Study of elemental changes in matter near incandescent lamps

A.G. Parkhomov Experimental design laboratory KIT

R.V. Karabanov Scientific Research Center SINTEZTECH

http://lenr.seplm.ru

ЖФНН

Оригинальные исследования

Журнал Формирующихся Направлений Науки номер 23-24(7), стр. 6-8, 2019 ©Авторы, 2019 статья получена: 29.04.2019 статья принята к публикации: 13.05.2019 http://www.unconv-science.org/n23/parkhomov1 @Association of Unconventional Science, 2019

LENR как проявление слабых ядерных взаимодействий

А.Г. Пархомов

Аннотация—Малая масса нейтрино (антинейтрино) делает возможным их интенсивную генерацию в результате соударений частиц вещества при тепловом движении. Возникающие нейтрино (антинейтрино) имеют энергию порядка 0,1 эВ. При такой энергии длина волны де-Бройля около 5 мкм. Это означает, что в ядерные слабые взаимодействия вовлекается огромное число атомов, что делает эффекты от ядерных трансформаций с участием нейтрино (антинейтрино) реально наблюдаемыми. Рассмотрение термической генерации нейтрино как основы ядерных трансформаций в процессе LENR позволяет объяснить целый ряд особенностей этого явления.

I. Введение

Обширный класс явлений, которые называют «низкоэнергетическими ядерными реакциями» (НЭЯР, LENR) или «холодными трансмутациями ядер» (ХТЯ) или устаревшим «холодным синтезом», на самом деле не являются ни низкоэнергетическими (энергии выделяется очень много), ни холодными (можно ли назвать процессы, в которых признаки LENR обнаружены при комнатной температуре (электролиз [7], биология [8], [9]), являются исключением из этого правила. Но на самом деле, для актов энергообмена как в электрохимии, так и в процессах клеточного метаболизма характерны именно энергии порядка 1 эВ.

Второй особенностью является то, что процессы LENR происходят в достаточно плотной среде (твердое, жидкое состояние или плотная плазма).

Третьей особенностью является большое разнообразие нуклидов, возникающих в процессе LENR.

Четвертой особенностью является отсутствие (или очень малая интенсивность) жестких ядерных излучений (нейтроны, гамма кванты), которое, казалось бы, неизбежно должно возникать при ядерных трансформациях.

Эти особенности могут указать путь поиска физического механизма LENR. Надо искать механизм, проявляющийся при энергиях больше 0,1 эВ, дающий большое разнообразие нуклидов, а изменения на ядерном

Письма

Журныл Формирующихся Направлений Науки помер 21(6), стр. -, 2018 (©Анторы, 2018 статья получееа: 12.11.2018 статья прявита к публякадяя: 12.11.2018 http://www.uncomv-sciencs.org/n21/ (©Association of Unconventional Science, 2018

жфнн

Многообразие нуклидов, возникающих в процессе холодных ядерных трансмутаций с участием электронов

А.Г. Пархомов

Аннотация—Сделан расчет возможных изменений элементного и изотопного состава вещества в результате энергетически выгодных перегруппировок нуклонов с участием электронов и нейтрино. Обнаружено 697082 возможных преобразований.

В процессах холодных ядерных трансмутаций, как показывают эксперименты, некоторый набор стабильных нуклидов переходит в другой набор стабильных нуклидов с выделением энергии. При этом не излучаются наружу нейтроны или заряженные частицы, т.е. суммарное число нуклонов и суммарный электрический заряд остается неизменным. Чтобы выявить принципиально возможные преобразования в ходе таких процессов, не обязательно вникать в физические механизмы протекания холодных ядерных трансмутаций (можно положить их в 'черный ящик'). На входе этого ящика - стабильные нуклиды, на выходе - тоже стабильные нуклиды плюс энергия. В простейшем случае, на входе один или два нуклида, на выходе один или два нуклида, причем число протонов и число нейтронов на входе равно числу протонов и нейтронов на выходе.

трино (антинейтрино), ситуация значительно лучше. Можно предположить два источника нейтрино (антинейтрино), инициирующих бета процессы. Во-первых, это космические нейтрино очень низких энергий ('реликтовые нейтрино'), которых в Космосе очень много. Как показано в [3], [4], [5], взаимодействие таких 'ультрахолодных' нейтрино (антинейтрино) с веществом намного эффективнее, чем в случае нейтрино (антинейтрино) высоких энергий, возникающих, например, в результате ядерных реакций на Солнце.

