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Resonance-like nuclear processes in solids: 3rd and 4th order processes
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It is recognized that in the family of heavy charged particle and electron assisted double nuclear
processes resonance-like behavior can appear. The transition rates of the heavy particle assisted 3rd-
order and electron assisted 4th-order resonance like double nuclear processes are determined. The
power of low energy nuclear reactions in Ni−H systems formed in Ni placed in H2 gas environment
is treated. Nuclear power produced by quasi-resonant electron assisted double nuclear processes in
these Ni−H systems is calculated. The power obtained tallies with experiments and its magnitude
is considerable for practical applications.
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I. INTRODUCTION

Since the ”cold fusion” publication by Fleischmann
and Pons in 1989 [1] a new field of experimental physics
has emerged. Although even the possibility of the phe-
nomenon of nuclear fusion at low energies is doubted by
many representatives of mainstream physics, the quest
for low-energy nuclear reactions (LENR) flourished and
hundreds of publications (mostly experimental) have
been devoted to various aspects of the problem. (For
the summary of experimental observations, the theoreti-
cal efforts, and background events see e.g. [2], [3].) The
main reasons for revulsion against the topic have been:
(a) according to standard knowledge of nuclear physics
due to the Coulomb repulsion no nuclear reaction should
take place at energies corresponding to room tempera-
ture, (b) the observed extra heat attributed to nuclear
reactions is not accompanied by the nuclear end prod-
ucts expected from hot fusion experiences, (c) nuclear
transmutations were also observed, that considering the
Coulomb interaction is an even more inexplicable fact at
these energies.

The situation is further complicated by the fact that
the electrolysis, gas discharge and/or high pressure gas
environments that are stipulated to induce LENR have
their effect through rather complex microscopic processes
that in most of the cases are difficult to reproduce. As
a result, for explaining the riddle of cold fusion it is in-
dispensable to understand theoretically the underlying
nuclear reactions.

In our opinion we made progress [4] in the theoret-
ical clarification of the nuclear physics behind LENR.
The idea is based on the fact that if a heavy, charged
particle (proton, deuteron) of low energy enters a solid
(metal), then through the Coulomb interaction it changes
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the state of charged particles, primarily quasi free valence
electrons in the metal while its own state is also changed.
Our results of standard perturbation theory calculations
indicate that by means of the Coulomb interaction the
ingoing charged particle in this change of state can ob-
tain so high value of virtual momentum (energy) that is
enough to induce various nuclear reactions including fu-
sions and/or transmutations. With the results of our the-
oretical work, we found reasonable answers to the above
questions (a, b and c).
In [4] however, it was not taken into account that the

emergence of new charged particles may alter the state
of the solid too in a way that can allow further nuclear
processes, such as the family of double nuclear processes
which has special interest from the point of view of low
energy nuclear processes. In this paper this effect is con-
sidered. First a 3rd-order double nuclear process is inves-
tigated the graphs of which can be seen in FIG. 1. It is
shown that a resonance can appear in this process. Next
a 4th-order double nuclear process is discussed the graphs
of which can be seen in FIG. 2 which shows resonance-
like characters too. Finally the nuclear power produced
in Ni−H systems is calculated.
This paper is mainly based on [4]. The notation

and the outline of the calculation is the following. The
Coulomb coupling strength e2 = αf~c and the strong
coupling strength f2 = 0.08~c [5], e is the elementary
charge, αf is the fine structure constant, ~ is the reduced
Planck constant and c is the velocity of light.
When calculating the matrix elements of the strong in-

teraction potential, the long wavelength approximation
|ϕ(0)| = fjk(k)/

√
V of the Coulomb solution ϕ(r) is

used, that is valid in the range of a nucleon, where fjk(k)
is the appropriate Coulomb factor corresponding to the
particles, which take part in strong interaction and V is
the volume of normalization. We introduced the follow-
ing notation

Fjk(k) = f2
jk(k) =

2πηjk (k)

exp [2πηjk (k)]− 1
. (1)

Here the Sommerfeld parameter ηjk (k) for particles j
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and k of electric charge numbers zj and zk is determined
as

ηjk (k) = zjzkαf
µjkc

~k
, (2)

where k = |kj − kk| is the magnitude of the relative wave
vector k = kj − kk of the interacting particles of wave
vectors kj and kk and µjk = mjmk/ (mj +mk) is the
reduced mass of particles of rest masses mj and mk.
For quasi-free particles (electron and ingoing proton)

taking part in Coulomb interaction we use plane waves.
Thus their Coulomb matrix element is calculated in the
Born approximation which is corrected with the so called
Sommerfeld factor

gS (kin, kout) = fjk(kin)/fjk(kout) (3)

[6], where kin and kout are the magnitudes of the relative
wave numbers before and after Coulomb scattering. For
other details and notation see [4].

II. RESONANCE-LIKE HEAVY CHARGED

PARTICLE AND ELECTRON ASSISTED

DOUBLE NUCLEAR PROCESSES

Preliminarily one must emphasize that in both (3rd
and 4th order) double nuclear processes discussed res-
onances may occur. The reason for the possibility of
resonance is that the continuum of the kinetic energy of
an intermediate state is shifted down by the energy of
the (first) nuclear transition and therefore one of the de-
nominators in the perturbation calculation can be equal
to zero. The occurrence of resonances increases the rate
significantly.

