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  Abstract 
Fungi thrive in radiation intense environments. Sequential photos document that fungus-like Martian 
specimens emerge from the soil and increase in size, including those resembling puffballs 
(Basidiomycota). After obliteration of spherical specimens by the rover wheels, new sphericals--some 
with stalks--appeared atop the crests of old tracks. Sequences document that thousands of black arctic 
“araneiforms” grow up to 300 meters in the Spring and disappear by Winter; a pattern repeated 
each Spring and which may represent massive colonies of black fungi, mould, lichens, algae, 
methanogens and sulfur reducing species. Black fungi-bacteria-like specimens also appeared atop the 
rovers.  In a series of photographs over three days (Sols) white amorphous specimens within a 
crevice changed shape and location then disappeared. White protoplasmic-mycelium-like-tendrils 
with fruiting-body-like appendages form networks upon and above the surface; or increase in 
mass as documented by sequential photographs. Hundreds of dimpled donut-shaped “mushroom-
like” formations approximately 1mm in size are adjacent or attached to these mycelium-like 
complexes. Additional sequences document that white amorphous masses beneath rock-shelters 
increase in mass, number, or disappear and that similar white-fungus-like specimens appeared 
inside an open rover compartment. Comparative statistical analysis of a sample of 9 spherical 
specimens believed to be fungal “puffballs” photographed on Sol 1145 and 12 specimens that 
emerged from beneath the soil on Sol 1148 confirmed the nine grew significantly closer together 
as their diameters expanded and some showed evidence of movement. Cluster analysis and a 
paired sample ‘t’ test indicates a statistically significant size increase in the average size ratio 
over all comparisons between and within groups (P = 0.011). Statistical comparisons indicates 
that arctic “araneiforms” significantly increased in length in parallel following an initial growth 
spurt. Although similarities in morphology are not proof of life, growth, movement, and changes 
in shape and location constitute behavior and support the hypothesis there is life on Mars.

Key Words: Fungi, Moulds, Puffballs, Geysers, Mud Volcanoes, Martian Mushrooms, Araneiforms, Mars, Life,
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1. Introduction 

Throughout its mission in Meridini planum, Mars, the rover Opportunity photographed chalky-

white colored spherical shaped specimens upon the surface (Figures 7-16). Although unable to directly 

examine these spherical specimens, even misidentifying a flat oblong rock as a sphere (Bell et al. 2004), 

the Opportunity team published a number of articles claiming they are hematite  (Christensen et al. 2004; 

Klingelhöfer et al. 2004; Soderblom et al. 2004; Squires et al. 2004). The hematite interpretation was 

immediately challenged and dismissed by Burt, Kaught and colleagues (Burt et al. 2005; Knauth et al. 

2005) because of the “many contradictions” and pointing out that “unlike all known terrestrial 

concretions... they are uniformly spherical... uniform in their size distribution...” and concluding that: 

“The frequent analogy to hematitic spheroids is inappropriate" (see also Knauth et al. 2005). Two 

members of the Opportunity team also later admitted that much of the data was a “poor fit” for hematite 

(Glotch and Banfield 2006) whereas Bell et al (2004) acknowledged the data was "not consistent" with 

solid hematite but jarosite, and the spectral signatures obtained were indicative of “crystalline ferric 

iron.”   The spherical hematite explanation was also rejected in 2006, by Joseph who instead coined the 

term “Martian mushrooms” while pointing out that these spherical specimens resemble lichens and 

mushrooms. In 2008 and 2014 Joseph again speculated that these spherical concretions may have been 

produced secondary to biological activity. Other scientists have also embraced a biological explanation 

for these spheroids (Dass, 2017;  Kazmierczak 2020; Rabb 2015, 2018; Small 2015). In one study, 

dozens of experts in fungi and lichens  identified these spheres as “puffballs”—a white spherical fungus 

belonging to the phylum Basidiomycota (Dass, 2017; Joseph 2016). Moreover, the rover Opportunity, in 

one three day sequence, photographed 9 spherical specimens that increased in size and an additional 12 

that emerged from beneath the soil (Sols 1145 and 1148). The possibility that wind may have uncovered 

these specimens has been analyzed, discussed, and ruled out (Joseph et al 2020a,b). Many of these 

ground-level spherical specimens also have stalks or have shed portions of their outer membranes--

possibly crustose--and are surrounded by white chunks and fluffy spore-like material that may consist of 

leprose (Figures 9, 11, 15, 16). In addition, amorphous white fungi-like specimens have been 

photographed in Gale Crater by the rover Curiosity within rock shelters. As exemplified by sequential 

images, these amorphous specimens expand in size, or conversely, change shape, move to new locations, 

and/or wane in size and nearly disappear (Figures 7, 17-21). In the same vicinity, and on the same days, 

mm-in-size dimpled-donut-shaped specimens that resemble mushrooms and lichen genus Ochrolechia, 

have also been photographed, some of which are attached to networks of white mycelium-like 
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protoplasmic tendrils that snake along or above the surface  (Figures 22-27). Some of these tendrils also 

increase in mass as documented by subsequent photos  (Figure 22).  However, if these “tendrils” are 

living, calcified, fossilized, or completely abiogenic is unknown. Massive black “araneiforms” (Figures 

1-6, 45-51), hypothesized to consist of huge colonies of mould, fungi, algae, lichens, and bacteria (Ganti  

et  al.  2003; Joseph et al. 2020c; Kereszturi  et  al.  2012; Ness, 2001) have also been photographed from 

orbit, appearing in the Spring, increasing in size, sometimes attaining a width and length up to several 

hundred meters only to wane and disappear with the coming of Autumn and Winter; and then the pattern 

is repeated the following Spring (Hansen  et  al.  2010;  Kieffer et al. 2006;   Lovett  2000;  Portyankina 

et al. 2020; Prieto -Ballesteros,  et  al.  2006). Furthermore, photo sequences show the “growth” of what 

appear to be mould, bacteria, and fungi on the rovers Curiosity and Opportunity (Figures 36-39). Thus, in 

the Equatorial and Arctic regions, specimens and formations emerge, multiply, wax and wane in size and 

move or expand into new locations; actions that are characteristic of living organisms. 

Figure 1. Mars orbital photos. Clockwise from Top: Early Spring. Mid Spring. Late Spring. Early 
Summer. Mid Summer. Autumn. 
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Figure 2. Waxing from gray in the (a) Winter to black during the (b,c) Spring and waning and 
disappearing in (d) Autumn/Winter. Photographed via satellite, from orbit (reproduced from Ganti et al. 
2003). 
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Figure 3. Waxing from gray in the Winter (a) to black during the Spring and early Summer (b-d). 
Photographed via satellite, from orbit (reproduced from Ganti et al. 2003). 
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Figure 4. Mars HiRISE orbital photos. (Top Left) Day 1. (Bottom) Day 34. Linear specimens travel up 
and over terrain with those in the center growing toward each other. Final length of dark linear specimens 
is 130 meters, with an estimated growth rate of 5 to 10 meters per day. 
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Figure 5. Mars HiRISE orbital photos. (Top Left) Day 1. (Central) Day 22. (Right) Day 34. Blotchy and 
linear specimens emerge from dark blotches at the top of this Martian dune. The linear specimens appear 
to grow outward and downward. Final length of dark linear specimens is estimated at 60 meters, with an 
estimated growth rate of 5 to 10 meters per day.

Figure 6. Mars HiRISE orbital photos (false colors desaturated). Left, Day 1. Right Day 34. Final length 
of fan-like specimens is 90 meters, with an estimated growth rate of 5 to 10 meters per day. 
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Figure 7. Photographed by rover Curiosity. Sol 1143 documents area of soil devoid of spherical 
structures (circled in red). Seven days later, at least 18 spherical specimens have appeared in that same 
area. 

