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ABSTRACT

A theoretical approach is outlined which attempts to

ei plain elementary particles with a rest mass as eigenmodes

of self-con "red electromagnetic radiation. For this purpose

an extende .r terpretation of Maxwell's equations is being

suggested

The t eory is illustrated by a simple special case where

the partir i interior contains a unipolar-like electric field

having a on-vanishing divergence and being coupled to a poloidal

dipole-1 e magnetic field having a non-vanishing curl. At

large diR- ances from the particle centre these fields approach

their classical vacuum solutions. Numerical order-of-magnitude

estimation s being based on this model are at least consistent

with the experimental data of the electron and the proton.



1. Introduction

Ever since the discoveries of the first elementary

particles, a number of attempts have been made by various

investigators to explain the internal structure and features of

these particles. This applies in particular to the magnititudes

of and relations between such properties as charge, mass, magnetic

moment, spin, and particle size. Accordingly the relation between

energy and matter, and the corresponding processes of annihilation

and pair production, have attracted special interest.

The present paper summarizes some unpublished ideas being

developed on this subject by the author since the early 1960's,

in attempts to explain particles with a rest mass as various

eigenmodes of self-confined electromagnetic radiation. The

reason for a rather crude and incomplete theoretical approach

to be presented here, is that the author has just been informed

of the existence of a theory on oscillating cavity modes by

Jennison and collaborators f1—3j which has several features in

common with that to be presented in the following sections-



2. Main Physical Features of Present Approach

The present approach is based on ideas the physical features

of which can be summarized as follows:

(i) Electromagnetic radiation in free space consists of moving

wave packets (photons) being characterized by coupled

electric and magnetic fields. Particles of finite rest mass

are suggested to arise from a self-confinement (self-trapping)

of such radiation within discrete volumes of space. Thus,

annihilation should be regarded as a process by which this

closed field pattern is broken up, i.e. from a self-confined

into a freely moving wave packet structure. Pair production

should represent the inverse process.

(ii) For a charged particle at rest, such as an electron or a

positron, space can be divided into two main parts, the

"boundary" between which is defined by a particle radius

r . In the outer region (r > r ) there is mainly an electro-

static field originating from the total electric charge q

of the particle, as well as a magnetic dipole field origi-

nating from its magnetic moment M . In the inner region

(r ^ rQ) both the electric and magnetic fields remain

finite and form a more complex but axisymmetric (or possibly

nearly axisymmetric) Dattern where the electric field

has to vanish at the cent»e r = 0 from symmetry reasons,

and the magnetic field remains finite at the axis of

symmetry.

(iii)For a particle at rest a steady, self'consistent and stable

balance of forces is required. It should be somewhat

analogous to the toroidal confinement of a plasma in a

magnetic field, in the sense that the radiation pressure

gradient of the electromagnetic field within the region

r ^ r is mainly being balanced by the electric current

pattern and the magnetic field in this region. In other

words, the equilibrium should have the form of a

self-confinement of electromagnetic radiation within the

inner region r < r . This self-confinement could be
'V O



characterized as one in which the radiation "bends" its

own paths of propagation into closed orbits, i.e. the

energy flux and the corresponding Poynting vector should

then circulate in closed paths. In a more general case

the equilibrium state may include both poloidal (in planes

through the symmetry axis) and toroidal (in circles around

the symmetry axis) field components, as well as effects

from self-gravity and centrifugal forces due to the

circulating energy. Here we shall only treat a simple model

which can be considered as a special case of a larger class

of equilibria.

(iv) Whether the self-confined field pattern within r < r could

consist of sets of eigen-modes being strictly static or

having the form of standing waves [1-3J is not clear at

this stage. In any case, this does not affect the order of

magnitude of the average field strengths. On the other hand,

this question may have an influence on the general physical

picture, in a way which cannot be penetrated here in detail.

