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0. Introduction

Rutherford suggested already in 1920 that electron-proton 
could be bound in tight state [1]. At that point neither the 
Shroedinger equation (1926) nor Dirac equation (1928) was known 
to him. He asked his team, including Chadwick, to search for this 
atom. After Chadwick’s discovery of the neutron in 1932 there 
was a lot of discussions whether it is an elementary particle or a 
hydrogen-like atom formed from electron and proton [2]. For ex-
ample, Heisenberg was among those who argued that Chadwick’s 
particle is a small hydrogen atom. At the end the Pauli’s argument 
won, that the neutron spin 1/2 follows Fermi-Dirac statistics and 
this decided that the neutron is indeed an elementary particle.
This is a well-established fact and it is not discussed in this paper.

It must have been obvious to both Schroedinger and Dirac, and 
certainly to Heisenberg, that there is a peculiar solution to their 
equations. This particular solution, which corresponds to the small 
hydrogen, was at the end rejected [3] because the wave function is 
infinite at r = 0. Since nobody has observed it, the idea of the small 
hydrogen has died. However, its idea was revived again ∼70-years 
later, where authors argued that the proton has a finite size, and 
that the electron experiences a different non-Coulomb potential at 
very small radius [4,5]. In fact, such non-Coulomb potentials, for 
example, Smith-Johnson or Nix potentials [6,7], are used in rela-
tivistic Hartree-Fock calculations for very heavy atoms where inner 
shell electrons are close to nucleus. Using this method, authors 
retained solutions for the small hydrogen which were previously 
rejected. However, in a follow up paper [8], it was recognized that 
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considering such potentials does not satisfy Virial theorem, and 
that one needs to add much stronger potential to hold the rela-
tivistic electron stable.

Brodsky pointed out that one should not use the ”1930 quan-
tum mechanics” to solve the problem of the small hydrogen; in-
stead, one should use the Salpeter-Bethe QED theory [9]. Spence 
and Vary attempted to find such electron-proton bound state using 
QED theory [10], which includes spin-spin, field retardation term 
and Coulomb potential, assuming the point-like proton. They sug-
gest a possible existence of a bound state.

There are two reasons why the small hydrogen idea was not 
investigated theoretically further: (a) nobody has found it experi-
mentally, and (b) the correct relativistic QED theory is too compli-
cated at small distances.1

Our approach is a potential-based calculation. We propose to 
solve the problem using a simple equivalent model based on two 
basic physics principles:

(a) Virial theorem, which is important consideration to judge a 
stability of bound systems. This requires to think in terms of 
attractive potentials and electron kinetic energy.

(b) DeBroglie’s classical quantum mechanics principle,

stating that the only allowed atomic states are those with inte-
gral number of electron wavelengths on a given atomic orbit.

These two assumptions are sufficient to derive energy levels of 
the normal hydrogen. We will make an ansatz that they can be 
used for the small hydrogen problem also.

1 Private communication with Prof. James Vary, one of the authors of Ref. [10].
se (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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One can ask a question what is the small hydrogen? To us, it 
is not a ground state of the normal hydrogen. Instead, it is a small 
relativistic electromagnetic vortex of two charges.

1. Simple argument for the small hydrogen

1.1. Balance of two forces

We are not trying to solve the problem by the QED theory; 
instead we will use potential-based approach based on balancing 
of two forces, one trying to separate electron-proton pair and the 
other one trying to bring them closer.

We assume that proton charge is point-like, and we neglect 
spin-spin effects. We assume that the attractive potential is domi-
nated by a sum of two terms, the Coulomb potential V Coulomb and 
the Dirac spin-orbit term V (Spin.B) (both potentials are already used 
for the normal hydrogen,2 V Coulomb = −K Ze2/r explains its stabil-
ity, and V (Spin.B) potential explains the hyperfine spectral structure, 
which is a tiny effect for electron at large radius).

In this paper, we assume that the V (Spin.B) potential can also be 
used at small radius.

