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Abstract

We address a number of questions relating to the progress of our study on the relativistic-electron deep orbits (EDOs): (1) How to
combine different EM potentials having two possible versions (attractive and repulsive), while rejecting unrealistic energies? (2)
What about the angular momentum of the deep electrons? How is the Heisenberg Uncertainty Relation satisfied in these EDOs?
(3) From where is extracted the high kinetic energy (of order 100 MeV) of the deep-orbit electrons? (4) What is the behavior of
the effective potential Veff as a function of distance to the nucleus? (5) What is the order of magnitude of the radiative corrections
for the EDO’s? (6) What is the relation between EDO solutions of the Dirac equation and the high energy resonances (with high
binding energies) corresponding to a semi-classical local minimum of energy?
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1. Introduction

The observed generation of heat, in excess of that possible from chemical reactions, from deuterium-loaded palladium
substrates at room temperature [1] led to a field of endeavor called “cold fusion”. It was proposed that, as in the well-
known hot (∼107◦C) fusion processes of the sun, the embedded deuterium atoms were somehow able to come together
close enough to fuse and liberate significant nuclear energy. This incredible news was initially welcomed because of
the need for cheaper energy sources, the known fusion reactions, and the many decades of research supporting them.
However, the extensive base of well-known and accepted nuclear physics soon became a reason that cold fusion was
rejected by those knowledgeable in the field. The results of cold fusion did not agree at all with what was known from
hot-fusion research. Either the cold fusion research was faulty or something new was happening. Assuming the data
was correct, what was new?

Was the solid state or crystalline environment of the palladium substrate somehow able to help two deuterons
overcome their Coulomb repulsion? If so, how? Many models for this mechanism were proposed, and, correctly
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or incorrectly, subsequently rejected. Many of these relied on placing an electron between the deuterons for a much
greater period than that of the bound atomic electrons. It was known that this was possible with a heavy electron (e.g.,
the muon, with >200× the electron mass); but, the known fusion of deuterium in the presence of muons resulted in
the same products predicted by hot fusion, but not in cold fusion. Thus, this effect, alone, could not be the appropriate
mechanism for cold fusion. Was there a mechanism that produced electron placement in such a manner as to alter the
fusion process itself? Fortunately, the energy levels of the 4He nucleus were well-known and could provide an answer
that both depended on an electron spending more time between the deuterons and altered the products of the resulting
d–d fusion reaction [2]. This answer did not explain how an electron could spend more time between deuterons; but, it
is consistent with prior [3–5], and more recent [6–8], models that did so.

Classical physics allows an electron to orbit close to the nucleus for short periods, during which time the nuclear
Coulomb barrier is strongly shielded. This was an approach explored for a time until it was noticed that quantum
mechanics (QM), in the form of the Relativistic Klein–Gordon and Dirac equations, had predicted the existence of
electron deep-electron orbits (EDOs) many decades ago. These models did not depend on spin for this prediction. The
introduction of relativity into the QM equations made the difference between only the atomic orbitals and those plus
the deep orbits. Unfortunately, since no deep orbits had ever been seen and the concept of the neutron as a proton
plus tightly bound electron had been rejected, interest in this solution of the relativistic equations was greatly reduced.
It periodically reappeared (almost every 10 years); however, because the deep-orbit solution had a singular point (at
r = 0) when a strict Coulomb potential and point charges were considered, this portion of these important equations
were regularly rejected on a mathematical basis alone.

In trying to understand a physical basis for the deep orbits, relativistic effects were examined in greater detail
[9,10] and the several arguments against the EDOs were successfully refuted [11,12]. However, the greatest argument
for the reality of these deep orbits is in the predictions of physical effects based on such orbits [13–20]. Once it was
established that the EDOs could explain most or all of the observed cold fusion effects, it became important to look at
other relativistic effects [21,22] to improve the model. Inclusion of actual nuclear details have been made as successive
approximations and not all “branch” points have been explored yet.

This paper is a continuation, with a brief overview, of that study. It starts with the assumption that the Heisenberg
Uncertainty Relation (HUR) applies to the nuclear range as well. From this it is possible to calculate a limit for the
relativistic coefficient, γ, and, then, to look at the deep-orbit-electron’s relativistic interactions with its orbit and the
nuclear components (e.g., spin and charge). The greatly enhanced forces and potentials from relativity and proximity
create very large energies (100 s of MeV) relative to the static calculations and yet the binding energy of the deep-
orbit electron is still relatively small (|BE| < 0.511 MeV) because it is a difference between kinetic and potential
energies. Since the observables are small differences between large numbers, many assumptions and relations, made
in historical work for different ranges, may no longer be valid. Thus, continued refinement, testing, and examination
of assumptions and premises are required for this transition to the highly relativistic nuclear regime. An exploration of
QED in this context brings another tool into the effort.

2. Relativistic Confinement Energies and the Relativistic Coefficient γ

In previous studies on magnetic interactions [22,23], we showed magnetic potentials to have very high energy near the
nucleus; as a consequence, we could expect the HUR to be respected in this zone. Next, we adopted a new strategy: to
directly address the HUR as a starting point, while considering an electron confined in a sphere of radius r.
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The HUR can be expressed by the inequality ∆p∆x ≥ !/2, where p is the norm of the momentum of the considered
particle and x is its radial location. The delta indicates the uncertainty in these parameters. As in most QM textbooks
(see e.g. [24,25]) we can put p ∼ !/r, where the “2” has been removed, to take a reasonable average value for p based
on this relation. Then, we consider the relativistic expression of momentum, p = γmv, where m is the rest mass of the
electron, v its velocity, and γ the relativistic coefficient defined by γ = (1- v2/c2)−1/2. We can deduce γ v = !/mr.

