See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320345277

Physics of Cold Fusion by TSC Theory ICCF17 slides

Presentation · August 2012

citations 0		reads 70			
1 author:					
•	Akito Takahashi Osaka University 338 PUBLICATIONS 1,611 CITATIONS SEE PROFILE				

Some of the authors of this publication are also working on these related projects:

Neutron tranport and moderation View project

Nuclear Data and Neutronics for DT Fusion Reactors View project

All content following this page was uploaded by Akito Takahashi on 12 October 2017.

Physics of Cold Fusion by TSC Theory

Akito Takahashi (Osaka University and Technova Inc.) Invited talk at ICCF17, Daejeon, Korea, August 12-17, 2012

- Model principle of cold fusion processes in nano-metal mesoscopic catalysts (Pd, Ni, alloys) are proposed and discussed
- Brief show on modeling transient/dynamic D(H)cluster formation on/in a nano-metal particle with surface sub-nano-holes (SNH)
- comparison is made between 4D/TSC and 4H/TSC condensation motions and resultant strong and weak nuclear interactions.
- 4D/TSC fusion, 4H/TSC WS fusion and their products
- 4H/TSC induced clean fission of host metal nuclei

The Case of Hot Plasma Fusion

- Confinement of high kinetic energy deuterons (plasma) in a very large scale (torus) room, like Tokamak magnetic field confinement.
- Average kinetic energy of d-d (or d-t) reaction for ITER is aimed to be about 10keV (Ek).
- <Macroscopic Fusion Rate> = < $Nd(Ek)^2 v \sigma_{dd} (Ek)$ >

Gamow-Teller peak

vNooEe -(E/hT)

Nd: deuteron density, V: relative d-d velocity,

 $\sigma_{dd} = (S(E_k)/E_k)exp(-\Gamma_{dd})$: fusion cross sec

Ek: relative d-d kinetic energy

Fdd : Gamow factor

 Free particle motion and collision pro Nd(Ek) = N·(Ek/T²)exp(-Ek/T) : Maxwell-Boltzmann distr.

A TEM Image of a Pd₃₅Zr₆₅ sample made by melt-spinning procedure (By courtesy of Prof. T. Oku, University of Shiga Prefecture) As a reference to the B. Ahern's Pd sample

show

The Making of Mesoscopic Catalyst

Meso-Catalyst: as Core/"Incomplete"-Shell Structure Mono-Metal (with oxide-surface layer) Or Binary Alloy

show Another D₂ comes onto trapped D₂ at SNH (Sub-Nano Hole)

<u>SNHs are prepared by O-reduction to start D(H) absorption (left)</u> <u>And D(H)/M loading ratio exceeds 1.0 level (right)</u>

Image on Formation of TSC(t=0) at Sub-Nano-Hole (SNH) Of Nano (Mesoscopic) Catalyst

Every Particle confined in Condensed Matter should have higher Kinetic Energy

show

within its Relatively Negative Trapping Potential Well

Phonon couples with outer field phonon to transfer energy To get thermal equilibrium

Time Dependent TSC Condensation: No Stable State, but into sub-pm entity

ACS2007

show

Adiabatic Potential for Molecule dde* and its ground state squared wave function

AT ICCF17 TSC theory

Fusion Rate Formula by Fermi's Golden Rule

< FusionRate >=
$$\frac{2}{\hbar} \langle \Psi_f | W(r) | \Psi_i \rangle$$

Born-Oppenheimer Approximation

Fusion Rate Formula by Born-Oppenheimer Approximation

$$< FusionRate >= \frac{2}{\hbar} \langle \Psi_{nf} | W(r) | \Psi_{ni} \rangle_{Vn} \cdot \langle \Psi_{cf} | \Psi_{ci} \rangle_{Vn}$$

$$Vn \approx 4\pi R_n^2 \lambda_{\pi}$$

: Effective Volume of Nuclear Strong (Weak) Interaction Domain

 λ_{π} : Compton wave length of pion (1.4 fm) (weak boson: 2.5 am)

Rn : Radius of Interaction surface of strong (weak) force exchange

ACS2007

Fusion rate of D-cluster is estimated by time-integration of barrier factors.

