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Abstract 

The mean value theorem for integrals has been applied in construction of a base curve for non-equilibrium 

thermokinetic oscillations.  Following discretization of the experimental periodic time series to form segments 

that approximately correspond to the oscillatory period, the mean value was calculated for each of them.  The 

values so obtained were interpolated and the new non-oscillatory curve so constructed turned out to have the 

properties enabling it to be used as a baseline for the oscillatory component of the original thermokinetic time 

series.  Crucially, both the area under the new curve and that under the original time series were strictly 

identical.  The pointwise subtraction of the new base from the original curve yields another oscillatory time 

series that may be considered as the oscillatory component extracted from the experimental thermokinetic data.  

The mathematical basics for the method has been outlined.  Two experimental thermokinetic time series 

resulting from oscillatory sorptions of H2 and D2 in the metallic Pd powder has been analyzed using the 

procedure, showing certain new empirical aspects that could not have been found otherwise. 

1.  Introduction. 

In most of experimental measurements of oscillatory behaviour, the resulting time series turn 

out to oscillate around the abscissa axis and it is therefore natural to consider the x-axis to be 

a base, or the zero-line for such oscillations.  The oscillatory chemical reactions, however, do 

not oscillate in such a pendulum-like manner, since they occur far from equilibrium.
1
  

Likewise, the thermokinetic oscillations proceeds in systems that usually remains far from 

equilibrium throughout the experiment and so the calorimetric time series so recorded may be 

running entirely above the abscissa axis, if the reaction is exothermic (cf. Figure 1 A and B).  

In spite of this upward shift, the frequency of such time series may be readily determined by 

usual Fourier transforming.
2,3

  Yet their amplitude may be difficult to establish, since there is 

no obvious baseline for them to be used.  Also, the very notion of the exothermic vs. 

endothermic peaks become ambiguous, in fact, one can only talk about a periodic variations 

of exothermicity.  To conclude about the amplitude, therefore, a transformation needs to be 

applied in order to extract the oscillatory component in a way to have them oscillating around 

the zero axis, with the latter to be used as baseline. 

In the current article, we report on a method devised for finding a base curve along such non-

equilibrium oscillatory time series that would play the role of zero-line, yet not be identical 

with the abscissa axis.  We seek to construct a curve that would model a “flat”, averaged rate 

of heat evolution in oscillatory reaction, in such a way as to be possibly used as a virtual 

base-line for the thermokinetic oscillations actually recorded.  The construction is based on 

mean values, in the sense of the mean value theorem for integrals, found individually for each 

separate period of oscillations and subsequently interpolated to form the required curve.  

                                                           
1 The following article has been submitted to Chaos: An Interdisciplinary Journal of Nonlinear Science 
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Mathematically, the procedure begins with discretization of the experimental time series, 

using the inflection points as the time limits for the ensued segments, each covering an extent 

of time roughly corresponding to oscillation period, followed by applying the integral mean 

value theorem to each of these segments separately.  The so calculated mean values may be 

then used as a set of fit points to define a new, non-oscillatory curve (cf. Figures 1 A and B, 

blue line), purportedly the model for the hypothetical “flat” heat evolution.  As a matter of 

validation, both the modeled flat base-line and the experimental oscillatory time series have 

to yield the same areas on integration (cf. Figures. 1 A and B), because the total heat of 

reaction has to be conserved, irrespective of whether oscillatory or not.  The pointwise 

subtraction of the two lines, in turn, yields yet another oscillatory curve that represents the 

oscillatory component extracted from the original thermokinetic time series.  The total area 

under this extracted oscillatory curve must be zero and, as it turns out, it also preserves the 

basic topology of the original data (cf. Figures 1 D). 

In illustrating this method, we employ the results of two experiments with the oscillatory 

sorption of hydrogen or deuterium in the Pd powder.  The observations of thermokinetic 

oscillations accompanying the process of sorption of H2 or D2 in metallic Pd was reported 

previously in refs. 2-5.  Detection of oscillations was enabled by adding a 10 % admixture of 

an inert gas (N2, He, Ne, Ar, Kr) to the flow of H2(D2) prior to its contact with Pd powder.  

While the inert admixture has been crucial for the thermokinetic oscillations to be observed, 

the area under the time series recorded has been strictly invariant, with the heat evolved 

always in agreement with the standard thermodynamic heat of the process.
2,3

  Nevertheless, 

the oscillation frequency turned out to be a linear function of the first ionization potential and 

the square root of atomic mass of the inert gas actually used as the admixture to H2(D2).
3
  

Here we report that the extraction of the oscillatory component of the thermokinetic 

oscillations recorded in the H2/N2/Pd and D2/N2/Pd systems reveals new features that could 

not have been observed before.  We further discuss this findings in terms of both their 

mathematical and physical significance. 

2.  Experimental. 

The coarse grained palladium powder (purity 99.999%, particle size 0.25–2.36 mm), used for 

the sorption of H2, and the fine grained Pd powder of granularity less than 75 μm, used for the 

sorption of D2, have both been supplied by Aldrich Co..  The following gases: nitrogen 

(99.999%), hydrogen (99.999%) and deuterium (99.9 %) were provided by Linde Gas Poland 

S. A.  A Microscal gas flow-through microcalorimeter, model FMC 4110, has been used for 

experiments.  The design and operation of this instrument has been described in detail in ref. 

