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ABSTRACT

A one dimensional Bravais lattice model is applied to a superabundant vacancy (SAV) deltad phase (Pd; VacD, - octahedral), in the
palladium — deuterium system. SolidWorks 1s used to simulate the motion of atoms and jons in the lattice. These two approaches give
1dentical results for the vibrations of the deuterons indicating that large vibrations of deutérans are possible when the microstructure 1s
a mixture of beta deuteride and small volume percent delta SAV phase. These conditions résult from the unique geometry and
crystallography of & phase. According to both the model and simulation, as the size of §ipphase increases, opportunity for high
amplitude vibrations of deuterons increases. Increasing temperature should have @ similar eflect.

Keywords: Superabundant vacancy structures, Palladium - Isotopic Hydrogern phases, Delta 8 and Delta Prime &' Phases, Lattice
Vibrations, Resonance Frequency, Phonons

s Introduction

Superabundant vacancy phases (SAV) offer unique crvstallography because the high levels of vacancies (~ 25%) are
ordered [1-21]. In the ordered PdsVacD, SAV phase, Detterium (D) occupies octahedral interstitial sites of the palladium
(Pd) face centered cubic structure (FCC) as positive deuterons (ID*), and vacancies (Vac’) occupying all unit cell corners
with some negative charge. This phase, called delta (8) phase, is located on the Pd-D phase diagram [22, 23] at a nominal
DD/Pd ratio of 1.33. The unique feature is prthogonal empty channels, along contiguous unit cell edges, <100> directions,
occupied only by regularly spaced deuterons with spacing equal to the unit cell lattice parameter. If the deuterons migrate
to tetrahedral interstitial sites [24-26], the SAV phase.s o' [22, 23], with empty channels or vacancy tubes with apparent
enhanced electronic conduction [23]. In eithér case, diameters of these tubes vary periodically when traversing <100
directions along contiguous unit cells. lt&diameter ranges from a minimum of .414 of the Pd atom at the edge midpoint of
the FCC unit cell (octahedral position)..to 8 maximum value of the diameter of the Pd atom at corners of the unit cell [23].
Ignoring hydrogen, invisible to X-rays. and with ordered Vac', the unit cell of SAV phases is simple cubic (SC).

The properties of the SAV phases atre not well known except: 1) the crystallography from X-ray diffraction, 2)
unit cell dimensional behavior {contractien upon formation from the beta () deuteride or hydride phase), and 3) thermal
desorption spectral behavior [1-23]. Three reasons for lack of characterization are: difficulty achieving proper activity
levels for SAV phases with glectrolysis, the kinetics for their formation in the bulk is slow resulting in very small volume
fractions, and their discovery was fairly recent.

The deuterons within the tubes.of 6 phase can be regarded (and modeled) as a case of a one dimensional Bravais
lattice of 10ns which has béen described in solid state physics texts [27-29]. This paper develops such a model, examines
longitudinal lattice vibrationsof deuterons along edges of the unit cell, and uses a commercially available solid modeling
computer-aided dgsign software package (SolidWorks published by Dassault Systémes with settings listed in Appendix
A) to simulate thesevibrations (frequencies, amplitudes and velocities) within the tubes.

2. Analysis and Model Development

A one dimensional row of ions in a monatomic Bravais lattice, after Dean [30] and Ashceraft and Mermin [27], is
shown ift FFigila. Each ion of mass m is tied to its neighbor with ideal Hookean massless springs with only nearest
neighbor forces considered. All springs and ions are connected, so the extreme end springs are viewed as being connected
back ta the beginning of the string by a loop with a large number of 10ons with the end spring (on the right) connected to
the beginming ion (on left). Alternatively, connectivity is realized by a massless, perfectly rigid bar (Fig. 1a), capable of
motion, assuring any motion on either extreme end is replicated at the opposite extreme end, as in the loop version.
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With these end conditions, which assure connectivity from ion to ion only, Newton's second law of motion is
applied longitudinally to each ion m the string and vields a dispersion relation of lattice waves or phonons [27, 28, 30]
relating circular frequency o (rad/s) for normal modes of vibration fo the wave vector q and the ion lattice constant a as:

® = 2 @, sin (q-a/2). (1)

Here , is (k/m)*2, the square root of the ratio of the Hookean spring constant k to the mass m of the jon and is considered
the fundamental circular frequency (rad/s). This dispersion relation assumes a large number of ions and.is suitable for
monolithic microstructures, but is untenable in this model where phase boundaries pose different string endiconditions,
and SAV size is often limited from kinetics and processing conditions. To account for phase houndariesand fifite
number of ions, end conditions are altered: the extreme right and extreme left springs are fixed to rigid constraints (built
in and motionless) as shown in Fig. 1b. Then the exact dispersion relation from Kittle [28) and Torre [29] becomes:

® = 2 &, sin (ma/2(N + 1)) (2)

where N is the total finite integral number of ions in the string. Each ion is numbered asim. so m is integral, | =m =N,
and called the mode number of the vibration. This relation is exact for all m and N, even if N is small, e.g. 3 to 10, and
has the conditions of Fig. Ib with end conditions fixed and excited with a forcing function on one end (see Discussion
section for condition of forced vibration at both ends). This is useful since the total flumber of ions, N*, in isolated
particles of & phase, and their volume (N-a)*, have been shown to be a very small (e.g. 0.03 %) volume fraction of the
bulk [22, 23]. These small particles of 6 phase, distributed within the hulkyare consistent with nucleation and growth
mechanisms.
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Fig. 1. (a) A model of ions of mass m in a one~Dimerisional Bravais Lattice where each 1on 1s tied to its neighbor with an 1deal Hookean massless
springs with force constant k and only nearest neighbor forces are considered. Here the extreme ends of the springs are connected to a massless and
infinitely ridged bar capable of motion, ‘where themetion of one extreme end of the lattice is reproduced at the opposite extreme end of the lattice.
Tons have a spacing (lattice constant) of a, and the total length of the string of Nl ions is N-a. (b) Here the extreme ends of the springs are fixed, a
built-in condition, lending the solution suitable far small finite number N of 1ons.

Equation (2) is evaluated for each mode m and any N to vield a ratio of normal mode w to fundamental circular
frequency, w/we. Thus the string has'other normal modcs, also called natural circular frequencics w (or frequencics £
(1/2m)-, in Hz), in addition to the fundamental circular frequency w, (or fundamental frequencies fo = (1/2m)- ). Fig. 2
shows eq. (2) solutions @f natural frequencies f for selected m modes and N ions. For any N, there are N natural
frequencies, one foreach my gensistent with string length (N-a). If the string is forced to vibrate longitudinally along its
length at one of these natural frequencies, it will resonate with amplitude increasing to large values.

In the case of deutgrons in the & phase, the fundamental frequency (1/2x)-(k/m)!” is its thermal vibration
frequency, detérmined from experimental measurements. Table 1 in the Appendix B lists fundamental thermal vibrational
frequencies [ of isotapes of hydrogen in palladium under various conditions (phases) from the literature as well as the
thermal vibratien frequency of Pd. These do not account for the string nature, as in this model, but only account for
18olated single ions of isotopic hydrogen in their respective lattice positions. The consequences, of this model with string
geamelry. are extra natural frequencies, from eq. (2) and Fig. 2 in addition to those fundamental ones in Table 1.