Figure 8. Sol 1145 vs Sol 1148. Nine spherical and semi-spherical specimens lay upon the coarse grain 
sand of Meridiani Planum. Three days later, 12 additional spheres and semi-spheres appear and the 
original 9 have increases in size and diameter. Specimens are approximately 3-8 mm in size. 
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Figure 9. Sol 147. Photographed by Opportunity. Martian specimens approximately 3-8 mm in size 
resembling Puffballs (Basidiomycota), some with stalks or shedding white spore-like material (leprose).
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Figure 10. (Left) Terrestrial “puffball.” (Center) Diagram of “stalk.” (Right) Sol 257: Martian specimen

Figure 11. Sol 257 photographed by Opportunity. Martian specimens approximately 3-8 mm in size 
resembling Puffballs (Basidiomycota), some with stalks or shedding white spore-like material (leprose) 
and lower cup, and universal veil that covers embryonic fungi (crustose).
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Figure 12. (Left) Terrestrial puffball shedding crustose. (Right)  Sol 257: Shedding the universal veil that 
covers puffballs (crustose)?

Figure 13. (Left) Terrestrial puffball. (Right)  Sol 147. specimens resembling puffballs. 

Figure 14. (Left) Terrestrial puffball that have grown together. (Right)  Sol 182 spherical specimens Mars 
that have “grown” together.  Note membraneous fibrous tissue within the interconnecting callosums. 
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Figure 15. Sol  182  photographed  by  NASA  Rover  Opportunity.  A  majority  of  experts  identified  
these specimens as "fungi" and "puffballs" (Joseph 2016). Note what appears to be white powder-
chunky-spore-like material (leprose) littering the surface (see Figure 16 for a 200% magnification of the 
white material lying upon the surface). Spherical specimens are approximately 3-8 mm in size. 
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Figure 16. Sol  182 . A 200% magnification of the white powder-chunky-spore-leprose-like material 
littering the surface as seen in Figure 15. Note numerous open-tubular- and stemmed-mushroom-shapes.
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2. Leprose, Crustose, Puffball Fungal Spores and Fruiting Bodies? 

Puffball leprose begins as crustose, the outer skin (universal veil) which eventually begins to 

break apart, falls to the surrounding surface and disintegrates (Petersen 2013; Roberts & Evans 2011). 

Puffballs generally do not have spore producing gills or pores. Instead, they produce fluffy white spores 

from specialized cells called basidia (Petersen 2013; Roberts & Evans 2011). These white spores, along 

with leprose, will litter the surface which, in combination can be powdery as well as  rough, scabrous, 

and granular (i.e. “leprose”). Hematite has no outer skin and does not produce spores, crustose or leprose. 

As documented in this report, these Martian spherical specimens are often surrounded by rough, 

scabrous, granular, flaky, fluffy white substances. Moreover an examination of Figure 16, reveals, at 

200% magnification, the presence of  numerous open-tubular- and stemmed-mushroom-shapes enmeshed 

within the white fluffy scabrous material.

Puffballs may also have stalks (stems), that become root-like rhizoids and  subsurface mycelia 

that absorb nutrients. Fungal mycelia also grow into visible, above-ground, spore-bearing reproductive 

mushroom-shaped and spherical structures, called fruiting bodies (Petersen 2013; Roberts & Evans 2011) 

at which point they may become rigid and seemingly calcified.  Figures 22-27, depict what may be 

mycelia as well as small bulbous fruiting bodies. Conversely, these may be unusual formations of 

gypsum, calcium, or quartz. 

3. Waxing, Waning, Shape Shifting, Movement and Dimpled Martian Mushrooms?

Rapid waxing and waning appears to be a common feature of biological-like specimens 

photographed on Mars. For example, and as reported here: on Sol 173, the rover Curiosity photographed 

numerous white colored amorphous specimens attached within a Martian rock shelter (Figure 18). 

Several of these specimens have a bowl- shaped appearance. Thirteen days later, as photographed on 

Mars day Sol 17 (Figure 19), the specimens have multiplied and increased in size.  Yet another white 

amorphous specimen depicted in Sol 173, has almost completely disappeared when photographed 19 

days (sol) later on Sol 192 (Figures 20-21). 

A white amorphous mass, with appendages, appears in a rock shelter on Sol 528. However, it 

changes shape and a portion moves into a new location, as photographed the following day (Sol 529). 

When photographed on Sol 530, this amorphous mass has almost completely disappeared from its 

original location. A small portion of the remainder  appears to have moved to a new location on the 

opposite inner-wall of the crevice (Figure 17).  If this is fungus, slime mould, or a slime fungus, is 

completely unknown. However, amorphous shape shifting, alterations in mass and movement from one 
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location to another, are typical of slime moulds and indication of behavior and life. A 

comparison of Sol 192 and Sol 270,  shows an increase in the mass of networks of white strands that 

resemble plasmodium, bulbous fruiting sporangia and interconnected clumps, when photographed 

months later (Figure 22).  Photographs of additional surface features in this area on Sol 270, reveals the 

presence of dimpled donut-shaped specimens that resemble lichen genus Ochrolechia, or possibly  

Russula and “milkcap” mushrooms e.g. Lactarius quietus; Lactarius torminosus; Lactarius deliciosus (as 

described by Petersen 2013; Roberts & Evans 2011). These mushroom-like features surround these 

networks of what appear be  rigid, encrusted and seemingly calcified, plasmodium and sporangia (Figures 

22-27). Some of these donut-shaped specimens also appear to turn white and are linked to these tangled 

networks of white strands some of which lift up above the soil, casting shadows, and are connected to 

what resemble fruiting bodies (Figure 23). To speculate, perhaps these white tangled “veins” represent 

fungal hyphae or fossilized plasmodium and sporangia: networks of fruiting bodies?

Figure 17. Sols 528, 529, 530. (Gale Crater) White amorphous mass alters shape, location, and almost 
completely disappears from inside the crevice of a rock shelter over a three day (sol) period.  Central 
mass is approximately 6 mm in diameter on Sol 528 and a thin tendril of white appears extends 
downward and another upward along the lip of the crevice. On 529 the lower tendril has disappeared and 
there are two tendrils snaking upward. On 530 the white mass and tendrils have nearly disappeared.
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Figure 18. Sol 173 (Gale Crater). Compare white specimens (each approximately 3-6 mm in size) with 
Sol 186.

Figure 19. Sol 186 (Gale Crater). White specimens increase in mass and number as compared to Sol 173 
(Figure 18). 
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Figure 20. Sol 173. (Gale Crater) White amorphous masses from 3 to 5 mm in size, attached to underside 
of the lip of the rock shelter. Nineteen days later, the amorphous mass has disappeared (see Figure 19. 
Below). 

Figure 21. Sol 192. (Gale Crater) White amorphous mass has disappeared from underside of the lip of the 
rock shelter (compare with Figure 20, Sol 173). 
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Figure 22. Sol 192 vs Sol 270. Increase in mass of white amorphous networks after 78 days (sols). Note 
water pathways and dimpled-donut shaped specimens in upper panels.  Note water pathway. 
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4. Minerals, Mushrooms, Fossilized Protoplasmic Plasmodium Sporangia?  

Encrusted interconnected networks of white strands punctuated with white clumps and often 

surrounded by dimpled donut-shaped mushroom-like formations can be discerned in Figures 22-27. If the 

white specimens are abiogenic and consist of gypsum, calcium, or quartz, of if they are calcified fungal 

mycelium or encrusted plasmodium and protoplasmic tendrils punctuated with fossilized bulbous fruiting 

bodies (sporangia) is unknown. By contrast, there are no abiogenic analogs for the numerous dimpled-

donut-shaped specimens which instead resemble the lichen genus Ochrolechia, and terrestrial “milkcap 

mushrooms” (e.g. Lactarius quietus; Lactarius torminosus; Lactarius deliciosus) and the “donut” shaped 

Russulas (Petersen 2013; Roberts & Evans 2011), and less so dimpled lichens which have been 

previously tentatively identified in Gale Crater (Joseph et al. 2020c,d). There is also evidence of water 

pathways (Figures 22, 24, 25) which would provide moisture to living organisms. 

Terrestrial dimpled mushrooms commonly secrete a milky substance that can have the 

consistency of latex (Petersen 2013; Roberts & Evans 2011). Might this explain the solidified appearance 

of these strands, or why some of the white encrusted material is entangled with dimpled-bulbous 

formations? One can only speculate.

