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Abstract

This work continues our previous works on electron deep orbits of the hydrogen atom. An introduction shows the importance of the
deep orbits of hydrogen (H or D) for research in the LENR domain, and gives some general considerations on the Electron Deep
Orbits (EDOs). In a first part we quickly recall the known criticism against the EDO and how we face it. In particular, a solution
to fix all problems is to consider a modified Coulomb potential with finite value inside the nucleus. For this reason, we deeply
analyzed the specific work of Maly and Va’vra on deep orbits as solutions of the Dirac equation, with such a modified Coulomb
potential without singular point. Then, by using a more complete ansatz, we made numerous computations on the wavefunctions of
these EDOs, allowing to confirm the approximate size of the mean radii (r) of orbits and to find further properties. Moreover, we
observed that the essential element for obtaining deep orbits solutions is special relativity. At a first glance, this fact results from
an obvious algebraic property of the expression of energy levels obtained by the relativistic equations. Now, a comparative analysis
of the relativistic and of the non-relativistic Schrodinger equation allows us to affirm that Special Relativity leads to the existence
of EDOs because of the non-linear form of the relativistic expression for the total energy, which implies a relativistic non-linear
correction to the Coulomb potential.
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1. Introduction

With the quantum equations habitually used in the literature for computing the bound states of the H atom, we note
that there is, in the relativistic form, a crossroad with a choice of value or a choice of sign for a square root in a
parameter. According to which path is chosen, the resolution process leads either to the usual “regular” solution or to
an unusual one called an “anomalous” solution. This latter is rejected in the Quantum Mechanics textbooks because
of its singularity at » = 0.
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Why do we emphasize here the use of relativistic quantum equations? For (at least) two reasons:

(1) The relativistic equations can predict EDOs with a mean radius of order femto-meter; whereas the normal
non-relativistic equations do not. We give a simple mathematical reason for this fact.

(2) With an EDO having a mean radius of order femto-meter, the Coulomb potential energy is high enough that
the electron, so bound, is necessarily relativistic.

For many decades, the question of the existence of electron deep levels or EDOs for the hydrogen atom has led to
a number of works and debates. The issue was raised early in the solutions to the Klein—Gordon and Dirac equations,
which became the basis of modern quantum mechanics. Therefore, it could have been given a high degree of credence
as the field developed to become the mainstream of modern physics. However, without experimental evidence to
support the unusual claims, this issue could not be resolved and the deep-orbit solutions are still considered to be
anomalous. With the advent of low-energy-nuclear reactions, LENR, such evidence (albeit indirect) may now be
available. What are these orbits and why are they suddenly more important now?

e EDOs, predicted in the anomalous solutions of relativistic quantum equations, have mean radii of their orbitals
of order femto-meter. This is five orders of magnitude smaller than the known atomic orbitals.

e So, hydrogen atoms (including deuterium) with an electron in a deep orbit (femto-atoms) can facilitate pro-
cesses of LENR inside condensed matter. This occurs by ready penetration of atomic electron clouds and
nuclear Coulomb barriers, by the avoidance of nuclear fragmentation in D-D=-*He fusion reactions, and by a
means of increasing the rate of energy transfer between an excited nucleus and the surrounding lattice

e Moreover, femto-atoms can create femto-molecules and both can combine with lattice nuclei for transmutation
without the normal resultant energetic radiations. This is not possible by other mechanisms.

e Mathematical arguments against the anomalous solutions of the relativistic equations have dominated the dis-
cussion of this issue for over 50 years. However, by acceptance of the physical reality of a non-singular central
potential within a nuclear region, these objections no longer pertain.

e Numerical methods, available now with modern computers, readily allow prediction of properties and features
of the EDOs from the exact equations that are not possible with the approximations made to keep the relativistic
equations in the form of analytic functions.

Possibly the first application for the deep-electron orbits was in an early explanation of the nature of the neutron
as a proton with a tightly bound electron. This particular concept was rejected nearly a century ago on theoretical
physics grounds for several reasons [1]. This rejection would have been much more difficult to accept had the charge
density distribution of the neutron that is available today been known at the time [2]. The negative outer edge, presently
attributed to a negative pion cloud, certainly looks like a deep-orbiting electron.

Since the late 1950s, whenever the deep-orbit solution was rediscovered (every decade), it was immediately rejected
based on mathematical, rather than on physical, reasons. Therefore, because the issue was never resolved and the im-
portance of these unobserved orbits was so questionable, the difficult (perhaps impossible at the time) experiments
to verify their existence were never even attempted and the issue never became general knowledge in the profession.
Decades later, when experimental evidence for halo nuclei was obtained, rather than use the known, but largely forgot-
ten, deep-orbit solutions that would introduce the beginning of a whole new nuclear chemistry and physics, physicists
just stretched the strong nuclear potential beyond all expectations to explain the phenomenon.

With the advent of LENR phenomena and subsequent research, recognition that electron proximity between the
hydrogen nuclei was necessary to overcome the Coulomb barrier again brought the deep-orbit solutions to the relativis-
tic quantum-mechanical equations into focus [3,4]. However, the concept was unknown within the field and therefore
almost ignored. By 2005, it was not even possible to publish papers in favor of the concept. (At that time, it was still
possible to get a paper on the subject into the arXiv, [5].) On the other hand, papers showing that such deep orbits
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were mathematically forbidden could still be published in physics journals. The present authors have spent the last
year proving, in several papers [6—8], that the singular Coulomb potential (V = k/r = —oc atr = 0) used to reject the
deep-orbit solution, can be replaced by a more realistic one (in several versions) and can lead to a valid, non-singular
solution for the deep orbits.

It was recognized early in the CF development that the best (perhaps the only) means of fusion at low temperatures
and energies was to increase the time that negative charge spends between fusing nuclei. This means of overcoming
the Coulomb barrier between nuclei is a continuing theme and is addressed in most models of LENR (see e.g., [9]).
The other side of the problem was emphasized in 2013 (by Akito Takahashi at ICCF-15): “even if the Coulomb barrier
were to be lowered to zero, D+D fusion would still lead to *He-fragmentation products, not to the observed atomic
“He and heat of CF.” This problem is perhaps best addressed by the means and consequences of electron decay to the
deep orbits [10,11].

