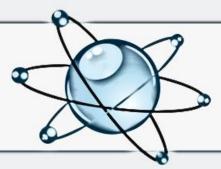
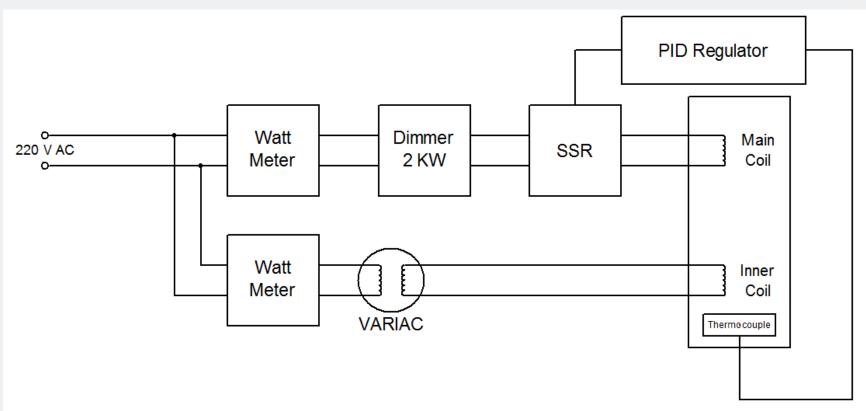
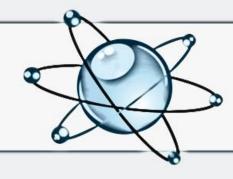

EXCESS HEAT SIMULATION <

- 1. Experiment Description
- 2. Electric Scheme
- 3.Images & Video
- 4. Tech details & results
- 5. Conclusion

Experiment Description

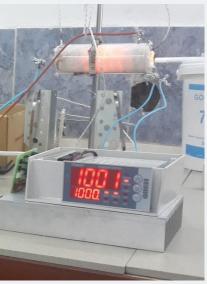

The idea of this experiment is very simple.


We want to check whether it is possible to detect input energy drop when an additional energy source is introduced inside a LENR reactor, given that system temperature is kept stable due to use of PID regulator.

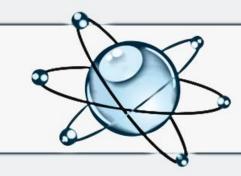


Electric Scheme

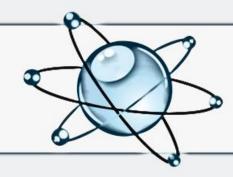
Images & Video



Some still images and 2 short (~5 mins each) videos were uploaded to:


https://mega.co.nz/#F!qpUESBzL!e4Q2ET8np9RbYOQpkl_QHg

When we send some energy into inner coil (white cable), input energy to main coil (black cable) drops for comparable number of watts after 5-6 minutes (needed for PID to stabilize the temperature).



Tech details & results

- 1. 0.7mm Resistohm-140 wire (up to 1300*C operational temp) was used for both main and inner coils
- 2. R_{main coil} ~ 13 Ohm; R_{inner coil} ~ 4 Ohm
- 3. Energy loss in the variac without load ~ 13-14 W
- 4. Energy consumption in main coil at 1000°C ~149 W
- 5. Time used by PID to stabilize temp ~ 5-6 minutes
- After introducing ~ 20 W to the inner coil there was an input energy drop of ~17-19W in the main coil
- 7. After introducing ~ 53 W to the inner coil there was an input energy drop of ~50-53 W in the main coil

Conclusion

When an externally heated reactor is being stabilized by PID a drop in power input demonstrates a heat source within the reactor.

The wattage of input drop could be used to quickly estimate the heat contribution of the reactor core.