We assume that the spin-orbit potential is:

V (Spin.B) ∼ −(e�/2mc) (σ · B) = −μ0 B, (1)

where μ0 = 5.788 × 10−9 eV/Gauss is the Bohr magneton, B is 
electron “self-induced” magnetic field. To understand the origin of 
this magnetic field, we shall assume a simple equivalent model, 
where the electron is considered to be at rest and the proton is 
moving around at this radius.3 One can estimate the magnetic field 
value as follows:

B ∼ 10−72π I/r = 10−7 Zev/r2 (2)

where I is the circular loop current, Z is atomic number and v is 
electron velocity. Magnetic field, calculated using equation (2), at 
a distance of a few Fermi is extremely high. For example, we ob-
tain B ∼ 5.977 × 1015 Gauss at radius of r ∼ 2.8328 Fermi, making 
the spin-orbit term V (Spin.B) ∼ 34.5961 MeV, while the Coulomb 
contribution is only V Coulomb = −K Ze2/r ∼ 0.508326 MeV at the 
same radius. Fig. 1 shows V Coulomb and V (spin.B) potential shapes 
as a function of radius close to proton.

Although this paper uses electron radius r in the following for-
mulas, it should be looked at from quantum mechanical point of 
view, i.e., electron has a distribution of radii with some mean value 
of < r >, determined by its wave function.

1.2. Electron kinetic energy

The kinetic energy Tkinetic of an electron located at radius r can 
be simply estimated as follows:

Tkinetic =
√

(hc/λ)2 + (mc)2 − mc2 (3)

where λ = (2πr/n) is De Broglie wavelength for electron radius r, 
n is number of wavelength periods. Fig. 2 shows T kinetic variable as 
a function of electron radius, and its relationship to absolute val-
ues of attractive potentials involved. We can see that the Coulomb 
potential alone cannot hold electron on a stable orbit for radii be-
low ∼10000 Fermi, and that the V (Spin.B) potential is essential to 
hold the small hydrogen together.

2 For example, one could use Salpeter-Bethe equation [11].
3 Such calculation is used in many text books. For example, P.A. Tipler [12] used a 

similar approach to calculate the spin-orbit fine-structure splitting of spectral lines 
in the normal hydrogen atom, where he obtains the self-induced magnetic field of 
B ∼ 4 × 103 Gauss at r ∼ 2.12 Å.
Fig. 1. V Coulomb and V (spin.B) potential shapes as a function of radius close to proton.

Fig. 2. Comparison of electron kinetic energy T kinetic, and absolute values of 
V Coulomb, V (Spin.B) and (V Coulomb + V (Spin.B)) potentials.

1.3. Virial theorem

Virial theorem is important consideration to judge a stability 
of bound systems of two or more particles. Virial relations can be 
used to draw conclusions on the dynamics of bound states without 
solving the equations of motion. We will use three independent 
methods.

1.3.1. Method A
Virial theorem states that for a general potential V (r) = αrk , 

the expected electron kinetic energy Tvirial is related to potential 
energy U as follows [13–15]:

Tvirial = k [γ /(γ + 1)] U , where γ = 1/

√
1 − (v/c)2 (4)

For the small hydrogen, potential U has two terms, U1 and U2. 
For Coulomb potential (U1 = −K Ze2/r) k = −1, and the kinetic 
virial energy is behaving as Tvirial → −(1/2)U1 as γ → 1, and as 
Tvirial → U1 as γ → ∞. For the spin-potential (U2 = V (spin.B) ∼
1/r2) k = −2, and the kinetic virial energy is behaving as Tvirial →
−2U2 as γ → ∞. Therefore, the virial kinetic energy is:

Tvirial = k1 [γ /(γ + 1)] U1 + k2 [γ /(γ + 1)] U2, (5)

where k1 = −1, k2 = −2
The condition for stability is:

Tkinetic = Tvirial (6)

Fig. 3 shows that the equation (6), with input from equa-
tions (4)&(5), is satisfied for the normal hydrogen atom exactly, 
in this case using the Bohr model. One can also prove that the 
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Fig. 3. This plot validates equation (6) for the normal hydrogen, where T kinetic is 
calculated using equation (3) and T virial is calculated using equation (5).

Fig. 4. Comparison of electron kinetic energy T kinetic (equation (3)) and T virial (equa-
tion (5)) shows two regions of hydrogen atom stability, one for normal hydrogen 
and one for the small hydrogen.

Schrodinger’s hydrogen satisfies the virial theorem using mean val-
ues of Coulomb potential < V > and mean radius < r >, obtained 
from electron wave function.

We will assume that equations (4)–(6) are also valid for the 
small hydrogen atom. Fig. 4 shows that there are two regions 
where T kinetic is equal to T virial, i.e., where the virial theorem is 
satisfied.