Page



Page3 of 10 AUTHOR SUBMITTED MANUSCRIPT - MSMSE-104504.R1

WA =

b L notn bnobn b bt s e R PG Y W L0 0 o W R N R R NN RN NN =2 == s a2 =Y

m=N

Stiing from Eq). (2)

]

for Various m Values in THz

m=13. N=100

|
i
w
]
(1]
o
0]
o
|
|
|

=

Matural Frequency of Deuterons in

m=12, N=100

Mumler of Dettejans. in Strifng, T

Fig. 2. The values from the model using equation (2) of natural frequencies f (hormal mades of longitudinal vibration) of any given length of a string
of N ions with m modes of resonances, using f= (1/27)-» and f. = (1/2x)- (k/mJ*2 Bach ot is 2 normal mode of vibration and possible natural
frequency resonance if forced to vibrate at that frequency. The thermal wibration fregueéncy of the Pd lattice is shown at 5.70 THz (see Table | in the
Appendix B). The dots with circles are driven to resonance by the Pd atom af the end of the string. There are other solutions to equation (2} but only
selected most relevant ones are shown near 5.70 THz. The minimum number of fons N to give a match to the frequency of the Pd vibration is N =7,
with other matches at N =15, 23, 31, 39, 47, 55, 63, 71, 79.87,.95 ... etc. indicted with circles.

These strings are a result of the unique latticesgeometry of SAV channels in & phase shown in Fig. 3 where both
lattices of beta (B) deuteride of Pd-D and 6 of PdsVacD, are eompared. Here a (001) plane is shown with 6 unit cells of 8
phase in [100] direction sandwiched betwgen [ phase. Repeats of unit cells in [010] and [001] directions are not shown,
but the model applies in all 3 orthogonal directims (orthogonal strings of deuterons intersect at corners of cach unit cell).
The comparison of a string of deuterons in [100] direction of 8 phase to the one dimensional Bravais lattice of ions is
shown in Fig. 4, and suggests Eq. (2) of the one dimensional Bravais lattice, be used to model & phase.

The uniqueness of & phase with.ordercd Wac at corners of unit cells supports this correlation to the one
dimensional Bravais lattice of ions, and itsdesaription by eq. (2). Density Function Perturbation Theory (DFT) [12, 15-
21] shows there is a binding energy. between positively charged deuterons and Vac, indicating negative charge associated
with Vac'. Pd atoms from B phase fix the end springs because they are 52.8 times more massive and their thermal
vibration frequency is lower, but can alse ekert longitudinal forces on the deuteron string from thermal motion. As Pd
atoms vibrate, the deuteron spring emnpresses and stretches producing Hookean forces on the string equal to displacement
(vibration amplitude) times the spring force constant k of the deuteron’s spring. In this model, the spring constant for
deuteron springs is determined from.f, = (1/2x)-(k/m)'2, sok =m-4-1*-f2. Since the fundamental frequency for
deuterons in & phase is f, = 14.59 THa(Table 1. Appendix B), k = 28.102 N/m, using deuteron mass of 3.344 x 10*" Kg.
From Table 1, the amplitude of vibration of Pd is 0.107 Angstroms (A) at room temperature. This amplitude (1.07 x 10!
m) times 28.102 N/mpgivesadorce of 3.01 x 107 N exerted on the deuteron string in <100> directions by Pd. Deuterons
on perpendicular édges of the unit cell do not have an uninterrupted direct line of sight as they do in the channels and are
not considered in this model to result in nearest neighbor forces since they are shielded by the Pd atoms at the center
14,%4,0 of the FCC unit €ell face. Additional vibration modes arise from the tube geometry, the 8/ phase boundaries, and
the negative charge of both Vac™ on each side of the positive deuteron (Figs. 3 and 4). The deuterons have a double
atfraction to egeh Vac¢ on either side allowing the spring constant to maintain linearity and constancy to high values of
deuteron displacement within channels (<100> directions), a main feature of the model. Negative charge in the vicinity of
cach Vac® sergens positive deuterons approaching from opposite directions (optical mode), allowing closer approach than
would be otherwise possible. Without this, spring constant k is variable and depends on the displacement, increasing as
two denterons approach one another near a neufral corner vacancy site due to their positively charged maclei.

