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Abstract: 

The disease of COVID-19 comprises the most serious against human health worldwide with a high rate 

of virulence and mortality. The disease is caused by the 2019-nCoV virus from the beta coronavirus 

family. The virus makes use of its surface glycoprotein named S protein or spike to enter the human cells. 

The virus attached to its receptor named angiotensin-converting enzyme 2 on host cells surface via its 

receptor-binding domain and its fusion is mediated by cleavage at S2' site that is carried out by surface 

protease. Vaccines or drugs interfering with S protein binding or cleavage sites could be considered as 

drugs to get rid of the infection. In the current work and though docking and molecular dynamic 

experiments we have checked more than 100 drugs with high enough molecular weights for their 

shielding potency toward S protein binding sites and processing S2' sites. Our results indicate the 

shielding potency of: 

 fidaxomicin>ivermectin>heparin>azithromycin>clarithromycin>eryhthromycin>niclosamide>ritonavir. 

Considering affluent reports regarding the complex disturbance in the immune system and multi-organ 
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involvement in the disease there is no single or binary drug regime for cure expectedly and instead, we 

claim the multi-drug regime should be the choice in this context. Accordingly, we suggest our extracted 

drugs as an adjuvant for clinical trials. 

Keywords: COVID-19, 2019-nCoV, Heparin, Ivermectin, Spike Shielding 

 

Introduction: 

Atypical pneumonia outbreak in 2019-2020 identified first in Wuhan in China’s Hubei province is caused 

by a novel enveloped, positive-stranded RNA virus [1-3]. The virus is a new member of betacoronavirus 

family, including Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory 

Syndrome (MERS) coronaviruses called 2019-nCoV [4-5]. The disease is now called COVID-19 and 

accompanied by fever, cough and in advanced cases with severe respiratory distress with not well-

characterized rate of mortality [6-7]. The virus, like other coronaviruses family, makes use of highly 

glycosylated S protein (spike) to enter host cells. The spike binds to angiotensin-converting enzyme 2 

(ACE2) receptors in target cells with 10-20 fold higher affinity than SARS or MERS coronaviruses, the 

fact that underlies the high rate of virus spread between human cells as well as between individuals that 

leads to pandemic threat for worldwide safety [8-10]. Conformationally, spike glycoprotein is a trimeric 

protein belongs to class I fusion proteins. Each monomer or protomer contains 1288 amino acids in its 

primary structure. There are two major subunits called S1 and S2 subunits formed by cleavage of 

maternal string at Arg667-X668 residues (S1/S2 site) by membrane-bound furin protease to produce in 

mature prefusion form of the spike. In humans, the protease is expressed in multiple tissues, especially 

with high concentrations in alveolar cells. Protease process is essential for virus infiltration to host cells. 

Unlike 2019-nCoV, the SARS virus does not carry this cleavage site and so it is not dangerous as what 

2019-nCoV is [11-15]. 
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Scheme 1: graphic representation of different domains for 2019-nCoV S protein  

 

As it is indicated in scheme 1, S1 subunit contains different functional domains beginning from N-

terminus with SS (small signal sequence), NTD (N-terminal domain, residues 14-305), RBD (receptor 

binding domain, residues 319-541) and subdomains of 1 and 2 (SD1/SD2, residues 542-685). 

Considering the overall mushroom-like shape of the spike, this subunit places in the mushroom head with 

the RBD domain faced in such a way to interact with the cellular receptor of ACE2 [16-18]. The RBD 

domains of the spike trimer which are responsible for ACE2 binding adjust one of two conformations of 

up and down conformations. Up conformation corresponds to the receptor accessible state, while down 

conformation is inaccessible conformation [19-22]. 

The next subunit, S2 contains a signal sequence, a next cleavage site called S2′ for protease. This 

cleavage site becomes accessible for protease action upon receptor binding to the receptor and its 

consequent dissociation in the prefusion state. Fusion peptide (FP, residues 788-806) domain helps the 

virus to fuse host cells membrane and to form the post-fusion complex. Heptad repeat 1 (HR1, residues 

912-984) central helix (CH), connector domain (CD), heptad repeat 2 (HR2, residues 1163-1213), 

transmembrane domain (TM, residues 124-1237) and cytoplasmic tail (CT, residues 1238-1273) are the 

rest domains of subunit S2 [16-17]. 

