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Abstract

We discuss the axiomatic basis of quantum mechanics and show that it is

neither general nor consistent, since its axioms are incompatible with each

other and moreover it does not incorporate the magnetic quantization as in the

cyclotron motion. A general and consistent system of axioms is conjectured

which incorporates also the magnetic quantization.
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The neccessity of quantum mechanics (QM) was a result of experimental data for the energy spectrum

of atoms which could not be explained in accord with the laws of classical mechanics. Nevertheless in

the axiomatic basis of QM there are axioms which are not supported by the experimental results, since

the whole system of axioms (1) is introduced only as a ”plausible generalization” of the first axiom [1]:

[P̂i , Q̂j] = −ih̄δij , [P̂i , P̂j ] = 0 , [Q̂i , Q̂j ] = 0 (1)

where i, j = 1, ..., k and P̂i and Q̂i are the momentum and position operators of a quantum system with

k degrees of freedom. Note as an importent fact about the application of QM that the usual application

of the QM to the energy spectrum of atoms needs only to use the first axiom to quantize the Hamilton

operator, but it does not need any use of the other two axioms [2]. Thus these two axioms are not

involved yet in any quantum theory. Hence, in view of the fact that the energy quantization was the

only application of the system (1), therefore the two last axioms remained without application and it

was not possible to prove their compatibility with the first axiom within a concrete physical question.

Nevertheless since these axioms, as the first principles of QM, are based as usual on plausible arguments,

but not on other quantum axioms or empirical results. Therefore one can not exclude inconsistencies

within the system (1) a periori, so that a general revision of the axiomatic structure of QM seems to be

neccessary. Thus the appearance of new quantum effects like the magnetic quantization in the cyclotron

motion enforces such a revision, specially if one will describe them in accord with QM. In other words,

among others, a reason to revise the axiomatic basis of QM is that the quantum commutator in the two

dimensional cyclotron motion [3]:

eB[Q̂m , Q̂m] = −ih̄ǫmn ;m,n = 1, 2 , ǫmn = −ǫnm = −1 , (2)

withQm as the relative coordinates of an electron moving in a constant magnetic field B, is not compatible

with the system (1).

From dimensional analysis it is obvious that since the action (∼ h̄) has the dimension of momentum

times position, i. e.: P ·Q = L−1 · L = L0 in geometric units. Hence the dimensionality is saved in this

case, in view of dimB ∼ L−2. Therefore also this commutator should define, in principle, a quantum

postulate. But if one considers the commutator (2) as a quantum postulate, then the system (1) can be
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considered neither as the general basis for quantum postulates nor as a consistent algebra.

A more conceptual reason to neglect the cyclotron commutator, as a possible quantum postulate, was

the common but a periori belive that

”particles” and ”fields” should have two fundamentaly different nature and so they should obey two

different type of mechanics or dynamics. Therefore the quantum commutator postulates of particles and

fields should be different and without any common relation. Even after the rise of quantum field theory,

where quantized fields appear as particles and particles appear as quantum fields, the main difference

still remained. Although for example the quantum electrodynamics (QED) is based on the equivalence

of the quantum behaviour of electrons and electromagnetic potential field [4].

In accord with QED, in the same manner that quantum mechanical properties of the charged test body

( ∼ electron ) prevent an exact measurment of the electromagnetic field, the quantum electrodynamical

properties of the electromagnetic field prevent an exact measurment of the position of the charged test

body [4]. In other words the uncertainties of electron causes the uncertainties of the electromagnetic

field and vice versa. Thus, in accord with QM where the quantum character of a particle is manifested

for example by its uncertainty relations, the quantum character of electron depends on the existence of

the uncertainty relations of the electromagnetic field, which manifest the measuring interaction between

the electron and the field [4]. Hence QED (of electromagnetic fields ) and the QM ( of electrons ) are

two inseparable part of a quantum theory ( of particles and fields ) and neither is consistent without the

other [4].