A. Resonance-like heavy charged particle assisted

double nuclear processes

First the resonance-like heavy charged particle assisted
double nuclear processes (see FIG. 1) are discussed. The
particles in FIG. 1 are all heavy, and positively charged.
The ingoing particle is particle 2, which belongs to system
B (the ensemble of incoming particles forms system B).
It is supposed that it has moderately low energy (of about
keV order of magnitude), that is raised in the second or-
der processes discussed in [4] or after it in the deceler-
ating process. Particle 2 scatters by Coulomb scattering
on particle 1 localized in the solid (system A). Particles
3 and 4 are the nuclear targets of system A. The parti-
cles in the intermediate state 1’ and 2’ may pick up large
enough wave vector to overcome the Coulomb repulsion
due to particles 4 and 3. Particles 5 and 6 are products of
the process. The nuclear process 1′ + 4 → 5 takes place
as the consequence of the modification of system A by
system B. Here both nuclear processes are thought to
be nuclear captures. It can be shown (see Appendix I.)
that the process may have resonance like character if the
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FIG. 1: The graphs of quasi-resonant heavy charged parti-
cle Coulomb-assisted nuclear reactions. The filled dot de-
notes Coulomb-interaction and the open circle denotes nuclear
(strong) interaction. Free particle 2 (e.g. p or d) belongs to
system B. Localized particles 1, 3 and 4 belong to system A.
All the particles are heavy and positively charged. From the
point of view of the nuclear process particles 1’ and 2’ are
ingoing, particles 3 and 4 are targets and particles 5 and 6
are reaction products. In the case discussed in the text in the
process of FIG. 1(a) there is a resonance, therefore its con-
tribution to the rate is dominant and the contribution of the
process of FIG. 1(b) is neglected.

masses of particles 5 and 6 differ significantly, therefore
the contribution of the leading graph (e.g. FIG. 1(a) in
the case m5 ≫ m6 discussed) to the rate is enough to
calculate.
We take as initial state of a localized particle k

ψki (x) =
(
β2
k/π

)3/4
exp

(
−β2

kx
2/2
)
, (4)

which is the ground state of a 3-dimensional harmonic
oscillator of energy E0 = 3

2~ωk and of angular frequency
ωk [7]. Now we take particle 1 (k = 1) localized and the
initial state ψ1i (x) is of the form (4) with the parameter

β1 =
√
m1ω1/~, where m1 is the rest mass of the lo-

calized particle 1. The Coulomb matrix elements which
contain initial state of form ψki (x) also preserve momen-
tum [4].
The total rate of the reaction

W
(3)
tot = K(3)K

(3)
1 (∆,∆5) h

2
corr,3h

2
corr,4N134 (5)

×
∑

k2i

H (k2i, k
r)N2 (k2i) ,
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where N134 is the number of triples of particles 1, 3 and
4, that may be effective for one particle 2, and N2 (k2i)
is the actual number of quasi-free particles 2 of wave
number k2i. Furthermore

K(3) = 9216α2
fπ

7/2

(
1− 2

e

)4(
f2

~c

)4

R2cβ3
1 , (6)

where R = 1.2× 10−13 [cm] is the proton-radius,

K
(3)
1 (∆,∆5) =

µ2
12c

4
√
µ56c2∆

√
2
(
∆5 − µ56

m5

∆
)3
µ56

m2
, (7)

where ∆5 = ∆01 + ∆04 − ∆05 is the energy of reaction
1′ + 4 → 5, and ∆6 = ∆02 +∆03 −∆06 is the energy of
reaction 2′ + 3 → 6. The ∆0j-s are the energy defects of
the corresponding nuclei and ∆ = ∆5 + ∆6 is the total
reaction energy.

H (k2i, k
r) = g2S (k2i, 2k

r)F23(k
r)F14(k

r), (8)

where

kr =

√
2m2

(
∆5 − µ56

m5

∆
)

~
. (9)

hcorr,3, hcorr,4 are defined by Eq.(45) of [4] and are de-
termined as

hcorr,k = Ak − zk (10)

in the case of proton captures, and

hcorr,k = Ak (11)

in the case of deuteron captures. (For the details of the
calculation see Appendix. I.)
In a numerical example let particles 1, 2, 3 be

deuterons, particle 4 be 106
46 Pd, particle 5 be 108

47 Ag and
particle 6 be 4

2He. If particle 1 is a deuteron then
β1 = 4.81 × 108

[
cm−1

]
(see Sec. VIII. A of [4]). With

these choices

∆6 = 23.847 [MeV ] ,∆5 = 10.833 [MeV ] , (12)

∆ = 34.681 [MeV ] , (13)

µ12c
2 = m0c

2 = 931.494 [MeV ] , µ56c
2 ≃ 4m0c

2, (14)

µ56/m5 = 1/28, µ56/m2 ≃ 2. (15)

With these numbers one can obtain

∆5 −
µ56

m5
∆ = 9.60 [MeV ] , (16)

K
(3)
1 (∆,∆5) = 5.00× 105 (17)

and

~ckr = 189 [MeV ] , (18)

the latter producing

F23(k
r) = 0.89, F14(k

r) = 2.79× 10−8. (19)

Finally one gets

W
(3)
tot = 1.45× 108 ×N134

∑

k2i

g2S (k2i, 2k
r)N2 (k2i)

[
s−1
]
.

(20)
The g2S (k2i, 2k

r) dependence is similar to the
GS (k2i, 2k1f ) dependence discussed at the end of
section VIII.B of [4]. For the number N134, in the cases
discussed, as a lowest estimation

N134 = (Veff/vc) rA1
rA3

rA4
, (21)

where rAi
is the relative natural abundance of isotopes

of mass number Ai or rAi
= u if the i-th particle is a

hydrogen isotope, Veff is the volume effectively felt by
a particle 2, u is the proton (or deuteron) over metal
number density and vc

(
= d3/4

)
is the unit cell of the

solid (in the case of fcc metals).
It should be noted that there may be a great variety

of other types of possible quasi-resonant heavy charged
particle assisted double nuclear reactions the discussion
of which is not given here.