Upon S protein binding to ACE2 receptor and cleavage at S1/S2, subunit S1 undergoes vast structural 

rearrangements that eventually lead to its release from prefusion complex and ultimate fusion of the virus 
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with host cell [10-18]. The detailed scenario for the 2019-nCoV attack is as follows: RBD domain with 

up conformation preferentially binds to the ACE2 receptor. Simultaneous cleavage of S1/S2 site by 

protease triggers structural alterations in the S1 subunit destabilized the prefusion trimeric structure of S 

glycoprotein that leads to dissociation of S1 subunit and refolds S2 subunit to postfusion conformation 

[23-25]. Successful infection of host cells accomplished by S2' cleavage by furin protease and release of 

fusion peptide that is essential for postfusion state and virus entrance. The S2' site in the prefusion state is 

buried and inaccessible for furin but upon shedding of S1 in postfusion conformation become accessible 

for hydrolysis [26]. During this phenomenon heptad repeat, 1 (HR1) and heptad repeat 2 (HR2) interact 

with each other to form fusion core of a six-helical bundle which bringing viral and cellular membranes 

in close proximity for fusion. Currently, this hydrophobic core is considered as an ideal target for vaccine 

design or ligand interaction as effective tools to combat 2019-nCoV and COVID-19 treatment [10-18]. 

In the current work and through molecular dynamic/docking experiments we tried to enrollee different 

approved drugs to see if the can bind to RBD domain of spike protein in competition with ACE2 receptor 

or if they can bind to S2' region to mask it against hydrolysis by host cell protease and prevent human 

infections by this virus. 

Methods and Materials:  

Spike Coordinate: Coordinate structures of 2019-nCoV and SARS S protein with PDB ID 6VYB and 

6CRZ as well as coordinate structure of ACE2 receptor with PDB ID 1O8A were retrieved from protein 

data bank (https://www.rcsb.org/). The structures were obtained by the X-ray diffraction and refined at 

the resolutions of 3.46Å, 3.30Å and 2.0Å respectively. The structures were energy-minimized in 

12.85×13.13×17.12 nm, 14.68×14.28×17.72nm and 7.21×8.30×7.75nm separate rectangular boxes. The 

simulated boxes were filled with SPCE water with shells of 1.0-nm thickness. Energy minimization 

algorithm of Steepest descent was used to minimize the system energy to lower than 100 kJ/mol. Neutral 
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pH ( given Asp, Glu, Arg and Lys ionized), temperature of 37°C and one atmospheric pressure were used 

as energy minimization conditions [27-28].  

In order to study the dynamic behavior of spike proteins especially at RBD and fusion core we performed 

molecular dynamic simulations using double-precision MPI version of GROMACS 4.5.5 installed on 

UBUNTU version 16.04 with GROMOS force field for 20 ns at 37degrees centigrade and 1 atmosphere 

[29]. 

Sequence Alignment: given the binding property of RBD domains for SARS and 2019-nCoV is 

determined by their amino acid sequences we compared the RBD sequence with the same sequence of 

SARS-CoV through sequence alignment on EMBOSS Stretcher (www.ebi.ac.uk), scheme 2, to pick up 

the underling principles for their different pathogenesity comparatively [30-31].  

 

Scheme 2: sequence alignment result performed of EMBOSS Stretcher (www.ebi.ac.uk) for the RBD domains (residues 

319-541) from FASTA files of protein structures with PDB IDs' of 6VYB and 6CRZ. 

 

Ligands Coordinate structures: coordinate structures for fidaxomicin, ivermectin, heparin, azithromycin, 

clarithromycin, niclosamide, erythromycin and ritonavir were retrieved from PubChem database 

(https://pubchem.ncbi.nlm.nih.gov/) as SDF format, converted to PDB format in Open Babel server 

(http://openbabel.org/) and optimized in ArgusLab software (http://www.arguslab.com/) [32]. 
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Blind Docking experiments: to survey the potential binding potency of available drugs with high 

enough molecular weight and binding energy we carried out blind docking experiments in Hex 8.0.0 

(http://www.loria.fr/~ritchied/hex/) using 2019-nCoV spike protein as receptor against enrolled drugs as 

lignds [33]. The mode of Sahpe+Electrostatic with macro sampling was used as docking parameters and 

the best 100 poses were analyzed accordingly. 