1.3.2. Method B
Another way to work out the virial theorem is to follow refer-

ences [13,14,16]. They show that the following equation describes 
the relativistic virial theorem for a particle moving in potential 
U (r), when averages over time:

< p∂/∂ pTkinetic (p) − r∂/∂rU (r) > = 0 (7)

where p is electron relativistic momentum, r is electron radius, 
and U = V Coulomb + V (Spin.B). One can rewrite eq. (7) using rela-
tivistic formulas as follows (we drop averaging over time since we 
are dealing with a periodic motion):(
(pc)2/

√
(pc)2 + (mc2)2 − r∂/∂r(V Coulomb + V (spin.B))

)
= 0 (8)

One can solve this equation numerically and result is shown on 
Fig. 5, where we plot an absolute value of the left side of eq. (8) as 
a function of electron radius. The result agrees exactly with eq. (6), 
i.e., the stability occurs at r ∼ 2.83 Fermi for n = 1.
Fig. 5. Numerical solution of equation (8) for n = 1. The virial theorem condition for 
stability occurs at r ∼ 2.83 Fermi. The curve does not reach zero because of a finite 
binning.

Table 1
Small hydrogen solutions (r = rmin).

n Radius r
[Fermi]

V (Spin.B)
[MeV]

Tkinetic
[MeV]

EBinding energy
[MeV]

Mass*

[MeV/c2]

1 2.8328 −34.5961 69.1923 −0.25416 938.52892
2 1.4113 −139.3929 279.3056 −0.51017 938.2729

* Mass of small hydrogen = mproton +melectron − Ebinding energy . (Mass of neu-
tron = 939.565413 MeV/c2 .)

1.3.3. Method C
One can reach the same stability conclusion by searching for a 

minimum in total electron energy E = Tkinetic + U , i.e., searching 
for a radius where the following equation is valid:

dE/dr = d
(
Tkinetic − Abs(V Coulomb + V (Spin.B))

)
/dr = 0 (9)

We will use a numerical method to solve the equation (9). The 
solutions are shown as minima of curves on Fig. 6, where dE/dr is 
equal to zero. We present two curves for n = 1&2, where n is inte-
gral number of waves on a given orbit in the De Broglie equation 
(nλ = 2πr). Looking at these curves, one can assign a radius rmin
corresponding to minimum of each curve. It turns out that this ra-
dius corresponds to solutions of equations (6) and (8) exactly.

Looking at Fig. 6, one can also assign a mean value < r > to 
each curve, which tends to be larger than rmin, and a width �x, 
which describes how broad each minimum is (we estimate < r >∼
5–6 Fermi and �x ∼ 10–20 Fermi for n = 1). Table 1 shows several 
other variables calculated for the condition of stability of the small 
hydrogen using equations (6), (8) and (9).

As n gets larger, electron radius gets smaller. In fact, for n ≥ 3, 
the radius is smaller than radius of proton (∼1 Fermi), and such 
solutions were disregarded. If a transition “n = 2 → 1” exists, 
emitted photon would have energy of ∼256 keV. Transitions be-
tween normal hydrogen and two small hydrogen levels, if they 
can be triggered somehow, could produce photons of ∼254.16 and 
510.17 keV.

One should point out that the virial theorem is satisfied only for 
one orientation of spin, i.e., when spin flips and V (Spin.B) changes a 
sign, such configuration is unstable.

Our calculation also shows that other fully ionized “small-Z
atoms” can form small-radius atoms, if incident electron beam has 
appropriate energy. This would create atoms, where one electron is 
trapped on a small radius, effectively shielding one proton charge 
of nucleus, thus making the atom behaving chemically and spec-
troscopically almost as (Z − 1)-atom. Fig. 7 shows stable states for 
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Fig. 6. Total electron energy E = T +U as a function of electron radius for n = 1&2 in 
the De Broglie equation (nλ = 2πr). Minimum of each curve (r = rmin) is a solution 
of equation (9); this minimum agrees exactly with solutions of equations (6) and 
(8).

Fig. 7. Total electron energy E = T + U as a function of electron radius for a single 
electron on a “small orbit” in fully ionized atoms of He, Be, and C.

He, Be and C atoms. One can see that curve minimum widths are 
considerably wider.

2. Heisenberg uncertainty principle

It is interesting to note that Heisenberg published his uncer-
tainty principle paper in 1927, and yet he still supported the idea 
that Chadwick’s neutron is a small hydrogen in 1934 [2], i.e., he 
did not reject it from point of view of the uncertainty principle 
(�x�p ≥ �/2). According to this principle, tighter electron is con-
fined in space, broader energy distribution it will have. It must 
have been clear to Heisenberg that the only way to confine elec-
tron in a tight space it has to be held with adequate attractive 
force.

