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1. - In  the present note we introduce a model for dissipative plasmas constructed 
in terms of an elementary generalization of well-known basic equations for plasma 
physics to dissipative conditions. 

For this purpose, let us first recall the role of Hamiltonian mechanics for deriving 
the LiouviUe equation of a conservative system. 

We consider an n-component system in phase space represented by the Hamil- 
tonian H(q~,p~), the density Q(q~,Pk, t) and the velocity V~(dq~/dt,  dpk/dt), where 
k = 1, 2, ..., n. On account of the property 

where summation over repeated indices is assumed, and by defining the Poisson bracket 
for any pair of functions A(q~, p~) and B(q~, Pk) according to 

~A 8B ~A ~B 
(2) [A, B]~ = ~q~ ~Pk ~P~ ~q~ 

the Liouville equation for our system is given by 

(3) ~Q ~ -7 + v .V~  = ~ / +  [~.B]~ = o.  

From eqs. (1) and (2) we clearly see the basic role of Hamiltonian mechanics for 
deriving eq. (3). This implies as a consequence tha t  the Liouville equation (3) possesses 
well-defined limits of validity, since Hamiltonian mechanics is applicable in its general 
formulation to conservative (or holonomie) systems and is extendible only to a few 

( ' )  R e s e a r c h  s u p p o r t e d  b y  t h e  U.  S. A i r  F o r c e  u n d e r  G r a n t  No.  A F - A F O S R - 3 8 5 - 6 7 .  
(0  I n  c o n n e c t i o n  w i t h  t h e  l i m i t s  of v a l i d i t y  of t t a m i l t o n i a n  m e c h a n i c s  see,  fo r  i n s t a n c e ,  H .  GOLD 

STEIN: Classical Mechanics ( R e a d i n g ,  Mass . ,  1965). 
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specific dissipat ive (or nonholonomic)  systems (1). For instance, when there  is a dissi- 
pa t ive  condit ion which cannot  be expressed in terms of a ~eneralized potent ia l ,  Hamil-  
tonian mechanics  is not  longer valid, and the problem of the same basic procedure  for 
der iv ing an explici t  form of the Liouvi l le  equat ion  has not  been fully clarified ye t  (2). 

2. - In a recent  paper  (3). an algebraic cr i ter ion for selecling a general izat ion of 
Hamil tonian  mechanics  for diss ipat ive system~ has been introduced.  This cr i ter ion can 
be essentially suminarized as follows. The Poisson bracket  (2) can be considered, f rom 
an algebraic v iewpoint ,  as an abstract  product  

(4) A . B - -  [A,B]~ ,  

which defines a Lie algebra L. If one considers a dissipat ive f ramework,  then a generali-  
zation of Hami l ton ian  mechanics  general ly implies an en largment  of the basic product  
a.eeording to an ex tended  bracket  

(5) A ~: B -- (A. B) 

which in principle defines no longer a Lie algebra. 
The above cr i ter ion for selecting enlartzed procedures restr icts  the algebras defined 

by (5) to the so-called Lie-admissible  alt~ebras. These arc nonassoeiat ive  algebras U 
with abstract  product  A o B such tha t  the  a t tached  algebras U- ,  which are the same 
vec tor  spaces as U, but  with the new product  

(6) [ A . B ] c - : A  B B A ,  

are Lie algebras. 
More explicit ly,  the above algebraic cri terion restricts the possibile general ized 

formulat ions  by means of the condi t ion on the  eltlarged bracket  

(7) (.1. B) (B, A ) c fA. B1,.  

where c is a scalar (~  o and -~ oz) with respect  to q/~ and Pk. 
Some features of this select ivi ty  cr i ter ion are:  

1) The I lami l ton ian  procedure itself satisfies the requi rements  as basic formula-  
tion since 

(8) [A.B]~ [B, A b = 2 [ : I . B ] ,  

2) The general ized procedure reduces to the t t ami l ton ian  mechanics  when the  
system becomes conservat ive ,  since a Lie-admissible  algebra can cont rac t  itself to a 
Lie algebra (~). 

(~) For  ~ l~rge bibl}ography ott the  generMiz~tions of the  lI~mlilton ~ntl Lugrange  formula t ions  
since 187:{ see, ~V. I)..'~][AO3[ILLAN: I)!li~amirs of rigid bodirs (New York, 19:/6). 

