraints

on T andNn from known equilibrium abundances in a specific isotopic chain. For

example, consider again the pair 131In and 133In. From the observed solar system

r-abundances of 131Xe and 132Xe (Arlandini et al., 1999), one may derive, after

correcting for β-delayed neutron decays (see Problem 5.17), the equilibrium abun-

dances of the precursors 131In and 133In on the r-process path. These determine,

according to Eq. (5.198), the temperature and neutron density if the Qn𝛾 -values

are known either from experiment or theory. Results of such a procedure for

isotopes near N = 82 (131,133In) are shown as the dashed lines in Figure 5.78. For

example, one finds that a neutron density of Nn ≈ 10
22 cm−3 corresponds to a

temperature near T ≈ 1.35 GK. As already noted, T and Nn are correlated and

thus the possible solutions are located anywhere on the dashed lines.

1
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T
 (

G
K

)

1020 1022 1024

Nn (cm−3)

1026 1028

Figure 5.78 Conditions for temperature and

neutron density in the r-process. The dashed

lines are derived from the equilibrium abun-

dance ratio of 133In–131In. The abundance

ratio of these isotopes, which are located

on the r-process path, is deduced from the

observed solar system r-abundances of 132Xe

and 131Xe. The two dashed lines are obtained

from two different mass formulas. The region

between the two solid lines shows the con-

ditions at which all N = 82 species between
127Rh and 130Cd represent waiting points.

Data adopted from Kratz et al. (1988).
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Attempts to describe the entire observed distribution of solar system

r-abundances using the classical r-process model and a single set of T–Nn–𝜏

conditions were unsuccessful (Kratz et al., 1993). Such global descriptions repro-

duce three r-abundance peaks, but neither at the correct mass number location,

nor with the correct magnitude. It is also found that at least three different

sets of T–Nn–𝜏 conditions, each corresponding to a specific r-process path,

are required in different mass ranges to reproduce the observed solar-system

abundance distribution. Furthermore, the steady flow approximation applies

locally in each of these mass ranges, but not globally over the entire mass region.

Each of the components proceeds up to one of the r-abundance peaks (A = 80,

130, or 195) and achieves a local steady flow equilibrium. However, the steady

flow equilibrium breaks down beyond the maximum of each peak, where the

half-lives of the r-process progenitors are relatively long (≈ seconds). This could

indicate that the duration of the neutron exposure is large compared to most of

the relatively short β−-decay half-lives on the r-process path, but is comparable to

the longer half-lives of the neutron magic nuclides that come closest to stability.

The overall implication is that the solar system r-abundance distribution results

from a superposition of components representing different r-process conditions.

This could be caused by several different astrophysical r-process sites or by

a single site with varying conditions in different zones. An example for the

comparison of observed solar system r-abundances and the results of the classical

r-process model is shown in Figure 5.79. The model predictions are obtained

from a superposition of three different r-process components: (i) T = 1.35 GK,

Nn = 3 × 10
20 cm−3, 𝜏 = 1.5 s for A ≈ 80; (ii) T = 1.2 GK, Nn = 1 × 10

21 cm−3,

𝜏 = 1.7 s for A = 90–130; and (iii) T = 1.2 GK, Nn = 3 × 10
22 cm−3, 𝜏 = 2.5 s for

A = 135–195.The weights of the components are 10 ∶ 2.6 ∶ 1.The T–Nn values

of each component do not represent a unique set, but similar r-abundances

are obtained for all values that are located on an extended boundary in the

T–Nn diagram (see Figure 5.78 and Figure 12 of Kratz et al., 1993). Some of

the deviations between observed and calculated abundances (lower part of

Figure 5.79) originate from systematic defects of the mass model used to compute

the nuclear properties (Freiburghaus et al., 1999).

There is no obvious reason why the observed solar system r-abundance

distribution should be the result of a superposition of only three components. If a

number of astrophysical sites, or different zones representing different conditions

in the same site, contribute to the observed r-abundances, then it would be rea-

sonable to assume a superposition of many different components. Following this

line of thought, some researchers have employedmany components, each with its

associated fitting parameters, and thereby achieve an almost perfect agreement

between predicted and observed r-abundances (see, e.g., Goriely and Arnould,

1996). However, such results mask deficiencies in calculated nuclear properties

and, at the same time, could compromise the predictive power of the model

beyond the mass range of fitted abundances. Other researchers have employed a

continuous superposition of r-process components, assuming constant tempera-

ture and power-law distributions for component weights and exposure times as
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Figure 5.79 Distribution of observed solar

system r-abundances (data points) com-

pared to predictions of the classical r-process

model (solid line). The solid line is calcu-

lated from Eqs. (5.198) and (5.202) and

depends only on neutron separation ener-

gies, β−-decay half-lives, β-delayed neutron

decay probabilities, and so on, but not on

cross sections for neutron capture or pho-

todisintegration. The model prediction is

obtained from a superposition of three dif-

ferent r-process components. (From Kratz

et al. (1993). © IOP Publishing. Reproduced

by permission of IOP Publishing. All rights

reserved.)

a function of neutron density. This procedure requires only a small number of

fitting parameters and yields a slight improvement in the predicted r-abundances

compared to the results shown in Figure 5.79 (Freiburghaus et al., 1999). How-

ever, neither method seems to directly reflect the physical properties of a realistic

r-process site.

Figure 5.80 shows some results obtained with the second procedure, that is,

by assuming a continuous superposition of r-process components. Each compo-

nent is characterized by constant values of T , Nn, and 𝜏 . The component weights

and neutron exposure time scales are given by𝜔(Nn) = a1N
a2
n and 𝜏(Nn) = a3N

a4
n ,

respectively, where the ai are fitting parameters. The temperature remains con-

stant at T = 1.35 GK. Since different T–Nn conditions correspond to different

r-process paths, the overall distribution of waiting point nuclides (large open or

solid squares) in each isotopic chain is broadened compared to the use of a sin-

gle component. The resulting r-process abundance flow pattern represents more

appropriately a boulevard rather than a narrow path (Kratz, 2006). Nevertheless,
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Figure 5.80 Results of a classical r-process

calculation assuming a continuous superpo-

sition of many components. The components

are determined by power-law distributions of

component weights and exposure durations

as functions of neutron density. The large

open and solid squares show all waiting

point nuclides that, after instant freeze-out

of the neutron exposure, contribute more

than 1% to the abundance of any stable or

long-lived nuclide (small solid squares). The

large solid squares are a subset of waiting

point nuclides that decay along the path

marked with gray squares and contribute to

the production of the long-lived chronome-

ters 238U and 232Th. Nuclides that fission after

production via β−-decay are shown as trian-

gles. The calculation is based on the ETFSI-Q

mass model (Pearson, Nayak, and Goriely,

1996). (From Schatz et al. (2002). © IOP Pub-

lishing. Reproduced by permission of IOP

Publishing. All rights reserved.)

it can be seen that the abundance flow for all components is funneled through

the isotones with neutron magic numbers (N = 82 and 126) before reaching the

A ≈ 260 region. At the cessation of the neutron flux, the short-lived nuclides on

the r-process path decay via β−-decay, β-delayed neutron emission, α-decay, and

fission (the latter two decays occur only in the region A > 210), and transmute

into stable or long-lived isotopes (small solid squares).

The phenomenological model described above makes no assumption regarding

the site of the r-process. It is nevertheless useful and provides insight into sev-

eral aspects. As we have seen, the classical r-process model describes the gross

behavior of the solar system r-abundance distribution. It has also been applied for

reproducing or predicting abundance ratios of neighboring nuclides, for example,

for chronometers (Kratz et al., 2004) or isotopic anomalies in primitivemeteorites

(Kratz et al., 2001). Such abundance ratios are most likely influenced by nuclear

properties rather than by the details of the astrophysical r-process site. The clas-

sical r-process model also provides a simple framework for studying the impact

of nuclear physics uncertainties on predicted r-abundances. But it is also clear

from the preceding discussion that the classical model does not account for the

observations in terms of a realistic astrophysical site.

It is worthwhile at this point to visualize the results of a dynamic r-process

calculation as opposed to the static models described up to now. In reality, the



5.6 Nucleosynthesis Beyond the Iron Peak 537

temperature and neutron density will evolve with time. Early during the r-process,

T and Nn will be sufficiently large to ensure that a (n,𝛾)↔(𝛾 ,n) equilibrium holds
in all isotopic chains. Now suppose that the temperature and neutron density

decreasewith time.The abundance flowwill continuously adjust to the new condi-

tions according to the waiting point approximation.This means that the r-process

path, which is defined by T andNn, must continuously move, starting from a loca-

tion closer to the neutron dripline to one that is located closer to stability. For each

location of the path, the β−-decay half-lives are different. Just before termination

of the neutron exposure, when the r-process path is still about 15–35 mass units

away from stability, the waiting point nuclides have neutron capture Q-values of

Qn𝛾 ≈ 2–4 MeV. When the neutron flux disappears, the r-process nuclides decay

toward stability. But it is apparent that only the r-process path just before freeze-

out, and in particular the sections near neutron magic nuclides, matters for the

observed final distribution of r-abundances. In other words, at freeze-out the r-

process has mostly forgotten its earlier history.

Before discussing possible locations of the r-process, we will briefly mention

some of the observational evidence. Up to now, we have only focused on repro-

ducing the observed solar system r-abundance distribution using the classical

r-process model. In addition, important conclusions can be drawn from stellar

spectroscopy. Figure 5.81 displays the total heavy element abundances (data

points) for an extremely metal-poor Galactic halo giant star. For comparision,

the solar system r-abundances are shown as a solid line. This star is among the

oldest in the Galaxy. The remarkable agreement between the two abundance

distributions for elements above barium (A ≥ 135) provides strong evidence that
most of the heavy elements observed in this star were synthesized by the r-process

early in the evolution of the Galaxy, with no apparent contribution from the

s-process. Similar results have been found for other ultra-metal poor halo giants

(Truran et al., 2002). The r-process elements were not synthesized in the halo

stars themselves.Theymust have been produced by progenitors that evolved very

rapidly and ejected the matter into the interstellar medium before the formation

of the currently observed halo giants. The ultra-metal poor halo giants formed so

early in the history of the Galaxy that they may have received contributions from

only one, or atmost a few, r-process events.Themost likely r-process sites seem to

be associated with massive stars since low-mass stars or intermediate-mass stars

evolve on considerably longer time scales. The agreement with the solar system

r-abundances above mass Z ≈ 56 supports the conclusion that the r-process

mechanism is robust in the sense that a similar abundance pattern is produced in

each r-process event. Interestingly, the agreement between stellar and solar sys-

tem r-abundances does not extend to the lighter elements below barium (Z < 56).

There have been many suggestions to explain their synthesis, including a weak r-

process (Kratz, 2007), a light element primary process (Travaglio et al., 2004b), and

the α-process (Qian and Wasserburg, 2007; see also below). More observations

and studies will be needed to understand the synthesis of these elements.

A major goal of r-process studies is the identification of the astrophysical sites

and, by using r-abundances observed in the solar system and in stars, to draw
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Figure 5.81 (a) Heavy-element abundances

of the low-metallicity halo giant star CS

22892-052 (solid circles) compared to the

solar system r-process abundances (solid

line). The abundances are given in standard

spectroscopic notation, where log 𝜀(x) ≡
log(Nx∕NH) + 12.0, and Nx denotes the num-

ber abundance. The stellar data are from

Sneden, Cowan, and Gallino (2008). The

solar system r-abundances (total solar sys-

tem abundance minus s-abundance) are

from Simmerer et al. (2004) and have been

normalized to the stellar Eu abundance.

The graph does not include the uncertain-

ties introduced by the deconvolution of s-

and r-abundances. (b) Difference between

total stellar and scaled r-process solar sys-

tem abundances. The remarkable agreement

between the two abundance distributions

for elements heavier than barium (Z ≥ 56)

provides strong evidence that most of the

heavy elements observed in this star were

synthesized by the r-process early during the

evolution of the Galaxy.

conclusions regarding their detailed properties.This procedure has been very suc-

cessful in the case of the s-process. However, the site of the r-process remains a

mystery. Many different objects have been suggested (see the summary in Cowan,

Thielemann, andTruran, 1991) but only a fewof these seempromising.We already

mentioned that observations place the beginning of r-processing very early in the

evolution of the Galaxy and, therefore, the r-process site is most likely related to

massive stars. It is also clear that the site must provide very high neutron den-

sities (Nn ≥ 1021 cm−3) over short time scales (≈ seconds). On the other hand,

the temperature should not be too high. Otherwise, the heavy nuclides will either

be destroyed by photodisintegration (see Sections 5.3.4 and 5.3.5) or the waiting
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point abundances shift too close to the stability valley (see Eq. (5.197)) where the

β−-decay half-lives are too slow to allow for efficient r-processing.

One possible site is the merger of two neutron stars (Rosswog et al., 1999).

Calculations show that the matter ejected in such events has a solar system com-

position in the mass range of A ≥ 140. A problem with this source is that the
event rate is perhaps too low and, hence, the required mass of r-process matter

ejected per event would be too large to be consistent with observations (Qian,

2000). A second possibility is the ejection of neutronized material in magnetized

jets from asymmetricmassive star explosions (Cameron, 2003). Unfortunately, the

thermodynamic conditions for this model are at present poorly determined. The

third proposed site involves the neutrino-driven wind from a neutron star result-

ing from a core-collapse supernova (Section 5.4.1).

Although the nature of these sites varies significantly, the basic nuclear rear-

rangements are similar. We already pointed out that any successful r-process site

requires very large neutron densities, sufficiently high temperatures, and rapid

expansion time scales. It is worthwhile to briefly discuss the nucleosynthesis in

the last scenario to better understand the origin of the neutron flux that could

give rise to an r-process. Suppose that the neutrino-driven wind at late times has

a significant neutron excess. Four different phases can be identified, as shown

schematically in Figure 5.41c.

First, above a temperature of T ≈ 10 GK, the wind consists of free neutrons

and protons in nuclear statistical equilibrium (Figure 5.38). Second, as the wind

expands and cools below T ≈ 10 GK, nucleons start to combine to α-particles.

Near T ≈ 7 GK, α-particles become the dominant constituent, leaving behind an

excess of neutrons. Furthermore, some α-particles begin to assemble into nuclei

via the strongly density-dependent sequence

𝛼 + 𝛼 + n → 9Be and 9Be(𝛼, n)12C (5.205)

Third, near T ≈ 5 GK, nuclear statistical equilibrium breaks down because

the expansion time scale becomes shorter than the time required to maintain

nuclear statistical equilibrium under conditions of high temperature, low density,

and large α-particle abundance. The slow process 𝛼 + 𝛼 + n → 9Be is the first

reaction to fall out of equilibrium.The situation is similar to the α-rich freeze-out

discussed in Section 5.4.3. There is again an excess of α-particles, which cannot

be consumed fast enough by the slow helium-induced reactions in the time

available. The important difference, however, is the presence of a neutron excess.

Both the abundant α-particles and the neutrons will participate in the buildup of

heavier nuclides, starting with the sequence

12C(n, 𝛾)13C(𝛼, n)16O(𝛼, 𝛾)20Ne… (5.206)

Recall from the discussion in Section 5.4.3 that without the presence of neutrons,

the α-rich freeze-out mainly produces the N = Z isotope 56Ni, while the abun-

dance flows beyond the iron peak are negligible.This occurs because theQ-values

for (𝛼,𝛾) reactions beyond 56Ni along the N = Z line are relatively small. These
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nuclides are located on the proton-rich side of the stability valley, and little binding

energy is gained by adding another α-particle. As a consequence of the relatively

small Q-values, photodisintegration prevents the synthesis of species beyond the

iron peak. The capture of neutrons has the important effect of shifting the abun-

dance flow toward the stability valley, where the nuclides are more neutron rich

and the α-particle separation energies are larger. Hence, photodisintegrations do

not terminate the nucleosynthesis beyond the iron peak.Themost important pro-

cesses in the buildup of these heavy nuclides are (𝛼,n) and (n,𝛾) reactions. This

neutron rich, α-rich freeze-out is sometimes referred to as the 𝛼-process. (The same

namewas originally given by Burbidge et al. (1957) to a process that inmodern ter-

minology is referred to as neon burning (Section 5.3.2)). Fourth, at a temperature

near T ≈ 3 GK, the α-induced reactions become too slow to change the composi-

tion of the matter, and the α-process ceases. At this time, the composition resides

in α-particles, neutrons, and seed nuclei in the A ≈ 50–110 mass range. If the

neutron-to-seed ratio is sufficiently large, an r-process can be launched while the

matter further expands and cools.

The r-process model described above has a number of interesting aspects. First,

the properties of the neutrino-driven wind are determined by the proto-neutron

star, not by the pre-supernova evolution. Thus, r-processing in this site may

produce similar abundances for events involving neutron stars of the same mass.

Second, the r-process may be sensitive to the proto-neutron star evolution and

the neutrino interactions, and thus could become an important diagnostic of the

event. Third, starting from seeds with A ≈ 100 implies that the r-process does

not need to overcome the waiting point nuclides near the closed neutron shell

at N = 50 and, therefore, the overall time scale for r-processing shortens. Fur-

thermore, the presence of these heavier seed nuclei reduces the neutron-to-seed

ratio that is necessary to reproduce the solar system r-abundance distribution.

For example, to explain the abundance peaks at A = 130, 195, and the synthesis

of the elements Th, U, one requires about 30, 100, and 140 neutrons per seed

nucleus, respectively. Fourth, the physical properties of the neutrino-driven

wind result in an ejected amount of r-process material per supernova that is

about consistent with the total mass of r-processed material presently existing

in the Galaxy (≈ 104M☉). It is crucial for a successful r-process that the pre-

ceding α-process is not too efficient. Otherwise, too many heavy seed nuclei

are produced and too many neutrons are consumed, resulting in insufficient

neutron-to-seed ratios for synthesizing nuclides up to A ≈ 200 during the

subsequent r-process. This requirement translates into relatively high entropies

(or low densities) in the neutrino-driven wind so that the 𝛼 + 𝛼 + n → 9Be

reaction is less efficient in converting α-particles to heavy nuclei. A fast expansion

time scale limits the duration over which the freeze-out operates and is also

helpful for reaching a high neutron-to-seed ratio. To summarize, an appropriate

combination of a large neutron excess (or low electron mole fraction), a high

entropy (i.e., high temperatures and low densities), and a fast expansion time

is a necessary condition for a successful r-process in the neutrino-driven wind

model.
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Some studies have attempted to reproduce the solar system r-process abun-

dance distribution by assuming a superposition of many individual contributions

in the neutrino-driven wind, each representing an appropriate combination of

electron mole fraction, entropy, and expansion time (Farouqi et al., 2010). It

was found that the heavier r-abundances (A > 120), including Th and U, could

be reproduced with electron mole fractions of Ye < 0.48 and modest entropies

of s < 300. Furthermore, the dynamic simulations confirmed that the waiting

point and steady flow approximations of the classical r-process apply locally, but

not globally, over certain mass regions. Interestingly, studies (Farouqi, Kratz,

and Pfeiffer, 2009) have found that many, although not all, nuclides between

zinc (Z = 30, A ≈ 65) and ruthenium (Z = 44, A ≈ 100) could be synthesized

in the neutrino-driven wind under suitable low-entropy conditions, via the

α-process, when the free neutron abundance at charged-particle freeze-out is

negligible (i.e., no subsequent r-process occurs). This scenario co-produces, via

a charged-particle process, a fraction of the A ≈ 65–100 nuclides, which were

commonly thought to originate from other processes (s-, r-, and p-process). More

observations and studies are needed.

Calculations of r-process nucleosynthesis require a very large set of nuclear

physics quantities, including nuclear masses, β−-decay half-lives, branching

ratios for β-delayed neutron decay, fission properties, partition functions, and

so on. If the freeze-out from equilibrium is to be followed explicitly, that is,

if the waiting point and steady flow approximations are not applied and the

network is solved numerically, then reaction rates for neutron captures and

photodisintegrations are required as well. All of this information is needed for

neutron-rich isotopes that are located far away from stability. If the α-process

is to be followed explicitly, then another large data set consisting of rates for

charged-particle reactions and neutron-induced processes, such as (n,𝛼) and

(n,p), is required.The process 𝛼 + 𝛼 + n → 9Be is key among the reactions involv-

ing light nuclides. Its impact on the r-abundances is discussed in Sasaqui et al.

(2005). Almost all of the information needed for r-process simulations must be

obtained from global, semi-empirical, models for nuclear masses and β−-decays,

and from Hauser–Feshbach calculations. Information on directly measured

properties, mainly lifetimes and β-delayed neutron emission probabilities, of

nuclides located near or on the r-process path has been obtained in some cases.

For example, pioneering experiments leading to the identification of the neutron

magic waiting point nuclides 80Zn (Lund et al., 1986; Gill et al., 1985) and 130Cd

(Kratz et al., 1986) provided the first evidence for the existence of a local steady

flow equilibrium in the r-process. Results from experiments on unstable nuclides

off the r-process path are also important since the information gathered can be

used to test current nuclear models from which properties of nuclides on the

r-process path are derived. Many experimental r-process studies have focussed

on three mass regions: (i) the neutron-rich Fe, Co, and Ni isotopes up to the

double-magic nuclide 78Ni, since these species represent the seed nuclei for the

classical r-process model; (ii) isotopes of Zr and Pd near A ≈ 115, where most

r-process calculations underpredict the observed solar system r-abundances
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(see Figure 5.79), an effect that is possibly caused by deficiencies in present

nuclear models; and (iii) the region near the N = 82 neutron magic number

(Figure 5.77), which gives rise to the second r-process abundance peak near

A ≈ 130.

Although the neutrino-driven wind represents a popular r-process site, simula-

tions of core-collapse supernovae predict unfavorable conditions for an r-process

(Fischer et al., 2009; Hüdepohl et al., 2010). In particular, these studies obtained,

for an extended time period of up to 20 s, neutrino-driven winds that are proton

rich (Ye > 0.5) instead of neutron rich. This represents a serious difficulty for

r-process scenarios in core-collapse supernovae. Thus, the sites of the r-process

remain an unsolved puzzle. For additional information on the r-process, see

Arnould, Goriely, and Takahashi (2007) and Farouqi et al. (2010).

5.6.3

The p-Process

The neutron-deficient, stable nuclides with mass numbers of A ≥ 74 (between
74Se and 196Hg) are bypassed by the s- and r-process.These species are referred to

as p-nuclides, where the letter p designates that they containmore protons relative

to other stable isotopes of the same element. (Recall that all stable nuclides above
40Ca consist of more neutrons than protons.) The mechanism responsible for the

synthesis of the p-nuclides is called the p-process. A list of the p-nuclides and

their associated abundances is given in Table 5.1. The solar system abundances of

the p-nuclides are displayed in Figure 5.82, where they are compared to the abun-

dances that originate from the s- and r-processes. It is apparent that as a group

the p-nuclides are the rarest among the stable species. Their abundances are typ-

ically a factor of ≈ 100 smaller compared to those of adjacent s- and r-nuclides.

No single element has a p-process isotope as a dominant component.This implies

that all knowledge of abundance systematics of these species is based onmeasure-

ments of solar system material. It is generally accepted that the more abundant s-

and r-nuclides serve as seeds for the p-process.

Important clues regarding the mechanism of the p-process can be obtained

from the nuclear structure of the p-nuclides. Almost all of these have even num-

bers of protons and neutrons (Table 5.1). The only exceptions are 113
49
In64,

115
50
Sn65,

138
57
La81, and

180
73
Ta107, but their abundances are, except for

115Sn, considerably

smaller compared to those of the adjacent p-nuclides. It is also apparent from

Figure 5.82 that the p-abundance distribution has maxima at 92
42
Mo50,

112
50
Sn62, and

144
62
Sm82. The first and third of these have closed neutron shells, while the second

has a closed proton shell. Therefore, the p-process seems to favor the production

of more strongly bound nuclides, that is, those that have paired protons and

neutrons.

There are two kinds of reactions that allow for the production of neutron-

deficient nuclides starting from s- or r-process seeds: (p,𝛾) reactions and (𝛾 ,n)

photodisintegrations. Note that (p,n) reactions also produce neutron deficient

nuclides, but their Q-values on the proton-rich side of the stability valley are
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Table 5.1 Nuclides that are mainly produced by the p-process.

Nuclide Z N Abundancea Contributionb (%)

74Se 34 40 0.60 0.89
78Kr 36 42 0.20 0.362
84Sr 38 46 0.13 0.5580
92Mo 42 50 0.370 14.525
94Mo 42 52 0.233 9.151
96Ru 44 52 0.099 5.542
98Ru 44 54 0.033 1.869
102Pd 46 56 0.0139 1.02
106Cd 48 58 0.020 1.25
108Cd 48 60 0.014 0.89
113In 49 64 0.008 4.288
112Sn 50 62 0.035 0.971
114Sn 50 64 0.024 0.659
115Sn 50 65 0.012 0.339
120Te 52 68 0.005 0.096
124Xe 54 70 0.007 0.129
126Xe 54 72 0.006 0.112
130Ba 56 74 0.005 0.106
132Ba 56 76 0.005 0.101
138La 57 81 0.0004 0.091
136Ce 58 78 0.002 0.186
138Ce 58 80 0.003 0.250
144Sm 62 82 0.008 3.073
156Dy 66 90 0.0002 0.056
158Dy 66 92 0.0004 0.095
162Er 68 94 0.0004 0.139
168Yb 70 98 0.0003 0.12
174Hf 72 102 0.0003 0.162
180Ta 73 107 0.0000026 0.0123
180W 74 106 0.0002 0.120
184Os 76 108 0.0001 0.020
190Pt 78 112 0.0002 0.014
196Hg 80 116 0.001 0.15

180Ta and 180W may also be synthesized by the s-process; see, for example, Arlandini et al. (1999)
for s-process contributions to the solar system abundances.
a Solar system nuclidic abundance relative to 106 silicon atoms. b Contribution (in %) of isotope to

element abundance.

Source: Lodders, Palme, and Gail (2009).

negative and thus their reaction rates are considerably smaller compared to the

competing (p,𝛾) reactions. Early models placed the p-process in the hydrogen-rich

layers of core-collapse supernovae. During the passage of the supernova shock,

a combination of (p,𝛾) and (𝛾 ,n) reactions would produce nuclides that are

shielded from the neutron-capture processes at temperatures and densities

of T ≈ 2.5 GK and 𝜌 ≈ 100 g/cm3 over an explosive expansion time scale of
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Figure 5.82 Decomposition of the observed

solar system abundances of the heavy

nuclides into components that are synthe-
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tributions from the s- and r-processes are
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the p-process abundances are from Anders

and Grevesse (1989). The abundance of the

rare species 180Ta is off scale and is omitted.

10–100 s (Burbidge et al., 1957). However, it was pointed out by Woosley and

Howard (1978) that the required high densities, temperatures, and relatively

long time scales are unlikely to exist in hydrogen-rich zones of common stars.

An exception are type I X-ray bursts (Section 1.4.4). These objects have been

proposed (Schatz et al., 1998) to produce some of the lighter p-nuclides via

proton captures during the rp-process (Section 5.5.3). A major obstacle with

this scenario is the unlikely escape of any significant amount of accreted and

processed matter from the large gravitational potential of the neutron star.

Before describing specific sites for the production of the p-nuclides, it is instruc-

tive to discuss the generally accepted mechanism of the p-process. Instead of a

hydrogen-rich zone it involves a hot photon environment with temperatures in the

range of T ≈ 2–3 GK. Starting from some seed nuclei, themost likely interactions

to occur at elevated temperatures in hydrogen-exhausted stellar zones are photo-

disintegrations. The decay constants for the photoejection of neutrons, protons,

or α-particles can be calculated from Eq. (3.46). At a given temperature, the decay

constants depend strongly on the Q-value of the forward reaction, 0 + 1 → 𝛾 + 3,

or equivalently, on the particle separation energy of nucleus 3 (see also the discus-

sion in Section 5.3.4).

For example, consider the chain of tellurium isotopes at a temperature of

T = 2.5 GK, shown in Figure 5.83a. Their photodisintegration decay constants

are displayed in Figure 5.83b. The seed isotope 122Te, which is synthesized by the

s-process (Figure 5.69), is most likely destroyed by the (𝛾 ,n) reaction. The next

isotope, 121Te, will also most likely undergo a (𝛾 ,n) reaction. As wemove along the
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From Rauscher and Thielemann (2000). At
120Te, the (𝛾 ,𝛼) reaction dominates over the

competing (𝛾 ,n) reaction. As a consequence,

the abundance flow branches off to an iso-

tope of a different element (here 116Sn).

isotopic chain toward more neutron-deficient nuclides, the (𝛾 ,n) decay constants

fluctuate greatly. The photoejection of a neutron is far more likely for an odd-N

isotope compared to an even-N one. This behavior is mainly caused by the

pairing effect (Section 1.6.2), which leads to pronounced odd–even fluctuations

in the corresponding neutron separation energies (see also Figure 5.76). The

(𝛾 ,n) decay constants also decrease on average because more energy is required

to remove a neutron from increasingly neutron-deficient nuclei. At the same

time, the proton and α-particle separation energies decrease when moving along

the isotopic chain from the stability valley toward the proton dripline. In other

words, the proton-richer an isotope, the less energy is required to remove a

proton or α-particle, and the larger the (𝛾 ,p) and (𝛾 ,𝛼) decay constants become



546 5 Nuclear Burning Stages and Processes

(Figure 5.83b). At some even-N nucleus along the isotopic chain, either the (𝛾 ,p)

or the (𝛾 ,𝛼) reaction will dominate over the competing (𝛾 ,n) reaction. When

this first occurs (at 120Te in Figure 5.83), the abundance flow branches off to an

isotope of a different element (here 116Sn), and the sequence of events repeats

itself in the chain of Sn isotopes.

In each isotopic chain of proton number Z, the branch point is defined by the

condition

𝜆𝛾p + 𝜆𝛾𝛼 > 𝜆𝛾n (5.207)

From the arguments presented above, it is also clear that in each isotopic chain

the longest photodisintegration lifetimes on the flow path tend to occur near the

branch point. These even-N nuclides become waiting points and material accu-

mulates at their location.This applies especially to nuclides with closed neutron or

proton shells since they have unusually large separation energies (Section 1.6.2).

