


Here	we	list	the	proper-es	of	EDOs	that	make	them	a	good	
model	for	Cold	Fusion.	These	statements	are	demonstrated	
in	previous	works.	
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Now,	we	give	some	simple	arguments	to	support	them.		
It	is	important	to	note	that	a	femto-atom	can	induce	a	
three-body	interac-on	with	a	laFce	nucleus,	unlike	neutron	
ac-va-on,	and	the	consequences	for	transmuta-ons.	
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From	 Maly	 &	 Va’vra	 works	 on	 “anomalous”	 solu-ons	 of	 Dirac	
equa-on,	 we	 computed	 EDO	 wavefunc-ons	 with	 an	 improved	
ansatz,	to	connect	the	solu-ons	inside	and	outside	the	nucleus.	But	
it	 did	 not	 allow	 us	 to	 have	 deriva-ves	 con-nuous	 at	 the	 junc-on		
radius,	 and	 the	 energy	 used	 to	 compute	 the	wavefun-on	was	 the	
energy	of	 solu-on	 for	point-like	 nucleus	 case.	Moreover,	we	 could	
not	evaluate	the	rela-vis-c	coefficient	γ  and	energy	parameters,	as	
the	kine-c	energy,	required	for	a	beTer	understanding	of	EDOs	and	
possible	interac-on	with	nuclear	fields.		
These	Imperfec-ons	are	listed	in	the	form	of	three	problems.	
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That	is	why,	then,	we	studied	the	possible	existence	of	EDO’s	in	
a	 semi-classical	way,	 to	beTer	know	their	energy	parameters.	
First,	we	directly	address	the	Heisenberg	Rela-on	as	a	star-ng	
point,	for	an	electron	confined	in	a	sphere	of	radius	r.	From	the	
momentum	p,	we	can	compute	the	rela-vis-c	coefficient	γ,	by	
an	 expression	 involving	 the	 reduced	 Compton	wavelength.	 At	
ICCF21,	 we	 gave	 examples	 showing	 the	 expression	 of	 γ	 gives	
realis-c	values.	
•	 We	 can	 see	 electrons	 confined	 in	 deep	 orbits	 are	 highly	
rela4vis4c.	
•	But	a	strong	rela-vis-c	correc-on	to	 the	Coulomb	poten-al	
can	confine	such	energe4c	electrons		
	
	



In	order	to	find	EDOs,	we	look	for	a	Local	Minimum	of	Energy	(LME)	
of	 electron	 in	 a	 central	 poten-al,	 obtained	 by	 a	 balanced	
combina-on	of	EM	poten-als	near	the	nucleus.	
Recently,	we	took	radia-ve	correc-ons	into	account,	especially	the	
Lamb	 shi_,	 whose	 effects	 become	 very	 strong	 near	 the	 nucleus,	
because	of	the	strength	of	the	electric	field.	We	expressed	LS	as	a	
repulsive	 quasi-poten-al,	 by	 means	 of	 extrapola-ons	 from	 data	
tables	on	QED	effects	on	orbital	parameters.	
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Semi-classical	 studies	 provided	 a	 lot	 of	 useful	 informa-on	 for	
correc-ng	 the	 imperfec-ons	of	 the	 ini-al	Dirac	 EDO’s	 for	finite	
nucleus	case	(at	least	for	two	of	the	“three	problems”).	
	
-	 Not	 only	we	 can	 evaluate	 the	 gamma	 coefficient,	 but	 also	 all	
the	energy	parameters.	Moreover	we	found	that	the	rela-vis-c	
virial	 theorem	was	 respected	 by	 ultra-rela4vist	 EDOs,	 in	 a	 very	
simple	form	and	for	various	combina-ons	of	poten-als.	
	