6.  The experimental procedure leading to periodic oscillatory sorption of H2(D2) in Pd has 

been described in detail in ref. 2 and 3.  The instrument measures the rate of heat evolution 

accompanying a solid–gas interaction under isothermal conditions.  A sample of Pd powder is 

placed in a minute microcalorimetric cell (7 mm in diameter, ca. 0.15 cm
3
 in volume) and the 

measurement is carried out in a flow-through mode.  The cell is located centrally within a 

much larger metal heat sink.  The latter ensures a steady removal of the total of evolving heat 

and prevents its accumulation within the cell.  As a reaction is running within the cell, a 

minute difference of temperatures, between the vicinity of the cell and the locations closer to 
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the outer edge of heat sink, can be measured continuously by a system of thermistors, 

appropriately located within the latter.  The oscillatory kinetics arises after a short initial 

period of the exposure of Pd powder to H2(D2)/N2 mixture and ceases on saturation of the 

sample after ca. 20 - 30 min (cf. Figures 1A and B), i.e., on reaching the state of dynamic 

equilibrium between the hydride and the H2(D2) in the gas phase.  The row time series are 

further processed using a calibration factor (CF), obtained for each experiment by in situ 

calibration, to yield the final calorimetric curve representing the rate of heat evolution vs. 

time. 

3.  Outline of the concept and its application. 

3.1.  Construction of the mean value curve.  We will apply the mean value theorem for 

integrals to our experimental thermokinetic time series q(t) following a discretization 

procedure.  The latter consists of dividing of the whole time series into segments 

approximately corresponding to the periods of oscillations.  Having found the mean value for 

each segment, we used them to construct a new curve, further referred to as the mean value 

curve. 

The mean value theorem states, that for a function f(x) which is continuous and real-valued 

within an interval [a,b], there exists a value c  (a,b) such, that the product f(c)(b - a) equals 

to the area under the f(x) curve within the (a,b) interval (cf. Figure 2):
7
  

 𝑓(𝑐)(𝑏 − 𝑎) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 (1) 

Consider the experimental thermokinetic oscillations q(t) represented in Figure 1A or B (the 

red lines).  After having it divided into a range of segments, we now consider each segment 

of this time series as a continuous function q(t), q: [t1,t2] → ℝ, but in addition we also assume 

that q(t) is twice differentiable within the interval [t1,t2].  The latter condition is necessary, 

since the limits t1 and t2, are each determined as the inflection points in the ascending parts of 

the oscillatory curve q(t), marked by the red dots in Figure 1 C.  Their positions correspond 

of the points for which the second time derivative is zero, d
2
q/dt

2
 = 0 (cf. cyan line in Figure 

1 C) and the first time derivative dq/dt has a maximum (not shown).  With the limits t1 and t2 

so defined, each segment approximately corresponds to a single period of oscillations.  Using 

those points as the integral limits, a function mean value M = q(tM) can be determined for 

each individual segment:  

 𝑀 =
1

𝑡2−𝑡1
∫ 𝑞(𝑡)𝑑𝑡

𝑡2

𝑡1
 (2) 

Apart from the M value, one needs also to determine its abscissa tM, in order to gain a fit 

point (tM, M) for the mean value curve.  The mean value theorem guarantees that the value M 

must be somewhere in the segment of the experimental time series between q(t1) and q(t2), 

but it does not determine its abscissa tM, only saying that tM  (t1,t2).  Ideally, one could 

determine tM for all segments.  However, it would be inefficient to try to find all the tM values 

in all segments one by one manually.  Instead, as a more practical approach, we approximate 

the abscissa of M as the midpoint between t1 and t2  

 t*i = (t2i – t1i)/2 (3) 

This is illustrated in Figure 1 C.  Effectively, using formula (3) recurrently in each ith 

segment, we define a series of midpoints having coordinates (t*1, M1), (t*2, M2,) ... (t*n, Mn,), 
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corresponding to the succession of segments, from 1 to n (cf. blue dots in Figures 1 A and B, 

the mean values are also listed in Tables I and II).  These points are evenly distributed, 

separated by an extent of time approximately corresponding to the oscillation period (cf. blue 

dots in Figure 1 D).  In general, they lay close, but not exactly on the curve q(t).  Using them 

as fit points for interpolation produces a new (non-oscillatory) curve h(t), running midway 

across the calorimetric time series (cf. the blue lines in Figures 1A, B and D).  As the values 

t* are used to approximate the values tM, therefore the curve h(t) (based on t* values) is an 

approximation of the proper mean value curve (that would be based on tM values).  Now we 

need to test how good this approximation is. 

