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quantum mechanical energy operator i!∂t instead of i!2∂t? Furthermore, an absorbed quantum unit of
electromagnetic energy also carries quantized angular momentum; a photon’s spin angular momentum
is measured to be quantized at ±!. The angular momentum and rotational phase are conjugate
variables, as discussed in reference [3]. The angular momentum of a circularly polarized wave quantum
may be ±!

2 . Why does a photon carry then ±! angular momentum? We return to these questions in
section 2.13.

2.7. The electromagnetic frequency of a massive particle
When an electron and a positron annihilate, the produced electromagnetic radiation is perceived

as two photons, each carrying !ω = mc2 energy and ! angular momentum. By conservation of energy
and angular momentum, an electron must comprise then an electromagnetic field which contains the
same amount of energy and angular momentum, !ω and ! respectively. What is the electromagnetic
topology difference between a transversal electromagnetic wave and an elementary particle?

In the above discussed transversal electromagnetic wave, the electric and magnetic fields have
locally the same magnitude, induce each other via rotating field orientation, and the wave has zero rest
mass. The electron however carries an elementary charge, therefore its scalar field is non-zero. The
circularly polarized electromagnetic field is now described by G = S + F = (S,0) + (0,Bexyz − iEet).
As derived in chapter 1, both the scalar and transversal field components move at the speed of light.
In analogous way to the existence of F+ and F− electromagnetic fields, there must be two types of
scalar electromagnetic fields. The corresponding G+ and G− electromagnetic fields take the following
form for fields with electric charges:

• Fl+ = (0,Bexyz − iEet)→ Gl+ = (S,Bexyz − iEet)
• Fl− = (0, iBexyz +Eet)→ Gl− = (iS, iBexyz +Eet)
• Fr+ = (0,Bexyz + iEet)→ Gr+ = (−S,Bexyz + iEet)
• Fr− = (0, iBexyz −Eet)→ Gr− = (−iS, iBexyz +Eet)

In the above expressions, the sign of the field S determines whether the charge is positive or negative;
i.e. it has opposite sign for a particle and its anti-particle.

Using the results of chapter 1, Maxwell’s equations retain their usual structure:

(2.7.1) DlGl+ = 0, DrGr+ = 0

(2.7.2) DlGl− = 0, DrGr− = 0

The energy and momentum densities of a massive particle are now given by the N+ = 1
2G+etG̃+

expression, which replaces the 1
2F+etF̃+ expression of the scalar-free field. We evaluate the electro-

magnetic energy-momentum:
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(2.7.4) Nr+ =
1

2
(Gr+et) G̃r+ = −1

2
(Set, iB− iE)(−S,Bexyz −Eexyz) =

=
1

2

(
S2 + E2 +B2

)
et − iB×E

The above equations correspond to the energy and momentum densities of the G+ electromagnetic
field. Analogously, the energy and momentum of the G− electromagnetic field is given by the N− =

− 1
2G−etG̃− expression.
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Equations 2.7.3 and 2.7.4 imply that the Poynting-vector part of the electromagnetic field is the
well-known B × E formula, regardless of the scalar field’s presence or absence. This result deviates
from the B × E + SE formula obtained in chapter 1. This difference stems from the different time
variable choice in the A = (iAtet,A) definition, which we use in this chapter. The A = (iAtet,A)
choice is remarkable because i) the Poynting-vector formula remains same as in the scalar-free case,
and ii) the energy and momentum density formulas are symmetric in terms of E and B fields.

According to the Heisenberg uncertainty principle, when the G+ or G− field oscillates at a certain
frequency ω, it has at least !ω

2 energy and !
2 angular momentum. However, the electron-positron

annihilation process demonstrates that the electron carries !ω energy and ! angular momentum. In
this way, the electron-positron pair satisfies energy and angular momentum conservation with respect
to the transversal wave from which it is created or into which it is annihilated. These values are a
starting point in the search for an analytic solution of a particle’s internal fields.

Since S, E, and B are all derived from the same electromagnetic vector potential, they all oscillate
at the same frequency. This internal frequency is related to the particle mass via the !ω = mc2

formula. In chapter 3 we shall explicitly derive the relativistic increase of particle mass under Lorentz
boost, i.e. we will prove the equivalence between the relativistic increase of particle mass and the
relativistic shift in the particle’s electromagnetic oscillation frequency. Here, we just note a pertinent
point about mass conservation. In a thought experiment, we place an electron and a positron into an
empty box, and initially both particles are at rest. As the two particles speed towards each other due
to electric attraction, they gain kinetic energy. Where is this energy coming from? There is no other
source for it than the electric field of the particles. As the two particles get closer, there is more and
more cancellation between the electric fields of the two particles, and the overall electric field energy
is reduced. In other words, the energy of the charges’ extended electric field is gradually converted
into the kinetic energy of the particles. As the particles gain kinetic energy, their relativistic mass
increases. From the perspective of the whole box, there was no outside influence, so its total mass
must remain invariant. Therefore the mass gained by the kinetic boost must be exactly counterbalanced
by the mass lost by electric field cancellations. This thought experiment is a direct illustration of the
electromagnetic field origin of particle mass. One must refrain from thinking about a particle being at
a certain point in space, since the particle is represented by the whole electromagnetic wave.

The main result from this section is the !ω = mc2 relationship between the massive particle and
its internal electromagnetic frequency. If the particle’s electromagnetic field solution involves a circular
rotation of its charge, the angular frequency of this rotation must be ω = mc2

! . This angular frequency
is the so-called “De Broglie frequency”. Although the ω = mc2

! frequency is very high, the authors of
[8] succeeded in experimentally measuring it a few years ago.