Now, by using the expression of γ, one has (γ v)2 = (cv)2/(c2 –v2) = (!/mr)2. From (cv)2/(c2 –v2) = (!/mr)2 and,
by simple algebraic transformationsa, we obtain γ2∼1+!2/(mrc)2. Recognizing the reduced Compton wavelength of
the electron as a constant, λc = !/mc, we have relation (1), expressing γ as a function of the confinement radius r:

γ2 ∼ 1 + (λc/r)
2, i.e. γ ∼ [1 + (λc/r)

2](1/2). (1)

Moreover, as λc ∼ 386 F for an electron, and for the EDOs, r is of order a few F, one has r ≪ λc, and thus (λc/r)2 ≫
1. In this case, the previous relation expression can be reduced to a very simple one:

γ ∼ λc/r. (2)

Note that for highly relativistic velocities v → c and γ2 ∼ !2/(mcr)2, and we have relation (2) as well. The kinetic
energy, KE = (γ-1) mc2, becomes ∼ ((λc/r)− 1)mc2 and, expressed as a function of the de Broglie wavelength λdB

assuming the quantum condition for the lowest closed orbit of λdB = 2πr = 2π!/p = h/p, KE ≈ (λc /λdB -1) mc2
with γ ≈ λc /λdB, where λc is the Compton wavelength under non-reduced form.

2.1. Examples of confinement energies at some ends of the energy scale

(1) For the case of an atomic electron, we consider r equal to the Bohr radius rB = !/αcm, where α is the
coupling constant of electro-magnetism. The kinetic energy corresponding to the confinement of an electron
in a radial region corresponding to rB is equal to E ≈ p2/2m, a non-relativistic expression, because we
know the electron is not very relativistic (see its γ in Section 2.2). While putting p = !/rB, we obtain E ≈
(!/rB)2/2m =mc2α2/2, which is the expression of the classical Rydberg energy, of numerical value ∼13.6 eV,
a well-known result associated with the ground state of the hydrogen atom and the HUR.

(2) Consider now the case where r = 2 F, where an electron is very close to the nucleus, as in the EDO.

We can expect the electron to have relativistic speed, requiring the relativistic expression of the energy, i.e. E =
(p2c2+ m2c4)1/2. A numerical computation shows that pc ≫mc2, and so, for this near-nuclear orbit, E ∼ pc ∼
98.6 MeV.

aWith s = h/mr, (cv)2 = (cs)2-(vs)2, we deduce v2(c2+s2) = (cs)2, (v/c)2 = s2/(c2+s2), γ2 = 1/(1–(v/c)2) = 1/[1-s2/(c2+s2)]=1+s2/c2.
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2.2. Examples of relativistic coefficients, for the confinement radii indicated in Section 2.1

(1) We consider again r = rB, as in Section 2.1 (1). Then we compute γ in two different ways.

(a) First, we know the kinetic energy is the Rydberg energy ERyd = mc2α2/2. But the kinetic energy KE
is also given by the expression KE = (γ-1) mc2. From KE = ERyd, we can deduce γ = 1+α2/2. From
this, we have β2 = (v/c)2 = 1-1/γ2 = (1-1/(1+α2/2)2) ∼ ((1+α2/2)2-1) ∼ α2 , so v ~αc ~c/137, a
well-know result calculated by Arnold Sommerfeld.

(b) Now, we compute γ by means of the results deduced from HUR. As one has r = rB, the condition
r ≪ λc is not satisfied and we use the full expression for γ (1): γ ∼ (1 + (λc/rB)

2)(1/2). With
λc = !/mc and rB = !/αcm, we obtain γ ~(1+α2)(1/2) ~1+α 2/2 , while neglecting the terms of
order αn for n ≥ 4. So we still have a very good approximation of the result of Sommerfeld.

(2) Consider the case r = 2 F. As r ≪ λc , we can use expression (2) to compute γ ∼ λc/r = 386/2 = 193,
and β = 0.99998. . . The electron is ultra-relativistic. The question is therefore the following: can a Coulomb
potential confine such an ultra-relativistic electron? We show how to solve this question positively in Section 3.

3. The Relativistic Effective Potential Energy Veff is Strong Enough to Confine Electrons in Deep Orbits

Because of the high level of the relativistic coefficient γ, it is interesting to consider the effects of the relativistic
correction to the static Coulomb potential, as indicated in [26,27], under the resulting form of an effective dynamical
potential noted Veff , and already considered in [28,10]. The general form Eq. (3) of Veff , comes from the development
of relativistic quantum equations (Dirac, Klein–Gordon) with the expression of the relativistic energy of a particle in a
central field for a Coulomb potential energy V :

Veff = V (E/mc2)− V 2/2mc2. (3)

This transformation is little known since, in the atomic cases and for light elements, we have E ∼ mc2 and
V ≪mc2 that leads to Veff ~V. On the other hand, while considering the relativistic expression of the E of an electron
in the potential V , i.e. E = V+(p2c2+m2c4)1/2, we can deduce the following form Eq. (4), including the coefficient
γ:

Veff = γV + V 2/2mc2. (4)

Now, we put the full expression of γ (1), γ ~[1 + (λc/r)
2](1/2), into Eq. (4), to obtain Veff as a function of r:

Veff = −(αc!/r)([1 + (λc)
2/r2](1/2) − α!/2mcr)

= −(αc!/r)([1 + (λc)
2/r2](1/2) − αλc/2r). (5)

For r of order a few F and by reduction of γ, this expression can be simplified into:

Veff ∼ (αc!λc/r
2)(1− α/2). (6)

One can also write the following approximate (equivalent) forms, while neglecting the term α/2 in the second paren-
thesis of Eq. (6):

Veff ∼ γV ∼ (λc/r)V ∼ λce
2/r2 ∼ αc!λc/r

2 ∼ −α!2/mr2. (7)

When looking at formula (4), we can see the first term of the sum, equal to γV , which expresses a strengthening of the
attractive potential V , since γ is always ≥ 1. But the second term of the sum in Eq. (4), V 2/2mc2, has a positive sign,
that means a repulsive action. The question is therefore whether Veff is always a reinforcement of V .
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• For r ≪ λc, expression (6) allows us to answer yes.
• If we release this condition, we have to use expression (5), and this one does not allow to answer the question

easily in a purely algebraic way. Previously [28], we could show Veff is always a reinforcement of V , but only
for quasi-circular orbits.

Now, by using a numerical method, we can show without any hypothesis on the shape of the orbit, the following result:
Veff < V < 0 when r < 52.91741577 pm, to compare with the Bohr radius rB ∼ 52.9177210 pm. Such precision
may seem ridiculous, as the computation of γ from the HUR is based on an approximate principle and the s-orbit is
nearly linear. Nevertheless, we can give the following results for Veff .