Using Fermi's golden rule(8), fusion rate is obtained by,

$$\lambda_{nd} = \frac{2}{\hbar} \langle W \rangle P_{nd}(r_0) = 3.04 \times 10^{21} P_{nd}(r_0) \langle W \rangle$$
(32)
Here value is in MeV unit.
Nuclear Strong Interaction:
Inter-nuclear fusion rate

(32)

respectively. The imaginary part of optical potential $\langle w \rangle$ for effective interaction, namely fusion, is estimated by the empirical rule for PEF (pion exchange force number) values(8), and given in Table-III. Fusion rates are shown in Table-IV. Here we used the following relations between astrophysical S-value S_{nd}, T-matrix for the effective interaction Hamiltonian of nuclear fusion T_n and pion-exchange number PEF, in $\langle W \rangle$ estimation(8).

$$S_{nd} \propto T_n^2 \propto (PEF)^{10}$$

 $T_n = \langle W \rangle \propto (PEF)^5$

Charged Pion Exchange (Isospin/Spin) Can be scaled by **PEF-value(-)**, empirically. Astrophysical S-values are estimated for Multi-body hadronic **fusion** interactions.

And we used known S-values at $E_d=0$ and $\langle W \rangle$ values for DD^{10} and DT reactions, as reference values.

Ckin

One Pion Exchange Potential and PEF

One Pion Exchange Potential (Hamada-Johnston Potential)

$$V_{OPEP}(x) = v_0 \cdot (\vec{\tau}_1 \cdot \vec{\tau}_2) \left\{ \vec{\sigma}_1 \cdot \vec{\sigma}_2 + (1 + \frac{3}{x} + \frac{3}{x^2}) S_{12} \right\} \frac{\exp(-x)}{x}$$

Minus 3 for p-n; fusion
$$x = \frac{m_{\pi}c}{\hbar} r = \frac{r}{1.43} [fm] \qquad \text{Yukawa Potential} \qquad Y(x) = \frac{\exp(-x)}{x}$$

$$v_0 = \frac{1}{3} \frac{f^2 m_{\pi} c^2}{\hbar c} = 3.65 [MeV] \quad S_{12} = 3 \frac{(\vec{\sigma}_1 \cdot \vec{r})(\vec{\sigma}_2 \cdot \vec{r})}{r^2} - \vec{\sigma}_1 \cdot \vec{\sigma}_2$$

$$\left\langle OnePEF \right\rangle = -\frac{\partial \left\langle V_{OPEP}(x) \right\rangle_{\tau,\sigma}}{\partial r} = -\frac{1}{1.43} \frac{\partial \left\langle V_{OPEP}(x) \right\rangle_{\tau,\sigma}}{\partial x}$$

Skip

D-D Fusion: Strong Force vs. Coulomb Force

show

The Case of D₂ Molecule: The relative kinetic energy of d-d pair: 2.7eV

$$\lambda_{nd} = \frac{2}{\hbar} \langle W \rangle P_{nd}(r_0) = 3.04 \times 10^{21} P_{nd}(r_0) \langle W \rangle$$

<Fusion Rate per Molecule> = 2.4×10^{-66} f/s

19

AT ICCF17 TSC theory

The Case of Muonic d-d Molecule: The relative kinetic energy of d-d pair: 180eV

Gaussian Wave Function and Vs Potential for dd-muon

show)

2.16x10⁶ K

$$\lambda_{nd} = \frac{2}{\hbar} \langle W \rangle P_{nd}(r_0) = 3.04 \times 10^{21} P_{nd}(r_0) \langle W \rangle$$
Fusion Rate per Molecule> = 2.4x10¹⁰ f/s

AT ICCF17 TSC theory

20

TSC Langevin Equation:

TSC Trapping Potential:

$$V_{tsc}(R':R_{dd}(t)) = -\frac{11.85}{R_{dd}(t)} + 6V_s(R_{dd}(t);m,Z) + 2.2\frac{\left|R' - R_{dd}(t)\right|^3}{\left[R_{dd}(t)\right]^4}$$

AT ICCF17 TSC theory

Time Dependent TSC Condensation: No Stable State

Adiabatic Potential for Molecule dde* and its ground state squared wave function

AT ICCF17 TSC theory

The Case of 4D/TSC-min transitory BEC: The relative kinetic energy of d-d pair: 13.7keV

Vtsc (keV) vs. R' at Rdd(t)=25 fm using $V_{s}(2.2)$ → Vtsc (keV) -50 Vtsc (kcV) -100 Ekd-d = 13.68 keV -150 0.01 Π 0.02 0.03 0.04 0.05 n ne R' (pm)

2007

Happens in

show

$$P_{nd}(m,Z) = \exp(-n\Gamma_{dd}(m,Z))$$

$$\Gamma_{dd}(m,Z) = 0.218\sqrt{\mu} \int_{r_0}^{b_0(m,z)} \sqrt{V_s(R;m,Z) - E_d} dR$$

$$\eta_{4d} = 1 - \exp(-\int_0^{t_c} \lambda_{4d}(t) dt)$$

 $\lambda_{4d}(t) = 3.04 \times 10^{21} \langle W \rangle P_{4d}(r_0; R_{dd}(t)) = 1.88 \times 10^{23} P_{4d}(r_0; R_{dd}(t))$

<fusion rate per 4D/TSC-min> = 3.7×10^{20} f/s ; for steady state

Real yield of 4d fusion : $\eta_{4d} \approx 1.0$ per TSC-cluster Ca. 2x10⁻²⁰ s

Introduction of New Physical Quantity

Definition of η(t) : **Binding-E + Alpha**: Time-Dependent Sorption Energy per D(H)-atom

- L(t) : Evolution of Loading Rate (Convertible to D(H)/M)
- W(t) : Heat-Power Level in watt
- E(t) : Evolution of Released Heat

τ: Time Resolution of Calorimetry (5.2 min in Kobe Exp.)

$$\begin{split} E(t) &= \int_0^t W(t) dt \\ \eta(t) &= \frac{\overline{\left(\frac{\mathrm{d}E}{\mathrm{d}t} \right)}}{\left(\frac{\mathrm{d}L}{\mathrm{d}t} \right)} = \left(\int_t^{t+\tau} \frac{\mathrm{d}E}{\mathrm{d}t} \, \mathrm{d}t \, \left/ \tau \right) \right/ \left(\int_t^{t+\tau} \frac{\mathrm{d}L}{\mathrm{d}t} \, \mathrm{d}t \, \left/ \tau \right) = \int_t^{t+\tau} \mathrm{d}E \, \left/ \int_t^{t+\tau} \mathrm{d}L \right. \\ &= \frac{\Delta E(t, t+\tau)}{\Delta L(t, t+\tau)} = \frac{E(t+\tau) - E(t)}{L(t+\tau) - L(t)} \end{split}$$

AT ICCF17 TSC theory

AT ICCF17 TSC theory 27

Oxidization of Pd-Black makes large heat (Ia-Phase) Skip PB5,6#3 η vs. Power: After Forced Oxidization (20-17%)

Time (min)

J/H Isotopic Effect in Heat-power (W); energy per D(H) sorption = η, η_D / η_H Ratio had local very large values Beyond Chemical Explanation. :D-**PZ**11#3 vs. H-**PZ**12#3: after forced oxidization (50-80% PdO/Pd)

Nano-Pd/ZrO₂

show

 $W_{\rm D(H)}$ (W), $\eta_{\rm D(H)}$ (eV/D(H))

NanoPd/SiO₂:PSII3,4#1:Virgin; η

Time (min)

PSII3,4#3_4(A1(D):28.72%,A2(H):34.19%); η

Flowrate*Time (scc)

Skip

PNZ2B After Forced Oxidization (80%MO/M) : Heat-Power (W), Energy per D(H)-sorption (ŋ) and ŋɒ/ŋн