It is possible these specimens consist of minerals or other non-biological substances.  For 

example, gypsum and quartz may be abundant in Gale Crater (Nachon et al. 2014; McLennan et al. 2013; 

Rapin et al. 2016). However, if these tangled webs of strands consist of quartz or gypsum this does not 

rule out biology. For example, algae (Cyanobacteria) are often found in association with gypsum which is 

a favored substrate for extremophile algae/cyanobacteria (Bothe, 2019). The green alga Closterium (and 

its relatives), also accumulates gypsum and stores it as crystals (Sr and/or Ba sulfates) in vacuoles located 

in the apices of their spindle-shaped cells (He et al. 2014).   

Alternatively, the white-colored “veins” may consist of quartz and hydrated calcium sulfates 

which have been identified in the Gale Crater where these specimens were photographed (Nachon et al. 

2014; McLennan et al. 2013). Quartz is associated with biological activity, and quartz, dominated by 

lichens have been identified (Jung, et al. 2019).  Furthermore, cyanobacteria, green algae and microfungi 

will colonize the inner structures of small quartz gravel (Jung, et al. 2019). Another possibility is calcium 

carbonate--byproduct of cyanobacterial activity. Calcium carbonate is precipitated in the mucous of algae 

(cyanobacteria) via photosynthetic CO2 or HCO3- uptake (Devaud and Girardclos, 2001). 

These white “veins” punctuated with white clumps, were photographed in association with  

formations that have a central depression or nuclei giving them a "donut shape" characteristics of fungal 
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mushrooms and the lichen genus Ochrolechia. Given that strands of these white  “veins” are above 

ground and sometimes rise above the surface and cast a shadow beneath them (Figure 23), then the most 

likely explanation is that these networks have a biological origin have become encrusted and rigid or 

photo-bleached due to surface conditions and radiation exposure.  Again, one can only speculate. 

Figure 23. Strands that snake across and sometimes rise above the surface. If biological, these specimens 
may consist of calcified fungal mycelium or encrusted plasmodium and protoplasmic tendrils punctuated 
with fossilized bulbous fruiting bodies (sporangia). Or they may be very unusual abiogenic formations. 
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Figure 24. Sol 270 Donut shaped specimens--approximately 1-2 mm in size--resembling the lichen genus 
Ochrolechia, and possibly “milkcap mushrooms” and Russulas. The white specimens resemble 
plasmodium, the bulbous fruiting sporangia and interconnected clumps of biological material that may  
have become rigid, encrusted and seemingly calcified. Or these networking strands may be very unusual 
abiogenic formations consisting of quartz, calcium, or gypsum. Note water pathway. 
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Figure 25. Sol 270 Donut-shaped specimens --approximately 1-2 mm in size-- adjacent to networks that 
resemble plasmodium and bulbous fruiting sporangia. If biological these, interconnected clumps of 
material may have become rigid, encrusted, calcified or fossilized. Or these networking strands may be 
very unusual abiogenic formations consisting of quartz, calcium, or gypsum. Note water pathway. 
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Figure 26. Sol 270 Donut shaped specimens --approximately 1-2 mm in size-- resembling the lichen 
genus Ochrolechia, and “milkcap mushrooms” (e.g. Lactarius quietus; Lactarius torminosus; Lactarius 
deliciosus) and the “donut” shaped Russulas. The white specimens resemble plasmodium, bulbous 
fruiting sporangia and interconnected clumps of material--all of which may have become rigid, encrusted, 
calcified when exposed to surface conditions. Or these networking strands may be very unusual abiogenic 
formations consisting of quartz, calcium, or gypsum. 
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Figure 27. Sol 270 Donut shaped specimens --approximately 1mm in size--resembling the lichen genus 
Ochrolechia, and terrestrial “milkcap mushrooms” (e.g. Lactarius quietus; Lactarius torminosus; 
Lactarius deliciosus) and some species of Russula. 
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5. Pareidolia and the Denial of Diverse Evidence of Martian Life

Nearly three dozen scientists with a history of major peer reviewed scientific accomplishment 

have found evidence indicative of Martian biology (Baucon et al. 2020; DiGregorio 2018;  Bianciardi  et 

al. 2014; Dass, 2017; Joseph et al. 2019, 2020a,b,c,d,e,f; Kaźmierczak 2016, 2020;  Levin & Straat, 1977, 

1977, 2016; Levin et al. 1978; McKay et al. 2009; Noffke 2015; Rizzo 2020; Rizzo & Cantasano 2009, 

2016; Ruffi & Farmer, 2016; Small 2015; Thomas - Keprta et al. 2009).   Diverse, putative, biological 

specimens resembling lichens, fungi, algae and open cone  apertures for the venting of oxygen produced 

via photosynthesis  have also been photographed in close proximity to one another (Joseph et al. 

2020a,b). 

However, these and other reports of biological specimens have been ignored by NASA and 

dismissed as “illusions”  or a form of pareidolia (Geller 2014; Plait 2012;  see  discussions by Levin & 

Straat, 2018; Rizzo & Cantansano, 2016; Rowan, 2016). Instead, these life-like specimens are attributed 

entirely to minerals and abiogenic geological activity including wind, weathering,  mud volcanoes, 

geysers and sublimating ice  and melting carbon dioxide (Dundas et al. 2015; Hansen et al. 2010; Kieffer 

et al. 2006; Pilorget 2011; Portyankina et al. 2020; Soderblomet et al. 2004; Squires et al. 2004). 

Conversely, it has been argued that those promoting abiotic explanations are also suffering from 

“pareidolia” (Joseph 2014b; see also Rizzo & Cantansano, 2016) a consequence of group and institutional 

peer pressure to enforce conformity of thought (Asch, 1955, 1956; Joseph 2014b; Levin & Straat, 2018; 

Rowan, 2016): as best illustrated by the parable of the “Emperor’s New Suit.” As demonstrated 

experimentally, peer pressure and the need to conform are so powerful that those affected are unable to 

accurately see what is right before their eyes (Asch, 1951, 1952, 1955, 1956).  

6. Hematite and Speculation Based on Pictures: NASA and Planetary Geologists Rely on Photos.

A common complaint is that those advocating in favor of biology are making their judgments 

based on the analysis of pictures. There is truth to this criticism. However,  Rizzo (2020) has discussed, at 

length, the fact that NASA’s and other planetary geologists  commonly base their interpretations of 

Martian features, on pictures, not factual data.  Case in point: based merely on orbital photos, NASA 

(2016) argues that the massive “araneiforms” which appear every Spring and wane every Autumn and 

Winter most likely “result from thawing of seasonal carbon-dioxide ice” --better known as "dry ice”--

even though Carbon-dioxide ice is a semi-translucent white and not black and there are no Earth analogs 

to support what is nothing more than speculation.  The only “araneiforms” analogs from Earth are 

biological; and yet this possibility is completely ignored except by a few scientists (Ganti et al. 2003; 
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Joseph et al. 2020c; Kereszturi et al. 2012; Ness 2001).

The repeated claim that the Martian spheres are hematite concretions is another example of 

speculation, and which has been criticized by Burt and others (Burt et al. 2005; Knauth et al; 2005; 

Joseph et al. 2020a,b).  Hematite is not gray or white in color (unless submerged in a standing body of 

water) and  does not grow out of the ground, and expand in size, in just three days (Figures 6-8, 31-33). 

Nor does hematite grow skyward, in huge colonies, attached to rocks by stalks topped by bulbous 

mushroom-shaped caps (Joseph et al 2019, 2020a,b). These latter Martian specimens closely resemble 

colonies of photosynthesizing lichens (see Figure 28-30); the existence of which would account for the 

seasonal increases in Martian atmospheric oxygen (Joseph et al. 2020a,b).  Nor is hematite blue, purple or 

green ( Figure 30-32, 35) or easily broken and hollow inside (Figures 31-32, 34). Nevertheless, NASA 

and many planetary scientists embrace the hematite hypothesis and reject biological explanations. 
A careful review of the methodology and instrumentation reported by the Opportunity team, 

reveals that the stalked-mushroom-shaped specimens and spheres atop the soil were never individually or 

selectively analyzed by Opportunity's suite of sampling instruments for hematite. Instead, individual 

samples, inferred to contain hematite, consisted of oblong rocks (see Figure 6 in Belle et al. 2004). 