B. Resonance-like electron assisted double nuclear

processes

From the processes discussed up till now one can con-
clude the following: (a) it is advantageous, if the wave
vector (momentum) transferred through the intermediate
state by Coulomb interaction has the possible maximum
value, (b) the electron assisted process is advantageous
since the Coulomb and Sommerfeld factors cause minimal
or negligible hindering in this case and (c) the appear-
ance of resonance significantly increases the rate. These
conclusions led us to a 4th-order, electron assisted dou-
bled nuclear process, the graphs of which can be seen in
FIG. 2. At a particular choice of the participants (see
Appendix II.) resonances can be found in the processes
of FIG. 2 (a) and (b). The resonance arises in line 4’.
Moreover, the details of the calculation show that high
contribution to the rate is obtained if the energy of the
electron is negligible in the final state compared with the
energy of the total reaction. In other words, the main
contribution to the rate is produced by final states in
which particles 6 and 7 share the reaction energy.
It is supposed that particle 1 (1’ and 1”) is a quasi-free

electron of the solid (a metal). Particle 2 is an ingoing
free, heavy, positively charged particle of system B. Par-
ticles 3, 4, and 5 are heavy particles of positive charge
that are localized in the solid. If processes of FIG. 2 (a)
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FIG. 2: The graphs of quasi-resonant, electron assisted nu-
clear processes. The simple lines represent free (initial (1),
intermediate (1’) and final (1”)) electrons. The doubled lines
represent heavy, charged initial (free 2, bound 4) particles
(such as p, d), their intermediate states (2’,4’), target nu-
clei (3,5) and reaction products (6,7). The filled dot de-
notes Coulomb-interaction and the open circle denotes nuclear
(strong) interaction.

and (b) have resonance-like character (see Appendix II.)
then the process of FIG. 2 (c) has not and therefore its
contribution may be neglected. Now particle 4 is local-
ized and its state is ψ4i (x) given by (4).

The total rate W
(4)
tot (for the details see Appendix II.)

can be obtained from the rate W
(4)
fi (see (107)) as

W
(4)
tot = K

(4)
0 〈FG〉χ (∆)h2corr,3h

2
corr,5N1N2

N345

V
, (22)

where N1 is the instantaneous number of the quasi-free
electrons that are felt by one ingoing particle 2, N2 is the
number of quais-free ingoing particles 2, N345/V is the
number density of the target triples of particles 3, 4 and

5,

K
(4)
0 = 2223π23/2α4

f

(
f2

~c

)4(
1− 2

e

)4 (
z21z2z4

)2
(23)

× (~c)
6
R2ck31,Maxβ

3
4 ,

where k1,Max is the maximum of the possible wave vec-
tors of the electron in the final state. (We calculate the
rate of those processes in which the kinetic energy E1f

of the electron can be neglected in the energy Ef of the
final state).

〈FG〉 =
〈F12(ki)〉
F12(2kr4)

F23 (k
r
4)F45 (k

r
4) , (24)

with

kr4 =

√
2m4δa,b

~
=

√
2m4

(
∆6 − m7

m6+m7

∆
)

~
(25)

Now ∆6 = ∆02 + ∆03 − ∆06 is the energy of reaction
2′ + 3 → 6 and ∆7 = ∆05 + ∆04 − ∆07 is the energy
of reaction 4′ + 5 → 7. The ∆0j-s are again the energy
defects of the corresponding nuclei and the total reaction
energy

∆ = ∆6 +∆7. (26)

χ (∆) =
m7

m4

√
2m7c2∆

δ3a,b∆
2
ab

(
1

∆a
+

1

∆b

)2

, (27)

where δa,b is given by (101), furthermore, for ∆a, ∆b and
∆ab and see (104), (105) and (106), and for hcorr,3 and
hcorr,5 see (10) and (11).
It is reasonable to take

N345

V
=

1

vc
rA3

rA4
rA5

=
4

d3
rA3

rA4
rA5

, (28)

where vc = d3/4 is the unit cell of the solid in the case
of fcc metals, rAi

is the relative natural abundance of
isotopes of mass number Ai or rAi

= u if the i-th particle
is a hydrogen isotope. Thus

W
(4)
tot = (

4

d3
K

(4)
0 ) 〈FG〉χ (∆)h2corr,3h

2
corr,5N1N2rA3

rA4
rA5

.

(29)
If particle 4 is a deuteron then β4 = 4.81×108

[
cm−1

]
.

Taking E1,Max = 0.1 [MeV ], that is the maximum of the
possible energies of the electron in the final state, one
gets k31,Max = 4.89× 1030

[
cm−3

]
and

4

d3
K

(4)
0 = 3.50× 10−3

(
z21z2z4

)2 [
MeV 6s−1

]
(30)

in the case of Pd, i.e. with d = 3.89× 10−8 [cm].
As a numerical example let particles 2, 4 and 5 be

deuterons, particle 3 a Pd isotope (of A3 = 106 with
rA3

= 0.2733) and particle 7 4
2He. With this choice

∆6 = 10.833 [MeV ] ,∆7 = 23.847 [MeV ] , (31)
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∆ = 34.681 [MeV ] , (32)

furthermore

δa,b = 9.60 [MeV ] ,∆ab = 198.7 [MeV ] , (33)

∆a = 19.2 [MeV ] ,∆b = 179.5 [MeV ] , (34)

and m7/m4 = 2 resulting

χ (∆) = 1.69× 10−6
[
MeV −6

]
. (35)

F23 (k
r
4) = 2.79× 10−8, F45 (k

r
4) = 0.89, F12(2k

r
4) = 1

(36)
and

〈F12(ki(Ei))〉 = 23.18×
〈
E

−1/2
i [eV ]

〉

av
(37)

producing

〈FG〉 = 5.76× 10−7 ×
〈
E

−1/2
i [eV ]

〉

av
, (38)

where Ei is the energy of the initial conduction electron.

