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Most models for CF recognize the need to overcome
the Coulomb barrier between hydrogen nuclei

The electron deep orbits (EDOs) satisfy that basic need and
much more. They explain:

- DD fusion to 4He without significant fragmentation.
- An accelerated version of HH => D, via the p-e-p reaction.

- Formation of femto-atoms and molecules, which are
strong transmutants.

- Transmutations to stable nuclides as a source of local
energy; but,
* without hard radiation as from neutron activation, and

* with a preference for any unstable nuclides in the lattice

This presentation updates our on-going work on the
theoretical basis for EDOs in the relativistic QM equations

ICCF-22

Here we list the properties of EDOs that make them a good
model for Cold Fusion. These statements are demonstrated
in previous works.




Main arguments for EDO model
. Fusion between a femto-atom and lattice nucleus N is a 3-body
interaction N+p+e. Thus, unlike neutron activation, which generally
has only a single pathway (N+n), the femto-atom can go three ways
(N+p, N+ e, & N+n) to get to the lowest energy state.

.The intimate presence of the deep-orbit electron to/in the fused
nucleus provides a ready means of dissipating fusion energy

locally, rather than by gamma decay (elimination of the D+D => 4He
gamma-decay path is a proven example).

.The lowest energy-state "daughter" will generally be stable.
Neutron activation often cannot even access this path and almost
all transmutation paths lead to excited states that can decay only
by gammas or energetic-particle decay (unless an EDO is occupied).

. Unstable nuclides are more influenced by the extremely strong
fields of a deep-orbit electron. Their response to the potentials of
a femto-atom, giving a greater attractive force (F = -dV/dr)

between them, is the basis of “selective transmutation”.
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Now, we give some simple arguments to support them.

It is important to note that a femto-atom can induce a
three-body interaction with a lattice nucleus, unlike neutron
activation, and the consequences for transmutations.




l. Initial results with Dirac equation

Computations of the Dirac “anomalous” wavefunctions, with

finite potential inside nucleus (r < R), R close to the nucleus
Improvement and extension of work of Maly & Va’vra [Fus. Sc. Tech. V.24#3, V.27#1]

Example: R=1.2 F, radial quantum n’ =1 7 xu"

Plot of Probability Density 6. x 10
Energy E ~ 1.8 kev, mean radius <>~ 6.6 F 5 oM

To find out how to populate deep levels, , . -

we need to know more information, and |
to correct some imperfections:

2. x 10"

- Pb 1. Ansatz not allowing to have 1 x 10"
continuous derivatives at R o i e

- Pb 2. Energie E used to compute a solution for a finite nucleus is
the energy E of solution for

- Pb 3. Difficulty to evaluate the relativistic coeff. y, kinetic energy,
and other energy parameters

15
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From Maly & Va’vra works on “anomalous” solutions of Dirac
equation, we computed EDO wavefunctions with an improved
ansatz, to connect the solutions inside and outside the nucleus. But
it did not allow us to have derivatives continuous at the junction
radius, and the energy used to compute the wavefuntion was the
energy of solution for point-like nucleus case. Moreover, we could
not evaluate the relativistic coefficient y and energy parameters, as
the kinetic energy, required for a better understanding of EDOs and
possible interaction with nuclear fields.

These Imperfections are listed in the form of three problems.




Il. A valuable help: Semi-classical simulations

e Principle: Radial potential = sum of inverse power terms, with
magnetic interactions and radiative corrections.