Claims about hematite were also based on  panoramic images, and claims about the averaging of high and 

low "temperatures" (Klingelhöfer et al. 2004) and the spectral signatures of false colors (Soderblom et al. 

2004), with spectra selectively eliminated until what remained was interpreted as similar to the spectral 

signature of hematite photographed in a laboratory (Christensen et al. 2004), when the results were a 

"poor fit" for hematite and there were significant problems with calibration (Glotch and Banfield, 2006).

The Opportunity's cameras and instruments were not capable of taking true color photos. 

Although the true color of the landscape, outcrops, sand, dust, dirt, and rocks are  unknown, composite 

false color images were generated by the Opportunity's panoramic camera's nanometer filters (Soderblom 

et al. 2004). Based on these "color composites" massive amounts of solid blues and greens were painted 

throughout the lower landscape--and if true colors, these blues and green would not be indicative of 

hematite, but pools of water and vast fields of chlorophyll-containing living organisms (Joseph et al. 

2020b). Hematite is not green or blue. In fact, spectral signatures indicative of chlorophyll have been 

detected by the Pancam and Mars Science Laboratory (MSL) aboard the rover Curiosity. Stromberg and 

colleagues (2014) reported that features "associated with chlorophyll can be distinguished" and that the 

"chlorophyll spectral feature is observable in both Pancam and Mastcam" spectra obtained by the rover 
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Curiosity's MSL in Gale Crater (see also Stromberg et al. 2019). Hematite is not green and does not 

contain chlorophyll. Moreover, based on false colors, the spherules of Eagle Crater were judged to be 

yellow, orange, and purple (Soderblom et al. 2004); colors not associated with hematite, but living 

organisms. Nor does terrestrial hematite have an outer coat that it sheds or a mushroom shape and stem 

and grow upward and outward from the tops of rocks or soil (Figures 7-8, 28-31).

Figure 28. Sol 85 photographed by the rover Opportunity. Example of vast colonies of lichen-like formations with 
stems, attached to rocks and jutting upward and topped by bulbous caps. 
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Figure 29. Sol 85 photographed by the rover Opportunity. Example of vast colonies of lichen-like formations with 
stems, attached to rocks and jutting upward and topped by bulbous caps. 
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Figure 30. Opportunity, False Colors by JPL/NASA. (Upper Left) Sol 88. Example of vast colonies of thousands of 
mushroom-lichen-shaped specimens, attached to rocks with thin stems topped with bulbous caps, similar to photosynthesizing 
organisms (see Figures Joseph et al. 2020a). (Upper Right) Sol 37 Examples of long stemmed, bulbous-mushroom-lichen-
shaped specimens (Bottom) Sol 183. Vast fields of innumerable spherical specimens photographed in Meridian Planum.
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7. Growth and Regrowth After Crushing by Rover Wheels: Hematite Refuted

Hematite is characteristically harder that iron and yet brittle and can be identified by the presence 

of a reddish streak. When struck repeatedly by hammers and other tools, pieces may break off and it may 

shatter into large jagged chunks. It  can only be reduced to a red powder by extensive grinding. 

Although hematite may be generated in volcanoes, when produced in hot springs it is in part 

fashioned via biological activity over hundreds of thousands of years (reviewed by Joseph et al. 2019). 

Hematite cannot spontaneously recombine, reform, regrow, emerge from the soil and increase in size in 

just three days, or engage in other behaviors. These are the province and hallmarks of biology. 

As documented in Figures 31-32 vast fields of spherical specimens were crushed, obliterated, 

disappear and/or are turned into blotchy smears by the wheels and treads of the rover Opportunity.  

However, in less than 650 days (Sols) innumerable spherical specimens re-appear atop the crests of old 

tire tracks; and many have mushroom-shapes with stems. These spheres, including those that emerged 

from the soil in 3 days (Figure 8) and 7 days (Figure 7), in all respects, have the characteristics, 

morphology and patterns of growth characteristic of living organisms. By contrast, claims that these 

spheres are hematite are based on speculation, inference, false colors, the averaging of temperatures,  ad 

hoc calibration adjustments, and the selective removal of spectral signals generalized from panoramic 

images that included sand, soil, dust, oblong rocks, and outcrops (Bell et al. 2004; Christensen et al. 

2004; Klingelhöfer et al. 2004; Rieder et al. 2004; Squires et al. 2004). The Opportunity team’s 

instruments were not even mineral specific.  The evidence favors biology, not mineralogy. 

Figure 31. (Left) Opportunity, Sol 1232. Crushing, obliteration of sphericals. (Right) Sol 1319: Note 
sphericals  appear in the crests of old tire tracks indicating they were not blown or knocked into place.
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Figure 32.  On Sol 952, the rover wheels obliterated almost all spheres. By contrast, numerous spherical 
specimens, many with stems and mushroom shapes have grown into the old tire tracks formed on Sol 
336.  These “new” spheres are located predominantly on top of the the crests (see also Figure 31). 
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Figure 33. Photographed on Sol 952, segment from Figure 32. Growth of spherical and stemmed-
mushroom-shaped specimens that appeared 616 days (sol) after the rover Opportunity wheels obliterated 
all evidence of these spheres on Sol 336. 
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Figure 34. The spheres upon the surface are fragile, easily broken and will leak and shed their interiors 
when broken.
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Figure 35. Photographed by rover Opportunity. Vast fields of spherical specimens, may with stalks above 
the surface. The “greenish” color is may indicate chlorophyl. 

A Summary of Evidence Favoring Martian Life

The question of if there is, or was, life on Mars, is extremely controversial. Even those favoring 

biology have not yet claimed to have found definitive proof. Admittedly: similarities in morphology are 

not proof of life, even when the evidence includes a wide range of specimens that a p p e a r b i o l o g i c a l 

including: putative fossilized stromatolites, microbial mats, tube worms, metazoans, and calcareous algae 

(Baucon et al 2020; Bianciardi et al 2014; Joseph et al 2020a,d-g; Kazmierczak 2016, 2020; Noffke 2015; 

Rabb, 2018; Rizzo et al. 2020; Ruff & Farmer 2016; Small 2015). Then there is the biological residue 

discovered in Martian meteorites (Thomas-Keprta,  et  al.  2009; McKay et al. 2009); and what appear to 

be living organisms including algae, fungi, and lichens (Dass 2017, Joseph 2014a 2016; Joseph et al. 

2019, Joseph et al 2020a,b; Krupa 2017; Levin et al. 1978; Levin & Straat 2016; Rabb 2015, 2018, 

Small 2015);  and biological activity detected in Martian soil samples (Levin & Straat 1976, 1977;  

2016); and the 9 spherical specimens that increased in size and the 12 that emerged from beneath the 

soil  in just three days (Sols 1145 and 1148); and spheres and stemmed-mushroom shapes which emerge 
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in old tire tracks formed by the rover Opportunity. 

Massive black araneiforms emerge in the Spring, grow rapidly, and then rapidly wane in the 

Autumn and Winter only to re-emerge the following Spring. This evidence may represent the growth of 

massive colonies of black fungi, lichens, algae, methanogens, and sulfur reducing organisms (Ganti et al. 

2003; Ness, 2001; Joseph et al. 2020c; Kereszturi et al. 2012). In support of this hypothesis are 

sequential images (Figures 36,37) of what may be black fungal bacterial growth on the rovers; but 

which may also be living contaminants transferred from Earth (Joseph et al. 2019s, 2020a). 

