

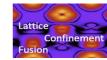
MCNP Fusion Modeling of Electron-Screened Ions

2021 MCNP[®] User Symposium Los Alamos National Laboratory July 12 – 16, 2021

Theresa L. Benyo, Ph.D., NASA Glenn Research Center (GRC) Lawrence P. Forsley, Global Energy Corporation

MCNP Modeling of Lattice Confinement Fusion (LCF) NASA Glenn Research Center (GRC) Advanced Energy Conversion Project

- Introduction
- Current MCNP Fusion Modeling Capabilities
- LCF Related Modeling Accomplished with MCNP
- LCF Calculations After MCNP Modeling
- Nuclear Reaction Modeling Limitations
- Proposed MCNP Enhancements
- Summary

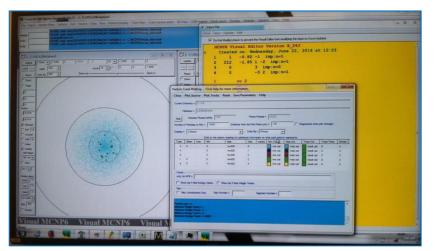


Introduction

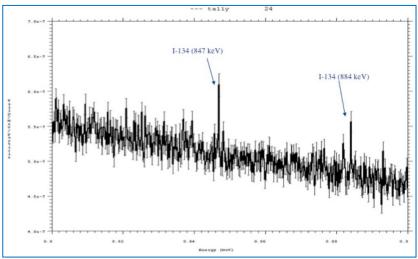
- NASA GRC and DoE LBNL discovered novel means of driving nuclear fusion reactions in deuterated lattices, Lattice Confinement Fusion (LCF)
 - Novel nuclear reactions observed in bremsstrahlung-irradiated deuterated metals, B. Steinetz, et. al., *Phys Rev C*, **101**, (2020) 044610.
 - Investigation of light ion fusion reactions with plasma discharges, T. Schenkel, et. al. J. Appl. Phys., **126**, (2019) 203302.
- Lattices provide Coulomb Barrier reduction through lattice, plasma, conduction and shell electron screening
 - Nuclear Fusion Reactions in Deuterated Metals, V. Pines, et. al., Phys Rev C, 101, 044609 (2020).
- Weak and strong (degenerate) electron screening increase the fusion rate
 - <u>Electron Screening and Thermonuclear Reactions</u>, Salpeter, E.E., *Australian Journal of Physics*, **7** (1954) 373
- Lattice fusion rates increase by orders of magnitude over bare nuclei fusion
 - Experimental and theoretical screening energies for the 2H(d,p)3H reaction in metallic environments, K. Czerski, et al., Eur. Physics J. A, 27, (2006) 83-88.
- NASA GRC used MCNP to guide electron screened, deuterated lattice, nuclear fusion research
 - Model detector responses (MCNPX-PoliMi)
 - Validation of Geant4 and MCNPX-PoliMI Simulations of fast neutron detection with the EJ-309 liquid scintillator, S.F. Naeem, S.D. Clarke, S.A. Pozzi, Nuc. Inst. and Meth. In Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, **714**, (21June2013) 98-104.
 - Model γ irradiated deuterated metals, activation, fission and shielding (MCNP-6.1 with Vised)
- However, neither NASA nor LBNL were able to model LCF nuclear reactions with MCNP (or GEANT-4).

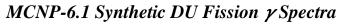
Current MCNP Fusion Modeling Capabilities

- MCNP6.2 Overview: Electron screening for fast ions, only > 100 keV ion support
 - <u>Review of heavy charged particle transport in MCNP6.2</u> K. Zieb, H.G. Hughes, M.R. James, X.G. Xu, Nuclear Inst. and Methods in Physics Research, A 886, (2018)
- MCNP6-McDeLicious: 40 MeV accelerated deuteron, ^{6,7}Li(d,n) neutron source
 - <u>Benchmarking and verification of the OpenMC code for accelerator-based neutron source analyses</u>, Y. Hu, et al, *Fusion Engineering and Design*, **170**, (September 2021) 112512.
- ITER Tokamak Models: Only neutron propagation and interaction
 - Using MCNP for Fusion Neutronics, Dissertation by Frej Wasastjerna at Helsinski University of Technology, (Dec 2008).
 - <u>A Full and Heterogeneous Model of the ITER Tokamak for Comprehensive Nuclear Analyses</u>, R. Juarez et. al., *Nature Energy Journal*, (Jan 2021). "... let us assume a point-wise isotropic 14.1 MeV neutron source..."
 - Integration of the Full Tokamak Reference Model with the Complex Model for ITER Neutronic Analysis. J. Yang, et. al., (ORNL), Fusion Science and Technology, (Nov 2018).
- Laser Inertial Fusion-Fission Model: Hybrid Fusion neutron source for a Fission Reactor
 - <u>Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System</u>, dissertation by Kevin James Kramer, University of California at Berkeley, (May 2010).
- Nuclear Fusion Data Modeling: NJOY data conversion of ENDF, FENDL for MCNP neutron transport/activation
 - <u>Nuclear data for fusion: Validation of typical pre-processing methods for radiation transport calculations</u>, T. Hutton, et. al., *Fusion Engineering and Design*, (Nov 2015). "The interaction of the 14.1 MeV neutrons from D-T fusion with the reactor components cause radiation damage, activation and heating."