Averaging E
−1/2
i by means of the Fermi-Dirac distribu-

tion in the Sommerfeld free electron model at T = 0
yields

〈
E

−1/2
i

〉

av
= 2

(
E

−1/2
F [eV ]

)
(39)

where EF denotes the Fermi energy [8]. With these num-
bers

W
(4)
tot = 8.36× 10−11

(
E

−1/2
F [eV ]

)
×N1N2u

2
[
s−1
]
.

(40)

This rate produces a total power P
(4)
tot = CEW

(4)
tot ∆,

where CE = 1.602 × 10−13 [J/MeV ] is the energy unit
conversion factor. With a deuteron concentration inde-
pendent EF = 17 [eV ],

P
(4)
tot = 1.13× 10−22 ×N1N2u

2 [W ] . (41)

In all the charged particle assisted processes discussed
the quasi-resonant, 4th-order electron assisted double nu-
clear process seems to be the leading one.

III. NUCLEAR POWER IN NI-H SYSTEMS

DUE TO DOUBLE PROTON CAPTURE

In this section we deal with a family of 4th-order reso-
nant, electron-assisted double nuclear processes shown in
FIG. 2. Our aim is to show that inNi−H systems formed
in hydrogen gas one of the family of processes in FIG. 2.
may have high rate and the power generated by these nu-
clear processes is also considerable from practical point
of view that can be calculated in our theory. In Ni−H
systems formed in hydrogen gas extra heat production

was observed [9], [10] whose nuclear origin was proven
with neutron detection [11]. Since in Ni − H systems
formed in H gas there is no light particle for significant
nuclear effect save the natural deuteron content of hy-
drogen, according to our theory the primary process to
generate considerable energy is the quasi-resonant elec-
tron assisted (double) proton capture of the Ni isotopes.
The two proton captures

A
28Ni+ p→ A+1

29 Cu+∆, (42)

which are coupled due to the quasi-resonant electron as-
sisted process, are investigated (see FIG. 2). Particle 1
(1’ and 1”) is a quasi-free electron of the metal, particle 2
is a quasi-free ingoing proton and particle 4 is a localized
proton. Particles 3 and 5 are different Ni isotopes and
they have mass numbers A3 and A5, respectively. Parti-
cles 6 and 7 are Cu isotopes of mass numbers A3+1 and
A5 + 1, respectively. Both nuclear transitions 2′, 3 → 6
and 4′, 5 → 7 are reactions of type (42). The process is
called quasi-resonant electron assisted double proton cap-
ture process. Most of the daughter nuclei A+1

29 Cu decay
by the

A+1
29 Cu + e→ A+1

28 Ni+QEC (43)

electron capture reaction. TABLE I. of [4] contains the
relevant data for reactions (42) and (43). As it is dis-
cussed above at a particular choice of the participants
resonances can be found in the processes of FIG. 2. The
resonance appears in line 4’.
Now particle 4 is a localized proton. We take ψ4i (x)

(see (4)) as initial state of particle 4. The parameter β4 in

the case of a localized proton is βp
4 =

√
mpω4/~, where

mp is the proton rest mass and ω4 is the angular fre-
quency of the ground state of a 3-dimensional harmonic
oscillator of energy E0 = 3

2~ω4. In NiH0.75 the energy
of an optical phonon ~ω4 = 88 [meV ] [12], that results
βp
4 = 6.51× 108

[
cm−1

]
which is used in the calculation.

The Coulomb matrix elements which contain initial state
of form ψ4i (x) also preserves momentum [4]. The num-
ber density N345/V = 4d−3rA3

rA5
u (see (28)), where u

denotes the proton over metal number density and d is
the length of the Ni elementary cell (d = 3.52 × 10−8

[cm]).
Now we reformulate the results of section II. B. ∆A3

=
∆02 + ∆03 − ∆06 is the energy of reaction 2′ + 3 → 6
and ∆A5

= ∆04 + ∆05 − ∆07 is the energy of reaction
4′ + 5 → 7. The ∆0j-s are the energy defects of the
corresponding nuclei and the total reaction energy

∆A3,A5
= ∆A3

+∆A5
. (44)

It was found above that

δA3,A5
=

(A3 + 1)∆A3
− (A5 + 1)∆A5

A3 +A5 + 2
(45)

is a crucial quantity (it was defined by (101)), since, if
δA3,A5

> 0 then resonance appears in line 4’ at

kr4;A3,A5
=

√
2m4δA3,A5

~
. (46)
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Substituting

h2corr,3h
2
corr,5 = (A3 − 28)2 (A5 − 28)2 (47)

into (22) the total rate of the 4th-order, resonance-like
electron assisted double proton capture processes has the
form

W
(4)
tot (A3, A5) =

4

d3
K

(4)
0 (A3 − 28)

2
(A5 − 28)2 (48)

×〈FG〉χN1N2rA3
rA5

u.

Here N1 is the instantaneous number of the quasi-free
electrons that are felt by an ingoing particle 2, N2 is the
number of quasi-free ingoing protons that can interact
with particle triplets 3, 4 and 5, and rA3

and rA5
are

the relative natural abundances of Ni isotopes of mass
numbers A3 and A5, respectively (see TABLE I. of [4]).