The validity of the approximation of the mean value curve by the curve h(t) can be confirmed 

both experimentally and mathematically.  The experimental evidence consists of checking 

whether the areas under the curves q(t) and h(t) are equal.  Physically, the mean value curve 

represents a hypothetical time-evolution of heat that the system would produce if the reaction 

proceeded in a non-oscillatory manner, under the reaction conditions otherwise identical to 

those of the oscillatory process.  As a “sanity check”, to assess the closeness of the h(t) 

approximation, a condition has to be used, that the total heat evolution represented by the 

area under this hypothetical non-oscillatory curve must be equal to that under the actual 

oscillatory time series.  Indeed, the integration confirms that these areas are practically equal, 

found to be 35652 and 35643 mJ, respectively under the curves q(t) and h(t) in the sorption of 

deuterium in Pd (cf. Figure 1 A) and, similarly, 27976 and 27970 mJ in the sorption of 

hydrogen (cf. Figure 1 B).  Thus the experiments confirm the validity of using the curve h(t) 

as approximation of the mean value curve.  This finding also confirms experimentally the 

validity of using formula (3), i.e., the approximation of tM by t*.  We will further analyze the 

mathematics behind using formula (3) in Section 3.3. 

3.2.  Extracting the oscillatory component by the pointwise subtraction of h(t) from q(t).  

The pointwise subtraction of the mean value curve h(t) from the thermokinetic oscillations 

q(t) yields a new oscillatory curve g(t) = q(t) – h(t).  Figure 1 D illustrates this operation for 

an enlarged fragment comprising three successive segments of the thermokinetic oscillations.  

The blue dots represents the corresponding three mean value points approximated with 

formula (3).  Figures 1 E and F shows two examples of such pointwise subtraction for the 

entire experimental time series recorded in the sorption experiments in the Pd/D2/N2 (Figure 

1 E) and the Pd/H2/N2 system (Figure 1 F).  To achieve an effect of juxtaposition, the new 

g(t) curve is shown as a fill plot representing oscillations around the zero baseline, against the 

original time series q(t).  An important requirement to be satisfy, while carrying out the 

numerical interpolation of the mean values M, is that the number of points in the resultant h(t) 

curve must be equal to that in the experimental q(t) time series.  It is clear, that the pointwise 

subtraction preserves the frequency of thermokinetic oscillations.  Hence, the g(t) curve 

represents the extracted oscillatory component of the original thermokinetic time series q(t).  

Expectedly, since the areas under q(t) and h(t) are identical, the total area under the curve g(t) 

should be zero and this is indeed the case.  This aspect will be discussed in more detail in 

Section 3.4 (cf. also Figure 4). 
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Figure 1.  A and B): The approximated mean value curves h(t) plotted against the thermokinetic 
oscillations q(t), recorded, respectively, in Pd/D2/N2 and Pd/H2/N2 sorption experiments.  C): A single 
segment has its limits at inflection points t1 and t2 (red dots) identified with the zeros of the second 
derivative d

2
q/dt

2
 curve (cyan).  The fit point (blue dot), for the curve h(t) to pass through, is 

established at the center, (t2 - t1)/2.  D): A succession of three mean value fit points (blue dots), shown 
against the ensuing oscillatory curve g(t) = q(t) - h(t).  Note, that g(t) (green) is plotted against y2 axis, 
shifted with respect to y axis, but of the same scale.  E and F): The extracted oscillatory curves g(t) 
(filled green) retain the original frequency of q(t). 
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3.3.  Mathematical underpinning of using formula (3).  (Remark on notation: To avoid an 

excessive use of subscripts in the integration limits, for the sake of visual clarity of equations, 

the letters a, b and c are used in this section (also in Figure 2), instead of, respectively, t1, t2 

and tM used elsewhere in this work.) 

Mathematically, using formula (3) to approximate the positions of mean values can be 

justified by the following reasoning.  Rewriting equation (1) we obtain  

 ∫ 𝑓(𝑥)𝑑𝑥 − 𝑓(𝑐)(𝑐 − 𝑎) =  − ∫ 𝑓(𝑥)𝑑𝑥 + 𝑓(𝑐)(𝑏 − 𝑐)
𝑏

𝑐

𝑐

𝑎
. (4) 

Point c divides the interval (a,b) into two partitions (a,c) and (c,b) (cf. Figure 2).  Formula (4) 

shows, that the area between the curve f(x) and the line y = f(c) over the partition (a,c) and the 

area between those lines over the partition (c,b) are equal in absolute value, but opposite in 

sign (cf. cyan shading in Figure 2).  It can be shown, however, that such relation holds for 

any point that lays on the line y = f(c) over the interval (a,b), i.e., having an abscissa d  

(a,b), shifted from c by any |∆𝑐|.   Splitting the definite integrals in (4) we obtain:  

 ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑑
− 𝑓(𝑐)(𝑐 − 𝑎) =  − ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥 +

𝑐

𝑑
𝑓(𝑐)(𝑏 − 𝑐)

𝑏

𝑑

𝑑

𝑎
 (5) 