Necessity to respect the Heisenberg Uncertainty Relation (HUR)

« Our decisive choice: to take HUR as Starting Point =>

-(i) Electrons confined in deep orbits (EDO) are highly relativistic,
p~h/r =>y~(1-v¥/c?)Y2 ~[1+ ( AJr)?1Y?, A :reduc. Compton wavelength

if r<<A =386 Fermis => ¥ ~ ZLC/r (Case of EDOs)

- (ii) Importance of a strong relativistic correction of Cb Potentiel V:
effective potential energy Vs [Adamenko, Vysotskii. FoPL,17,3 & FoP,34,11]

Veg =7V + V/2mc? ~(A.e*/r?) (1-a/2) ~ y V in nuclear zone =>
Vg can confine an EDO near the nucleus

e Relativity, implied by HUR, is the solution for EDO confinement
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That is why, then, we studied the possible existence of EDO’s in
a semi-classical way, to better know their energy parameters.
First, we directly address the Heisenberg Relation as a starting
point, for an electron confined in a sphere of radius r. From the
momentum p, we can compute the relativistic coefficient vy, by
an expression involving the reduced Compton wavelength. At
ICCF21, we gave examples showing the expression of y gives
realistic values.

e We can see electrons confined in deep orbits are highly
relativistic.

e But a strong relativistic correction to the Coulomb potential
can confine such energetic electrons




Semi-classical simulations (cont’d)

Looking for a Local Minimum of Energy (LME) near the nucleus

héc?
rZ

Importance of Radiative corrections near the nucleus:

(i) Lamb shift (LS) is very strong in high electric field, and has

(ii) Repulsive dominant effect (electron self-energy > vacuum polarization)
In recent work : LS expressed as a repulsive quasi-potential in 1/r3

+ méc?

Considering Total Energy TE = E,, + PE, where E, :\/

6004

Example (computations for ICCF21 paper, JCMNS)

Plot of Binding Energy: BE = TE — mc? 4001

LME at~ 1.4F, y~ 275
Binding Energy (BE) ~ - 509 kev )
Pot. Energy (PE) ~-140.5 Mev
Kinetic Energy (KE) ~ 140 Mev

-2004

-4004
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In order to find EDOs, we look for a Local Minimum of Energy (LME)
of electron in a central potential, obtained by a balanced
combination of EM potentials near the nucleus.

Recently, we took radiative corrections into account, especially the
Lamb shift, whose effects become very strong near the nucleus,
because of the strength of the electric field. We expressed LS as a
repulsive quasi-potential, by means of extrapolations from data
tables on QED effects on orbital parameters.




From semi-classical simulations to Dirac EDO’s

1. Electrons confined near the nucleus are ultra-relativistic:
At distancer, y~ A/r =386/r where ris in Fermis
Example: forr~2 F, we have y~ 193

2. For LME obtained by combinations V of potentials in various

inverse powers and with diverse factors, the virial theorem is
respected (on 4-5 decimals) at the LME radius, in the following form:

KE/|PE| ~ y/(y+ 1) KE:Kinetic Energy PE: Potential Energy
3. From this, with correspondence LME radius --> mean radius
<r> for Dirac EDO solutions with finite nucleus,
we can evaluate v, TE, KE, BE at <r> TE: Total Energy
Example: TE ~mc? [y ~ m,c><r>/A. [m,c?~511kev]
=> This allows us to correctly adjust the energy levels of Dirac
EDOQO’s solutions (Pb 2) and to know all energy parameters (Pb 3)
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Semi-classical studies provided a lot of useful information for
correcting the imperfections of the initial Dirac EDO’s for finite
nucleus case (at least for two of the “three problems”).

- Not only we can evaluate the gamma coefficient, but also all
the energy parameters. Moreover we found that the relativistic
virial theorem was respected by ultra-relativist EDOs, in a very
simple form and for various combinations of potentials.

- This allows us to deduce all the energy parameters of the Dlrac
EDOs, computed at the mean radius of the probability density
distribution, and to check their coherence




lll. Back to Dirac equation.