Nuclear Effect for $\eta_D/\eta_H >> 1.0 !(?)$

show

Integrated Heat Data (Phase-I) for PZ11 and PZ12

Skip 8nm diameter Pd 2 After Forded Oxidizatib Virgin Heat by D Anomalously High Chemical Heat by H. Big Isotopic Effect by D. Heat by H **Recovery by Oxidization** 1.5 Specific Energy (kJ/g-Pd) Why big difference in absolute values between sorption and desorption runs? Why there happens big After De-Oxidization isotopic effect? Sorption Sorption 0.5 Desorption Desorption Desorption 0 2 5 7 1 3 **Bulk Pd behavior** -0.5

Kobe Results : Tested Metal/Ceramics Powders and Result

Skip

	Pd	Ni	Zr	0	Supplier	Anomalies observed?
100nm <i>ø</i> -Pd	995%,				Nilaco	[1],[2]
PP	$100 \text{mm}\varphi$				Corp.	No, bulk metal data, but PdO
Pd-black	99.9%,				Nilaco	[1],[2]
PB	300mesh				Corp.	Yes, a little large heat & D/Pd
8-10nm <i>ø-Pd</i>	0.346		0.654	(1.64)	Santoku	[1],[2],[3], discussed
PZ					Corp.	Yes, Heat and D/Pd reproducible
mixed oxide		0.358	0.642	(1.64)	Santoku	[2]
NZ					Corp.	No heat and loading
mixed oxide	0.105	0.253	0.642	(1.64)	Santoku	[2]
PNZ					Corp.	Yes, but weak
2nm <i>ø-PdNi</i>	0.04	0.29	0.67	(1.67)	Dr. B.	Yes, very large heat and
PNZ2B					Ahern	D(H)/M, reproducible

[1] Phys. Lett. A, 373 (2009) 3109-3112.

Drastic change happens! Why?

[2] *Low Eergy Nuclear Reactions*, (AIP Conf. Proc. 1273, ed. Jan Marwan, 2010).

[3] *LENR Source Book 3*, (ed. Jan Marwan, ACS) to be published. AT ICCF17 TSC theory

34

Phenomenological Model for PdO-coated Pd-nar skip particle and Pd-Ni binary shell-core nano-particle as "Mesoscopic Catalyst"

- PdO surface coating for few atomic layers (Pd ad-atoms on Ni core)
- Reduction of PdO by incoming D(H)-gas
- De-sorption of D(H)2O into vacuum
- "Sub-Nano Hole", SNH with active chemical dangling bonds
- Rapid adsorption of D(H) in SNHs
- 4D/TSC, cluster formation at SNHs
- Rapid lattice absorption (PdD(H) formation) through surface nano-holes, reaching to over-loaded x>1 state
- Formation of Collective Mesoscopic Potential Well
- Non-linear coupled oscillation of "long"- and "short"pendulum state (PdD or NiD₃ local lattice)
- 4D/TSC cluster formation under non-linear oscillation

35
AT ICCF17 TSC #

Skip

Modeling of H(D) Loading for PZ, PS Samples

Skip Speculative image of GMPW (Global Mesoscopic Potential Well) For CNZ (Cu-Ni-ZrO2) nanocomposite powder + D(H) absorption H_2 Bloch potential of Ni-lattice **Endothermic Reaction** Edissoc. T < Tc (200°C for CNZ) E = kTHeat

> T > Tc (200°C for CNZ) Exothermic Reaction

Nucleon Halo Model of ⁸Be*(Ex=47.6 MeV: J[¬]) Vibration/Rotation Band Levels are <u>narrow spaced</u> for Long Life Low Energy EM Transition Photons: a few keV: to ⁸Be (g.s.)