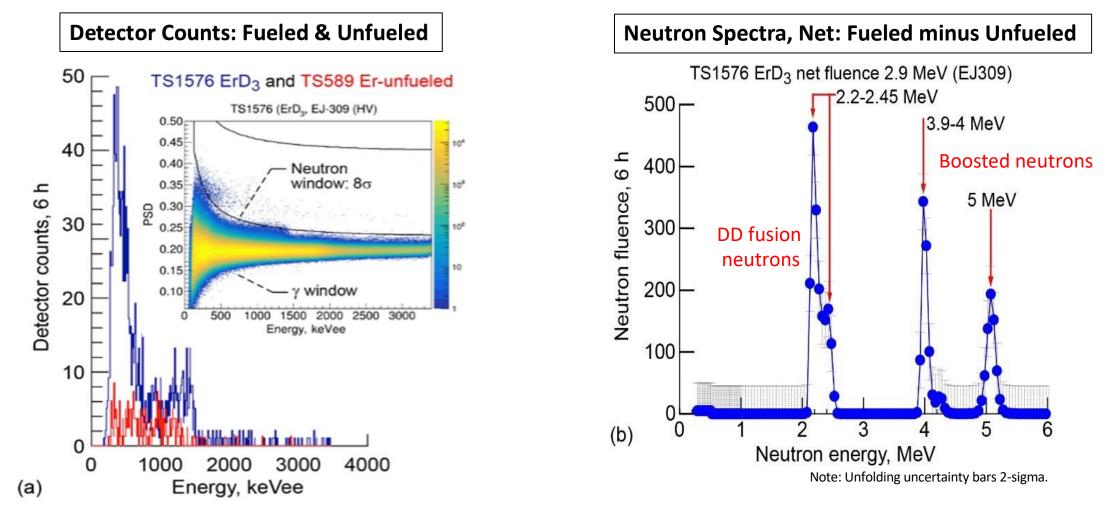
LCF Related Modeling Accomplished in MCNP




- Model 1 eV 15 MeV photons and 10 eV- 15 MeV electrons
 - Bremsstrahlung photo-neutron triggered Lattice Confinement Fusion
- Model thermal, epithermal and fast neutrons
 - LCF lattice activation and momentum transfer for reaction gain
 - LCF neutron scattering and capture
 - LCF fast neutron momentum transfer (recoil)
- Model actinide fission
 - Synthetic HPGe detector
- Model neutron spectrometer response functions
 - Scintillator response functions with CVT PoliMi under MCNPX
 - U2D using moderated planes of ⁶Li neutron capture electronics¹
- Only track > 100 keV charged fusion products
- Only model ≥ 1 MeV charged fusion products

¹C.B. Hoshor, et al., "Real-time neutron source localization and identification with a hand-held, volumetrically-sensitive, moderating-type neutron spectrometer" *Nuclear Instrumentation and Methods In Physics Research, A*, **866** (2017) 252-264.

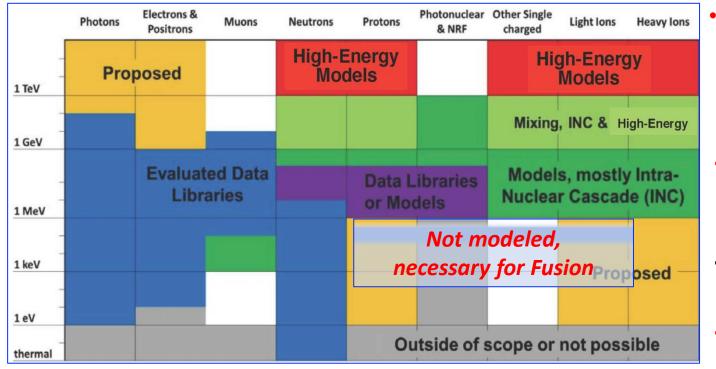
Vised & MCNP-6.1 LCF Neutron Propagation



LCF Calculations After MCNP Modeling¹

Pulse Shape Discrimination (PSD) to Remove **y** & Unfold Neutron Spectra

Dynamitron 2.9 MeV Bremsstrahlung with triggered ErD₃, DD fusion with boosted energy neutrons.

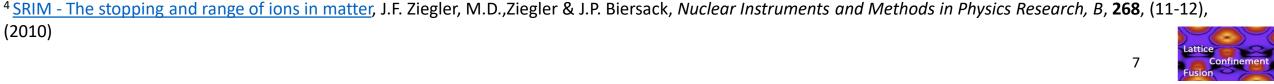


Nuclear Reaction Modeling Limitations MCNP, GEANT-4 and SRIM/TRIM

² Review of heavy charged particle transport in MCNP6.2, K. Zieb, et al., Nuclear Instruments and Methods in Physics Research, A., 886, (2018) 78.