Другой возможный источник нейтрино ультранизких энергий – генерация пар нейтрино-антинейтрино в результате процессов в нагретом веществе, например, столкновений электронов. Если масса электронного нейтрино не выше 0,28 эВ [6], их рождение в веществе с температурой несколько тысяч градусов (в которой много частиц кинетической энергией порядка 1 эВ) вполне возможно.

Очень важно, что такие нейтрино имеют длину вол-

Nuclear transformations involving neutrinos, electrons and two nuclei

Rearrangement of nucleons with electron absorption: n + (A1, Z1) + (A2, Z2) + $e^{-} \rightarrow$ (A3, Z3) + (A4, Z4) + Q A3 + A4 = A1 + A2, Z3 + Z4 = Z1 + Z2 -1

Rearrangement of nucleons with the release of electrons: $n + (A1, Z1) + (A2, Z2) \rightarrow (A3, Z3) + (A4, Z4) + e^{-} + Q$ $A3 + A4 = A1 + A2, \quad Z3 + Z4 = Z1 + Z2 + 1$

The computer program found 263,546 variants of transformations of the first type and 433536 variants of the second type. This data is available as an EXCEL file.

Перегруг	пировки	1	(A1, Z1) ·	+ (A2, Z2	$) + e^{-} + \tilde{v}$	$\gamma \rightarrow \blacksquare \rightarrow ($	A3, Z3) +	(A4, Z4)	+ Q			
			A3 + A4 = A1 + A2, $Z3 + Z4 = Z1 + Z2 - 1$									
Элемент1	A1	Z1	Элемент2	A2	Z2	Элемент3	A3	Z3	Элемент4	A4	Z4	Энергия
	Г	ервая пар	ba				B	вторая пар	a			
н	1	1	В	10	5	He	4	2	Li	7	3	2,008303
н	1	1	Ar	36	18	He	4	2	S	33	16	1,219328
н	1	1	K*	40	19	н	1	1	Ar	40	18	1,512748
н	1	1	K*	40	19	He	4	2	Cl	37	17	3,105603
н	1	1	Ca	43	20	He	4	2	Ar	40	18	1,507159
н	1	1	Fe	57	26	He	4	2	Cr	54	24	1,618007
н	1	1	Ni	60	28	He	4	2	Fe	57	26	0,569145
н	1	1	Ni	61	28	He	4	2	Fe	58	26	2,793553
0	16	8	AI	27	13	D	2	1	К	41	19	0,477858
0	16	8	Si	28	14	н	1	1	Ca	43	20	4,878237
0	16	8	Si	28	14	He	4	2	К	40	19	4,872648
0	16	8	Si	29	14	н	1	1	Ca	44	20	7,536721
0	16	8	Si	29	14	He	4	2	К	41	19	6,490653
0	16	8	Р	31	15	He	4	2	Ca	43	20	6,795251
0	16	8	S	32	16	н	1	1	Ti	47	22	6,898647
Hg	196	80	Hg	199	80	Au	197	79	Hg	198	80	0,676267
Hg	196	80	Hg	199	80	Pt	192	78	TI	203	81	0,295286
Hg	196	80	Hg	199	80	Ir	191	77	Pb	204	82	0,148110
Hg	198	80	Hg	199	80	Au	197	79	Hg	200	80	0,149041
Hg	196	80	Hg	201	80	Au	197	79	Hg	200	80	1,155986
Hg	196	80	Hg	201	80	Pt	194	78	TI	203	81	0,927770
Hg	196	80	Hg	201	80	Ir	191	77	Pb	206	82	0,783389
Hg	196	80	Hg	201	80	Pt	192	78	TI	205	81	0,228218
Hg	196	80	Hg	204	80	Ir	193	77	Pb	207	82	0,117370
Hg	196	80	Hg	204	80	Pt	195	78	TI	205	81	0,020495

What is a "new type reactor"?

The source of the agent causing nuclear transmutation (hot metal or dense plasma) is located inside the thermal insulation. This allows high temperatures to be achieved with low energy consumption.

Fuel (a substance where processes with high heat release take place) is located at the periphery, which makes it possible to efficiently remove the released heat.

Reactor with incandescent lamp and KNO₃ solution

An incandescent halogen lamp (220V, 300W) is located in a quartz tube through which a 10% KNO₃ solution is pumped. The circulating solution is cooled by passing through the heat exchanger.