©fall the normal modes of vibration (natural frequencies) indicated from eq. (2) and Fig. 2 of deuteron strings in i
4 phase, many match the forcing vibration of the Pd atom at the end of the & phase. From Table 1 this frequency for Pd
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vibration, when loaded with isotopic hydrogen. 1s 5.70 'THz. It matches values in Fig. 2: the first isat N=7, m =1 (exacl
maltch), second at N = |5, m = 2 (exact), third exact match at N =23, m =3 and forth exact match at N =31, m = 4. Other
exact matches to natural frequency of Pd thermal vibration frequency occur at N and m pairs of: 39 and 5, 47 and 6, 55
and 7,63 and 8, 71 and 9, 79 and 10, 87 and 11, 95 and 12... ete. This patlern continues to higher valuesiof N and m,
repeating every eighth N value. In addition, there are near matches at 14 and 2, 15 and 3, 16 and 2 etc., (fromeeq. 2
solutions). As N increases the closeness of near matches improves until most of the values of m belweenithe exael
matches become near matches. 1t will be seen in the next section on Simulation why near matches are effectively the
same as exact matches: resonance peaks have widths m frequency that include near match values.
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Fig. 3. A comparison of the (00]) planes of 8 phase with adD/Pd ratio of 1.@ (top) to that of a two phase microstructure of 8 phase between a matrix
phase of B phase (bottom). The large diameter solid atoms are:Pd. the vaganties (Vac) are dotled (corner positions in the FCC unit cell) and the red
1ons are deuterons occupying the octahedral interstitial sites.
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Ball and Spring Model (1 — Dimensional Bravais Lattice) of Deuterons in 8 Phase

Fig. 4. A comparison of the [100] direction of the (001) planes of & phase with deuterons (red) and vacancies (dotted) o that of the one dimensional
Bravais lattice of fengiednnected with springs and with Pd atoms on each extreme end of the siring of ions to fix the ends ol the extreme springs. The
vacancy channel (green tube) is shown with a varying diameter of between .414 and 1.0 of that of the Pd atom diameter (2.75 x 10" m). To match
the solution of cquation (2) one end is fixed by the Pd atom (as in Iig. 1b.) and the other end is forced o vibrate by the Pd atom at that end.
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3. Simulation Results with SolidWorks

Since Fig. 2 (eq. 2), shows many matches of natural frequencies to Pd at 5.70 THz, a commercial software
package called SolidWorks was utilized to verify if these predictions, with large values of amplitude of Viliration of
deuterons (resonances), could be simulated. The geometry of a ball (mass) and spring model of Fig. 4 was implemented
in the new feature of SolidWorks, Motion Analysis Simudation. Models with 1, 3, 7, 10 deuterons, and'other valiies of N
in the string, were executed with results shown in Figs. 5 through 8 for 1, 3, 10 and 7 deuterons, respectively. These
figures show deuteron vibration resulting from affectedly induced frequencies of vibration of the Pd atom at the end of the
string. Fig. 5 represents Pd vibrating at the fundamental frequency of the deuterons: it can only have a resenance if the
9 Pd were to vibrate in the vicinity of 14.59 THz which is not the real value of vibration of Pd (5,70 THz).. This §imulation
10 with one deuteron was performed as a control sinulation, testing effectiveness of SolidWorks to replicate a known natural
1T frequency. Fig. 6 shows three resonances of deuterons at which are also not near that of Pd, butare consistent with the
12 model (no dots in Fig. 2 at N = 3 are close to 5.70 THz). These resonances cannot be triggered by Pd at 5.70 THz. Fig. 7

W~ 1w =

B fora string of 10 deuterons (1000 unit cells of 8) shows 10 resonances (1 <m < 10) none of which perfectly coincide with
1: the thermal vibration of Pd at 5.7 THz: there is an amplitude minimum between that for'm= 14at 4.153 THz) and m = 2
b (at 8.221 THz). However these resonance peaks, due to their widths, almost capture 5.70. THz. As N gets larger the peaks
17 (from eq. 2) near 5.70 THz more nearly overlap the value of 5.70 THz (referred to-as “near matches™ in the previous

18 section). Fig. 8 shows a resonance peak centered on Pd vibration frequency of 5:70 THzwith half max width on both

19  sides of this frequency. This resonance peak coincides exactly with the model predietion (Fig. 2 with N =7 and m =1),
59  demonstrating Pd atoms do induce resonances at exact matches (and by extension of peak widths, at near matches).