Data Handling and Analysis: all the numerical data were exploited in Excel and SPSS software. P value 

under .05 was considered as the significance level.  

 

Results and Discussion: 

Studies on S proteins from SARS-CoV and 2019-nCoV origins indicated that despite large differences 

seen in their whole sequences and also at their domains including RBD which is determinant for receptor 

recognition and consequent virus infectivity, there seem to be structural similarities between these two 

proteins especially at their domains of NTD, RBD SD1 and SD2 from S1 subunit as well as domains of 

FP, HR1, HR2, and S2' cleavages site from S2 subunits with RMSD differences less than 4Å [11-15]. 

Henceforth it expected that these two proteins should behave similarly in their functions i.e. receptor 

recognition and host cell infection. 

Given the much higher affinity of 2019-nCoV for ACE2 than SARS-CoV indicate that there should be 

detailed differences between these two S proteins that play a vital role in more severity of COVID-19 

outbreak with high rates of virulence and mortality. Structural optimization and molecular dynamic 

simulations for S proteins from these two origins reveal detailed structural differences 2019-nCoV and 

SARS-CoV spike proteins. Figure 1-a, represents the root mean square fluctuations (RMSF) for alpha 

carbons of proteins during the 20ns period of simulation for S proteins. As it is clear S protein of 2019-

nCoV expresses a lower average RMSF value of 0.52nm for the whole sequence while the average 
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RMSF for SARS-CoV is 0.65nm and the curve of RMSF for 2019-nCoV places beneath SARS-CoV 

curve along the protein sequence. This means the vast alterations or mutations in the 2019-nCoV 

sequence lead to decreased flexibility and a more tightly folded structure for S protein of 2019-nCoV. 

This fact may play roles in the higher affinity of 2019-nCoV S protein for ACE2 receptor with higher 

infectivity. Calculations of RBD domains give 0.56nm and 0.83nm for 2019-nCoV and SARS-CoV 

respectively. This finding may be interpreted as the more constant and more effective binding interface 

for RBD in 2019-nCoV. 

 

Figure 1-b represents the superposed for these two proteins. The protein of 2019-nCoV is shown in white 

color while the SARS-CoV one in black. It is evident that 2019-nCoV is surrounded by SARS-CoV 

protein indicating the more compacted and tightly folded structure for 2019-nCoV spike protein.  
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Figurt-1: a- root mean square fluctuations (RMSF) curve for 2019-nCoV and SARS-CoV spike protein extracted from 

trajectory file of 20ns simulation period at 37 degree centigrade, pH=7 and 1atmosphere pressure as mean fluctuation 

per alpha carbon. b- Superposed structures of 2019-nCoV (white) and SARS-CoV (black) spike proteins. 
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To track the detailed mechanism of S protein binding to ACE2 receptor and to determine their probable 

sites of interactions we preformed blind docking experiments in Hex 8.0.0 software to statistically 

analyzed the binding pattern and their energies of RBD domains to ACE2 receptor for the best 100 poses. 

Our data in table 1 indicate that there are three kinds of binding patterns being between ACE2 and RBD 

domains. The RBD domains may be attached to the ACE2 receptor through up or down conformations of 

RBD or intervening regions of RBD domains. Table 1 indicates that the S protein of SARS-CoV in about 

53 percent of the 100 poses is attached to ACE2 binds to RBD domain using up conformation with only 

in 1 percent to inter RBD domains region while in the rest 46 percent poses binds with far parts of 

sequences contrast to RBD domains. In contrast, the S protein of the 2019-nCoV virus binds to the ACE2 

receptor using down conformation of RBD domain in 46%, 10% in up conformation, and 15% of inter 

domains regions. Unlike previous studies, our dockings indicate that in the trimeric structure of 2019-

nCoV, S protein that alike SARS-CoV protein carries one RBD in up and two in down conformation, 

surprisingly, this protein can binds to ACE2 receptor by RBD domains both in up and down 

conformation and their intervening regions with much higher binding energy (-450.51kJ/mol) and 

affinity. Our data also indicates that S protein of SARS-CoV mainly binds to ACE2 receptor by up 

conformation of RBD domain with a much less binding energy of -379.66kJ/mol (p-value<0.01). This 

finding may be partially helpful in understanding the higher affinity of 2019-nCov for the ACE2 receptor 

and its more severe virulence [19-22]. 