Figure 36. Mars Sol 2718 (upper left) vs Sol 2813 (right and bottom)--Growth of specimens resembling 
bacteria and fungi on the Rover, Opportunity, after 95 (Martian) days on Mars--
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Figure 37. Sol 51 (left) vs Sol 1089 (right). A portion of the Chem Cam deck of the Rover Curiosity 
Photographed on Sol 51 and 1038 Martian days later (Sol 1089). Possible evidence of the growth of fungi 
and bacteria. As previously detailed, these specimens may represent the flourishing of living 
contaminants which adhered to this equipment and survived the transfer from Earth to Mars (Joseph et al. 
2019). 
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Figure 38.   Top (Sol 52). Rover Curosity: Mastcam photo of the interior, flooring, and shelter of an 
exposed compartment after 51 Martian days/Sols. Bottom (Sol 1089). Possible fungal contamination or 
bio-corrosion of the interior, walls, and flooring of an exposed compartment in the chem cam desk after 
1089 days/Sols. Another possibility: Salt which came to adhere only to the interior of the surface perhaps 
secondary to moisture? Or perhaps fungi may have been transported to Mars already attached to the rover 
(Joseph et al. 2019). 
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Figure 39. (Left / Sol 1089) Contamination of open compartment of the rover with (Right Sol 1162) white amorphous mass. If 
a fungus, then it is possible the rover may have been contaminated when this specimen was photographed 27 days/Sols earlier. 

Figure 40.. Photographed by rover Curiosity. Top Row: Sol 840-arrow indicates gray mm-size dimpled-spoked 
formations. Fifteen days later (Sol 855) a white colored formation appears. Bottom Row: Square-shaped-specimen 
near shadows with vertical “side-walls” and square-concave center (Sol 869). Five hours later (Sol 969) in 
response to full sunlight it’s become oval in shape and “side-walls” are lateral.
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Hypothesis and Statistical Analysis: Are Increases in Size, Diameter Evidence of Life

In this report we now provide additional evidence of  waxing, waning, and the multiplication of 

amorphous specimens, some of which appear to move to different locations; as well what may be  

networks of mycelium,  plasmodium, bulbous fruiting sporangia that have become rigid, encrusted, 

calcified or fossilized. Moreover, these networks are adjacent to dimpled-donut-shaped specimens that 

resemble the lichen genus Ochrolechia, and “milkcap mushrooms”  and some species of Russula. Rapid 

waxing and waning in size appears to be a common attribute of a wide variety of Martian specimens.  

Waxing vs waning of amorphous and  fungal-like spherical specimens have been photographed in 

the equatorial regions at ground level (Figures 6, 17-22). The huge black and growing araneiforms have 

been photographed from orbit, in the arctic regions (Figures 1-6,45-51). However, until this report, there 

have been no attempts to statistically analyze and quantify what appears to be growth. The purpose of this 

study, therefore, was to perform a statistical analysis and quantitatively compare sequential images to 

determine if specimens (A) resembling fungal “puffballs” are growing. If biological, it can be predicted 

that as they increase in diameter and size, they should become closer together and the distance between 

them should decrease. By contrast, if due to wind, they should not increase in diameter and the distance 

between them should not decrease  but remain the same or randomly increase and decrease as they are 

moved by wind. Likewise, if the (B) araneiforms show statistically significant evidence of parallel 

expansion over time that could be indicative of life. 

Experiment 1

Method 

Images: Two images were analysed from Mars, viz. Opportunity Sol 1145 and Sol 1148 (Figures 

8, 41). Various spheres are visible and those clearly present in the two images have been labelled A to I. 

Theory: The problem in making quantitative comparisons between Sols is that there may be 

variations in the exact positioning of the camera on the different occasions. Hence, a method of 

determining growth/expansion was devised based on relative measures of ratios and is based on the 

premise that if growth has occurred then the distance between the adjacent edges (E) of two mushrooms 

would reduce while the distance between their centres (C) would remain more or less constant. 

Consequently, the ratio of the centre distances (C-C) to edge distances (E-E) would increase on sol 1148 

if expansion/growth has occurred in the intervening period. 

Image analysis: Images were analyzed using ‘Image J' software developed by the National 

Institute of Health (NIH), Bethesda, USA (Armstrong and Bradwell 2010,  Rizzo et al 2021). Each image 
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was opened using the software and magnified to clearly reveal the structures of interest. Images were 

manipulated using brightness, contrast, sharpening, and if necessary edge detection, to optimize the 

appearance of the mushrooms. The following protocol was used to estimate whether there growth/

expansion of the mushrooms had occurred between Sols (Figures 8, 41-44): (1) a circle of best fit was 

fitted to each of the profiles A to I, (2) the centre of each circle was determined by drawing three ‘chords’ 

at different locations on each circle, the points of intersection of the lines drawn at the midpoint of each 

chord and normal to it define the centre, (3) for each pair of adjacent mushrooms, the distance between 

their centres (C-C) and edges (E-E) was measured, (4) for each pair of adjacent mushrooms, the ratio C-

C/E-E was calculated. Nine pairs of mushrooms visible in Figures 8, 41 were analysed. The average 

change in the C-C/E-E ratio on sols 1145 and 1148 was also compared using a paired sample ‘t’ test. An 

applied cluster analysis (the paired group method, using the Euclidean index of similarity) was then 

performed using the PAST statistical package (Hammer et al., 2001) to distinguish and determine 

changing ratios between the existing groups within derived data (group 1: E-F and F-G; group 2: E-G, A-

B, A-I and B-C; group 3: B-I, A-C and D-E). As measure from the center points, a statistically significant 

change in the ratios and distances between the puffballs was confirmed; i.e. all groupings became closer 

together due to specimen diameter expansion.

Results and Discussion: Growth of Martian Mushrooms? 

Examination of Figures 41 reveals 9 puffball-like structures on sol 1145 (A to I). The same 

structures are visible on sol 1148 together with 13 new structures. A comparison of the C-C/E-E ratios for 

9 pairings of mushrooms are shown in Table 1 and Figures 41-44). The C-C/E-E ratio increased from Sol 

1145 to Sol 1148 for each of the 9 comparisons of pairs of spheres, the greatest change in ratio being 

observed for comparison of distances between spheres E,F and the smallest between spheres B,I. A 

paired sample ‘t’ test gave a value of ‘t’ = 3.28 (8DF, P = 0.011) indicating a significant increase in the 

C-C/E-E ratio from sol 1145 to 1148; the probability of a chance effect being approximately 1 in 100.                                          

On Sol 1148, the existing puffballs increased in size and are closer together indicating growth and 

expansion, as confirmed by statistical and cluster analysis. To summarized, the larger the difference in 

ratios between sol 1145 and 1148 in table 1 indicates the specimens grew closer together. EF and AI most 

and DE and BI the least. The cluster analysis emphasizes that pairs of spheres behave differently with 

three groups of responses:  (1) EF and FG grew significantly closer and were the closest together on sol 

1145 (2). EG, AB,  AI, BC grew significantly closer but were further apart  on sol 1145. (3) BI, AC, DE 

which grow the least. These impressions are further confirmed by an examination of Figures 41-44. 
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It is important to stress that the statistical method is based in relative measures and makes no 

assumptions about the positioning of the camera. Second,  there is no evidence of significant wind effects 

at the site between Sols 1145 and 1148 (Joseph et al. 2020b). Third, there are distinctive features at the 

edges of the spheres (e.g. A and G) they appear on the perimeter of the structure on both Sols and 

therefore, to have moved laterally. Fourth these specimens appear fragile (see Figures 32-33) and they are 

easily crushed. When the RAT was deployed on sol 1168, all of the spherical specimens were crushed 

leaving only a crusty-fluffy white debris.  Therefore, it is highly probable that the data truly indicates 

significant degrees of lateral ‘growth’ of the these spherical specimens between sol 1145 an 1148.

Figure 41. Comparison of Sol 145 (Left) and Sol 148 (Right). Specimens at top (A,b,C,I) have not moved 
in relation to one another as measured from the center of the specimens.  Instead they have expanded in 
size and became significantly closer together. Specimens at bottom (D,E,F,G) have increased in size, 
expanded closer together, but also moved in relation to one another, with specimen G show the greatest 
degree of positional change and movement which may account for the crescent hole to the upper right. 
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Figure 42.  Comparison of Sol 145 (Left) and Sol 148 (Right). As measured from there outer 
boundaries (top) and center (bottom) ABCI have grown closer together, and DEFG have move 
in relationship to one anther as measured from their centers; with D and G showing the most obvious 
changes in position. 