On the other hand, little accumulation of material is expected at odd-N nuclides

since their neutron separation energies are relatively small and, consequently,

their (𝛾 ,n) decay constants are large. In the above example, the branch (and

waiting) point occurs at a stable nuclide (120Te), which becomes a p-nuclide

(Table 5.1). Ultimately, the original seed nuclide (here 122Te) is photodisintegrated

into several lighter waiting point nuclides until the iron peak is reached, where

further photodisintegrations become energetically unfavorable. In any realistic

situation there will be a distribution of s- and r-process seed nuclei extending

up to Pb, all subject to the same hot photon environment. The abundance flow

then reaches from lead down to iron and, along the way, is fed by the destruction

of many seed nuclei. The mean lifetimes for photodisintegration reactions,

𝜏𝛾i ≡ 1∕𝜆𝛾i, along the p-process path are < 100 s and thus β-decays, which
are significantly slower, are negligible for the nucleosynthesis as long as high

temperatures of T ≈ 2–3 GK are maintained. In the above discussion, proton-

or α-particle-induced reactions (e.g., (p,𝛾) or (𝛼,𝛾)) play no role. Because of the

dominance of photodisintegrations, the above mechanism of the p-process is

sometimes referred to as the γ-process (Woosley and Howard, 1978). Some of the

neutrons released during the p-process may also contribute to the nucleosyn-

thesis. It was shown that at higher temperatures these impede the reverse (𝛾 ,n)

reactions, especially in the region of the lighter p-nuclides (Rayet, Prantzos, and

Arnould, 1990).

A few points must be clarified. First, if the hot photon environment is main-

tained for too long a period of time, then all seed nuclei would be photodissociated

into iron peak nuclei, free protons, neutrons, and α-particles, as dictated by

nuclear statistical equilibrium (Section 5.3.5). Thus, for any realistic site respon-

sible for the synthesis of the p-nuclides, the values of temperature and time scales

must guarantee the occurrence of some nuclear transformations, yet not reduce

all nuclides to iron. These arguments support the conclusion that the p-process

occurs during stellar explosions with an associated rapid expansion and cooling of

material. Thus, the nucleosynthesis during the p-process will depend sensitively

on the distribution of temperatures and expansion time scales, the abundances
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of seed nuclei, and the hydrodynamic conditions of the explosion. Second, in the

above example (Figure 5.83), the waiting point coincides with a p-nuclide. This is

generally the case for lighter species. In the region of heavier nuclides, however,

the waiting points correspond to proton-rich progenitors that subsequently

transmute to p-nuclides via β+-decays after cooling, expansion, and ejection of

the material. For example, the stable p-nuclide 196Hg is produced by the decay of

the unstable waiting point nucleus 196Pb, that is, via 196Pb(𝛽+𝜈)196Tl(𝛽+𝜈)196Hg.

Third, the abundance flow at the waiting point nucleus 120Te (Figure 5.83)

continues via a (𝛾 ,𝛼) reaction. This is the preferred path in the region of the

heavier nuclides. On the other hand, most (but not all) decays of waiting point

nuclides in the lighter mass range proceed via the (𝛾 ,p) reaction (Rauscher, 2005).

Fourth, since the photodisintegration rates are highly temperature dependent,

the location of the branch point in a given isotopic chain depends on the value

of the temperature. A branch point has the tendency to shift toward more

proton-rich nuclides for increasing temperatures (Problem 5.18). The question

of why almost all p-nuclides exhibit an even number of protons is explored in

Problem 5.19.

It is interesting to consider the total photodisintegration decay constant,

Λ = 𝜆𝛾𝛼 + 𝜆𝛾p + 𝜆𝛾n, of the p-nuclides or, if appropriate, of their proton-rich

progenitors. The results are shown in Figure 5.84 as a function of mass number

for temperatures of T = 2.0 GK, 2.5 GK, and 3.0 GK. The decay constants 𝜆𝛾i are

obtained from Hauser–Feshbach reaction rates. The structure seen in the curves

is influenced by nuclear shell effects but will not concern us here.The outstanding

feature shown in Figure 5.84 is the large variation of Λ, at each temperature, by

several orders of magnitude over the displayed mass range. Suppose that all the

p-nuclides were synthesized at the same single and constant value of temperature.

If that were the case, then any photon exposure sufficient to produce the lighter

p-nuclides in the A = 70–100 range would destroy all the heavy p-nuclides in

the A = 160–200 region. Thus, the strong variation of Λ shown in Figure 5.84

supports the conclusion that stellar regions of different temperature are respon-

sible for the synthesis of the p-nuclides. The heavy p-nuclides are produced at

relatively low temperature, while the light p-nuclides are created at relatively high

values of T . Also, Λ is an increasing function of mass number. If the opposite

were the case, then any photon exposure sufficient to destroy the heavy seed

nuclei (e.g., lead) would also destroy the photodisintegration products of lead,

and so on, until the iron region is reached. The nucleosynthesis of intermediate-

mass nuclides could not occur, and the p-process model described above

would fail.

Most investigations to date have assumed that the p-process occurs in core-

collapse supernovae when the shock wave passes through the oxygen–neon-rich

layer of a massive star (Section 1.4.3). For a short period of time (≈ 1 s), the shock

wave compresses and heats this stellar region. During the explosion, different

zones in the oxygen–neon-rich layer will undergo different thermodynamic

histories and thus will achieve different peak temperatures. Calculations show

that during the p-process the range of peak temperatures in these zones amounts
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Figure 5.84 Total photodisintegration rates

Λ for the p-nuclides, or their proton-rich

progenitors, at stellar temperatures of T =

2.0 GK, 2.5 GK, and 3.0 GK, as a function of

mass number. The photodisintegration rates

are calculated using the Hauser–Feshbach

model (Rauscher and Thielemann, 2000).

to Tpeak ≈ 1.8–3.3 GK. The weak s-process component, operating mainly during

the preceding core helium burning stage in the pre-supernova star, strongly

enhances the p-process seed abundances in the A ≈ 60–90 region (Section 5.6.1).

It has been demonstrated that p-nuclides with masses of A ≤ 92, A ≈ 92–144,

and A ≥ 144 are mainly produced in stellar zones with peak temperatures
of Tpeak ≥ 3 GK, Tpeak ≈ 2.7–3.0 GK, and Tpeak ≤ 2.5 GK, respectively. Each
p-nuclide is synthesized in a relatively narrow temperature range only (Rayet,

Prantzos, and Arnould, 1990). The abundances obtained from such calculations

have been weighted and averaged over a range of stars with different masses.

As a result, the abundances of about 60% of the p-nuclides can be reproduced

within a factor of three of their solar system values. This is a remarkable

success in view of the complexities of the nuclear physics input (see below)

and of the stellar models. However, a number of discrepancies persist. Most

notable is the underproduction of the light p-nuclides 92Mo, 94Mo, 96Ru, and
98Ru. The odd-A nuclides 113In, 115Sn, and the odd–odd species 138La are also

underproduced in most calculations. On the other hand, the rarest species

occurring naturally in the solar system, the odd–odd nuclide 180Ta, seems to

be a product of the p-process, although the s-process during thermal pulses in
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certain AGB stars may also contribute to its observed solar system abundance

(Gallino et al., 1998).

Several other sites have also been considered for the production of p-nuclides,

including supernovae of type Ia and Ib/Ic (Section 1.4.3). Interestingly, although

the stellar models for all these scenarios are very different, similar p-abundance

distributions are obtained in each case. Most of the p-abundances are reproduced

within a factor of three of their solar system values, while certain species (92Mo,
94Mo, 96Ru, 98Ru, 113In, 115Sn, 138La) are significantly underproduced. Hence, it

appears likely that the p-process occurs in a number of different sites. The under-

production of some nuclides is perhaps caused by nuclear physics uncertainties

or by an unreliable estimate of the s-nuclide seed distribution for the p-process.

Alternatively, some of the underproduced species could be synthesized in a differ-

ent site, such as sub-Chandrasekharwhite dwarf explosions. Formore information

on sites and other issues related to the p-process, see Arnould and Goriely (2003)

and Rauscher et al. (2013).

We now move from a qualitative discussion to a numerical treatment. The

oxygen–neon layer during a core-collapse supernova is chosen as an example for a

p-process site (Section 5.4.3, and left side of Figure 1.7). It was already pointed out

that the p-nuclides, depending on their mass number, are synthesized in different

zones that achieve different peak temperatures. We will discuss below the results

of a network calculation performed for the explosive evolution of a single zone

in a oxygen-neon layer of a 25M☉ star. The temperature–density profile of the

selected zone is shown in Figure 5.85. The profile starts at point A (T = 1.4 GK,

𝜌 = 1.4 × 105 g/cm3), evolves to point B at the peak of the explosion (T = 3.0 GK,

𝜌 = 6 × 105 g/cm3), and then settles at point C (T = 1.4 GK, 𝜌 = 7.0 × 104 g/cm3).

The entire evolution from A to C lasts for about t = 1.1 s. The network consists

of 1100 nuclides, stretching from 1H to 209Bi, and includes about 11 000 reactions

induced by neutrons, protons, α-particles, and their reverse reactions. The 3𝛼

reaction and the 12C + 12C and 16O + 16O reactions are also included. Above

calcium, all reaction rates are adopted from Hauser–Feshbach statistical model

calculations. For (n,𝛾) reaction rates involving stable target nuclei, which are

required for calculating the corresponding reverse (𝛾 ,n) reaction rates, the

statistical model results are normalized to experimental values (Bao et al., 2000).

Beta-decays are also included, but are expected to have a negligible influence,

as discussed above, except after the termination of the explosion, when some

radioactive progenitors decay to stable p-nuclides. It must be stressed that,

contrary to the s-process or the r-process, the concepts of steady flows or reac-

tion rate equilibria cannot be used here to simplify this complex situation. The

p-process operates far from equilibrium and, as a result, the entire network must

be followed by an explicit calculation. The initial abundances are adopted from

the pre-supernova evolution models of Rayet et al. (1995). The most abundant

species are 16O (Xi = 0.73),
20Ne (Xi = 0.17), and

24Mg (Xi = 0.05), while the seed

abundances in the mass A = 60–90 region are significantly increased compared

to a solar system composition because of the operation of the weak s-process

component during the preceding core helium burning stage (Section 5.6.1).
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Figure 5.85 Time-integrated net abun-

dance flows in the region above yttrium for

the p-process during explosive burning in

a core-collapse supernova. The calculation

represents the results from a single zone

of the oxygen–neon layer for which the T–

𝜌 profile is shown in the inset (Rapp et al.,

2006). The peak temperature achieved dur-

ing the explosion in this particular zone is

Tpeak = 3.0 GK. The reaction network calcu-

lation is terminated after t = 1.1 s (the time

it takes for the zone to evolve from point

A to B to C during the explosion). Abun-

dance flows are represented by arrows of

three thicknesses: thick, intermediate and

thin arrows show flows of Fij > 10−8Fmax,

10−8Fmax ≥ Fij > 10−9Fmax, and 10−9Fmax ≥

Fij > 10−10Fmax, respectively, where Fmax cor-

responds to the maximum flow of a link in

the mass A < 60 region, which is not shown

in the figure. Notice the overall flow pattern

from heavier to lighter nuclides, unlike all

other abundance flow patterns displayed in

previous sections. The lower right part shows

the ratio of final abundances obtained at

the end of the p-process calculation and the

initial (seed) abundances. For a peak temper-

ature of T = 3.0 GK, most p-nuclides (solid

dots) in the A = 96–144 region are strongly

overproduced, while other nuclides (open

circles) are underproduced. The underpro-

duction of the p-nuclides 92Mo, 94Mo, 113In,

and 115Sn remains unexplained.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Abundance flows integrated over the duration of the network calculation are

presented in Figure 5.85. We are interested here only in the nucleosynthesis that

takes place in the mass region above germanium. The obtained flow pattern

reflects the qualitative arguments presented above. The p-process has the

remarkable property that the abundance flow proceeds from heavy nuclides at

the top of the network down toward lighter nuclides. In other words, a particular

p-nuclide is synthesized exclusively from those seed isotopes that are heavier

than the p-nuclide itself. The seed nuclei are converted via (𝛾 ,n) reactions until,

in each isotopic chain, a branching point nuclide is reached. For the chosen

conditions, the branching point nuclides above europium are almost exclusively

destroyed via (𝛾 ,𝛼) reactions. Also, the p-process path in this region is located

on average 2–4 mass units away from the neutron-deficient side of the stability

valley and, therefore, the branching point nuclides are all radioactive. In the

region below europium, the branching point nuclides are destroyed either via

(𝛾 ,𝛼) or (𝛾 ,p) reactions and they frequently coincide with p-nuclides. Apart from

these three photodisintegration reactions and certain (n,𝛾) reactions, no other

processes are important for the nucleosynthesis. As already mentioned above, for

lower peak temperatures the branching point nuclides have the tendency to shift

to a location closer to the stability valley.

The ratio of final abundances obtained at the end of the calculation (t = 1.1 s)

and the initial (seed) abundances is shown in the lower right of Figure 5.85.

It can be seen that, for a peak temperature of Tpeak = 3.0 GK achieved in this

particular zone, most p-nuclides (solid dots) in the A = 96–144 region are

strongly overproduced, while other nuclides (open circles) are underproduced.

The net effect of the nucleosynthesis is the conversion of s- and r-process seeds to

p-nuclides. At this high peak temperature, all species beyondA = 150 (p-nuclides

and others) are destroyed and converted via photodisintegrations to p-nuclides

in the A = 96–144 region. A proper analysis of overproduction factors requires

an averaging over all stellar zones (peak temperatures) in the oxygen–neon layer
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of the pre-supernova star. Nevertheless, it is interesting that even this one-zone

calculation hints at an unsolved problem of current p-process simulations,

that is, the relative underproduction of species such as 92Mo, 94Mo, 113In,

and 115Sn.

Finally, we will address issues related to the nuclear physics input required

for p-process calculations. A number of charged-particle reactions in the mass

A ≤ 25 range could play an important role. For example, the 12C(𝛼,𝛾)16O rate
(Section 5.2.1) influences the pre-supernova evolution of the massive star and,

hence, the composition of the O–Ne layer prior to core collapse (Rayet et al.,

1995). The 22Ne(𝛼,n)25Mg reaction is crucial since it is responsible for the weak

s-process component (Section 5.6.1) during core helium burning in massive

stars. An increase in this rate will enhance the s-nuclide seed abundances for the

p-process and would reduce the underproduction of Mo and Ru p-nuclides in

current core-collapse supernova models (Arnould and Goriely, 2003).

With relatively few exceptions, almost all rates for a very large number of reac-

tions (> 10 000) in the region of the p-process (A > 60) have to be calculated using

the Hauser–Feshbach model. As we have seen, the most important interactions

are (𝛾 ,n), (𝛾 ,𝛼), and (𝛾 ,p) photodisintegrations. Their decay constants are usually

calculated from Eq. (3.46) using the rates of the corresponding forward reactions.

The p-process path involves neutron-deficient nuclides that are located close to

the stability valley. This is a fortunate circumstance since the reaction Q-values

(and separation energies) in this region are experimentally well known. It has

been demonstrated that different prescriptions of the Hauser–Feshbach model

sensitively influence the final p-nuclide abundances obtained from type II super-

novae. The predicted abundances of the heavier p-nuclides are most sensitive to

the α-nucleus optical potential, while the lighter species are mainly affected by

uncertainties in nuclear level densities and nucleon–nucleus optical potentials

(Arnould and Goriely, 2003).

Experimental (n,𝛾), (𝛼,𝛾), and (p,𝛾) rates on stable target nuclei in the A > 60

mass range (Bao et al., 2000; Arnould and Goriely, 2003) play an important

role for p-process studies for two reasons. First, they are used for adjusting

statistical model parameters and, as a result, Hauser–Feshbach rate predictions

for a multitude of unmeasured reactions become more reliable. Second, the

decay constants for the corresponding reverse photodisintegration reactions

can be calculated from Eq. (3.46). A number of (𝛾 ,n) reactions have also been

measured directly using real photons. We argued in Section 3.2.3 that the

astrophysically most important energy range for a reaction A(𝛾 ,n)B is located at

a γ-ray energy of Eeff
𝛾

≈ Sn + kT∕2 (for 𝓁 = 0 neutrons). The quantity Sn is the

neutron separation energy of nucleus A (or the reaction Q-value of B(n,𝛾)A).

Consequently, direct (𝛾 ,n) measurements relevant to p-process studies (T < 3 GK

or kT∕2 < 0.15 MeV) have to be performed in a relatively narrow photon energy

window close to the reaction threshold. This method was applied, for example, in

the study of the reaction 181Ta(𝛾 ,n)180Ta (Utsunomiya et al., 2003).The laboratory

photodisintegration rates need to be corrected for the contributions of thermally

excited target states using the Hauser-Feshbach model. It was already pointed out
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in Section 3.1.5 that under p-process conditions the stellar enhancement factors

for heavy target nuclei are typically in the range of ≈ 100–10 000. For reaction

rate sensitivity studies of the p-process, see Arnould and Goriely (2003) and

Rapp et al. (2006).

5.7

Non-stellar Processes

5.7.1

Big Bang Nucleosynthesis

Initial ideas for the big bang model were proposed by Gamow, Alpher, Herman,

and collaborators in the 1940s to explain the origin of the chemical elements.

They proposed that the universe was initially very dense and hot, and expanded

and cooled to its present state. The elements would then be synthesized during

an early time, when the temperature and density conditions were appropriate for

nuclear reactions to occur (Gamow, 1946; Alpher, Bethe, andGamow, 1948). Such

a model would also predict a relic background radiation of photons with a present

temperature of a few kelvin (Alpher and Hermann, 1949). While the bulk of the

elements is produced in stars rather than the early universe, the idea proved cor-

rect for the origin of the light species 2H, 3He, 4He, and part of 7Li. In addition, the

observation of the cosmic microwave background radiation (Penzias andWilson,

1965), corresponding to a blackbody spectrum with a temperature of ≈ 3K, was

of paramount importance in this regard. It singled out the big bang theory as the

prime candidate for the model of our universe.

Modern theories of cosmology are based on the assumption of a homogeneous

and isotropic universe, as implied by the cosmological principle. The geometry

and evolution of the universe can then be predicted by the theory of general

relativity, with a number of cosmological parameters describing the spatial

curvature, energy content, and overall expansion of the universe. The Hubble

parameter,H , provides a measure for the expansion rate and its present-day value

is called Hubble’s constant, H0. The mass density of baryons (more precisely, of

nucleons), 𝜌b, can be expressed relative to the present-day critical density, 𝜌0,c,

by introducing the cosmological baryon density parameter, Ωb ≡ 𝜌b∕𝜌0,c. The

critical density describes the borderline between a closed and an open universe,

that is, the total density at which the universe is spatially flat. It is defined by the

Friedmann equation as 𝜌0,c ≡ 3H20∕(8𝜋G), with G the gravitational constant. The
number ratio of baryons to photons, 𝜂 ≡ Nb∕N𝛾 , stayed constant since the epoch

of electron–positron annihilation, which occurred between a time of ≈ 4 s and

≈ 200 s after expansion began. The photon number density after that epoch can

be found from the precise value for the present-day temperature of the cosmic

microwave background radiation, T = 2.7255 ± 0.0006 K (Fixsen, 2009), and is

given by N𝛾 = 410.73 cm
−3. Using the definition H0 = 100 h km s

−1 Mpc−1, one

finds for the relationship of the parameters introduced above the expression

Ωb h
2 = 3.6528 × 107𝜂.
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The microwave background radiation carries a record of the conditions in

the early universe at a time of last scattering, when hydrogen and helium nuclei

recombined with electrons to form neutral atoms. As a result, photons decoupled

from baryons and the universe became transparent to radiation. Oscillations

in the photon-baryon fluid around that time, about 400 000 years after the

beginning of expansion, gave rise to tiny variations of temperature (at the 10−5

level) in different parts of the present microwave sky. These anisotropies have

been observed to unprecedented precision and accuracy by NASA’s Wilkinson

Microwave Anisotropy Probe (WMAP) (Hinshaw et al., 2013) and by ESA’s

Planck mission (Ade et al., 2014). Color Figure 13 on page 625 shows the all-sky

image from the Planck mission. The observed anisotropies can be decomposed

in terms of spherical harmonics, where each term describes the magnitude

of the anisotropy on a particular angular scale. The observed features in the

resulting angular power spectrum are closely related to specific cosmological

parameters. The analysis of the Planck Collaboration data yields values of

Ωbh
2 = 0.02207 ± 0.00033 for the present-day physical baryon density and

Ωch
2 = 0.1196 ± 0.0031 for the present-day cold dark matter density. From the

results, a number of other parameters can be derived: t0 = 13.813 ± 0.058 Gy

for the age of the universe, 𝜂 = (6.04 ± 0.09) × 10−10 for the baryon-to-

photon ratio, Ωmh
2 = 0.1423 ± 0.0029 for the present-day total matter density,

ΩΛ = 0.686 ± 0.020 for the dark energy density, and h = 0.674 ± 0.014 for the

dimensionless Hubble parameter. These results imply that ordinary (baryonic)

matter makes up only ≈ 16% of all matter and that the expansion of the universe

is presently accelerating.

Besides the cosmic microwave background, the other relic of the big bang is

the abundance distribution of the light nuclides 2H, 3He, 4He, and 7Li. When the

universe was less than 0.5 s old, at temperatures of T ≳ 15 GK, the energy density

was dominated by radiation (photons and neutrinos) and all weak, strong, and

electromagnetic interaction processes established a thermal equilibrium. The

process e− + e+ ↔ 𝜈 + 𝜈 equilibrated the electron and neutrino gases, while the

weak interactions e− + p ↔ 𝜈 + n, e+ + n ↔ 𝜈 + p, and n ↔ p + e− + 𝜈 coupled

the electron and neutrino gases to the baryon gas. In thermal equilibrium, the

neutron-to-proton number ratio is determined by a Boltzmann distribution,

Nn∕Np = e−Q∕kT (see Eq. (1.35)), where Q = 1293.3 keV is the neutron-to-proton

mass difference. During expansion and cooling, a temperature is eventually

reached where the neutrino (weak) interaction processes become too slow to

maintain the equilibrium. This freeze-out of the weak interactions depends

on their cross sections and occurs near T ≈ 15 GK, at a time of ≈ 0.5 s, when

the neutron-to-proton number ratio is near 2∕5. As the temperature declines

below 15 GK, the matter is in nuclear statistical equilibrium (Section 5.3.5) until

charged-particle freeze-out occurs. Beyond a time of ≈ 10 s, when T ≈ 3 GK, the

decay of free neutrons to protons, with a mean lifetime of 𝜏 = 880.1 ± 1.1 s, or

a half-life of T1∕2 = 610.0 ± 0.8 s (Beringer et al., 2012), becomes the dominant

weak interaction. As will be seen below, further expansion and cooling gave rise

to the onset of primordial nucleosynthesis. This stage is reached at a temperature
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and density of T ≈ 0.9 GK and 𝜌b ≈ 2 × 10
−5 g/cm3, respectively, near a time

of ≈ 200 s, when nuclear reactions can compete with the destruction of nuclei

by photons from the high-energy tail of the Planck distribution. By this time,

the decay of free neutrons gave rise to a neutron-to-proton number ratio of

about 1∕7.

The subsequent nuclear reactions are relatively fast and, for reasons given

below, nearly all neutrons are incorporated into the tightly bound species 4He,

while only very small amounts of other nuclides are synthesized. Under such con-

ditions, the primordial 4He abundance can be estimated using a simple counting

argument: for a ratio ofNn∕Np = 1∕7 = 2∕14, one
4He nucleus can form, while 12

protons remain free. Consequently, we find for the predicted primordial helium

mass fraction a value of X𝛼,pred ≈ 4∕(4 + 12) = 0.25. From the above arguments,

it is apparent that the primordial 4He abundance is determined by the weak

interaction cross sections (which are normalized by the neutron half-life), the

neutron-protonmass difference, and the expansion rate, but it is rather insensitive

to either the baryon density or to any nuclear reaction cross sections. Observa-

tions of 4He in metal-poor clouds of ionized hydrogen (H II) in dwarf galaxies

reveal a small contribution from stellar nucleosynthesis that is correlated with

metallicity. Extrapolation to zero metal abundance yields an observed primordial
4He mass fraction of X𝛼,obs = 0.2465 ± 0.0097 (Aver et al., 2013). The agreement

with the predicted value provides a key piece of evidence for the standard

cosmological model.

For a time window of ≈ 200–1000 s after expansion began, corresponding to

temperatures and densities ofT ≈ 0.9–0.4 GKand 𝜌b ≈ 2 × 10
−5–2 × 10−6 g/cm3,

respectively, the early universe passed through an epoch of nucleosynthesis. Note

that the cosmic microwave background radiation and primordial nucleosynthesis

probe different eras of the cosmic expansion. Initially, at the higher temperature

end, the strong and electromagnetic interactions are sufficiently fast to ensure

quasi-equilibrium (Section 5.3.3) among the abundances of the light nuclides 2H,
3H, 3He, 4He, 7Li, and 7Be. As the universe expands and cools, the nuclear reac-

tions slow down, both because there is a decrease in the density and because the

Coulomb barriers become harder to overcome. As a result, individual reactions

freeze out of equilibrium at characteristic values of temperature. The final abun-

dance of a particular nuclide in primordial nucleosynthesis is then mainly given

by the ratio of the largest production and destruction reaction rates at the freeze-

out temperature (Esmailzadeh, Starkman, andDimopoulos, 1991; Smith, Kawano,

and Malaney, 1993). Nuclear reactions cease once the temperature and density

are sufficiently low. Among the synthesized light species, 4He becomes by far the

most abundant, since it has a higher binding energy per nucleon (B∕A = 7.074

MeV) compared to all other nuclides in this mass region.

We will now briefly discuss the results of a numerical reaction network cal-

culation, incorporating all important production and destruction reactions. The

nuclear reaction rates depend on the baryon-to-photon ratio, 𝜂, which is the only

free parameter for big bang nucleosynthesis in the standard cosmological model.

If one adopts in the nucleosynthesis calculation the value of the baryon-to-photon
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Figure 5.86 Time-integrated net abun-

dance flows for standard big bang nucle-

osynthesis. The temperature-density evo-

lution used in the network calculation is

shown in Figure 5.87b. The reaction net-

work is solved numerically for a total time

of t = 15 000 s. The magnitude of the abun-

dance flows is represented by arrows of

three different thicknesses: thick, intermedi-

ate, and thin arrows show flows of Fmax ≥
Fij > 10−4Fmax, 10−4Fmax ≥ Fij > 10−6Fmax,

and 10−6Fmax ≥ Fij > 10−8Fmax, respectively,

where Fmax corresponds to the reaction with

the maximum net flow. Stable nuclides are

shown as shaded squares.

ratio quoted above that was obtained from observations of the cosmic microwave

background radiation, 𝜂 = 6.04 × 10−10, then standard primordial nucleosynthe-

sis becomes a parameter-free model. In other words, the temperature and density

evolution in the early universe is determined by the value of 𝜂. The comparison of

computed final abundances to observed values can then be used to investigate the

galactic chemical evolution of the light species or to search for possible extensions

of the standard cosmological model.

The resulting net abundance flows, integrated over a time of 15 000 s, are

displayed in Figure 5.86. The corresponding abundance evolutions of the most

important species (except hydrogen) are shown in Figure 5.87a, together with the

temperature and density evolution in Figure 5.87b. It is apparent that significant

nucleosynthesis starts at t ≈ 200 s, when T ≈ 0.9 GK and 𝜌 ≈ 2 × 10−5 g/cm3,

and ends a few thousand seconds later. The most important nuclear reactions

that occur during big bang nucleosynthesis are listed below:

p(n,𝛾)d t(d,n)4He 7Li(p,𝛼)4He

d(p,𝛾)3He t(𝛼,𝛾)7Li 7Be(n,p)7Li

d(d,n)3He 3He(n,p)t

d(d,p)t 3He(d,p)4He

3He(𝛼,𝛾)7Be

Primordial nucleosynthesis starts with the p(n,𝛾)d reaction, resulting in a rapid

increase of the deuterium abundance, followed by destruction via d(d,n)3He,
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Figure 5.87 Big bang nucleosynthesis com-

puted using a baryon-to-photon ratio of

𝜂 = 6.04 × 10−10, obtained from observations

of the cosmic microwave background radia-

tion (Ade et al., 2014). (a) Mass fractions of

the most important light species versus time.

The hydrogen abundance is almost con-

stant on this scale and is not displayed. The

neutron abundance (dashed line) declines

even at late times because of radioactive

decay. The species 7Li is mainly produced

as radioactive 7Be. (b) Evolution of temper-

ature and density. Significant nucleosynthe-

sis starts at t ≈ 200 s, when T ≈ 0.9 GK and

𝜌 ≈ 2 × 10−5 g/cm3. For comparison, the

density of air at room temperature amounts

to 𝜌air ≈ 1.2 × 10−3 g/cm3. (Data in part (b)

are courtesy of Alain Coc.)

d(d,p)t, d(p,𝛾)3He, and t(d,n)4He. Tritium is produced by the d(d,p)t and 3He(n,p)t

reactions and is mainly destroyed via t(d,n)4He. The species 3He is synthesized

via d(d,n)3He and d(p,𝛾)3He, and is destroyed by the 3He(n,p)t and 3He(d,p)4He

reactions. The species 7Li is mainly produced as 7Be via 3He(𝛼,𝛾)7Be, with
7Be(n,p)7Li and 7Li(p,𝛼)4He as the most important destruction mechanisms.

Notice that the abundance flow through 4He(t,𝛾)7Li is considerably larger

compared to the flow through 3He(𝛼,𝛾)7Be. However, the 7Li nuclei produced

by the former process are quickly destroyed by the strong 7Li(p,𝛼)4He reaction.