Skip

Nucleon Halo Model of ${}^{4}\text{He}^{*}(\text{Ex}=23.8 \text{ MeV}: J^{\pi})$ Excitation with 2 PEFs spring PEF Rhalo This state breaks up Promptly in 10⁻²²s To n + h + 3.25 MeV Due to no hard alpha-core? $E_x > (1/2)K_2R_{halo}^2$ And prompt break-up

Skip

Nucleon Halo Model of ⁸Be*(Ex=47.6 MeV: J^{^T}): <u>Excitation with 4 PEFs spring</u> Vibration/Rotation Band Levels are <u>narrow spaced</u> for Long Life Low Energy EM Transition Photons: a few keV: to ⁸Be (g.s.), <u>due to hard alpha-core</u>?

Weak Interaction at 4H/TSC-min [We assume WI happens at proton surface with W-boson wave length (2.5x10⁻³ fm)]

show

- Eke = 600-1000 kev exceeds threshold (272 keV) of p + e⁻ to n + v interaction.
 - $p + e^- + E_{ke} \rightarrow n + v + (E_{ke} 272 \text{ keV})$

Effective Volume for WI:

$$\Delta V_W = 4\pi R_p^2 \lambda_W = 4\pi \cdot (1.2 \, \text{fm})^2 \cdot 2.5 \times 10^{-3} = 4.5 \times 10^{-2} (\, \text{fm})^3$$

We assume 1S-type electron wave function for "diminished Bohr radius" = $2R_{pe}=2.4$ fm

$$\Psi_e(r) = (\pi a^3)^{-1} \exp(-r/a)$$

Weak Interaction at 4H/TSC-min

- p + e⁻ + E_{ke}
 (800keV)→ n + v +
 528 keV
- Neutrino carries away most of 528 keV.
- Produced n makes immediately strong interaction with remained 3p of TSC.

$$< WIrate >= (4\pi/h) < W >_{W} \langle \Psi_{e}(r_{W}) \rangle^{2}$$

Skip

$$\left\langle \Psi_{e}(r_{w}) \right\rangle^{2} \sim \Psi e(\mathsf{R}_{\mathsf{P}})^{2} \Delta \mathsf{V}_{\mathsf{W}} = \\ (0.6/(3.14 \times 2.4^{3})) \times 4.5 \times 10^{-2} \\ = 5.9 \times 10^{-5} \\ 4\pi/h \\ (4\pi/h) < W >_{w} = \left| M_{fi} \right|_{F} = (G_{F}/V) c_{V} \cos \theta_{c}$$

$$G_F = 1.16 \times 10^{-5} GeV^{-2} (\hbar c)^3 = 89 eV (fm)^3$$

 $\cos \theta_c = 0.88$: Weinberg angle, and $\langle W \rangle_w = 78eV$ We set cv=1 and V=1

<Real WIrate>=<WIrate>< Δ t-tsc-min> =2.37x10¹⁷x5.9x10⁻⁵x2x10⁻²⁰= **2.8x10⁻⁷** (1/cluster)

Rate of Strong Interaction for n-3p Cluster

show

: Immediate strong reaction with "n" by WI

Gauge boson propagation time per fm = 1 fm/c = $3x10^{-24}$ s \rightarrow Simultaneous 4-body reaction possible (100%) within Δ t-tsc-min = $2x10^{-20}$ s

By gas loading experiment with 2nm diam Ni(+Pd or Cu) particle, one TSC per particle per sec was speculated: 1/10,000 per s per nano-p.

Supposing TSC production rate per s per mol-metal (Ni): 6.023x10²³/10⁴ ~6x10¹⁹

<Macroscopic 4H/TSC Fusion rate> = 2.8x10⁻⁷x6x10¹⁹= 1.7x10¹³ (f/s/mol)

About 20W AT ICCF17 TSC theory

50

Skip

Products of 4H/TSC W-S Fusion

- $3p + n \rightarrow {}^{4}Li^{*}(4.62MeV)$
- ⁴Li*(4.62MeV) → ³He + p + 7.72MeV-(1.93) (5.79)

Main branch See next slide OR

- ⁴Li*(4.62MeV) → d + 2p + 2.22MeV[<]
 (~1MeV)
- 5.79MeV proton produces PIXE: ca. 8keV for Ni
- 5.79MeV proton energy is smaller than neutron emission threshold for ⁵⁸Ni (9.5MeV) and ⁶⁰Ni(6.9MeV), but larger than those for ⁶¹Ni(3MeV), ⁶²Ni(4.5MeV) and ⁶⁴Ni(2.5MeV). (So, see the slide after the next one.)