K
(4)
0 given by (23), where R = 1.2 × 10−13 [cm] is the

proton-radius. Taking E1,Max = 0.1 [MeV ] again one
gets

4d−3K
(4)
0 = 0.0118

[
MeV 6s−1

]
(49)

in the case of Ni. Since µ23 ≃ µ45 and z2z3 = z4z5 =
28 therefore F23

(
kr4;A3,A5

)
≃ F45

(
kr4;A3,A5

)
in 〈FG〉.

Furthermore, since particle 1 is an electron therefore
F12(2k

r
4;A1,A2

) = 1 and (24) reads

〈FG;A3,A5
〉 = 〈F12(ki)〉F 2

23

(
kr4;A3,A5

)
. (50)

Here 〈F12(ki(Ei))〉 = 46.36 ×
(
E

−1/2
F [eV ]

)
, where EF

denotes the Fermi energy. If 2mpc
2 ≫ δ, true in our

case, then (27) can be written as

χA3,A5
=

(A5 + 1)3/2
√
2m0c2∆A3,A5

4δ7A3,A5

. (51)

Here m0c
2 = 931.494 [MeV ] is the atomic mass unit.

One can see from TABLE I. of [4] that ∆A increases
monotonically with the increase of A. Thus δA3,A5

> 0 if
A3 > A5, and the total power can be written as

Ptot = N1N2uP0

∑

A3>A5

ψA3,A5
, (52)

where P0 = 4d−3K
(4)
0 CE∆

−5
0 . CE = 1.602 × 10−13

[J/MeV ] is the energy unit conversion factor, ∆0 = 1
[MeV ] as an order of magnitude of a typical nuclear re-
action energy value. The use of ∆0 makes

ψA3,A5
= (A3 − 28)2 (A5 − 28)2rA3

rA5
× (53)

×∆A3,A5
〈FG;A3,A5

〉χA3,A5
∆5

0

dimensionless. In our case

P0 = 1.88× 10−15 [W ] (54)

and

∑

A3>A5

ψA3,A5
= 6.48× 10−6 ×

(
E

−1/2
F [eV ]

)
. (55)

In
∑

A3>A5
ψA3,A5

the significant contributions are given
by ψ61,58, ψ62,58, ψ64,58 and ψ64,60, with ψ64,58 = 6.36×
10−6 ×

(
E

−1/2
F [eV ]

)
as the leading term responsible for

98% of the effect. A hydrogen concentration independent
EF = 17 [eV ] is used producing

Ptot = 2.95× 10−21 ×N1N2u [W ] . (56)

Now we proceed to the determination of N1, N2 and u.
N1 stands for the number of valence electrons which can
interact with a proton (particle 2). Considering that Ni
consists of micro crystals of linear dimension of about
(D [µm]) 1 − 10 µm, it is reasonable to assume that a
proton penetrating the material ”feels” all the valence
electrons. Thus

N1 =
Vg
vc
ge, (57)

where Vg = D3 × 10−12
[
cm3

]
is the volume of micro

crystals, vc = d3/4 is the volume of the elementary cell
and ge = 10 is the number of valence electrons in an
elementary cell of Ni. From it N1 = D3 [µm] × 9.17 ×
1011. N2 denotes the number of protons which can be
considered quasi free in respect of the process. It can be
calculated if the number density np in gas is multiplied
with the metal volume V2, where they are taken for free.
The volume is the product of the surface F of the sample
and the length d of the elementary cell. The result is

N2 = 2FnL
pT0
p0T

d, (58)

where nL = 2.69 × 1019
[
cm−3

]
is the number density

in the gas of pressure p0 = 1 [atm] and temperature
T0 = 273

[
0K
]
. The actual pressure and temperature

are denoted by p and T . Factor 2 follows from the fact
that the hydrogen molecule contains 2 atoms. Here the
catalytic process producing atomic hydrogen is not con-
sidered, it supposed, which is a rough over estimation,
that at the Ni surface the whole gas is atomistic.
In [9] excess heat power 44 [W ] is obtained from a Ni

rod of diameter d0 = 0.5 [cm] and length h0 = 9 [cm] at
p = 0.5 [atm] and T = 753

[
0K
]
. At this temperature

and pressure u ≃ 7.9 × 10−5 [13]. Utilizing this and the
values N1 and N2 obtained above, Ptot = D3 × 0.074
[W ] from (56). In case of D ≃ 8.41 [µm] the result is
44 [W ], which considering that in this simple model a
great number of solid state processes were neglected and
in the nuclear processes it was only the Weisskopf ap-
proximation in which the matrix element was calculated,
is a very good approximation.
The surface area of the sample, as can be seen from

(58), can significantly increase the rate of the processes
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in the sample and the power generated. For example, if
we take a sample of similar volume to the previous one,
but not in the shape of a rod but powder of particles of
diameter Dp then the power is increased by a factor of
3d0/ (2Dp). If Dp = 10−3 [cm] then this factor is 750,
that is a sample of similar volume can produce 33 [kW ]
instead of 44 [W ]. It seems that this is what [14] found
experimentally who applies Ni powder in his patented
device. All this means that the above mechanism can
produce power generation for practical applications.