With the recognition that deep-orbit electrons can explain some of the fundamental problems of cold fusion, a more
complete study of the nature and effects of these relativistic electrons was begun [12]. An important side issue of this
study was the nature of electromagnetic radiation from the deep-orbit electrons and the ability of deep-orbit electrons to
transfer energy between an excited nucleus and the lattice [13]. As confidence grew in the CF results for transmutation
in both the PdD and NiH systems, the concept of longer-lived “femto-atoms”, their nature and their consequences,
became the subject of analysis [14,15]. These studies led to an understanding of 3-body fusion processes (femto-atom
+ nucleus) to explain both transmutation without hard radiation and selective radio-isotope remediation.

The most-often-challenged portion of the deep-orbit electron scenario is why the deep levels are not immediately
filled from atomic orbitals and why are they not readily observed? While there are several reasons, a straight-forward
reason involves the lack of overlap of all atomic orbitals, except for the [ = 0, s-orbits, with the deep-electron orbits.
The normal electro-magnetic transition (via photons) between two [ = 0 levels is highly forbidden. If the deep levels
are unable to be populated in the natural environment and in the normal manner, then how are we to get electrons into
these levels? This latter question has been addressed in part by [16—18].

Since the deep-orbit model can explain all of the observed CF results that we have addressed and is based on
the fundamental equations of relativistic quantum mechanics, it should be readily accepted. It is hoped that, with
the cooperation of a mathematician and a physicist in the present authors, the non-physical reasons for rejecting the
concept can be eliminated and a firm mathematical base can be laid that would lead to acceptance of both the deep
orbits and a theory for cold fusion.

2. Arguments against the EDO States and Possible Solutions

The most known arguments against the EDO states, while assuming a singular 1/r Coulomb potential, have been
already exposed in [6] and in a more developed way in [7], as well as the possible solutions to resolve these questions.
They concern only the radial solutions of the quantum equations. We quickly recall these arguments and some counter-
arguments

2.1. The wavefunction has a singular point at the origin

For the solutions called anomalous, the radial function |R(r)| — oo when r» — 0 and the wavefunction ¢ (r, 6, ¢)
does not obey a boundary condition. In fact, this problem comes from the expression of the Coulomb potential in 1/r.
So, some authors of EDO solutions remove this trouble by saying that the classical expression of the central potential
is a good approximation for the bound state of a single electron atom, but considering the nucleus as a mathematical
point is an unphysical abstraction. Also, one can argue against this problem by saying that the nucleus is not a point,
but its charge is “smeared” over a distance of about 1fm. Solving the equation with a smeared out Coulomb potential
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would produce a solution not diverging at the origin, but with certain minor changes on the EDO state. We indicate
such solutions in Section 2.2.

We can add that, in the case of heavy nuclei, the accepted regular solutions of the relativistic Schrodinger equation
also have a singular point at the origin, because the square of the coupling parameter (Z«a)? is not “small”; e.g. for
atomic Cs, it is equal to ~ 0.16, that gives s ~ —0.2 for [ = 0 (for the parameter s, see Section 3.1.1).

2.2. The wavefunction is not square integrable

It is a serious problem, because in this case the wavefunction cannot be normalized in the entire space. As in
Section 2.1., it results essentially from the behavior of the wavefunction v at the origin and not for r — 4o0.
Indeed, to define the norm of a wavefunction ¢ (r,6,¢) given in spherical coordinates, one has to compute
2 sinf@r2dfdedr = []Y(0,0)?|sin@dddy)(f |R(r)|?>r?dr, where Y (6, ) are the so-called spherical har-
monics, depending on quantum numbers [ and m not indicated here. One knows the left integral is finite, while the
right one depends on the behavior of | R(7)|?r? at the origin.

Here we can cite the work of Naudts [5], where an EDO state for hydrogen atom is found by using a Klein—
Gordon equation, starting from a time-dependent relativistic Schrodinger equation. Because of chosen conditions on
the parameters of the equation, the obtained solution is square integrable, thus normalizable. We have particularly
developed explanations on this interesting result in [7], where the electron binding energy (BE) is very high in absolute
value, with |BE| ~ 507 keV. We note the author only looks for solutions corresponding to spherically symmetric states,
i.e. with angular quantum number (usually noted [) equal to 0.

Other works exist on singular states of the hydrogen atom, as e.g. in [19], where the author considers a compressed
atom in a confinement potential described by a finite potential step at some given radius R,, taken at ~ 2.5 A. A
singular solution with deep orbits is obtained from a non-relativistic Schrodinger equation, by considering only the
case [ = 0, while using specific ansatz and approximation methods. But, because of the method used, the binding
energy is not computed; neither is the mean radius. In fact, we think these levels could correspond to what we call
pseudo-regular solutions [7] .

Finally, we note most works on EDOs show that it is not possible to obtain square-integrable EDO solutions by
means of the Dirac equations if keeping a Coulomb potential that is singular at the origin.

2.3. The orthogonality criterion cannot be satisfied

This mathematical condition, defined in a rather subtle way, corresponds to the fact the Hamiltonian, representing the
total energy, must be a Hermitian operator, in order for its eigenvalues to be real, since they represent energy values of
solutions. So, eigenfunctions corresponding to distinct values have to be orthogonal.

We can find in [20] the author examines the asymptotical behavior of the solutions of the non-relativistic
Schrodinger, of the Klein—Gordon, and of the Dirac equations, as functions of formal variations of the coupling con-
stant «, and looks for conditions to satisfy known orthogonality criterion for the equation solutions. In particular the
author eliminates the EDO solutions. Nevertheless, one can find in works on self-adjoint extension of operators for
potentials with a singularity, e.g. in [21], a mathematical proof that singular solutions of the Klein—-Gordon equation
satisfy orthogonality for at least an angular momentum [ = 0. However, no positive result can be proved for the EDO
solutions of the Dirac equations.

2.4. The strength of the binding seems to increase when the coupling strength decreases

In [22], the author imagines variations of the coupling constant e and observes consequences on eigenfunctions of a
Klein—Gordon equation and of a 2-D Dirac equation. Doing this, he points to a very strange phenomenon concerning
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the algebraic expressions of the EDO solutions: when « decreases and tends towards 0, the binding energy of the
electron increases in absolute value.