First: what means solving a quantum equation ?
Quantum (time-independent) equation for a wavefunction: H y = E ),
It can be multi-dimensional (example: Dirac equation)

Summarily

-1. His a Hamiltonian operator, including differential operators.
(for example: the momentum p is expressed by - ihaix )

H represents the total energy of the considered system

---> we have to solve a differential equation

-2. We have to look for i, unknown wavefunction, and for E,
unknown eigenvalues which are energy values associated with

guantum numbers: energy levels (Pb 2)
---> we have to solve a spectral problem (spectral theory for QM)
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Now we show how to apply this new information to
Dirac EDOs.
But first, we give a brief theoretical recall about
resolution of a quantum differential equation.
In fact, this problem includes two concomitant
mathematical issues:

- To solve a differential equation, and

- To solve a spectral problem: for finding eigenvalues
associated with solutions of the differential equation




Quantum Equation for H atom with finite nucleus
We consider H atom with not point-like nucleus of radius ~ R

(i). Outside the nucleus, the potential is V= - e?/r [Cb potential]
(ii) Inside the nucleus, the potential is V, = - (e2/2R) (3-r?/R?) [full sphere]
- So the whole potential is described by a piecewise expression:
Pot(r)= if 0Sr<R->V,, ifr>R->V,
- Thus, equations Eq(r) using Pot(r) will have a piecewise form:
Eq = if 0Sr<R ->Eq,(v), ifr>R-> Eq, (V)
- Consider analytic solutions for Schrodinger eq. (or Dirac eq. system)
in piecewise formulation:

Sol(r)=if 0<Sr<R-> SOII (r),ifr>R-> SOIO (r)
- Sol, and Sol, are two complex expressions including very different special functions
- It’s practically impossible to unify them, But
- We verify the solutions on limited domain and on whole set of reals are identical

=> For the domain r > R (outside the nuleus), we can apply the general solution.
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We have to solve radial differential equations, where the radius r
belongs to two separate domains of the real numbers, associated
with inside and outside of the nucleus respectively. And the central
potentials are very different in these domains. This implies the
formal solutions have to be expressed in piecewise form.

On the other hand, the software Maple can solve a differential
equation on a limited domain: here it will be outside the nucleus.
For the Dirac system of radial equations, we observe:

- First, the formal solutions are very different in the two domains,
and they are very difficult to unify.

- Secondly, a solution on the considered limited domain is formally
the same as on the whole domain of real numbers. Here, this latter
corresponds to point-like nucleus case. So, the general solution for
point-like nucleus case, can be used for the domain associated with
the nucleus outside.



Dirac equation for H atom with finite nucleus

« The "outside” solution is given by the general solution
The couples (f,g) of functions solutions of the radial system of
equations for H with point-like nucleus have the general form:

g=lCr“'"e"'/" lFI(S+p,2s+1;2£)—S+—pIFI(s+p+l,2s+1;2£)1
2 a) k+gq a J

f=—LCr""le”'/" lFl(s+p,2s+1;2i)+S+—plff“l(s+p+1,25y+1;21)1
2u a) k+gq a I

But some parameters (a, p, g, ...) include the unknown eigenvalue E

=> when applying the general solution to limited domain r >R,
(solutions outside the nucleus), the eigenvalue E’ associated with the
wavefunctions (f, ,9,) must be different from the one E, of general
solutions for point-like nucleus (spectral problem)=> Pb 2

For doing this, we use a simplified “fixed-point” method

« The “inside” solutions are simply polynomials approximations
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Here, we indicate the general solution of system of Dirac radial
differential equations, usable outside the nucleus. But some
parameters of these functions, are in fact expressions including
the energy E, eigenvalue of the Dirac Hamiltonian. While applying
the general solution to the limited domain outside a finite
nucleus, we cannot use directly the eigenvalue associated with
the point-like nucleus case.

But we can solve this issue by an iterative method, looking for a
fixed-point to stop the iteration.




Dirac equation for H atom with finite nucleus (cont’d)
Connecting inside and outside solutions

« The couples of inside (f,,g,) and outside (f, ,g,) solutions
have to be connected at the “surface” of the nucleus:

- We must have the continuity atr =R,
fi(R)=£(R) and g,(R) = gy(R)
- and the continuity of respectives derivatives
flr=1o"lr and g/|z= 90|z
We found out a new ansatz system with 4 free parameters (Pb 1)

« While doing this, we have to preserve the initial coupling between
the two components of the general solution =>

fo and g, must share a same multiplicative factor (like C, slide #7)
- Notation. fUf,: total function obtained by connecting f, with f,
at R (and similarly for g,Ug,)
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Before the fixed-point process, we consider the question of
connecting the couples of inside and outside solutions at the
nucleus surface, with continuity of the total functions and their
derivatives.