Other light-particle reactions that are not listed above do also occur, but their

abundance flows are significantly weaker. At the end of primordial nucleosyn-

thesis, 4He is the most abundant species by orders of magnitude, followed by

deuterium, 3He, and tritium. The neutron abundance (dashed line) declines even

at late times because of radioactive decay. For most of the reactions, direct cross
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section measurements have been performed at relevant energies corresponding

to the individual freeze-out temperatures (Descouvemont et al., 2004). Only

for the p(n,𝛾)d reaction are the rates largely based on theory (Ando et al.,

2006), although the rate uncertainty has been estimated to be on the order of

only ≈ 1%.

We will now compare computed values with observed abundances. The

predicted primordial 4He abundance amounts to X𝛼,pred = 0.24725 ± 0.00032

(Ade et al., 2014). The result agrees with the observational value quoted above.

For the number abundance ratio of deuterium to hydrogen, the predicted value

amounts to (D∕H)pred = (2.656 ± 0.067) × 10−5 (Ade et al., 2014). Deuterium is a

very fragile nuclide and is easily destroyed in stars. Its primordial abundance can

be determined by observing isotope-shifted (Lyman-α) absorption lines arising

from low-metallicity gas clouds that fall on the line of sight between the observer

and a high-redshift quasar. The low metallicity implies that the processing of

deuterium by the previous-generation stars, which always deplete deuterium

during hydrogen burning (Section 5.1), is negligible. Observations of very metal-

poor, damped Lyman-𝛼 systems yield a value of (D∕H)obs = (2.53 ± 0.04) × 10−5

(Cooke et al., 2014). Considering that the computed deuterium abundance

depends rather strongly on the value of 𝜂, the agreement between predicted and

observed values ofD∕H can be regarded as another key piece of evidence in favor

of the standard cosmological model. Finally, the predicted number abundance

ratio of 7Li to hydrogen amounts to (7Li∕H)pred = (4.9 ± 0.4) × 10−10 (Coc, Uzan,

and Vangioni, 2014). It has been known for some time that unevolved metal-poor

dwarf stars exhibit a remarkably constant lithium abundance (Spite and Spite,

1982), independent of metallicity. The Spite plateau has been interpreted as

being representative for the primordial lithium abundance. This assumes that

the lithium observed in the atmospheres of these stars has not been depleted.

Observations have shown that, at the lowest observed metallicities, there is a

scatter in lithium abundance and that the lithium abundance is correlated with

metallicity (Bonifacio et al., 2007), although the effect is small. The measurement

of the primordial 7Li abundance remains a challenging problem. One source

of systematic uncertainty is the determination of the effective temperature of

the stellar atmosphere in which the lithium absorption line is formed. Another

problem is the possible depletion of lithium, either before the currently observed

stars were formed, or within the stars we currently observe. Studies of metal-poor

field and globular cluster stars yield for the primordial 7Li abundance a value of

(7Li∕H)obs = (1.6 ± 0.3) × 10−10 (Sbordone et al., 2010). Despite the observational

difficulties, the predicted and observed values are in disagreement (at the 4–5𝜎

level).This lithium problem represents the central unresolved issue for primordial

nucleosynthesis.

At present, it seems unlikely that this problem is caused by either erroneous

reaction cross sections (see also Hammache et al., 2013) or by wrong effective

stellar temperatures. Studies have focused on two possibilities: (i) depletion of 7Li

in stellar interiors, and (ii) physics beyond the standard cosmological model. The
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first possibility has been discussed in the literature for a long time and many dif-

ferent mechanisms have been proposed, such as atomic and turbulent diffusion

processes, meridional circulation, gravity waves, or rotational mixing (Michaud

and Charbonneau, 1991). The second possibility is more intriguing, and could

involve a time variation of the fundamental coupling constants, modifications of

the expansion rate during big bang nucleosynthesis, neutrino degeneracy, or neg-

atively charged relic particles. For a review, see Fields (2011).More work is needed

to resolve the lithium problem.

5.7.2

Cosmic-Ray Nucleosynthesis

So far, we have addressed the origin of most nuclides, except of the light species
6Li, 9Be, 10B, and 11B. Their solar abundances are smaller by about six orders

of magnitude compared to other light nuclides, although their abundances are

larger compared to almost all s-, r-, or p-nuclides. Similar to the case for 2H and
7Li, their cross sections for proton-induced reactions are so large, because of the

small Coulomb barriers, that they are already destroyed at temperatures below a

few million kelvin during the hydrogen burning phase in stellar interiors. Under

such conditions, their mean lifetimes amount to less than a few billion years. On

the other hand, standard big bang nucleosynthesis (Section 5.7.1) produces only

negligible amounts of 6Li, 9Be, 10B, and 11B, with predicted number abundances

that are four orders of magnitude smaller compared to 7Li. Their origin seemed

so obscure that it was attributed to some unknown x process in the seminal work

of Burbidge et al. (1957). Among the suggestions made in that work was the pro-

duction, via spallation reactions, involving high-energy protons, neutrons, or α-

particles of energies in excess of 100MeV per nucleon incident on abundant CNO

nuclei in stellar atmospheres. While it was convincingly demonstrated that the

energy available during the T Tauri phase of young stars is insufficient to pro-

duce the light nuclides in stellar atmospheres (Ryter et al., 1970), the association

of lithium, beryllium, and boron synthesis with spallation reactions proved cor-

rect.

An important piece of evidence was uncovered around 1970, when it was

pointed out that in the solar system the ratio of number abundances of Li, Be,

and B compared to C, N, and O amounts to ≈ 10−6, while the value in Galactic

cosmic rays is near ≈ 0.2 (Figure 5.88a). Thus, the idea was born that spallation

reactions between Galactic cosmic rays and nuclei in the interstellar medium

are responsible for the production of Li, Be, and B. This conjecture is supported

by the observation that the spallation cross sections of protons and α-particles

on C, N, and O nuclei at energies in excess of 100 MeV per nucleon favor the

production, in decreasing order, of B, Li, and Be (Figure 5.88b). The observed

Galactic cosmic-ray abundances of these light species exhibit the exact same

ordering. Early quantitative models (Meneguzzi, Auduze, and Reeves, 1971),

based on measured spallation cross sections, showed that this scenario could
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Figure 5.88 (a) Number abundances of

light elements in Galactic cosmic rays (solid

circles) and the solar system (open squares),

normalized to silicon. The cosmic-ray values

for H and He are adopted from measure-

ments by the balloon-borne BESS instru-

ment and the GSFC instrument on the IMP-8

spacecraft, while those for the other ele-

ments shown are from CRIS measurements.

The cosmic-ray abundances were mea-

sured during solar minimum at 170 MeV per

nucleon. Solar system abundances are from

Lodders, Palme, and Gail (2009). In cosmic

rays, B is more abundant than Li, which in

turn is more abundant than Be. However, in

the solar system, Li is more abundant than

B, which is more abundant than Be, support-

ing the conjecture that a significant fraction

of the solar system 7Li must have been pro-

duced by some stellar source (perhaps clas-

sical novae or AGB stars). (b) Cross sections

for the production of Li, Be, and B via spalla-

tion of protons incident on 12C as a function

of energy. Note the decreasing sequence of

B, Li, and Be. (Data are from Ramaty et al.

(1997).)

reasonably account for the abundances of 6Li, 9Be, and 10B observed in the solar

system and in stars after 10 Gy of Galactic chemical evolution.

On the other hand, 7Li and 11B are underproduced in the standard cosmic-

ray spallation scenario, and it is believed that additional mechanisms contributed

to their synthesis. During the first billion years, most of the existing 7Li nuclei

derived from big bang nucleosynthesis (Section 5.7.1), while later a stellar source,

perhaps classical novae or AGB stars, must have contributed significantly to the

production (Figure 5.88). Therefore, 7Li is exceptional among all naturally occur-

ring nuclides in that its origin can be attributed to three distinct sites: the big bang,

Galactic cosmic rays, and stars. In the case of 11B, it was found that neutrino-

induced interactions with 12C during core-collapse supernovae may also produce

significant amounts of this species (Section 5.4). However, the presently predicted
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yields both for the stellar production of 7Li and for the neutrino-induced synthesis

of 11B have large associated uncertainties.

Galactic cosmic rays consist predominantly of energetic protons, α-particles,

and heavier nuclides, with kinetic energies up to several hundred tera electron

volt per nucleon and beyond. Their energy density amounts to about 2 eV cm−3

(Webber, 1997) and thus exceeds the energy density of star light in the solar neigh-

borhood (≈ 0.3 eV cm−3). Near an energy of 10 GeV per nucleon, for example, the

number fractions of hydrogen, helium, CNO, and LiBeB nuclei amount to 95%,

4.5%, 0.4%, and 0.07%, respectively (Sanuki et al., 2000). An energetic, cosmic-ray

particle propagating through the Galaxy faces a number of possibilities. First, it

may undergo a high-energy nuclear collision (spallation) with interstellar nuclei.

Second, an energetic cosmic-ray particle may slow down significantly because of

many collisions with interstellar electrons. Such ionization losses are responsi-

ble for the eventual deposition of cosmic-ray matter into the interstellar medium.

Third, the cosmic-ray particle may escape into intergalactic space, depending on

the value of the escape length, that is, the amount ofmatter the cosmic-ray particle

traverses between its source and the Galactic boundary.The escape length, which

can be inferred from the abundance ratio of spallation products (e.g., Li, Be, and B)

and target nuclei (mostly C, N, andO), amounts to≈ 10 g/cm2 for Galactic cosmic

rays near an energy of 1GeVper nucleon (Strong,Moskalenko, andPtuskin, 2007).

During propagation an energetic charged particle is strongly deflected by Galac-

tic magnetic fields. Therefore, the information regarding its original direction of

motion is lost.

Spallation may involve a proton or α-particle with energies in excess of several

mega electron volts per nucleon impinging on a heavy nucleus in the interstel-

lar medium, of which C, N, and O are most abundant. Alternatively, an ener-

getic heavy nucleus, again mainly C, N, or O, may interact with interstellar H

and He. A third possibility, thought to be especially important for the produc-

tion of the lithium isotopes in the early Galaxy when the CNO abundance was

small, is the spallation of α-particles with energies in the range of tens of mega

electron volts per nucleon with other 4He nuclei of the interstellar medium. The

production rate of a given LiBeB species, i, expressed in terms of the number abun-

dance ratio with respect to hydrogen, Ri = Ni∕NH, is given by an expression of

the form

dRi

dt
=

∑
j,k

Fj 𝜎(i; j → k)Rk Pi (5.208)

with Fj the average cosmic-ray flux (number of particles per cm
2 and s), 𝜎(i; j → k)

the average spallation cross section (cm2) for the production of species i assum-

ing projectiles j impinging on target nuclei k, and Pi the probability that species i

will be thermalized and retained in the interstellar medium after production; the

indices j and k denote protons, α-particles, or CNO nuclei.

Consider the following simple example. With a typical cosmic-ray proton flux

of Fp ≈ 10 cm
−2 s−1, an average spallation cross section of 𝜎(Be; p → CO) ≈

5 × 10−27 cm2 for the production of 9Be assuming energetic protons impinging
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on C or O nuclei near an energy of 200 MeV per nucleon (Ramaty et al., 1997),

a CNO abundance of RCNO ≈ 10
−3 in the interstellar medium, a probability of

PBe ≈ 1, and integrating over a time period of ≈ 10
10 y, we find an estimated 9Be

abundance of Rest
Be
≈ 1.6 × 10−11. The observed solar system 9Be abundance from

solar photospheric and meteoritic data amounts to Robs
Be

= (2.1 ± 0.1) × 10−11

(Lodders, Palme, and Gail, 2009), in overall agreement with the calculated result.

This simple estimate does not account for the change of the 9Be abundance

over time.

The study of the Li, Be, and B abundances, and in particular their evolution over

the past several billion years, yields important clues for testing ideas regarding

stellar nucleosynthesis, the physics of outer stellar layers, and models of the

early Galaxy. Moreover, the Li, Be, and B abundance evolutions may hint at

the origin of Galactic cosmic rays. Although it can be safely assumed that the

sources of the cosmic-ray particles, except perhaps those of the very highest

energies, are located within the Galaxy, their origin and acceleration mecha-

nism have not found a satisfactory explanation yet. The mystery of cosmic-ray

origin represents a long-standing problem of foremost importance. Energy

arguments severely constrain the kind of candidate sources: for an assumed

energy density of 𝜖 = 2 eV cm−3, maintained on average over the volume of our

Galaxy, V ≈ 7 × 1066 cm3, and a cosmic-ray lifetime of 𝜏 ≈ 20 My near 1 GeV

per nucleon, as derived from the cosmic-ray abundances of the radioactive

clock isotopes 10Be, 26Al, 36Cl, and 54Mn (Mewaldt et al., 2001), one finds a total

cosmic-ray power of PCR = 𝜖V∕𝜏 ≈ 4 × 10
33 J/s (or 4 × 1040 erg/s).Thus, Galactic

cosmic rays are expected to be associated with the most energetic phenomena

in the Galaxy. For example, a typical core-collapse supernova releases a kinetic

energy of (1 − 2) × 1044 J (Section 5.4). Assuming a frequency of about two such

events per century gives a power of PSN ≈ 10
35 J/s, that is, significantly larger than

what is needed for accelerating Galactic cosmic rays. Observational evidence

indeed relates the origin of Galactic cosmic rays to supernova remnants (Acciari

et al., 2009; Tavani et al., 2010).

Consider now the abundance evolution of 9Be and suppose that supernovae are

the source of Galactic cosmic rays. One possibility for producing this species is via

energetic protons or α-particles colliding with interstellar C, N, and O nuclei. The

production rate of 9Bewill then depend on the cosmic-ray flux and theCNOabun-

dance. The former quantity is proportional to the supernova rate, dnSN∕dt, while

the latter is proportional to the total number of supernovae up to that time, nSN.

Consequently, the observed 8Be abundance at any given instant should be propor-

tional to n2
SN
or, in other words, proportional to the square of the metallicity (as

measured, e.g., by the Fe abundance). On the other hand, 9Be may be produced

by energetic CNO nuclei colliding with interstellar protons or α-particles. In this

case, assuming a constant abundance of CNO nuclei in Galactic cosmic rays, the

cosmic-ray flux is again proportional to the supernova rate, but the H or He abun-

dance in the interstellar medium is independent of nSN. Thus, one would expect

that the 9Be abundance at any given time is directly proportional to the metallic-

ity (Vangioni-Flam, Cassé, and Audouze, 2000). Alternatively, a linear relationship
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between the 9Be abundance and themetallicity could naturally arise if supernova-

produced protons or α-particles undergo spallation reactions with CNO nuclei in

the ejecta of the same supernova (Gilmore et al., 1992). Similar arguments hold

for the boron abundance evolution.

Observations in the 1990s of beryllium and boron in metal-poor stars were of

paramount importance in this regard (Duncan, Lambert, and Lemke, 1992; Ryan

et al., 1992; Boesgaard and King, 1993). Unlike lithium, which exhibits the Spite

plateau at low metallicities (Section 5.7.1), the beryllium and boron abundances

showed no such plateau and, furthermore, revealed a linear dependence on

metallicity. Therefore, it is unlikely that Galactic cosmic rays originate from

supernova-induced energetic protons or α-particles colliding with CNO nuclei

of the interstellar medium (which would give rise to a beryllium or boron

abundance proportional to the metallicity squared). The observations can neither

be explained by a CNO abundance in Galactic cosmic rays that, similar to the

CNO abundance in the interstellar medium, would increase with time (because

then the relationship between the beryllium or boron abundance and metallicity

could not be linear). In addition, the CRIS instrument onboard the Advanced

Composition Explorer (ACE) detected significant amounts of 59Co in Galactic

cosmic rays, but only very small amounts of the radioactive precursor 59Ni

(Mewaldt et al., 2001). The latter isotope decays by electron capture, with a

half-life of T1∕2 = 7.6 × 10
4 y in the laboratory, but is stable once fully stripped

of its electrons and accelerated to high energies. From the observed abundance

ratio of 59Ni and 59Co, it can be estimated that the time delay between explosive

nucleosynthesis and acceleration of radioactive 59Ni must exceed ≈ 105 y. At

that time, the ejecta of a particular supernova are presumably diluted and mixed

into the interstellar medium. Consequently, it seems unlikely that individual

supernovae accelerate their own ejecta and thereby contribute directly to the

Galactic cosmic ray flux.

Several ideas have been proposed. A popular model refers to the production of

Galactic cosmic rays in superbubbles, which result from the evolution of massive

star clusters (Higdon, Lingenfelter, and Ramaty, 1998; Alibés, Labay, and Canal,

2002). The massive stars create cavities of hot, low-density, gas in the interstellar

medium through their strong winds. The cavities increase in size with each

supernova explosion and eventually merge to create superbubbles. Assuming

that, in the simplest case, the composition of the metal-rich, low-density material

within the superbubble does not change with time, Galactic cosmic rays could be

launched from this reservoir by subsequent supernova shocks. The superbubble

origin has been criticized (Prantzos, 2012a) since it does not account for the high
22Ne/20Ne abundance ratio observed in Galactic cosmic rays (about five times

solar). Instead, it has been suggested that the only site compatible with all direct

observational requirements concerning the present-day Galactic cosmic-ray

composition involves the propagation of the supernova shock wave through

stellar wind material that was previously ejected during the pre-supernova

evolution of the massive star (Prantzos, 2012b).
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5.8

Origin of the Nuclides

We will close this chapter by summarizing briefly the origin of the nuclides in

nature. In principle, it seems possible to predict the main astrophysical sources

for a given nuclide by considering the fraction of the yield contributed to the

interstellar medium by each of the astrophysical sites mentioned in this book. We

would need to know: (i) the number of stars, as a function of time since the for-

mation of the Milky Way, of a given mass and metallicity (since stellar evolution

depends on both parameters), (ii) the efficiency of various nucleosynthesis pro-

cesses in each star, (iii) the fraction of the matter expelled via explosions or stellar

winds, and so on. A large number of nuclides originates frommassive stars. In this

case, many of the predicted abundances depend strongly on the mass cut dividing

the material that is ejected in the core-collapse supernova explosion from mate-

rial that falls back onto the remnant neutron star or black hole. There are major

uncertainties also associated with the other astrophysical sites. Nevertheless, the

overall picture regarding the origin of the nuclides in the solar system seems well

established and this achievement certainly represents a triumph for the theory of

nucleosynthesis.

The origin of the light nuclides with masses of A ≤ 70 is presented in Table 5.2.
Only the dominant sources are listed. Radioactive nuclides are denoted by an

asterisk. Hydrogen (1H, 2H) and helium (3He, 4He) are made in the big bang (BB).

Cosmic-ray spallation (CR) accounts for the abundances of 6Li, 9Be, 10Be, and 10B.

The nuclide 7Li is likely synthesized in four distinct sites: big bang, Galactic cos-

mic rays, AGB stars, and the 𝜈-process (𝜈). Galactic cosmic rays and the 𝜈-process

likely contribute to the synthesis of 11B.

Classical novae (CN) produce large amounts of 13C, 15N, and 17O, while AGB

stars are prolific sources of 12C, 13C, 14N, 22Ne, 25Mg, and 26Mg (including the

main component of the s-process, which is not listed in the table). Normal type

Ia supernovae (Ia) synthesize a major fraction of the iron peak, for example, 51V,
55Mn, 54Fe, 56Fe, 57Fe, and 56Ni. A number of species, such as 48Ca and 54Cr, are

likely synthesized by rare varieties of type Ia supernovae because they are under-

produced in other sites.These peculiar events include the freeze-out from nuclear

statistical equilibrium in type Ia explosions of white dwarfs that accrete matter

very near the Chandrasekhar limit (IaVnCh) and type Ia supernovae caused by

helium detonations (IaHeDet).

All other nuclides listed in the table are synthesized in massive stars, during

hydrostatic hydrogen burning (H), hydrostatic helium burning (He), hydrostatic

shell burning (C, Ne, O), explosive burning (xC, xNe, xO), incomplete explosive

silicon burning (xSi), α-rich freeze-out (𝛼RF), and the weak component of the

s-process (s) that is produced both during core helium burning and hydrostatic

carbon shell burning. Notice that some stable nuclides are mainly synthesized in

stars as their radioactive progenitors. For example, 44Ca is produced as 44Ti in

the α-rich freeze-out, and 56Fe is produced as 56Ni in both type II and type Ia

supernova explosions.
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Table 5.2 Origin of the nuclides with A ≤ 70.

Nuclide Origin Nuclide Origin Nuclide Origin

1H BB 30Si C, Ne 51V Ia, xSi, xO
2H BB 31P C, Ne 50Cr xO, xSi
3He BB 32S xO, O 52Cr Ia, xSi
4He BB 33S xO, O 53Cr xSi, xO
6Li CR 34S xO, O 54Cr IaVnCh
7Li BB, CR, AGB, 𝜈 36S [s, Ne] 53Mn∗ Ia, xSi
9Be CR 35Cl xO 55Mn Ia, xSi
10Be∗ CR 36Cl∗ [xO, s] 54Fe Ia, xSi
10B CR 37Cl [xO, s] 56Fe Ia, xSi, 𝛼RF
11B CR, 𝜈 36Ar xO 57Fe Ia, xSi, 𝛼RF
12C He, AGB 38Ar xO, O 58Fe s, IaVnCh
13C CN, AGB, H 40Ar [s, Ne] 60Fe∗ s
14N AGB, H 39K xO, O 56Co∗ Ia, xSi, 𝛼RF
15N CN, 𝜈 40K∗ s, C, xO 57Co∗ Ia, xSi, 𝛼RF
16O He 41K xO 59Co s, 𝛼RF, Ia
17O CN 40Ca xO, xSi,O 60Co∗ s
18O He 41Ca∗ s, xO 56Ni∗ Ia, xSi, 𝛼RF
19F [𝜈, He, AGB] 42Ca xO, O 58Ni 𝛼RF, xSi, Ia
20Ne C 43Ca [C, Ne, 𝛼RF, xO, O] 60Ni 𝛼RF, xSi, Ia, s
21Ne C 44Ca 𝛼RF 61Ni s, 𝛼RF
22Ne He, AGB 46Ca [s, C, Ne] 62Ni s, 𝛼RF, Ia
22Na∗ [CN] 48Ca IaVnCh 64Ni s, IaVnCh
23Na C 45Sc 𝛼RF, C, xO, O 63Cu s, 𝛼RF, Ia
24Mg C 44Ti∗ 𝛼RF 65Cu s, 𝛼RF, xSi
25Mg C, AGB 46Ti xO, O 64Zn 𝛼RF, s, xSi
26Mg C, AGB 47Ti [IaHeDet, xO, xSi] 66Zn s, 𝛼RF, IaVnCh
26Al∗ xNe, xC, C 48Ti xSi 67Zn s
27Al C 49Ti xSi 68Zn s
28Si xO, O, Ia 50Ti [IaVnCh, s] 70Zn s
29Si C, Ne 50V [Ia, xO, xNe]

The labels denote: big bang (BB); cosmic-ray spallation (CR); asymptotic giant branch stars (AGB);

𝜈-process (𝜈); classical novae (CN); normal type Ia supernovae (Ia); peculiar type Ia supernovae

(IaVnCh, IaHeDet). All other labels refer to sites in massive stars: hydrostatic hydrogen burning

(H); hydrostatic helium burning (He); hydrostatic carbon shell burning (C); hydrostatic neon shell

burning (Ne); hydrostatic oxygen shell burning (O); explosive carbon burning (xC); explosive

neon burning (xNe); explosive oxygen burning (xO); incomplete explosive silicon burning (xSi);

α-rich freeze-out in complete explosive silicon burning (𝛼RF); s-process during hydrostatic helium

core burning and hydrostatic carbon shell burning. Information from Arnett (1996), Woosley,

Heger, and Weaver (2002), Clayton (2003), José, Lattanzio and Limongi (private communication).

Uncertain assignments are given in square parenthesis. The asterisk denotes radioactive

nuclides.

The sources for a number of species listed in the table, notably 19F, 22Na, 36S,
37Cl, 40Ar, 43Ca, 46Ca, 47Ti, 50Ti, and 50V, have been placed in square parentheses

since the assignments are uncertain.These nuclidesmay be produced in a number

of sites, although the relative contributions are controversial at present.
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Figure 5.89 Section of the chart of the

nuclides in the vicinity of 30S. Nuclides that

eventually reach equilibrium are shown as

shaded squares. Values of Qp𝛾 (left-hand

side) and T1∕2 (right-hand side; they corre-

spond to the diagonal arrows), are adopted

from Audi, Wapstra, and Thibault (2003) and

Audi et al. (2003), respectively. The values

given for NA⟨𝜎𝑣⟩ apply to a temperature of

T = 0.5 GK (Iliadis et al., 2001). See Prob-

lem 5.4.

Above mass A = 70 the situation is clearer since for most of these nuclides the

relative contributions of the s-, r-, and p-process can be estimated in a straightfor-

ward manner (Section 5.6 and Figure 5.82). For more information on the origin of

the nuclides in nature, see Arnett (1996),Woosley, Heger, andWeaver (2002), and

Clayton (2003).

Problems

5.1 Calculate the lifetime of: (i) a proton against destruction via the p(p,e+𝜈)d

reaction, and (ii) a deuteron against destruction via the d(p,𝛾)3He reaction

for a temperature of T = 15 MK, a density of 𝜌 = 100 g/cm3, and a hydro-

gen mass fraction of XH = 0.5. Use the following numerical values for the

reaction rates: NA⟨𝜎𝑣⟩pp = 7.90 × 10−20 cm3 mol−1s−1, NA⟨𝜎𝑣⟩dp = 1.01 ×
10−2 cm3 mol−1s−1 (Angulo et al., 1999).

5.2 Derive an expression for the temperature dependence of the decay constant

for the 3𝛼 reaction (see Eq. (5.85)).

5.3 Calculate the decay constant for the reverse process of the 3𝛼 reaction, that

is, the photodisintegration of 12C into three α-particles. Assume that the

photodisintegration will most likely proceed through the 12C level at Ex =

7.654 MeV (Figure 5.21), and that the state at Ex = 4.439 MeV is in thermal

equilibrium with the ground state.

5.4 Consider the nucleus 30S for the conditions T = 0.5 GK, 𝜌 = 104 g/cm3

and XH = 0.73 (Figure 5.89). Explain why, according to Figure 5.59a, the

net abundance flow prefers to follow the link 30S(𝛽+𝜈)30P instead of the

competing 30S(p,𝛾)31Cl reaction. Use the values of T1∕2, Q, and NA⟨𝜎𝑣⟩
given in Figure 5.89.
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1H 2H 3H

4He

nn

p

Figure 5.90 The reaction chain
1H↔2H↔3H↔4He in equilibrium. See Prob-

lem 5.10.

5.5 Derive an approximate analytical expression for the energy generation

rate during neon burning. Assume an 16O + 𝛼 ↔ 20Ne + 𝛾 equilibrium

and that the subsequent 20Ne(𝛼,𝛾)24Mg reaction involves the equilibrium

α-particle abundance. The spins of 4He, 16O, and 20Ne are all ji = 0. The

normalized partition functions of these nuclides for typical neon burning

temperatures are equal to unity (Rauscher and Thielemann, 2000). Disre-

gard all contributions to the energy generation rate from other (secondary)

reactions.

5.6 According to Figure 5.34, the mass fractions of 28Si and 24Mg at t = 100 s

amount to X28Si = 0.45 and X24Mg = 0.00011, respectively. Calculate the

equilibrium α-particle mass fraction at t = 100 s for the conditions

T = 3.6 GK and 𝜌 = 3 × 107 g/cm3.

5.7 Derive the quasi-equilibrium abundance ratio N34S∕N28Si explicitly by suc-

cessive application of the Saha equation (see Figure 5.36a). Compare your

result to the one obtained directly from Eq. (5.123).

5.8 Prove the relationship for the light particle abundances during silicon burn-

ing (see Eq. (5.125)).

5.9 Derive the expression for the effective photodisintegration rate of 24Mg, fan,

during silicon burning (see Eq. (5.130)).

5.10 The reaction sequence 1H↔2H↔3H↔4He is shown in Figure 5.90. Cal-
culate the number abundance of 4He in nuclear statistical equilibrium

by repeated application of the Saha equation. Compare your result to

Eq. (5.125). Generalization of your result will yield directly Eq. (5.137).

5.11 Consider nuclear statistical equilibrium at 𝜂 = 0. Assume that all thematter

consists only of α-particles, protons, and neutrons. Find the temperature–

density conditions at which the α-particle abundance (by mass) is equal

to the total nucleon abundance, that is, X𝛼 = 0.5, Xp = 0.25, and Xn = 0.25

(see dotted line in Figure 5.38).

5.12 Consider the 64Ge(p,𝛾)65As reaction at T = 1.34 GK and 𝜌 = 5.9 ×

105 g/cm3. Calculate the mean lifetime of 64Ge versus destruction by

sequential two-proton capture for a value of Q64Ge(p,𝛾) = −0.38 MeV.

Furthermore, assume that the reaction rate for 65As(p,𝛾)66Se is NA⟨𝜎𝑣⟩ =
1.0 × 10−2 cm3 mol−1s−1, that is, a factor of 10 smaller than the value

predicted by a Hauser–Feshbach calculation (Goriely, 1998). Assume a

hydrogen mass fraction of XH = 0.47. The half-lives of
65As and 66Se are

T1∕2 = 0.170 s and T1∕2 = 0.033 s, respectively (Audi et al., 2012). The

reaction rate and decay constant for 64Ge(p,𝛾)65As and 66Se(𝛾 ,p)65As
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are given by NA⟨𝜎𝑣⟩ = 0.011 cm3 mol−1s−1 and 𝜆 = 0.29 s−1, respectively
(Goriely, 1998). The spins and normalized partition functions are j64Ge = 0,

j65As = 3∕2, jp = 1∕2 and Gnorm
64Ge

= 1.005, Gnorm
65As

= 1.306 and Gnorm
p

= 1

(Rauscher andThielemann, 2000).