We think this result is obtained in the context of an ill-defined system and is done so, uniquely, on a pure math-
ematical basis. Indeed, the coupling constant « can be expressed by = ¢/ch. So, from a physical point of view,
we can see « is actually entangled with several fundamental constants, in particular the Planck constant, the velocity
of the light, and the elementary electric charge. So, modifying o without caution can certainly lead to paradoxical
physical results (e.g., letting o go to zero means that the charge does also; thus, there are no bound states and no
binding energy).

2.5. Conclusion
As a quick conclusion of this section, we observed the following facts:

e The three first arguments against EDO automatically disappear if we consider the nucleus not to be a point, i.e.
the Coulomb potential is corrected in order to have finite value inside the nucleus.

e Such a corrected Coulomb potential without singular point at the origin is necessary to accept EDO solutions
of Dirac equation. Moreover, considering a nucleus with finite dimension has real physical meaning, especially
if we look for deep orbit solutions, for which the mean radius is close to nuclear dimensions.

3. The Deep Orbits obtained as Solutions of Relativistic Equations

First, we quickly recall a specific work [3] on deep orbits, named Dirac Deep Levels (DDLs), as solutions of the
relativistic Schrodinger and of the Dirac equations, which presented the most complete solution until recently. These
solutions include an infinite family of DDL solutions for hydrogen-like atoms. Moreover, as these solutions were
obtained by full analytic methods, the algebraic expressions of the energy levels point out an important fact: Spe-
cial Relativity is essential to actually obtain deep orbits with high binding energy (in absolute value). This point is
developed in Section 4. Next, we recall a second work [4] of the same authors, on solutions of Dirac equation for
hydrogen-like atoms with a corrected potential near the nucleus. Then we report the results of a recent and complete
analysis of this second work, with further developments and open questions. This analysis was required because of
some criticism about the method used.

3.1. First results of Maly and Va’vra on “DDLs”
3.1.1. EDO obtained by using the relativistic Schrodinger equation

Maly and Va’vra consider the radial equation in the form given in ([23], 51.15):

1d [ ,dR A1 (41— Za?

— 2 (22 ALl 041~ Zo” R=0. (1)
p?dp \" dp p 4 p?

They introduce an ansatz R (p) = p®e~ 2 L(p) in the radial equation, where L(p) is a series of powers of p, s is a real
parameter, and p is a real numerical parameter, without physical dimension but proportional to the radius r. Then, one
can show that the eigenvalue energy E of the Hamiltonian is defined by the following expression, which is in fact the

Sommerfeld relation:
—1/2
(Za)®
1+ ( 3z , 2

E =md
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where we recognize parameters A and « of the prior equation. They are without dimension, but we have to note that
a(~ 1/137) is the coupling constant; for the hydrogen atom, we have Z = 1, that we consider hereafter.

Two conditions must be satisfied for obtaining convergence of the series L(p):s(s+1) +a? — I(I+1) = 0, where [
is the angular momentum quantum number, and A = n/ 4+ s+ 1, where n’ is an integer number > 0. The first condition,
a quadratic equation, has two roots: s = —1/2 & [(I + 1/2)% — o?]'/2.

The usual regular solution for electronic energy levels is obtained by taking a positive sign in the expression for the
root s, while a negative sign yields the so-called anomalous solution, giving the following expression for the energy
levels:

—-1/2

aZ

(n’+§— [(l+§)2—a2}%>

where n’ is the radial quantum number and [ is the angular momentum quantum number.

The values represented by E are the total energy of the electronic orbitals. The corresponding binding energies BE
are defined as BE = E — mc?, which values have the usual negative sign.

In previous works, we showed that all energy values given by the expression of £ do not correspond to deep orbits,
but only the ones satisfying the relation n’ = I, i.e. equality between the radial quantum number and the angular
quantum number. Indeed, this condition allows one to drastically reduce the expression for \:

FromA=n'+s+1, s=—-3—[l+3)*-a?"?andn’ =, we can deduce A ~ a?/(2l+1), as o < 1.

Next, by carrying this into the expression of E, one can deduce E ~ mc?a/ (21+1). So, for all values of [, including
the case [ = 0, we have E < mc?. Under these conditions, the binding energy |BE]| is very high and that means the
orbit is very deep. There is an infinite family of these very deep energy levels with |BE| > 507 keV. Moreover, when
the condition n’ = [ is satisfied, we can note the following fact: if [ (and thus also n’) increases, then E decreases,
which implies |BE| increases.

So, when the radial number increases, the electron is more strongly bound to the nucleus, which is the opposite
behavior of the atomic orbitals. As noted in Section 5.1, the coupling constant « exists in only the relativistic equations.

; 3)

3.1.2. EDO obtained by using the Dirac equation

Maly and Va’vra refer to and use the method developed in [23], by starting with the system of radial equations obtained
after separating the variables in spherical coordinates. We recall the Dirac equation, essentially relativistic since built
from the relativistic expression of the total energy, has the following form in a central Coulomb potential:

(ih0y +ilica .V — Bme® — V) T (t,x)

where o and [ represent the Dirac matrices, and « is in fact a 3-vector of 4 x4 matrices built from the Pauli matrices.
Here, V is the Coulomb potential, defined by — e?/r.

During the solution process of the system of radial equations by using an ansatz, a condition on a parameter s occurs
as an exponent. This condition in the ansatz, like the one appearing in the Schrodinger equation, as seen above, is the
following: s = + (k> — ®)'/2, where the scalar o again represents the coupling constant (do not confuse alpha with
the Dirac matrices representation above). Also, as in Section 3.2.1, if taking the positive sign in the expression of s,
one has the usual “regular” solutions for energy levels, then with the negative sign, one has the so-called “anomalous”
solutions.
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The expression obtained for the energy levels is the following:

—1/2
o2

4
(n + 5)2 @

E =mc? [1

We note this expression again has a form equivalent to the Sommerfeld relation, but where the parameter s has an
expression slightly different from the one in Section 3.1.1. It contains the specific Dirac angular quantum number &
instead of the usual orbital quantum number /.

If we consider the anomalous solutions, by choosing the negative sign s in the expression of F, this one reads:

—1/2

2
P «

14 3
(n' —/(k?— az))

In this expression, n’ is again the radial number, while k is the Dirac angular number which can take any integer
value # 0. But hereafter, as k is involved everywhere in absolute value, we suppose k£ > 0. As in the case of the
relativistic Schrodinger equation, all solutions do not correspond to deep orbits, but only the ones satisfying the relation
n' = k, i.e. equality between the radial quantum number and the Dirac angular quantum number. Indeed, we can see
that if n’ = k, the sub-expression D of the total energy E, D = n' — (k* — o)'/? becomes D = k — (k? — a?)'/2,
which is very small since D ~ o?/2k, and E ~ mc?a/2k. Then |BE| ~ mc? (1—/2k) and |BE| is close to the rest
mass energy of the electron, 511 keV. Note that since k cannot = 0, then neither can n/'.

