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1. — In the present note we introduce a model for dissipative plasmas constructed
in terms of an elementary generalization of well-known basgic equations for plasma
physics to dissipative conditions.

For this purpose, let us first recall the role of Hamiltonian mechanics for deriving
the Liouville equation of a conservative system.

We consider an n-component system in phase space represented by the Hamil-
tonian H(qy, pi), the density o(qy, Py, ) and the velocity ¥V = (dg,/d¢, dp,/dt), where
k=1,2,..,n On account of the property

o d 9 d o0:H o02H
(1 Vye 2 0% ©° @ o2 7
Oq,, di Op, Ot 0¢, Opr 0Pk 04y

’

where summation over repeated indices is assumed, and by defining the Poisson bracket
for any pair of functions A(gs, p,) and B(gy, p;) according to
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the Liouville equation for our system is given by

do T
3 -_— V _ - 'H = 0 .
(3) Fries Ve P + [e-H],

From egs. (1) and (2) we clearly see the basic role of Hamiltonian mechanics for
deriving eq. (3). This implies as a consequence that the Liouville equation (3) possesses
well-defined limits of validity, since Hamiltonian mechanics is applicable in its general
formulation to conservative (or holonomic) systems and is extendible only to a few

(*) Research supported by the U. 8. Air Force under Grant No. AF-AFOSR-385-67.
(*) In connection with the limits of validity of Hamiltonian mechanics see, for instance, H. GoLp
STEIN: Classical Mechanics (Reading, Mass., 1965).
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specific dissipative (or nonholonomic) systems (). For instance. when there is a dissi-
pative condition which cannot be expressed in terms of a generalized potential, Hamil-
tonian mechanies is not longer valid. and the problem of the same basic procedure for
deriving an explicit form of the Liouville equation has not been fully clarified yet (%).

2. - In a recent paper (). an algebraic eriterion for selecting a generalization of
Hamiltonian mechanies for dissipative systems has been introduced. This eriterion can
be essentially summarized as follows. The Poisson bracket (2) can be cousidered, from
an algebraic viewpoint. as an abstract product

(4) A-B=1{4.8B],,

which defines a Lie algebra L. If one considers a dissipative framework, then a generali-
zation of Hamiltonian mechanies generally implies an enlargment of the basic product
according to an extended bracket

(5) A-B=(4.B)

which in principle defines no longer a Lie algebra.

The above criterion for selecting enlarged procedures restricts the algebras defined
by (3) to the so-called Lie-admissible algebras. These are nonassociative algebras U
with abstract product .1 ¢ B such that the attached algebras U-, which are the same
vector spaces as U, but with the new product

(6) (4.Bly=A B—B..,

are Lie algebras.
More explicitly. the above algebraic criterion restricts the possibile generalized
formulations by means of the condition on the enlarged bracket

(7) (4. B)y— (B, 4) = ¢[d. B}, .

where ¢ is a scalar (= 0 and 3 oo) with respect to ¢, and p,.
Some features of this selectivity criterion are:

1) The Hamiltonian procedure itsclf satisfies the requirements as basic formula-
tion since

(8) [4.B],~ [B. A}, = 2{4. Bl, .

2) The generalized procedure reduces to the Hamiltonian mechanies when the
system becomes conservative, since a Lie-admissible algebra can contract itself to a
Lie algebra ().

(*) For a large bibliography on the generalizations of the Hamilton and Lagrange formulations
sinee 1373 sce, W, D. MacMiLLaN: Dynamics of rigid bodics (New York, 1936).

(*) R. M. SANTILLI: Dissipativity and Lie-admissible algebras, Coral Gables preprint no., CTS/M/67/2.
To appear in Meccanica (April 1969),

(%) R. M. SaNTILLI: Suppl. Nuovo Cimento, 6, 1225 (1968).
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3) A well-defined content of a system in a conservative condition ean be preserved
for its extension to dissipative conditions since the original Lie algebra invariance L
is «imbedded » (°) in the enlarged algebra U.

Among the generalizations of the Hamiltonian mechanics for dissipative systems
satisfying the above restriction we consider the so-called pseudo-Hamiltonian me-
chanies (%) which, in terms of two-parameter formulation can be introduced by means
of the equations (3)

. _oH
&= "o
(9) k=12 .., 4,

. 8H+f
pk_:uaqk k>

where A and u are free parameters (% 0 and s oo) independent of ¢, and p;, and f,
are the components of the external forces.