It is in any case obvious that the electric and magnetic

field patterns E and B in the inner and outer regions

have to be matched in the "boundary region" around r = r

In the remote region r >> r
o

the fields E and B
o

further

have to become static at every point in space. These

conditions, as well as those of a stable equilibrium of

forces, have to be included in a selfconsistent theory.

(v) The present approach is expected to yield values of and

relations between the particle charge q , mass m , magnetic

moment M , spin (angular momentum) S , and particle radius

r . These relations should contain a set of universal

constants as represented by the velocity of light c=3xlO m/s,

by the magnetic permeability in vacuo p = 4n x 1O~ Vs/An>

or the dielectric constant .-9,

-^4 1
and by Planck's constant h = 6.625 x 10 VA s ,

(1/36TT)X10 'As/Vm,

here

being expressed in SI units. The various possible eigenmodes

for self-confinement should then give rise to sets of

particle solutions of both electric polarities, which can

also be combined to electrically neutral particles. At this

stage we shall only present one example being obtained from



a crude order-of-magnirude estimation in terns of a simple

model of the field geometry.

(vi) An additional question concerns gravitation and its

possible relation to an electromagnetic description of

matter. The average interaction force between two pieces of

matter, which both contain a large electrically neutral

assembly of positively and negatively charged self-confined

systems of the present type, would certainly become zero in

first order. However, the self-field of one single system

(particle) should interfere with the fields originating from

surrounding systems. In higher order this should lead to

an additional interaction force. To be more specific, the

attractive force between two parallel magnetic dipoles

(ring-currents) being situated on a common axis, has the

same modulus as the repulsive force between a corresponding

pair of two antiparallel dipoles, but only in first order.

From symmetry reasons the cases of parallel and antiparallel

dipoles do not become equivalent to each other. Thus, the

change in total energy of the superimposed internal and

external fields, as being caused by a change in axial

distance between the dipoles, should not have exactly the

same magnitude for a parallel as for an antiparallel pair of

dipoles. In other words, a small "rest force" is expected

to arise when forming the average force between two dipoles

over all possible spatial orientations of their axes. The

question then arises whether this rest force could be

associated with gravity, but further discussions on this

matter are out of the scope of this paper.



3. Basic Concepts and Assumptions

The first starting-point of this theory is Maxwell's

equations

curIB/y = j + t dh (1)

curlE = - 9B/3t (2)

where j is the electric current density,

divE = a/i (3)

is obtained from Eq, (1) with o representing the charge

density, and the condition divB = 0 is derived from Eq. (2)

We further adopt Einstein's relation

W = mem (4)

between a mass m and its corresponding energy W , as well as

the Planck relation

W = nhv
v

(5)

between the energy W and the frequency v of the n-th state

of an electromagnetic oscillator. Here h denotes PJanck's

constant and n an integer.



4. An Extended Interpretation of Maxwell's Equations

We now have to relate Maxwell's equations to the problems

of self-confined electromagnetic radiation. In classical electro-

magnetic field theory the current density j is defined as

a convection current due to the motion of discrete charged

particles. For the special case of "empty" space with j 0,

it is thus seen from Eq. (1) that the magnetic field B becomes

related to 3E/3t only. With this interpretation, the equilibria

of electromagnetic fields in vacuo would only become possible

in the form of such states as standing wave patterns. In this

context we shall, however, also consider the possibility of

extending the interpretation of Maxwell's equations in such a

way that static equilibria of forces in an electromagnetic field

can be realized.