With only the condition r < ∼ rB, i.e. for any energy level under the ground state and independent of any of the
HUR analysis above, we have:

(1) Veff is always attractive,
(2) |Veff | > |V |, i.e. Veff is always a strengthening over the static Coulomb potential,
(3) Moreover, expressions (6) and (7) show that: when r decreases sufficiently and → 0, Veff has a behavior in

K/r2, with K ∼ 8.9× 10−41 SI units, i.e. Jm2.

Finally, and most importantly for the EDO’s, if computing Veff near the nucleus, e.g. for r ~2 F, we have γ ∼ 193,
as indicated in Section 2.2, and we obtain Veff ∼ −139 MeV, whereas the kinetic energy KE = (γ − 1) mc2 ∼
192× 511 keV ∼ 98 MeV. With such a high value, Veff can easily confine an electron in this region.

In [10], we showed that Special Relativity is the source of the EDO’s. Now, we show that the HUR, which seemed
an impediment for the EDO’s, provides its proper resolution thanks to relativity.

4. Looking for a Resonance Near the Nucleus

The deep orbit electrons have the following features:

• They are highly relativistic.
• They are subjected to several electro-magnetic interactions of high intensity, some of which are not involved

in the Dirac equation used until now for determining the EDOs for a single particle.
• Note also that, in the “nuclear zone”, the deep-orbit electrons are certainly subject to fairly high radiative

corrections. But the Coulomb electric field, strengthened by a relativistic effect corresponding to Veff , seems
sufficient by itself to retain an electron in the nuclear zone.

Under these conditions, the question of EDO stability seems a very difficult problem to solve. Nevertheless, to have
a first estimate of a possible stable resonance, we can use a well-known semi-classical approximation, which consists
of seeking a local minimum of energy (LME), in an approximate way similar to that used for finding the ground state,
the Bohr level. One can find this in most Quantum Mechanics textbooks, e.g. [24].

In fact, we combine two approaches for doing this:

• To attempt to determine which interactions have the greatest role(s) in generating a resonance.
• To compute a total energy, while respecting the HUR.

For the latter point, we consider the relativistic expression of energy, in which the norm of momentum |p| is replaced
by !/r, that gives the following expression, denoted EH (H for Heisenberg):

EH =

√
"2c2
r2

+m2c4. (8)
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With relation (1), γ ∼ [1 + (λc/r)
2](1/2) = [1 + !2/(mcr)2](1/2), one easily verifies that the kinetic energy KE =

(γ-1) mc2 is also equal to EH −mc2. Indeed

KE = mc2[1 + !2/(mcr)2](1/2) −mc2 = [m2c4 + !2c2/r2](1/2) −mc2 = EH −mc2. (9)

In principle, we add to EH, a term V representing a potential energy, where V is a function of the radius. Thus we
obtain the total energy E, represented by the following relation: E = EH + V . Then, we look for an LME for
various combinations of potentials included in the term V and we determine the radius of this local minimum. Of
course, V systematically includes the dynamical effective potential Veff , given its essential role for the existence of
EDOs indicated in Section 3. But, before developing the question of the combination of potentials included in V , it is
interesting to look at the properties of the “minimal combination”, by putting V = Veff and thus E = EH + Veff .

4.1. Study of the case, where the only potential taken into account is the effective potential Veff

In this section, we have PE = Veff and l = 0.
First, we plot below (Fig. 1) three curves: |VCb|, |Veff | and KE = EH −mc2., in loglogplot. The static Coulomb

potential is denoted by VCb, to avoid confusion with the combination of potentials V . To make it easier to read the
calculation results, we put r = ρ × 10−12 and we compute with ρ.

In this figure, we can observe the following:

Figure 1. Loglogplot of energies (in keV) for radius denoted by ρ in pm, where 1 F< ρ < 53 pm. (Blue) norm of Coulomb potential |VCb|,
(Green) norm of the effective potential |Veff |, and (Red) kinetic energy KE.
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(1) Veff is always a strengthening of VCb, as indicated in Section 3. In the figure, because of the extent of the scale
in loglogplot, Veff is indistinguishable from VCb at high ρ values and only separates when ρ decreases and
reaches 1 pm.

(2) |Veff | and KE intersect at two points, near the ends of the radius scale in Fig. 1. The numerical solution of
the equation |Veff | = KE gives these points: ∼26.45 pm and ∼2.828 F, approximated in the figure. For a
non-relativistic orbit, the virial theorem states KE = |PE|/2. Thus, the Bohr radius at this stable point is ∼53
pm. For relativistic orbits, KE = |PE|γ/(γ + 1) and KE → |PE| as v → c, and 2.83 F is near the classical
electron radius (∼2.82 F). This is not a simple coincidence.b

Most important is the presence of both crossing points of the curves of KE and |Veff |, 2.82 F and 26.5 pm, indicating
the possibility of resonance in two regions, where |Veff | becomes stronger than KE:

• either for ρ > 26.5 pm: in this area, there are the well-know atomic energy levels, whose lowest is the ground
level (Bohr) at ∼53 pm, where Veff ∼ VCb = −2 KE ∼ −26 eV,

• or for ρ < 2.8 F, where we might expect resonance of type “EDO”.

Of course, when taking into account further EM interactions near the nucleus, this limit ρ < 2.8 F could move
slightly. We say “slightly”, because the energies of the interactions, considered further, are relatively small compared
to Veff and KE, where we set aside huge, physically “unreasonable,” interactions for the orbits of present interest.

Another important, but difficult, question concerns the possibility of transition between the “atomic” zone and the
“EDO” zone. We will give some reflections on this further question. Nevertheless, while considering the E = EH+Veff

and the derivative dE/dρ to find possible local extrema of E by solving dE/dρ = 0, we find as follows.