From the expression of |BE|, we can deduce a result similar to the binding energies of the EDOs solutions of the
relativistic Schrodinger equation. Under the condition n’ = k (necessary condition for EDOs), when k increases,
the absolute value |BE| of the binding energy increases. This means that, as the angular momentum & increases, the
electron is more strongly bound to the nucleus. So, a natural question arose: what about the mean radius? Or more
precisely, how does the mean value of the orbit radius progress as n’ increases and tends to infinity? One could guess
a partial answer to this question, while reading between the lines of the second work of Maly and Va’vra, which we
recall in Section 3.2.

F =mc

®)

3.2. Deep orbits obtained as solutions of the Dirac equation with a corrected potential near the nucleus

In their second work [4], the authors determine the wavefunctions of EDOs, the so-called DDLs, for hydrogen-like
atom solutions of the Dirac equation. They considered the nucleus not to be point-like, and thus the potential inside
the nucleus is finite at the origin » = 0.

This requires one to carry out the following things:

e To choose a radius Ry, the so-called matching radius, delimiting two spatial domains: an outside one, where
the potential is correctly expressed by the usual Coulomb potential, an inside, where the potential cannot be
expressed by the Coulomb potential and which no longer has a singular point at » = 0. Of course, this choice
may seem arbitrary, but it takes physical meaning if one chooses a value Ry close to the charge radius R, of
the nucleus. For example, for hydrogen H atom, the nucleus is reduced to one proton and this one has Rc ~
0.875 F from CODATA [24]. So one can reasonably choose 1 F < Ry < 1.3 F.

e To choose a suitable expression for the inside potential. It is again an arbitrary point, but we observed (see
further in Section 4.2.2) that this choice has weak influence on the numerical results that interest us, especially
the value of mean radius as function of k.
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o To satisfy continuity conditions at the matching radius Ry for connecting the inside and outside potentials.

e Solve the system of radial equations for the outside potential, i.e. Coulomb potential, that gives the outside
solution composed of two components: functions f, and g,.

e Solve the system for the chosen inside potential, that gives the inside solution composed of two components:
functions f; and g;.

o To satisfy continuity conditions while connecting the respective components of inside and outside solutions.

In their work, the authors made the following choices and processes:

o For the matching radius, the value is not explicitly given in their paper, but from a figure, it seems Ry ~ 1.2 F,
but perhaps slightly smaller than this value.
e The chosen inside potential V'(r) has the following expression:

3 1/ Ze?

vl (@))% o ®

e One can be surprised by the presence of the additive constant [y; if it is not null, the continuity condition is
not satisfied by the inside and outside potentials. Nevertheless, potential is relative and we will see further a
possible usefulness of this constant. For the time being, we shall consider it is null.

e For finding the outside solutions f, and g,, they use the computation method of [25], a completely analytic
method, where both components of the radial wavefunction, respectively, include functions F} and G, ex-
pressed by means of confluent hyper-geometrical series.

e For the inside solutions, they choose an ansatz with two components, having the following form:

gi = Ar5 1 Gy (), (7a)

fi =iBro Y Fy (r). (7b)

Where G () and F»(r) are power series. However, one may consider approximations by polynomials, by
taking into account the following facts:

e f; and g; must be defined for r < Ry.

e For r < Ry, very small, the power terms vanish when the degree increases.

The classical method used, after inserting the ansatz into the equations, allows one to determine the exponent s; and
the polynomial coefficients in order to obtain the solutions.

Nevertheless, it seems the cited paper was incomplete and useful information was in another paper of the same
authors, referenced as “to be published” but never published. Indeed, the chosen ansatz does not allow one to connect
both respective components of inside and outside solution, while respecting continuity conditions. A complete analysis
of this problem, and the way we resolve it, is developed in [8]. Here, we simply recall the problem was resolved by
taking a more complex ansatz including an additional real parameter A\ necessary to connect in a suitable manner the
inside and outside functions. In our ansatz, the series/polynomials have the following form:

Go (1) = a1(0r) + az(Mr)? +az(\r)® +--- and  Fa(r) = by (M) + ba(r)? + bz(\r) + - - (8)

The matching process leads to solving a system of two linear equations with two unknown variables, A, involved in the
inside solutions, and a multiplicative coefficient involved in the outside solutions; we showed the system always has
solutions for any value of k, which determines energy levels. Moreover, we verified that the orthogonality criterion and
boundary conditions are satisfied by each “global solution” formed by the respective outside and the inside solutions.
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4. Results obtained by Computations of the DDL Wavefunctions for Modified Potentials, further
Developments and Discussion

4.1. Computation process for orbit mean radii

The value of the mean radius is an essential parameter for the LENR, since the range of the strong nuclear force is
on the order of femto-meters (fm or F) and quickly decreases at distances > ~ 3-5 F. The mean radius of its electron
orbitals determines the “size” of the atom and the value of the repulsive radius of an atom. This radius can be estimated
approximately [4] to be the value where the electron probability density drops to 1/10 of its peak value.

Summarily, the computation process for mean orbit radius for a given value of k includes the following steps:

e To determine both couples (f,, go) and (f;, g;) of respective outside and inside solutions. At this step, the four
functions f,, go, fi, and g; include parameters still to be determined

e To connect them in suitable manner and by satisfying the continuity conditions, in order to obtain a couple
of global wavefunction solutions (F,G). During this step, the unknown parameters included in the initial
functions f,, go, fi, and g; are fixed. The functions thereby completely defined can be noted Fy, G, F;, and
G;.

e To compute the normalization constant [V by using the following formula:

Ro +oo
I/N= [ EIDdr+ ELD, dr, 9)
0 Ro

where ElD; represents the electron probability density corresponding to the couple of inside functions (F;, G;):

EID; = 4nr*(|F|? + |Gi|?) (10)

and likewise ElD, for the outside functions

EID, = 4772 (|F,|* +|Gol?). (11)

e Finally, to compute the mean radius (r) by using the following formula:

Ro —+oo
(ry=N / rElDidr—F/ rElD,dr | . (12)
0 Ro

Now we have to note that, in principle, the numerical results of (r) should depend on the following preliminary
choices:

e The choice of the matching radius Ry: even if its value is reasonably chosen to fit physical data, such as the
charge radius of the considered nucleus, it is rather fuzzy.

e The choice of the inside (nuclear) potential: apart from a common condition requiring it be finite at » = 0,
there are multiple possibilities, each depending on modeling and approximations for the nuclear structure. Two
of the most used examples are the following:

e A simple constant potential equal to the value of the Coulomb potential at the surface of the nucleus and
corresponding to an uniformly charged empty spherical shell.
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e The potential function defined by the expression written in the previous sub-section and corresponding to a
uniformly charged solid sphere.