(a) I{. 5[, ,'~XNTILLI: l ) lssipatiri t ! /  a~(t Lie-admissible algebras, Cor¢d Gables p rep r in t  no, CTS/M/6712. 
To a p p e a r  in Meccanica (April  1969), 

(a) 1{. ~[. SANTILLI: Suppl .  Nuoro  Cimcnlo, 6, 1225 (1968). 
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3) A well-defined content of a system in a conservative condition can be preserved 
for its extension to dissipative conditions since the original Lie algebra invarianee b 
is (~ imbedded ~> (~) in the enlarged algebra U. 

Among the generalizations of the Hamiltonian mechanics for dissipative systems 
satisfying the above restriction we consider the so-called pseudo-Hamiltonian me- 
chanics (6) which, in terms of two-parameter formulation can be introduced by means 
of the equations (~) 

~H 
= 

(9) ~ H  k = 1, 2 . . . . .  ~ ,  

where 2 and /~ are free parameters ( ¢  0 and ¢ co) independent of qk and p~, and ]~ 
are the components of the external forces. 

A physical interpretation of the parameters 2 and # can be introduced as follows. 
Consider a (discrete) conservative system described by the Lagrangian and Hamfltonian 

L = T(~) - -  V(q) , 0.5 

(10) H = T (p )  q- V(q) , P = ~q " 

where, as usual, T and V represent respectively the kinematic and potential  energies. 
Suppose that  the system for a given period of t ime becomes dissipative under the action 
of an external force. Then the kinetic and potential  energies generally vary and we 
can write as true Lagrangian and Hamiltonian for the dissipative conditions 

(11) 
LD = Tv(q) - -  V D (q) + external t e rms ,  

H ~  TD(p) + V ~  (q) + external t e rms .  

The above quantities can always be writ ten in terms of the original kinetic and 
potential energies as 

{ L ~  = ~T(~)  + t ,V(q)  + . . . .  

H v  = A T ( p ) -  I~V(q) ÷ . . . .  
(12) 

where the quantities 

T~ V~ 
(13)  ~ = 7 '  ~ - -  V 

represent the variations of the kinetic and potential energies with respect to the cor- 
responding values for conservative conditions and can be considered, generally, as 
functions of q, ~, and t, e.g. ~ = ~(~, t) and /~ = ~(q, t). 

Suppose now, as a (~ perturbative approach ~), that  either the variations (13) of T 
and of V are small enough to be approximated by constants, or that  the true varia- 

(s) R. 1~. SANTXLLI: Nuovo Cimenfo, 51 A, 570 (1967). 
(,) R, J. DUFFII~: .4rch. Rational Mech. 21nal°, 9, 309 (1962). 
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t ions (13) can be approx ima ted  by s(n ~e sui table chosen averages  in phase space. Then,  
because of the independence (~) of ). and p from q. i/, and t. the  pseudo-Lagrange  equa- 
tions are g iven by 

d ~L9 ~'L~ d ~" L ~ L 
(14) . . . .  ). ' / + - - - -  ]~. k 1, 2, 1+ 

dt ~'~ ~q~ - -  -=-  ~ . . . . . .  dt ~'q~. ~'q~:- 

and the pseudo-Hami l ton ian  equat ions  (9) follow as 

(15) 

~H D ~It ( ~L~ 2 

q~ ~1'~ 6pk - ~q~ ~q~] 

~HD 8H 
i '~= = = L = ~ ' - - + / k ,  lc= 1,2 . . . . .  /+. 

( p~ ~q~. 

In this fo rmula t ion  the to ta l  t ime d(,rivative of any funct ion F(q~, p~, t) is given by 

d F  dt ~'F ~'t ( ~F ~'tt ( %  ?~(1~) ( t 6 )  ~ z = -  - -  + ,,,+ (fo~ ,',+ = o ) .  
¢lh. 

By recall ing tha t  we are in a dissipat ive condit ion,  the to ta l  energy is not  conserved 
and its var ia t ion  in t ime is represented by 

di l l )  ~ H  ~'H 
(17) dt -- (2~l+)~,q~ ~P~:: 0 .  for 2 # - - - p .  