(1) An obvious local minimum at ρ = rB ∼52.9 pm, for the atomic ground state.
(2) A local maximum at ρ ∼5.6 F, where KE + Veff ∼17 MeV, that represents a high “pseudo-barrier” for a

transition from atomic zone to EDO zone. We can call it the “Heisenberg barrier”, since it is due to the very-
high kinetic energy required by HUR. In fact, at this radius, we have: KE ∼34.6 MeV, while Veff ∼ −17.6
MeV. Thus, the barrier is 34.6–17.6 MeV ∼17 MeV. On the other hand, below the EDO zone, E becomes
negative and continuously decreases towards −∞. Under these conditions, the existence of further repulsive
interactions is necessary to generate a resonance. We represent, in Fig. 2, the plotted curve of KE + Veff with
a radius scale adequate to observe the maximum and the behavior for ρ very small.
Remark: KE+Veff has the same behavior as E and extrema have the same location, since E = KE+Veff+mc2.

4.2. What combination of potentials to consider, for finding a deep LME?

From our previous works on magnetic interactions [22,23], including the study of the Barut–Vigier model and related
works, we are led to some conclusions about combinations of potentials capable of producing a LME near the nucleus.

(1) In particular, it seems that we have to rule out the possibility of a spin–orbit interaction for an electron in the
EDO zone: indeed, the energy ESO associated with the spin–orbit interaction is given by the following expression

ESO =
µ0e2

8πm2

1

r3
L·S = ξ(r)L·S, (10)

bLet us calculate for which value of radius r we have the maximum possible value of |BE|, i.e. BE = −mc2, while supposing we are in a
resonance case. With BE = KE + PE, and the approximate expression (7) for Veff , we have −mc2 ∼ (γ − 1)mc2 + γVCb → VCb ∼ −mc2,
i.e. αch/r ∼ mc2, r ∼αch/mc2. This is the expression for the electron classical radius re. Somehow re is a limiting radius for a resonance
under the hypothesis PE = Veff .
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Figure 2. Semilogplot of KE+Veff (in eV) with ρ in pm, for 2 F < ρ <0.1 pm.

where, for any value of the quantum angular momentum l ̸= 0,

• the attractive case corresponds with L·S = − (!2/2) (l+1),
• while the repulsive one, with L·S = + (!2/2) l.

But, previous computations of the energy ESO associated with the spin–orbit interaction in attractive mode, while
supposing l =1 and applying the usual quantization rules, give ESO ∼ −13 GeV for an electron at a distance r ∼2 F,
i.e. in the expected region of the EDOs. Such a huge value does not seem physically reasonable and this term would
prevent a bound state. If considering the repulsive case, with l =1, the formulas above show we obtain one half of the
previous value, i.e. 6.5 GeV, which is still physically unreasonable. Under these conditions, one has to consider the
angular momentum to be l = 0.

(2) Moreover, if l = 0, there is no centrifugal (repulsive) potential, since this is proportional to l(l+1) in the
quantum formulations (e.g. the relativistic Schrödinger equation, [29]) and we can think the orbit is essentially linear
through, or (if a hard core exists) at least toward, the nucleus.

(3) As a consequence, to balance the attractive potential energy Veff and to expect a resonance near the nucleus, we
have to consider the repulsive version of the magnetic spin–spin interaction (i.e. the triplet state), denoted by VRSS.
Here, we recall that the spin–spin interaction can be expressed by the following general formula (see e.g. [30,31]):

HSS = −µ0

4π

[
1

r3
(3 (Mp · r̂) (Me · r̂)−Mp ·Me) +

8π

3
Mp ·Meδ (r)

]
, (11)

where Mp and Me are the magnetic moments of the proton and the electron, respectively and r̂ denotes a radial unit
vector. The magnetic moments are related to the respective electron and nuclear (i.e. proton, here) spins Se and Sp by
the following formulas:

Me = (e/2me)Se and Mp = (2.79|e|/mp)Sp. (12)

By introducing the total spin S = Se + Sp and discounting anyrelativistic effects for the moment, one can write the
following relation:

Se·Sp = (1/2)(S2 − (Se)
2 − (Sp)

2) = (!2/2)[s(s+ 1)− 3/2]. (13)
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The only possible values of s are s = 0 (“singlet” state) and s = 1 (“triplet” state), which gives two cases:

• s = 0 ⇒ Se ·Sp = −(3/4)!2, i.e. “attractive case”,
• s = 1 ⇒ Se ·Sp = +(1/4)!2, i.e. “repulsive case”.

While extrapolating the known values of spin–spin interaction energy computed at the Bohr radius, to a general
expression of the spin–spin interaction energy for any radius r. We found [23], for the repulsive spin–spin (RSS)
version noted VRSS, VRSS ∼3.4 × 10−56/r3 SI, i.e. J/m3. For example, for r ∼ 5 F, we have VRSS ∼ 2.7 × 10−13 J
∼1.7 MeV.

Note that, for a particle in a relativistic regime, the spin tends to lean in the direction of the motion of the particle
[32] and we could think that it leads to a weakening of the effect on VRSS.

(4) We have also to take into account a further interaction, always present and repulsive. We recall this term is caused
by an interaction between the magnetic moment of the electron with the charge of the proton and involves the squared
norm of the magnetic vector potential of the electron,

A (r) =
µ0

4π

m× r̂

|r|2
,

where m is the magnetic moment of the electron. The complete energy term associated with A2 has the form e2A2/2m
and is considered [33,34] to be expressing a diamagnetic energy with a behavior in 1/r4. The energy of this diamagnetic
interaction, noted Vdia and although very weak compared to VRSS, has to be included in the combination of potentials.
We found [22,23]

Vdia = K4/r
4, with K4 =

(µ0

4π

)2 e4"2
4m2

emp
,

where me is the electron mass, mp the proton mass, and K4 ∼ 1.3 × 10−71 SI units, i.e. J m4. Again, relativistic
effects on the spin vector orientation could reduce the values obtained for m× r.

In Appendix 1, we give elements of discussion about magnetic interactions for relativistic electrons.

4.3. Effects of radiative corrections

We have to take into account the effects of radiative interactions, which are strong in the nuclear area.
On one hand, some EM interactions become very strong when the radius decreases because of behavior in inverse

powers of r, mostly in powers −2, −3 and −4 for Veff , VRSS and Vdia, respectively. On the other hand, radiative
corrections, which are specific EM interactions deduced from the quantization of the EM field, have to be taken into
account, as they can modify the intensity of the EM interactions considered so far.