5.13 Estimate the r-process contribution to the solar system abundance of the

s,r-isotope 125Te. Use values ofN☉(124) = 0.2319 andN☉(125) = 0.3437 for

the number abundances of 124Te and 125Te per 106 Si atoms, respectively

(Lodders, 2003). The Maxwellian-averaged neutron-capture cross sections

at kT = 30 keV for 124Te and 125Te are ⟨𝜎⟩124 = 155 ± 2 mb and ⟨𝜎⟩125 =
431 ± 4 mb, respectively (Bao et al., 2000).

5.14 Solve the abundance evolution of 56Fe in the s-process (see Eq. (5.183)) for

an exponential distribution of neutron exposures (see Eq. (5.180)), that is,

derive the solution given in Eq. (5.185).

5.15 Derive an expression (see Eq. (5.198)) for the number abundance of an iso-

tope in the r-process by successive application of the Saha equation to an

(n,𝛾)↔(𝛾 ,n) equilibrium in an isotopic chain of a given element Z.
5.16 Find a quantitative criterion from Eq. (5.198) for predicting the location

of the abundance maximum in an isotopic chain at (n,𝛾)↔(𝛾 ,n) equilib-
rium in the r-process. Also, choose the conditions T = 1.25 GK and Nn =

1022 cm−3 together with theQn𝛾 -values fromMöller, Nix, and Kratz (1997)

to reproduce the abundance maxima shown in Figure 5.76. Disregard par-

tition functions and the spins of the heavy nuclides.

5.17 By using the waiting point and steady flow approximations of the r-process,

calculate the half-life of 130Cd from the measured half-lives (Audi et al.,

2012) of 131In (T1∕2 = 280 ± 30 ms) and
133In (T1∕2 = 165 ± 3 ms) and

from the observed solar system r-abundances (Anders and Grevesse, 1989;

Arlandini et al., 1999) of 130Te (1.634), 131Xe (0.946), and 132Xe (0.748).

The latter values are given relative to Si (NSi ≡ 106). Also, the measured
branching ratio for the β-delayed neutron decay of 133In amounts to

Pn = 85% (Audi et al., 2012). Disregard all other β-delayed neutron decays

(see Figure 5.77).

5.18 Explain why, during the p-process, the branch point in a given isotopic

chain has the tendency to shift to more proton-rich nuclides for increasing

temperature.

5.19 The location of a branch point nuclide in a given isotopic chain is specified

by the condition of Eq. (5.207).The decay constants for the (reverse) photo-

disintegrations can be calculated from Eq. (3.46) using Hauser–Feshbach

rates for the (forward) particle-induced reactions. Branch point nuclides for

all elements between selenium (Z = 34) and lead (Z = 82) during p-process

nucleosynthesis, calculated with this method, can be found in Rauscher

(2005). Use these results together with a nuclidic chart to explain quali-

tatively why almost all p-nuclides exhibit an even number of protons.
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Appendix A

Solutions of the Schrödinger Equation in Three Dimensions

The three-dimensional time-independent Schrödinger equation in cartesian coor-

dinates is given by

−
ℏ2

2m

(
𝜕2𝜓

𝜕x2
+
𝜕2𝜓

𝜕y2
+
𝜕2𝜓

𝜕z2

)
+ V (x, y, z)𝜓 = E𝜓 (A.1)

with 𝜓 the total wave function, V the potential, E the total energy, and m the

particle mass. For many quantum mechanical problems, the potential V depends

only on the distance but not on the direction, that is, V (r⃗) = V (r). We call this

a central potential. For such potentials, we can take advantage of the symmetry

and replace the cartesian coordinates x, y, and z by the spherical coordinates r, 𝜃,

and 𝜙. The wave function 𝜓 for a central potential is separable into three different

functions,

𝜓(r, 𝜃, 𝜙) = R(r)Θ(𝜃)Φ(𝜙) (A.2)

The Schrödinger equation is then separable as well and one obtains three differ-

ent equations, one for each of the variables r, 𝜃, and 𝜙. The differential equation

for Φ is

d2Φ

d𝜙2
+m2𝓁Φ = 0 (A.3)

wherem2𝓁 is the separation constant. The solution is

Φm𝓁
(𝜙) =

1√
2𝜋

eim𝓁𝜙 (A.4)

withm𝓁 = 0,±1,±2,…, and so on. The quantity m𝓁 is called themagnetic quan-

tum number. The equation for Θ is

1

sin 𝜃

d

d𝜃

(
sin 𝜃

dΘ

d𝜃

)
+

[
𝓁(𝓁 + 1) −

m2𝓁

sin2 𝜃

]
Θ = 0 (A.5)

with 𝓁 = 0, 1, 2,…, and so on, andm𝓁 = 0,±1,… ,±𝓁. The quantity 𝓁 is referred
to as the orbital angular momentum quantum number. The solutions can be

expressed in terms of associated Legendre polynomials P
m𝓁

𝓁 ,

Θ𝓁m𝓁
(𝜃) =

√
(2𝓁 + 1)
2

(𝓁 −m𝓁)!

(𝓁 +m𝓁)!
P
m𝓁

𝓁 (𝜃) (A.6)
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The product of the two angle-dependent functions gives the spherical harmonics

Y𝓁m𝓁
(𝜃, 𝜙) = Θ𝓁m𝓁

(𝜃) Φm𝓁
(𝜙) (A.7)

which describe the angular part of a wave function for any central potential. The

parity 𝜋 of a function describes the behavior under the coordinate transformation

r⃗ → −r⃗ (space reflection), or in polar coordinates r → r, 𝜃 → 𝜋 − 𝜃, 𝜙→ 𝜋 + 𝜙.

Since two such transformations must yield again the original function (𝜋2 = 1),

the parity can possess only the values 𝜋 = +1 (positive or even parity) or 𝜋 = −1

(negative or odd parity). The spherical harmonics have the important property

Y𝓁m𝓁
(𝜋 − 𝜃, 𝜋 + 𝜙) = (−1)𝓁Y𝓁m𝓁

(𝜃, 𝜙) (A.8)

and hence the parity is even or odd for 𝓁 even or odd, respectively. In general, the
functions Y𝓁m𝓁

are complex valued. For the special case of m𝓁 = 0 the spherical

harmonics are real valued and we obtain

Y𝓁0(𝜃, 𝜙) =

√
2𝓁 + 1
4𝜋

P𝓁(cos 𝜃) (A.9)

where the functions P𝓁(cos 𝜃) are called Legendre polynomials. For the lowest val-

ues of 𝓁 they are given by

P0(x) = 1 (A.10)

P1(x) = x (A.11)

P2(x) =
1

2
(3x2 − 1) (A.12)

P3(x) =
1

2
(5x3 − 3x) (A.13)

P4(x) =
1

8
(35x4 − 30x2 + 3) (A.14)

The equation for the radial function R is

−
ℏ2

2m

(
d2R

dr2
+
2

r

dR

dr

)
+

[
V (r) +

𝓁(𝓁 + 1)ℏ2

2mr2

]
R = ER (A.15)

Only the radial equation depends on the central potential. The 𝓁(𝓁 + 1) term is
called the centripetal potential. It keeps the particle away from the origin when

𝓁 > 0. We can rewrite the radial equation by substituting u(r) = rR(r),

d2u

dr2
+
2m

ℏ2

[
E − V (r) −

𝓁(𝓁 + 1)ℏ2

2mr2

]
u = 0 (A.16)

Frequently, one writes with E = p2∕(2m) = ℏ2k2∕(2m)

d2u

dr2
+

[
k2 −

𝓁(𝓁 + 1)
r2

−
2m

ℏ2
V (r)

]
u = 0 (A.17)

where k is the wave number of the free particle. Applied to nuclear scattering,

this equation is correct only for distances larger than the nuclear radius (r > R),

since themotion inside the nucleus cannot be described by awave function, which

depends only on one coordinate.The two general, linearly independent, solutions



A.2 Arbitrary Orbital Angular Momentum and Zero Potential 571

of Eq. (A.17) are denoted by F𝓁(r) and G𝓁(r). These satisfy the condition that the

Wronskian combination is independent of r,(
dF𝓁
dr

)
G𝓁 − F𝓁

(
dG𝓁

dr

)
= k (A.18)

In the following, we will discuss three special cases.

A.1

Zero Orbital Angular Momentum and Constant Potential

For 𝓁 = 0 and V = 0, the radial equation (see Eq. (A.17)) becomes

d2u

dr2
+ k2u = 0 (A.19)

Two independent solutions that satisfy this equation are the spherical wave func-

tions eikr and e−ikr .The general solution is given in terms of the linear combination

u = 𝛼eikr + 𝛽e−ikr, k2 =
2m

ℏ2
E (A.20)

If V (r) = const ≠ 0, then the general solution is given by
u = 𝛼eik̂r + 𝛽e−ik̂r , k̂2 =

2m

ℏ2
(E − V ) (A.21)

A.2

Arbitrary Orbital Angular Momentum and Zero Potential

For the special case of the free particle or for neutrons, the potential outside the

nucleus is zero (V = 0). We write

d2u𝓁

dr2
+

[
k2 −

𝓁(𝓁 + 1)
r2

]
u𝓁 = 0 (A.22)

With the substitution 𝜌 = kr, one finds

d2u𝓁

d𝜌2
+

[
1 −

𝓁(𝓁 + 1)
𝜌2

]
u𝓁 = 0 (A.23)

The solutions to this radial equation depend on 𝜌. They are given by the spherical

Bessel functions j𝓁(kr) and spherical Neumann functions n𝓁(kr) (Abramowitz and

Stegun, 1965; note that other authors designate by n𝓁 the same function with the

opposite sign)

F𝓁 = (kr)j𝓁(kr) = (kr)
(
−
r

k

)𝓁
(
1

r

d

dr

)𝓁
sin(kr)

kr
(A.24)

G𝓁 = (kr)n𝓁(kr) = (kr)
(
−
r

k

)𝓁
(
1

r

d

dr

)𝓁
cos(kr)

kr
(A.25)
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Only the function j𝓁 is regular at the origin. For the special case of 𝓁 = 0 (s-waves),

we obtain

j0(kr) =
sin(kr)

kr
and n0(kr) =

cos(kr)

kr
(A.26)

For the asymptotic values, one finds

j𝓁 −−−−→
kr→∞

1

kr
sin(kr − 𝓁𝜋∕2) and n𝓁 −−−−→

kr→∞

1

kr
cos(kr − 𝓁𝜋∕2) (A.27)

A.3

Arbitrary Orbital Angular Momentum and Coulomb Potential

For the Coulomb potential, we have to consider the equation

d2u𝓁
dr2

+

[
k2 −

𝓁(𝓁 + 1)
r2

−
2m

ℏ2
V (r)

]
u𝓁 = 0 (A.28)

where

V (r) =
ZpZte

2

r
(A.29)

The quantities Zp and Zt are the charges of the projectile and target, respectively.

With the substitutions 𝜂 = ZpZte
2∕(ℏ𝑣) = mZpZte

2∕(ℏ2k) and 𝜌 = kr, we obtain

d2u𝓁

d𝜌2
+

[
1 −

𝓁(𝓁 + 1)
𝜌2

−
2𝜂

𝜌

]
u𝓁 = 0 (A.30)

The solutions are called regular and irregular Coulomb wave functions, F𝓁(𝜂, 𝜌)

and G𝓁(𝜂, 𝜌) (Abramowitz and Stegun, 1965), and cannot be written in terms of

elementary functions. The functions F𝓁(𝜂, 𝜌) and G𝓁(𝜂, 𝜌), which depend both on

energy (through k) and charge (through ZpZt), are best calculated using available

computer codes (see, for example, Barnett, 1982). Numerically, we find for the

arguments

𝜌 = 0.218735 ⋅ r

√
MpMt

Mp +Mt

E (A.31)

𝜂 = 0.1574854 ⋅ ZpZt

√
MpMt

Mp +Mt

1

E
(A.32)

whereMi, E, and r are in units of u, MeV, and fm, respectively.
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Appendix B

QuantumMechanical Selection Rules

The quantum mechanical (selection) rules for the coupling of angular momenta

and parities are explained in any quantum mechanics textbook (see, for example,

Messiah, 1999). Here we give, without proof, the most important results.

Consider a system composed of two parts with angular momentum vectors of

j⃗1 and j⃗2. The components have eigenfunctions 𝜙j1m1
and 𝜙j2m2

that are labeled

according to their value of the total angular momentum quantum numbers j1 and

j2. The z-components of their total angular momenta are labeled by the magnetic

quantum numbersm1 andm2, where

mi = −ji,−ji + 1,… , ji − 1, ji (B.1)

The composite system of angular momentum J⃗ has an eigenfunction ΦJM labeled

according to the total angular momentum quantum number J and the magnetic

quantum numberM.The eigenfunction of the composite system can be expanded

according to

ΦJM(j1, j2) =
∑
m1 ,m2

(j1m1j2m2|JM)𝜙j1m1
𝜙j2m2

(B.2)

The amplitudes (j1m1j2m2|JM) are called Clebsch–Gordan coefficients. Their

squares represent the probability of finding the coupled state ΦJM(j1, j2) in the

product state 𝜙j1m1
𝜙j2m2
. The Clebsch–Gordan coefficients have important

symmetry properties. They vanish unless the coupling of angular momentum

vectors, J⃗ = j⃗1 + j⃗2, obeys the following rules:|j1 − j2| ≤ J ≤ j1 + j2 (B.3)

M = m1 +m2 = −J ,−J + 1,… , J − 1, J (B.4)

Clebsch–Gordan coefficients are widely tabulated (Rotenberg et al., 1959). They

can also be calculated with readily available computer codes.

The total angular momentum J⃗ and total parity Π are conserved in a nuclear

reaction. While J⃗ can be obtained from the above quantum mechanical rules of

angular momentum coupling, the total parity of the composite system is given

by the product of the parities for the individual parts (Appendix A). If a channel

contains two nuclei 1 and 2 with spins j⃗1, j⃗2 and parities 𝜋1, 𝜋2, then J⃗ and Π are

Nuclear Physics of Stars, Second Edition. Christian Iliadis.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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given by

J⃗ = 𝓁 + j⃗1 + j⃗2 = 𝓁 + s⃗ (B.5)

Π = 𝜋1𝜋2(−1)
𝓁 (B.6)

where 𝓁 = 0, 1, 2, 3,…, and so on, is the relative orbital angular momentum of the

pair of nuclei and the vector sum s⃗ = j⃗1 + j⃗2 is called the channel spin. If a channel

only contains nucleus 1 plus a photon, then one has

J⃗ = L⃗ + j⃗1 (B.7)

Π = 𝜋1(−1)
L for electric (E) multipole radiation (B.8)

Π = 𝜋1(−1)
L+1 for magnetic (M) multipole radiation (B.9)

where L = 1, 2, 3,…, and so on, is the multipolarity of the electromagnetic radi-

ation. Electric and magnetic radiation of the same multipolarity have opposite

parities and hence cannot be emitted together in a transition connecting two given

nuclear levels. Also, 𝛾-ray transitions to or from spin-0 states or those between

spin-
1

2
-states are pure, that is, they can only proceed via a single value of L and

unique character (either electric or magnetic). A few examples will be given in

the following to illustrate angular momentum and parity conservation in nuclear

reactions and decays.

Example B.1

Suppose that excited 32S levels are populated via resonances in the 28Si + 𝛼→ 32S

reaction.The spin and parity of both the 𝛼-particle and of 28Si is 0+. The spins and

parities of the populated levels (or, equivalently, of the resonances) are given by

the quantum numbers jr and 𝜋r . Conservation of angular momentum and parity

demands (see Eqs. (B.5) and (B.6))

j⃗𝛼 + j⃗28Si + 𝓁𝛼 = j⃗r and 𝜋𝛼𝜋28Si(−1)
𝓁𝛼 = 𝜋r

0 0 𝓁𝛼 → jr (+1)(+1)(−1)𝓁𝛼 = 𝜋r

The individual spins j⃗𝛼 , j⃗28Si can only couple to a unique value of the channel spin,

s = |j𝛼 − j28Si|,… , j𝛼 + j28Si = |0 − 0|,… , 0 + 0 = 0

In this case, we simply find jr = 𝓁𝛼 and 𝜋r = (−1)𝓁𝛼 . The allowed orbital angu-

lar momentum quantum numbers 𝓁𝛼 for particular values of jr and 𝜋r are thus



Appendix B Quantum Mechanical Selection Rules 575

given by

𝛼 + 28Si → 32S

0+ 0+ 𝓁𝛼 → j
𝜋r
r

0 0+

1 1−

2 2+

3 3−

⋮ ⋮

In other words, the resonance spin and parity are uniquely determined by the

orbital angular momentum. For 𝓁𝛼 = 0, 1, 2,…, and so on, the resonance quan-
tum numbers are j

𝜋r
r = 0+, 1−, 2+,…, and so on. Levels with this combination of

quantum numbers are referred to as natural parity states. In particular, levels of

unnatural parity (j
𝜋r
r = 0−, 1+, 2−,…, and so on) cannot be populated in the 28Si +

𝛼 → 32S reaction (if the target and projectile are in their ground states). The spin

and parities couple in exactly the same manner for the decay of excited 32S levels

into the channel 28Si + 𝛼.

Example B.2

Suppose that excited 33Cl levels are populated via resonances in the 32S+ p→ 33Cl

reaction.The spin and parity of the proton and of 32S are 1∕2+ and 0+, respectively.

Conservation of angular momentum and parity demands

j⃗p + j⃗32S + 𝓁p = j⃗r and 𝜋p𝜋32S(−1)
𝓁p = 𝜋r

1

2
0 𝓁p → jr (+1)(+1)(−1)𝓁p = 𝜋r

The individual spins j⃗p, j⃗32S can only couple to the channel spin value of

s = |jp − j32S|,… , jp + j32S =
||||12 − 0|||| ,… ,

1

2
+ 0 =

1

2

Thus, we find in this case, j⃗r = s⃗ + 𝓁p and 𝜋r = (−1)𝓁p . The allowed orbital angu-

lar momentum quantum numbers 𝓁p for particular values of j
𝜋r
r are, according to
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|jr − s| ≤ 𝓁p ≤ jr + s (see Eq. (B.3)) and 𝜋r = (−1)𝓁p , given by

p + 32S → 33Cl

1

2

+

0+ 𝓁p → j
𝜋r
r

0
1

2

+

1
1

2

−

2
3

2

+

1
3

2

−

⋮ ⋮

As was the case in the previous example, a level (or resonance) of given spin and

parity (j
𝜋r
r ) can be populated only with a single value of the orbital angularmomen-

tum quantum number (𝓁p).

Example B.3

Suppose that excited 32S levels are populated via resonances in the 31P + p→ 32S

reaction. The spin and parity of both the proton and of 31P is 1∕2+. Conservation

of angular momentum and parity demands

j⃗p + j⃗31P + 𝓁p = j⃗r and 𝜋p𝜋31P(−1)
𝓁p = 𝜋r

1

2

1

2
𝓁p → jr (+1)(+1)(−1)𝓁p = 𝜋r

The individual spins j⃗p, j⃗31P can couple to the channel spin values of

s = |jp − j31P|,… , jp + j31P =
||||12 − 12 |||| ,… ,

1

2
+
1

2
= 0 or 1

Thus, we find in this case j⃗r = s⃗ + 𝓁p and 𝜋r = (−1)𝓁p . The allowed orbital angu-

lar momentum quantum numbers 𝓁p for particular values of j
𝜋r
r are, according to
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|jr − s| ≤ 𝓁p ≤ jr + s (see Eq. (B.3)) and 𝜋r = (−1)𝓁p , given by

p + 31P → 32S

1

2

+ 1

2

+

𝓁p → j
𝜋r
r

0 (s = 0) 0+

1 (s = 1) 0−

0, 2 (s = 1) 1+

1 (s = 0, 1) 1−

2 (s = 0, 1) 2+

1, 3 (s = 1) 2−

⋮ ⋮

In this example, some 32S levels are formed with unique values of 𝓁p and s (jr = 0),
while other levels can be formed with two different values of either 𝓁p or s (jr =
1, 2). The relative contribution of the two components to the total cross section

is described by parameters referred to as orbital angular momentum and channel

spinmixing ratios (Appendix D).

Example B.4

We will next discuss the situation when a photon is present in a particular chan-

nel. Suppose that an excited level in 32S has been populated by some means, for

example, in an (𝛼,𝛾) or (p,𝛾) reaction. The level has a spin and parity of j
𝜋r
r . The

angular momentum and parity coupling in the incoming channel is described in

Examples B.1 and B.3. We will now focus on the 𝛾-ray decay of this level to lower-

lying states in 32S with spins and parities of j1 and 𝜋1, respectively. Conservation

of angular momentum and parity demands (see Eqs. (B.7)–(B.9))

j⃗r = j⃗1 + L⃗ and 𝜋r = 𝜋1(−1)
L for electric multipole radiation

𝜋r = 𝜋1(−1)
L+1 for magnetic multipole radiation

First suppose that the decaying 32S level has a spin and parity of j
𝜋r
r = 0+. The

allowed values of the 𝛾-raymultipolarity L for given values of j
𝜋1
1
for the lower lying
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states are, according to |jr − j1| ≤ L ≤ jr + j1 (see Eqs. (B.3) and (B.7)), given by

32S∗ → 𝛾 + 32S

0+ L j
𝜋1
1

forbidden 0+

forbidden 0−

M1 1+

E1 1−

E2 2+

M2 2−

⋮ ⋮

The 0 → 0 transitions are forbidden since monopole radiation (L = 0) does not
exist. In otherwords, photonsmust carry at least an angularmomentumofℏ. Such

transitions may still proceed (Section 1.7.1) by internal conversion (de-excitation

of the nucleus via emission of an atomic electron) or internal pair formation (de-

excitation of the nucleus via emission of an electron–positron pair if the excitation

energy exceeds an amount of 2mec
2). All other 𝛾-ray transitions proceed with a

unique value of the multipolarity L.

If, on the other hand, the decaying level has a spin and parity of j
𝜋r
r = 1−, then the

following values of L are allowed for given values of j
𝜋1
1
for the lower-lying states:

32S∗ → 𝛾 + 32S

1− L j
𝜋1
1

E1 0+

M1 0−

E1, M2 1+

M1, E2 1−

E1, M2, E3 2+

M1,E2,M3 2−

⋮ ⋮

The 1→ 0 transitions proceed either via electric or magnetic dipole radiation
(L = 1). All other transitions can proceed via radiations of different multipolar-

ities. The relative contribution of the individual components to the total transi-

tion probability is described by the 𝛾-ray mixing ratio (see Eq. (1.32)). As already

noted above, parity conservation implies that electric and magnetic radiation of

the same multipolarity can never be emitted together in the same transition. The

𝛾-ray transition probability decreases fast for increasingmultipolarity and in prac-

tice one usually encounters the mixing of no more than the lowest two multipole

radiations.
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Appendix C

Kinematics

In the following, expressions are presented that describe the kinematics of a binary

interaction a + A → b + B, where species a, A, and B are particles with rest mass.

For more detailed discussions of the kinematics in nuclear physics, the reader is

referred to Marmier and Sheldon (1969) and references therein. Kinematics cal-

culations can be conveniently performed using readily available computer codes.

The kinematics of a nuclear reaction or of elastic scattering is determined by

the conservation of total energy and linear momentum. Consider Figure C.1a,

showing a collision between a projectile a and a stationary target nucleus A in the

laboratory. After the collision, the recoil nucleus B moves into a direction spec-

ified by the laboratory angle 𝜙, while species b moves into a direction given by

laboratory angle 𝜃. If species b is a photon, then the collision represents a radia-

tive capture process. If species a is identical to b, and species A is identical to B

(including their state of excitation), then the collision represents elastic scattering.

First, expressions that only relate quantities appropriate to the laboratory coordi-

nate system are given. Afterward, formulas for the transformation of quantities

between laboratory and center-of-mass coordinate systems are presented.

C.1

Relationship of Kinematic Quantities in the Laboratory Coordinate System

Consider first a collision involving only particles with restmass.The target nucleus

A is assumed to be stationary in the laboratory system.Conservation of energy and

linear momentum yields the three equations

mac
2 + Ea +mAc

2 = mbc
2 + Eb +mBc

2 + EB (C.1)√
2maEa =

√
2mBEB cos𝜙 +

√
2mbEb cos 𝜃 (C.2)

0 =
√
2mBEB sin𝜙 −

√
2mbEb sin 𝜃 (C.3)

whereE andm denote the kinetic energy and the restmass, respectively.The linear

momenta are given by p =
√
2mE. The second and third expressions describe the

total linear momentum parallel and perpendicular, respectively, to the incident

beam direction. It is usually difficult to detect species B if it represents a heavy

recoil nucleus. By eliminating EB and 𝜙 and using the definition of the reaction

Nuclear Physics of Stars, Second Edition. Christian Iliadis.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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a aA A

B

b

c c

c

va

vb

vb

vB

b

c

B

Before:

Laboratory system Center-of-mass system

(a) (b)

After:

pa = pb + pB

θ θ ′
ϕ

pa + pA = pb + pB = 0′ ′ ′ ′

′

vA′

vB′

va′

Figure C.1 Kinematic properties of a reac-

tion A(a, b)B in the (a) laboratory coordinate

system, and (b) center-of-mass coordinate

system. The target nucleus A is assumed

to be stationary in the laboratory (𝑣A = 0).

Unprimed and primed quantities are used

in the laboratory and center-of-mass frame,

respectively. The location of the center of

mass is labeled “c.”

Q-value, Q = (ma +mA −mb −mB)c
2 (see Eq. (1.4)), one finds

Q = Eb

(
1 +

mb

mB

)
− Ea

(
1 −

ma

mB

)
−
2

mB

√
mambEaEb cos 𝜃 (C.4)

This expression is sometimes used to determine an unknown Q-value by mea-

suring Ea, Eb, and 𝜃 if the masses ma, mb, and mB are known. Frequently, one is

interested in the energy Eb of the emitted particle as a function of the bombarding

energy Ea and the angle 𝜃. From Eq. (C.4) one obtains√
Eb = r ±

√
r2 + s (C.5)

where

r =

√
mambEa

mb +mB

cos 𝜃 and s =
Ea(mB −ma) +mBQ

mb +mB

(C.6)

We assumed above that in low-energy nuclear reactions, the speeds of the parti-

cles are sufficiently small to disregard relativistic effects. For very accurate work,

one can take the relativistic correction into account if each mass m in the above

expressions is replaced by m + E∕(2c2). Only real and positive solutions of Eb in

Eqs. (C.5) and (C.6) are physically allowed. A number of different cases can be

distinguished. If the reaction is exothermic (Q > 0) and if the projectile mass is

smaller than the mass of the residual nucleus (ma < mB), then s > 0 and there will

only be one positive solution for Eb. Because of the cos 𝜃 dependence of r, Eb has a
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minimum at 𝜃 = 180∘. For very small projectile energies, for example, in reactions

involving thermal neutrons, we find r → 0 and hence

Eb(Ea ≈ 0) ≈ s ≈ QmB∕(mB +mb) (C.7)

This implies that the kinetic energy of the emitted particle b has the same value for

all angles. The situation is more complex if the reaction is endothermic (Q < 0).

For very small projectile energies, Ea ≈ 0, one has again r → 0, but s becomes neg-
ative so that no positive value of Eb exists. Hence, for each angle 𝜃 there will be

a minimum energy below which the reaction cannot proceed. The value of this

minimum energy is smallest at 𝜃 = 0∘ and is referred to as the threshold energy,

given by

Emin
a

(𝜃 = 0∘) = Ethresh
a

= −Q
mb +mB

mb +mB −ma

(C.8)

At the threshold energy, the particles are emitted only in the direction 𝜃 = 0∘ with

an energy of

Eb(Ea = Ethresh
a

) = Ethresh
a

mamb

(mb +mB)
2

(C.9)

If one increases the bombarding energy beyond the threshold energy, then the

particles b can be emitted at angles greater than 𝜃 = 0∘. It is also interesting that

for endothermic reactions Eqs. (C.5) and (C.6) yield two positive solutions for 𝜃 <

90∘. In other words, two particle groups of different discrete energies are emitted

in the forward direction. For bombarding energies exceeding

Ea = −Q
mB

mB −ma

(C.10)

there exists only a single positive solution for Eqs. (C.5) and (C.6).

Consider now a radiative capture process a + A → B + 𝛾 . In this case, we have

to replace in Eqs. (C.1)–(C.3) the total energy,mbc
2 + Eb, and linear momentum,√

2mbEb, of species b by E𝛾 and E𝛾∕c, respectively. Eliminating again EB and 𝜙 and

solving for the energy of the emitted photon yields

E𝛾 = Q +
mA

mB

Ea + E𝛾
𝑣B
c
cos 𝜃 −

E2
𝛾

2mBc
2
= Q +

mA

mB

Ea + ΔEDopp − ΔErec

(C.11)

The photon energy is given by a sumof four terms: (i) the value ofQ = (ma +mA −

mB)c
2 = EB + E𝛾 − Ea; (ii) the bombarding energy in the center-of-mass system

(see below); (iii) theDoppler shift since the photon is emitted by a recoil nucleus B

moving at a speed of 𝑣B = 𝑣a(ma∕mB); and (iv) the recoil shift caused by the energy

shift of the recoiling nucleus.The last two contributions represent relatively small

corrections and are numerically given by

ΔEDopp = 4.63367 × 10
−2

√
MaEa

MB

E𝛾 cos 𝜃 (MeV) (C.12)

ΔErec = 5.36772 × 10
−4

E2
𝛾

MB

(MeV) (C.13)
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where all energies are in units of MeV and the rest masses are in units of u. The

calculation of the photon energy from Eq. (C.11) is not strictly valid since E𝛾 also

occurs on the right-hand side. If an answer with a precision of a few kilo electron

volts or so is sufficient, then onemay replace the masses with (integer) mass num-

bers and use the approximation E𝛾 ≈ Q + Ea(mA∕mB) for calculating ΔEDopp and

ΔErec. For accurate work, however, the masses of a, A, and B in Eqs. (C.1)–(C.3)

should be replaced by the factors mi + Ei∕(2c
2). The exact relativistic expression

for the photon energy is then given by

E𝛾 =
Q(mac

2 +mAc
2 +mBc

2)∕2 +mAc
2Ea

mac
2 +mAc

2 + Ea − cos 𝜃
√
Ea(2mac

2 + Ea)
(C.14)

The relationship between the photon emission angle 𝜃 and the recoil angle 𝜙 can

be obtained from the ratio of Eqs. (C.2) and (C.3),

𝜙 = arctan

(
sin 𝜃

E−1
𝛾

√
2mac

2Ea − cos 𝜃

)
(C.15)

The maximum angle of 𝜙 is obtained when the photon is emitted perpendicular

to the incident beam direction (𝜃 = 90∘),

𝜙max = arctan

(
E𝛾√
2mac

2Ea

)
(C.16)

Hence, the recoil nucleus B is emitted in the forward direction into a cone of half-

angle 𝜙max.