4.1. Particle being at Re_st

We first consider a particle being at rest, in the sense

that the centre of the corresponding self-confined field configu-

ration does not move in space. Then, the interpretation of j

also has to be extended in a corresponding manner. Thus, the

electric charge density o has no longer to be associated with

discrete charged particles only, but is instead interpreted as an

intrinsic property of the electric field itself. We therefore

use Eq. (3) in the form <i = * divE as a definition of the

charge density in terms of the electric field E. The corres-

ponding current density should then be expressed by the modified

form

2* = t (divE)w* 16)

where w is a corresponding equivalent velocity. The question

now arises how to define the velocity w*. For this purpose we

turn to Eqs. (1) and (2), the vector products with E and B

of which can be combined to



e (curlE) x E + (1/u ) (curlB) x B = i x B + c ~(L x B) (7)
Q — Q — O 0 X,

The obtained relation is usually interpreted as a momentum

balance of the electromagnetic field, with the equivalent

momentum of radiation per unit volume being given by

P = t E x B <8)
- o— —

On the other hand, it should become possible to express the same

momentum in terms of the velocity wx and the equivalent mass

density p* of the electromagnetic field, i.e.

p =

According to Eq. (4) and for reasons being put forward in

Section 4,2, we now make the Ansatz

= t.. B 2 (10)
o

Combination of Eqs. (8)-(10) then yields the modified current

density

j* = t (divE)E x B/B2 (ID



Consequently for a particle being at rest, and possibly

containing oscillating field components E and B, Maxwell's

equation (1) can be rewritten in the modified form

2 2
c curlB = (divE)E x B/B + 3E/3t. (12)

whereas Eq. (2) remains unchanged. The set of Eqs. (12) and (2)

leads to the following asymptotic cases:

(i) For a time-dependent field with 3/31 ^ 0 and when consider-

ing the space r >> r far outside of the self-confined

particle region, i.e. where divE vanishes, the equations

of an electromagnetic wave in vacuo are recovered.

(ii) For a static case with 3/H = 0, we obtain E = - V p from

Eq. (2), and Eq, (12) reduces to

c2curlB = (divE)E x B/B2 (13)

In the external region r •>-•• r the resulting static fields

obey the conditions divE - 0 and curlB - 0, as expected.

On the other hand, application of Eq. (13) to the internal

region r < r leads to a relation between E and B by

which the space charge represented by divE \ 0 becomes

coupled to the electric current density being represented

by curlB k 0. Further, in a static case the balance of

forces in the internal region should be expressed by

(curlB) x B/u » j* x B (14)

which then becomes an extended version of Eq. <7) for this

region. In Eq. (14) the left hand member plays the role of

a pressure gradient being balanced by the volume force
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j x B_ of the riqht hand member. Ke also observe that this

equilibrium condition does not lead to any additional and

independent balance equation, but is merely a consequence

of the original Eqs. (1) and (12) expressing the magnetic

field in terms of its sources. Needless to say, it also

has to be found out under what conditions stable equilibria

can be found which satisfy Eq. (13) for fields E and B

under the conditions curlE = 0 and divB = 0 of a static

state, but this question is out of the scope of this context.

4.2. Particle Performing a Slow Translatory Motion

The adopted Eqs. (6), (9), (10), and (11) should be

considered as a first Ansatz in attempts to satisfy the conditions

of equilibrium for a self-confined field structure. To obtain

further support for this approach, we consider a frame of reference

moving at a small translatory velocity -v=const., with respect

to the particle centre. Indicating the field quantities in this

frame by a dash ('), we then have

E* ~ E - v x B B( B (15)

2 2
when v <<r c . The modified current density of Eq. (11) thus

has the form

1* ~ 2* v)/B

(v • curlB)E x B/B
— — —

(16)

In all parts of vacuum space being outside of the self-confinement
x' x

volume we then have j = j = 0, as being expected. We now

choose a surface S which is perpendicular to y and cuts

through the internal particle region at a certain time t.
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Within this region all terms of Eq. (16) then become different

from zero. We further assume that the internal field of the

particle is axially symmetric and consists of a monopole-like

electric field and a dipole-like magnetic field. When integrating

the current density over the surface S, these symmetry

conditions and the constancy of the vector field v yield zero

net contributions from the first, third, and fourth terms of the

right hand member of Eq. (16). Thus the resulting current

through S becomes

T * ' f
J = I ov

dS (17)

Expression (17) has the form of a convection current produced by

the motion of the charge density n at the velocity y, as

expected from conventional theory.