Nevertheless, one can consider more complex potentials, or intermediate forms of both previous ones.

e A more subtle choice, related to the precision of the inside functions, and depending on the approximation
degree chosen for the polynomials of the ansatz, i.e. the power degrees of these polynomials.
e Of course, the choice of the considered hydrogen-like atom.

4.2. Numerical results

We carried out several series of computations for different choices listed in Section 4.1.

4.2.1. Results obtained from parameters near those of Maly and Va’vra

Here we first give the values of (r) computed for hydrogen atom H, while following approximately the choices of
Maly and Va’vra:

L RO =12F

e A nuclear potential defined by the expression given in Section 4.1 but assuming 3y = 0. It approximates the
proton by a uniformly charged solid sphere.

e The polynomials of our ansatz have degree 6, while the ones of M&V, for a simpler ansatz, have degree 5.

Under these conditions, we have the following values (r) for the mean orbit radii for different & values:

k=1, (r)~662F,
k=2 (r)~165F,
k=3, (r)~139F,
k=10, (r)~122F,
k=20, (r)~120F

The computed values are given with only three digits for high values of &, on account of uncertainties on the considered
method.
We can note the following facts deduced from these computation:

e We obtain values of the same size order as that in [4], while we used a method which is likely different. So,
we have a good confirmation of the prior results. Those authors indicate explicitly the value 5.2 F for the DDL
atom H for £ = 1, and they give only this case for atomic H.

e The mean radius decreases when k increases, which is consistent with the fact that the binding energy in
absolute value |BE| increases when k increases, as expected in [6].

e After an abrupt fall between the value for £ = 1 and the one for k = 2, the value of the radius asymprotically
tends to the value of the matching radius 1.2 F. One can think there is an actual “accumulation sphere” at
r ~ Ry, for the DDL orbits corresponding to £ > 20, and these are indistinguishable.

In Fig. 1, we plot the near-nucleus normalized electron probability density functions (NEPD) for £ = 1,2, and 3.

4.2.2. Varying the parameters

Here we only report conclusions about results described in detail in [8].
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Figure 1. NEPD, for k =1 (blue), k =2 (red); k =3 (green). The radius p is in F.

With different values for R, we obtain the same kind of progression when k increases, i.e. (r) decreases when
k increases and (r) still asymptotically tends to Ry.

We also note a near-linear shift of the values of (r) in the same direction as the shift of Ry. This effect is most
important for the first values of k. For example, with Ry = 0.78 F (not a reasonable value for atom H but only
a style exercise) we obtain (r) ~ 4.6 F for k = 1; and with Ry = 2.8 F, which is reasonable for Li6 atom (it
has charge radius R. ~ 2.59 with Z = 3), we have (r) ~ 13.4 Ffor k = 1.

When taking polynomials of higher degree, we have still the same progression, but with slightly smaller values
of (r) for the smallest values of k and then there is convergence.

Surprisingly, a change of the nuclear potential has almost no influence on the results. Of course, we tested
reasonable changes, i.e. such that the potential does not increase (in absolute value) for » < Ry. More
precisely, we defined a parameterized potential, which can be fixed in intermediate forms between the potential
previously tested and a constant potential for r < Ry, by the following expression:

V(r)=e*(—=p1+ Bar?),  with By = (2+¢)/2Ro and By = £/2R}. (13)

In fact, one can think the “inside” (i.e. nuclear) potential has only a very weak influence on the results, because the
electron probability density inside the nucleus has a weak weight.
In conclusion:

e The values of the mean radius (r) are dependent on the angular number k.

e For any considered changes of the parameters, the progression of the values when k increases is always the
same : the values of (r) decrease and tend to the value of the matching radius.

e The values of (r), globally, are nearly independent of the parameters except for the value of the matching
radius Ry. This seems logical from a physical point of view, when recognizing the charge radius of the
nucleus. Nevertheless, the mathematical method introduces an intrinsic degree of arbitrariness in the choice of
Ry that cannot be eliminated.
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4.3. Discussion on some criticisms about the considered method, and attempts to correct discrepancies

Here we consider two questions which arose about the method of corrected potential.

4.3.1. Question about the dependence of the inside solutions on the nuclear charge potential, and the
coherence of the values of energies

On the one hand, we note a subtle criticism [26] about some lack of dependence of the solutions on the nuclear
potential. By computation, we verified this lack of dependence (as indicated previously). On the other hand, if we
compute, in an approximate manner, the value of binding energies BE corresponding to the computed values of the
mean radius, we find some discrepancy.

For this question, we consider as test values, the values of mean radii () given at the beginning of the Section 4.2.1.
for k£ =1,2,3, and 10. Effectively, if we compute binding energies corresponding to these radius values, while consid-
ering the simplified hypothesis where the electron orbits are quasi-circular, we obtain the following values of BE: 97,
275, =301, and —-320 keV corresponding to radius values 6.62, 1.65, 1.39, and 1.22 F, respectively.

These values have been computed by using the relativistic virial theorem [27,28], with the following relations:

PE = —ymv? = —e?/r, KE =mc*(y—1), BE=KE+PE, Totalenergy E =mc’+ BE.

Of course, these calculations are carried out in a relativistic semi-classical way, but they give size orders having
important shifts with respect to the starting values of BE for DDLs orbits, which are the following: —509, =510, -510.4,
and -510.8 keV with the same sequence. A possible reason is related to method of corrected potential. On the one
hand, the inside functions are directly dependent on the nuclear potential V (), because this potential is inserted into
the Dirac equation system to be solved. On the other hand, they involve DDL original energy values E (i.e. the ones
indicated just above) inserted into the equation system, and so they indirectly depend on the Coulomb potential.