A few comments are in order. If the reaction A + a → B + b or A + a → B + 𝛾

populates an excited state in nucleus B, then theQ-value in the above expressions

must account for the energy of the excited state,

Q = Q0 − Ex (C.17)

where Q0 is the Q-value for the ground state of B. Several excited levels may be

populated in a given reaction. For a fixed angle 𝜃, each of these states will give rise

to a different value for the energy of the reaction products (e.g.,Eb orE𝛾 ), where the

largest observed energy corresponds to the population of the ground state. From

a measurement of Eb or E𝛾 , we can thus deduce an unknown excitation energy

Ex by using Eqs. (C.5), (C.11), or (C.14). Also, for a radiative capture reaction the

maximum emission angle 𝜙max of B is given by Eq. (C.16), with E𝛾 denoting the

photon energy for the ground state transition, even if the primary decay proceeds

to an excited level (since subsequent de-excitation photons may also be emitted at

𝜃 = 90∘). The above expressions disregard the beam energy loss in the target and

assume that the reaction is induced with a bombarding energy of Ea in the labo-

ratory. If the reaction excites a narrow resonance, then the interaction is induced

at the resonance energy Er rather than at the incident beam energy. In this case,

Ea in the above expressions represents Er . Finally, for the case of radiative cap-

ture reactions it is assumed that the 𝛾-ray emission occurs on a sufficiently short

time scale for recoil energy losses in the target to be negligible, that is, the emitted
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photon experiences the full Doppler energy shift. If the photon is emitted after the

recoil nucleus experienced an energy loss in the target, then the Doppler shift is

attenuated. It is sometimes possible to deduce the mean lifetime of a nuclear level

by measuring the attenuated Doppler shift (see, for example, Bertone et al., 2001).

C.2

Transformation Between Laboratory and Center-of-Mass Coordinate System

In experimental nuclear physics, all observations take place in a reference frame

that is at rest in the laboratory. It is referred to as the laboratory coordinate system.

From the theoretical point of view, however, the motion of the center of mass is of

no consequence for the properties of a nuclear reaction. It is then oftenmore con-

venient to use a moving coordinate frame in which the center of mass of the two

colliding nuclei is at rest. It is called the center-of-mass coordinate system. Most

kinematic quantities in Chapters 3 and 5 are given in the center-of-mass system.

However, in Chapter 4 these quantities are frequently presented in the laboratory

system, as is customary in the nuclear physics literature, since this is where the

quantities are directly observed. We will only consider here the nonrelativistic

transformation of kinematic quantities between these two reference frames. For

the relativistic case, see Marmier and Sheldon (1969) and references therein.

The kinematic properties of a nuclear reaction A(a, b)B in the laboratory and

center-of-mass frames are shown in Figure C.1. Unprimed and primed quanti-

ties will be used in this section for the former and the latter coordinate system,

respectively. It is assumed that the target nucleus is stationary in the laboratory

(𝑣A = 0). In the center-of-mass frame, the total linear momentum is always equal

to zero and, therefore, the nuclei b and B will recede in opposite directions. In

other words, there is only one scattering angle 𝜃′.

We will first consider the situation before the collision. The velocity 𝑣c of the

center-of-mass is given by the relations

(ma +mA)𝑣c = ma𝑣a +mA ⋅ 0 or 𝑣c =
ma

ma +mA

𝑣a (C.18)

and hence the projectile and target have velocities in the center-of-mass frame of

𝑣′
a
= 𝑣a − 𝑣c =

(
1 −

ma

ma +mA

)
𝑣a =

mA

ma +mA

𝑣a (C.19)

𝑣′
A
= 𝑣A − 𝑣c = −𝑣c = −

ma

ma +mA

𝑣a (C.20)

Since the total linear momentum of a + A is zero in the center-of-mass frame, we

find for the ratio of speeds

ma𝑣
′
a
= mA𝑣

′
A

or
𝑣′
a

𝑣′
A

=
mA

ma

(C.21)
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The kinetic energies of the two particles in the center-of-mass system are given by

(see Eqs. (C.19) and (C.20))

E′
a
=
1

2
ma(𝑣

′
a
)2 =
1

2
ma𝑣

2
a

(
mA

ma +mA

)2
= Ea

m2
A

(ma +mA)
2

(C.22)

E′
A
=
1

2
mA(𝑣

′
A
)2 =
1

2
mA𝑣

2
a

(
ma

ma +mA

)2
= Ea

mAma

(ma +mA)
2

(C.23)

and the total kinetic energy in the center-of-mass system before the collision is

related to the laboratory bombarding energy by

E′
i
= E′

a
+ E′

A
= Ea

m2
A
+mAma

(ma +mA)
2
= Ea

mA

ma +mA

(C.24)

The laboratory bombarding energy, Ea, can be expressed as the sumof total kinetic

energy in the center-of-mass system before the collision, E′
i
, and the kinetic energy

of the center-of-mass motion, Ec, as can be seen from (see Eqs. (C.18) and (C.24))

Ea =
1

2
ma𝑣

2
a
=
1

2

mAma

ma +mA

𝑣2
a
+
1

2

m2
a

ma +mA

ma +mA

ma +mA

𝑣2
a

= Ea

mA

ma +mA

+
1

2
(ma +mA)𝑣

2
c
= E′

i
+ Ec (C.25)

Furthermore, we find from Eq. (C.24)

E′
i
=
1

2

mamA

ma +mA

𝑣2
a
=
1

2
maA𝑣

2
a

(C.26)

and thus the total center-of-mass kinetic energy can be expressed in terms of the

laboratory bombarding velocity, 𝑣a, and the reduced mass of particles a and A,

defined as maA ≡ mamA∕(ma +mA). The above expressions apply equally to a

radiative capture reaction, A(a, 𝛾)B, or to elastic scattering, A(a, a)A.

We will now consider the situation after the collision. The total linear momen-

tum in the center-of-mass system remains zero. For a reaction A(a, b)B, the two

residual particles b and B separate in opposite directions with equal but opposite

linear momenta,

mb𝑣
′
b
= mB𝑣

′
B

(C.27)

The kinetic energies in the center-of-mass system are given by

E′
b
=
1

2
mb(𝑣

′
b
)2 (C.28)

E′
B
=
1

2
mB(𝑣

′
B
)2 =
1

2
mb(𝑣

′
b
)2mB

mb

m2
B

=
mb

mB

E′
b

(C.29)

The total kinetic energy in the center-of-mass system after the collision is then

E′
f
= E′

b
+ E′

B
= E′

b
+

mb

mB

E′
b
= E′

b

(
1 +

mb

mB

)
(C.30)

The kinetic energies in the center-of-mass system after the collision can be

expressed in terms of the laboratory bombarding energy using E′
i
+ Q = E′

f
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(see Eq. (1.5)). The total kinetic energy is given by (see Eq. (C.24))

E′
f
= E′

i
+ Q = Ea

mA

ma +mA

+ Q = Q + Ea

(
1 −

ma

ma +mA

)
(C.31)

After some algebra, one obtains for the kinetic energies of the particles

E′
b
=

mB

mb +mB

[
Q + Ea

(
1 −

ma

ma +mA

)]
(C.32)

E′
B
=

mb

mb +mB

[
Q + Ea

(
1 −

ma

ma +mA

)]
(C.33)

Finally, we will present the transformation equations for the angles and solid

angles in the laboratory and center-of-mass systems. After the collision, we have

for a reaction A(a, b)B (see Eq. (C.19))

𝑣′
b
= 𝑣b − 𝑣c (C.34)

or, in terms of the components parallel with and perpendicular to the beam

direction

𝑣′
b
cos 𝜃′ = 𝑣b cos 𝜃 − 𝑣c (C.35)

𝑣′
b
sin 𝜃′ = 𝑣b sin 𝜃 − 0 (C.36)

From these expressions, one can derive either of the following two relationships:

tan 𝜃 =
𝑣′
b
sin 𝜃′

𝑣′
b
cos 𝜃′ + 𝑣c

=
sin 𝜃′

cos 𝜃′ + 𝑣c∕𝑣
′
b

=
sin 𝜃′

cos 𝜃′ + 𝛾
(C.37)

cos 𝜃 =
𝛾 + cos 𝜃′√

1 + 𝛾2 + 2𝛾 cos 𝜃′
(C.38)

The parameter 𝛾 is defined by the ratio of velocities of the center of mass and of

particle b in the center-of-mass system,

𝛾 ≡ 𝑣c

𝑣′
b

=

√
mambEa

mB(mb +mB)Q +mB(mB +mb −ma)Ea

≈

√
mamb

mAmB

Ea

(1 +ma∕mA)Q + Ea

(C.39)

where the approximation is obtained by setting ma +mA ≈ mb +mB. For a very

heavy target nucleus, one finds 𝛾 ≈ 0 and hence the angle of the emitted particle

b has about the same value in the laboratory and center-of-mass systems (𝜃 ≈ 𝜃′).

For elastic scattering,ma = mb,mA = mB, Q = 0, and thus one finds 𝛾 = ma∕mA.

For a radiative capture reaction,A(a, 𝛾)B, the laboratory and center-of-mass angle

of the emitted photon are related by (given here without proof)

cos 𝜃 =
cos 𝜃′ + 𝛽

1 + 𝛽 cos 𝜃′
(C.40)
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where the relativistic parameter 𝛽 is defined as

𝛽 ≡
√
Ea(Ea + 2mac

2)

mAc
2 +mac

2 + Ea

(C.41)

The definition of the differential cross section implies that the same number

of reaction products are emitted into the solid angle element dΩ in the direction

𝜃 (laboratory system) as are emitted into dΩ′ in the corresponding direction 𝜃′

(center-of-mass system). Thus(
d𝜎

dΩ

)
𝜃

dΩ =

(
d𝜎

dΩ

)′

𝜃′
dΩ′ (C.42)

We assume that the cross section depends on 𝜃 or 𝜃′, but not on the azimuthal

angle. Hence

(d𝜎∕dΩ)′
𝜃′

(d𝜎∕dΩ)𝜃
=

dΩ

dΩ′
=

d(cos 𝜃)

d(cos 𝜃′)
(C.43)

From Eq. (C.38), we find for a reaction A(a, b)B

d(cos 𝜃)

d(cos 𝜃′)
=

1 + 𝛾 cos 𝜃′

(1 + 𝛾2 + 2𝛾 cos 𝜃′)3∕2
=

√
1 − 𝛾2 sin2 𝜃(

𝛾 cos 𝜃 +
√
1 − 𝛾2 sin2 𝜃

)2 (C.44)

For a radiative capture reaction, A(a, 𝛾)B, one obtains from Eq. (C.40)

d(cos 𝜃)

d(cos 𝜃′)
=

1 − 𝛽2

(1 + 𝛽 cos 𝜃′)2
(C.45)

for the relationship of the solid angles of the emitted photon.
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Appendix D

Angular Correlations

Traditionally, angular correlation measurements have been used in nuclear

physics as a powerful tool to determine the angular momenta of states par-

ticipating in nuclear transitions. It also turns out that angular correlations are

sensitive to the ratios of nuclear matrix elements (i.e., mixing ratios; see later) that

correspond to different possibilities of coupling angular momenta in a specific

transition. We will not attempt here to summarize this vast field, but will focus

on aspects that are of primary importance in low-energy nuclear astrophysics

measurements.

Uncertainties in thermonuclear reaction rates are caused by contributions

from resonances or nonresonant reaction processes that are as yet unobserved.

The goal of the experimentalist is to measure such contributions. If the detection

system covers the entire solid angle (4𝜋 sr), the measured intensities represent

angle-integrated yields. These may then be converted to cross sections or reso-

nance strengths (Sections 4.8 and 4.9). However, in most experimental Setups,

the detector(s) will cover only a fraction of the full solid angle. What is measured

in such cases are differential yields that may be influenced by angular correlation

effects. It should be pointed out that the angular momenta for many levels

participating in astrophysically important reactions are known or, at least, have

been restricted to a certain range of values by previous nuclear structure studies.

Hence, it becomes in principle possible to estimate angular correlation effects

by making reasonable assumptions and, if necessary, to correct the measured

differential yields appropriately.

A comprehensive theory of angular correlations is beyond the scope of the

present work. The interested reader is referred to the specialized literature (see,

for example, Devons and Goldfarb, 1957). The focus of this section is on angular

correlations in astrophysically important reactions, that is, processes such as

A(a, b)B or A(a, 𝛾)B, where a and b denote particles with rest mass. We will

briefly explain the origin of angular correlations in such processes and examples

of the application of angular correlations to specific cases will be given. In this

section, all angles 𝜃 refer to the center-of-mass system.

Nuclear Physics of Stars, Second Edition. Christian Iliadis.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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D.1

General Aspects

For the discussions in this section, we will make the following assumptions: (i) the

beam is unpolarized and the target nuclei are randomly oriented; (ii) the nuclear

levels involved in the transitions at each stage have unique spin and well-defined

parity; (iii) the polarization of the detected radiations is not observed. These

assumptions apply to most cases of interest here. The term radiation denotes

bombarding (incident) particles or 𝛾-rays as well as emitted (outgoing) particles

or 𝛾-rays. An angular correlation between two radiations (e.g., between the

incident beam and an outgoing radiation, or between two successive outgoing

radiations) is the result of the alignment of a particular nuclear level. An aligned

level of spin J is prepared by some process that populates its 2J + 1 magnetic

substates unequallywith the condition that the population of the+m substate will

be equal to the population of the−m substate (since we assume unpolarized beam

and target nuclei). Particles or 𝛾-rays that are emitted from a specific substate m

of the aligned level and that populate a substate mf of a final level will then have

a characteristic radiation pattern, or angular correlation, with respect to some

(z-)axis of quantization, depending on the value of Δm = m −mf . The total radi-

ation pattern will consist of the superposition of all allowed transitions m → mf

between substates. The alignment in reactions of type A(a, b)B or A(a, 𝛾)B is

achieved since the orbital angular momentum carried by the incident radiation

is perpendicular to its direction of motion. This simple circumstance, plus the

additional fact that angular momentum is conserved, forms the foundation of the

angular correlation theory for unpolarized radiations.

As a simple example, we will consider an excited level of spin and parity J𝜋 = 1−

that decays to a 0+ ground state via emission of electric dipole (E1; L = 1) radia-

tion (Figure D.1). The spatial distribution of the emitted photons will depend on

the magnetic quantum numbers m and mf of the decaying and the final level,

respectively, where each allowed value of Δm = m −mf gives rise to a different

radiation pattern. In our example, the decaying level consists of (2 ⋅ 1 + 1) = 3 sub-
states and the final level has only (2 ⋅ 0 + 1) = 1 substate. The allowed transitions
are then described by m −mf = 0 − 0 = 0 and m −mf = ±1 − 0 = ±1. The cor-

responding radiation patterns are given by WΔm=0(𝜃) ∼ sin
2 𝜃 and WΔm=±1(𝜃) ∼

(1 + cos2 𝜃)∕2, respectively (Jackson, 1975). These are plotted as polar intensity

diagrams in Figure D.1. Suppose first that the J𝜋 = 1− level is populated by the

𝛽-decay of a parent state and that the 𝛽-particles are not detected. Under such

conditions, the 𝛽-decay populates the magnetic substates equally that is, with a

probability of p(m) = 1∕(2J + 1) = 1∕3.The total photon radiation pattern is thus

given by

W (𝜃) =
∑
m

p(m)Wm→mf
(𝜃)

∼
1

3
⋅
1

2
(1 + cos2 𝜃) +

1

3
sin2 𝜃 +

1

3
⋅
1

2
(1 + cos2 𝜃) = const (D.1)
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E1

B

m = +1

m = –1
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m = 0

B′

(a) (b)

ℓa = 1
Jπ = 1–

L = 1, Δm = ±1

L = 1, Δm = 0

z

z

Figure D.1 (a) Level scheme for an excited

state (J𝜋 = 1−), which can be populated

either via 𝛽-decay from nucleus B′ or via the

capture reaction A + a → B + 𝛾 . Both the tar-

get and the projectile have spins and parities

of 0+ . The state decays via E1 emission to

the ground state (J𝜋 = 0+). In the first case,

the radiation pattern will be isotropic, while

in the second case, the pattern is anisotropic

because of a strong alignment. (b) Dipole

radiation pattern for Δm = 0 (top) and Δm =

±1 (bottom).

and hence becomes isotropic. Now suppose that the J𝜋 = 1− level is instead

populated as a resonance in a capture reaction A(a, 𝛾)B involving target and

projectile spins and parities of jA = 0
+ and ja = 0

+. The resonance can only

be formed by absorption of particles a with an orbital angular momentum of

𝓁a = 1 (Example B.1). Provided the incident particle beam is well collimated,

the projection of the orbital angular momentum vector along the incident beam

direction is zero (Figure 2.4). The allowed range of magnetic substates of the

resonance that can be populated in this type of capture reaction is then given by

mres ≤ jA + ja (see Eqs. (B.3) and (B.4)). It follows that, among the three different

magnetic substates of the resonance, only the m = 0 substate can be populated

in the reaction. In other words, we obtain p(0) = 1 and p(±1) = 0, and the 𝛾-ray

decay must proceed from m = 0 to mf = 0. Consequently, the total radiation

pattern is given by the Δm = m −mf = 0 transition only

W (𝜃) =
∑
m

p(m)Wm→mf
(𝜃) ∼ sin2 𝜃 (D.2)

The alignment in this example is exceptionally strong and thus the variation of the

𝛾-ray counting rate with angle is relatively large. If the beam or target nuclei have

nonzero spin, then the alignment will be weaker, but angular correlation effects

are in general nevertheless observed.

In certain situations involving nuclear reactions, all magnetic substates are pop-

ulated equally, independent of the mode of formation. For example, the capture of

unpolarized protons by spin-zero target nuclei leading to a J = 1∕2 resonance will

always populate them = ±1∕2 magnetic substates of the resonance uniformly. As

a result, the total radiation pattern will be isotropic. Similar arguments apply to
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a resonance of spin J = 0. In this case, only one magnetic substate exists and the

transitions to the various substates in the final state proceed with equal probabil-

ities. As a result, the total radiation pattern must necessarily be isotropic.

We considered so far only the angular correlation caused by the alignment of

levels produced in nuclear reactions (also termed angular distribution). Another

type of angular correlation occurs if an excited level de-excites to a final state

through an intermediate level by emitting two successive radiations (e.g., two pho-

tons). In this case, measurement of the direction of the first radiation will produce

an aligned intermediate state. The result is again a nonuniform intensity distri-

bution of the second radiation with respect to the measured direction of the first

radiation. We encountered this situation in the discussion of angular correlation

effects for 𝛾-ray detector summing corrections (Section 4.5.2). As we shall see, the

angular correlation formalism is general and describes this situation as well.

The summation over magnetic quantum numbers is performed explicitly in

Eq. (D.1). In more complicated situations involving a number of unobserved or

coupled orientations, such a calculation becomes very tedious. More convenient,

but equivalent, expressions have been developed where the magnetic substates

are not explicitly introduced and where the sums over substates are automatically

performed. A number of different formalisms and expressions can be found in

the literature. Here, we will follow the work of Biedenharn (1960).

Any correlation where only two directions of motion are measured can be

expressed as a Legendre polynomial series in the angle between those directions

(see also Eqs. (A.9)–(A.14)). We write

W (𝜃) =
1

b0

nmax∑
n=0

bnPn(cos 𝜃)

= 1 +
b2
b0

P2(cos 𝜃) +
b4
b0

P4(cos 𝜃) + · · · +
bnmax
b0

Pnmax (cos 𝜃) (D.3)

If the process under consideration is a nuclear reaction, then W (𝜃) is related to

the differential and total cross section by(
d𝜎

dΩ

)
𝜃

=
1

4𝜋
𝜎W (𝜃) (D.4)

An isotropic differential cross section implies W (𝜃) = 1. The sum in Eq. (D.3) is

restricted to even values of n because we are making the assumption that the

reaction (or the successive decay) involves at each stage nuclear states of well-

defined parity. The wave function describing the exit channel must then have

the same parity as the resonance (or the intermediate state). The correspond-

ing intensity of the emitted radiation (i.e., the square of the wave function) has

even parity and is unchanged by the inversion r⃗ → −r⃗, or more specifically, by

the substitution 𝜃 → 𝜋 − 𝜃 (since for unpolarized beams and randomly oriented

target nuclei the intensity does not depend on the azimuthal angle 𝜙). The condi-

tionW (𝜃) = W (𝜋 − 𝜃) implies thatW (𝜃) is symmetric about 𝜃 = 90∘ and, conse-

quently, all odd Legendre polynomial terms in Eq. (D.3) must vanish.
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The coefficients bn in Eq. (D.3) depend on the angular momenta and nuclear

matrix elements involved in the process.Theoretical expressions for bn are given in

the following. They can be factored into components referring separately to each

transition. Each of these components, in turn, is expressed in terms of vector cou-

pling (Clebsch–Gordan and Racah) coefficients. We will be using the coefficients

Fn, defined by (Biedenharn, 1960)

Fn(LL
′jJ) ≡ (−) j−J−1

√
(2L + 1)(2L′ + 1)(2J + 1) (L1L′ − 1|n0)W (JJLL′; nj) (D.5)

where j and J are angular momenta (spins) of nuclear states and L and L′ are

orbital angular momenta (for particles) or multipolarities (for photons) of radi-

ations; (L1L′ − 1|n0) and W (JJLL′; nj) denotes a Clebsch–Gordan and a Racah

coefficient, respectively. A tabulation of the functions Fn(LjJ) ≡ Fn(LLjJ) is given

in Biedenharn and Rose (1953). Numerical values of the mixed correlation coef-

ficients Fn(LL
′jJ) for L ≠ L′ can be found in Appel (1968). For n = 0, we obtain

F0(LL
′jJ) = 0 and F0(LjJ) = 1. To determine howmany terms have to be taken into

account in the sum of Eq. (D.3), it is useful to consider the symmetry properties of

the functions Fn(LL
′jJ), which follow directly from those of the Clebsch–Gordan

and Racah coefficients. For given values of L, L′, and J , we obtain Fn(LL
′jJ) ≠ 0

only for |L − L′| ≤ n ≤ min(2J , L + L′). It follows that Fn(LjJ) ≠ 0 only for 0 ≤ n ≤
min(2J , 2L).

D.2

Pure Radiations in a Two-Step Process

We start by considering a two-step process, where each step proceeds via a pure

transition. An intermediate state of spin J is formed from an initial state of spin j1
via absorption or emission of some radiation of angular momentum L1.The inter-

mediate state decays then to the final state of spin j2 via emission of radiation with

angular momentum L2. We write symbolically j1(L1)J(L2)j2. The angular correla-

tion function between the directions of the two radiations is then given in terms

of the coefficients An(i) and the particle parameters an(i) by

W (𝜃) =
∑

n=0,2,…

[an(1)An(1)][an(2)An(2)]Pn(cos 𝜃) (D.6)

for photons: an(i) = 1; An(i) = Fn(LijiJ)

(D.7)

for s = 0 particles: an(i) =
2Li(Li + 1)

2Li(Li + 1) − n(n + 1)
; An(i) = Fn(LijiJ)

(D.8)

for s ≠ 0 particles: an(i) =
2Li(Li + 1)

2Li(Li + 1) − n(n + 1)
; An(i) = Fn(LijsJ)

(D.9)
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For photons or particles, Li denotes the 𝛾-ray multipolarity or the orbital angular

momentum, respectively. If a particle has a nonzero spin s, then the channel spin

given by j⃗s = j⃗i + s⃗ and |ji − s| ≤ js ≤ ji + s replaces the initial state spin ji.The sum

in Eq. (D.6) is restricted to 0 ≤ n ≤ min(2L1, 2L2, 2J).

Example D.1

The 𝛽-decay of 60Co populates a 4+ level in the 60Ni daughter nucleus. This level

decays to an intermediate state of spin 2+, which in turn decays to the ground

state of spin 0+ (Figure D.2a). Calculate the angular correlation between the two

de-excitation 𝛾-rays.

We encountered this case in Section 4.5.2 and Figure 4.28. The 𝛽-decay electron

is emitted into a random direction and is not observed. Thus, the initial 4+ level

populated in the daughter nucleus is not aligned. The first 𝛾-ray is also emitted

into a random direction. If it is detected in a counter, then a line connecting the

radioactive source with the detector represents a preferred direction relative to

which the second 𝛾-ray is emitted. Both transitions in this direction–direction

correlation are 𝛾-rays and 𝜃 represents the angle between their correlated emis-

sion directions. Both the first and the second 𝛾-ray decay can only proceed via an

E2 transition (Example B.4). Thus, we have to consider the angular momentum

sequence j1(L1)J(L2)j2 → 4(2)2(2)0. From Eqs. (D.6) and (D.7), we obtain

W (𝜃) =
∑

n=0,2,…

Fn(L1j1J)Fn(L2j2J)Pn(cos 𝜃) with 0 ≤ n ≤ min(2L1, 2L2, 2J)
Hence,

W (𝜃) =
∑

n=0,2,4

Fn(242)Fn(202)Pn(cos 𝜃)

= 1 + F2(242)F2(202)P2(cos 𝜃) + F4(242)F4(202)P4(cos 𝜃)

= 1 + (−0.1707)(−0.5976)P2(cos 𝜃) + (−0.0085)(−1.069)P4(cos 𝜃)

= 1 + 0.1020P2(cos 𝜃) + 0.0091P4(cos 𝜃)

Example D.2

A resonance with spin and parity of J𝜋 = 2+ is populated in the 32S(𝛼,𝛾)36Ar reac-

tion. The resonance decays to a final state with J𝜋 = 0+ (Figure D.2b). Calculate

the expected angular correlation between the incident beam (𝛼-particles) and the

emitted 𝛾-radiation.

The 32S target nuclei and the 𝛼-particles have both a spin and parity of 0+. There-

fore, the J𝜋 = 2+ resonance can be formed only from an 𝛼-particle orbital angular

momentum of 𝓁𝛼 = 2 (Example B.1). Furthermore, the 𝛾-ray transition can only
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Figure D.2 Schematic level diagrams indicating the quantum numbers involved in various

angular correlation schemes.

be of E2 character (Example B.4). The angular momentum sequence is therefore

given by j1(L1)J(L2)j2 → j32S(𝓁𝛼)J(L𝛾 )j36Ar → 0(2)2(2)0. We obtain from Eqs. (D.6)
and (D.8)

W (𝜃) =
∑

n=0,2,…

2L1(L1 + 1)

2L1(L1 + 1) − n(n + 1)
Fn(L1j1J)Fn(L2j2J)Pn(cos 𝜃)

From 0 ≤ n ≤ min(2L1, 2L2, 2J) we find n = 0, 2, and 4. Hence
W (𝜃) =

∑
n=0,2,4

2 ⋅ 2(2 + 1)
2 ⋅ 2(2 + 1) − n(n + 1)

Fn(202)Fn(202)Pn(cos 𝜃)

= 1 +
12

12 − 6
F2(202)F2(202)P2(cos 𝜃) +

12

12 − 20
F4(202)F4(202)P4(cos 𝜃)

= 1 + 2(−0.5976)(−0.5976)P2(cos 𝜃)+(−1.5)(−1.069)(−1.069)P4(cos 𝜃)

= 1 + 0.7143P2(cos 𝜃) − 1.7143P4(cos 𝜃)

D.3

Mixed Radiations in a Two-Step Process

Sometimes, the angular momentum coupling in a sequential nuclear decay or

in a nuclear reaction allows for different possibilities, each involving a unique
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combination of angular momenta. In general, these pure transitions will interfere,

that is, their contributions to the total angular correlation add either incoherently

or coherently. In either case, new parameters have to be introduced that describe

quantitatively the degree of mixing. These mixing ratios are usually determined

experimentally by fitting the data and are eventually interpreted in terms of some

nuclear model.

Incoherent interference applies, for example, to the channel spin js. Since we

assumed that the beam and target nuclei are unpolarized, the channel spin is ran-

domly oriented. As a consequence, the total angular correlation is given by the sum

of the individual (pure) correlations, each weighted according to the probability

for a particular channel spin value to occur. We writeW (𝜃) = Wjs
(𝜃) + 𝛿2

c
Wj′

s
(𝜃),

where the channel spin mixing ratio 𝛿2
c
≡ Pj′

s
∕Pjs
is defined as the ratio of proba-

bilities for forming (or of decay from) the intermediate state via the channel spins

j′
s
and js, where j

′
s
> js.

Coherent interference occurs when definite phase relationships are important.

This is the case if several possible values of multipolarites are allowed for a specific

𝛾-ray transition, or if the intermediate state can be formed (or decay) by several

possible values of orbital angular momenta. In practice, only the smallest two

allowed values of 𝛾-ray multipolarities (Li and Li + 1) or orbital angular momenta

(𝓁i and 𝓁i + 2) need to be considered (Example B.4). In such cases, we have to use

in Eq. (D.6) the expression

an(i)An(i) = an(LiLi)Fn(LijiJ) + 2𝛿ian(LiL
′
i
)Fn(LiL

′
i
jiJ) + 𝛿

2
i
an(L

′
i
L′
i
)Fn(L

′
i
jiJ) (D.10)

for photons: an(i) = 1 (D.11)

for particles: an(LiL
′
i
) = cos(𝜉Li − 𝜉L′i

)
(Li0L

′
i
0|n0)

(Li1L
′
i
− 1|n0)

= cos(𝜉Li − 𝜉L′i
)
2
√
[Li(Li + 1)][L

′
i
(L′

i
+ 1)]

Li(Li + 1) + L′
i
(L′

i
+ 1) − n(n + 1)

(D.12)

where the primed quantities refer to the higher value of angular momentum (par-

ticle orbital angular momentum or 𝛾-ray multipolarity). For particles with spin,

the channel spin js replaces again the initial state spin ji in Eq. (D.10).