The obtained result supports the Ansatz of Eq. (10) . If we

would instead have chosen an equivalent mass density of the
2 2 2 2

form < (E + c B )/2c , the deductions would still have ended
2 2 2

up with Eq. (17), provided that E = c B . In this connection

has to be stressed that definitions of a local energy density
2 2

of an electromagnetic field in terms of i E /2 and B /2u

are merely to be considered as formal, and cannot in a strict

physical sense be associated with a corresponding localized mass

density. Only when integrating these energy densities over the

entire volume of the system, they will become equal to its total

energy. Therefore it is not unlikely that one could put

*E > - <c B >, with < > henceforth denoting average values

being formed over the particle volume.
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5. A First Simplified Approach to a Self-Confined System

We now turn to a crude order-of-magnitude estimation of

the field quantities of a self-confined system as outlined in the

previous Sections 2 and 4. A simple special model is being

treated, but it has also to be kept in mind that other field

configurations and self-confined modes of similar systems could

become possible.

5.1. The Internal Field Distributions

The model to be applied has largely been outlined in

Section 2 under (ii)-(v). In a first approach the various field

quantities and their derivatives are expressed in terms of

corresponding characteristic amplitudes and lengths. Quantities

in the inner (r ̂  r ) and outer (r ;> r ) regions are here denoted

by subscripts (.) and (-)> and r indicates the radial distance

from the particle centre in a frame of spherical coordinates.

Consequently, the electric field is assumed to become monopolar

far away from the particle. It should have the moduli

(18)

and

(19)

in the inner and outer regions, respectively. The factor c_

in Eq. (18) is a dlmensionless constant of order unity being

dependent of the detailed distribution of E across the inner

region. We return later to the question about the magnitude

of this factor. In the present simplified field configuration

we further assume a main poloidal magnetic field, being given
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by the moduli

= Bo s Vo Mo / ro (20)

and

<B2> = (21)

in the inner and outer regions. The factor cD in Eq. (20)

is a dimensionless constant of order unity, being dependent of

the detailed distribution of B in the inner region.

The adopted model has now to be related to the balance

condition being expressed by Eq. (13). Here it should first

be observed that the latter equation is invariant to reversals

in direction of either of the field quantities E and B.

Second, we have E • curIB = 0 and B • curlB = 0 from

Eq. (13) which is consistent with the assumed field geometry of

the model. Third, the modified current density of Eq. (11) and

the form of the momentum vector become consistent with an

electric current and an energy flux circulating in closed paths

within the particle volume. Fourth, with characteristic lengths

of the order of rQ for the spatial field variations in the

inner region, we have IcurlBl - B /r and |divE.| = EQ/ro

from which Eq. (13) yields

Eo * c Bo
(22)

in a first approximation. This result is consistent with the

picture of trapped electromagnetic radiation circulating inside

the particle around its axis, at the velocity c of light.

It also supports the adopted Ansatz associated with Eq. (10)

and being discussed in connection with Eq. (17) at the end of

Section 4.2.
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Further, it has to be stressed that the field distributions

in the particle interior which satisfy Eq. (13) may require

the strengths j E,| and |B,| to become greater than those

corresponding to the external asymptotic fields E- and B-

of Eqs. (19) and (21) at r = r . Also divE, may have to change

sign in certain regions within the voluite r < r , even if the

total charge q has a definite sign. These circumstances could

lead to values of c- and cD in Eqs. (18) and (20) being

greater than unity.

From Eqs. (28), (20), and (22) we obtain an expression for

the modulus of the magnetic moment, i.e.

Mo » ( C E / C B ) C V O {23)

Finally, it should be observed that Eq. (13) includes space

derivatives of B and E both being of first order. Therefore,

the possible solutions of this equation with its appropriate

boundary conditions cannot give information about the length

scale of the particle geometry. Only mutual relations between

the fields E and B are given by Eq. (13). To determine the

absolute length scale, or particle mass, additional conditions

have to be included in the theory, in a way not being clear

at this stage.