This paper considers electron to be outside of nucleus. Still the 
electron is relativistic. We argue that the only way to achieve sta-
bility is to use the V (Spin.B) potential at small radius.

Although this paper uses electron radius in formulas (4)–(9), 
it should be looked at from a point of view of quantum me-
chanics, i.e., electron has a certain distribution of radii with some 
mean value of < r >. Fig. 6 shows that radius distribution is very 
broad; although radius corresponding to curve minimum is small 
(rmin ∼ 2.8328 Fermi for n = 1), one could assign a mean radius of 
< r >∼ 5 − 6 Fermi and a width of the distribution �x ∼ 10–20
Fermi, which would correspond to �p ≥ 5–10 MeV/c, according to 
the uncertainty principle. This would mean that transitions to the 
small hydrogen may have large width.

3. Do small atoms exist?

To form the normal hydrogen, a free electron needs to be al-
most at rest relatively to proton. Once such atom is formed, elec-
tron will spontaneously cascade down to ground level through 
allowed transitions, releasing photons with total released photon 
energy of up to 13.6 eV. The important point is that electrons on 
all these levels are non-relativistic and energy differences are very 
small. The experimental evidence shows, that one never forms the 
small hydrogen spontaneously, because we do not observe high 
energy photons (254.16 or 510.17 keV). This indicates that such 
transitions either do not exist because the small hydrogen does 
not exist, or they are forbidden, or they are very unlikely. We ar-
gue that a spontaneous transition from normal level to small level 
is unlikely because of a large electron energy difference in both 
states.

The small hydrogen may be formed differently; for example, us-
ing a relativistic electron with a correct wavelength latching on a 
proton. Such condition may have occurred during the Big Bang, or 
during other very energetic and luminous events in the Universe. 
One could try to use a high intensity electron beam of precisely 
tuned energy, and look for a sign of e-p bonded state formation. If 
the small hydrogen is formed, it would appear as a neutral object 
from some distance. Such object might be able to enter the boron 
nucleus in boron-based detectors, destabilize the nucleus, which 
may produce alpha particle, which then would be detected. How-
ever, this process might turn out to be very unlikely because the 
small hydrogen does have a fairly large size compared to nucleus 
size, and it has an electric dipole moment, which may prevent en-
try into the nucleus.

Another avenue is to search for (Z − 1)-atoms. They would not 
form spontaneously. It would require a dedicated experiment to 
find them. A high intensity electron beam could be used to irra-
diate neutral atoms, for example, helium, and completely strip it 
of electron-shell first. If one high energy electron is latched on 
a small radius, and the second one on a normal level, new neu-
tral atom would behave chemically and spectroscopically almost 
as a heavy hydrogen. Similarly, beryllium would behave as lithium, 
and carbon as boron, etc. However, there is a limit for stability of 
such atoms as V (Spin.B) gets weaker at larger radius. For example, 
we have determined that an electron on fully ionized xenon does 
not satisfy equations (6)–(9) any more. Since it is difficult to latch 
an electron on small orbit, a sample of such (Z − 1)-atoms would 
represent a “small contamination,” and it would not surprise that
nobody has noticed them.

4. Astrophysics implications

The small hydrogen, if it exists, will interact gravitationally 
mainly. Otherwise it would have a little interaction, meaning al-
most negligible dE/dx deposit due to its tiny electric dipole mo-
ment and feeble nuclear interactions as it may have some difficul-
ties to enter nuclei. It would also be difficult to find it in typical 
astrophysical spectroscopic observations. One could search for the 
256 keV line, but it may be broad.

If the small hydrogen has been produced in the Big Bang, it 
may have created the web-like structure of the Universe. The small 
hydrogen could also be formed in extreme cosmic events within 
a galaxy. As a galaxy gets older, it would accumulate more and 
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more of this type of matter, which would influence progressively
the orbital velocity of visible matter within the galaxy.

Since it would be impossible to see the small hydrogen directly 
using spectroscopic techniques, it would appear to us as the dark 
matter.

5. Conclusion

This paper has suggested, using simple semi-classical potential-
based arguments, that there exist a sufficient force to hold proton 
and electron together to form the small hydrogen, which we con-
sider as a small vortex of two oscillating relativistic charges. This 
may motivate experimental searches and efforts to pursue more 
advanced QED calculation. If such small hydrogen exists it would 
have a significant impact on astrophysics.
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