After subsequent addition to both sides of (5) the terms –f(c)d and f(c)c and after cancellation 

we have  

 ∫ 𝑓(𝑥)𝑑𝑥 − 𝑓(𝑐)(𝑑 − 𝑎) =  − ∫ 𝑓(𝑥)𝑑𝑥 + 𝑓(𝑐)(𝑏 − 𝑑)
𝑏

𝑑

𝑑

𝑎
 (6) 

which can be rewritten as  

 ∫ 𝑓(𝑥)𝑑𝑥 − 𝑓(𝑐) ∫ 𝑑𝑥
𝑑

𝑎
=  − ∫ 𝑓(𝑥)𝑑𝑥 + 𝑓(𝑐) ∫ 𝑑𝑥

𝑏

𝑑

𝑏

𝑑

𝑑

𝑎
 (7) 

or 

 ∫ [𝑓(𝑥) − 𝑓(𝑐)]𝑑𝑥 =  − ∫ [𝑓(𝑥) − 𝑓(𝑐)]𝑑𝑥
𝑏

𝑑

𝑑

𝑎
. (8) 

The arbitrary point d  (a,b) divides the interval (a,b) into two partitions,(a,d) and (d,b).  The 

areas enclosed between the curve f(x) and the line y = f(c) within those intervals, respectively, 

represented by LHS and RHS of (8), are equal in absolute value, but opposite in sign. 

The relation (8) holds irrespective of selection of d.  It follows, that the definition of t* 

according to formula (3) does not violate the conditions of the mean value theorem (1), in 

fact, t* is a special case of d = (b - a)/2.  Hence, the mean value M once calculated using 

formula (2), defines a horizontal line, that, technically speaking, can be used as a lifted x-axis 

from which to integrate the function q(t). 

It can further be shown, that both sides of (8) attain maximum for x = c.  To see this, note, 

that since d can be selected anywhere within the interval (a,b), the expression (8) can be 

rewritten using the integrals with variable upper limit u, instead of the fixed d  

 ∫ [𝑓(𝑥) − 𝑓(𝑐)]𝑑𝑥 =  − ∫ [𝑓(𝑥) − 𝑓(𝑐)]𝑑𝑥
𝑏

𝑢

𝑢

𝑎
 (9) 

or 

 ∫ [𝑓(𝑥) − 𝑓(𝑐)]𝑑𝑥 =  ∫ [𝑓(𝑥) − 𝑓(𝑐)]𝑑𝑥
𝑢

𝑏

𝑢

𝑎
 (10). 

Now we differentiate both side with respect to u and equate the result to zero,  
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𝑑

𝑑𝑢
∫ [𝑓(𝑥) − 𝑓(𝑐)]𝑑𝑥 =  

𝑑

𝑑𝑢
∫ [𝑓(𝑥) − 𝑓(𝑐)]𝑑𝑥 = 0

𝑢

𝑏

𝑢

𝑎
 (11) 

yielding 𝑓(𝑥) = 𝑓(𝑐), which is only true for x = c.  

 

Figure 2.  The mean value theorem for integrals (equation(1)) makes it possible to find a mean value 

point f(c) that exists in the segment of the curve f(x) over the interval (a,b), but it does not determines 

its abscissa c.  The cyan-shaded partitions above and below the mean value f(c) are equal, 

irrespective of whether the division point for the segment (a,b) is c or d.  The relation (8) shows that 

the same holds for any x  (a,b) (cf. Section 3.3).  For the sole purpose of constructing the mean 

value curve, the abscissa of the mean value f(c) can be approximated by a midpoint d = (b - a)/2. 

3.4.  Topological analysis of the pointwise subtraction of h(t) from q(t).  The relation (8) 

reappears in Figure 3 illustrating its implementation to actual experimental data.  Focusing on 

a single segment of q(t), the figure represents topologic details of extracting of the oscillatory 

component g(t) (in green) from the calorimetric time series q(t) (in red).  The single segment 

in Figure 3 A is delimited by the abscissa values t1 and t2 of the consecutive inflection points 

in q(t), marked as red dots.  The blue dot marks the point of coordinates (t*, M), with t* = (t2 

– t1)/2, which is the fit point for the interpolated curve h(t) (in blue) to pass through in this 

segment.  Note, that this fit point is shifted by t from the actual position tM of the mean 

value M (an analogue to c in Figure 2).  The resultant green line g(t) = q(t) – h(t) is plotted 

against the right hand side axis y2, adjusted in such a way that the zero in the y2 axis 

corresponds to M in the y axis, with both axes y and y2 having the same scale.  Physically, 

both the axes y and y2 show the rate of heat evolution in mW units.  Since q(t) represents the 

rate of heat evolution as a function of time, so the red shading represents the total heat 

evolved during the period from t1 to t2.  The cyan shading illuminates the area between the 

curve q(t) and the line y = M, yielded by integration of the difference [q(t) – M] from t1 to t2.  