IV. SUMMARY

Resonance-like heavy particle and electron assisted
double nuclear processes in solids are discussed. The
transition probabilities per unit time of the 3rd-order
heavy particle assisted and the 4th-order electron as-
sisted resonance-like double nuclear processes are deter-
mined. The 3rd-order heavy particle assisted and the
4th-order electron assisted resonance-like double nuclear
processes may partly be responsible for the so called
anomalous screening effect observed in low energy accel-
erator physics investigating astrophysical factors of nu-
clear reactions of low atomic numbers [15]. The theo-
retical description of the doubled processes discussed ex-
tends the possible explanation and description of LENR
with its nuclear physical background. It is found that the
d+ d→ 4He process coupled to the A

46Pd+ d→ A+1
47 Ag

process due to the quasi-resonant electron assisted dou-
bled nuclear process has extremely large rate. The 4

2He
production with 34.7 MeV/He obtained in the leading,
4th-order, quasi-resonant electron assisted d + d → 4

2He
process fits well with the observed 32±13MeV/He value
of LENRs [3].
With the help of our theory describing resonance-like

electron assisted doubled nuclear processes we estimated
the nuclear power (41) created in the d+ d → 4He pro-

cess coupled to the A
46Pd + d → A+1

47 Ag process due to
the quasi-resonant electron assisted doubled nuclear pro-
cess and the nuclear power (56) due to double proton
capture in Ni − H systems formed by Ni placed in H2

gas environment. The nuclear powers are consistent with
observations. Moreover, the magnitude of the power ob-
tained in Ni − H systems containing Ni in powdered
form is considerable from practical point of view.
The authors are indebted to K. Härtlein for his tech-

nical assistance.

V. APPENDIX I. RATE OF RESONANCE-LIKE

HEAVY CHARGED PARTICLE ASSISTED

DOUBLED NUCLEAR PROCESSES

The rate of the process is

W
(3)
fi =

2π

~

∑

f

∣∣∣T (3)
if

∣∣∣
2

δ(Ef −∆) (59)

where

T
(3)
if =

∑

ν

∑

µ

V St
fν V

St
νµ V

Cb
µi

(Eν − Ei) (Eµ − Ei)
(60)

× (2π)3

V
δ (k5 + k6) .

kj denotes the wave vector of particle j in the final state.
It will be seen that the process may have resonance like
character if the masses of particles 5 and 6 differ signif-

icantly, therefore the T
(3)
if attached to the leading graph

(e.g. FIG. 1(a) in the casem5 ≫ m6 discussed) is enough
to calculate. kjn denotes the wave vector of particle j in
state n = i, µ or ν. The initial wave vector k2i of particle
2 is neglected in the Coulomb matrix element

V Cb
µi = gS

2 (2π)4 e2z1z2
V 3/2

ψ̃1i (k1µ + k2µ)

|k2µ|2 + λ2
, (61)

where the

ψ̃1i(k1µ + k2µ) = 8π9/4β
3/2
1 δ(k1µ + k2µ) (62)

formula can be used assuming that particle 1 is localized.

ψ̃1i stands for the Fourier transform of the initial state
ψ1i.
The two nuclear matrix elements

V St,W
νµ (a) = −2f2f14(k1µ)

√
12πR

V

(
1− 2

e

)
× (63)

× (2π)
3

V
δ (k1µ − k1ν) ,

and

V St,W
fν (a) = −2f2f23(k2ν)

√
12πR

V

(
1− 2

e

)
(64)

are valid in the case of the process of FIG. 1(a) and

V St,W
νµ (b) = −2f2f23(k2µ)

√
12πR

V

(
1− 2

e

)
(65)

× (2π)
3

V
δ (k1µ − k1ν) ,

V St,W
fν (b) = −2f2f14(k1ν)

√
12πR

V

(
1− 2

e

)
(66)

stand for the process of FIG. 1(b). Here R is the ra-
dius of a nucleon (we take R = 1.2 × 10−13 [cm], that
is the proton-radius) and the single nucleon approach in
the Weisskopf approximation is used. The energy differ-
ences in the denominator of (60) are: the difference of
the kinetic energies

Eµ − Ei =
~
2k21µ
2m1

+
~
2k22µ
2m2

− Ei,kin (67)
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and

(Eν − Ei)a =
~
2k22ν
2m2

+
~
2k25
2m5

− Ei,kin −∆5 (68)

in the case of FIG. 1(a) and

(Eν − Ei)b =
~
2k21ν
2m1

+
~
2k26
2m6

− Ei,kin −∆6 (69)

in the case of FIG. 1(b). In (68) and (69) the rest energy
differences have to be also taken into account because
of the nuclear reaction 1′ + 4 → 5 in the case of (a) and
2′+3 → 6 in the case of (b). ∆5 = ∆01+∆04−∆05 is the
energy of reaction 1′+4 → 5, and ∆6 = ∆02+∆03−∆06

is the energy of reaction 2′ + 3 → 6. The ∆0j-s are
the energy defects of the corresponding nuclei. The total
reaction energy

∆ = ∆5 +∆6. (70)

After performing the
∑

f (really using the
∑

f →
∫ [
V/ (2π)3

]
dk5 ×

∫ [
V/ (2π)3

]
dk6 correspondence and

integrating over k6) in (59) the Dirac delta δ (k5 + k6)
in (60) will result k6 = −k5, and the final energy can be
written as Ef = ~

2k25/ (2µ56). The energy Dirac delta
will result

k25 =
2µ56∆

~2
. (71)

Furthermore because of the presence of δ (k2µ − k2ν)
and δ (k1µ − k1ν) in the matrix elements V St,W

νµ (a) and

V St,W
νµ (b) the

∑
ν →

∫ [
V/ (2π)

3
]
dk2ν and

∑
ν →

∫ [
V/ (2π)3

]
dk1ν will allow the k2ν = k2µ and k1ν = k1µ

substitutions in them and in the energy denominators
as well. The initial kinetic energy Ei,kin is neglected in
(Eν − Ei)a and (Eν − Ei)b. Thus