The reactor worked for 20 hours at a power consumption of about 450 W

Analysis of the elemental composition of KNO₃ before and after treatment in a reactor with an incandescent lamp (SINTEZTECH)

RFA - X-ray Fluorescence Analysis ICP MS - Mass Spectral Analysis Mass percent

	Ļ	Цо	После			
	RFA	ICP MS	RFA	ICP MS		
Li		0,007		0,12		
В		0,017		0,08		
Mg		0,050		0,55		
AI		0,010		3,30		
К	99,91		86,4			
Ca	<0,01		10,2			
Fe	<0,01		0,66			
Cu	0,018		2,04			
Cu		0,010		1,10		
Zn	<0,01		0,58			
Zn		0,010		0,13		
Ni	<0,01		0,048			

$$\begin{array}{l} {}^{\sim}\nu + \, {}^{14}N_7 \, + \, {}^{39}K_{19} + \, e^{\cdot} \rightarrow \, {}^{47}Ti_{22} \, + \, {}^{6}Li_3 \, + \, 0,067 \, M \ni B \\ {}^{\sim}\nu + \, {}^{14}N_7 \, + \, {}^{41}K_{19} + \, e^{\cdot} \rightarrow \, {}^{49}Ti_{22} \, + \, {}^{6}Li_3 \, + \, 1,941 \, M \ni B \\ {}^{\sim}\nu + \, {}^{14}N_7 \, + \, {}^{41}K_{19} + \, e^{\cdot} \rightarrow \, {}^{48}Ti_{22} \, + \, {}^{7}Li_3 \, + \, 1,047 \, M \ni B \\ {}^{\sim}\nu + \, {}^{14}N_7 \, + \, {}^{16}O_8 \, + \, e^{\cdot} \rightarrow \, {}^{26}Mg_{12} \, + \, {}^{4}He_2 \, + \, 12,074 \, M \ni B \\ {}^{\sim}\nu + \, {}^{14}N_7 \, + \, {}^{14}N_7 \, + \, e^{\cdot} \rightarrow \, {}^{26}Mg_{12} \, + \, {}^{1}H_2 \, + \, 9,120 \, M \ni B \\ {}^{\sim}\nu + \, {}^{14}N_7 \, + \, {}^{39}K_{19} \, + \, e^{\cdot} \rightarrow \, {}^{26}Mg_{12} \, + \, {}^{27}Al_{13} \, + \, 2,636 \, M \ni B \\ {}^{\sim}\nu + \, {}^{14}N_7 \, + \, {}^{41}K_{19} \, + \, e^{\cdot} \rightarrow \, {}^{11}B_5 \, + \, {}^{44}Ca_{20} \, + \, 0,263 \, M \ni B \\ {}^{39}K_{19} \, + \, {}^{1}H_1 \, \rightarrow \, {}^{40}Ca_{20} \, + \, 8,337 \, M \ni B \quad Louis \, Kervran \end{array}$$

If the conversion of potassium to calcium is due to weak interactions involving neutrinos ${}^{\sim}\nu + {}^{39}K_{19} + {}^{1}H_{1} \rightarrow {}^{40}Ca_{20} + {}^{\sim}\nu' + 8,337 \text{ M}3B$ the problem of overcoming the Coulomb barrier and the huge heat release is removed, since practically all the energy is carried away by neutrinos.

Pb-Sn reactor

300 watt halogen incandescent lamp, wrapped with lead-tin tape

Reactor with a cooling system.

Power consumption 480 watts. Excess power 50-80 W.

Duration of work 40 hours

Analysis of the elemental composition of the Sn-Pb alloy before and after treatment in a reactor with an incandescent lamp (SINTEZTECH)

	До)	После			
	RFA	ICP MS	RFA	ICP MS		
Li		0,0001		0,0053		
В		0,0012		0,012		
Na		0,13		1,16		
AI		0,001		0,024		
K		0,056		0,75		
Ca		0,018		0,34		
Fe	<0,01		0,27			
Fe		0,014		0,13		
Со		0,0002		0,014		
Ni	<0,01		0,073			
Ni		0,0006		0,018		
Cu		0,012		0,041		
Zn		0,0036		0,040		
Pd		0,0002		0,0005		
Ag		0,006		0,024		
Cd		0,0005		0,0011		
Sn	45,7	43,6	40,3	46,00		
W	<0,01		1,51			
W		0,00003		0,105		
Pb	54,2	44,5	57,9	31,4		
Bi		0,0005		0,057		