Skip

show

CNZ3,4#5_513°K Second Run; 0~3000min

Why H-gas charging produced larger heat-power than D-gas?

Discussions

- <u>Life Time</u>: At Rpp=2xRp=2.4fm, 4H/TSC condition will be distorted due to limited space for electron rotation. Rpp=2x2^{1/2}Rp=3.4fm might be the final point, around which TSC would <u>oscillate</u> to have some <u>enhanced life</u> time (1 fs ?). We need further study on "how much life time". If so 4H/TSC WS fusion rate drastically increase!
- 4D/TSC fusion (47.6MeV/f) event makes much stronger damage than 4H/TSC WS fusion (ca. 4MeV av.), so that self-recovery of nano-particle works better for Ni-H system than Ni-D system (ca. 4hrs vs. 1hr of full Nilattice atoms displacement by one watt/g level heatpower.)
- <u>Gamma rays</u>: 5.79MeV proton will make Ni(p, γ) reaction with about 100 times the n emission rate, because it happens mainly for ⁵⁸Ni and ⁶⁰Ni of high abundance.

4)TSC-Induced Ni Fission

- The 4H/TSC + Ni-isotope capture-and-fission process, previously proposed, is another plausible scenario. <u>The 4H/TSC-min state</u> <u>may have much longer life than 4D/TSC-</u> <u>min, and Ni has larger K-shell e-cloud</u> <u>radius than Pd. Ni + 4H capture will be</u> <u>enhanced significantly.</u>
- Ni + 4p goes to fission to result in generation of clean fission products in A<100 mass region.

After A. Takahashi: JCMNS, vol.1,

M + 4p/TSC Nuclear Interaction Mechanism

- Topological condition for Pion-Exchange (PEF): 4p's are within pion ranges.
- <u>Selection of</u> <u>simultaneous pick-up</u>

of 4p looks dominant.

• M + 4p capture reaction.

Major Fission Channels from Ni + 4p (2) Skip $^{62}Ni(3.6\%) + 4p \rightarrow ^{66}Ge(Ex=24.0MeV)$

- Neutron emission channel may open!
- S-values for higher mass Ni may be larger than Ni-58 and Ni-60, due to more p-n PEF interaction.

 $^{64}Ni(0.93\%) + 4P \rightarrow ^{68}Ge(Ex=29MeV)$ $[^{60}Ni + 4d \rightarrow {}^{68}Ge(Ex=55.049MeV)]$ \rightarrow 16.7MeV + n + ⁶⁷Ge(EC)⁶⁷Ga(EC)⁶⁷Zn \rightarrow 25.6Mev + ⁴He + ⁶⁴Zn \rightarrow 10.0MeV + ⁶Li + ⁶¹Cu(EC)⁶¹Ni \rightarrow 13.2MeV +⁸Be + ⁵⁷Ni(EC)⁵⁷Co(EC)⁵⁷Fe \rightarrow 10.9MeV + ⁹Be + ⁵⁹Ni(EC)⁵⁹Co \rightarrow 9.9MeV + ¹⁰B + ⁵⁸Co(EC)⁵⁸Fe \rightarrow 22.7MeV + ¹²C + ⁵⁶Fe \rightarrow 14.8MeV + ¹⁴N + ⁵⁴Mn(EC)⁵⁴Cr \rightarrow 12.7MeV + ¹⁶O + ⁵²Cr \rightarrow 17.6MeV + ²⁰Ne + ⁽⁴⁸Ti \rightarrow 12.7MeV + ²³Na + ⁴⁵Sc Near \rightarrow 17.5MeV + ²⁴Mg + ⁴⁴Ca **Symmetric** Fragmentation \rightarrow 14.8MeV + ²⁷Al + ⁴¹K \rightarrow 18.7MeV + ²⁸Si + ⁴⁰Ar \rightarrow 18.7MeV + ³²S + ³⁶S

TSC-Induced Fission Products

 <u>FPs can be Mostly Stable Isotopes</u> for A<100 M-targets (Clean Fission) <u>by Near</u> <u>Symmetric Fragmentation (If dominantly</u> <u>selected scission channels).</u>

It is likely, but precise FP analysis is needed.