2.8. The symmetries of electromagnetism
In this section we look into the meaning of using real versus i-multiplied time coordinate. In

chapter 1, we defined the electromagnetic field and the space-time differential using real coordinates:
• Al+ = (Atet,A), Dl = (−∂tet,∇)
• Ar+ = (−Atet,A), Dr = (∂tet,∇)
• Al− = Tl = (iAtet, iA), Dl = (−∂tet,∇)
• Ar− = Tr = (−iAtet, iA), Dr = (∂tet,∇)

In the above expression, the T symbol refers to the vector potential which generates magnetic charges
and currents, as introduced in section 1.3.7. In this chapter, we introduced the et → iet transformation
of the time-wise coordinate:

• A′
l+ = (iAtet,A), D′

l = (−i∂tet,∇)
• A′

r+ = (−iAtet,A), D′
r = (i∂tet,∇)

• A′
l− = (−Atet, iA), D′

l = (−i∂tet,∇)
• A′

r− = (Atet, iA), D′
r = (i∂tet,∇)

We verified explicitly that Maxwell’s equations remain the same regardless of how we choose the time-
wise basis. Electromagnetism has a symmetry with respect to this coordinate transformation. In fact
it is not a discrete, but a continuous symmetry because we can generalize the choice of time coordinate
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transformation to any angle according to the et → eiθet choice. Even though i is the Clifford pseudo-
scalar, this generalization is still valid because the exponentiation of the Clifford pseudo-scalar is a well
defined operation in Clifford algebra.

Let’s review briefly the various electromagnetic symmetries. Firstly, Lorentz transformations of
a reference frame are accomplished via spatial rotations and boosts. The Lorentz group of reference
frame transformations is given by the SU (2) × SU (2) group, corresponding to a rotation of axial
orientation and a boost into a certain direction. Here, we used the fact that the usual SO (3) rotational
symmetry of space is double covered by the SU (2) group; this result was derived in the mathematical
preliminaries chapter. It is interesting to note that the space rotation type SU (2) symmetry preserves
E2 +B2, while Lorentz boost type type SU (2) symmetry preserves E2 −B2.

By comparing equation 1.3.29 with equations 2.7.3 and 2.7.4, we observe the same expression for
the electromagnetic energy density: 1

2

(
S2 + E2 +B2

)
et. Although the et → eiθet transformation

changes the momentum density part, it preserves the electromagnetic energy density. Considering θ
as yet another rotation angle, electromagnetic energy density has a U (1) type rotation-like symmetry
with respect to this angle.

Physical rotations of space also preserve electromagnetic energy density. Therefore, the above-
defined et → eiθet rotation plus spatial rotations form the U (1) × SU (2) group of transformations,
which preserves the electromagnetic energy density. The study of electromagnetic symmetries is a
useful tool for identifying conserved quantities.

Rotational symmetries of space correspond to angular momentum conservation. The et → eiθet
rotational symmetry also corresponds to the conservation of a certain electromagnetic oscillation mode.
Such oscillation mode may or may not be present in a given elementary particle state. Since the nuclear
capture and emission of electrons is always accompanied by the capture or emission of neutrinos, it is
possible that neutrinos carry a conserved oscillation, corresponding to the et → eiθet symmetry. This
hypothesis will be investigated step-by-step throughout the book.

2.9. The longitudinal electromagnetic wave
In section 2.5 we described the simplest spatial solutions of Maxwell’s equations, which correspond

to scalar-free transversal waves. We wrote the equations for circularly polarized modes, which carry
the conserved angular momentum of space rotation symmetry. Considering the et → eiθet symmetry,
can we find a wave solution which is the correspoding electromagnetic oscillation mode? A continuous
et → eiθet type “rotation” means an oscillation between the electric and magnetic type scalar field.
The corresponding spatial solution of Maxwell’s equations is a longitudinal wave:

(2.9.1) Ez = E0 sin (ωt− kz) , Bz = B0 cos (ωt− kz)

(2.9.2) S = S0 cos (ωt−Kz)− iS0 sin (ωt− kz)

where S0 = E0 = B0 in natural units, and the wave is propagating into the z direction. If this
wave had a certain size in the x−y plane, there would be x−y components of the electric and magnetic
fields along the edges. However, in the simple plane wave case the electric and magnetic fields have no
x− y components. This basic longitudinal wave solution is illustrated in figure 2.9.1.

Considering the S0 = E0 = B0 condition of the longitudinal wave solution, the 1
2

(
S2 + E2 +B2

)
et

electromagnetic energy density formula implies that 1
2 of the electromagnetic field energy is carried by

the scalar field, while 1
4 of the field energy is carried by the electric field and 1

4 of the field energy is
carried by the magnetic field. This is in contrast to the transversal transversal wave solution, which is
scalar-free.

We conclude this section by a summary of electromagnetic wave polarization modes. We identified
three principal electromagnetic wave modes in this chapter, as listed in table 1. Each polarization
mode has a trivial spatial solution, which may be further classified e.g. according to left/right handed
chirality. Since only one of these principal modes has a scalar-free trivial solution, historically only the
A+ mode was the focus of electromagnetism studies.

Despite its apparent simplicity, Maxwell’s equation admits rather complex spatial solutions even
under the S = 0 restriction, such as Laguerre–Gaussian beams or cylindrical Bessel beams. The
mathematical form of spatial solutions also depends on the boundary conditions: electromagnetic