To correct this discrepancy, we use a method of iterative computation with convergence, which is precisely de-
scribed in [8]. Summarily, at each computation cycle, one inserts energies, computed from previously computed radii,
into the equations, until they reach a fixed point. We carry out this whole process for each £ = 1,2, 3,and 10 with
following results:

e for k = 2,3, and 10, the process reaches a fixed value at the first computation cycle, and we obtain the values
of BE 275, -301, and -320 keV for radii 1.65, 1.39, and 1.22, respectively.

e for k = 1, as the successive values approximately behave as geometrical series; one can say there is conver-
gence at radius value ~12 F, that would give BE ~ —56 keV.

In conclusion, we tend to think the actual DDLs for a modified potential will correspond to the results of this conver-
gence process, which provides energy coherence and improved dependence of the inside functions on nuclear potential.

4.3.2. Question about a discontinuity of the derivative of solutions

A recent criticism was reported by a colleague, concerning the discontinuity of the derivative of the wave functions at
the matching radius. Indeed, in the method for connecting the inside and outside functions at Ry, for Dirac equation,
one satisfies continuity only for the functions, but not for their derivatives. This seems to be a common practice,
as the Dirac equation is a first-order differential equation. We can observe, in Fig. 1, that the electron probability
functions also have discontinuities of the derivative at p = 1.2 F, as a consequence of the derivative discontinuity of
the wavefunctions.
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The criticism about this fact is the following: as the left-derivative and the right-derivative of the solutions are not
equal at Ry, one can deduce, in reporting their values into the radial equations, that the potential seems discontinuous
at Ry. This is equivalent to supposing an additional virtual potential AP at Ry, creating a well or a barrier according
the sign of A P. The author of this criticism claimed that the discontinuity and the virtual potential A P are needed for
the existence of EDO.

One may ask why this happens, because if the inside and outside functions are solutions of the equations, the
continuity of the derivatives should be automatically satisfied. Nevertheless, we must not forget that the inside solutions
are obtained by polynomial approximations, which are less and less good when 7 increases and tends to Ry. So the
discontinuity, as well as the ghost potential, is actually a simple artifact due to technical imperfections of the method
of corrected potential:

o There are not enough free parameters in the inside/outside solutions to satisfy in the same time (needed since
the components f and g are coupled in the radial equation system) the continuity of both components f, g and
the continuity of their derivative. The used ansatz (Section 3.2) allows us to satisfy only two equations, but not
four equations required for continuity and derivatives.

e The polynomials approximations do not allow us to obtain the continuity of the derivatives at Ry.

We can say the discontinuity of the wavefunctions has no relation with the existence of EDOs, since it was obtained
as solutions of the Dirac equation with pure Coulomb potential. Wavefunctions with modified finite potential are
needed only to satisfy mathematical properties (see Section 2) and to compute the mean radii (r) of orbits in a more
realistic context (i.e., where the nucleus has dimension and the potential is finite). Nevertheless, we wanted to look for
possible ways to study/correct this imperfection, while observing in all our computations of normalization constants
and (r) (see Section 4.3.1) that the components of g, both the inside function g; and the outside one g,, dominate. This
dominance of g over f can even reach several orders of magnitude for the outside functions when k increases.

So, to compute the mean radius (r) with the only largest component yields results close to the results with both
components. Then we carried out numerous computations in various ways: e.g. to use the additive parameter /3y
(indicated in Section 3.2) as an additive potential to balance the virtual potential A P for the largest component, or to
satisfy continuity and derivative continuity for this component. These computations always give results close to the
ones indicated in the previous section.

As an example, in Fig. 2, we plotted a zoom of the large component of the wavefunction, satisfying both continuity
and derivative continuity, with £ =2. For this one, we obtained 1.36 F instead of 1.6 F for the original solution. Of

16 15 15

4x107'0 ety L 2xi0

—1.4= 10"

Figure 2. Large component g of the adjusted wavefunction for k = 2 and Rp = 1.2 F.
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course, it is an approximation since the computation was made only by using the component g. As a conclusion, we
think it is not useful to look for a more complex method to resolve this question.

5. Why Special Relativity is needed to obtain EDOs with High Binding Energy

In previous works, we observe that non-relativistic equations give singular solutions, but these do not correspond to
orbits with high binding energy (in absolute value). A physical reason is that an electron in a deep orbit is necessarily
relativistic. So, it is more logical to use relativistic equations to find EDOs.

We also observed a pure mathematical reason which allows us to sort the EDO among the singular solutions of a
relativistic equation, when we have analytic solutions at our disposal with energy levels E determined by an algebraic
expression. Under these conditions, we can clearly see EDOs are obtained when a sub-expression, easily identifiable
(see Section 3), can be drastically reduced. We saw such reductions are obtained by equating the radial number n’
with the involved angular number (I or k). One can wonder if there is not a deeper reason behind this pure algebraic
fact, in particular a reason having more physical meaning.

We have found such a deeper reason, first by comparing the relativistic version of the Schrodinger equation with
its classical non-relativistic version and then by recognizing a relativistic correction to the potential, which is not taken
into account for the usual atomic orbits because it is too weak at these energy levels. We have developed a complete
analysis of this question in a paper [29] not yet published. Here we report only some essential elements and conclusion
of this analysis.

5.1. Role and meaning of a relativistic parameter in the relativistic Schrédinger equation

The Dirac equation is essentially relativistic. On the other hand, as the Schrodinger equation has two versions, rel-
ativistic and non-relativistic, it is very easy to find parameters that make a difference. We can see that there is one
parameter, which addresses our question and gives actual meaning to the involvement of relativity in EDOs.