- Minor FPs are short-lived decay RIs by EC (K-electron capture process and /or positron decay), for A>50 Mtarget
- Significant gamma-peaks (prompt and annihilation) should appear for M + 4H/TSC with A<20 M-target

Skip

Triton Production and DT neutron by Minor Branch of 4D Fusion

Channels for CP Generation by 4D I. Symmetric Fragmentation 1) $4D \rightarrow {}^{8}Be^{*}(47.6MeV;0^{+},0) \rightarrow$ ${}^{4}He^{*}(Ex) + {}^{4}He^{*}(Ex) + 47.6MeV-2Ex$

- 1-1) Ex=0;
 ⁴He*(gs;0⁺,0): 4D→α+α+47.6MeV; Eα=23.8MeV
- 1-2) Ex=20.21MeV (1st excited state of ⁴He);
 ⁴He*(20.21MeV;0⁺,0)→p(0.6-2.2MeV)+t(1.8-3.4MeV)
 + (Ex-19.815=0.4MeV) + (3.6MeV; moving ⁴He*)

; this **triton** makes secondary d+t reaction to **emit 10-17MeV neutrons**

高橋:気相宮温石

<u>146</u>

TSC theory

Prediction for Emitted Particle Energy by 4D/TSC Theo Skip

CP Spectra by 4D/TSC; Predicted

- ⁴He: 0.046, 1.52, 3.6-4.1, 2.9-4.3, 2.6-4.5, 2.1-4.6, 1.9-4.7, 4.0-5.6, 5.75, 7.9, 9.95, 11.9, 12.8, 13.69, 23.8 (MeV)
- Triton: 1.8-3.4, 10.2-10.6 (MeV)
- Deuteron: 0.9, 1.6-2.4, 0.2-2.6, 1.9-3.6,
 0.9-4.2, 1.1-4.4, 5.95, 8.0-11.1,15.9 (MeV)
- Proton: 0.6-2.2, 3.5-3.9 (MeV)

Purple values are by odd spin-parity of 8Be*(Ex=47.6MeV)

Others are S-wave Transitions

(From Few Body System to Many Body System under Constraint (Self-Organization)

63

Conclusion

- Cold Fusion in/on condensed matter requires the confinement of relatively high kinetic energy deuterons in a cluster within a very small (microscopic as 20 fm diameter) domain.
- 4D/TSC is a mechanism of <u>Transitory BEC</u> (Bose-Einstein Condensate) for realizing large heat level 4D fusions with ⁴He ash, in/on the nano-catalytic condensed matter under the ordering/constraint condition of symmetric D-cluster formation.
- 4H/TSC induced weak/strong self-fusion (³He and D are ash) and metal fission are candidate models for Ni-H system's anomalous phenomena.

Appendix

- Fusion Rate Formula by Fermi's Golden Rule
- QM wave density flow in the strong field
- Inter-nuclear fusion rate
- Wave function in outer electro-magnetic field
- Adiabatic Equation of Fusion Rate by Born-Oppenheimer approximation
- The effective interaction domain of nuclear reaction

Mean Free Path in Strong Field (1)

• Forward Equation:

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[-\frac{\hbar^2}{2M}\nabla^2 + V + iW\right]\Psi\tag{1}$$

• Adjoint Equation:

$$-i\hbar\frac{\partial\Psi^{*}}{\partial t} = \left[-\frac{\hbar^{2}}{2M}\nabla^{2} + V - iW\right]\Psi^{*}$$