(Eν − Ei)a =
~
2k22µ
2m2

+ δa (72)

with

δa =
µ56

m5
∆−∆5 (73)

and

(Eν − Ei)b =
~
2k21µ
2m1

+ δb (74)

with

δb =
µ56

m6
∆−∆6. (75)

Since

δa + δb = 0 (76)

one of δa and δb is negative. Let us suppose that δa < 0.
It means if

~
2k22µ
2m2

= −δa = ∆5 −
µ56

m5
∆ (77)

then (Eν − Ei)a = 0 and we find that the process (a)
has resonance-like behavior when k2µ = kr with kr =√
2m2

(
∆5 − µ56

m5

∆
)
/~. If δa < 0 then δb > 0 and the

process (b) can not have resonance character, and there-

fore it is enough to calculate the T
(3)
if attached to graph

3(a).
Let us introduce the half width Γ of the resonance with

which the complex energy difference, denoted by suffix C,
reads

(Eν − Ei)a,C =
~
2k22µ
2m2

+ δa − i
Γ

2
(78)

that equals −iΓ2 if the resonance condition (77) is
met. With the use of the correspondence

∑
µ →

∫ [
V/ (2π)

3
]
dk2µ ×

∫ [
V/ (2π)

3
]
dk1µ in (60) and after

carrying out the integral over k1µ the relation (62) gives
k1µ = −k2µ. Integrating over k2µ we have the integral
of the form

I =

∫
h (k2µ) dk2µ

~2k2

2µ

2m2
+ δa − iΓ2

, (79)

where h (k2µ) is any function of k2µ, that in this case

h (k2µ) = gS (k2i, 2k2µ) f23(k2µ)f14(k2µ). (80)

For evaluating (79) the g (k2µ) =
~
2k2

2µ

2m2

+δa is introduced
and the substitution

1

g (k2µ)− iε
→ P

1

g (k2µ)
+ iπδ (g (k2µ)) (81)

is applied resulting

I = IP + iIδ, (82)

where

IP =

∫
P
h (k2µ) dk2µ

~2k2

2µ

2m2
+ δa

(83)

and

Iδ = π

∫
h (k2µ) δ (g (k2µ)) dk2µ. (84)

Using the identity

δ (g (k2µ)) =
δ (k2µ − kr)

d
dk2µ

g (k2µ) |k2µ=kr

(85)
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where kr (see (9)) is the root of the g (k2µ) = 0 equation
(see (77)). In a lower estimation of I as |I| = Iδ, the
relevant part of (60) is approximated as

∣∣∣∣∣∣

∫
h (k2µ)

~2k2

2µ

2m2

+ δa − iΓ2

dk2µ

∣∣∣∣∣∣
(86)

= 4π2krm2h (k
r) /~2.

Applying the above relations and results, a lower approx-
imation of the transition rate reads as

W
(3)
fi = K(3)K

(3)
1 (∆,∆5)H (kr)h2corr,3h

2
corr,4 (87)

where K(3), K
(3)
1 (∆,∆5) and H (kr) are given by (6),

(7) and (8), and for hcorr,3 and hcorr,5 see (10) and (11),
that are defined by Eq.(45) of [4], and kr is determined
by (9).

VI. APPENDIX II. RATE OF

RESONANCE-LIKE ELECTRON ASSISTED

DOUBLED NUCLEAR PROCESSES

The rate of the process

W
(4)
fi =

2π

~

∑

f

∣∣∣T (4)
if

∣∣∣
2

δ(Ef −∆) (88)

with

T
(4)
if = T

(4)
if (a) + T

(4)
if (b) + T

(4)
if (c), (89)

where T
(4)
if (a), T

(4)
if (b) and T

(4)
if (c) are the matrix ele-

ments of the processes of FIG. 2 (a), (b) and (c), respec-
tively. If processes of FIG. 2 (a) and (b) have resonance-
like character (see later) then the process of FIG. 2 (c)
has not and therefore its contribution may be neglected.
Thus we take into account the contributions of

T
(4)
if (a) =

∑

ρ

∑

ν

∑

µ

V St
fρ V

Cb
ρν V

St
νµ

(Eρ − Ei) (Eν − Ei)
(90)

×
V Cb
µi

(Eµ − Ei)

(2π)
3

V
δ (k1f + k6 + k7)

and

T
(4)
if (b) =

∑

ρ

∑

ν

∑

µ

V St
fρ V

St
ρν V

Cb
νµ

(Eρ − Ei) (Eν − Ei)
(91)

×
V Cb
µi

(Eµ − Ei)

(2π)
3

V
δ (k1f + k6 + k7) .

The outline of the calculation is the following. For the
Coulomb matrix element of the process 1, 2 → 1′, 2′ we
use the form V Cb

µi given by Eq.(37) of [4]. For calcu-
lating the matrix element of the Coulomb interaction of
the process 1′, 4 → 1′′, 4′ the form given by (61) and the

approximation (62) are used. Thus in each filled dot of
the graphs representing a Coulomb interaction the mo-
mentum (wave number) is conserved. The initial wave
vectors of particles 1, 2 and 4 are neglected. The matrix
elements of nuclear transitions 2′, 3 → 6 and 4′, 5 → 7
are calculated in the Weisskopf approximation applying
the appropriate one from formulae (63), (65), (64) and
(66) with the appropriate f23 (k2) and f45 (k4) functions
in it, respectively. The initial motion of particles 3 and
5, i.e. their initial wave vectors are also neglected. In
summing up for the intermediate and final states and for
the square of the Dirac delta of argument of wave vector
the correspondences and relations used above are applied
again. (Remember, that now ∆6 = ∆02+∆03−∆06 is the
energy of reaction 2′+3 → 6 and ∆7 = ∆05 +∆04 −∆07

is the energy of reaction 4′+5 → 7. The ∆0j-s are again
the energy defects of the corresponding nuclei and the
total reaction energy ∆ = ∆6 + ∆7). We calculate the
rate of those processes in which the kinetic energy E1f of
the electron can be neglected in the energy Ef of the fi-

nal state. Consequently the V/ (2π)3
∫
dk1f will result a

factor V/ (2π)
3
(4π/3)k31,Max, where k1,Max is the maxi-

mum of the possible wave vectors of the electron in the
final state. Furthermore, in the energy Dirac delta