Figure 43.  Method of measuring possible growth/expansion’ of fungal puffballs from Sol 1145 to sol 
1148 (A, B adjacent ‘mushrooms, E-E = edge to edge distance, C-C = Centre to centre distance. Chords 
drawn in A are used to establish the centre of the circle. 
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Figure 44. Clone of Sol 148 (at 50% opacity)  placed on top of Sol 148, using center of sphere at top-
center-right as anchor point. Patterns of growth and expansion. Specimens at the top expanded upward 
and to the right. Center most specimen expanded upward and to the right and left. Specimens at the 
bottom expanded upward and predominantly to the left. Sphere at lower left show greatest degree of 
positional change (moving up-leftward).
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Table 1. Quantitative analysis of “Martian Mushrooms” (Puffballs) depicted in Figures 6, 38, on Sols 
1145, 1148. Distances are measured in arbitrary units.

Table 2: Cluster Analysis: Classification of changes in Euclidean distance. 
Distinct groups expanded and became significantly closer together.
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                                                                 EXPERIMENT 2

A number of Martian features photographed by orbital satellite exhibit expansion or growth in 

sequential photographs. A notable example is the ‘black streaks’ which appear to gradually extend down 

the face of a dune (Figures 5, 47). The objective of this analysis was to compare the morphology of the 

‘black streaks’ (Figure 5) on three occasions (Days 1, 22, and 35) to determine if there is any evidence of 

significant growth/expansion and therefore if these features could be evidence of life. 

Method

Images: Three images taken on three days were analysed from Mars via orbital satellite (Figure 

5). Various clusters of ‘black streaks’ are clearly visible and appear to expand over time apparently 

extending down the slope of a dune from its crest.

Image analysis: Images were analyzed using ‘Image J' software developed by the National 

Institute of Health (NIH), Bethesda, USA (Armstrong and Bradwell, 2010). Each image was manipulated 

using brightness, contrast, sharpening, and if necessary edge detection, to optimize the appearance of the 

streaks.  The following metrics were recorded from the three images (Figure 5): (1) the number of 

individual streaks resolved by the image analysis (N),  (2) the length of each streak from the crest down 

the slope (Ls), (3) the length of the upslope (Lds) from the bottom to the crest at the location of each 

streak, (4) the ratio of streak length up th slope length (Ls/Lds), (5) the width of each cluster of streaks at 

the midpoint of the longest streak within the cluster (W), and (6) the ratio of mean length of streaks per 

cluster to the width of the cluster (L/W). Comparison of metrics on the three occasions was made using 

analysis of variance (ANOVA) followed by Tukey’s Honestly Significant Difference (HSD) post-hoc test. 

Results and Discussion

The data are summarized in Tables 2 and 3. First, there is a small increase in the number of 

streaks present that are resolved by the image analysis system from 11 on day 1 to 15 on day 34. Second, 

there are no significant differences in Lds among the sequential images (F = 0.86, P = 0.43), indicating 

that successive images were taken by the HiRISE satellite at approximately the same height. Third, mean 

Ls varied significantly among days (F = 6.42, P = 0.004), with post-hoc tests indicating that most of the 

increase in length occurred between day 1 and day 22--thus there is an initial, and significant growth 

spurt. Fourth, the Ls/Lds ratio also varied significantly among days (F  6.28,. P = 0.005), with the greatest 

increase between day 1 and day 22 with little significant change from day 22 to day 34--although it is 

apparent the the specimens increased in length. Fifth, the L/W ratio did not vary significantly among days 

(P > 0.05) indicating that length and width of the streaks increased in proportion from day 1 to day 22.
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In other words, these specimens, although separated by varying distance, and regardless of the terrain, all 

grew at the same rate--a feature of biology, not geology.

In addition to the appearance of some new streaks on days 22 and 34 which increased the width of 

the streak clusters, the data indicates an extension of the streaks up then down the slope over time from 

the crest. Most of this extension appears to occur between day 1 and day 22 with no significant change 

from day 22 to day 34. The statistical data confirms and indicates a significant degree of rapid parallel 

‘growth’ between Sol 1 and 22.

Table 3. Quantitative analysis of black streaks depicted in Figure 5 on three occasions by the HRISE 
satellite experiment. Absolute distances are measured in arbitrary units. Abbreviations: Lds = Distance 
from crest to bottom of slope. Ls = length of streak. Lw = Ratio of mean length of streak per cluster to 
w i d t h o f c l u s t e r . 
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          DISCUSSION 

Based on statistical analysis of select samples, there is significant evidence of  and increase in 

diameter and lateral ‘growth’ of spherical specimens identified as fungal puffballs, between sol 1145 an 

1148 such that as they increased in size they also grew closer together.  Likewise the arctic specimens, 

although separated by varying distance, and regardless of the terrain, all grew at the same rate in parallel 

and in an upslope direction--a feature of biology, not geology.

Nearly three dozen investigators, many with a history of major scientific accomplishment, have 

previously presented what they believe to be evidence of current and past life on Mars (Baucon et al. 

2020; DiGregorio, 2018; Bianciardi  et al. 2014; Dass, 2017; Joseph et al. 2020a,d-g; Kaźmierczak 2016, 

2020;  Levin & Straat, 1976, 1977, 2016; Levin et al. 1978; McKay et al. 2009; Noffke 2015; Rabb, 

2018; Rizzo 2020; Rizzo & Cantasano 2016; Ruff & Farmer 2016; Small 2015; Thomas - Keprta et al. 

2009).  In this report, we provide evidence of  movement, relocation, alteration in shape, increases and 

reductions in mass, and  statistically significant findings of growth. As documented here, Martian 

specimens emerge from beneath the soil, increase in diameter, and, in the arctic, reaching hundreds of 

meters in size in the Spring and early Summer only to disappear by Autumn and Winter; whereas those in 

equatorial rock shelters change shape, move to different locations, or almost completely disappear or 

increase in mass and number: “behavior” that is characteristic of life.  

Martian Puffballs? Statistical Analysis Supports Biological Growth

The focus of these statistical analysis included 9 puffball shaped specimens that were 

photographed on Sol 1145. Three days later twelve additional puffball specimens emerged from beneath 

the soil whereas the original 9 appear to have increased in size (Figures 8, 38-40). As documented in this 

report, a comparative statistical analysis indicates that the original 11 specimens significantly increased in 

diameter, such that the distance between them decreased in parallel due to mutual expansion. Joseph and 

colleagues (2020a,b) ruled out the possibility that wind may have uncovered these specimens. 

Specifically, as reviewed by Joseph et al,. (2020b) ground level wind speeds between 40 to 70 m/h are 

required to move coarse grained soil on Mars, and no strong winds, dust clouds, dust devils, or other 

indications of strong winds were observed, photographed, or reported during those three days in this 

vicinity of Mars. Hence, there is no evidence these spherical specimens were uncovered or moved by 

wind. Nor does the Sol 1148 photograph show any evidence that the surface has been disturbed by wind, 

as there are no parallel lineaments, ripples, waves, crests, or build-up of soil on one side of the specimens 

as would be expected of a directional wind (Kidron and Zohar 2014; Kidron et al. 2017).  The only 
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evidence of soil displacement is the partial hole within and adjacent to one of the original 11 specimens 

(Figures 8, 41-44). Soil displacement in the shape of a partial crescent hole, is what would be expected of 

soil-dwelling organisms growing in size whereas wind would fill in that shallow crescent (Kidron and 

Zohar 2014; Kidron et al. 2017).  Moreover, all specimens appear to be on the same plane, level to one 

another, as if they are emerging and growing atop the soil. If the additional 12 specimens were uncovered 

from beneath the soil, then why do they not appear much lower, at a lower level than the original 9? If 

due to extremely powerful winds, then why weren’t some of the specimens pushed further apart or into 

new locations? If these Martian specimens are alive, then they had to have grown as a phenomenal rate. 

However, rapid growth appears to be the norm as documented in this report. 