Similarly to the analogous area in Figure 2, the “cyan area” in Figure 3 A is also divided into 

y

x

f(x)

c

f(c)

a bc d

mean value
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two partitions, respectively within intervals (t1,t*) and (t*,t2).  Physically, it may be 

considered as a virtual flow of energy above and below the mean value level.  Relation (8) 

applies and, accordingly, the areas of these (cyan) partitions in Figure 3 A are equal in 

absolute value, but opposite in sign.  By virtue of (8), this must be true for each segment of 

the time series q(t).  So there is a detailed balance within each segment between the virtual 

energy production above and below the mean value.  This is visualized by histograms in 

Figure 4 A and C.  Each double bar represents a segment.  The black half represents the 

integral of [q(t) – M] within interval (t1,t*), yielding the energy above the mean value M.  The 

cyan half represents the absolute value of this integral within (t*,t2), yielding the energy 

below M.  The absolute values were used to enable visual comparability.  In both histograms 

(respectively for the sorption of D2 and H2 in Pd), the pairwise black-cyan equivalence is 

evident for entire experiments.  The exact data used to create the histograms in Figure 4 are 

listed in Tables I and II in columns (b) and (c).  These data are an experimental manifestation 

of relation (8). 

In Figure 3 B, the green shading have been added to accentuate the area under the extracted 

oscillations curve g(t), plotted against the y2 axis.  Calorimetrically, it can be viewed as 

consisting of the exothermic and endothermic peaks, with respect to a now linear baseline, 

i.e., the g(t) = 0 line.  A visual inspection suggests that the exo and endo “green” peaks 

should be topologically related to the positive and negative “cyan” lobes of the [q(t) – M] 

area (the cyan shaded areas are mostly overlapped here, but fully visible in Figure 3 A).  It 

can be shown that both the “cyan” and the “green” features are indeed approximately equal in 

their areas.  But in order to prove this relation, we need first to identify an additional relation 

between the area of those green peaks, on one hand, and yet another feature, namely: the area 

enclosed between the segments of the curves q(t) and h(t) limited by points A and B marked 

in Figure 3 C. 

Figure 3 C shows the groundwork of the pointwise subtraction of h(t) from q(t) demonstrated 

for a single segment AB.  Note, that this operation can be viewed as a transformation of the 

area enclosed between the AB segments of the curves q(t) and h(t) into the area under the CD 

segment of the curve g(t) (plotted against the y2 axis).  Each point in the q(t) curve (red 

crosses) undergoes a vertical shift (downward or upward) to a new position, forming the new 

curve g(t) (green open dots).  It can be shown, that for any point X in the AB segment of the 

curve q(t), the absolute value of its shift q(tx) – g(tx) (upward or downward) to its new 

position X’ in the CD segment of g(t) is a linear function of its abscissa tx within the interval 

[tA,tB].  The index “x” indicates, that the variable tx is only defined within a single segment.  

In fact, each point in the area between the graphs q(t) and h(t) undergoes such shift, to form 

the area under the g(t).  Therefore, for any such point, having the abscissa tx  [tA,tB], the 

pointwise subtraction can be written as  

 g(tx) = q(tx) – h(tx) (12) 

Note, that the AB segment of h(t) can be approximated as a straight line.  Therefore, since 

h(tx)/(t* – tx) = tgθ, and using the approximating tgθ = θ we have  

 g(tx) = q(tx) – θ (t* – tx) (13) 

so for any point tx the difference between the corresponding values of the curves q(t) and g(t) 
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is a linear function of tx:  

 q(tx) – g(tx) = – θ tx + θ t*. (14) 

Hence the operation of the pointwise subtraction may in fact be viewed geometrically as a 

vertical shear of the area enclosed by the AB sections of the h(t) and the q(t), at a small shear 

angle –θ.  Accordingly, the abscissa is being preserved t’ = t and the ordinate transformed 

linearly y’ = –θ t + y.  In matrix notation we have  

 [
𝑡′
𝑦′

] = [
1 0

−𝜃 1
] [

𝑡
𝑦] (15) 

and since the determinant of the transformation matrix is one,  

 |𝑑𝑒𝑡 |
1 0

−𝜃 1
|| = 1 (16) 

therefore the transformation in Figure 3 C is area preserving.  It thus preserves the relations 

between the concave and convex partitions of the area enclosed by the AB sections of q(t) 

and the AB section of h(t) within the interval [tA, tB].  Now, the areas of these concave and 

convex partitions approximately correspond to the areas of the “cyan” lobes (positive and 

negative) within the interval [t1, t2] in Figure 3 A and B.  For small deviation between the 

limits of these intervals [t1, t2] and [tA, tB], this correspondence is close enough for relation (8) 

to hold also for the area enclosed by the AB sections of q(t) and h(t), and hence by virtue of 

(8) the concave and convex partitions are approximately equal to one another in absolute 

values.  This relation, therefore, must be also preserved between the exo and endo peaks in 

the curve g(t), as they are yielded by the area preserving vertical shear.  Hence the important 

property of the resultant curve g(t) turns out to be the pairwise equivalence of the subsequent 

exo- and endo-peaks, which also can be demonstrated experimentally (cf. Figure 4 B and D).  