 

 

 

 

Table 1: Binding pattern of S protein RBD domains to ACE2 receptor in accordance with their binding energies 

extracted from docking experiments performed on HEX 8.0.0 
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 Up (%) Down (%) Inter domains region (%) Binding Energy(kJ/mol) 

SARS-CoV 53 0 1 -379.66 

2019-nCoV 10 46 15  -450.51 

 

 

 

Figure 2: Schematic representation of N-acetyl glucosamine residues distribution through trimeric S protein. 

 

The next parameter that may affect the potency of interactions between S protein and ACE2 receptor is 

the intervening interactions posed by sugar moieties of N-acetyl glucosamine (NAG) units that 

participate in hydrophobic interactions with receptor upon their interaction. Figure 2 graphically shows 

that contrast to SARS-CoV (right scheme), S protein of 2019-nCoV (left scheme) carries more quantities 

of NAG in its top side in near vicinity to RBD domains that can potentiate the interactions between RBD 

and ACE2 receptor upon binding [35-37]. This is the next factor that may interpret the higher affinity of 

2019-nCoV S protein to host cell receptors we postulate. Isoelectric pH (pI) is the pH in which the 

protein has no net charge or the total charge of the protein is zero. Using protein sequence we have 
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calculated the pI of proteins on www.web.expasy.org/compute_pi/ as 5.82 for ACE2 receptor than at 

blood pH of about 7.4 this protein like membrane phospholipids carries a negative charge. The calculated 

pI for RBD domains is 7.22 and 7.89 for S proteins of SARS-CoV and 2019-nCoV respectively. These 

calculations reveal that at blood pH S protein from SARS-CoV should carry negative while 2019-nCoV 

positive net charge and this means that the attractive electrostatic force between ACE2 and 2019-nCoV S 

protein fasten their binding and describe their higher binding affinity. 

Is such a sophisticated highway of mechanistic studies different ways are now suggesting to combating or 

deactivating 2019-nCoV infections from S protein and ACE2 receptor interaction points of view. Among 

these ways shielding the S protein by small ligands, designing a vaccine against S protein, and/or 

injection of soluble forms of recombinant ACE2 to prevent or misled virion to attacks human cells 

receptors are more advised recently [10-18, 33-35]. Our docking results reveal that there is a significant 

correlation between drug molecular weights and their binding energies. Accordingly, we then have 

enrolled more than 100 candidates from approved drugs with high enough high molecular weights for 

docking and to chose drugs with considerable binding energy to S protein contrast to ACE2 receptor to 

suggest them as candidates to combat 2019-nCoV infections after clinical approval. 
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Figure 3: binding energies of selected nine drugs in accordance with to ACE2 to S protein extracted as Mean±SD from 

blond docking experiments performed on Hex 8.0.0  

 

Finally and among the enrolled drugs, we have selected nine drugs with comparable potencies including 

fidaxomicin, ivermectin, heparin, azithromycin, clarithromycin, niclosamide, erythromycin, and 

ritonavir. Fidaxomicin represents the highest binding energy of -652.67±19.19 kJ/mol and the highest 

affinity for S protein. Unfortunately, we find that fidaxomicin does not bind via RBD domains to S 

protein, and instead, it binds merely to S2' site region and can prevent virus engagement to host cells in 

the late stage of activation. Ivermectin, is a medication used to treat parasite infestations, reveals binding 

energy of -539.7±16.19 kJ/mol that is significantly lower than that’s of ACE2 receptor binding energy of 