Nevertheless, it was the mentioned artificial difference between fields and particles with its further con-

sequences which prevented to interpret the phenomenologically introduced commutator in the cyclotron

motion, i. e.: eB[Q̂i , Q̂j] = −ih̄, as what it is, namely as a quantum commutator postulate: Since

in this case the position operators of electron and the magnetic field B appear together in one and the

same relation.

The internal incompatibility of the algebra (1) is based, besides of this fact, on the disconnectedness of its

axioms, since they are assumed just as a ”plausible generalization” [1] partly as the quantum property and

partly as the classical properties of a free system: Thus by the last two axioms, the quantum behaviour

of, e. g. a quantum particle, is considered to be the same as the classical properties of a classical particle
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in a free motion. Thus even the obvious relations between the momentum and the position coordinates

of a classical particle in a bounded motion are ignored, where for example Pm = MQ̇m = ǫmnMQnα̇ for

Q1 = rcosα,Q2 = rsinα. In this case the Poisson brackets:

{P1 , P2} ∝ {P1 , Q1} and {Q1 , Q2} ∝ {Q1 , P1} are non-trivial [5]. In other words, in the

case of bounded motion, the non-triviality of the first bracket of Poisson algebra requires also the non-

trivialities of the second and the third brackets. Thus in view of the mentioned correspondance between

Poisson- and the Heisenberg algebra, the same requirement should hold also for the corresponding com-

mutators in the system (1) for the related quantum case.

To prove the general contradiction between the axioms of the system (1) let us consider the most minimal

case where the algebra (1) can be proved, namely for i, j = m,n = 1, 2. We will prove that the first

axiom of the system (1) is incompatible with the rest two axioms: This is obvious implicitely from the

well known relation between the phase space variables and their quantum operators, in accord to which

if two such operators commute with each other, then one of these variables is a function of the other one

[6]. On the other hand if two such variables are independent of each other, then the commutator of their

operators need not to vanish, which is obvious from the first axiom of the system (1). These relations

follows from the mentioned correspondance btween the commutators and Poisson brackets. Thus the

asumption of the first commutator in (1), in accord to which P̂m commute with ǫmnQ̂n, but not with

Q̂m, means that Pm is a function of ǫmnQn, but not of Qm, i. e.: Pm = f(ǫmnQn) and also Pm 6= f(Qm).

Hence in view of Qm 6= f(ǫmnQn), it follows that Pm 6= f(Pn) and therefore the related operators need

not to commute, i. e.: [P̂m , P̂n] 6= 0 [7]. Note that these arguments about the relation between Pm, Qm

and their operators is not in contradiction with the Hamitonian case where the Hamiltonian H is a

quadratic function of Pm and Qm variables, but its operator Ĥ does not commute with those of P̂m and

Q̂m. Since, not only that in the above discussed case Pm are only linear functions of ǫmnQn, whereas the

Hamiltonian is quadratic function of them, but also the direction of conclusion does not contradict the

Hamiltonian case. A contradiction with the Hamiltonian case would appear, if we required the oposite

direction of conclusion (see [7]) [8].

To prove this fact explicitely let us consider the wave function of the system (1), with respect to which

the commutators of (1) can be proved directly, to be in the position representation, i. e.: Ψ((1)) :=
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Ψ(Q1, Q2). Hence the momentum operators should act as differential operators, i. e.: P̂mΨ(Q1, Q2) =

−ih̄∂mΨ(Q1, Q2) = PmΨ(Q1, Q2) and the position operators should act by multiplication, i. e.:

Q̂mΨ(Q1, Q2) = QmΨ(Q1, Q2). On the one hand the assumption of the first postulate in (1), i. e.:

[P̂1 , Q̂1] 6= 0, [P̂2 , Q̂2] 6= 0, [P̂1 , Q̂2] = 0 and [P̂2 , Q̂1] = 0 demands that, as we discussed

above, the momentum variables Pm can not be functions of position variables Qm but they must be

functions of ǫmnQn variables, i. e.: Pm = f(Qnǫmn). A dependence between momentum- and position

variables which is similar to the above introduced example of bounded motion. On the other hand, if

so then the second commutator of the standard quantum algebra (1) is not more fulfilled in this case,

since as in the bounded motion, this commutator is not trivial for the case of a linear dependence:

Pm ∝ ǫmnQn. Thus [P̂1 , P̂2]Ψ(Q1, Q2) 6= 0 by calculation. Hence the contradiction between the first

and the second commutators in the algebra (1) can be proved also explicitely: Thus in the quantized

bounded motion which is similar to the cyclotron motion of electron in a magnetic field, the second

commutator is given by: [P̂1 , P̂2]Ψ(Q1, Q2) = P̂1(P2 ·Ψ)− P̂2(P1 ·Ψ) = −2ih̄Mα̇Ψ(Q1, Q2) in contrast

to the system (1), since Pm = ǫmnM ·Qn · α̇ and P̂n = −ih̄∂n. Therefore in view of the fact that in the

case of electromagnetic interaction the dimensionless electron charge e should be involved as a coupling

constant, one may set for the cyclotron motion: α̇ = ωc =
eB

2Me

. So that for the electron coupled to the

electromagnetic field B, the commutator: [P̂1 , P̂2] results in:

[P̂1 , P̂2] = ih̄eB , (3)

which is in contradiction of with the second axiom in (1).

One can even prove that the third commutator in the system (1) results, for the same quantized bounded

motion where the position operators in the momentum representation are given by: Q̂m = ih̄∂Pm
, in:

[Q̂m , Q̂n]Ψ(P1, P2) = −2ih̄(Mα̇)−1Ψ(P1, P2). Thus it can be rewritten by the commutator (2) for the

case of cyclotron motion, again in accord with α̇ = ωc =
eB

2Me

.

Another conceptual basis to chooose the algebra (1) was also the a periori concept of ”free” quantum

particle, e. g. an ”electron” without interaction with any field, thus such a free particle have commuting

position- and also momentum operators. Nevertheless as it is known from QED [4], such a ”free” electron

does not exists within the context of QED, since as it is discussed above an ”electron” without interaction
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with quantized electromagnetic field can not be considered as a quantum particle: Thus, in accord with

Heisenberg’s argument, in order that the uncertainty relations ∆Pi ·∆Qi ≥ h̄ are given for an electron

as a quantum particle, there must be given an uncertainty relations for the measurment of electron

by an electromagnetic field in accord with: ∆Gi · ∆Qi ≥ h̄, where Gi is the field momentum of the

observing electromagnetic field [4]. In other words the measurment or interaction of an electron with

the electromagnetic field, which is manifested by the last uncertainty relation, is the presupposition for

quantum character of electron which is manifested by the uncertainty relation ∆Pi · ∆Qi ≥ h̄. Hence

the existence of uncertainty relation ∆Pi ·∆Qi ≥ h̄ depends on the existence of the uncertainty relations

∆Gi · ∆Qi ≥ h̄ which manifests the interaction between the electron and the electromagnetic field.

Therefore in view of the QM fact that the existence of uncertainty relations is equivalent to the existence

of related commutators, the discussed interaction between electron and the electromagnetic field is the

presupposition for the correctness of the first commutator in (1). Hence a system of axioms which

contains the first commutator in (1), can not apply to a ”free” electron, but it applies to a particle with

electromagnetic interaction. As a first consequence, the system (1) which presuppsoes the existence of

free quantum particle is inconsistent, as we showed above implicitely and explicitely. Moreover in the

absence of such a ”free” motion, it is no neccessity to assume the second and the third commutators

in (1) which manifest the free motion [9], but one should postulate other axioms which are suitable for

a bounded motion. Nevertheless we will show that the electron as a quantum particle, not only in the

cyclotron motion, but in view of its general neccessary interaction with the electromagnetic field which

manifests the quantum character of electron, does not obey the system of axioms (1), but it should obey

a system of axioms with non-trivial second and third commutators. This system will be the general

and consistent one for a quantum particle like electron, since despite of the system (1) it considers the

neccessary coupling of electron, as a quantum particle, to the electromagnetic field. Therefore it will be

also the quantum algebra of quantum electrodynamical effects of electron, like the cyclotron motion and

the flux quantization.