5.2. The Associated Particle Mass and Angular Momentum

Starting from Eqs. (4), (18), and (22) we now express the

mass of the particle as

o* U o E l / 2 ) * <B2/2Mo)> /3C
2 = cBi,oq2/ro (24)

where c is a dimensionless constant of order unity. The first

and last members of Eq. (24) lead to an expression for r being



equivalent to that of the classical electron radius [4J . Further,

the azimuthally circulating ent.gy flux should correspond to

an angular momentum (spin) having the modulus

S ~ m r E /B ~ c \i q2c (25)
o o o o o m o^o

5.3. Azimuthal Periodicity Condition

In the case of an azinuthally circulating wave pattern,

a periodicity condition must be imposed which in the present

simplified model can be written as

= n(c/v) (26)

where 1/v is the average time of revolution of the radiation

around the symmetry axis, n denotes an integer, and cv is a

dimensionless constant of order unity being associated with the

detailed internal geometry of the particle and the corresponding

effective path length of the azimuthally circulating energy flux,

The constant c is likely to be somewhat larger than unity.

We now make the assumption that the present special case

of steady fields can be represented by n = 1 in Eqs. (26)

and (5), and that the total energy of the particle is given by

W o = W^ = W v as expressed by Eqs. (4) and (5). This results in

the relation

ro = h / cv wo c W (27)

between the particle radius and trass
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5.4. Numerical Results

The difficulties in making an exact definition of the

particle radius and tmcertainties in its exoeriroental data

for the electron, suggest that the obtained results are

rearranged in a way being independent of r . For this purpose

Eqs. (23)-(25), and (27) are combined and rewritten into the

expressions

<*o = ( h / l J o C C v c m ) 1 / 2 LA-sJ (28)

S ~ h/c ikg«m2/sj (30)

These formulae as well as Eq. (27) iead to the following

numerical results as given in SI units:

(i) For the charge of Eq. (28) we obtain qo~l3xl0~ / ( c ^ ) /

As compared to the modulus of the experimentally determined

c )electron and proton charge we thus have q /e=8/(c c )

(ii) Concerning the magnetic moment the second member of Eq. (29)
-22

yields M_ - 1.2 x 10 c.,/c_c* for q_ = e and in = m
O r. B V O O e

in the case of the electron, as well as

M ~ 6.4 x 10 c_/c c for q = e and m = m in the

case of the proton. According to the third member of Eq. (29)

we have instead M ~ 9.6 x 10*22(c2/c2c3c ) 1 / 2 for the
o t B v m

electron, and M ~ 53 x 10~26(c2/c2c3c ) 1 / 2 for the proton,o t, D v m
The measured data |4| are Me - 0.926 x 10 and

M = 1.405 x 10~ for the electron and the proton,

respectively.
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(iii) With the coefficient c being somewhat larger than unity,

the angular momentum S of Eq. (30) becomes somewhat

smaller than h. The correct value according to current

literature f5.] is h(3/16*2) /'2 for the electron and the

proton.

(iv) We finally turn to Eq. (27) which yields the radius

rQ = 2.4 x 10"
12/cv for the electron and rQ=l.3xlO"

l5/cy

for the proton. The experimental data on the electron radius

are so far uncertain [6_|. For the proton radius the value

r = 1.5 x 10 has been given in the literature |4j.
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6. Conclusions

From the present results and considerations the following

conclusions can be drawn:

(i) The theory of this paper yields relations between the particle

charge q , mass m , radius r , magnetic moment M ,

and spin S in terms of the three universal constants c,

U = l/e c , and h. At least for the electron and the

proton these relations lead to numerical results which

appear to be of correct orders of magnitude as compared to

experimentally determined data. This agreement is as good

as can be expected from the present crude theoretical

approach.