Araneiforms: Statistically Significant Evidence of Growth

As is now well documented massive black araneiforms appear on the surface of the upper 

northern and lower southern hemispheres of Mars and may grow at a rate of 5 to 10 km per day and  

become several hundred meters in size, length, and/or diameter. The emergence and growth of these 

formations parallels the melting of the polar ice- caps which consist of varying levels of frozen carbon 

dioxide and considerable amounts of water-ice (Bierson et al. 2016; Foss et al. 2017; Phillips et al. 2001; 

Thomas et al. 2016).  After increasing in width, length, and diameter most of these huge black formations 

disappear by late Summer and Winter (Hansen et al. 2010; Portyankina et al. 2020). The following Spring 

and over the following years similar patterns emerge in the same locations (Figures 1-6, 45-51). As 

documented in this report, the growth patterns were found to be statistically significant with adjacent 

specimens growing at the same initially rapid rate. Moreover, as can be see in Figures 4 and 6, these 

arctic specimens grow upslope and curve toward one another.

Based merely on photos, an in the absence of Earthy analogs or any attempt to determine the 

identity of these formation, NASA (2016) has argued that these massive “araneiforms”  “result from 

thawing of seasonal carbon-dioxide ice.” However, frozen Carbon-dioxide ice is not black but semi-

transparent white; and this is obvious as based on an examination of orbital data and photographs of the 

southern and northern arctic regions of Mars. Furthermore, when CO2 melts, it would not lay on the 

ground but rise into the atmosphere.  Specifically, it's been hypothesized that melting-pressure-induced 

release of CO2 causes the ejection of black sand and rocks (Pilorget 2011; Portyankina et al. 2020). 

Hence, as warming temperatures induce the sublimation of carbon dioxide it becomes gas that bursts 

upward or in multiple directions carrying black dust and other dark colored debris which spreads across 

the surface which is also being liquified by melt-water.  Kieffer et al. (2006) have also proposed “that the 
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seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, 

building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, 

producing high-velocity CO2 vents that erupt sand-sized grains in jets to form the spots.”  Hence, there 

must be an unending supply of black sand and rocks which remain hidden until sprayed outward every 

Spring by melting glaciers. If true, then: (a) where do these black rocks and sand come from, (b) why do 

they disappear in Autumn, and (c) where do they go? and (d) why don’t these black rocks and sand 

appears simultaneously and immediately instead of expanding outward exponentially in a statistically 

significant pattern of growth? And why can’t these blacks rocks and sand be seen beneath the translucent 

ice before it melts and again after it freezes? 

Figure 45. HiRISE orbital photo. Arctic dune with repeating black formations. Expanding formations atop and 
within arctic Martian sand dunes supports the hypothesis they begin growing within melt-water atop the dune and 
take identical expanding shapes, whereas thickening spider-web-like masses and grass-blade like appendages 
develop within the  anterooms  where water would also be expected to pool. 
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Figure 46. HiRISE orbital photo. Arctic Dunes, Mars. covered with black formations. Note repeating 
pattern.
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Figure 47. HiRISE orbital photo. Arctic Dune, Mars. covered with black formations. Note repeating 
patterns.
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Figure 48. HiRISE. Arctic Dunes, Mars. covered with black formations. Note patterns repeat.
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Figure 49. Mars: Orbital photos. Waning from black during the Summer and then gray in the Autumn/
Winter. Photographed, via satellite, from orbit (From Ganti, et al. 2003).

Arctic Martian Melt Water and Growth of Dormant Organisms?

In the arctic similar formations assume identical expanding shapes and patterns of growth. Nearly 

identical formations appear on hundreds of dunes even those thousands of meters distant (Figures 45-51). 

These complex repeating patterns are characteristic of biology.

Mohlmann and Akos (2010) have proposed that brackish viscous meltwater is jetted onto the 

surface creating black streaks and other shapes. Brackish water and mud would nourish innumerable 
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biological organisms (Joseph et al. 2020c) and could include “organic material, microbes, or even simple 

plants" as has been proposed by Ness (2001). Moreover, as arctic melt-water  floods the surroundings 

black fungi, mould, lichens, algae, and other dormant organisms would begin to reproduce and proliferate 

in response to the availability of liquid and warming temperatures (Ganti et al. 2003; Ness, 2001; Joseph 

et al. 2020c; Kereszturi et al. 2012). Horvath and colleagues (Ganti et al. 2003; Kereszturi et al. 2012) 

have theorized that photosynthesizing organisms lay beneath, within, or upon the surface of arctic ice in a 

"dormant, desiccated state” and have identified algae / cyanobacteria (Kereszturi et al. 2012) and 

"lichens" (Ganti et al. 2003) as ideal candidates—lichens being composite algae-fungal organisms--all of 

which have been shown to survive direct exposure to space and Mars-like conditions (De Vera 2012, De 

Vera et al. 2019; De la Torre Noetzel et al. 2017, 2020). According to this scenario, these awaking 

photosynthesizing organisms might develop black pigmentation in response to radiation and sunlight, 

thereby absorbing energy and increasing localized warmth, and in so doing forming expanding repeating 

patterns and radial channels that grow larger and blacker (Joseph et al. 2020c). 

Many terrestrial species of bacteria and fungi such as ‘black yeasts’ (Sterflinger 2006), and 

lichenized fungi (Armstrong 2013) and black fungi (Zakharova et al. 2014) develop dark or black 

pigments after emerging from dormancy. Algae/cyanobacteria, black fungi, and lichenized fungi dwelling 

in extremely frigid environments are often darkly pigmented and which enables them to absorb heat, and 

which via albedo, melts snow more rapidly thereby increasing the supply of water (Nordhagen 1928). 

Many species of lichens including members of the genus Peltigera are darkly colored and become almost 

black when wet and become grey when dry. 

If biological and organic this would explain why these surface features change over time in 

response to warming, the availability of melt-water, and fade in response to cooling temperatures. 

Possibly, arctic fungi, mould, and immense colonies of dormant surface organisms, when exposed to melt 

water, become pigmented upon absorbing sunlight, flourish and rapidly reproduce, then dormant again 

when water evaporates and freezes in the Autumn and winter (Joseph et al. 2020c). This would explain 

why basically identical patterns repeat for years (Figure 50). Then there is the contribution of geysers and 

mud volcanoes that may spew a bacterial-infested organic soup onto the surface and providing nutrients.  

When waters evaporate and freeze, these colonies form spores, become dormant, migrate beneath the 

surface, or die and the dark coloration disappears; and then the pattern repeats the following Spring.
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Figure 50. HiRise orbital photos of massive “spider-like” formation with tributaries, that that repeat the 
same sequence over a 5 years time period: 8/5/2009 - 5/25/2015
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Figure 51. Orbital photo of Mars. Martian geysers? 

The Astrobiology of Martian Geysers and Mud Volcanoes

Investigators have also proposed that these massively growing black formations are produced by 

mud and dirty water expelled from mud volcanoes and geysers (reviewed by Joseph et al. 2020c). Nearly 

20,000 circular cratered mounds believed to be similar to the "mud volcanoes" of Earth have been 

observed on Mars (Kumar et al. 2019; Pondrelli et al. 2011; Skinner & Adriano 2009).  

These Martian "mud volcanoes" (MVs) commonly take the form of domes, cones, pits, and 

elliptical and circular mounds and may be found in clusters and belt-like chains (e.g., Dapremont and 

Wray 2020; Komatsu et al., 2016) with numerous pits that may be interconnected by subsurface “pipes” 

(Kumar, et al. 2019). The Martian MVs, therefore,  appear to be fed by underground  rivers, lakes, and 

reservoirs of water that are interconnected or adjacent to one another (Remizovschi et al. 2018; Pozzobon 

et al. 2019). This would explain why numerous spidery araneiforms, and what appears to be black 

geysers and MV  appear adjacent to one another. This underground watery organic soup once sufficiently 

pressurized or heated (at temperatures as low as 2 °C (36 °F) will rush upward and puncture and pour 
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forth upon the surface  (Skinner & Adriano 2009; Remizovschi et al. 2018). 