In the Figure 4 B the filled plot of the g(t) curve (green) is placed alongside the curve 

representing the integrals of g(t)dt with variable upper limits (magenta).  The total green area, 

that is, the sum of all exo and endo peaks in the g(t) curve, is balanced to zero and this is 

reflected in the magenta line, i.e., the integral curve, reaching zero at the end.  Remarkably, 

however, the magenta line hits the zero every time that a new period starts in g(t), as it is 

illustrated in the enlarged fragment in Figure 4 D.  This is an evidence of detailed exo/endo 

balance being kept in each individual period of the extracted oscillatory curve g(t).  Tables I 

and II list the exact values of the integrated exo and endo peaks in the curves g(t) in columns 

(d) and (e). 
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Figure 3.  Topology of the pointwise subtraction of the approximated mean value curve h(t) from the 

thermokinetic curve q(t) illustrated for a single segment.  A) The abscissa for the mean value M 

approximated as t*and used to build the curve h(t) subtracted from the q(t).  The “cyan” areas 

between q(t) and the horizontal line q = M are equal but of opposite signs.  B) The affinity of the 

“cyan” areas to the “green” peaks of the extracted oscillatory curve g(t).  C) The q(t) – h(t) subtraction 

may be viewed as a vertical shear of the area enclosed by the AB sections of the h(t) and the q(t), at 

a small shear angle –θ, yielding the two peaks of the curve g(t). 
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Figure 4.  The experimental demonstration of formula (8).  The histograms in panels A and C 

illustrate the equilibrium of the “cyan” partitions of Figure 3 A (i.e., the cyan shaded areas above and 

below the mean value M in Fig. 3 A) for the entire q(t) curves in Pd/D2 (panel A) and Pd/H2 (panel C).  

Each of the black/cyan double bars corresponds to a single segment of q(t); for swift comparison, the 

cyan bars are in absolute values.  The panels B and D show the extracted oscillatory curves g(t) 

(green) along with their (cumulative) integrals with variable upper limit (magenta), evidencing the 

detailed exo/endo balance being maintained in each individual periods of the g(t) curve.  Panel B 

shows the entire Pd/D2 sorption; panel D shows a 400 s fragment of the Pd/H2 sorption. 
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4.  Discussion. 

The area under the oscillatory curve g(t) is expectedly zero, within a numerical/experimental 

error.  Mathematically, this is the result of the fact that the areas under both the curves q(t) 

and h(t) are equal (cf. Figures 1A, B).  Physically, this is because the total heat to evolve in 

the sorption process is invariant.  The nonlinear kinetics that manifests itself in the oscillating 

rate of heat evolution cannot change the reaction thermodynamics and, therefore, cannot 

change the total amount of heat evolved in the reaction.  Thus the g(t) curve only extracts the 

oscillatory component from the thermokinetic time series in a way preserving the total 

evolved heat.  The area under the g(t) curve must eventually sum up to zero (cf. Figure 4 B), 

since this is necessary for thermodynamic foundation of the reaction to be preserved. 

Apart from the total balance, however, there is also maintained a detailed balance of energy 

within each individual oscillatory period.  Figure 3 B illustrates this effect for a single period, 

evidenced by the equivalence of the green shaded areas; Figures 4 B and D demonstrate the 

pairwise equivalence of exo- and endo-peaks in the entire g(t) curves.  Mathematically, this 

pairwise equivalence is the consequence of relation (8).  Physically, it is related to the 

technical details of the discretization that was applied to the experimental time series q(t).  In 

this regard, it is an effect of using the inflection points to define the limits of the oscillatory 

periods in the q(t) curve, for which subsequently the mean values were individually 

calculated.  Adopting this procedure was dictated by our previous experience with the Pd/H 

system, suggesting that the positions of inflection points in the thermokinetic oscillations are 

closely related to the mechanism of the oscillatory sorption.  In particular, in the experiments 

using the potentiostatic and the microcalorimetric method combined, we found that the 

variations of the electric current in the Pd sample measured in situ on its exposure to 

hydrogen, correlated with the periodicity of the accompanying heat evolution.
5
  We recorded 

strong electric perturbations coinciding with the concave downward parts of the oscillatory 

heat evolution, whereas the convex (concave upward) parts, in contrast, only saw a stable 

current in the Pd powder.  Crucially, the electric perturbations were roughly spanning the 

intervals between the inflection points of the thermokinetic time series (cf. Fig. 5 in ref. 5).  

Thus the electrical instabilities turned out to be associated exclusively with the events of 

intense heat production.  During the less energetic episodes, on the other hand, the current 

was not disturbed.  It has been concluded, that the thermokinetic oscillations reflects a two-

step mechanism of which only the first step involves a high rate production of energy, but 

occurs alternatingly with the second a less energetic one.  Apparently, these two steps are 

reflected in the pairwise structure of the oscillatory curve g(t).  Their different exothermicity 

are related to the detailed exo/endo balance within each period of the g(t) oscillations.  Still 

there remains an open question, as for the nature of a book-keeping mechanism that must be 

active throughout the entire oscillatory sorption, making sure that the detailed balance of the 

oscillatory component of energy is being maintained in each individual period of oscillations.  

While the exact nature of this mechanism in not known, nevertheless certain features of it 

may be postulated.  First, that it is acting in a short range.  Second, that it must support 

synchronization of a body of micro-oscillators. 
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As for being short-ranged, it may be argued, that the book-keeping mechanism has to keep 

track of the expenditure of the oscillatory energy apparently without using any memory.  