Mt Ariay T Tie | o) Undeegan
A e S RO v

rlat prasiy sdih Kigaiae a1

24 T W e

26 SRRy 4 b T P s eEy e gy iRrfaperniong
gl oand WA ks Irrimgaatipd

sLior

ERURIE

36 | ——— .L___‘:* =y

37 Ieauercy ol [Hiving Vibration, THa
38 Fig. 5. Amplitude of vibrations of a single denteron in & phidse diiven by Pd atom vibrating at various frequencies £ The peak at 14.59 THz is the
39 fiindamental natural resonance frequency and demonsfrates the effectiveness of SolidWorks to replicate this normal mode.
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10 In addition to amplitude.of vi bration, the velocity of the deuterons were measured in this study. Fig. 9 (a) shows
A the velocity of deuteron 7 with respect to deuteron 6. A similar result was obtained for deuteron 3 with respect to

4 deuteron 2. Thus relative velocity shows,the deuterons are effectively vibrating in an optical mode (nearly 180 degrees out
43 Of phase) when their relative velocities are near max or min in Fig. 9 (a) (they are separating at positive values and

44 approaching at negative valges). Théy are in acoustical mode when their relative velocities are near zero. Over time they
45  switch back and forth from optical to‘acoustical mode. From Fig. 9 (a). it can be seen that they approach one another at a
46 velocity of 8.75 x 10° m/fs, however itis possible the relative velocity can be as high as twice the absolute velocity

47 (neighboring deuterons. completély out of phase), and Fig 9 (b) would indicate this to be as high as 1.16 x 10° m/s or

48  shghtly higher sch the peak veloclty appears to be still increasing at 40 plcoseoonds
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59 deuteron 2'and in general any selected set of deuterons at all the seven resonances indicated in Fig. & b) Velocity of deuteron 3 with respect to the g
60 lattice (absolute velocity). Both a) and b) are for a seven deuteron string due to Pd end atom vibration at a frequency of 21.28 THz. g
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4, Discussion

This model has several simplifying assumptions that suggest that a more sophisticated approach eould reveal
additional details. For example, Density Function Perturbation Theory (DFT) would elucidate the shielding ability of the
charge of the Vac' for deuterons approaching one another on opposite sides of the Vac™ and its effect onthe spring
constant. DFT could also examine how effective the deuterons on mutually perpendicular edges of the umt cell are
shielded by both Pd atoms at the center of the face of the unit cell, 12,%2,0, of the (001) plane and by thenegattve charge of
the comer Vac'. Note that the deuteron at the octahedral site at the body center of the unit cell, #5142, 1%, I8 adequately
shielded from the deuterons on the octahedral sites on unit cell edges, being completely blocked by Pd atoms in nearest
neighbor positions. DFT would handle the dynamics and effectiveness of the negative charge of the Vac™ to shield the
interaction of orthogonal strings along mutually perpendicular edges (i.e. [100] and [010]. or [10Q] and [001] or [010] and
[001] directions) of cach unit cell (i.e. allowing the motion and resonance of mutually perpendicular stings to be
independent of one another, or indicate specific interaction). In depth work is underway to address these, but insights
gained by this model and simulation may motivate and steer future work on this phenomenon.

The possibility of buckling of the deuteron string in delta phase was compared te buckling in a model of deuterons
in a crack [22, 23]. Here, delta phase geometry restrains buckling because: a) positive deuterons move inside a symmetric
tube (Fig 4.) having an inside surface with negative charge as a result of the clégtrons from the surrounding Pd atoms, and
this negative charge supports alignment by pushing them inward toward the eenter of the tube, b) deuterons gain
considerable velocity, as indicated in Fig 9 (b) as they approach the vacancy site &t the corner lattice position, and this
momentum discourages transverse motion especially where most needed, near the vacancy, and c) the deuteron’s attraction
to the negative vacancy site deters transverse motion by pulling them inward toward the center of the vacancy. Future DFT
calculations may also illuminate these effects.