-	This	allows	us	to	deduce	all	the	energy	parameters	of	the	DIrac	
EDOs,	 computed	 at	 the	mean	 radius	 of	 the	 probability	 density	
distribu-on,	and	to	check	their	coherence	
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Now	 we	 show	 how	 to	 apply	 this	 new	 informa-on	 to	
Dirac	EDOs.		
But	 first,	 we	 give	 a	 brief	 theore-cal	 recall	 about	
resolu-on	of	a	quantum	differen-al	equa-on.	
In	 fact,	 this	 problem	 includes	 two	 concomitant	
mathema-cal	issues:	
		-	To	solve	a	differen-al	equa-on,	and	
	 -	 To	 solve	 a	 spectral	 problem:	 for	 finding	 eigenvalues	
associated	with	solu-ons	of	the	differen-al	equa-on	
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We	have	 to	 solve	 radial	 differen-al	 equa-ons,	where	 the	 radius	 r	
belongs	 to	 two	 separate	 domains	 of	 the	 real	 numbers,	 associated	
with	inside	and	outside	of	the	nucleus	respec-vely.	And	the	central	
poten-als	 are	 very	 different	 in	 these	 domains.	 This	 implies	 the	
formal	solu-ons	have	to	be	expressed	in	piecewise	form.	
On	 the	 other	 hand,	 the	 so_ware	 Maple	 can	 solve	 a	 differen-al	
equa-on	on	a	limited	domain:		here	it	will	be	outside	the	nucleus.	
For	the	Dirac	system	of	radial	equa-ons,	we	observe:	
-	 First,	 the	 formal	 solu-ons	are	very	different	 in	 the	 two	domains,	
and	they	are	very	difficult	to	unify.		
-	Secondly,	a	solu-on	on	the	considered	limited	domain	is	formally	
the	same	as	on	the	whole	domain	of	real	numbers.	Here,	this	laTer	
corresponds	to	point-like	nucleus	case.	So,	the	general	solu-on	for	
point-like	nucleus	case,	can	be	used	for	the	domain	associated	with	
the	nucleus	outside.	
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Here,	we	 indicate	 the	 general	 solu-on	of	 system	of	Dirac	 radial	
differen-al	 equa-ons,	 usable	 outside	 the	 nucleus.	 But	 some	
parameters	 of	 these	 func-ons,	 are	 in	 fact	 expressions	 including	
the	energy	E,	eigenvalue	of	the	Dirac	Hamiltonian.	While	applying	
the	 general	 solu-on	 to	 the	 limited	 domain	 outside	 a	 finite	
nucleus,	 we	 cannot	 use	 directly	 the	 eigenvalue	 associated	 with	
the		point-like	nucleus	case.		
But	we	can	solve	this	 issue	by	an	itera-ve	method,	looking	for	a	
fixed-point	to	stop	the	itera-on.	
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Before	 the	 fixed-point	 process,	 we	 consider	 the	 ques-on	 of	
connec-ng	 the	 couples	 of	 inside	 and	 outside	 solu-ons	 at	 the	
nucleus	surface,	with	con-nuity	of	the	total	func-ons	and	their	
deriva-ves.		
For	 doing	 this,	 we	 found	 a	 mathema-cal	 trick	 allowing	 us	 to	
“simulate”	an	ansatz	with	four	free	parameters,	while	restoring	
the	ini-al	coupling	between	the	two	components	of	the	general	
solu-on.	
We	 do	 not	 give	 the	 different	 steps	 that	 are	 simple	 but	 a	 bit	
tedious	and	-me-consuming	to	develop.	
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The	itera-ve	process	is	indicated	here,	in	very	simplified	form.	
For	a	given	value	of	radial	quantum	number	n’,	the	expression	of	
energy	for	solu-on	in	the	point-like	nucleus	case,	gives	a	value	E0.		
-	 At	 step	 0,	we	 take	E0	 to	 determine	 the	wavefunc-on	 and	we	
compute	 the	 electron	 probability	 density;	 then	 we	 deduce	 the	
average	 orbital	 radius	 r0	 and	 we	 directly	 calculate	 the	 total	
energy	E1	of	electron	at	r0.	Next	we	go	to	step	one,	where	a	new	
value	r1		of	orbital	radius	is	computed.	
-	In	fact,	we	can	observe	in	many	computa-ons,	that	the	value	of	
average	orbital	radius	varies	very	slowly	as	a	func-on	of	the	total	
energy	at	each	step.	Finally	we	can	stop	the	itera4on	at	the	step	
1,	where	the	fixed	point	is	prac4cally	reached.	
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Here	 we	 ploTed	 the	 curves	 of	 probability	 density	
corresponding	to	values	1	and	2	of	radial	number.	
We	indicate	the	values	of	γ	and	Kine-c	Energies,	not	obtained	
for	 ini-al	 solu-ons.	 We	 give	 also	 the	 new	 Total	 and	 Binding	
Energies,	 and	 compare	 them	 with	 point-like	 nucleus	 case	 (in	
orange).	
Moreover,	 one	 can	 verify	 the	 average	 radius	 and	 the	 total	
energy	 sa-sfy	 the	 rela-onship	 given	 in	 Remark	 (under	 the	
chart).	It’s	also	a	property	deduced	from	semi-classical	studies.		
Finally,	we	observe	the	shape	of	curves	is	similar	to	 	orbital	1s	
of	“regular”	solu-ons.	
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Here	 is	 a	 first	 aTempt	 to	 evaluate	 a	 possible	 popula-on	 of	 EDO	
states	by	tunneling	from	ground	state,	in	the	form	of	superposi-on	
of	quantum	states.	We	consider	two	antagonis-c	interac-ons,	one	
due	to	the	aTrac-ve	rela-vis-c	effec-ve	poten-al,	and	the	other	to	
the	 Heisenberg	 rela-on,	 increasing	 the	 kine-c	 energy	 to	 prevent	
the	 containment	 of	 electron:	we	 call	 it	 “Heisenberg	 barrier”.	 This	
plot	for	semi-classical	analysis	was	in	ICCF21	presenta-on.		
Note	these	are	not	sta-c	fields,	but	dynamic	effects	associated	with	
an	increasing	confinement	of	the	electron.	
We	could	say	the	“Heisenberg	barrier”	is	a	virtual	dynamic	barrier.	
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To	compute	a	possible	tunneling,	we	use	the	WKB	approxima-on	
in	 dimension	 one,	 similarly	 to	 the	 calcula-on	 of	 Gamow	
astrophysical	 factor.	 The	 curve	 of	 K	 could	 illustrate	 the	
“Heisenberg	 barrier”;	 the	 indicate	 values	 on	 ver-cal	 axis	 are	
muliplied	by	1021.	The	 integral	of	K	 corresponds	to	 the	blue	area	
below	the	curve.	Note	that	tunneling	effect	is	extended	here	to	a	
dynamic	barrier,	which	is	unusual.		
We	obtain	 a	weakened	 amplitude	of	wavefunc-on	 in	 EDO	 zone,	
and	 an	 es-mate	 of	 probability	 of	 EDO	 state:	 the	 general	
wavefunc-on	 of	 basic	 state	 for	 atom	 H	 could	 be	 a	 linear	
combina-on	of	EDO	and	ground	state.		
Of	course,	 it	would	make	more	sense	to	use	WKB	approxima-on	
in	dim	three,	but	it’s	much	more	difficult	to	do,	and	for	the	-me,		
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We	emplasize	the	high	energy	of	the	EDOs,	very	useful	for	
nuclear	ac-ons	
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We	indicate	some	ques-on	and	ideas	for	future	work	
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