(ii) The previously described deductions concern one simple type

of mode and its *ield structures. Other more complex modes,

both including static solutions and standing wave patterns

[l-3j, may also have to be considered. The existence of

equilibrium solutions also has to be verified by a rigorous

mathematical treatment. Provided that the present approach is

correct in its principles, one should expect these modes

to lead to a spectrum of various types of elementary particles

The possible eigenmodes could also become related to quarks.

(iii)The particle charge q and spin S should be independent

of both mass m and radius r according to Lqs. (27),

(28), and (30). This is consistent with experimental facts.

(iv) Concerning the magnetic momentum M there is a dependence

on the mass m according to Eq. (29) which is at least

in qualitative agreement with experimental observations.

Further, the equivalent current density j* of Eq. (11)

suggests that the azimuthally circulating electric current

and momentum should become antiparallel in the case of

negatively charged particles. This is at least in agreement

with the properties of the electron.
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E~ and B_ which "leak" through the

r and reach the external region

(v) Equilibria may also exist for which the electric and

magnetic fields have both poloidal and toroidal components.

The total strengths of the fields E, and B, within the
x x

particle "interior" would then become much greater than those

of the fields

particle boundary

being "outside" of the particle.

(vi) The stability of the various modes of equilibrium has to

be analysed, among other things with respect to perturbations

of the particle radius r .

(vii)In this context conditions are missing for a determination

of the absolute value of the particle radius r (or mass m )

This question has to be further analysed, as well as that of

the number and types of universal constants which have to be

included in the theory. Further investigations are also

required on the problen. whether a matching of the inner

(E,, B,) and outer (E_, B_) fields at the boundary r - rQ

might become possible only for certain sets of discrete

parameter values or not.

(viii)It also has to be found out, in which way the deflection of

light by a force field or by photon-photon scattering may

become related to the ideas of self-confined radiation.

(ix) The present theoretical approach has not taken the problems

of invariance into account which are commonly discussed

in field theory. This point requires further clarification.

(x) Further analysis is also required on the problem how

gravitation could become related to the concept of

self-confined radiation and its corresponding field structure.

7. Acknowledgement

The author is indebted to Mr. Andrås Kuthy for drawing attention

to the work made by Jennision and collaborators.

Stocksund, July 1 r>,



20

8. References

[Y] Jennison, R.C. and Drinkwater, A.J., "An Approach to the

Understanding of Inertia frorr the Physics of the

Experimental Method", J. Phys. A: Math.Gen. l_0( 1977) 167 .

[2] Jennison, R.C., "Relativistic Phase-Locked Cavities as

Particle Models", J. Phys. A: Math.Gen. 13.(1978)15213.

[3| Jennison, R.C., "What is an Electron?", Wireless World,

June (1979)42.

[4] Ferpi, E., Nuclear Physics, Univ. of Chicago Press, Revised

Edition, 1959, pages 6, 13, and 242.

[5] Schiff, L.I., Quantum Mechanics, McGraw-Hill Book Comp.,

New York, 1949, pages 74 and 145.

[6J Sproull, R.L., Modern Physics, Wiley, New York and

London, 1964, page 6.



TRITA-tPP-79-13

Royal Institute of Technology, Department of Plasma

Physics and Fusion Research

ON THE SELF-CONFINEMENT OF ELECTROMAGNETIC RADIATION

B. Lehnert, July 1979, 20 p. in English

A theoretical approach is outlined which attempts to

explain elementary particles with a rest mass as eigenmodes

of self-confined electromagnetic radiation. For this purpose

an extended interpretation of Maxwell's equations is being

suggested.

The theory is illustrated by a simple special case where

the particle interior contains a unipolar-like electric field

having a non-vanishing divergence and being coupled to a

poloidal dipole-like magnetic field having a non-vanishing curl.

At large distances from the particle centre these fields approach

their classical vacuum solutions. Numerical order-of-magnitude

estimations being based on this model are at least consistent

with the experimental data of the electron and the proton.

Key words: Elementary particles, electromagnetic fields.