F i n a l l y  from (16), the general ized bracket  is given hy 

(18) (A, B) = ). l, 

where A and B are any funct ions of q~ and of pa.. 
~Ve clearly see tha t  pseudo- I tami l ton ian  mechanics  satisfies the above select ivi ty  

cr i ter ion since the algebra [ U()../ ,)j- character ized by the product  (18) is a Lie  algebra 
on account  of the t>roperty (s) 

(19) (A ,  B )  - -  (R,  A )  - -  ( ) o - - / d  [A ,  BI~ • 

(7) I n  t h i s  f o r m u l a t i o n  t h e  + i s o t r o p y  + of  t h e  d i s s i p a t i v i t y  i n  p h a s e  s p a c e  i s  e x p r e s s e d  b y  t h e  i n d e -  
p e n d e n c e  of  t h e  ,~ a n d  ~ p i ~ r a m e l e r s  on  t l le  d e g r e e s  of  f r e e d o m .  A f u r t h e r  e x t e n s i o n  of  t h e  f o r m u l a t i o n  
fo r  a n i s o t r o p i c  c o n d i t i o n s  can  be  i n v e s t i g a t e d  b y  a s s o c i a t i n g  d i f f e r e n t  p ~ r ~ m e t e r s  lk a n d  pk ( w i t h  k =  
- 1 , 2  . . . . .  n) w i t h  e a c h  p ~ i r  of c a n o n i c a l  v a r i a b l e s  q~ a n d  p~. 

C) L e t  u s  a l so  n o t e  t h a t  f r o m  a n  a l g e b r a i c  v i e x x p o i n t  o n l y  one  p a r a m e t e r  is  e s s e n t i a l ,  s i n c e  t h e  
a l g e b r a  U(A, [~) c h a r a c t e r i z e d  b y  t h e  p r o d u c t  ( IS)  i s  i s o m o r p h i c  to  t h e  so -ca l l ed  i s o t r o p i c  a l g e b r a  w i t h  
p r o d u c t  

C 4 * B )  : - - * - - + - - -  * - -  

~q~ Cal)~ t @qk ~pk ' 

w h e r e  

6~I 6 B  6 A  6 B  e B  ~A  OB ~A 
- - , - - _  j - - - -  _ _ , - -  ; . - - -  

a n d  e -  t /• .  Ti tus ,  f r o m  art a l g e b r a i c  v i e w p o i n t ,  t h e  t w o - p a r a m e t e r  f o r n m l a t i o n  (9) i s  e q u i v a l e n t  to  
t h e  D u f f i n  f o r m u l a t i o n  (D.  
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Furthermore, the procedure itself reduces to Hamiltonian mechanics when the para- 
meters Z and ]~ obtain the values -i-1 and - -1 ,  respectively. 

An interesting aspect of this generalized procedure is that  the true Hamiltonian H 
for a conservative region is formally preserved in a dissipative region, where it  assumes 
the name of pseudo-Hamiltonian, since the dissipativity of the system is represented 
by the parameters involved in the formulation. 

Pseudo-Hamiltonian mechanics has been introduced for representing some dissipative 
electrical network and for describing small motions of dissipative systems about a posi- 
tion of static equilibrium (6). I t  has been also used for introducing a model of dissipative 
field theory by performing an extension to continuous system (3), for whose purpose 
the above selectivity criterion was derived. 

In  the following we shall consider the above (~ perturbative approach,  where 
and ~ are constants. 

3. - In  connection with plasma physics, pseudo-Hamfltoniau mechanics could be 
of some interest either for investigating plasma in dissipative conditions because of 
exchange of energy with an external system (e.g. an electric or a magnetic field), or for 
investigating partial  regions of globally conservative plasmas with internal  exchange 
of energy (or of momentum or of angular momentum), whenever the dissipativity does 
not allow the use of Hamiltonian mechanics (e.g. when the dissipative forces are not 
expressible in terms of generalized potentials (1).) 

Let us consider a dissipative plasma according to one of the above conditions. The 
generalization of the Liouville equation in terms of pseudo-Hamiltonian mechanics is 
given by 

~ H  (20) --0q+ (q,H) + (Z+ ~)e - - =  C, 
8t 0q~ 8p~ 

where (Q, H) is now the bracket (18), the third term in the 1.h.s. comes from the con- 
tr ibution of V-V  which is now no longer zero as in (1), and C is a collision term. 

Let the pseudo-Hamiltonian H be of linear velocity force type, i.e. 