A physical interpretation of the parameters 2 and u can be introduced as follows.
Consider a (discrete) conservative system described by the Lagrangian and Hamiltonian

(10 {L = T(q) — V(q), oL
H=T(p)+ Vg, g

where, as usual, 7' and V represent respectively the kinematic and potential energies.
Suppose that the system for a given period of time becomes dissipative under the action
of an external force. Then the kinetic and potential energies generally vary and we
can write as true Lagrangian and Hamiltonian for the dissipative conditions

{LD = Ty(g) — Vp(q) + external terms,
(11)

Hy= Tpy(p) + V5 (q) + external terms .

The above quantities can always be written in terms of the original kinetic and
potential energies as

{LD = AT@) + uV(@) + -
(12)

Hy= AT(p)—nViQ + -\
where the quantities

T 14
13 A=2 =__2
(13) [ v

represent the variations of the kinetic and potential energies with respect to the cor-
responding values for conservative conditions and can be considered, generally, as
functions of ¢, g, and ¢, e.g. A= (g, ?) and = u(g, ).

Suppose now, as a « perturbative approach », that either the variations (13) of T
and of V are small enough to be approximated by constants, or that the true varia-

(*) R. M, SANTILLI: Nuove Cimenio, 51 A, 570 (1967).
(®) R, J, DUFFIN: drch, Rational Mech, Anal., 9, 309 (1962).
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tions (13) can be approximated by some suitable chosen averages in phase space. Then,

becanse of the independence (7) of 2 and ;o from q. ¢, and ¢. the pseudo-Lagrange equa-
tions are given by

1 ¢L ¢k 1 L ¢l
(14) Rt D:;( NS ,( = f. EF=1,2,...,pu,

dt gy gy dt Qe Q7

and the pseudo-Hamiltonian equations (9) follow as

. cH, I oL, aL)
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(13)
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In this formulation the total time derivative of any function F(g,, py, t) is given by

(16) == -

AF F SF eH °H
Bl ¢l ¢ (for f,=0).
di ¢t

T+
Sy oy 24y

By recalling that we are in a dissipative condition. the total energy is not conserved
and its variation in time is represented by
dH, . ¢ oH

——=(A+ p)— —=0 for A5 —pu.
d¢ G TPr

a7

Finally, from (16), the generalized bracket is given by

éd @B ¢ eB
(18) (L B)= Jom = —,
Y TPy Epr TP

where 4 and B are any funetions of ¢, and of p,.

We clearly see that pseudo-Hamiltonian mechanics satisfies the above selectivity
criterion since the algebra [U(A. p)J” characterized by the product (18) is a Lie algebra
on account of the property (%)

(19) (4. B) = (B, d) = (A—p)[4. B, .

(") In this formulation the «isotropy » of the dissipativity in phase space is cxpressed by the inde-
pendence of the 4 and u parameters on the degrees of freedom, A further extension of the formulation
for anisotropic conditions can be investigated by associating different parameters A and ux (with k=
=1,2,...,n) with each pair of canonical variables ¢z and pg.

( Let us also note that from an algebraic viewpoint only one parameter is essential, since the
algebra (A, p) characterized by the produet (1X) is ispmorphic to the so-called isotropic algebra with
product

¢ eR 1éB &d

(d*B) - —x* T ¥,
eqx Opx  elm Ok
where
Giin_edin 0B od  eBd
Surx S eqr Epr’ Zax epx eaxepx

and e = A/u. Thus, from an algebraic viewpoint, the two-parameter formulation (9) is equivalent to
the Duffin formulation (°).
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Furthermore, the procedure itself reduces to Hamiltonian mechanics when the para-
meters 4 and p obtain the values +1 and —1, respectively.

An interesting aspect of this generalized procedure is that the true Hamiltonian H
for a conservative region is formally preserved in a dissipative region, where it assumes
the name of pseudo-Hamiltonian, since the dissipativity of the system is represented
by the parameters involved in the formulation.

Pseudo-Hamiltonian mechanics has been introduced for representing some dissipative
electrical network and for describing small motions of dissipative systems about a posi-
tion of static equilibrium (8). It has been also used for introducing a model of dissipative
field theory by performing an extension to continuous system (), for whose purpose
the above selectivity criterion was derived.