Like the mud volcanoes of Earth, it is not likely that Martian MVs erupt hot lava, but watery-mud, 

methane, CO2, nitrogen, sulfur, and other gases and debris; a mix that could provide nourishment for 

innumerable organisms (reviewed by Joseph et al. 2020c). Moreover, Parnell and colleagues (2018) have 

suggested that moist sediments could provide potential habitats for subsurface sulphate reducing 

organisms, whereas the detection of jarosite supports the possibility of water-atmosphere-biological 

interactions; i.e. microbially sulphide oxidation (Norlund et al. 2010). On Earth, MV are  inhabited by 

anaerobic methanotrophic archaea, sulfate reducing bacteria, algae and cyanobacteria (Ali et al. 2007; 

Wrede et al. 2012;  Niemann et al. 2006; Remizovschi et al. 2018; Alain et al. 2006) all of which give the 

erupted mixture a blackish color. 

If Martian “mud volcanoes” and geysers are one and the same, is unknown. However, cold water 

dirty geysers are also believed to contribute to these massive Martian arctic formations (reviewed by 

Joseph et al 2020c). Cold water geysers are fed by subsurface reservoirs of trapped CO2, geophysically 

obtained from rock, and the decarbonation of carbonates at depths well below the surface. Subsurface 

CO2 is also produced via organic decay and aerobic organisms that release CO2 as a waste product 

(Canfield 2014). As CO2 accumulates, pressures increase,  and the geyser erupts water, organic material, 

and a variety of organisms. 

Terrestrial geysers are brimming with life and include sulfur reducers, methanogens and over 100 

different microbial phyla representing diverse bacteria and archae (Anantharaman et al. 2016; Probst et 

al. 2018). If the geysers of Mars are like those of Earth and populated by a wide array of microorganism, 

then upon erupting they would spray the surface with a variety of organisms, and provide water to those 

already upon the surface which upon becoming pigmented would turn the surface black. 

Radiation:  Moulds, Lichens, Fungi, Methanogens, Sulfur Reducing Bacteria

In this and a previous report (Joseph et al. 2020c) we hypothesized and presented evidence of 

what may be arctic fungus, mould, algae, lichens (a fungal algae composite organism),  methanogens and 

sulfur reducing organisms; all of which may be primarily responsible for the creation of these giant black 

formation on Mars. We have theorized that methanogens and sulfur reducing species may be ejected onto 

the surface by geysers and mud volcanoes, and have raised the possibility they all these putative arctic 

organisms might form spores, migrate beneath the surface or become dormant or die when water 

evaporates and freezes.  

We have also argued that subsurface organisms might die following prolonged exposure to 
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gamma and UV radiation. By contrast, it can be predicted that surface dwelling organisms would have 

adapted to the radiation intense environment of Mars which has been estimated to equal "0.67 

millisieverts per day" at ground level (Hassler et al. 2013). This is significantly and profoundly below the 

radiation tolerance levels of a variety of prokaryotes (Moseley & Mattingly 1971; Ito et al. 1983) and 

simple eukaryotes, including fungi and slime moulds which can withstand radiation doses up to 1.7×10
4 

Gy (Deering et al. 1972; Saleh et al. 1988; Terzi, 1961, 1965). 

Moulds, fungi, algae, and lichens ((Horneck et al. 2002; McLean & McLean 2010; Nicholson et 

al. 2000; Novikova et al 2016; Onofri et al. 2012, 2018; Sato et al. 2011; Tugay et al. 2006; Sancho et al. 

2007; Raggio et al. 2011; Takahashi, et al. 1972), also survive direct exposure to the radiation intense 

frigid environment of space  with no observable negative effects on viability or spore production. These 

diverse terrestrial species are well adapted to surviving on Mars. Likewise, it can be predicted that those 

species that evolved and adapted to the harsh Martian environment would have little difficulty surviving.  

Moulds, fungi, lichens, algae, and other species develop adaptive features when exposed to high 

levels of radiation (Hashimoto & Yanagisawa 1970; Mulleavy & Evans 1982; Rakoczy 1998; Terzi, 

1961, 1965; Tugay et al. 2006; Zhdanova et al. 1991, 2004) --a property described as  "radiation 

hormesis" "radiostimulation," and "adiotropism"  (Adet 1993; Alshits et al 1981; Levin 2003;  

Zhuravskaya et al 1995). These adaptations include rapid tissue and cellular regeneration and growth 

(Basset 1993; Becker 1984; Becker & Sparado 1972; Occhipinti et al. 2014; Levin 2003; Maffei 2014; 

Moment, 1949) and enhanced spoor production (Hashimoto & Yanagisawa 1970; Rakoczy 1998; Tugay 

et al. 2006; Zhdanova et al. 1991, 2004).

Putative Martian organisms if provided moisture, would be predicted to grow rapidly in response 

to the radiation intense Martian environment--and evidence supportive of that hypothesis has been 

provided in this report.  Moreover, lichens, fungi, algae and numerous species of microbe thrive in and 

are attracted to highly radioactive environments (Becket et al. 2008; Dadachova et al. 2007; Mulleavy & 

Evans1982; Tugay et al. 2006; Wember & Zhdanova 2001). Fungi (Wember & Zhdanova 2001; 

Zhdanova et al. 2004)  will seek out and grow towards sources of radiation which serve as an energy 

source for metabolism (Dighton et al. 2008; Tugay et al. 2006).  In fact, fungi are invigorated, flourish, 

and grow rapidly within the International Space Station as a consequence of the heightened radiation 

levels (Novikova et al. 2016; Novikova 2009; Vesper et al. (2008).  Moulds and fungi also flourish on the 

outskirts and along the walls of the damaged and highly radioactive Chernobyl nuclear power plant 
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(Dighton et al. 2008; Zhdanova et al. 2004). Even if their DNA is damaged by radiation they can easily 

repair these genes due to a redundancy of genes with repair functions (White et al. 1999). The high levels 

of radiation, on Mars, may therefore provide an ideal environment for fungi.

     CONCLUSIONS

It is well established that a variety of terrestrial organisms survive Mars-like conditions. Given the  

likelihood Earth has been seeding Mars with life and life has been repeatedly transferred between worlds 

(Beech et al. 2018; Joseph et al. 2019; 2020c; Schulze-Makuch et al. 2005), it would be surprising if there 

was no life on Mars. However, in contrast to terrestrial organisms, Martian fungi, lichens, moulds, algae 

and other putative life-forms, would have evolved on and already be adapted to the low temperatures, 

intermittent availability of water, low amounts of free oxygen, and high levels of radiation that 

characterize the harsh Martian environment. Almost all scientists who have searched for current or past 

life on Mars, have reported positive findings.  What would be surprising is if there was no life on Mars. 

These positive findings include reports of biological activity and the observation of specimens 

that closely resemble fossilized domical stromatolites, bacterial mats, algae, tube worms, and metazoans; 

bacterial residue in Martian meteorites; and a host of what may be living fungi, algae, lichens, mould. We 

have now presented sequential photographs of specimens that grow, change their shape and appear to 

multiply or move to different locations and disappear; donut shaped formations resembling the lichen 

genus Ochrolechia and “milkcap mushrooms” and  “donut” shaped Russulas; tangles and networks of 

white specimens resembling plasmodium, bulbous fruiting sporangia and interconnected clumps and 

sphericals--all of which may have become rigid, encrusted, calcified upon exposure to the surface; as well 

as specimens resembling puffballs with stalks or shedding what appears to be crustose and which are 

surrounded by white powder-chunky-leprose-spore-like material that also consists of what appears to be 

embryonic multi-open-tubular and stemmed mushroom-like formations; and statistical evidence that 

specimens in the arctic are growing in parallel, and that equatorial spherical specimens resembling fungal 

puffballs significantly expanded in size and diameter, and grew out of the soil and closer together.

Similarities in morphology are not proof of life. It is possible that all the specimens presented here 

are abiotic. We cannot completely rule out minerals, weathering, and unknown  geological forces that are 

unique to Mars and unknown and alien to Earth. However, growth, movement, alterations in location and 

shape, constitute behavior, and coupled with life-like morphology, strongly support the hypothesis there 

is life on Mars. 
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