For doing this, we found a mathematical trick allowing us to
“simulate” an ansatz with four free parameters, while restoring
the initial coupling between the two components of the general
solution.

We do not give the different steps that are simple but a bit
tedious and time-consuming to develop.
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Dirac equation for H atom with finite nucleus (cont’d)
Fixed-Point Method for spectral problem (Fb 2)

Start: E,is eigenvalue associated with solution in point-like nucleus
case for given radial qguantum nb n’.

« Step O: - [complex computation]----> E, determines the wf ¥, with
mean orbital radius r,. ¥,=(F, G) where F=f,Uf,and G=g, U g,
-[direct relations] --> Total Energy E; at r,

-Step 1: E; # E, ---> similarly, E; determines a new wf ¥, with

mean orbital radius r; --> E, : energy at r,

-ifE,~ E;, end --> The eigenvalueisE, (# E,)

-if E,#E,, ---> do Step2 similar to Step 1.
Results: from a lot of computations, we can stop at Step 1.
Note: The mean radius varies very slowly as a function of the energy

=>r,~r,, rapid stopping of the iteration (fixed point)
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The iterative process is indicated here, in very simplified form.
For a given value of radial qguantum number n’, the expression of
energy for solution in the point-like nucleus case, gives a value E,,.
- At step 0, we take E, to determine the wavefunction and we
compute the electron probability density; then we deduce the
average orbital radius r, and we directly calculate the total
energy E, of electron at r,. Next we go to step one, where a new
value r, of orbital radius is computed.

- In fact, we can observe in many computations, that the value of
average orbital radius varies very slowly as a function of the total
energy at each step. Finally we can stop the iteration at the step
1, where the fixed point is practically reached.
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EDO from Dirac equation, H atom with finite nucleus

Probability density computed with junction radius R=1F
Comparing energies with )
For radial guantum nb n’=1 (red) and n’=2 (blue)

en’=1,<r>~45F, y~84 16x10"]
KE ~ 42.5 Mev 1.45 x 107

]

]

151
Tot. Energy E ~ 6 kev 151
|

115 %101

BE ~ - 505 kev 8.5 x 101
) 6.5 x 10"
+n’=2,<r>~1.13 F, y~405 § 4]
KE ~ 206 Mev 35x 10"
< 10'4]
Tot. Energy E~1.5kev ~ =*' 1

. x 10

040608 1 121416 1.8 2 22242628 3
BE ~ - 509.5 kev P pinF

| Remark: <r> ~ A_E/ m?
ICCF-22 -

Here we plotted the curves of probability density
corresponding to values 1 and 2 of radial number.

We indicate the values of y and Kinetic Energies, not obtained
for initial solutions. We give also the new Total and Binding
Energies, and compare them with point-like nucleus case (in
orange).

Moreover, one can verify the average radius and the total
energy satisfy the relationship given in Remark (under the
chart). It’s also a property deduced from semi-classical studies.
Finally, we observe the shape of curves is similar to orbital 1s
of “regular” solutions.
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Can EDO states be populated ?
Semi-classical analysis Kev I\

« KE = (y-1)mc? : Kinetic Energy 0
Vg = v V + V/2mc? . Eff. Pot.