~2 H" 
C2I) dqk 8p~ K ,  

with K a constant. Then, by (20) and by computing the total  t ime derivative of Q 
we get (for C =  0) 

(22) Q = Qo exp [-- At],  

where A = K(A q-#). Thus, under the above conditions, the particle density in phase 
space is no longer constant, but  it decreases or increases in time corresponding to 
K(2 + ~) > 0 or K(A -F p) < 0, respectively. For A : --/~ ---- 1, i.e. w h e n  the pseudo- 
Hamiltonian mechanics reduces to the Hamiltonian mechanics, we recover the constant 
behavior in t ime of ~ for conservative conditions. 

Let us consider a collision term of the form 

(23) C ~--Qo, 
tc 
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where  0 0 is the  equ i l ib r ium d i s t r i b u t i o n  a n d  t~ is the  r e l a x a t i o n  t ime.  T h e n  the  gener-  
al ized F o k k e r - P l a n c k  e q u a t i o n  in t e r m s  of p s c u d o - t t a m i l t o n i a n  mechan i c s  is g iven  by  

~'o X o  o o 
(24) -~- + V . V q o  + F . V v ~ -  

c~t t~ 

where  

(25) V = q ,  F = p ,  y = 1 + t~K()~ + / , ) .  

If  the  above  e q u a t i o n  refers  to a~! e lec t ron  gas u n d e r  the  ac t ion  of an  e lectr ic  field E ,  
t hen  for smal l  d e v i a t i o n s  f rom t he  equ i l ib r ium conf igura t ion  we can wr i te  

{26) 
1 tr 

e -X qo ~ .  (V'V~Oo+ eE'V,  Oo), 

so t h a t  to first order ,  by  a s suming  o o to be i n d e p e n d e n t  of qk, we h a v e  

(27) 
1 t~ 

o = ~ oo- - -  ~ eE.V~Oo.  

U~lder the  above  a s sumpt ions ,  the  e lectr ic  c u r r e n t  and  the  c o n d u c t i v i t y  t enso r  
def ined for c o n s e r v a t i v e  cond i t ions  by  

(28) J ~ - -  e'zt~ E t ; V  ~ o  
m d eI  

and  

(29) e tc f v ' COo d, 

respect ive ly ,  will become  in our  d i ss ipa t ive  f r a m e w o r k  

e2 tc ~o  
(30) J~. . . . .  E k , 

~2b X 2 

(31) T j j - -  eZra'm° 6ij , 
m X  2 

where  we h a v e  a s sumed  a Maxwel l  d i s t r i bu t i on .  
This  resul t  i l lus t ra tes ,  in t he  case of our  example ,  how the  p a r a m e t e r s  2 and  /, of 

the  fo rmal i sm inf luence the  phys ica l  q u a n t i t i e s  of the  sys tem.  More expl ic i t ly ,  these  
q u a n t i t i e s  r ep resen t  a decrease  (increase) of t he  electr ic  c u r r e n t  and  of the  c o n d u c t i v i t y  
t ensor  w i th  respect  to the  co r r e spond ing  qu,~ntit ies of a conse rva t i ve  cond i t ion  whel l  
Kt,.(). + p) > 1 ( <  1). Thus  the  p a r a m e t e r s  of the  fo rmu la t i on  can  be  used to d e t e r m i n e  
t he  bes t  fit for  phys ica l ly  e s t ab l i shed  values  of J and  of Tii.  Of course,  w h e n  t he  pa ra -  
me te r s  are  c o n t r a c t e d  to the  values  2 = - - i t  = 1, t hen  all t h e  co r re spond ing  expres-  
sions for conse rva t i ve  condi t ions  are  recovered.  
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Let us also note that  our ~ perturbative approach ,~ seems to be compatible with the 
considered example of an elementary dissipative plasma, since also for the conservative 
formulation the solutions corresponding to (24) are calculated for small deviations from 
the equilibrium configuration. 

In  a similar way, other equations for a nonrelativistic or a relativistic plasma can 
be extended to a dissipative condition either according to the above ~ perturbative 
approach ~> or by means of more general procedures. 

In  any case, when a dissipative condition appears in a region of a plasma and the 
true Lagrangian ~o and Hamiltonian H~ are conceived in such a way as to represent 
the variations of the kinetic and potential  energies according to (12), then the LiouviUe 
equation of the system will be of the form given by expression (20) when 2 and/~ are 
independent of q, and p , .  

Conceivably, further investigations of the above model may be interesting. For 
instance, one could study the possible connections between the instabilities of a given 
region of a plasma and the exchange of energy, momentum or angular momentum 
between the considered region and the rest of the system. 