In this model and in the simulations one end of the string.of deuterons is considered fixed while the other end
undergoes vibration from the Pd atom. These conditions which fit ¢quation (2) are preserved when both end Pd atoms
vibrate if the string has double length (a-[2-N + 1]), wherein the central ion is immobile (from symmetry). Simulation runs
in SolidWorks with this geometry of double length confirm, the central deuteron is indeed motionless even without constraint
due to symmetric stimulation (loading). Thus the double length €ondition for N = 7 becomes two collinear and contiguous
stings, each with 7 deuterons, connected by a stationary deuteron it the middle, with the right set of deuterons loaded on its
right end and the left set loaded on its left end, thus each setsatisfics equation (2) and the associated SolidWorks simulations
reported here.

Resonance theory indicates that resonances should occur at very small amplitudes of driver vibrations when
dampening is zero, as in this model. Work isunderway to address effects of dampening. In this model the force exerted by
thermal vibration of Pd on the ends of 8 phase (at.f§ phase border) is about 3 x 10™° N, determined from product of spring
constant (28.101 x 10 N/m, above) times Pd vibratien amplitude. Resonance, solely from thermal vibration, occurs over
a range of values used in this study with spegific values in Figs. 5 — 8. Values of forces in Figs 5 and 6 were 2x 107 N
and Figs. 7 and 8 were 18 x 107'° N and 20/% 10" N respectively, and in all resonances induced solely from thermal motion
of Pd atoms as indicated in Fig. 2 at citcled dots such as N =7, m = 1 etc. Acoustic phonons from the Pd lattice feed the
necessary energy for the mixed aconstic and optic modes of deuterons leading to these resonances.

S. Conclusions

This model and simulation suggest SAV 6 phase crystallography offers a unique geometry for vibrations of
deuterons. The results suggest thatas the size of & phase (N-a,)* increases, the opportunity for high amplitude vibrations
of deuterons increases because of neatimatches (overlapping resonance peak widths). As the temperature of the Pd host
increases, the amplitude af Pd vibration increases, making the possibility of resonance more likely due to a stronger
driving force. SolidWorks simmulations confirm predictions in the one dimensional Bravais lattice model, validating cases
with, and cases that lack, resonance from thermal vibration of Pd atoms.

6. Appendix A: SolidWorks Reference Information

SelidWorks version 2018 was used with scale factors of: distance = 107, mass = 2.990430 x 10°, force = 10'°, spring
constant = 10 frequency = 1.09084 x 1072, Motion Analysis Sinmudation settings were: accuracy = 00000001, frames/s =
300, reselution = 50%, and computational times = 5 to 40 s with personal computer real run times lasting about 2 hours
for each individual simulation condition.
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1. Appendix B: Frequency of Vibration of Isotopic Hydrogen and Palladium under Various Conditions

Table 1. lists fundamental frequency £, of isotopes of hydrogen (H and D) and palladium (Pd) in various phases. Both Pd-
H and Pd-D exist as , B, 8, and & with a range of H/Pd or D/Pd ratios (x values). The solid, liquid and ga§ phases arc
listed for comparison and completeness. Both H and D have different values of f, depending if the hydride PdH, or
deuteride PdDy is o (low x) or B (x 2 .63) or 6 (x = 1.33, PdsVacAu, where A = H or D in octahedral sites)or.d' (x = 1.33,
Pd;VacA,, with A in tetrahedral sites). Since suitable amount of data is available from the literaturein most gases,
averages within a given data set are used in the model and simulations of this paper and listed in Table'l. For example
using average values, the ratio of the f;, of Bu/Bp = 1.51 and f, of an/ap = 1.43 compared to the inverse mass 1'atig 1.41.
The ratio for f, of or/0p is 1.51 (because of reason give below). The f, of H in 6 and &' are reported m reference 15 giving
f, of 6w/Br = 1.57, however f, of D in 8 and &' are not reported in reference 15. This same ratio (1.57) was used to sct
Op/Po at 1.57, since the f, of dx/0p 18 assumed to be better represented by £, of fu/Pp than by f; of wgiop, because both 3
and & have high x values). Thus the first two entries in the Table 1 are from values from reference 15 and the use of this
ratio (1.57) from the observations of the present work (including all the data from Table 1 takenas a whole).