4.3.1. Some rudiments about radiative corrections

The radiative corrections are determined in the framework of the Quantum Electrodynamics (QED), the first theory
where QM and Special Relativity are combined in the most suitable manner, i.e. in a covariant way (see e.g. [35]).
Moreover, on account of relativity, QED implements an additional quantization of a new kind, the mis-named “2nd
quantization”, where it is applied to the numbers of considered particles, as particles can be created or destroyed
(because of the matter–energy equivalence). Moreover, it implements also the quantization of the EM field, in a way
similar to a system of independent harmonic oscillators, with ladder operators of destruction/creation. QED is a fully
achieved theory, as it has undergone intense development for decades, mainly in the analysis of interactions involving
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free leptons and photons, occurring during scattering experiments. In principle, QED includes all relativistic effects,
since any fermion quantum field is based on Dirac theory.

In brief, an electromagnetic scattering is associated with the transitions between an initial composite state to a
final one, where a transition is caused by various interactions between the initial leptons and possibly photons. It is
completely determined by computing the scattering matrix (or S-matrix), whose elements are the probability ampli-
tudes for transition from an elementary initial state to a final one. The various interactions are usefully represented by
Feynman diagrams, as they constitute a true algebraic coding for computing and combining all the various operators
and propagators involved in the S-matrix elements. At each vertex, the sum of all the momenta is null, to express
momentum conservation. Note that, generally, real particles are virtually destroyed in inputs of a transition, while
various real particles can be virtually created at the outputs, and intermediate energy propagation is done by means of
virtual photons.

Most important elements for the success of QED are that any transition can be decomposed into a series, thanks to
a Dyson expansion of the general evolution operator (or “S operator”), and the Wick’s theorem applied to the Dyson
expansion that permits a finite, fully covariant, expression at any order of expansion. This makes QED a perturbation
theory, i.e. it obtains successively more accurate descriptions by computing the S-matrix at an increasing order of the
perturbation (of course, at the expense of a quick increase of the computation complexity). Finally, mathematical and
computational complexity arises at higher orders, principally, because of loops in the Feynman diagrams: indeed, in
a loop, the momentum cannot be determined by the conservation law. So, one has to consider all possible values by
summing from 0 to ∞. This implies the presence of diverging integrals and led to the difficult, but efficient, methods
of renormalization to overcome this obstacle.

As mentioned above, QED has been principally developed in the framework of scattering theory. It has been much
less often applied to bound states, like atomic states; moreover, it seems harder to apply (less suitable?) for these states.
We can cite, in the case of bound states, the approximate methods of the “Theory of the external field”, particularly
developed in [36] and derived from works of Furry (e.g. [37]). Summarily, in the concept of an “external field”, the
nucleus does not directly participate to scattering as a particle, but only the EM field generated by the nucleus is taken
into account, with exchanges of (possibly virtual) photons. As famous examples of problems solved by QED in bound
states, that contributed to its huge success, we can cite: the computation of the “anomalous magnetic momentum of
the electron”, “the Lamb shift in the hydrogen-like atoms”, “the radiative transitions between bound states”, as well as
the analysis of “Bremsstrahlung”. While these are small effects, relative to the masses involved, and therefore fit into
the perturbative regime of QED that may not be valid for the nuclear interactions, their exploration may be instructive
as we move toward the nucleus where the effects would be large.

4.3.2. The Lamb shift

For the subject of our work, i.e. the study of possible resonance near the nucleus, we are mainly concerned with the
question of the Lamb shift (see e.g. [35], Section 9.6.2). Historically [38], the Lamb shift is a small energy splitting,
observed between the 2S1/2(n =2, l =0, j =1/2) and the 2P1/2(n =2, l =1, j =1/2) orbitals of H atom. However,
these two different levels are degenerate for the Dirac equation, i.e. have the same energy as solutions of the equation,
since their energy depends only on n and j, and not on l. Nevertheless, observation gives an extra energy of order
4.4 µeV for the 2s, compared to the 2p, orbital. This is due to the fact that an S orbital enters the nuclear domain where
the electric field is very high; but, because of the centrifugal potential (associated with angular momentum l =1), a P
orbital does not penetrate to that region. A similar energy shift exists for the 1S orbital, between the energy computed
according the Dirac equation and the observed energy level, but with a greater value ∼35 µeV.

Remark: the extra energy associated with the Lamb shift corresponds in fact to a decrease of the binding energy:
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Lamb shift has a global repulsive effect on the bound electron.

Hans Bethe was the first [39] to give an approximate, non-relativistic, derivation of the Lamb shift from the concept of
self-energy of the bound electron (see Section 4.3.3). The computations of Lamb shift are very complex, requiring use
of the whole arsenal of QED in the difficult case of a bound state. In principle, the computations are divided into two
parts:

• one part using the approximate methods of the “Theory of the external field”, or “free interaction picture”,
• another part with a bound representation, the so-called “Bound Interaction Picture” (BIP).

There are very few complete demonstrations in Quantum Field Theory textbooks or courses: we can cite

• a rigorous treatment in [36] including some non-relativistic approximation,
• a derivation announced as relativistic in the course of Dyson [40] but, with a non-relativistic dipole approxi-

mation, the BIP part is not covariant.

The difficulties of Lamb shift computations are due, in particular, to the fact they involve Feynman diagrams of
higher order, i.e. including loops.

4.3.3. Feynman diagrams for Lamb shift at lowest order

Here, we show diagrams including only one loop.
There are two kinds of phenomenon involved in the Lamb shift:

• “Electron Self-Energy”(SE), corresponding with the diagram in Fig. 3. One can show (and observe) that it has
a repulsive effect on the bound electron.

• “Vacuum Polarization”(VP), sometimes called also “photon self-energy”, corresponding to the diagram in Fig.
4. It has an attractive effect on the bound electron. VP leads to a shell of pairs (e−, e+) around the bound
electron, which leads to a screening effect. From the remark above, one can already deduce the effects of SE
are stronger than those of VP.

Of course, such diagrams represent algebraic QED terms occurring in the Dyson expansion, after applying Wick’s
theorem. Moreover, the self-energy is associated with a mass-renormalization, whereas the vacuum polarization with
a charge renormalization. Here, we do not write QED terms and we do not develop renormalization methods, because
it is far beyond this paper.