Likely, therefore, it is operating at a rather elementary level, i.e., that of single Pd particles, 

or, even more underlying, a level of m-size domains.  In fact, the formation of domains 

turns out to be often accompanying oscillations in chemical reactions and this notion is now 

supported by a considerable body of research.
8-14

  Also the mechanism postulated in ref.
 
5 

rationalizes the oscillatory heat evolution in terms of the domain formation on the Pd surface.  

Accordingly, these domains contain the adsorbed molecules of H2, and the periodicity of 

sorption results from a criticality of the dissociation of the adsorbed H2ads molecules into the 

atomic hydrogen species.  It means, that it requires a certain critical amount of H2ads to be 

accumulated in a domain to initiate their dissociation.  Once initiated, the dissociation process 

is fast and energetic and it is thus responsible for he exothermic peaks in the thermokinetic 

oscillations.  The intermittent periods of adsorption and accumulation of H2ads, on the other 

hand, correspond to the periodic lack of heat production (and also to the stability of electric 

current).  Within this framework, it should be enough for the book-keeping mechanism to be 

operative over a short range, actually corresponding to a m-size domain on the Pd surface. 

A synchronization of those Pd domains, viewed as micro-oscillators, is yet another aspect 

that seems to confirm the operation of the book-keeping mechanism at elementary level.  The 

model proposed in ref.
 
5 involves the periodicity as an intrinsic facet of the reaction 

mechanism, indicating that the thermokinetic oscillations are native to the process of 

sorption, rather than being induced by any external interference.  If, in spite of this, the 

oscillatory kinetics in the Pd/H system is being detected rather occasionally, it is in fact a 

deficit of the synchronization that is to be blamed for that scarcity.  The powdered Pd sample 

exposed to hydrogen consists of a large number of metallic particles, each of them reacting 

individually.  The thermokinetic oscillations of such powdered sample can only be detected 

and measured if the oscillations in the individual domains are phase-synchronized.  This 

means, that they all must oscillate with the same frequency.  We reiterate, that the sorption of 

hydrogen in each domain proceeds in a series of successive uptakes, each accompanied by a 

heat evolution episode, and that the rate of the two are strictly related.
5
  The synchronization 

of both those rates between all the domains is necessary for the thermokinetic oscillations to 

be detected macro-kinetically, that is, for the oscillatory curves such as the q(t) to be recorded 

and for the g(t) to be subsequently extracted.  Arguably, the equivalence of the successive 

exo and endo peaks in the g(t) curve must also be maintained micro-kinetically.  That is, the 

same detailed balance as that found in g(t) must be also maintained at a level of single 

domains, in order to make the synchronization possible.  An alternative would be seeing the 

mutual proportions of the exo and endo effects varying broadly from one domain to another.  

This would effectively prevent any synchronization, since reaching equal frequencies in all 

domains would not be possible without having the exo and endo effects microbalanced within 

each single domain.  Hence the book-keeping mechanism implementing the formula (8) may 

expectedly be acting at a level as elementary as that of single domains in order to support 

their synchronization.  A likely coupling medium for the synchronization seems to be the gas 

phase: indeed, the periodic pressure changes of the same frequency as that of the 

thermokinetic oscillations has been recorded during sorption of hydrogen in Pd.
3
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The oscillatory process should therefore involve not only the breaking of time symmetry, 

which is the oscillatory kinetics itself, but also the domain formation on the Pd surface, which 

amounts to breaking of space symmetry.  As it involves both the periodicity and the domain 

formation on the Pd surface, so the proposed mechanism contains the physical symmetry 

breaking elements that may be conducive to the system’s implementation of the mathematical 

properties of the oscillatory time series such as q(t) and g(t) expressed as formula (8) and 

confirmed experimentally (cf. Figure 4). 

5.  Conclusions. 

A mathematically rigorous method has been proposed to extract a pure oscillatory component 

from periodic time series recorded in oscillatory reactions that occur far from equilibrium.  

The concept was implemented using thermokinetic time series recorded 

microcalorimetrically in the oscillatory sorption of hydrogen and deuterium in Pd.  Following 

discretization of the original data, the mean value theorem for integrals makes it possible to 

calculate a range of mean values, one for each individual period of thermokinetic time series.  

The obtained sequence is subsequently used as fit points to construct a flat curve modeling a 

hypothetical non-oscillatory heat evolution under otherwise the same reaction conditions.  

Crucially, the areas under both curves, i.e., the modeled flat and the experimental oscillatory 

one, are the same, attesting to the method’s validity.  This is due to the invariance of the 

molar heat of reaction, irrespective of whether the oscillations occur or not.  The pointwise 

subtraction of this modeled bas-line from the original curve yields a new time series 

representing the extracted oscillatory component.  Since this new time series oscillates 

around the abscissa axis, so it is now possible to analyze the thermokinetic oscillations in 

terms of a succession of alternating exo and endo thermal effects.  It reveals a pairwise 

exo/endo equivalence, i.e., each exo peak is followed by an endo peak that have the same 

area but of opposite sign.  Hence, apart from whole the extracted oscillatory time series 

yielding zero on integration, also the exo and endo effects equilibrate one another within each 

period individually.  This detailed exo/endo balance is a reflection of the mathematical 

relation expressed in equation (8).  Physically, it seems to reflect a book-keeping mechanism 

operative at a very elementary level of the m-size domains, viewed as micro-oscillators of 

which formation and synchronization enable the oscillatory kinetics of the sorption process to 

be calorimetrically detectable in macro scale. 
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Table I.  Pd/D2 results: (a) The mean values obtained for successive segments of the 

thermokinetic oscillations q(t), used to construct the approximated mean value curve h(t) 

shown in Figure 1 A (in blue).  The values in columns (b) and (c) correspond to the black and 

cyan bars of histogram in Figure 4 A.  The values in columns (d) and (e) represent the areas 

of the exo and endo peaks of the extracted oscillatory curve g(t) shown (in green) in Figures 

1E and 4 B. 