Table 1. Frequency of Vibration f of Isotopic Hydrogen (H or D) and Palladium { Pdjufidér Various Conditions

Element or [sotope and Its | Frequency f, | Amplitude of Vibration | PdAxor PdsVacAg (= HorDF, | Temperature (°K;, | Reference
Arrangement or State (THz) (Angstroms) Phase =0, B, 8, or &', = APRd (P = pressnre, GPa)
D in 6p Phase (Pd;VacDy) 14.59 6, m=1.33 295 15 & This
D in &'c Phase (Pd:VacD.) 27.86 8, x= L33 205 15 & work
D in Pd at Octahedral sites 9.52 Fie— 63 295 31 (Fig.3)
(PdD,, Phase) 9.00 B, x=k.9 295 32
9.50 . x=83 295 33
9.16 T = 63 295 34
9.21 p. ®=.75 295 34
9.41 B, . x=290 295 34
9.19 el " x=.63 80 35
9.60 p, x=.75 <50 and 84 36
9.60 B, x=.75 20 and 78 37
8.95 p. x=-~1.0 5 38
Average fp= 9.30 THz 9.15 p. x=.78 75-85 39
1161 22 o, x=.002 295 40
Average op = 11.43 THz 11.24 : - o, x=.014 295 33
H in dy Phase (Pd;VacHa) 22.0 E 6, x=1.33 295 15
H in &'y Phase (Pd;VacH,) 42.0 - o, x=1.33 205 15
H in Pd at Octahedral sites 13.54 24 in [100] direction B, x=.63 295 41
(PdH; Phase) 13.99 B, x=.63 295 Bl
13.78 ] 295 42
1424 B, x=.63 295 33
13.90 B, x =70, 85, 93 80 and 100 43
14.85 low T. p x=.0011 5 44
13.306 B, x=.63 80 45
14.02 B, x=.70 70 46
1415 B, x=.75 <50 and 84 36
14.17 B, x=.63 4 47
Average pu=14.02 THz 1427 . low T. p x=.0008 4 47
.30 in [100] direction a, x=.03 623 48
1644 a, x=.015 295 47
FE96% o, x=.0008 295 47
16.26 175 o, x=.002 295 40
1668 o, 002 <x=<.014 295 33
1548 o, x=.0011 300 44
Average oy = 16.38 THz 1644 o o, 05=x<.091 5 38
Pd lattice atoms in PdA. 5.50 y B, x=63{(A=D) 295 31
{A=HoD) ; 6.25 100 b, x=.63(A=1]) 295 41
;7 B.x=.63-90(A=D) 295 34
113 g, x=.007 (A=H) 295 49
Average = 3.70 THz ; .107 (average)
Pd lattice atoms without H.or 6.78 10 x=0 300 31
D (prrgPdf - 131 x=0 295 49
Average =6.74 THz 6.70 x=0 296 50,51
X | For Comparison, Reference Frequencies (THz) for Solid, Liquid, and Gas Hydrogen Isotopes
D2 Solid 893 300 (P=150 GPa) 52
{ Solid 89.5 300 (P =303 GPa) 53,54, 55
Lignid 89.6 38 54
Gas 897 295 54, 56
H; Solid 122 300 (P =150 GPa) 52
Solid 124 13 57
Lignid 124 14 57 ©
. Gas 125 295 54, 56 &
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