The 𝛾-raymultipolaritymixing ratio 𝛿𝛾 is defined by the relation 𝛿
2
𝛾
≡ Γ𝛾L+1∕Γ𝛾L,

with Γ𝛾L the 𝛾-ray partial width for the transition with multipolarity L (see

Eq. (1.32)). The total angular correlation not only depends on the value but also

on the phase (plus or minus) of 𝛿𝛾 . Hence, the sign convention (i.e., the definition

of 𝛿𝛾 in terms of the nuclear matrix elements) becomes important when inter-

preting the data. We will adopt here the convention used by Biedenharn (1960).

See Ferguson (1965) for a different sign convention.

For the mixing of particle orbital angular momenta, one introduces the orbital

angular momentum mixing ratio, defined by 𝛿2
a
≡ ΓL+2∕ΓL, with ΓL the particle

partial width for orbital angular momentum L. For charged particles, the phase
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shifts 𝜉L are given by (Ferguson, 1965)

𝜉L = − arctan

(
FL
GL

)
+

L∑
n=1

arctan
( 𝜂
n

)
(D.13)

where FL and GL are the regular and irregular Coulomb wave functions, respec-

tively, and 𝜂 is the Sommerfeld parameter (see Section 2.4.3 and Appendix A.3).

The first term in the above expression is the hardsphere phase shift and the second

term is the Coulomb phase shift, which is absent for neutral particles. The phase

shift 𝜉L is energy dependent.

If a transition is mixed with amixing parameter of 𝛿2
i
, then the total angular cor-

relation is normalized to (1 + 𝛿2
i
) instead of unity. If two or more different mixing

processes are present with mixing parameters of 𝛿2
i
, 𝛿2

i+1
, 𝛿2

i+2
,…, and so on, then

W (𝜃) is normalized to the product (1 + 𝛿2
i
)(1 + 𝛿2

i+1
)(1 + 𝛿2

i+2
)…, and so on.

Example D.3

A resonance with spin and parity of J𝜋 = 1− is formed in the 31P(p,𝛼)28Si reac-

tion. The 𝛼-particle emission populates the ground state in the final 28Si nucleus

(Figure D.2c). Calculate the angular correlation between the incident proton beam

and the emitted 𝛼-particles.

Both the 31P target nucleus and the proton have a spin and parity of J𝜋 = 1∕2+.

Thus, the angular momentum coupling of the target and projectile can produce

either one of two channel spin possibilities: |1∕2 − 1∕2| ≤ js ≤ 1∕2 + 1∕2,
hence js = 0 or 1. The value of the orbital angular momentum is unique for

the incoming and outgoing reaction channel (𝓁p = 1 and 𝓁𝛼 = 1). First, the
angular correlations for the pure transitions will be calculated, that is, each

channel spin case will be treated separately. We have to consider the angular

momentum sequences j1(L1)J(L2)j2 → js(𝓁p)J(𝓁𝛼)j28Si → 0(1)1(1)0 (js = 0) and

→ 1(1)1(1)0 (js = 1). For either channel, spin the sum in Eq. (D.6) is restricted

to 0 ≤ n ≤ min(2 ⋅ 1, 2 ⋅ 1), that is, n = 0 and 2. We obtain
Wjs=0

(𝜃) =
∑
n=0,2

2L1(L1 + 1)

2L1(L1 + 1) − n(n + 1)
Fn(L1jsJ)

2L2(L2 + 1)

2L2(L2 + 1) − n(n + 1)

× Fn(L2j2J)Pn(cos 𝜃)

= 1 +
2 ⋅ 1 ⋅ 2

2 ⋅ 1 ⋅ 2 − 2 ⋅ 3
F2(101)

2 ⋅ 1 ⋅ 2
2 ⋅ 1 ⋅ 2 − 2 ⋅ 3

F2(101)P2(cos 𝜃)

= 1 + (−2)(0.7071)(−2)(0.7071)P2(cos 𝜃) = 1 + 2P2(cos 𝜃)

Similarly

Wjs=1
(𝜃) = 1 +

2 ⋅ 1 ⋅ 2
2 ⋅ 1 ⋅ 2 − 2 ⋅ 3

F2(111)
2 ⋅ 1 ⋅ 2

2 ⋅ 1 ⋅ 2 − 2 ⋅ 3
F2(101)P2(cos 𝜃)

= 1 + (−2)(−0.3536)(−2)(0.7071)P2(cos 𝜃) = 1 − P2(cos 𝜃)

The total angular correlation is given by the sum of the correlations for the indi-

vidual channel spins, each weighted according to the probability of the particular
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js value. Thus

W (𝜃) = Wjs=0
(𝜃) + 𝛿2

c
Wjs=1

(𝜃) = [1 + 2P2(cos 𝜃)] + 𝛿
2
c
[1 − P2(cos 𝜃)]

= 1 + 𝛿2
c
+ [2 − 𝛿2

c
]P2(cos 𝜃)

with 𝛿2
c
= Pjs=1∕Pjs=0

the ratio of the probabilities, or the ratio of the squares of the

matrix elements, of forming the resonance via js = 1 relative to js = 0.

Example D.4

A resonance of spin and parity of J𝜋 = 1− is populated in the 29Si(p,𝛾)30P reaction.

The resonance decays via 𝛾-ray emission to a final state in 30P with spin and parity

of J𝜋 = 1− (Figure D.2b). Calculate the angular correlation of the emitted 𝛾-rays

with respect to the incident proton beam direction.

The spin and parity of both the 29Si target nucleus and the proton is 1∕2+. Thus,

two values for the channel spin are allowed, js = 0 and 1. The only allowed value

for the orbital angular momentum of the proton is 𝓁p = 1. The 𝛾-ray decay may
proceed either via aM1or E2 transition.Hence, the angular correlation expression

will contain two additional parameters, the channel spin mixing ratio 𝛿c and the

𝛾-ray multipolarity mixing ratio 𝛿𝛾 . We will first consider the two channel spins

separately and write symbolically

j1(L1)J(L2)j2 → js(𝓁p)J(L𝛾 )j30P → 0(1)1

(
1

2

)
1 and

→ 1(1)1

(
1

2

)
1

For either channel, spin the sum in Eq. (D.6) is restricted to 0 ≤ n ≤ 2J , that is, n
= 0 and 2. We obtain

Wjs=0
(𝜃) =

∑
n=0,2

[
2L1(L1 + 1)

2L1(L1 + 1) − n(n + 1)
Fn(L1jsJ)

]
× [Fn(L2j2J) + 2𝛿𝛾Fn(L2L

′
2
j2J) + 𝛿

2
𝛾
Fn(L

′
2
j2J)]Pn(cos 𝜃)

= (1 + 𝛿2
𝛾
) +

[
2 ⋅ 1(1 + 1)

2 ⋅ 1(1 + 1) − 2(2 + 1)
F2(101)

]
× [F2(111) + 2𝛿𝛾F2(1211) + 𝛿

2
𝛾
F2(211)]P2(cos 𝜃)

= (1 + 𝛿2
𝛾
) + [(−2)0.7071]

× [(−0.3536) + 2𝛿𝛾 (−1.0607) + 𝛿
2
𝛾
(−0.3535)]P2(cos 𝜃)

= (1 + 𝛿2
𝛾
) + (0.5 + 3𝛿𝛾 + 0.5𝛿

2
𝛾
)P2(cos 𝜃)
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Similarly

Wjs=1
(𝜃) = (1 + 𝛿2

𝛾
) +

[
2 ⋅ 1(1 + 1)

2 ⋅ 1(1 + 1) − 2(2 + 1)
F2(111)

]
× [F2(111) + 2𝛿𝛾F2(1211) + 𝛿

2
𝛾
F2(211)]P2(cos 𝜃)

= (1 + 𝛿2
𝛾
) + [(−2)(−0.3536)]

× [(−0.3536) + 2𝛿𝛾 (−1.0607) + 𝛿
2
𝛾
(−0.3535)]P2(cos 𝜃)

= (1 + 𝛿2
𝛾
) + (−0.25 − 1.5𝛿𝛾 − 0.25𝛿

2
𝛾
)P2(cos 𝜃)

The total angular correlation is given by the incoherent sum of the expressions for

the individual channel spins,

W (𝜃) = Wjs=0
(𝜃) + 𝛿2

c
Wjs=1

(𝜃)

= (1 + 𝛿2
𝛾
) + (0.5 + 3𝛿𝛾 + 0.5𝛿

2
𝛾
)P2(cos 𝜃)

+ 𝛿2
c
[(1 + 𝛿2

𝛾
) + (−0.25 − 1.5𝛿𝛾 − 0.25𝛿

2
𝛾
)P2(cos 𝜃)]

= (1 + 𝛿2
𝛾
) + 𝛿2

c
(1 + 𝛿2

𝛾
)

+ (0.5 + 3𝛿𝛾 + 0.5𝛿
2
𝛾
− 0.25𝛿2

c
− 𝛿2

c
1.5𝛿𝛾 − 𝛿

2
c
0.25𝛿2

𝛾
)P2(cos 𝜃)

= (1 + 𝛿2
𝛾
)(1 + 𝛿2

c
) + 0.5(1 + 6𝛿𝛾 + 𝛿

2
𝛾
)(1 − 0.5𝛿2

c
)P2(cos 𝜃)

The channel spin and 𝛾-ray multipolarity mixing ratios are given by 𝛿2
c
=

Pjs=1
∕Pjs=0

and 𝛿2
𝛾
= Γ𝛾E2∕Γ𝛾M1, respectively.

Example D.5

Consider the 19F(p,𝛾)20Ne reaction, populating a resonance with a spin and parity

of J𝜋 = 2−. The resonance decays to a lower lying state in 20Ne with a spin and

parity of J𝜋 = 1+ (Figure D.2b). Calculate the angular correlation of the emitted

𝛾-rays with respect to the incident proton beam direction.

Both the 19F target nucleus and the proton have a spin and parity of 1∕2+. The

channel spin has two allowed values, js = 0 and 1. However, the 2
− resonance

cannot be formed from js = 0 since the total angular momentum and parity

must be conserved simultaneously. Hence, only the channel spin js = 1 plays a

role in this process. The resonance can be formed via orbital angular momenta

of 𝓁p = 1 and 3 and thus this transition is mixed. For the sake of simplicity, we
will assume that the 𝛾-ray decay proceeds via an E1 transition only. We write

symbolically

j1(L1)J(L2)j2 → js(𝓁p)J(L𝛾 )j20Ne → 1
(
1

3

)
2(1)1
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The sum in Eq. (D.6) is restricted to n ≤ 2 since we assumed L𝛾 = 1. It follows

W (𝜃) =
∑
n=0,2

[
cos(𝜉L1 − 𝜉L1 )

2L1(L1 + 1)

2L1(L1 + 1) − n(n + 1)
Fn(L1jsJ)

+2𝛿a cos(𝜉L1 − 𝜉L′1
)
2
√
[L1(L1 + 1)][L

′
1
(L′
1
+ 1)]

L1(L1 + 1) + L′
1
(L′
1
+ 1) − n(n + 1)

Fn(L1L
′
1
jsJ)

+𝛿2
a
cos(𝜉L′

1
− 𝜉L′

1
)

2L′
1
(L′
1
+ 1)

2L′
1
(L′
1
+ 1) − n(n + 1)

Fn(L
′
1
jsJ)

]
× Fn(L2j2J)Pn(cos 𝜃)

= [1 ⋅ 1 ⋅ 1 + 𝛿2
a
⋅ 1 ⋅ 1 ⋅ 1] ⋅ 1 +

[
1 ⋅

2 ⋅ 1 ⋅ (1 + 1)
2 ⋅ 1 ⋅ (1 + 1) − 2(2 + 1)

F2(112)

+2𝛿a cos(𝜉𝓁=1 − 𝜉𝓁=3)
2
√
[1(1 + 1)][3(3 + 1)]

1(1 + 1) + 3(3 + 1) − 2(2 + 1)
F2(1312)

+𝛿2
a
⋅ 1 ⋅

2 ⋅ 3(3 + 1)
2 ⋅ 3(3 + 1) − 2(2 + 1)

F2(312)

]
F2(112)P2(cos 𝜃)

= 1 + 𝛿2
a
+

[
1 ⋅ (−2)(0.4183) + 2𝛿

a
cos(𝜉𝓁=1 − 𝜉𝓁=3)(1.2247)(0.2390)

+𝛿2
a
⋅ 1(1.333)(−0.7171)

]
(0.4183)P2(cos 𝜃)

= 1 + 𝛿2
a
+ [−0.35 + 0.25𝛿a cos(𝜉𝓁=1 − 𝜉𝓁=3) − 0.4𝛿

2
a
]P2(cos 𝜃)

The orbital angular momentum mixing ratio is given by 𝛿2
a
= Γ𝓁=3∕Γ𝓁=1.

D.4

Three-Step Process with Unobserved Intermediate Radiation

It is sometimes of interest in a particle capture reaction to determine the angu-

lar correlation of secondary 𝛾-rays with respect to the incident beam direction.

In this case, we have a three-step process, involving: (i) the formation of a reso-

nance with spin J through the capture of an incident particle with orbital angular

momentum L1, (ii) the first (primary) 𝛾-ray decay of multipolarity L to an inter-

mediate level of spin J , and (iii) finally the subsequent secondary 𝛾-ray decay of

multipolarity L2 to the final state of spin j2 (see Figure D.2d). Only the incident

beam and the secondary 𝛾-ray transition are observed, while the primary 𝛾-ray

transition is unobserved. We write symbolically

j1

(
L1
L′
1

)
J

(
L

L′

)
J

(
L2
L′
2

)
j2 (D.14)

The angular correlation expression is then given by

W (𝜃) =
∑

n=0,2,…

[an(1)An(1)]Cn[an(2)An(2)]Pn(cos 𝜃) (D.15)
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Cn =

√
(2J + 1)(2J + 1)W (JnLJ; JJ) (D.16)

The first link (j1 → J) and last link (J → j2) are described by the terms

an(1)An(1) and an(2)An(2), respectively, and are treated as before. The term

Cn describes the unobserved primary radiation. Unobserved 𝛾-rays of multi-

polarities L and L′ mix incoherently, that is, the total correlation is given by

W (𝜃) = WL(𝜃) + 𝛿
2
𝛾LL′

WL′ (𝜃). Furthermore, the sum over n is restricted by the

condition 0 ≤ n ≤ min(2L1, 2L2, 2J , 2J). In particular, the angular correlation
becomes isotropic for either J or J equal to 0 or 1∕2. Note that the multipolarity

L of the unobserved primary radiation does not limit the sum over n.

Example D.6

Consider the 11B(p,𝛾)12C reaction leading to the formation of a resonance with

spin and parity of J𝜋 = 2+ (Figure D.2d). The resonance 𝛾-ray decays to an inter-

mediate state (J𝜋 = 2+) which, in turn, decays to the 12C ground state (J𝜋 = 0+).

Calculate the angular correlation of the second 𝛾-ray transition with respect to the

incident beam direction.

The spin and parity of the 11B ground state is J𝜋 = 3∕2−. The two possible channel

spins are js = 1 and 2. Of the two allowed proton orbital angular momenta (𝓁p
= 1 and 3), we will consider only the lower 𝓁p value. Similarly, of the two 𝛾-ray
multipolarities for the unobserved primary transition (M1 and E2), we will only

consider the M1 case. Only one possibility is allowed for the multipolarity of the

secondary 𝛾-ray transition (E2). Symbolically we write

js

(
L1
L′
1

)
J

(
L

L′

)
J

(
L2
L′
2

)
j2 → 1(1)2(1)2(2)0 and → 2(1)2(1)2(2)0

For either channel spin, the summation is restricted to n ≤ 2 (because of 𝓁p = 1).
The angular correlation is given by

Wjs=1
(𝜃) =

∑
n=0,2,…

[an(1)An(1)]Cn[an(2)An(2)]Pn(cos 𝜃)

=
∑
n=0,2

2L1(L1 + 1)

2L1(L1 + 1) − n(n + 1)
Fn(L1jsJ)

√
(2J + 1)(2J + 1)

×W (JnLJ; JJ)Fn(L2j2J)Pn(cos 𝜃)

= 1 ⋅ 1 ⋅
√
(2 ⋅ 2 + 1)(2 ⋅ 2 + 1)W (2012; 22) ⋅ 1

+
2 ⋅ 1 ⋅ 2

2 ⋅ 1 ⋅ 2 − 2 ⋅ 3
F2(112)

√
(2 ⋅ 2 + 1)(2 ⋅ 2 + 1)

×W (2212; 22)F2(202)P2(cos 𝜃)

= 1 ⋅ 5 ⋅ 0.2 ⋅ 1 + (−2)(0.4183) ⋅ 5 ⋅ 0.1 ⋅ (−0.5976)P2(cos 𝜃)

= 1 + 0.25P2(cos 𝜃)
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Similarly,

Wjs=2
(𝜃) = 1 ⋅ 1 ⋅

√
(2 ⋅ 2 + 1)(2 ⋅ 2 + 1)W (2012; 22) ⋅ 1

+
2 ⋅ 1 ⋅ 2

2 ⋅ 1 ⋅ 2 − 2 ⋅ 3
F2(122)

√
(2 ⋅ 2 + 1)(2 ⋅ 2 + 1)

×W (2212; 22)F2(202)P2(cos 𝜃)

= 1 ⋅ 5 ⋅ 0.2 ⋅ 1 + (−2)(−0.4183) ⋅ 5 ⋅ 0.1 ⋅ (−0.5976)P2(cos 𝜃)

= 1 − 0.25P2(cos 𝜃)

The total angular correlation is given by the incoherent sum of the expressions for

the individual channel spins,

W (𝜃) = Wjs=1
(𝜃) + 𝛿2

c
Wjs=2

(𝜃)

= [1 + 0.25P2(cos 𝜃)] + 𝛿
2
c
[1 − 0.25P2(cos 𝜃)]

= 1 + 𝛿2
c
+ 0.25(1 − 𝛿2

c
)P2(cos 𝜃)

D.5

Experimental Considerations

Experimental angular correlations and differential yields measured in the

laboratory system must have both their intensities and angles converted to

the center-of-mass system (Appendix C) before they can be compared to the

theoretical expressions given above. Another important correction has to be

performed since, strictly speaking, the theoretical angular correlation of Eq. (D.3)

applies only to an ideal detector of negligible size. In an experiment, the measured

intensities are obtained by integrating the theoretical angular correlation over the

finite solid angle subtended by the detector. Hence, the effect of the finite solid

angle is to reduce the anisotropy. For a detector of axial symmetry and for its

symmetry axis pointing toward the source of the emitted radiation (Figure 4.30),

it can be shown that the form of the angular correlation function remains

unchanged, but each term in the series of Eq. (D.3) becomes multiplied by a

correction factor. For example, if radiation originating from a nuclear reaction

is detected, then the experimental angular correlation measured by a specific

detector is given by

Wexp(𝜃) =
1

b0

nmax∑
n=0

bnQnPn(cos 𝜃) (D.17)

Similarly, the experimental angular correlation between two emitted radiations a

and b measured with two different detectors (or with the same detector, as was

the case for coincidence summing in Section 4.5.2) can be written as

Wexp(𝜃) =
1

b0

nmax∑
n=0

bnQ
(a)
n
Q(b)

n
Pn(cos 𝜃) (D.18)
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The attenuation factors Qn are given by (Rose, 1953)

Qn =
∫ 𝛽max
0

Pn(cos 𝛽)𝜂(𝛽,E) sin 𝛽 d𝛽

∫ 𝛽max
0

𝜂(𝛽,E) sin 𝛽 d𝛽
(D.19)

with 𝛽 the angle between the radiation incident on the detector and the detector

symmetry axis, 𝛽max the maximum angle subtended by the detector, and 𝜂(𝛽,E)

the detector efficiency for the radiation of energy E at angle 𝛽. It is apparent that

the factors Qn depend on the detector geometry, the energy of the radiation, and

the kind of event that takes place in the detection process (e.g., total versus partial

energy deposition for 𝛾-rays; see Section 4.5.2).

If the intrinsic detector efficiency is unity, as is generally the case for charged

particle detectors, then the attenuation factor reduces to (Rose, 1953)

Qn =
Pn−1(cos 𝛽max) − cos 𝛽maxPn(cos 𝛽max)

(n + 1)(1 − cos 𝛽max)
(D.20)

Attenuation factors calculated from this expression are displayed in Figure D.3a

for values of n = 1, 2, 3, and 4.

In the case of 𝛾-ray detectors, where the efficiency for detecting an incident

photon is smaller than unity, the attenuation factors will be larger than given by

Eq. (D.20), that is, they will be closer to unity and, consequently, the difference

between measured and theoretical angular correlation will be smaller. The

total efficiency attenuation factors can be estimated with the same method

used for calculating total efficiencies (Section 4.5.2). One simply substitutes

𝜂T (𝛽,E) = 1 − e−𝜇(E)x(𝛽) for the total efficiency in Eq. (D.19) and solves the integrals
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Figure D.3 (a) Attenuation factors for an

intrinsic detector efficiency of unity (e.g., a

silicon charged-particle counter). The hori-

zontal axis displays the ratio r∕h, with r and

h the radius of the detector aperture and the

source-detector distance, respectively. Note

that tan 𝛽max = r∕h. The curves represent dif-

ferent values of n. After Gove (1959).

(b) Attenuation factors for an HPGe detec-

tor versus 𝛾-ray energy. The detector vol-

ume and source-detector distance amount

to 582 cm3 and 1.6 cm, respectively. The

curves represent different values of n and

are obtained by calculating peak efficien-

cies in Eq. (D.19) with the Monte Carlo code

GEANT4. (Courtesy of Richard Longland.)
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numerically. Similarly, the peak efficiency attenuation factors can be estimated if

the peak efficiency 𝜂P(𝛽,E) is first obtained from a Monte Carlo calculation. Peak

efficiency attenuation factors estimated in this way for an HPGe detector are

displayed in Figure D.3b. The curves show the values of Qn versus 𝛾-ray energy

for a fixed source-detector distance of 1.6 cm. As expected, for decreasing photon

energy the peak efficiency 𝜂P(𝛽,E) increases and hence Qn becomes smaller.

D.6

Concluding Remarks

We conclude this section with a few useful remarks. Since the angular momenta

in low-energy nuclear reactions are rather small, the symmetry properties of the

functions Fn restrict the series in Eq. (D.3) to a small number of terms. In practice,

terms beyond n = 4 are rarely encountered. If for some reason the n = 4 term is

zero or negligible, then we obtainW (𝜃 = 55∘) ≈ 1 orW (𝜃 = 125∘) ≈ 1, since the

P2(cos 𝜃) term is equal to zero at these angles (see Eq. (A.12)). Hence, the angle-

integrated yield can bemeasuredwith a single detector located at a center-of-mass

angle of 𝜃 = 55∘ or 𝜃 = 125∘. This circumstance has major practical advantages if

very small yields need to bemeasuredwith a single detector in very close geometry

to the target.

It is sometimes possible to simplify the theoretical angular correlation by mak-

ing reasonable assumptions about the nuclear transition matrix elements. Mix-

tures of M1/E2 𝛾-ray multipolarites occur frequently, but E1/M2 mixtures are

rarely important. In the latter case, it is often safe to assume that the E1multipolar-

ity dominates the 𝛾-ray transition strength, hence 𝛿𝛾M2∕E1 ≈ 0. Similar arguments

apply to the mixing of orbital angular momenta. Because of parity conservation

(Appendix B), interfering orbital angular momenta must differ by two units, that

is, 𝓁i and 𝓁i+2. The penetration factors decrease strongly for increasing values of

orbital angular momentum, as can be seen from Figure 2.21.Therefore, unless the

reduced width (or spectroscopic factor) of the 𝓁i+2 component is considerably

larger than that of the 𝓁i component, the degree of orbital angular momentum

mixing will be small, that is, 𝛿a𝓁i+2∕𝓁i
≈ 0. Both of these simplifying assumptions

should be treated with caution if the purpose of an angular correlation measure-

ment is the determination of unknown nuclear spins. However, they are useful

in nuclear astrophysics measurements if the level spins are known and if one is

mostly interested in estimating angular correlation corrections for measured dif-

ferential yields.

Sometimes a single 𝛾-ray detector is placed at 𝜃 = 0∘ in very close geometry

to the target to maximize counting efficiency. Angular correlation effects may be

significant for a specific primary 𝛾-ray transition, but it may prove difficult to cal-

culate the angular correlation if, for example, certain mixing ratios are unknown.

In such cases, it could be of advantage to analyze instead the intensity of a cor-

responding secondary 𝛾-ray decay for the calculation of the total yield. This is
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especially useful if the secondary 𝛾-ray transition proceeds from a level with a

spin of 0 or 1∕2 since then its angular correlation is isotropic.

We pointed out that the series of Eq. (D.3) will contain only terms with n = even

if the correlation involves an intermediate state of well-defined parity. However,

if a reaction proceeds through two or more overlapping resonances of opposite

parity, then the resulting angular correlation will not be symmetric about 90∘ any-

more and terms with n = odd will appear in the series of Eq. (D.3). We will not

consider here the more involved angular correlation resulting from the interfer-

ence of two overlapping resonances. The interested reader is referred to Bieden-

harn (1960). Expressions for the angular correlation in direct radiative capture,

and for the interference between resonant and direct contributions, are given in

Rolfs (1973).

Example D.7

A resonance at Elab
r
= 519 keV is excited in the 17O(p,𝛾)18F reaction.The strongest

primary transition occurs to the 18F level atEx = 1121 keV (E𝛾 ≈ 5 MeV,B𝛾 = 0.55 ±

0.03). The theoretical angular correlation is given by

W𝛾 (𝜃) = 1 − 0.10P2(cos 𝜃)

The 𝛾-ray counter is located at 𝜃 = 0∘ with respect to the proton beam direction in

very close geometry to the target. A (peak) attenuation factor of Q2 = 0.62 ± 0.05

is estimated from Eq. (D.19) for this geometry.Themeasured peak intensity is𝛾

= 1530 ± 47 for a certain total number of incident protons. The peak efficiency at

E𝛾 ≈ 5 MeV amounts to 𝜂
P
𝛾
= 0.015 (±5%). Calculate the total number of reactions

that took place. Ignore coincidence summing effects.

The measured angular correlation is given by

Wexp,𝛾 (𝜃) = 1 − 0.10Q2P2(cos 𝜃) = 1 − 0.10(0.62 ± 0.05)P2(cos 𝜃)

At 𝜃 = 0∘ we obtain P2(cos 𝜃) = 1 and hence

Wexp,𝛾 (0) = 1 − 0.10(0.62 ± 0.05) ⋅ 1 = 0.94(±5%)

From Eq. (4.69), we find

R =
𝛾

B𝛾𝜂
P
𝛾
W𝛾

=
1530(±3%)

[0.55(±5%)][0.015(±5%)][0.94(±5%)]
= 197292(±9%)
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Appendix E

Constants, Data, Units, and Notation

Most of the physical constants used in this book are adopted from Mohr, Tay-

lor, and Newell (2012) and are listed in Appendix E.1. The numbers in parenthe-

sis denote the uncertainty. The mathematical symbols, units, and prefixes follow

common usage and are given in Appendix E.2. Symbols for physical quantities are

summarized in Appendix E.4. In several cases, the use of the same symbol for dif-

ferent physical quantities was unavoidable. Further help to the reader is provided

by numbers given in parenthesis after a description of a symbol with multiple

meanings. These refer to the chapter in which the specific meaning is used. For

example, the symbol N denotes a normalization factor (in Chapters 2 or 3), the

number density of particles or photons (in Chapters 3, 4, or 5), and the neutron

number (in Chapters 1 or 5). The symbol denotes the number (without unit)
of particles, photons, disintegrations, or reactions throughout the text.