RFA - X-ray Fluorescence Analysis ICP MS - Mass Spectral Analysis Mass percent

> Especially increased content lithium sodium potassium aluminum cadmium gland calcium cobalt silver tungsten bismuth

Exothermic nuclear reactions between tin isotopes and lead isotopes with the participation of antineutrino and an electron, in which tungsten appears

		Перва	я пара			Вторая пара						20000500
Элемент1	A1	Z1	Элемент2	A2	Z2	Элемент3	A3	Z3	Элемент4	A4	Z4	энергия
Sn	114	50	Pb	204	82	La	138	57	W	180	74	23,509982
Sn	115	50	Pb	204	82	La	139	57	W	180	74	21,945072
Sn	116	50	Pb	204	82	La	138	57	W	182	74	18,722102
Sn	117	50	Pb	204	82	La	139	57	W	182	74	20,305642
Sn	117	50	Pb	204	82	La	138	57	W	183	74	17,725403
Sn	118	50	Pb	204	82	La	139	57	W	183	74	17,241026
Sn	118	50	Pb	204	82	La	138	57	W	184	74	15,890360
Sn	119	50	Pb	204	82	La	139	57	W	184	74	18,079371
Sn	120	50	Pb	204	82	La	138	57	W	186	74	13,086563
Sn	112	50	Pb	206	82	La	138	57	W	180	74	23,842525
Sn	114	50	Pb	206	82	La	138	57	W	182	74	23,591022
Sn	115	50	Pb	206	82	La	139	57	W	182	74	22,026111
Sn	115	50	Pb	206	82	La	138	57	W	183	74	19,445873
Sn	116	50	Pb	206	82	La	139	57	W	183	74	18,821772
Sn	116	50	Pb	206	82	La	138	57	W	184	74	17,471105
Sn	117	50	Pb	206	82	La	139	57	W	184	74	19,054645
Sn	118	50	Pb	206	82	La	138	57	W	186	74	14,052522
Sn	119	50	Pb	206	82	La	139	57	W	186	74	16,241533
Sn	112	50	Pb	207	82	La	139	57	W	180	74	25,893675
Sn	114	50	Pb	207	82	La	139	57	W	182	74	25,642172
Sn	114	50	Pb	207	82	La	138	57	W	183	74	23,061933
Sn	115	50	Pb	207	82	La	139	57	W	183	74	21,497023
Sn	115	50	Pb	207	82	La	138	57	W	184	74	20,146356
Sn	116	50	Pb	207	82	La	139	57	W	184	74	19,522255
Sn	117	50	Pb	207	82	La	138	57	W	186	74	16,588049
Sn	118	50	Pb	207	82	La	139	57	W	186	74	16,103672
Sn	112	50	Pb	208	82	La	138	57	W	182	74	24,688322
Sn	114	50	Pb	208	82	La	139	57	W	183	74	24,455448
Sn	114	50	Pb	208	82	La	138	57	W	184	74	23,104782
Sn	115	50	Pb	208	82	La	139	57	W	184	74	21,539872
Sn	116	50	Pb	208	82	La	138	57	W	186	74	16,398024
Sn	117	50	Pb	208	82	La	139	57	W	186	74	17,981564

Exothermic nuclear reactions between tin isotopes with the participation of antineutrino and electron, at which silver and cadmium appear