Both phenomena of the Lamb shift are completely determined from a mathematical point of view, in the QED
theory. Nevertheless it is almost impossible to find, in the literature, simple and understandable physical interpretations.

Figure 3. Electron Self-energy. e− represents an electron, γ represents a (virtual) photon, emitted and reabsorbed by the electron. The thick line
represents the fact that the electron is bound.



12 J.-L. Paillet and A. Meulenberg / Journal of Condensed Matter Nuclear Science 29 (2019) 1–21

Figure 4. Vacuum polarization. e− represents an electron, e+ represents a positron, a photon (represented by γ) is emitted, at the bottom, by the
nucleus (indicated by a cross), it produces a virtual lepton pair (e−, e+), this pair recombines by emitting a photon, which reaches a bound electron
(not indicated).

At least for SE, we propose the following interpretation, maybe a bit simplistic, but corresponding to a well-known
and clear physical concept, the action–reaction principle: any electrically charged particle acts on its environment by
creating an EM field around itself and then, reciprocally, the so-modified environment reacts on this EM field of the
particle. The acceleration of a bound particle increases this bound EM (evanescent) field that, as a standing wave, has
an outgoing and a return component. The development of a magnetic field (bound to the charge) when moving is the
additional energy. Likewise, any distortion of the electrostatic field (the least-energy distribution of a charge at rest) is
an increase in the bound-field energy of moving charge.

For VP, a possible interpretation could be more complex, as the environment considered is the (sometimes polemi-
cal) “quantum vacuum”, including energy fluctuations with creation/destruction of virtual pairs of particle–antiparticle.
These energy fluctuations composed of oscillating electric fields interact with the steady-state charge fields of elec-
trons and nuclei. The steady-state fields will polarize the oscillating fields resulting in transient charge separation and
a reduction in the steady-state far-field. This effect is observed in the special case of polarization of energetic photons
[41] in the creation of real electron-positron pairs where the energy and separation of the charge fields is permanent.
Again, if the conditions are not “correct” for complete and stable separation, the polarized waves (virtual pairs) simply
recombine as part of a reversible process.

4.4. How can we express the effect of Lamb shift on EDO’s binding energy at resonance?

Despite the numerous studies of lamb shift on hydrogen-like ions with more and more precise results, this question is
very difficult for several reasons:

• There is no fully analytical formulation of the two effects (SE, VP) of the Lamb shift: we indicate, below, a
well-known expression of SE for the fundamental level. It includes a multiplicative factor F (Za), which is
given only by means of tables (see e.g. [42,43]): ∆ESE = (α/π)(Zα)4F(Zα)mc2. For VP, there are mainly
asymptotic formulations (short/long ranges) based on Uehling potential [44].

• The computations suppose energies, which are not, or only slightly, relativistic (case of heavy elements),
whereas EDO’s are highly relativistic.

• From tables [45], the ratio of relative effects |VP/SE| < 1, but it is variable: it seems to increase with Z,
certainly because the s-orbital electrons are spending more time closer to the nucleus. For example: for H,
|VP/SE| ∼ 0.025, whereas for ion U+91 one has |VP/SE| ∼ 0.27.
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While continuing our study with comparisons and extrapolations from tables, and awaiting more suitable results in
the future, we present here our approximate results of an LME computation.

According to our discussion on magnetic interactions (Appendix 1), we recall that we take into account two possi-
bilities concerning the effect of magnetic interactions for highly relativistic electrons:

(a) Either, the magnetic moment of the electron is unchanged or little changed by Special Relativity and, in this
case, the LME computation is performed by combining potentials indicated in Section 4.2, where the Lamb
shift effects are simulated by weakening the near–nuclear interactions.

(b) Or, the spin magnetic moment is considerably weakened for highly relativistic electrons and, in this case,
we compute a LME by considering the attractive potential energy Veff and a repulsive quasi-potential energy
deduced from the Lamb shift.

4.4.1. Computations and results in the first case (a) with magnetic interactions

Without reporting tedious details of our calculations, we can indicate the following:

• For the repulsive effect of SE, we simulate a linear weakening VCbw(r) of the static (attractive) Coulomb
potential VCb(r), by a coefficient K when approaching the nucleus, i.e. at a radius r1 > r0, where r0 is the
charge radius of the nucleus ∼0.84 F. Next we deduce the dynamical effective potential Veffw from VCbw.

• For the attractive effect of VP, we simulate a weakening of the repulsive magnetic potentials VRSSand Vdia, by
putting E = EH + Veffw + VRSS/C + Vdia/D, where C and D are constants >1.

Note the choice of only the repulsive version, VRSS, of the spin–spin interaction, has been made from computing
experience. Moreover, while seeking a LME for resonance, we try to check an important question not yet evaluated in
previous works: is the binding energy (BE) of an electron caught in this resonance consistent with that predicted by
relativistic equations? To satisfy this condition, we must have at least −511 keV< BE<0. Moreover, for an EDO,
one can expect a “rather high” value of |BE|.

Numerous calculations, based on the expression of the total energy E indicated above, i.e. E = EH + Vw, where
Vw = Veffw + VRSS/C + Vdia/D, and with coefficients of weakening still arbitrary, confirm the possible existence of
LME close to the nucleus. Moreover, we can also verify that the BE of an electron in the LME, has a “suitable” value,
i.e. of the order of magnitude close to the solutions of the Dirac equation.

In Fig. 5, we display an example of the curve BE = E−mc2 = EH−mc2+Vw = KE+Vw to clarify the value of
electron BE in the LME. For the same purpose, we restrict the scale of abscissa for the radius, denoted by ρ in fermi,
while the energy values are in keV. The LME corresponds to ρ ∼1.63 F, where BE ∼ −470 keV, KE ∼120.58. . . MeV
and PE = Vw ∼ −121.05. . . MeV. Note the relativistic virial theorem [46] is satisfied: with precise computed values,
we have KE/|PE| = 0.996 . . ., γ = 236.96. . . and γ/(γ+1) = 0.9958. . . ∼ KE/|PE|.