In the following we shall consider the above « perturbative approach» where 1
and p are constants.

8. — In connection with plasma physics, pseudo-Hamiltonian mechanics could be
of some interest either for investigating plasma in dissipative conditions because of
exchange of energy with an external system (e.g. an electric or a magnetic field), or for
investigating partial regions of globally conservative plasmas with internal exchange
of energy (or of momentum or of angular momentum), whenever the dissipativity does
not allow the use of Hamiltonian mechanics (e.g. when the dissipative forces are not
expressible in terms of generalized potentials (*).)

Let us consider a dissipative plasma according to one of the above conditions. The
generalization of the Liouville equation in terms of pseudo-Hamiltonian mechanies is
given by

2

de
20 = —
(20) at—k(e,lf)%-(l-+-ﬂ)9 5290

where (g, H) is now the bracket (18), the third term in the Lh.s. comes from the con-
tribution of V-¥ which is now no longer zero as in (1), and C is a collision term.
Let the pseudo-Hamiltonian H be of linear velocity force type, i.e.

ozH
(21) =K
dg; op,

with K & constant. Then, by (20) and by computing the total time derivative of ¢
we get (for ¢ = 0)

(22) @ = gy exp [— 41],

where A = K(4+ u). Thus, under the above conditions, the particle density in phase
8pace is no longer constant, but it decreases or increases in time corresponding to
K(A+ p)>0 or K(A+ pu)< 0, respectively. For A=—yu=1, i.e. when the pseudo-
Hamiltonian mechanics reduces to the Hamiltonian mechanics, we recover the constant
behavior in time of ¢ for conservative conditions.

Let us consider a colligion term of the form

(23) 0=— ,
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where g, is the equilibrium distribution and ¢, is the relaxation time. Then the gener-
alized Fokker-Planck equation in terms of pseudo-Hamiltonian mechanics is given hy

o Xo—o
4 5 TV Veot FrVg=— o5
where
(25) V=q. F=p, X=1+tEKE0+p.

If the above equation refers to an electron gas under the action of an electrie field E,
then for small deviations from the equilibrium configuration we can write

1
(26) 0=~

L,
by 90*:7{—._, (V-V,o+ ¢E-V,0) .

so that to first order, by assuming o, to be independent of ¢,, we have

1

t,
(27) 0= 32 = EVio.

Under the above assumptions, the electric current and the conductivity tensor
defined for conservative conditions by

e%t, . c
(28) Jg=— EfforQ?
m ch’;
and
2t A
(29) T,=—2 v, 224,
m eV,

respectively, will become in our dissipative framework

ett.m
(30) g, = SMop
g mX, ¥

e*t,m
(31) T, = 7an2°(5,.,,

where we have assumed a Maxwell distribution.

This result illustrates, in the case of our example, how the parameters A and u of
the formalism influence the physical quantities of the system. More explicitly, these
quantities represent a decrease (increase) of the electric current and of the conductivity
tensor with respect to the corresponding quantities of a conservative condition when
Kt (A+ p)>1 (< 1). Thus the parameters of the formulation can be used to determine
the best fit for physically established values of J and of T;;. Of course, when the para-
meters are contracted to the values A= —pu =1, then all the corresponding expres-
sions for conservative conditions are recovered.
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Let us also note that our « perturbative approach » seems to be compatible with the
congidered example of an elementary dissipative plasma, since also for the conservative
formulation the solutions corresponding to (24) are calculated for small deviations from
the equilibrium configuration.

In a similar way, other equations for a nonrelativistic or a relativistic plasma can
be extended to a dissipative condition either according to the above « perturbative
approach » or by means of more general procedures.

In any case, when a disgipative condition appears in a region of a plasma and the
true Lagrangian L, and Hamiltonian H, are conceived in such a way as to represent
the variations of the kinetic and potential energies according to (12), then the Liouville
equation of the system will be of the form given by expression (20) when A and p are
independent of ¢, and p,.

Conceivably, further investigations of the above model may be interesting. For
instance, one could study the possible connections between the instabilities of a given
region of a plasma and the exchange of energy, momentum or angular momentum
between the considered region and the rest of the system.