Ef = E6 + E7 −∆ (92)

is used. Neglecting also the final wave vector k1f of the
electron in the Dirac delta, δ(k6 + k7) is used in (90),
(91) resulting

Ef =
~
2k27

2µ67
−∆ (93)

after integration over k6 (k6 = k7).
Since in the cases investigated k1f is neglected, the

wave number vector conservation in Coulomb scattering
results the conservation of the magnitude of wave vector
in lines 1’, 2’ and 4’, and it is denoted by k4. Let us now
investigate the energy denominators. The intermediate
states are labeled with µ, ν and ρ. In the case of graph
(a)

(Eµ − Ei)a =
~
2k24
2m2

+

√
(~ck4)

2 +m2
ec

4 −mec
2, (94)

(Eν − Ei)a =
~
2k27
2m6

−∆6 +

√
(~ck4)

2
+m2

ec
4 −mec

2,

(95)
and

(Eρ − Ei)a =
~
2k27
2m6

−∆6 +
~
2k24
2m4

. (96)

In obtaining (96) E1f is neglected. In the case of graph
(b)

(Eµ − Ei)b = (Eµ − Ei)a , (97)
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(Eν − Ei)b =
~
2k24
2m2

+
~
2k24
2m4

, (98)

and

(Eρ − Ei)b =
~
2k27
2m6

−∆6 +
~
2k24
2m4

. (99)

One can see from (96) and (99) that (Eρ − Ei)a =
(Eρ − Ei)b. Integrating over k7 and using the energy
Dirac delta

(Eρ − Ei)a = (Eρ − Ei)b =
~
2k24
2m4

− δa,b (100)

with

δa,b = ∆6 −
µ67

m6
∆ = ∆6 −

m7

m6 +m7
∆. (101)

If δa,b > 0 then in (90) and (91) resonance appears at kr4
given by (25). Let us introduce again the half width Γ of
the resonance with which the complex energy differences
read

(Eρ − Ei)a,C = (Eρ − Ei)b,C =
~
2k24
2m4

− δa,b− i
Γ

2
. (102)

The integration over k4

∣∣∣∣∣∣

∫
f23(k4)f45(k4)
~2k2

4

2m4

− δa,b − iΓ2

dk4

∣∣∣∣∣∣
(103)

= 4π2kr4m4f23(k
r
4)f14(k

r
4)/~

2,

with the aid of (86), where kr4 is given by (25).
(Now, because particle 1 is an electron gS(k11′ , k4′1′) ≃
gS(k1′ , k4′) = 1 .)

The energy differences in the denominators of (90) and
(91) will be

(Eν − Ei)a = δa,b

(√
2m4c2

δa,b
− 1

)
= ∆a, (104)

(Eν − Ei)b =
m4

µ24
δa,b = ∆b, (105)

and

(Eµ − Ei)b = (Eµ − Ei)a = δa,b

(
m4

m2
+

√
2m4c2

δa,b

)
= ∆ab.

(106)
Now the rate of the 4th-order processes is

W
(4)
fi = K

(4)
0 FG

χ (∆)

V
h2corr,3h

2
corr,5 (107)

where K
(4)
0 , FG and χ (∆) are determined by (23), (24)

and (27), kr4 is given by (25) and for hcorr,3 and hcorr,5
see (10) and (11).
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[8] J. Sólyom, Fundamentals of the Physics of Solids, Vol.II.,
Electronic Properties (Springer, Berlin-Heidelberg,
2009), pp.35-37.

[9] S. Focardi, R. Habel, and F. Piantelli, Nuovo Cimento
107, 163-167 (1994).

[10] S. Focardi, V. Garbani, V. Montalbano, F. Piantelli, and

S. Veronesi, Nuovo Cimento 111, 1233-1242 (1998).
[11] A. Battaglia et al., Nuovo Cimento 112, 921-931 (1999).
[12] J. Eckert, C. F. Majkzrak, L. Passell, and W. B. Daniels,

Phys. Rev. B 29, 3700-3702 (1984).
[13] J. D. Fast: Interaction of Metals and Gases, Vol. 1. Ther-

modynamics and Phase Relations (Philips Technical Li-
brary, 1965) p.68.

[14] A. Rossi, Method and Apparatus for Carrying out Nickel

and Hydrogen Exothermal Reactions, patent, Interna-
tional Publication Number: WO 2009/125444 A1, 15 Oc-
tober 2009.

[15] F. Raiola et al., Eur. Phys. J. A 13, 377-382 (2002);
Phys. Lett. B 547, 193-199 (2002); C. Bonomo et al.,
Nucl. Phys. A719, 37c-42c (2003); J. Kasagi et al., J.
Phys. Soc. Japan, 71, 2881-2885 (2002); K. Czerski et
al., Europhys. Lett. 54, 449-455 (2001); Nucl. Instr. and
Meth. B 193, 183-187 (2002); A. Huke, K. Czerski and
P. Heide, Nucl. Phys. A719, 279c-282c (2003); A. Huke
et al., Phys. Rev. C 78, 015803 (2008).

http://arxiv.org/abs/1303.1078