We give both following versions of Schrodinger equations for the hydrogen atom, as extracted from [23]:

1d [ ,dR A1 l(i+1)—a?
L (P fl AT G A 14
p? dp (p dp)+{p 4 P =0 (1

1d (AR
P2 dp \” dp

The former is the relativistic one, already indicated in Section 3.1.1, while the latter is the non-relativistic one.
They are expressed in terms of the dimensionless variable p for the radius, and R is the radial function, depending on
p. We can observe that they are almost the same expression, except for the occurrence of an additional parameter, the
coupling constant «, in the relativistic version. In [23] the equation contains the symbol  instead of «, for a possible
generalization at any atom with v = Z« . Of course, A # )\ and the transformation of the initial radius r into the
dimensionless variable is not the same for both equations

N1 I(+1)

| R=0. (15)

5.2. The term o2 is the source of EDO solutions
We already saw, in Section 3.1.1, that the energy levels are given by the following expression

E=mc(1+a?/A\?)71/2, (16)
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We also noted the EDO solutions are given by inserting s = —3 — [(I + %)_oﬂ]% in the ansatz used for finding the
solutions, since it provides a total energy of E ~ mc?a/(21+1), when n’ = [, and then a very high binding energy |BE|
= mc?[1 — /(21 + 1)], where the second term is < 1. The term a? occurring in the expression of E above directly
comes from the one occurring in the relativistic equation.

It is not possible to set n’ = [ in the case of the non-relativistic equation, where we recall that the singular solutions
are obtained when taking s = —(I+1). Here, the parameter A’ has to satisfy the condition \' = n’ 4+ s+ 1, for all types
of solutions, which gives \' = n’ — [ for the singular ones. As the energy levels are given by F = —mc?a?/2)\?,
one cannot reduce the expression for £ by making n’ = [, which would lead to A’ = 0 and thus to a singularity in the
non-relativistic E.

5.3. What does the occurrence of a2 mean?

The key to the answer is the fact the relativistic equation is built from the relativistic expression of total energy in free
space E? = c?p? +m?c?, where p is the momentum vector. Next one introduces an electromagnetic field in covariant
form into the expression of F, and finally, since the nuclear Coulomb potential has spherical symmetry, one can write
(E —V)? =c?p? +m?c*, where V is the Coulomb potential depending on the radius r. Afterwards, the expression
(BE-V)2 —m2c*, developed into E?— m?2c* — 2VE +V?2, gives rise to several energy factors during the process of the
Schrodinger building.

For example, the term M/p occurring in the equation, and proportional to the Coulomb potential energy V', comes
from 2VE. However, it is the term v2/p?, distinctive in the relativistic equation, which interests us. It comes from and
is proportional to V2. Moreover the parameter )\, used while building the dimensionless equation (14), is defined by
A\ = 2Ea/fice with e = [4(m?c* — E?)/h?c?]'/? one has A > 0. By looking at this equation, one can observe the
term a/p?, greater than zero and proportional V2, is added to the term \/p, which is greater than zero and proportional
to V.

So, we find the real meaning of the occurrence of o in Eq. (14) as cause of the existence of EDOs. It corresponds
to a dynamic relativistic correction to the Coulomb potential energy V in the form of a term proportional to V2, which
strengthens the static potential energy V.

Of course, the Dirac equation leads also to the same relativistic quadratic correction of the static potential V,
but less directly visible than for the Klein-Gordon (or relativistic Schrodinger) equation. The general form of this
correction (see e.g. [30,31]), but neglecting the centrifugal barrier paper, leads to the following effective “dynamic”
potential:

Vegg = V(E/mc?) — V?/2mc>. (17)

Note that in the case of a relativistic electron, one can show Veg = vV + V2/2mc?, where ~ denotes the well-known
relativistic coefficient, i.e. v = (1—v?/c?)~1/2.

Note also that, while looking at both expressions of V. given above, it is not clearly visible that one always
has |Veg| > |V, i.e. a strengthening of the “normal” Coulomb potential. However, physically, since potential is
an integral of the Coulomb force that increases as the electric-field lines of both the electron and central potential
are relativistically compressed (strengthened), one would expect it to increase. Where the (effective) energy of the
increased potential comes from and how it can exceed the static potential energy (normally) used to determine the
invariant total system energy is another discussion.

Nevertheless, we showed in [29] that, at least in the case of quasi-circular orbits, we have the following result:

e One always has |Vog| > |V| and Vg is attractive (a negative value),
e |V.g| quickly increases as a function of ||, with a parabolic behavior in |V |> when |V | — +oc.
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5.4. Computation of Vg in the case of EDOs

Again with the quasi-circular orbits hypothesis, we computed the values of Vg for the values of mean radii (r) given
in Section 4.2.1. for EDOs orbits with £ = 1,2, 3,and 10 and assuming Ry = 1.2 F.

We have the following results for Vg, where we indicate, at the same time, the values of (r), V,~, AV = |Vg—V|,
and the kinetic energy KE:

e k=1, (r)~66F ~~12, V~-218keV, Vog~-222keV, AV ~4keV, KE~ 120keV,

e k=2, (r)~17F ~~22, V ~-873keV, Veg~-1.15MeV, AV ~277keV, KE ~ 597 keV,

e k=3, (r)y~14F ~y~24, V ~—-1.04MeV, Vg~ —147MeV, AV ~ 430keV, KE ~ 734
keV,

e k=10, (r)~12F ~~27, V~-1.17MeV, Vig ~-179MeV, AV ~620keV, KE ~ 854 keV.

Of course, value uncertainties are great, therefore the numbers are rounded for clarity.

From the results above, we can see that, when k& increases and as (r) decreases, v and |Veg| increase because of
relativistic effects and |V | increases because the circularization of the orbits allows a lower average radius in the poten-
tial minimum. We also note that the ratio AV/KE increases with these changes because of the non-linear relativistic
effects.

So, from a physical point of view, we can think the relativistic motion of the electron strengthens its effective poten-
tial energy in the Coulomb field, and even an increasing part of the kinetic energy seems “to act” on the strengthening
AV of the potential energy, when the velocity of the electron increases. However, the effective potential used above
does not include the centrifugal barrier that also increases with both & and ~.