To prove this, first note that the field momentum of electromagnetic field: Gi =
∫
ǫijkEjBkd

3x;

i, j, k = 1, 2, 3 is equal to eAi where Ai is the electromagnetic potential. This equality can be derived for

Ej and Bk as the solutions of the inhomogeneous Maxwell equations for an electromagnetic field coupled
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to a single electron. If one uses the Gauss’ law for Ej and the integral Ai =
∫
ǫijkBkdxj = ǫijkBkxj , in

view of divB = 0. Hence the above introduced uncertaity relation ∆Gi ·∆Qi ≥ h̄ can be rewritten by

e∆Ai ·∆Qi ≥ h̄ which should be considered as the presupposition for the quantum character of electron.

The argument to prove the general neccessity of non-trivial commutators for a quantum particle like

elektron, is based on the fact that on the one hand the quantized electromagnetic potential, the photon,

possess two degrees of freedom or two components Am which are given in two dimensions by

Am = B · Qnǫmn [10]. On the other hand in accord with the above analysis the quantum character of

electron which is manifested by its uncertainty relations, presupposes the uncertainty relations

e∆Ai · ∆Qi ≥ h̄. Therefore in view of the fact that such an interaction, to determine the position of

electron in the Q1- direction, causes also an uncertainty ∆Q2 in the position of electron in the Q2-

direction, in accord with: ∆A1 = B · ∆Q2 and e∆A1∆Q1 = eB∆Q2∆Q1 ≥ h̄. Hence in view of the

QM equivalence between commutators and related uncertainty relations, the existence of the uncertainty

relation eB∆Q1∆Q2 ≥ h̄ for an electromagnetically measured electron is equivalent to the existence

of the commutor (2), i. e. eB[Q̂i , Q̂j ] = −ih̄, for the electron as a quantum particle. Then this

commutator should replace the third commutator in (1). Thus in accord with this replacement and the

above analysis of the measuring interaction between electron and electromagnetic field which results in

commutator (3), also the second commutator in (1) should be replaced by the commutator (3).

In other words the new general and consistent system of axioms are given by: (i, j = m,n)

[P̂m , Q̂n] = −ih̄δmn , [P̂m , P̂n] = iǫmnh̄eB , [Q̂m , Q̂n] = −iǫmnh̄(eB)−1 (4)

To see the consistency of this system of axioms, note that considering the quantization condition Pm =

eAm which is used also in the flux quantization [11], these tree commutators are equivalent to each other

by: Pm = eAm = eB ·Qnǫmn. In other words one can consider the algebra (4) as various representations

of one and the same commutator:

[Q̂m , Q̂n] = −iǫmnh̄(eB)−1 , B · Q̂m = P̂nǫnm (5)

In conclusion let us denote that the classical limit of cyclotron motion, i. e. the B → 0 limit is equivalent
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to the classsical limit: h̄ → 0 where the area and the radious of motion surface become very large, i.

e. close to the rectilinear motion which can be considered as a bounded motion with an infinite large

radious and area. Moreover note that the algebra (5), i. e.: eBǫnm[Q̂m , Q̂n] = −ih̄, describes beyond

the cyclotron motion also the flux quantization which is given usually by e
∫ ∫

FmndQ
m ∧ dQn =

eǫmnB
∫ ∫

dQm ∧ dQn = e
∮
AmdQm = Nh ,N ∈ Z for a constant magnetic field B. Since in view

of eǫmnB
∫ ∫

dQm ∧ dQn = e
∮
ǫmnB · Qm ∧ dQn and in accord with the QM equivalence between the

two quantization postulates in the canonical quantization, i. e.
∫ ∫

dPm ∧ Q.
m =

∮
PmdQm = Nh and

[P̂m , Q̂n] = −ih̄δmn, the integral form of flux quantization relation is equivalent to the quantum

commutator axiom: eBǫmn[Q̂m , Q̂n] = −ih̄. Thus a comparison between the mentioned canon-

ical quantization integrals and the flux quantization integrals manifests beyond the flux quantization

requirement [11] also the neccesity of relation Pm = eAm = eB ·Qnǫmn.
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