(a) 

Pd/D2 Mean 

value, mW 

(b) 

Partitions above 

mean value, mJ 

(c) 

Partitions below 

mean value, mJ 

(d) 

Exo peaks in 

g(t), mJ 

(e) 

Endo peaks in 

g(t), mJ 

27.577 19.081 -19.099   

27.508 43.517 -43.496   

27.252 103.11 -103.13 107.09 -107.44 

26.780 208.22 -208.21 215.89 -217.54 

27.450 307.68 -307.70 320.72 -320.98 

28.638 348.20 -348.19 361.32 -358.24 

29.176 359.50 -359.50 368.39 -368.20 

29.468 359.50 -359.50 373.92 -373.87 

29.810 365.86 -365.87 379.84 -380.97 

30.074 377.98 -378.00 385.92 -385.59 

30.430 382.93 -382.91 392.00 -391.55 

30.768 388.32 -388.33 398.90 -398.93 

31.106 394.16 -394.15 402.85 -403.84 

31.348 400.85 -400.85 408.81 -408.66 

31.585 403.61 -403.60 411.58 -410.86 

31.693 403.02 -403.03 412.66 -412.16 

31.752 402.01 -402.02 410.27 -410.36 

31.488 397.43 -397.45 402.33 -400.68 

30.884 385.05 -385.03 386.86 -384.11 

29.305 379.34 -379.32 375.29 -373.52 

27.174 380.89 -380.87 374.36 -374.61 

24.928 369.10 -369.10 358.95 -357.18 

22.021 351.28 -351.26 334.87 -334.31 

18.706 316.39 -316.41 296.27 -293.85 

14.875 268.55 -268.56 245.18 -244.76 

10.987 213.91 -213.93 190.26 -191.65 

7.5472 162.19 -162.19 142.15 -144.50 

4.9702 119.70 -119.70 105.56 -107.30 
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Table II.  Pd/H2 results: (a) The mean values obtained for successive segments of the 

thermokinetic oscillations q(t), used to construct the approximated mean value curve h(t) 

shown in Figure 1 B (in blue).  The values in columns (b) and (c) correspond to the black and 

cyan bars of histogram in Figure 4 C.  The values in columns (d) and (e) represent the areas 

of successive exo and endo peaks of the extracted oscillatory curve g(t) shown (in green) in 

Figures 1 F and 4 D (fragment). 

(a) 

Pd/H2 Mean 

value, mW 

(b) 

Partitions above 

mean value, mJ 

(c) 

Partitions below 

mean value, mJ 

(d) 

Exo peaks in 

g(t), mJ 

(e) 

Endo peaks in 

g(t), mJ 

18.452 111.02 -111.05 112.73 -109.90 

17.999 104.59 -104.59 102.71 -102.45 

17.397 88.786 -88.785 87.133 -89.662 

17.129 89.284 -89.258 90.893 -91.493 

16.899 96.520 -96.549 99.087 -99.157 

16.829 106.14 -106.11 109.60 -110.93 

16.687 119.78 -119.77 126.80 -127.45 

16.618 135.04 -135.03 145.35 -147.52 

16.483 156.57 -156.54 169.65 -167.47 

16.527 182.67 -182.67 194.61 -195.37 

16.550 199.62 -199.59 218.07 -221.94 

16.502 217.42 -217.44 244.23 -244.12 

16.574 239.80 -239.78 268.02 -266.41 

16.754 257.10 -257.08 286.10 -286.97 

16.937 267.86 -267.88 300.47 -301.30 

17.153 275.08 -275.06 310.75 -311.79 

17.534 286.96 -286.97 321.92 -318.38 

17.792 291.92 -291.95 323.31 -324.40 

17.819 293.46 -293.43 324.70 -322.18 

17.912 293.61 -293.64 320.99 -321.35 

17.853 287.47 -287.44 314.75 -314.11 

17.271 282.04 -282.06 306.08 -303.88 

15.929 280.39 -280.39 298.02 -294.92 

14.305 274.13 -274.11 284.60 -283.76 

12.179 254.27 -254.24 258.71 -256.42 

9.3355 215.55 -215.54 208.83 -205.80 

6.3099 154.82 -154.82 136.64 -139.20 

3.7687 86.673 -86.671 70.203 -74.440 

2.0762 37.262 -37.264 30.542 -32.475 

1.3049 7.4657 -7.4675   
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