•
$$\Psi^* \mathbf{X}(1) - \Psi \mathbf{X}(2)$$
:
 $i\hbar \left(\Psi^* \frac{\partial \Psi}{\partial t} + \Psi \frac{\partial \Psi^*}{\partial t} \right) = i\hbar \frac{\partial \Psi \Psi^*}{\partial t} = i\hbar \frac{\partial \rho}{\partial t}$
 $i\hbar \frac{\partial \rho}{\partial t} = -\frac{\hbar^2}{2M} \left[\Psi^* \nabla^2 \Psi - \Psi \nabla^2 \Psi^* \right] + i [2W\rho] = -i\hbar div \vec{j} + i [2W\rho]$

(2)

Quantum Mechanical Current Density

$$\vec{j} = \frac{\hbar}{2im} (\Psi * \vec{\nabla}\Psi + \Psi \vec{\nabla} * \Psi *)$$

$$= \frac{\hbar}{2im} (\Psi * \vec{\nabla}\Psi - \Psi \vec{\nabla}\Psi *)$$

$$div\vec{j} = \frac{\hbar}{2im} (\vec{\nabla}(\Psi * \vec{\nabla}\Psi) - \vec{\nabla}(\Psi \vec{\nabla}\Psi *))$$

$$= \frac{\hbar}{2im} (\Psi * \nabla^2 \Psi + (\vec{\nabla}\Psi *)(\vec{\nabla}\Psi) - \Psi \nabla^2 \Psi * - (\vec{\nabla}\Psi)(\vec{\nabla}\Psi *))$$

$$= \frac{\hbar}{2im} (\Psi * \nabla^2 \Psi - \Psi \nabla^2 \Psi *)$$

Mean Free Path in Strong Field (2)

- We get balance equation of QM density flow:
- $\partial \rho / \partial t = -div(\mathbf{j}) + (4\pi/h)W(r)\rho(r,t)$ (3)
- Here $\rho(r,t) = \Psi \Psi^*$: particle density and <u>the 2nd</u> <u>right hand side term shows absorption rate</u> <u>for negative W(r)</u>.

(Inter-Nuclear Fusion Rate)

- Mean free path:
- $\Lambda = (h/4\pi)v/W(r)$
 - = (velocity)x(life time)

Fusion Rate Formula by Fermi's Golden Rule

< FusionRate >=
$$\frac{2}{\hbar} \langle \Psi_f | W(r) | \Psi_i \rangle$$

Born-Oppenheimer Approximation

Adiabatic QM Equations

Inter-Nuclear QM Schroedinger Equation:

$$\left|-\frac{\hbar^2}{2m}\nabla^2\Psi_n(r) + [V_{nr}(r) + iW(r)]\Psi_n(r) = E_n\Psi_n(r)\right|$$

Outer-Nuclear QM Schroedinger Equation for Electro-Magnetic Field:

$$-\frac{\hbar^2}{2m}\nabla^2\Psi_c(r)+V_c(r)\Psi_c(r)=E_c\Psi_c(r)$$

Fusion Rate Formula by Born-Oppenheimer Approximation

$$< FusionRate >= \frac{2}{\hbar} \langle \Psi_{nf} | W(r) | \Psi_{ni} \rangle_{Vn} \cdot \langle \Psi_{cf} | \Psi_{ci} \rangle_{Vn}$$

$$Vn \approx 4\pi R_n^2 \lambda_{\pi}$$

: Effective Volume of Nuclear Strong (Weak) Interaction Domain

 λ_{π} : Compton wave length of pion (1.4 fm) (weak boson: 2.5 am)

Rn : Radius of Interaction surface of strong (weak) force exchange
D-D Fusion: Strong Force vs. Coulomb Force

Optical Potential for Strong Interaction

- U(r) = V(r) + iW(r)
- V(r) ~ -25 to -50 MeV
- W(r) ~ -0.1 to -5 MeV
- For fusion by surface sticking force: W(r) ~ W₀δ(r-r0)
- V_s(r): screened
 Coulomb potential