E.1

Physical Constants and Data

a0 Bohr radius; a0 = 0.529 177 210 92(17) × 10
−10 m

c speed of light in a vacuum; c = 299 792 458 m s−1

e elementary charge; e = 1.602 176 565(35) × 10−19 C

h Planck constant (h ≡ 2𝜋ℏ);
h = 4.135 667 516(91) × 10−15 eV s = 6.626 069 57(29) × 10−34 J s,

ℏ = 6.582 119 28(15) × 10−16 eV s = 1.054 571 726(47) × 10−34 J s,

ℏc = 197.326 971 8(44)MeV fm

k Boltzmann constant; k = 8.617 332 4(78) × 10−5 eVK−1

L Loschmidt constant; L = 2.686 780 5(24) × 1025 m−3

L☉ luminosity of the Sun (bolometric); L☉ = 3.826 × 1026 W

m𝐞 electron mass;me = 9.109 382 91(40) × 10
−31 kg

= 0.000 548 579 911 1(12) u

mu atomic mass constant; 1mu ≡ 1

12
m(12C) = 1.660 538 921(73) × 10−27 kg

m𝐧 neutron mass;mn = 1.008 664 916 00(43) u

m𝐩 proton mass;mp = 1.007 276 466 812(90) u

Nuclear Physics of Stars, Second Edition. Christian Iliadis.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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muc2 energy equivalent ofmu;muc
2 = 931.494 061(21)MeV

m𝐞c2 electron rest energy;mec
2 = 0.510 998 928(11)MeV

m𝐧c2 neutron rest energy;mnc
2 = 939.565 379(21)MeV

m𝐩c2 proton rest energy;mpc
2 = 938.272 046(21)MeV

M☉ mass of the Sun;M☉ = 1.989 × 1030 kg

NA Avogadro constant; NA = 6.022 141 29(27) × 10
23 mol−1

E.2

Mathematical Expressions

= equal to

∼ proportional to

≡ defined as

≈ approximately equal to

> greater than

< less than

≫ considerably greater than

≪ considerably less than

→ limit toward

∞ infinity

𝛻2 Laplace operator; in Cartesian coordinates 𝛻2 ≡ 𝜕2

𝜕x2
+

𝜕2

𝜕y2
+

𝜕2

𝜕z2

∗ complex conjugate; z∗ = Re z − Im z|z|2 absolute magnitude of z; |z|2 = z∗z⟨x⟩ expectation value of x; ⟨x⟩ = ∫
x
xP(x) dx, where P(x) is a normalized

probability density function of x

𝛿ij Kronecker delta; 𝛿ij = 1 if i = j, and 0 otherwise

e base of natural logarithm; e = 2.71828…

exp(x) exponential function; exp(x) ≡ ex

i imaginary unit; i ≡ √
−1

Im z imaginary part of z

j𝓁(kr) spherical Bessel function

ln(x) natural logarithm; ln(x) = loge(x)

log(x) common (base 10) logarithm; log(x) = log10(x)

n𝓁(kr) spherical Neumann function

𝜋 ratio of a circle’s circumference to its diameter; 𝜋 = 3.14159…

P𝓁(x) Legendre polynomial

Re z real part of z

Y𝓁m𝓁
(𝜃, 𝜙) spherical harmonic

Δa difference; Δa ≡ a2 − a1
Ω solid angle



E.3 Prefixes and Units 607

E.3

Prefixes and Units

Prefixes

f- femto-; 10−15

p- pico-; 10−12

n- nano-; 10−9

μ- micro-; 10−6

m- milli-; 10−3

c- centi-; 10−2

k- kilo-; 103

M- mega-; 106

G- giga-; 109

Units

∘ degree of arc; 1∘ = 𝜋

180
rad

A ampere; 1 A = 1 C∕s

b barn; 1 b = 10−24 cm2 = 10−28m2

Bq becquerel; 1 Bq = 1 s−1

∘C degree Celsius

C coulomb

Ci curie; 1 Ci = 3.7 × 1010 s−1

erg cgs unit of energy; 1 erg = 10−7 J

eV electron volt; 1 eV = 1.602 176 565(35) × 10−19 J

g gram

Hz hertz; 1 Hz =1 s−1

J joule

K kelvin

m meter

min minute

m w.e. meter water equivalent

rad radian; 1 rad = 57.29578∘

s second

sr steradian; solid angle over entire sphere amounts to 4𝜋 sr;

1 sr = 3282.80635 deg2

u (unified) atomic mass unit; 1 u = mu =
1

12
m(12C)

V volt

W.u. Weisskopf unit

y year; 1 sidereal year = 3.1558149984 × 107 s
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E.4

Physical Quantities

A activity (4); area (2, 3); mass number (1, 2, 3, 4, 5)

Apot hardsphere potential scattering amplitude

Ares resonance scattering amplitude

a diffuseness of Woods–Saxon potential

(a, b) nuclear reaction involving incoming particle a and emitted parti-

cle b

B branching ratio (1, 2, 3, 4, 5); binding energy (1, 5); magnetic field

strength (4)

B(𝜔L) reduced 𝛾-ray transition probability

C isospin Clebsch–Gordan coefficient (2); net number of counts (4);

peak centroid in pulse height spectrum (4)

c reaction channel

D number density of deuterium or 2H (5); number of disintegra-

tions (4)

d deuteron

d target or absorber thickness (4), distance of point source to detector

front face (4)

E energy

E0 energy location of Gamow peak maximum

Er observed resonance energy

e electron, also e−

e+ positron

e−2𝜋𝜂 Gamow factor

(e+𝜈) nuclear emission of positron

(e−, 𝜈) nuclear electron capture

Fij time-integrated net abundance flow between species i and j

Fppi fraction of 4He nuclei produced in the ppi chain

F(Z, p) Fermi function

f fraction of the number of 56Fe seed nuclei that have been subjected

to an exponential distribution of neutron exposures

fan effective rate of 28Si consumption

f𝓁 logarithmic derivative at the boundary for orbital angular momen-

tum 𝓁
fij net abundance flow between species i and j

fppi fraction of total energy retained in the star if 4He nucleus is pro-

duced in ppi chain

fs screening factor

f (𝜃) scattering amplitude
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f (Ei,E,E
′) probability that particle incident at energy Ei has energy E at a depth

inside the target corresponding to E′

f (Z,Emax
e

) Fermi integral

FWHM full width at half maximum

G partition function (1, 3, 5); gravitational constant (5)

GA axial-vector coupling constant

GV vector coupling constant

Gnorm normalized partition function

GSF stellar rate ground state fraction

g𝜇 statistical weight of nuclear state 𝜇

g(E0,Ei) probability that particle in incident beam of mean energy E0 has

energy of Ei

H Hamiltonian (2); number density of 1H (5); pulse height (4); Hubble

parameter (5)

H0 Hubble’s constant

Hfi weak interaction matrix element

h dimensionless Hubble parameter

I current (4); particle spin (2)

J nuclear spin (1); resonance spin (3); total particle spin (2)

j current density (2); total particle spin (2, 3, 5)

K kinetic energy (4); recoil energy ofCompton electron (4); wave num-

ber (2)

k wave number, also 𝜅, k̂, K

𝓁 orbital angular momentum quantum number

L 𝛾-ray multipolarity (1, 2, 3); length of flight path in time-of-flight

experiment (4)

L⃗ angular momentum vector

M relative atomic mass in units of u

MF Fermi matrix element

MGT Gamow–Teller matrix element

M.E. atomic mass excess

M2
W

𝛾-ray transition strength in Weisskopf units

m atomic mass, nuclear mass (1, 2, 3, 4); magnetic quantum num-

ber (1, 2)

mij reduced mass of particles i and j

N harmonic oscillator quantum number (1); neutron number (1, 5);

normalization factor (2, 3); number density of particles or photons

(3, 4, 5)

 number (without units) of particles, photons, disintegrations, or

reactions

NA⟨𝜎𝑣⟩ reaction rate per particle pair in units of cm3mol−1 s−1
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n neutron

n exponent in temperature dependence of reaction rate (3, 5); number

of nodes in radial wave function (2); number of target or sample

nuclei per unit area (4); radial quantum number (1)

nc average number of neutrons captured per 56Fe seed nucleus

ne− electron density

P beam power (4); gas pressure (4); Maxwell–Boltzmann distribu-

tion (3); particle density (2); penetration factor (2, 3); population

probability of excited levels (1, 3); probability (4); production rate

of radioactive nuclei (4)

p proton

p linear momentum

p(𝜏) exponential probability distribution of neutron exposures

Q angular correlation attenuation factor (4);Q-value (1, 2, 3, 4, 5); total

accumulated charge (4)

q ion charge state (4); neutrino linear momentum (1); parameter

describing absorption in the nuclear interior (2)

R nuclear radius (2, 3); radius of cylindrical detector (4)

R0 radius of square-well potential (2, 3); radius ofWoods–Saxon poten-

tial (1)

R1 radius of outer boundary of square-barrier potential

Rc classical turning point

RD Debye–Hückel radius

Rg gain radius

Rs shock radius

R𝜈 radius of neutrino sphere

RUL recommended upper limit

ℜ R-function or R-matrix

r reaction rate in units of number of reactions per time per volume

r⃗ radius vector

r0 radius parameter

S astrophysical S-factor (2, 3, 4, 5); shift factor (2); spectroscopic fac-

tor (1, 2, 3); stopping power (4)

Sn, Sp, S𝛼 neutron, proton, and 𝛼-particle separation energy

SEF stellar enhancement factor

s channel spin

T neutron transmission (4); temperature (3, 4, 5)

T̂ transmission coefficient

T1∕2 half-life

T9 temperature in units of GK, T9 ≡ T∕109 K

t length of detector crystal (4); time (1, 2, 3, 4, 5)
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U electric potential

Us perturbing potential caused by electron shielding charge density

u(r) radial wave function, u(r) ≡ rR(r)

V potential (2); volume (3, 4)

VC Coulomb barrier

Vs screening potential

𝑣 velocity

𝑣T location of the maximum of the Maxwell–Boltzmann velocity

distribution

W angular correlation

w parameter w = (Q𝛽 +mec
2)∕mec

2

X mass fraction

x parameter for electron screening, x(E) ≡ Rc∕RD

Y mole fraction (1, 3, 5); yield (4)

Z atomic number (1, 4, 5); charge (2, 3, 4, 5)

𝛼 alpha-particle

𝛼(I1I2) specific pair of nuclei 1 and 2 with spins of I1 and I2
𝛽 nuclear emission or capture of electron or positron

𝛽+ nuclear emission of positron or electron capture

𝛽− nuclear emission of electron

(𝛽𝜈a) 𝛽-delayed emission of particle a

Γ total width of resonance or compound nucleus level

Γa partial width for emission or absorption of particle a

Γ𝛾 partial width for emission or absorption of 𝛾-ray

Γo
i

observed total or partial width

𝛾 𝛾-ray or photon

𝛾2 reduced width

Δ level shift (2); parameter Δ ≡ R1 − R0 (2); systematic difference

between tabulated and experimental stopping power (4); 1/e width

of Gaussian approximation to Gamow peak (3, 5)

𝛿 mixing ratio (1, 3); scattering phase shift (2); 𝛿 electrons (4)

𝛿𝛼 , 𝛿p, 𝛿n number of 𝛼-particles, protons, and neutrons of nucleus A
Z
YN in

excess of their number in 28Si

𝜀 nuclear energy generation per unit time and per volume (3, 5); stop-

ping power (4)

𝜖 dimensionless parameter, 𝜖 ≡ E∕E0
𝜁 parameter for electron screening

𝜂 detector efficiency (4); neutron excess parameter (1, 5); Sommerfeld

parameter (2, 3); baryon-to-photon number ratio (5)

𝜃 angle (2, 4); parameter 𝜃 ≡ (2𝜋mukT∕h
2)3∕2 (5)
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𝜃2 dimensionless reduced width

𝜃2
pc

dimensionless single-particle reduced width

𝜃e electron degeneracy factor

Λ total photodisintegration decay constant

𝜆 de Broglie wavelength (2, 4); decay constant (1, 3, 4, 5); mean free

path of photons or neutrons (4)

𝜇 linear absorption coefficient for photons (4); muon (4)

𝜈 frequency (3); neutrino (1, 3, 5); neutron number (5)

𝜈 antineutrino

𝜋 parity (1, 2, 5); proton number (5)

𝜌 mass density (1, 3, 4, 5); product 𝜌 ≡ kr (2)

𝜌b baryon mass density

𝜌0,c critical density

𝜎 cross section (2, 3, 4, 5); experimental stopping power error (4)

�̂� effective reaction cross section

𝜎 average reaction cross section⟨𝜎⟩T Maxwellian-averaged cross section

𝜎𝓁 Coulomb phase shift⟨𝜎𝑣⟩ reaction rate per particle pair

𝜏 duration of r-process (5); mean lifetime (1, 2, 3, 5); neutron exposure

in units of neutrons per area (5); parameter 𝜏 ≡ 3E0∕(kT) (3, 5)
𝜏cycle fission cycling time

𝜏NSE time to reach nuclear statistical equilibrium

Φ time-integrated neutron flux in units of particles per area

𝜙 angle (2, 4); incident particle flux in units of particles per area and

per time (4, 5); wave function (1)

𝜙ij parameter 𝜙ij ≡ |ri→j − rj→i|∕max(ri→j, rj→i)

Ψ, 𝜓 wave function

Ωb baryon density parameter

Ωc cold dark matter density parameter

Ωm total matter density parameter

ΩΛ dark energy density parameter

𝜔 angular frequency (2);

spin factor 𝜔 ≡ (2J + 1)(1 + 𝛿01)∕[(2j0 + 1)(2j1 + 1)] (3, 4, 5)

𝜔𝛾 resonance strength
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Figure 1 The bright globular cluster M

10. It is located at a distance of 14 000

light years from Earth and has an approxi-

mate diameter of 80 light years. The bright

reddish-orange stars are red giants fusing

hydrogen to helium via the CNO-cycles in a

shell surrounding a helium core. The bright

blue stars are horizontal branch stars that

fuse helium to carbon and oxygen in the

core and hydrogen to helium in a shell.

Only the faint, gray-looking stars (i.e., those

with the lowest mass) are most likely main

sequence stars that fuse hydrogen to helium

via the pp-chains in the core. The image is

a two color composite. (Reprinted with per-

mission. Credit and copyright: T. Credner and

S. Kohle, Observatorium Hoher List, Stern-

warte Bonn.)

Nuclear Physics of Stars, Second Edition. Christian Iliadis.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 2 An average, but very special, main

sequence star of spectral class G2 that fuses

hydrogen to helium in its core via the pp

chains. Its mean distance from the center of

our Galaxy, which hosts more than 100 mil-

lion similar stars, is 27 000 light years. The

surface temperature amounts to 5800 K and

its diameter is about 1.4 million kilometer.

The Sun goes through an 11-year activity

cycle caused by variations of its magnetic

field. The above image was taken in 1997

in the ultraviolet light emitted by a specific

type of ionized helium. Particularly hot areas

appear in white, while cooler areas are dis-

played in red. The material in the eruptive

prominence visible on the lower left side is

at temperatures of 70 000 K and is consid-

erably cooler than the surrounding corona,

which has a temperature typically in excess

of one million kelvin. Courtesy of SOHO/EIT

consortium. SOHO (SOlar and Heliospheric

Observatory) is a project of international

cooperation between ESA and NASA.
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Figure 3 The Dumbbell Nebula (M 27). It

was the first planetary nebula ever discov-

ered. Its distance from Earth is 1200 light

years. The red and green colors originate

from the emission of hydrogen and oxy-

gen, respectively. The gas is heated and

excited by the ultraviolet radiation from a

star that is located in the center of the neb-

ula (visible at the middle of the image). The

central star has a high surface temperature

of about 85 000 K. Planetary nebulae are the

result of a natural evolutionary stage of low

mass stars. The Sun is expected to become

the central star of a planetary nebula in

several billion years. The image is a three

color composite. (Reprinted with permission.

Credit and copyright: European Southern

Observatory.)
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Figure 4 The planetary nebula NGC 6543,

known as the Cat’s Eye. It is located in the

constellation Draco, at a distance of about

3000 light years from Earth. The image is

a false-color composite of an X-ray part

(shown in purple; obtained with the Chan-

dra X-Ray Observatory) and an optical part

(shown in red and green; obtained with

the Hubble Space Telescope), and reveals

where the hot, X-ray emitting gas appears

in relation to the cooler material seen at

optical wavelengths. The central star has a

surface temperature of about 50 000 K and

is expected to collapse to a white dwarf

in a few million years. The fast stellar wind

emitted from the central star shock-heats the

gas that was previously expelled and gives

rise to the X-ray emitting bubble (shown in

purple). Pockets of hot gas seem to border

on cooler gas emitting strongly at optical

wavelengths, which may indicate that the

expanding hot gas is sculpting the visible

filaments and structures. The mechanisms

that produced the complicated morphol-

ogy of the planetary nebula are not well

understood. (Credits: (X-ray) NASA/UIUC/Y,

Chu et al.; (optical) NASA/J. P. Harrington,

K. J Borkowski (UMD); (composite) Z. Levay

(STScI).)
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Figure 5 The nebula M1-67 surrounding

the Wolf-Rayet star WR 124, located in the

constellation Sagittarius. The distance of the

nebula from Earth is 15 000 light years. The

central Wolf-Rayet star is very hot (about

50 000 K). It is also massive and hence short-

lived. Wolf–Rayet stars go through a phase of

enormous mass loss via a strong stellar wind.

The image reveals hot blobs of ejected gas,

indicating that the stellar wind does not flow

smoothly into space, but has instabilities

that make the nebula appear clumpy. The

age of the nebula is less than 10 000 years.

The false color image was obtained with the

Wide Field Planetary Camera 2 of the Hub-

ble Space Telescope. (Credit: Yves Grosdidier

(University of Montreal and Observatoire de

Strasbourg), Anthony Moffat (Université de

Montreal), Gilles Joncas (Université Laval),

Agnes Acker (Observatoire de Strasbourg),

and NASA.)
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Figure 6 Supernova 1987A in the Large

Magellanic Cloud (a nearby small galaxy that

is a satellite of our Galaxy) was the brightest

exploding star seen in 400 years. Its distance

from Earth is 160 000 light years. The super-

nova was of type II and its progenitor was a

massive star (a blue supergiant). The shock

wave from the supernova has been mov-

ing toward a ring of matter, about two light

years across, that was probably ejected by

the central star about 20 000 years before

the explosion. The image shows many hot

spots that are created by the supernova

shock compressing and heating the gas of

the ring. (The brightest spot on the lower

right side of the ring is a star that happens

to lie along the Hubble Space Telescope’s

line of sight). The elongated and expanding

object in the middle of the ring is the debris

from the explosion. (Credit: NASA, P. Challis,

R. Kirshner (Harvard-Smithsonian Center for

Astrophysics) and B. Sugerman (STScI).)
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Figure 7 The Crab Nebula (M 1). The neb-

ula consists of matter ejected in a supernova

explosion. The material is spread over a vol-

ume of 10 light years in diameter and is still

expanding at velocities of 1800 km/s. Its dis-

tance from Earth is about 6000 light years.

The supernova explosion was detected on

July 4, 1054, by Chinese astronomers. It is

one of the very few historically observed

supernovae in our Galaxy. The remnant of

the supernova, located in the middle of the

nebula, is a neutron star that spins with a

period of 30 ms (pulsar). The presence of

a remnant neutron star and of hydrogen

in the ejecta supports the association of

the Crab Nebula with a type II supernova.

The image is a three color composite. The

green light is predominantly produced by

hydrogen emission from material that was

ejected by the exploding star. The blue light

arises mainly from relativistic electrons that

spiral in a large-scale magnetic field (syn-

chrotron radiation) and that are continuously

ejected from the rapidly spinning neutron

star. (Credit: NASA, ESA, and J. Hester (Ari-

zona State University).)
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Figure 8 The supernova remnant Cassiopeia

A in the constellation Cassiopeia, located at

a distance of 11 000 light years from Earth, is

one of the brightest extrasolar radio sources

in the sky. The debris from the type IIb

(core-collapse) supernova explosion is spread

over a volume of 10 light years in diameter.

Although first light of the supernova should

have reached Earth about 350 years ago,

there are no clear historical records of the

event. The false color image was obtained

using the Chandra X-Ray Observatory and

the Nuclear Spectroscopic Telescope Array

(NuSTAR). The colors represent different

X-ray and 𝛾-ray energy ranges that are emit-

ted by different elements: iron (red); silicon

and magnesium (green); radioactive 44Ti

(blue). The spatial distribution of iron does

not match the distribution of 44Ti, indicat-

ing that the explosion was not symmetric.

(Credit: NASA/JPL-Caltech/CXC/SAO.)



Color Plates 621

Figure 9 The spiral galaxy NGC 4526 in

the constellation Virgo, about 100 million

light years away from Earth. The bright spot

at the lower left is Supernova 1994D. (The

designation means that it was the fourth

supernova discovered in 1994). The light

emitted during the weeks after the stellar

explosion showed that the supernova was

of type Ia. (Credit: NASA, ESA, The Hubble

Key Project Team, and The High-Z Supernova

Search Team.)
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Figure 10 Tycho’s supernova remnant in

the constellation Cassiopeia, located at a

distance of 7500 light years from Earth.

The supernova was recorded by the Dan-

ish astronomer Tycho Brahe on November

11, 1572. The false color X-ray image was

obtained with the Chandra X-Ray Obser-

vatory. The colors represent different X-ray

energies (red: 0.95–1.26 keV; green: 1.63–

2.26 keV; blue: 4.1–6.1 keV). The remnant

glows at X-ray energies because of the

strong interaction between the high-velocity

expanding matter and the interstellar gas

that was swept up by the explosion. No

hot compact object has been found in

the remnant, supporting the theory that

the supernova was of type Ia. The cloud is

nearly spherical with a diameter of about

20 light years, indicating both a spherical

ejection of matter and a rather homoge-

neous environment in the explosion. (Credit:

NASA/CXC/Rutgers/J. Warren and J. Hughes

et al.)
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Figure 11 Nova V1974 Cygni 1992 erupted

on February 19, 1992 and was one of the

brightest classical novae in 20 years, reach-

ing naked-eye visibility for a brief period of

time. The distance of Nova Cygni from Earth

is about 10 000 light years. The image reveals

a nearly spherical and slightly lumpy ring-

like structure, which represents the edge of

a bubble of hot gas ejected into space by

the outburst. The shell contains elements

such as nitrogen, oxygen, neon, silicon, and

sulfur, which are overabundant relative to

their solar system values. This implies that

the explosion occurred on the surface of

an oxygen–neon white dwarf. These out-

bursts are also referred to as “neon novae.”

The white dwarf and the companion star

in the center of the image are so close that

they revolve around each other in about two

hours. The image was taken by the Hub-

ble Space Telescope in ultraviolet light 467

days after the explosion. (Credit: F. Paresce,

R. Jedrzejewski (STScI), NASA/ESA.)
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Figure 12 All-sky image of 26Al 𝛾-ray emis-

sion at 1809 keV, as derived from a 9-year

survey of the COMPTEL instrument onboard

the Compton Gamma Ray Observatory

(CGRO). The entire sky is seen projected

on a coordinate system that is centered

on our Galaxy, with the galactic plane run-

ning horizontally across the middle of the

image. Gamma-ray intensity is represented

by a false color map - green (low) to yel-

low (high). It has been estimated that the

Galaxy produces 26Al at a rate of about two

solar masses per million years. (Reprinted

with permission from S. Plüschke, R. Diehl,

V. Schönfelder, et al., ESA SP 459, 55 (2001).)
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Figure 13 All-sky image from the Planck

mission. It reveals temperature fluctua-

tions over a range of only ±30 𝜇K, caused

by oscillations in the photon-baryon fluid

about 370 000 years after the big bang. The

observed anisotropies can be decomposed in

terms of spherical harmonics, with each term

describing the magnitude of the anisotropy

on a particular angular scale. The observed

features in the resulting angular power spec-

trum are closely related to specific cosmolog-

ical parameters. The analysis of the Planck

mission data reveals that the universe is

13.8 Gy old, that ordinary (baryonic) mat-

ter makes up only about 16% of all matter,

and that the expansion of the universe is

currently accelerating. (Credit: ESA and the

Planck Collaboration.)
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Index

a
absorber 213

– gas 213

– solid 213

– thickness 219

abundance

– beryllium 561, 562

– boron 562

– carbon 382

– cosmic rays 560

– evolution 144–146

– flow 157

– forward or reverse flow 157

– light elements 560

– lithium 369, 559, 560

– mole fraction 353

– net flow 157

– time-integrated net flow 352

accelerator 207, 208

– mass spectrometry 285

– neutron production 210, 211

accretion-induced collapse 453

activation method 291, 343–345, 347

– loss of radioactive nuclei 292

– saturation 292, 347

activity 42

𝛼p-process 491, 495, 497

𝛼-process 540

angular correlation 262, 587, 588

– alignment 588

– attenuation factor 276, 601

– coefficients 591

– direct radiative capture 603

– interference 594

– isotropic 589

– magnetic substates 588

– mixed radiation 594

– overlapping resonances 603

– particle parameter 591

– pure radiation 591

– radiation 588

– radiation pattern 588

– secondary transition 602

– symmetric 590

– three-step process 598

– unobserved intermediate radiation 598

– well-defined parity 590

angular distribution 82, 86, 590

angular momentum coupling

– examples 574

– selection rules 135, 573

antineutrino 59

astrophysical S-factor 163–165, 173, 203

– broad resonance 176

– constant 165, 170, 180

– definition 163

– effective 173

– energy-dependent 173–175

– expansion 173, 177, 194

Atkinson 1

atomic K shell 223

atomic number 2

attenuation

– neutrons 347

– photons 228, 229, 234, 346

Auger electrons 224

b
background

– activity in materials 296, 298, 302

– anticoincidence technique 298, 299, 310

– beam-induced 242

– bremsstrahlung 298, 306

– charged particles 298–300

– comparison of count rates 303, 310, 311

– compilation of 𝛾-ray energies 301
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background (contd.)

– continuous 262

– ΔE-E technique 300

– direct ionization by muons 303, 306

– intrinsic detector activity 309

– muon flux 309, 310

– muon-induced 297, 300

– neutron flux 309, 310

– neutrons 309

– neutron shielding 231, 232, 309

– nuclear weapons testing 296

– passive lead shield 302

– photons 301

– radon 296

– sources 297

– spontaneous fission 296

– terrestrial 296

– underground location 298, 304, 310

– variation with time 298

backing 234

– cleaning 234

– contaminants 234

– etching 234

– material 234

– resistive heating 234

beam

– spot size 208

– transport 208

𝛽-decay 58

– allowed transition 63

– average neutrino energy loss 60, 71

– delayed particle decay 60, 531

– density dependence of decay constant 66

– energetics 59

– Fermi theory 61

– Fermi transition 65

– forbidden transition 63

– Gamow-Teller transition 65

– laboratory decay constant 64

– stellar decay constant 66, 67, 513

𝛽-limited CNO cycle 463

Bethe 1

big bang 5, 359, 552

– abundance flows 556

– nucleosynthesis 552, 555

binding energy 33

Boltzmann

– constant 140

– distribution 54, 151, 554

boundary condition parameter 119

Bragg peak 218, 219

Bragg’s rule 220, 229

branching ratio

– 𝛼-particle decay 258

– nuclear reaction 262

– photons 52, 267, 269, 271, 277

breakout from hot CNO cycles 487, 489, 492,

497

– comparison of reaction rates 482

– competition between reaction and 𝛽-decay

483

– equilibrium abundance 484

– sequences 480, 481, 491

Breit–Wigner formula 110, 114, 120–123,

130, 137, 177, 182, 194, 316, 340

bremsstrahlung 303

brown dwarfs 9, 14

burning front 453

c
Cameron–Fowler mechanism 369

carbon burning 400

– abundance evolution 404, 405

– abundance flows 404, 405

– branching ratios 402

– 12C + 12C reaction 400

– comparison of reaction rates 402, 403

– 12C + 16O reaction 402

– electron screening factor 404

– experimental situation 406

– explosive 449

– final abundances 406

– light particles 404

– neutron excess parameter 404, 406

– neutron source 404, 406

– nuclear energy generation 403

– primary reactions 400

– secondary reactions 401

– temperature dependence of 12C + 12C rates

403

– typical temperatures 401

central-limit theorem 246

Chandrasekhar limit 15, 24, 29, 438, 452

channel 83, 110, 116, 117, 126, 131

– spin 574, 594

chart of the nuclides 3

chemical fractionation 4

CI carbonaceous chondrites 4

classical turning point 101, 102, 198

Clebsch–Gordan coefficient 573, 591

– isospin 128

– numerical value 573

– symmetry properties 573

CNO cycles 15, 370

– abundance evolution 378, 379

– approach to steady state 378

– branching ratios versus temperature 371,

372
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– catalysts 370

– CNO1 cycle 370, 373, 461

– CNO2 cycle 371, 465

– CNO3 cycle 372

– CNO4 cycle 372

– cycle time 376

– evolution of energy generation rate 380

– experimental situation 382

– history 1

– neutrino energy loss 375

– nuclear energy generation 375, 376

– observational evidence 381

– reaction rates 373

– steady state abundances 374, 375

– steady state operation 374

– sum of abundances 374

coincidence summing 271, 279, 347

– decay scheme 272, 274

– numerical correction method 274

– summing-in 273

– summing-out 273

– visual inspection 274

coincidence technique 304

– scheme 304

– setup 304

collision

– energy transfer 214

– hard 214

– maximum energy transfer 222

– soft 214

color-magnitude diagram 9

common envelope phase 452

competition cusp 137

complex exponential 87, 88, 94, 137

compound nucleus 125, 132

– decay 127

– formation 134

– independence of formation and decay 134

– level 125, 131, 187, 194

Compton effect 225, 263

angular distribution 226

– Compton edge 226, 253, 263

– continuum 263

– maximum energy transfer 225

– multiple scattering 263

– probability 226, 227

– recoil electron 225, 226

conservation

– angular momentum 118, 134, 573

– charge 433

– energy 225, 579

– linear momentum 225, 579

– mass 433

– parity 134, 573

contaminant 240, 241

– boron 240

– carbon 240

– fluorine 240

continuity condition 88, 89, 95, 97

continuum theory 132

cosmic microwave background radiation 552

cosmic radiation 297

– flux 561

– origin 561

cosmic-ray spallation reaction 6, 369, 391,

559

– cross section 560

– nucleosynthesis 559

cosmological parameters 553

cosmological principle 553

Coulomb

– barrier 101, 115, 116, 137, 167, 168, 208,

349, 487

– wave function 113, 114, 194, 196, 572, 595

coupling constant

– axial-vector 62

– vector 62

critical density 553

cross section 163

– absolute 328, 335

– average 133, 135, 136, 138, 177, 202, 233

– compound nucleus formation 134

– continuum 202

– definition 73

– differential 75, 85

– effective 341

– elastic scattering 82, 85, 103, 107, 110

– identical particles 182

– interference 83, 110, 111, 203

– maximum 132

– Maxwellian-averaged 142, 179, 204, 205,

211, 503, 513

– neutron 232

– neutron capture 203, 204, 512

– neutron capture on gold 345, 346

– reaction 85, 103, 107, 109, 110, 118

– relative 330

– Rutherford 260, 336

– total 75

– 1∕𝑣 law for neutrons 133, 177, 204, 232

current density 75, 79, 83, 84, 88, 114, 142,

340

d
dark energy 28

dark matter 14

de Broglie wavelength 76

– numerical expression 317
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Debye–Hückel radius 197, 200

decay constant 144, 159

– definition 41

– effective 492

– identical particles 159

– ratio 149

𝛿 electrons 214, 303

density

– of final states 62–64, 71

– mass 40

– number 40

detector 243

– charge collection 243

– energy calibration 257, 258

– energy resolution 245

– intrinsic response 244, 245

– pulse height 243

– pulse height variation 244

– threshold 245, 271

deuterium burning 13, 14, 359

Doppler broadening 338, 342

dripline

– neutron 37, 530

– proton 37, 480, 485–487

e
Eddington 1

effective stellar energy window

– charged-particle emission 181

– charged particles 166

– narrow resonances 187

– neutron emission 181, 182, 205

– neutrons 178, 179

– thermonuclear reaction 169

effective surface temperature 9

efficiency 246

– absolute 309

– calculation of total 269

– calibration for 𝛾-rays 266

– intrinsic 246

– matching procedure for 𝛾-rays 267

– peak 245, 246, 258, 259, 266, 267, 272

– summing 280

– total 245, 246, 269, 272

elastic scattering 35, 73, 78, 86, 129

charged particle on electron 346

– Coulomb 260

– experiment 259, 260

– interference 82

– multiple 342

– neutrons 89, 90, 93, 96, 98–100, 104, 105,

233

– protons 261

– resonance 111, 260, 336

– Rutherford 83, 113, 333, 335

electron

– density 69

– pickup 218

electron capture 59, 64, 68

– of 7Be 363

– bound 68

– continuum 68, 364, 453

– laboratory decay constant 65

– of 56Ni 492

– of 59Ni 562

– stellar decay constant 69

electron degeneracy 15, 16, 22, 24

– brown dwarf 14

– factor 197, 199

– white dwarf 15

electronic noise 245

electron-positron annihilation 227, 263

electron screening 102, 197

– factor 197, 199–201, 206

– intermediate 199

– laboratory experiments 201

– narrow resonance 200

– potential 200

– strong 199

– weak 197, 199, 200

elementary charge 208

energy level diagram 36

energy loss 221, 223

energy transport in star 377

entropy 438, 441

e-process 432

equilibrium 147, 157, 158, 160, 205, 493

– condition 156, 157, 424

etched track detector 285

explosive burning 25

explosive hydrogen burning 460

– abundance evolution beyond CNO range

476, 477

– abundance evolution in CNO range 470,

473

– beyond CNO range 474

– branch point nuclei beyond CNO range

476

– branch point nuclei in CNO range 475, 480

– competition between reaction and 𝛽-decay

476

– experimental situation beyond CNO range

479

– final abundances beyond CNO range 477,

478

– final abundances in CNO range 471, 473

– nuclear energy generation 473, 474, 477,

478
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explosive hydrogen–helium burning 32, 480