Первая пара						Вторая пара					Энергия	
Элемент1	A1	Z1	Элемент2	A2	Z2	Элемент3	A3	Z3	Элемент4	A4	Z4	МэВ
Sn	114	50	Sn	115	50	Ag	109	47	Te	120	52	0,260820
Sn	112	50	Sn	117	50	Ag	107	47	Те	122	52	0,027947
Sn	114	50	Sn	117	50	Ag	109	47	Те	122	52	1,229574
Sn	114	50	Sn	117	50	Ag	107	47	Те	124	52	1,201629
Sn	112	50	Sn	119	50	Ag	109	47	Те	122	52	0,586843
Sn	112	50	Sn	119	50	Ag	107	47	Те	124	52	0,558898
Sn	114	50	Sn	119	50	Ag	109	47	Те	124	52	1,760526
Sn	114	50	Sn	119	50	Ag	107	47	Те	126	52	1,060042
Sn	112	50	Sn	117	50	Cd	108	48	Sb	121	51	0,232876
Sn	114	50	Sn	117	50	Cd	110	48	Sb	121	51	2,142438
Sn	114	50	Sn	117	50	Cd	108	48	Sb	123	51	0,810402
Sn	112	50	Sn	119	50	Cd	110	48	Sb	121	51	1,499708
Sn	112	50	Sn	119	50	Cd	108	48	Sb	123	51	0,167671
Sn	114	50	Sn	119	50	Cd	112	48	Sb	121	51	2,570926
Sn	114	50	Sn	119	50	Cd	110	48	Sb	123	51	2,077234
Sn	114	50	Sn	122	50	Cd	113	48	Sb	123	51	0,568213
Sn	112	50	Sn	124	50	Cd	113	48	Sb	123	51	1,322724

Reactor with incandescent lamp and sodium bismuthate

In the starting material, besides bismuth, only platinum was found. After processing, the presence of a number of other elements was revealed

A halogen incandescent lamp with a rated power of 150 W is immersed in a glass vessel with 900 ml of water and 14 g of NaBiO₃. The duration of the experiment was 20 hours at a power consumption of 270 W. Excessive heat release with a power of about 25 W was determined from the rate of water evaporation.

X-ray fluorescence analysis results

	Исходный	Обработанный			
	Порошок	Осадок	Раствор		
S	<0,01	<0,01	6,167		
Ca	<0,01	0,231	<0,01		
Fe	<0,01	0,092	<0,01		
Cu	<0,01	<0,01	0,396		
Dy	<0,01	<0,01	0,451		
Та	<0,01	0,246	<0,01		
W	<0,01	0,289	88,371		
Pt	0,562	0,496	<0,01		
Bi	99 <mark>,4</mark> 98	98,646	4,615		

Examples of possible nuclear reactions in NaBiO₃ solution

 $^{209}\text{Bi}_{83}$ + $^{23}\text{Na}_{11}$ ----> $^{186}\text{W}_{74}$ + $^{46}\text{Ca}_{20}$ + 57,92 MeV ²⁰⁹Bi₈₃ + ²³Na₁₁ ----> ¹⁸⁴W₇₄ + ⁴⁸Ca₂₀ + 62,258 MeV $^{209}\text{Bi}_{83}$ + $^{23}\text{Na}_{11}$ + $^{16}\text{O}_{8}$ ----> $^{184}\text{W}_{74}$ + $^{64}\text{Ni}_{28}$ + 80,254 MeV $^{209}\text{Bi}_{83} + ^{23}\text{Na}_{11} + ^{16}\text{O}_{8} \xrightarrow{\text{--->}} ^{186}\text{W}_{74} + ^{62}\text{Ni}_{28} + 76,774 \text{ MeV}$ $^{209}\text{Bi}_{83} + ^{23}\text{Na}_{11} + ^{14}\text{N}_{7} \xrightarrow{\text{--->}} ^{184}\text{W}_{74} + ^{62}\text{Ni}_{28} + e^{-} + 87,140 \text{ MeV}$ $^{209}\text{Bi}_{83}$ + $^{23}\text{Na}_{11}$ + $^{14}\text{N}_7$ ----> $^{186}\text{W}_{74}$ + $^{60}\text{Ni}_{28}$ + e⁻ + 81,748 MeV $^{209}\text{Bi}_{83} + ^{23}\text{Na}_{11} + ^{14}\text{N}_{7} \xrightarrow{\text{--->}} ^{182}\text{W}_{74} + ^{64}\text{Ni}_{28} + e^{-} + 90,033 \text{ MeV}$ Neutrinos (antineutrinos) participating in reactions are omitted

Analysis of changes in the elemental composition in the substance around incandescent lamps showed a significant increase in the content of a number of chemical elements.

The presence of such changes, along with the detected excess heat release, proves that incandescent metals emit an agent that initiates nuclear transformations in the surrounding substance.

The correspondence of the detected transformations to possible nuclear reactions initiated by neutrinos (antineutrinos) indicates that these agents are neutrinos and antineutrinos.

«The variety of nuclides arising in the process of cold nuclear transmutations with the participation of electrons» (ZhFNN, 21-22 (6), 2018, pp. 131-132. IJUS, Issue E3, pp. 32-33, 2018)