For electron confined at radius p
y~[1+(A/p )1V o

« loglog-plot of KE (red), |V 4l (blue) m,.;

For2.8 F<p<27 pm KE>|Vl

EDO zone Atomic zone

1. x 104
1. < 1073

1
1. <1073

1. x l()']S

1. x 10724
. “Heisenberg barrier”: T T T 0 L o % 102

: : . P pin pm
For confinement with p decreasing from 26.6 pmto 2.8 F,

two antagonist interactions, with yincreasing:
(i) Attractive effective relativistic potential V,4increases

(ii) KE increases, because of the Heisenberg Relation, and prevents
confinement. ~ Peak of KE-|V x|:~17 Mevat p~56F
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Here is a first attempt to evaluate a possible population of EDO
states by tunneling from ground state, in the form of superposition
of quantum states. We consider two antagonistic interactions, one
due to the attractive relativistic effective potential, and the other to
the Heisenberg relation, increasing the kinetic energy to prevent
the containment of electron: we call it “Heisenberg barrier”. This
plot for semi-classical analysis was in ICCF21 presentation.

Note these are not static fields, but dynamic effects associated with
an increasing confinement of the electron.

We could say the “Heisenberg barrier” is a virtual dynamic barrier.

13



Can EDO states be populated ? (contd)
Possible tunneling from atomic zone to EDO zone
-WKB method to compute the amplitude weakening factor
AE = KE-|V,z], K(p) = [2m AE)]V2 a0 |
K has momentum dimension :
Semilogplot of K for 2.8 F< p <27 pm 15

pl
Q- f K(p)dp wherep;=2.8F, p;=27 pm
po

wexp = Q/h isadimensionless number

0.54

Weakening factor w = eW&P ~ 0.003 => |
Presence probability: P=w?~ 9x10° o!

0.01  0.050.1 0.5 1 510
o pinpm

The general wavefunction could be a linear combination of EDO
state and atomic ground state, with amplitude coefficient A, ~ 0.003

Note. WKB : Wenzel-Kramers-Brillouin
ICCF-22

To compute a possible tunneling, we use the WKB approximation
in dimension one, similarly to the calculation of Gamow
astrophysical factor. The curve of K could illustrate the
“Heisenberg barrier”; the indicate values on vertical axis are
muliplied by 10%L. The integral of K corresponds to the blue area
below the curve. Note that tunneling effect is extended here to a
dynamic barrier, which is unusual.

We obtain a weakened amplitude of wavefunction in EDO zone,
and an estimate of probability of EDO state: the general
wavefunction of basic state for atom H could be a linear
combination of EDO and ground state.

Of course, it would make more sense to use WKB approximation
in dim three, but it’s much more difficult to do, and for the time,
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Conclusion, Prospect

- Semi-classical simulations allowed us to solve questions about
EDO as solutions of Dirac equation with finite nucleus
(i) HUR implies strong containment energy and yields the relativistic y
(ii) So we know EDO solutions are highly relativistic, which is an
important result for LENR. Magnitude order of KE ~ 100 MeV
(iii) We know the relativistic effective V. can confine EDO’s
(iv) Now we can evaluate y, TE, KE, BE at the mean radius <r>

- While going back to Dirac equations, for finite nucleus

(i) We can recalculate the radial wavefunctions of Dirac EDO solutions
and determine the correct energy level E associated with the radial
guantum number n’.

(i) Moreover, we obtain wavefunctions with smooth continuous
shapes, having continuous derivatives everywhere.
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We emplasize the high energy of the EDOs, very useful for
nuclear actions
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Conclusion, Prospect (cont’d)

« Nevertheless, we can note the following questions :
- All semi-classical computations give only one EDO solution.

- Conversely, Dirac eq. seems to provide a EDO solution for each
n’ >0

- Moreover, the semi-classical solutions seem closer to the Dirac
solution associated with n’=2, than with n’=1

« LENR features, such as energy transfer with neither gamma
radiations nor energetic particles, requires enhanced internal
conversion. So, we study possible connections between highly
energetic deep electrons and nuclei, hadrons, quarks

- An important problem to solve: how to populate EDO’s ?
A possible lead: look for physical paramaters in condensed
matter, allowing to increase tunneling from atomic to EDO state
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We indicate some question and ideas for future work
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