4.4.2. Computations and results in the second case (b), without magnetic interactions

We indicate in Appendix 2 some elements of principle, about the determination of a repulsive quasi-potential VLS

that we deduced from the Lamb shift for EDOs in a recent unpublished study. Here we report only results of the
computation where we considered the total energy E = EH + V , with V = Veff + VLS and VLS ∼ 6.23 × 10−56/r3
SI. Several computations, made while varying values of decimals, show the existence of an LME, where the binding
energy BE of the electron satisfies −511 keV < BE < 0 and can have value of the order of magnitude close to EDO
solutions of relativistic equations.
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Figure 5. Plot of electron BE for 1.4 F< ρ < 2 F.

In Fig. 6, we plot an example of the curve BE, where the LME corresponds to ρ ∼1.41 F, BE ∼ − 487 keV, KE
∼ 140.03. . . MeV, PE = V ∼ -140.52. . . MeV, γ = 275.00. . . We also verify that the relativistic virial theorem is
satisfied.

5. Summary and Discussion of Results

(1) At this point, we can relate the results obtained for deep LME, even if only approximate, with the EDO
solutions of the Dirac equation.

• In the situation considered in Section 4.4.1. while varying attenuation parameters of the EM interactions,
we obtained LME locations between 1.1 F and 2 F and, on the other hand, the mean radii of EDO’s
obtained by the Dirac equation [21] are from 1.2 to 1.6 F, except for the value obtained when the
radial quantum number n′ = 1. Similarly, in the situation Section 4.4.2, while varying the precision of
formulas, we obtain similar LME locations. Finally, in both alternatives considered from our discussion
on magnetic interactions, the results have comparable orders of magnitude.

• Seeking an LME, with fixed potentials, provides only one value corresponding to an energy well,
whereas the Dirac equation provides an infinity of EDOs levels. But, it is the same when one seeks
the size order of electron LME in the simple Coulomb potential of a proton, as e.g. in [24]: one finds
the fundamental Bohr level at 53 pm, whereas the Schrödinger equation provides an infinity of energy
levels, including the fundamental level plus excited levels corresponding to additional resonances.

• In Section 4.2. (3) on spin–spin interactions, we noted that in a relativistic regime, the spin tends to lean
in the direction of the motion of the particle [32], i.e., it is getting closer to the helicity, and we wondered
if this does not lead to a weakening of the interaction energy. But, in fact, this interpretation assumes
the movement of the electron becomes more perpendicular to the direction of the spin of the nucleus, as
in the classical image of an orbit on the ecliptic of a planetary system. Of course, there is no reason for
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the moment of the electron to have any preferred direction with respect to the orientation of the nuclear
spin: one could think that spins tend to align by magnetic coupling, for reaching a lower energy state.
Nevertheless, because of quantum mechanics rules on energy transfers, things are more complicated.
The evolution of a system of two spins in interaction is precisely described in [47]: under the effect of
the coupling, both spins process about their resultant J, with an angular velocity proportional to |J| and
the coupling factor.

(2) For our calculations in the previous section, we have taken into account combinations of high-energy, 1/rn,
potentials that are partially converted into actual kinetic energy for deep electrons. So, we have energies of
order 100 – 200 MeV, while we have systematically eliminated potentials that give unrealistic energies (of order
of GeV) due to angular momentum effects (spin–orbit interaction and “centrifugal potential”). Nevertheless,
we can legitimately ask where do these high energies come from? The most plausible answer is that this
energy is taken from the rest mass of the proton, which is of order 1 GeV. Different hypotheses exist about
what constitutes the mass of a proton. Most known, from experiment in the LHC [48] and from electron–
proton inelastic scattering (e.g. [49]), is that a proton is actually a “soup” of quarks, antiquarks, and gluons
in a perpetual shuffling (creation/destruction of pairs) and in highly relativistic movement, but including two
up-quarks (with “base” mass ∼2.4 MeV, [50]) and one down-quark (with “base” mass ∼5 MeV), named
“valence” quarks. In this vision, the mass of a proton would come mainly from the relativistic energy of its
constituents. In another point of view, based on the “Constituent Quark Model” [51]: in the low-energy limit of
Quantum Chromodynamics (QCD), which concerns the current atomic nuclei, the constituent quarks appear
like “dressed” current quarks, i.e. current quarks surrounded by a cloud of virtual quarks and gluons. This
cloud underlies the large constituent-quark masses, of order 336–340 MeV. In this model, energy could still

Figure 6. Plot of electron BE for 1.3 F< ρ < 1.55 F.
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be taken from the clouds surrounding the current quarks. Of course, the process of energy transfer from the
proton-reservoir to the relativistic deep electron, with its proximate intense fields, should be the subject of a
detailed study.

(3) In this paper, seeking an LME with fixed potentials is a preliminary study, carried out in a semi-classical way
and with a rather coarse view of the effects of radiative corrections (essentially Lamb shift) involved near
the nucleus. We are currently pursuing a study to express in a more detailed and semi-analytical manner the
involvement of the Lamb shift in the computation of the resonance.

Here, we do not claim to prove rigorously that there is an LME, but we show that the existence of an LME is
possible if some conditions are met (related to the combinations of potential energies). And, what is encouraging is
that many calculations lead to this possibility, with a BE consistent with that predicted by relativistic equations [21].
Moreover, the resonance is confirmed by the fact that KE and PE satisfy the relativistic virial theorem.

Appendix A. Discussion about Magnetic Interactions for Relativistic Electrons

The magnetic interactions, such as spin-spin and the diamagnetic term (Section 4.2), involve the magnetic moment
of the electron associated with its spin. For a relativistic electron, one knows [32] that, when the velocity increases,
the direction of the spin tends to become parallel to the momentum p, like helicity, which can lead to a weakening
of the magnetic interactions. But recently, a referee caught our attention on the fact that the magnetic moment of the
electron decreases in inverse proportion of its energy. Also, and although very few documents deal with this question,
we ended up actually finding papers [52,53], where the magnetic moment is given (or equivalent forms) by the relation
m = e!c/2E(p), where E(p) is the total energy of an electron having momentum p. We note this result is deduced by
reasoning of Dirac spinors in a simplified situation, i.e. for a free electron, or a electron moving in a constant magnetic
field. What can be deduced for a electron bound in central potential V , a combination of several fields including a
nuclear Coulomb field?