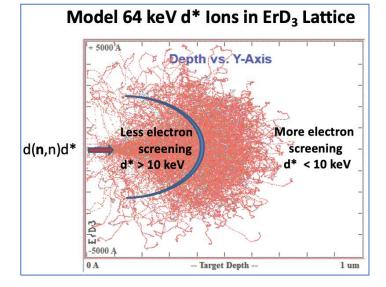
³ Radiation correction to astrophysical fusion reactions and the electron screening problem, K. Hagino and Balantekin, A.B., *Physical Review C*, **66**, (2002) 055801.

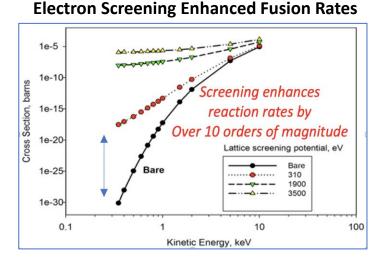
MCNP Particle Interaction Modeling Domains¹

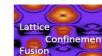


¹ MCNP6 Class, H. Grady III and James, Michael R., LANL, LA-UR-14-21281 (2014)

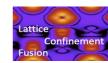
(2010)


- No model for DD, DT and D³He fusion reactions at peak cross-sections < 100 keV.²
 - LCF gain is from large-angle scattering of ٠ electron screened fusion alpha, proton and neutron products causing deuteron recoils
- No model for electron screened ions $< 10 \, keV.^{3}$
 - Applicable as ions slow
- SRIM/TRIM⁴ models ion scattering
 - But not nuclear reactions
- No model for electron screened deuteron stripping reactions
 - *Possible source of fast neutrons:* $^{A}M_{7}(d,n)^{A+1}M_{7+1}n_{KF} >> 4 MeV$




Proposed MCNP Enhancements

- Incorporate Frascati fusion neutron generator subroutines (10—50 keV deuterons) for ITER (International Thermonuclear Exp. Reactor).
- Test with NASA bremsstrahlung photoneutron-deuteron recoil
 64 keV average (32 keV center-of-mass) kinetic energy.
- Add LCF Theory Paper enhancement factor, *f(E)*, for electron screening < 10 keV deuteron kinetic energy.
- Test with LBNL plasma/glow discharge
 1.25 keV 6 keV center-of-mass deuteron kinetic energy.
- Add DFT (Density Functional Theory) and DMFT (Dynamic Density Functional Theory) < 1 keV electron screening calculations to modify Gamow and Astrophysical factors.



• Augment MCNP to model nuclear reactions

- Add ion scattering from 10 keV 64+ keV
- Add electron screening of ions from < 1 keV 10 keV
- NASA and DoE would benefit from this modeling
 - Terrestrial and space-based fusion reactor technology
 - Astrophysics of warm dense matter (Jovian-like planets), stellar nucleosynthesis
 - Differentiate between boosted fusion and stripped neutrons
- NASA is interested in partnering with LANL MCNP developers to fully incorporate these enhancements into MCNP.
- Consistent with NASA/DoE MOU on Space Nuclear Power

Slide 8 References

- Incorporate Frascati fusion neutron generator subroutine supporting ITER (International Thermonuclear **Experimental Reactor):**
 - D-D, D-T and D-³He fusion from 10 keV 50 keV
 - A Monte Carlo Model for Low Energy D-D Neutron Generators, A. Milocco, et. al., Nuclear Instruments and Methods in Physics Research B, 271, (2012).
 - Charged particle scattering using SRIM/TRIM tables (10 keV 100 keV)
 - SRIM The stopping and range of ions in matter, Ziegler, J.F., Ziegler, M.D. and Biersack, J.P., Nuclear Instruments and Methods in Physics Research Section B, 268, (11-12), (2010)
- Test with NASA bremsstrahlung 64 keV average photoneutron-deuteron recoil KE (32 keV center-of-mass)
 - Novel Nuclear Reactions Observed in Bremsstrahlung-Iradiated Deuterated Metals B. Steinetz, et. al., Phys Rev C, 101, (2020).
- Add LCF Theory Paper enhancement factor, *f(E)*, for electron screening < 10 keV deuteron kinetic energy.
 - Nuclear Fusion Reactions in Deuterated Metals, V. Pines, et. al., *Phys Rev C*, **101**, 044609 (2020).
- Test with LBNL plasma/glow discharge, 1.25 keV 6 keV center-of-mass deuteron kinetic energy.
 - Investigation of light ion fusion reactions with plasma discharges, T. Schenkel, et. al. J. Appl. Phys., 126, (2019)
- Add DFT (Density Functional Theory) and DMFT (Dynamic Density Functional Theory) < 1 keV electron screening calculations to modify Gamow and Astrophysical factors.
 - Strained Layer Ferromagnetism in Transition Metals and it Impact Upon Low Energy Nuclear Reactions, L.F. DeChiaro, L.P. Forsley and P.A. Mosier-Boss, JCMNS, 17 (2015) 1 – 26.