– abundance evolution 489, 491, 498, 499

– abundance flows 488, 490, 496, 497

– bottleneck nucleus 493

– endpoint 489

– experimental situation 499

– nuclear energy generation 494, 495, 498,

499

f
Faraday cup 242, 243, 330

Fermi

– function 63, 69

– integral 64

Fermi’s Golden Rule 61

fluorine production 400

flux density 75

free particle 62, 76, 79, 80

– wave number 570

freeze-out

– 𝛼-rich 445, 452, 539

– normal 445

ft-value 64

g
Galaxy

– NGC 4526 621

– age 7

– halo 9

𝛾-process 546

𝛾-ray astronomy 8

– 26Al abundance 56, 450, 451, 478

– annihilation radiation 474

– 60Fe abundance 451, 520

– 44Ti abundance 451

𝛾-rays

– absolute energy standards 264

– absorption 270

– attenuated Doppler shift 583

– dipole or E2 rule 53

– Doppler shift 49, 56, 266, 347, 581

– multipolarity 49, 574

– 4𝜋 detection method 279

– primary branch 277

– random summing 271

– recoil shift 48, 347, 581

– reduced transition probability 49

– scattering 270

– secondary branch 277

– shielding 224, 229

– sum peak 280

Gamow 1

Gamow factor 103, 114, 137, 163, 166, 167,

185, 192, 198

Gamow peak 167, 176, 185, 186, 189, 192,

196, 201, 369, 382, 388, 401, 406, 412, 474,

479

– asymmetric shape 172

– charged-particle emission 180

– concept for narrow resonances 185, 187,

205

– definition 166

– 1∕e width 169, 171

– Gaussian approximation 168

– location of maximum 166–168, 198

germanium detector 249

– cooling 249

– dead layer 249

– energy calibration 266

– energy resolution 249

– high-purity 249

– Monte Carlo simulation 249, 251, 268, 270,

272

– pulse shape 249

globular cluster 8, 9, 21, 613

– age 21

– M 3 9, 613

– M 10 9

h
half-life 41

Hauser–Feshbach

– comparison of theory and experiment 202

– formula 135, 137, 202

– reliability of reaction rates 202

– theory 152, 202, 352, 485, 500, 521, 551

helium

– observations 554

– primordial 554

helium burning 389, 390

– abundance evolution 397–399

– comparison of mean lifetimes 396

– energy level diagram 391, 392

– final abundances 398, 399

– neutron excess parameter 399

– nuclear energy generation 398

– other reactions 399

– reaction rate errors 398

– temperature–density evolution 518, 519

– typical hydrostatic conditions 390

– weak s-process component 516

helium flash 32, 393

Hertzsprung–Russell diagram 10

– evolutionary track 11, 17

– M 3 9

– red clump 21

– solar neighborhood 9, 10

– turn-off point 11, 16
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Hertzsprung–Russell diagram 9

Hipparcos 10

hot bottom burning 22

hot CNO cycles 461, 462

– abundance evolution 466–468

– 𝛽-limited 463, 468

– branch point nucleus 464, 465

– competition between reaction and 𝛽-decay

465

– experimental situation 474

– hot CNO1 cycle 463, 476

– hot CNO2 cycle 465

– hot CNO3 cycle 466

– nuclear energy generation 469

– time until H exhaustion 469, 470

– transition from CNO1 to HCNO1 cycle

463

Hoyle 2

Hubble parameter 553

Hubble’s constant 553

hydrostatic equilibrium 11, 13, 349

hydrostatic hydrogen burning 353

– abundance evolution beyond CNO range

386, 387

– beyond CNO range 383

– branch point nuclei beyond CNO range

385

– branch point nuclei in CNO range 371

– competition between reaction and 𝛽-decay

384

– experimental situation beyond CNO range

388

– observed abundances beyond CNO range

388

– reaction rates beyond CNO range 386

i
implantation

– accelerating voltage 236

– diffusion velocity 237

– incident dose 237

– lifetime of foils 237

– saturation 237

– self-sputtering 237

– sputtering 237

– substrate dead layer 237

– target or sample 236–238

inner Lagrangian point 27

in-scattering effect 342

instability strip 17, 20

intensity

– background 244

– balance of cascading photons 267, 278

– error 244

– overlapping peaks 244

– peak 244

– total 244

interaction

– nucleon-nucleon 77

– radius 119

– residual 125

– strong nuclear 24, 77

– weak 57

interaction of radiation with matter 212, 213

– charged particles 213

– deflection of charged particles 213

– energy distribution function 223

– energy distribution function for charged

particles 222

– energy loss of charged particles 213, 346

– energy straggling 261

– neutron cross section 231

– neutrons 230

– photons 223, 227

– range straggling 218, 326

– recombination 214

internal

– conversion 48, 578

– pair formation 48, 391, 578

ion beam

– charge integration 241, 242, 314

– charge state 243

– collimation 208

– current 208

– defining aperture 242

– definition of energy 209

– energy calibration 209, 210

– energy calibration constant 209

– energy spread 208

– energy variability 208

– power deposited in target 242

– iron peak 5–7, 23, 32

isobar 3

isomer 54, 57

isomeric state 54, 56, 57, 67

– equilibration 55, 57

isotone 3

isotope 3

k
K absorption edge 225

K capture 59

kinematics 259

– after collision 584

– binary interaction 579

– center-of-mass frame 583

– before collision 583

– emission cone 211, 345, 582
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– endothermic reaction 211, 581

– exothermic reaction 580

– inverse 285, 288, 347

– laboratory frame 579, 583

– population of excited state 582

– radiative capture 581

– relativistic effects 580

– transformation of angles 585

– transformation of solid angles 586

Klein–Nishina formula 226

Kronecker symbol 140, 144

l
Legendre polynomial 80, 82, 84, 276,

590

– associated 569

– expressions 570

level shift 114, 118, 119

lifetime

– effective of 26Al 57

– mean 41, 144, 145

– total 145

linear absorption coefficient 228

liquid scintillator detector 253

– efficiency 255

– neutrons 254

– pulse shape discrimination 255

lithium problem 558

logarithmic derivative 106, 108, 113, 117,

119, 127, 132

luminosity 9

m
magic numbers 2, 44, 45, 501, 503, 507, 523,

528

magnet analyzer 209

– calibration 209

mass

– atomic 37

– excess 37

– fraction 40

– gaps 2, 3, 389

– nuclear 33

– number 2

– relative atomic 38

– thickness 229

mass attenuation coefficient 224, 229, 230

– compound 229

– geometrical considerations 229

matrix element

– Fermi 62

– Gamow-Teller 62

Maxwell–Boltzmann distribution 140, 141,

166, 167, 178, 180, 193, 201, 211, 212, 341,

345

energy maximum 142

– velocity maximum 142

– mean effective energy 312

– mean free path

– neutrons 232, 309

– photons 229

measurement

– direct 207

– indirect 187, 207, 388, 474, 479

metallicity 8

microchannel plate detector 256

– avalanche 256

– intrinsic efficiency 256

– ion feedback 256

– multiplication factor 256

– sensitivity 256

– timing property 256

minimum ionizing particles 216, 298

mixing ratio 594

– channel spin 577, 594

– 𝛾-ray 53, 578, 594

– orbital angular momentum 577, 594

– sign convention 594

mole fraction 40, 438, 441

Monte Carlo simulation

– attenuation factor 276, 602

– 𝛾-ray background 303

– 𝛾-ray spectrum 264

– neutron detector efficiency 284

– neutron scattering 342

– peak efficiency 266

– summing of 𝛾-rays 280

– total efficiency 270, 272

muon peak 299, 303

n
NaI(Tl) detector 252

– energy resolution 252

– hygroscopy 252

neon burning 407

– abundance evolution 410, 411

– abundance flows 410, 411

– comparison of reaction rates 407, 408

– energy level diagram 408, 409

– experimental situation 412

– explosive 449, 547

– final abundances 412

– light particles 410

– neutron excess parameter 410

– nuclear energy generation 409, 566

– photodisintegration 407
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neon burning (contd.)

– secondary reactions 407

– stellar 𝛽-decay constant 410

– temperature dependence of energy

generation 410

– typical temperatures 408

neutrino 7

– burst 438, 439

– capture 59

– escape from star 23, 58, 60, 61, 162, 350,

355, 433

– interactions 438, 440, 441

– sphere 438, 440

neutron

– absorber 283, 309

– attenuation 233, 292

– beam 210

– beam energy resolution 211

– decay 58

– elastic scattering 231

– excess parameter 58

– exposure 506

– fast 231

– flux 506

– half-life 501

– moderator 231, 282, 283, 309

– multiple scattering 292

– slow 231

– thermal 231, 281

– transmission 232, 233

– transmission for compound 233

nuclear

– level density 136, 202, 552

– matrix element 48, 62, 64, 65, 69

– radius 119

– spectroscopy 256

nuclear burning 11

– core 349

– duration 350, 351

– shell 349

– stages 349

nuclear energy generation 168, 349

– comparison of pp1 chain and CNO1 cycle

376, 377

– rate 161, 162

– temperature dependence 170

– total 162

nuclear reaction 35, 73

– direct capture 356, 395

– endothermic 36

– energetics 35, 36

– exothermic 36

– experiment 260, 261, 337

– forward and reverse 147, 148

– identical particles 144, 146

– network 146, 349, 378

– neutron capture 7, 351

– neutron production 211

– radiative capture 35, 150, 207

– three-particle 146

nuclear spin 46

nuclear state

– decay probability 126

– formation probability 126

– natural parity 575

– single-particle 125, 126

– unnatural parity 395, 575

– virtual 125

nuclear statistical equilibrium 432, 438, 539,

546, 566

– composition of matter 433–436

– explosion 445

– light particles 434, 435

– time to reach equilibrium 436, 437

nucleon

– fraction 41

– number 2

nuclide 2

𝜈p-process 442

𝜈-process 441

o
one-level, many-channel approximation 118

orthogonality 84

oxygen burning 412

– abundance evolution 417, 418

– abundance flows 416, 417

– branching ratios 415

– comparison of decay constants 413

– comparison of reaction rates 415

– electron screening factor 416

– experimental situation 414, 419

– explosive 449

– explosive temperature–density evolution

549, 550

– final abundances 418

– light particles 419

– neutron excess parameter 418

– nuclear energy generation 416

– 16O + 16O reaction 412, 414

– primary reactions 412

– secondary reactions 413

– stellar 𝛽-decay constant 419

– temperature dependence of 16O + 16O rate

416

– typical temperatures 413

– weak interactions 418
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p
pairing effect 47, 526, 545

pair production 61, 225, 227, 263

– probability 227

– Z-dependence 227

parity 570, 573

partial wave 80–82, 86

partial width 110–112, 126

– charged particle 184

– entrance channel 116

– formal 120

– 𝛾-ray 50, 52, 122, 184, 277

– neutron 114, 177, 184

– observed 120, 130, 131, 137, 195

– particle 112, 114, 118, 126

– proton 122, 130, 131

– reaction 114, 116

– single-particle 128

particle

– current 74

– density 79, 88

– flux 73, 88, 126

partition function 54

– normalized 151, 155, 159, 161, 352, 418

Pauli exclusion principle 14, 42, 43

peak

– back-scattering 264

– double-escape 263, 266

– full-energy 263, 264, 282

– single-escape 263, 266

penetration factor 113–115, 119, 128, 190,

194, 196, 602

– charged particles 114–116

– neutrons 114, 115

pep reaction 356

phase shift 81–83, 85, 86, 89–92, 98, 103,

106, 107, 112, 133, 135, 595

– Coulomb 113, 595

– energy derivative 112, 120

– hard-sphere 595

phase space 71, 75

photodisintegration reaction 35, 141, 142,

144, 150, 157, 180, 480

– decay constant 143, 155, 191

– temperature dependence of decay constant

181

photoelectric effect 223, 262

– photoelectron 223

– probability 224

– Z-dependence 224

photon density 143

Planck radiation law 143

plane wave 62, 78, 79, 88, 94

plastic scintillator detector 253

– anticoincidence shield 254, 283

– Compton edge 254

– muon peak 254

– room background spectrum 253, 254

– shapes 253

Poisson distribution 244

positron

– capture 68

– emission 59, 60

potential

– average 125

– central 77, 81, 569

– centripetal 115, 137, 178, 570

– Coulomb 83, 101, 102, 214, 572

– effective 77

– global parameters 202

– local parameters 202

– nuclear 83, 85, 86, 111

– optical model 133, 552

– screened Coulomb 197, 198, 206

– single-particle 104, 105, 111, 127, 129

– square-well 86, 92, 101–104

– square-well plus square-barrier 93, 94,

104, 164

– Woods-Saxon 44, 105, 129

pp chains 15, 353, 355

– 2H abundance evolution 357, 359

– 3He abundance evolution 357, 359

– comparison of mean lifetimes 361,

362

– competition 365, 368

– experimental situation 369

– history 1

– neutrino energy loss 364

– nuclear energy generation 362, 364, 367,

368

– pp1 chain 356

– pp1 chain operation in Sun 368

– pp2 chain 363

– pp3 chain 364

p-process 542

– abundance flows 550

– branching condition 546

– branch point nucleus 551, 568

– decay constant 547

– experimental situation 551

– final abundances 551

– hot photon environment 544

– network calculation 549

– p-nucleus 504, 542

– sites 547, 549

– solar system abundances 542

– underproduction of nuclides 548, 551
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presolar grains 4

primordial deuterium abundance 359

proportional counter 255, 282

– charge carriers 255

– gas mixture 255

– ionization avalanche 255

– moderated 281, 283

– neutron detection 255

– quencher 255

– response function 281

pulse height defect 258

pulse height spectrum 244, 245

– americium source 248

– charged particles 336

– coincidence 306

– elastic scattering 259, 260

– europium source 249, 250

– heavy ions 290

– neutrons 281

– nuclear reaction 261

– photons 262, 278

– room background 264

pulse pileup 271

q
quantum number

– magnetic 80, 118, 569, 573, 588

– orbital angular momentum 569, 574

quasi-equilibrium 157, 419

– cluster 424

– explosion 446

Q-value 36, 38, 157, 161, 580

r
Racah coefficient 591

radioactive ion beams 286, 474, 479, 499

– batch mode technique 286

– fragmentation 286

– ISOL technique 286, 287

– production 289

– target chemistry 287

radioactive source

– absolute activity 275

– 𝛼-particle 257

– 𝛾-ray 264

– neutron 283–285

radius parameter 119, 196

range

– mean 218, 219, 257

– in silicon 218, 220

reaction rate 139, 144

– broad resonance 176, 192, 193, 195

– cutoff factor 174

– cutoff temperature 175, 176

– definition 140

– elevated temperatures 150

– equilibrium 150

– errors 188, 352, 383, 485

– evaluation 352

– identical particles 161

– influence of excited states 190

– laboratory 151, 155

– narrow resonance 183, 194, 195

– neutrons 142

– nonresonant charged-particle-induced

165, 170, 173, 194

– nonresonant neutron-induced 177–179,

205

– numerical integration 163, 176, 193, 194,

205

– particle-induced 163

– per particle pair 141

– ratio 149

– stellar 151, 154, 155, 189

– stellar ratio 155

– temperature dependence 170, 176

– temperature dependence for narrow

resonance 183, 184

– total 201, 202

reciprocity theorem 76, 77, 116, 134, 147,

159, 180

recoil separator 289

recommended upper limit (RUL) 51

reduced width 112, 114, 117, 120, 122, 125,

128

– dimensionless single-particle 128, 129, 138

– observed 120

resonance

– absolute energy 210

– absolute strength 329, 333

– broad 165, 177, 201

– energy 91, 92, 109, 112

– energy derivative of phase shift 129

– formal energy 114

– formal theory 117

– interference 122, 203

– isolated 117, 118, 182, 338

– narrow 112, 121, 210

– observed energy 114, 119

– overlapping 122, 134, 177, 202, 400, 412

– phase shift 112, 118, 120

– phenomenon 90, 92, 98–101, 104

– recommended strength 334

– relative strength 330

– single-particle 104, 124, 125

– strength 183–185, 195, 201, 316

– subthreshold 121–124, 194, 201, 389, 394,

395
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– total width 110, 210

– unobserved 389

– weak 382, 389

R-function 117

R-matrix theory 117, 395

– pole 117

Roche lobe 27, 453

rp-process 487, 489, 495, 497, 499

r-process 502, 504

– boulevard 535

– classical model 531, 532

– comparison of observed and calculated

abundances 534

– constant temperature 532

– dynamic model 537

– equilibrium 524

– experimental situation 541

– fission 531

– fission cycle 531

– global description 534

– nuclear mass model 532

– nuclear properties 531

– nucleochronology 531

– path 528, 530

– r-only nuclide 504

– solar abundance peak 522, 531

– solar system abundances 522

– steady flow approximation 528, 533, 534,

541, 568

– stellar abundances 537

– superposition of components 534

– temperature–density conditions 533

– waiting point approximation 528, 530, 533,

568

Rutherford formula 336

s
Saha statistical equation 156, 158, 426, 433,

524, 566

Salpeter 2

sample 234

– composition 241

– gas 239

– hygroscopy 241

– material 235

– neutron attenuation 239

– neutron scattering 239

– oxidization 241

– self-supporting 235, 345

– thickness 239

scattering

– inelastic 35, 159, 231

– photon 229, 231

scattering amplitude 79, 82, 83

– hardsphere 107, 110

– resonance 107, 109

Schottky barrier 248

Schrödinger equation 78, 86, 88

Schrödinger equation 569

scintillation detector

– anode 252

– BaF2 252

– BGO 252

– components 252

– critical angle 251

– dynode 250

– energy calibration 266

– fast response 251

– fast timing 253

– fluorescence 250

– light guide 253

– optical fibers 253

– organic 253

– phosphorescence 250

– photocathode 250

– photomultiplier tube 250, 252

– reflective surface 251

– transparency 250

secondary electron emission 242, 243, 330

selection rules

– 𝛽-decay 65

– 𝛾-rays 49, 50, 577

self-absorption of radiation 292

self-regulating equation 357, 359, 506, 528

semiconductor detector 246

– bias voltage 247

– charge carriers 247

– energy resolution 247

– junction 246

– linear response 247

– material 247

– radiation damage 247

separation energy 37

shell model 42, 128, 130

– configuration mixing 47

– independent motion of nucleons 43

– single-particle states 45

– spin-orbit coupling 44

– valence nucleon 47

shift factor 113–115, 119, 120

silicon burning 420

– abundance evolution 422, 423

– abundance flows 422, 423

– comparison of decay constants 420, 421

– complete 445

– effective rate of 28Si conversion 429

– electron capture 424
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silicon burning (contd.)

– evolution of quasi-equilibrium clusters

425, 426

– experimental situation 432

– final abundances 422

– incomplete 447

– light particles 422, 428, 566

– neutron excess parameter 422, 424

– nuclear energy generation 430

– photodisintegration 422

– quasi-equilibrium abundance 428

– quasi-equilibrium cluster 422, 423

– reaction chains 426, 427

– typical temperatures 420

silicon detector

– ion implantation 248

– junction 248

– spectrum 248

– surface barrier 248

single-particle

– eigenfunction 127

– Hamiltonian 125, 126

solar system abundance 4, 6

– heavy nuclides 501

– origin of nuclides 563

– peaks 2, 5, 501

Sommerfeld parameter 103

spectroscopy

– charged particle 257

– factor 48, 128, 130, 131

– 𝛾-ray 262

– neutron 280

– notation 44

spherical

– Bessel function 80, 113, 571

– harmonics 80, 106, 127, 570

– Neumann function 113, 571

– wave 78, 79, 106, 108

Spite plateau 558, 562

spontaneous fission 283, 302

s-process 20, 23, 503

– abundance evolution 567

– basic building blocks 505

– bottleneck 510

– branching 512

– carbon burning 516

– classical model 511, 513

– compilation of neutron cross sections 521

– constant temperature 506, 511

– experimental situation 520

– exponential distribution of neutron

exposures 509

– final abundances 518

– flow pattern 518

– local equilibrium approximation 507

– main component 510, 514

– network calculation 518

– neutron poison 517, 518, 521

– neutron source 514–516, 520

– seed nuclei 510

– s-only nuclide 504

– stellar sites 514, 515

– strong component 511, 516

– termination point 505

– weak component 511, 516, 518, 548

stars

– asymptotic giant branch 11, 514

– Betelgeuse 23

– binary 12

– binary system 26

– carbon flash 22

– carbon-oxygen white dwarf 20

– carbon star 20

– Cat’s Eye Nebula 20, 616

– classical Cepheid variable 21

– classical nova 30, 470, 471, 473, 475, 478,

623

– contact binary 27

– core collapse 434, 438

– Dumbbell Nebula 20, 615

– early asymptotic giant branch 18

– energy loss 61

– evolutionary stages 13

– first dredge-up 16

– halo giant 538

– helium flash 18

– helium shell flash 22

– helium white dwarf 15

– high-mass X-ray binary 31

– horizontal branch 11, 18, 20, 613

– low-mass X-ray binary 32

– main sequence 9, 10, 613

– massive 17, 56

– mass-luminosity relation 12

– M dwarf 15

– neon nova 623

– neutron star 31, 619

– neutron star merger 539

– Nova Cygni 1992 31, 623

– onion shell structure 24

– oxygen-neon white dwarf 22, 623

– planetary nebula 20, 22, 615, 616

– planetary nebula nucleus 20

– population I 8

– population II 8

– post asymptotic giant branch 19

– pre-main sequence 12

– proto-neutron star 25
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– Proxima Centauri 15

– red clump 9

– red dwarf 9, 15

– red giant 613

– red giant branch 9, 11, 16

– Rigel 23

– RR Lyrae variable 21

– second dredge-up 22

– Sirius B 9

– structure of massive star 23, 24

– sub-Chandrasekhar white dwarf 30, 549

– subdwarf 9, 21

– subgiant branch 9, 11, 16

– super asymptotic giant branch 22

– supergiant 9, 23, 618

– thermal helium pulse 515

– thermally pulsing asymptotic giant branch

19

– thermal pulse 19

– third dredge-up 20, 22, 514

– T Tauri 14

– Tycho G 29

– type I X-ray burst 32, 495, 499, 544

– type II X-ray burst 32

– white dwarf 9, 15, 623

– Wolf-Rayet 24, 56, 617

– X-ray binary 31

– X-ray pulsar 32

– zero age main sequence 14

statistical

– data analysis 244

– fluctuations 245

– weight 54, 76

steady state 147, 157

stellar enhancement factor 152, 352, 418,

513, 522

stellar evolution 11

– temperature-density conditions 350, 351

stellar rate ground state fraction 152

stellar wind 22

stopping cross section 214

stopping power 215, 217, 311

– Bethe–Bloch formula 215, 216

– center-of-mass frame 315, 333

– compilation 216

– compound 220

– effective 314, 320, 330, 332

– electronic 215

– interpolation 216

– linear 214

– LSS theory 215, 216

– mass 214

– nuclear 215

– SRIM 216, 217, 314

– tabulation 216

– theoretical calculation 215

– thin absorber 346

– total 216

– uncertainties 216

sum peak method 275

– angular correlation 276

Sun 614

– age 7

– central temperature 353, 368

– evolution 16, 17

– neutrinos 8

super bubble 563

supernova

– Cassiopeia A 452

– classification 25, 28

– companion star 29

– cosmological distance indicator 28

– cosmology 28

– Crab Nebula 26, 619

– deflagration 30

– delayed detonation 30

– delayed shock model 439

– detonation 29

– double-degenerate model 29, 452

– gain radius 439, 440

– light curve 8, 26, 27, 451, 452

– neutrino-driven wind 440–442, 539

– neutrinos 451

– 1987A 8, 26, 451, 618

– 1994D 27, 28, 621

– normal type Ia 28

– observations 451

– peculiar type Ia 28

– Phillips relation 28

– rate 26

– redshift 28

– reverse shock 441

– revival of shock 25, 439

– shock radius 440

– shock wave 25, 434, 439, 443, 450

– single-degenerate model 29, 452

– thermonuclear 29, 452

– 2011fe 29

– Tycho 29, 622

– type Ia 27, 70, 452, 622

– type Ia progenitor 29

– type Ib/Ic 25, 56

– type II 25, 56, 58, 562, 618

– white dwarf merger 453

t
target 234

– active nuclei 313, 326
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target (contd.)

– anodized 325, 327

– beamstop 234, 242, 261

– blistering 239

– chamber 241, 242

– composition 236, 330

– compound 236

– contaminant 261, 262

– cooling 242

– degradation 209, 234

– evaporated 235, 328, 330, 336

– finite thickness 321

– gas cell 238

– gaseous 237, 288, 289

– gas jet 239

– gas thickness 239

– heating 209

– hydrogen 288

– implanted 261, 326, 327

– inactive nuclei 236, 313

– infinitely thick 318

– isotopic enrichment 236

– oxidization 330

– preparation 235

– radioactive 285

– random orientation of nuclei 588

– self-supporting 235

– sputtering 235

– stability 239

– stoichiometry 330, 337

– thickness 239, 312, 328

– transmission 235, 259, 260

– windowless gas 238

technetium 2, 7, 20

thermal

– equilibrium 56, 57, 71

– excitation 53, 66, 67, 150, 151, 154, 191,

422

– population probability 54, 67

– velocity 142

thermally stable hydrogen–helium burning

499

thermonuclear

– explosion 172

– reaction 140

– runaway 18, 22, 29, 32

Thomas approximation 119, 182

threshold energy 143, 148, 181, 581

time-of-flight method 293

– components 294

– detector 295

– neutron energy 294

– neutron energy resolution 294, 295

time-reversal invariance 76

total width 114, 118, 127, 318

– compound state 126

– observed 120

transfer reaction 122, 130

transmission 234

– area above curve 339

– coefficient 88, 89, 94, 96, 98, 100, 102, 114,

132, 133, 135, 137, 198

– Coulomb barrier 103, 163, 184, 354, 357

– curve 342, 343

– modified coefficient 198, 206

– neutrons 339, 341

– probability 87, 98–100, 164, 177

– thin sample 339

triple-𝛼 reaction 160, 391, 442, 491, 492, 494

– decay constant 161, 393

– electron screening 200

– equilibrium 161

– experimental situation 393

– history 2

– nuclear energy generation 393

– temperature dependence of decay constant

393, 565

tunnel effect 1, 96, 116, 149, 167, 197

two-particle capture

– direct 158

– sequential 158, 160, 486, 497, 499, 500, 567

u
uncertainty principle 78

universe

– accelerating expansion 554

– baryon-to-photon ratio 553

– critical density 553

– dark matter 554

– primordial nucleosynthesis 552

– temperature and density evolution 555

– weak interactions 554

Urca process 70

v
von Weizsäcker 1

w
waiting point nucleus 442, 443, 486, 491, 492,

494, 497, 526, 546

wall effect 281

wave function 569

– derivative 91, 92, 95

– matching 91, 92, 98–100, 106

– node 91, 93, 99–101

– radial 570

– slope 106
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Weisskopf

– estimate 50

– unit 51

width fluctuation correction 135,

136

WMAP 553

Wronskian 571

x
X-ray photons 224

y
yield

– angle-integrated 602

– area under curve 322, 326, 329, 331, 334,

340

– beam resolution 322, 323

– broad resonance 328

– curve for charged particles 311, 338

– curve for neutrons 342, 343

– curve plateau 318

– definition 311

– differential 313, 329

– Doppler broadening 326

– experimental 325, 327–329

– finite target thickness 326

– general expression 319

– maximum 317, 318, 321

– neutron-induced 339

– nonresonant 312–314, 319

– resonant 316, 317, 319, 320

– shape of curve 324

– slowly varying cross section 313, 315

– straggling 322, 323

– target compound 313

– thin sample 339

– thin target 312, 319, 348

– total 329
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