6. Conclusion, Open Questions, Future Works

o At this point, we have reviewed the method of corrected nuclear potential applied to the deep-orbit solutions
of Maly and Va’vra, we extended the results found by those authors and we found new results concerning the
general properties of the deep orbits. Indeed, on the one hand, we have confirmed the order of values of mean
radii (r) given by the authors. On the other hand, while varying the computational parameters, we observed
that changes of values for (r) depend on few, other than the matching radius Ry. Even if the choice of Ry is
a little arbitrary, this dependence is logical from a physical point of view when taking into account the charge
radius of the nucleus (itself essentially related to the atomic number Z and the mass number A of the atom). We
observed, in particular, a weak dependence of (r) on the inside functions, i.e. the solution inside the nucleus.
In fact, the weight of the inside functions is about one half that of the outside functions.

e Concerning the general properties of the deep orbits, we had previously shown that the mean radii (r) decrease
asymptotically to Ry as the angular number £ increases. This leads to the binding energy (in absolute value)
increasing with k.

e Considering the weak dependence of results on our parametric variations, we can say the method is rather
robust, a strength of this method of corrected potential.

e We also analyzed possible weaknesses of the method, identified in some criticism and in our own observations
about the energy levels corresponding to the values of (r) . The question of consistent energies for the values
of (r) led us to a modified computation process assuming almost circular orbits. This gives the same values
of (r) for k > 1, but almost doubles the radius for £k = 1. The principal changes in the results concern new
values of binding energy, which are significantly smaller (in absolute value) than those for the original EDOs.
We think these values, from 275 keV (for &k = 2) to 320 keV (for k£ = 10), with a limit ~ 320 keV as k —
infinity, could be the actual values for EDOs. But this is still conjecture, because computations were made
only with the simplified hypothesis of almost circular orbits. Anyway, we can note such modifications have
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no implication for the existence of EDOs in the LENR process. Nevertheless, the lower binding energies of
this computation greatly enhance the probability of populating the deep levels by near-field electromagnetic
coupling of electrons in atomic orbitals with adjacent lattice nucleons and raising them to low-lying nuclear
excited states.

e Another question is based on a discontinuity of the wavefunction derivatives at their matching point that leads
to a virtual additive potential at Ry. Nevertheless, while attempting to correct possible unwanted influence of
this potential on the results, we observed by computation that there are no significant effects.

e Most importantly, we reveal the essential role of Special Relativity for the existence of EDOs with high binding
energy due to the quadratic expression of the relativistic total energy. This leads to a dynamic correction to the
original Coulomb potential and yields a noteworthy strengthening of the potential under some hypotheses. A
more detailed analysis of the role of Special Relativity can be found in [29].

e Concerning open questions, the following is not yet resolved: the equality condition for radial number and
angular number allows one to discriminate the true EDOs, characterized by strong binding energy, amongst
the set of other singular solutions of equations, which have almost the same binding energies as the classical
regular ones. In previous papers, we called these special non-EDO solutions, “pseudo-regular solutions.” In
the same vein, we have not yet interpreted the meaning of these pseudo-regular solutions.

o Finally, a serious problem is still hanging over the existence of EDOs: do they respect the Heisenberg relation?
Recent, but approximate, computations tend to answer yes to this question. Indeed, a first solution came from
the spin-orbit interaction, which generates a very high attractive potential at the very small EDO radii. This
potential exceeds that needed to provide the very high “Heisenberg kinetic energy” corresponding to electrons
at these radii.

e To study the stability of EDOs, we still have to work more deeply on the properties of magnetic interactions
and other possible effects near the nucleus, in order to evaluate the possible combinations of potential energies.
In particular, the ones involved in the works of Vigier [32], Barut et al. [33] and Samsonenko et al. [34], and
the correction to the Dirac operator due to the anomalous magnetic moment of the electron [35] might pertain.

Appendix added in Review

Up to now, we have worked on deep orbits as singular solutions of the Dirac equation, after analyzing, verifying and
extending known works on this subject, such as those of Maly and Vav’ra [3,4].

Historically, the relativistic quantum mechanics for the electron became a field of quantitative science with the
advent of the Dirac equations, which has subsequently been used for a very large number of applications. Indeed,
many models for atoms, molecules and solids are based on many-electron generalizations of the Dirac equation. Nev-
ertheless, we have now to take into account some known difficulties concerning this model of quantum physics. For
example, where the generalization of the single-electron Schrédinger equation to the two-electron case immediately
led to answers that compared well with experiment, the analogous generalization of the single-electron Dirac equa-
tion to the two-electron case led to the Brown—Ravenhall disease [36]. This problem (also referred as the continuum
dissolution problem) is pointed out in virtually all works on many-electron questions. Summarily, it arises because
solutions of Dirac equation form two continuums: the electron and positron ones; then, on double excitation of a pair
of correlated electrons, one electron can end in the negative energy continuum (positrons), while the other lands in the
positive energy continuum, the total system energy being retained. As a consequence, the number of such electron-
positron states for an initial electron pair is infinite, and any energy level of the bound electron pair system is infinitely
degenerate. This problem can be resolved by introducing special projection operators in the Hamiltonian to restrict it
only to positive energy states, but of course one has no longer the classical “key in hand” analytic solution.

The Dirac equation includes other problems, such as e.g. the Klein paradox or also the fact, noted by Thaller [35],
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that the Newton—Wigner operator (usually) taken as position observable leads to superluminal propagation.

Such problems lead us to introduce methods of quantum electrodynamics (QED) in our next works. Indeed, a
critical feature in the construction of QED, which allowed a resolution for Brown-Ravenhall disease, was the complete
elimination of the negative energy states for the description of electrons, and a corresponding complete elimination of
the positive energy states for the description of positrons.

Moreover, QED became indispensable to continue our study, as it can take into account much subtle phenomena,
such as, e.g. Lamb shift, which could be much more important near the nucleus than for atomic electrons.

Of course, as noted by Rusakova [37], the Brown—Ravenhall disease appears only in many-body cases. But the
reviewer states our localized solutions of Dirac equations are in fact negative energy state solutions, after ending up
analyzing such states in various ways. We think this could be a consequence of the fact the Dirac Hamiltonian is
not bounded from below. As in QED, where the negative energy states are simply removed by construction from the
available spectrum, the best way to resolve the question would be to try to look for deep orbits by using QED methods.
One can even say that if there exists only one reason to introduce QED in our future work, it is this one.

Nevertheless, we have to recall [7] that the deep orbits, as singular solutions of Dirac equation, occur only when the
angular number & and radial number n’ are equal. This case, for k = n’, separates the positive- and negative-energy
solutions. It falls on the positive-energy side. In fact there is a lot of other singular solutions: for k > n', we explicitly
get negative energy solutions, while for k& < n’, we get solutions having almost the same (positive) energy levels as
the regular ones (pseudo-regular solutions). As indicated in the conclusion above, we have not yet interpreted this
situation, but one can think this profusion of weird solutions certainly introduces a big complication into the research
of effective deep orbits.
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