-602.4±31.28 kJ/mol) in more than 45% of docking poses to RBD domains and in about 20% to S2' 

cleavage site and accordingly inhibits virus attachment to RBD domain in the first step and also prevents 

virus activation in late phase [38-39]. The next selected drug is heparin (MW=1134.9gr/Mol) which 
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shows the binding energy of -495.04±14.94 kJ/mol. Our docking experiments indicate that heparin can 

extensively mask RBD and S2' regions against their accessibility for ACE2 binding and protease 

cleavage. Heparin is a medication used as an anticoagulant to treat heart attacks and unstable angina as 

intravenous or subcutaneous injections [40-41]. Bleeding, painful injected sites, decreased counts of 

platelets, and thrombocytopenia is the major drawbacks of heparin prescription. Nevertheless, there are 

reports showing that heparin beyond its anti-coagulation nature, shows the useful anti-inflammatory 

effect, decreasing immune cell recruitment, neutrophil activation, and degranulation [42-43]. Given the 

negative charge of heparin and previously mentioned positive charge of S protein, we hypothesize that 

the electrostatic binding forces between heparin and S protein are much higher than that undertaken in 

docking experiments performed by Hex software. Moreover, it is very important to mention that the 

heparin used in our experiments medicinally considered as ultra-low molecular weight heparin with 5 

sugar residues. This kind of heparin is used primarily in acute coronary syndrome, pulmonary embolism, 

and deep venous thrombosis. In practice, low molecular weight heparin with higher molecular weight and 

more sugar residues range from 4 to 22 than what we used is the most favorable and more prescribed 

form of heparin in the clinic. This fact clearly indicates that such type of heparin expectedly will exert 

more shielding effects on S protein than what we claimed and can prevent virus entrance to human cells 

[44]. The macrolides antibiotics of azithromycin, clarithromycin, and erythromycin used in our 

experiments with binding energies of -468.35±13.88, -452.84±10.8 and -440.01±9.04 kJ/mol respectively 

comprises good anti-viral candidates. Taking into account that macrolide with confirmed 

immunomodulatory effects makes them valuable candidates for further studies in COVID-19 therapy 

[45-48]. Additionally, deliberate reviews on docking pose for macrolides indicate that they are capable to 

shield RBD domains as well as S2' cleavage sites. Niclosamide is an anthelmintics drug used to treat 

worm infections with broad antiviral properties is the penultimate candidate in this series [49]. Our 
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docking experiment shows that niclosamide has a binding energy of -436.23±9.78 kJ/mol for S protein 

but like fidaxomicin can only bind to S2' region and can only prevent 2019-nCoV activation in late phase 

and host cells invasion. Among anti-HIV drugs only ritonavir with a molecular weight of 720.94 gr/Mol 

can bind to S protein with comparable energy of -415±10.09 kJ/mol and can act as shielding drugs in 

addition to its anti-protease activity. It is very important to mention that even though the binding energies 

of our shielding candidates except fidaxomicin are significantly lower than the binding energy for ACE2 

receptor in 1:1 competition ratio but we should remember that in pharmacological dosage the ratio of 

drug/ACE2 receptor is far from unity and so we can expect that the total binding energies of shielding 

candidates are much higher than ACE2 receptor and hence they will comprise logic shield toward viral 

infections. 

Conclusion: 

To this end, the disease of COVID-19 with a high rate of virulence and fast spread in the human body 

with multi-organ involvement and high rate of mortality comprises the greatest problem since the Second 

World War with more than 3 millions infected cases and more than 218,000 deaths by April 2020 [50-

52]. Decreased lymphocytes, increased C reactive protein (CRP), and pro-inflammatory cytokines as well 

as hypercoagulability with increased d-dimer lead to lung lesions with infiltrated immune [53-56]. It 

seems credulous to think that in a battle against COVID-19 that invades multi organs and disturbs the 

immune defensive system in a short period to be achieved by one or two drugs, especially at an advanced 

state. Based on plentiful reports in this context and considering our current and previous work [57] we 

imagine that a successful treatment regime should contain multi drugs of protease inhibitors, spike 

shielding drugs, and immunomodulatory drugs in early steps of the disease. Ivermectin>heparin (as 

intravenous or nebulized)>macrolides seem to be good adjuvant candidates in all anti 2019-nCov regimes 

to shield S protein even for prophylactic purposes. 
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