(a) On one hand, the total energy is given by E(p) = (m2c4 + p2c2)(1/2) + V . But for deep electrons, we expect
a high binding energy |BE| (in absolute value) of several hundred keV [9–11,21], near the rest mass m, thus
E(p) ≪ mc2. As a consequence, we would have m ≫ e! /2mc and maybe a major strengthening of the
magnetic interactions. However, while the effective m may be greatly increased because of relativity, the
reorientation of the electron spin axis greatly decreases the S · S relation (as well as L·S, for l = 1). It may
compensate exactly and thus using m = e!/2mc, without correcting for the S· S decrease, might be a good
assumption.

(b) On the other hand, we can consider the following equivalent form of the expression m = e!c/2E(p):
m = e!/2γmc, where γ is the usual relativistic coefficient. Can we consider that we have essentially

to take into account the role of γ for determining the value of m, for a free electron as well as a bound elec-
tron? As a consequence, since deep electrons are highly relativistic, m would be very small and the magnetic
interactions would be negligible compared to Veff .

For the present paper, as it is very difficult to know what is the correct alternative for deep electrons, we consider both
alternatives. More precisely, we are taking into account an additional effect, that of the radiative corrections, very
important near the nucleus, for which we give some indispensable elements of explanation in Section 4.3.

(1) Then, while dealing with alternative (a), we keep the usual expression m= e!/2mc, and we put the total energy
E equal to E = EH + V , where V will be a combination of three potential energies, Veff , VRSS, and Vdia,
taking into account the effect of radiative corrections.
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Figure 7. Plot of the normalized radial probability density for 1s orbital of uranium, for ρ < 2 pm. The maximum corresponds to ρ ∼ 0.43 pm.

(2) In the case of alternative (b), we will give an overview of a possible treatment where the magnetic interactions,
being considered negligible compared to the attractive interaction Veff , are not taken into account. But, the
potential well needed for the existence of deep electrons can still be achieved thanks to a repulsive quasi-
potential deduced from the Lamb shift and combined with Veff.

Appendix A.1. Determination of a repulsive quasi-potential associated with Lamb shift for EDOs

Here we give only a schematic view of a work started on the occasion of a presentation at the 13th International
Workshop on Anomalies in Hydrogen Loaded Metals (5–9 Oct. 2018, Grecchio, Italy). We build a repulsive potential
as a function of the electron orbit radius from calculations on Self-energy (SE), which has a repulsive effect, while
considering Vacuum Polarization (VP) calculations lead to a weakening of SE, since VP, which has an attractive effect,
has to be subtracted from SE.

Appendix A.1.1. The starting point of our method

Our method consists of analyzing the progressions of SE and VP for atomic electrons for nuclei with increasing Z and,
for comparisons and extrapolations, we consider the radius corresponding to the maximum probability density, noted
rmx. Then, we consider the “Z increases” are equivalent to the “radius r decreases”: Z increasing ⇔ the coupling
force increases ⇔ the radius rmx decreases.

Nevertheless, as a deep electron is very far from an atomic electron, we use an intermediate step in terms of strength
of the Coulomb electric field: the hydrogen-like uranium ion. This allows us to section the “distance” between an
atomic case and a deep orbit, and above all, to take advantage of many calculations and experiments on the Lamb shift
(LS) for heavy elements. Nevertheless, we have to be careful, because, for heavy elements, LS often includes terms
that are not radiative corrections: for example, the nuclear size (NS), which has a significant effect. So, to calculate
the LS for deep electrons, we discard any effect other than SE and VP.

Note: from now on, we consider the LS only for 1s electrons, for any chemical elements.
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Figure 8. Smooth plot of ratio R = |VP|/SE, as function of Z, from data given in [45] and for 40 ≤ Z ≤ 110.

In Fig. 7 we plot the normalized radial probability density for the 1s orbital of uranium, for ρ < 2 pm. For uranium,
the radius corresponding to the maximum density probability, noted rmx(U) is equal to ∼427.3 F.

As indicated in Section 4.3 on radiative corrections, the energy shift due to SE can be expressed by the following
formula: ∆ELS = (α/π)(Zα)4F(Zα)mc2. This formula has two factors depending on Z. The first, (Zα)4, quickly
increases with the electric Coulomb field and can lead to a possible analytic formulation as function of the radius r.

From data tables, one can see the second factor, F (Zα), slowly decreases with Z. Moreover, again from a table of
results, the ratio |VP|/SE increases with Z.

Figure 9. Smooth plot of factor F ′(Z), as function of Z, from data given in [42] and for 5 ≤ Z ≤ 90.
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Appendix A.1.2. The form of the analytic expression of SE, and extrapolations from data tables

Elements of comparison between SE values for the hydrogen atom and uranium lead us to take SE = C/r3 as more
“reasonable” than C/r4. And, we can expect the reducing of SE to the power 3 can be “absorbed” thanks to the
progression of |VP|/SE. We give in Fig. 8, a smooth plot of the ratio R = |VP|/SE, as function of Z, from [45]

With the data table, from Z = 40, we can recognize and extrapolate a slow geometric progression of the form
Rn = R0qn, where q ∼1.2, R0 = R(Z = 40) and n = (Z − 40)/10. Thus it can compensate the reduction of
SE indicated above, without having to subtract |VP| from SE. Next, we consider the factor F (Zα), expressed more
simply as F ′(Z). In Fig. 9, we give a smooth plot of F ′(Z), built from [42], for 5≤ Z ≤ 90.

From the data table, we can recognize and extrapolate a quasi-exponential decreasing progression of the factor
F ′(Z), while considering the progression of Z multiplied by successive integer powers of 2, from Z = 5: in fact, at
each step, F ′(Z) is divided by a number k which is very slowly increasing. To sum up, while considering the ratio
of rmx(U) /redo, where redo is an expected value of the LME for an EDO, fixed to ∼1.4 F, the factor F ′(92) ∼1.49
for uranium, and SE = 355 eV for uranium, we obtain an approximate value of F ’ for an EDO, noted F ′

edo ∼0.021.
From F ′

edo, we deduce VLS ∼ 6.2 × 10−56/r3 in SI units or VLS ∼ 3.8 × 10−37/r3 in eV (with r in meters).
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