




stretching bands are observed at temperature less than 160 oC (Fig. 7).42 

Obviously, with further increase of measured temperature, these intermediate 

species were gradually eclipsed owing to the diffusive desorption of C1, C2+ 

and non-activated CO2 species. In addition, we found that all these fingerprint 

stretching bands exhibits the very broad breathing characteristic, implying the 

intrinsic dynamic feature of these transient species.  

 
Figure 7. DRIFTS spectra of thermally activated Ag@LTA at varied temperatures in the 

region of 1�������í 1800 cm
�í1

 (a) and 16�����í 2400 cm
�í1

 (b). 

Using our conceptual p band model with IOHS as descriptor, all the bonding 

or non-bonding electron pairs of O and C atoms involving many-body quantum 

localization could be regard as Fig. 8c). By precisely tailoring the interactions 

between the interface p band state of hydrous hydroxide complex and p 

orbitals of O and C atoms in CO2 molecule, the selective reduction products of 

C1 and C2+ and their corresponding reaction kinetics can be easily predicted 

(Fig. 8 a and 8b).  For C1 pathway, the reaction is initiated by a nucleophilic 

attacking of adsorbed basic hydroxide groups to C atom of CO2 with positive 

charges, and the proton transfer is the rate-determining steps (RDS) for the 

final production of C1, such as CO, CH4 and CH3OH (Fig. 8a). However, for C2+ 

product, the formation of key intermediates of *OCCHO or *OCCOH arising 

from the alternative coupling or dimerization between CO and/or hydrogenated 

CO (*CHO or *COH). *OCCO is a key step to trigger the C2+ route (Fig. 8b). 

From macro perspective, the delicate change of micro-environment 

surrounding the active sites determines the selectivity of final products. On the 

microscopic level, owing to the anisotropy (or polarity) of bonding and 



non-bonding electron pairs (singlet dimmer) of interfacial O and C atoms in 2D 

spin liquid (Fig. 8c), the competitive space interaction of IOHS parameters 

dominates the final products, e.g., the selective conversion of CO2 to ethylene 

and ethanol (Fig. 8c). 43-45 This model probably also answers the activation 

process of water molecules involved by electrocatalysis or optical catalysis, 

such as water splitting and the green synthesis of H2O2 at unique 

heterogeneous interface.46-49 Thus, the mysterious internal force origin of 

catalysis is stemmed from the space interactions of atomic orbitals dominated 

by MBQL effect, which produce an ensemble of transient surface states with 

coupled spin and momentum quantum numbers. Owing to the preservation of 

time-reversal symmetry, this coupling protects the wave functions against 

disorder. These transient states have identical features of surface state of 

topological insulators.13,32,35  

 

Figure 8. (a) Dynamic interface state regulated selective thermochemical CO2 reduction 

to C1 (a) and C2+ products (b) based on the conceptual p band model. (c) 2D spin liquid 

model dominated by many-body quantum localization (MBQL) at confined nanoscale 

interface. 

Conclusions 

In summary, we provided the direct evidence that intrinsically colorless 

water molecules could be a bright color emitter when they are confined at 

nanoscale interface or nanospace in the form of singly hydrous hydroxide 

complex. The ultra-fast Fs-TA technique, combined with the characterizations 

by steady optical absorption and fluorescent spectrum, we demonstrated that 

the physical origin of PL emission of water molecules is originated from the 

topological excitation dominated by many-body quantum delocalization 

mechanics, instead of conventional local excitation mechanics. The energy 

and quantum efficiency of PL emission are extremely sensitive to the confined 

microenvironments dominated by H-bond interactions. The proposed 

conceptual p band model is not only limited to water molecules containing O 

atoms at heterogeneous nanoscale interface, but also plausible to other 



ligands containing other heteroatoms with p orbital contribution, such as O, N, 

C, S, P etc. Most importantly, the proposed IOHS descriptor provides a 

completely new understanding on the micro-kinetic of heterogeneous catalysis 

on the atomic orbital level. 
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