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Effect of impurities on nuclear fusion

Péter Kálmán∗ and Tamás Keszthelyi
Budapest University of Technology and Economics,
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Modification of nuclear reactions due to impurities in plasma is investigated. The hindering effect
of Coulomb repulsion between reacting particles, that is effective in direct reactions, can practically
disappear if Coulomb interaction of either of the reacting particles with impurities embedded in
plasma is taken into account. The description (based on standard second order time independent
perturbation calculation of quantum mechanics) can be interpreted as if a slow, quasi-free particle
(e.g. a proton) were pushed by a heavy, assisting particle (impurity) of the surroundings and can get
(virtually) such a great magnitude of momentum which significantly increases the probability of its
capture by an other nucleus. As a sample reaction the process, called impurity assisted nuclear pd

reaction is investigated and the rate and power produced by the reaction are numerically calculated.
A partial survey of impurity assisted nuclear reactions which may have practical importance in
energy production is also presented.

PACS numbers: 25.70.Jj, 25.45.-z, 25.40.-h

Keywords: fusion and fusion-fission reactions, 2
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I. INTRODUCTION

It is a commonplace that because of the Coulomb re-
pulsion between the nuclei nuclear fusion reactors need
to be heated to very high temperature to be ignited [1].
(Mathematically it is manifested in the exponential en-
ergy dependent factor in the cross section of fusion reac-
tions [see (23)]. For details see the Appendix.)
In astrophysical condensed and dense laboratory plas-

mas the effect of the surroundings on the nuclear fu-
sion rate is important. In tenuous plasmas the effect
of spectator nuclei and electrons (the environment) on
the Gamow-rate of reacting nuclei which are assumed
to interact with bare Coulomb potential is negligible [2].
Moreover in (e.g. tokamak-like) devices the presence of
impurities during the heating up and working periods is
undesirable because of high loss power generated by them
[3].
In this paper it will be shown, however, that specta-

tor nuclei may considerably affect nuclear reactions that
allows new types of reactions and what is more, the mech-
anism found does not need plasma state at all.
We are going to investigate processes that can take

place due to impurities and their effect on fusion reac-
tions. We focus our attention on the Coulomb interac-
tion between the fuel nuclei and the environment, namely
on consequences of interactions with impurities that can
change the fusion rate.
We investigate the

A1

z1 V + p+ A3

z3 X → A1

z1 V
′ + A3+1

z3+1 Y +∆ (1)

process called impurity assisted proton capture, a process
among atoms or atomic ions containing A1

z1 V nuclei (e.g.

∗e-mail: kalman@phy.bme.hu

Xe) and protons or hydrogen atoms and ions or atoms of
nuclei A3

z3 X (e.g. deuterons) and initially it is supposed
that the material is in plasma state. ∆ is the energy of
the reaction. First we pay our attention to the impurity
assisted p+ d → 3He reaction

A1

z1 V + p+ d → A1

z1 V
′ + 3

2He+∆ (2)

in an impurity contaminated plasma, that will be dis-
cussed in more detail. Here ∆ = 5.493 MeV . It is worth
mentioning that in the usual

p+ d → 3
2He+ γ + 5.493MeV (3)

reaction particles 3
2He and γ take away the reaction en-

ergy and electromagnetic interaction governs the reac-
tion. In the impurity assisted p + d → 3He reaction
(in reaction (2)) particles A1

z1 V
′ and 3

2He carry away the
reaction energy while Coulomb and strong interactions
govern the reaction. It is worth mentioning too that cal-
culations indicate that in process (1) the cross section of
the indirect (second order) reaction may be essentially
higher with decreasing energy than the cross section of
the direct (first order) reaction and the huge exponential
drop in the cross section (23) with decreasing energy may
disappear. Consequently, the plasma temperature can be
significantly reduced.
The rate of the process to be considered can be cal-

culated according to the rules of second order time-
independent perturbation calculation of quantum me-
chanics [4]. The corresponding graphs can be seen in
Fig. 1. which can help to understand the explanation
of the effect. The physics behind the calculation may be
interpreted in the following manner. The Coulomb in-
teraction between particles A1

z1 V and protons mixes (an
intermediate) state of the proton of large momentum to
the initially slow protonic state with a small amplitude
while the particle A1

z1 V is recoiled. Thus the Coulomb

http://arxiv.org/abs/1712.05270v1
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FIG. 1: The graphs of impurity assisted nuclear reactions.
The single lines represent (initial (1) and final (1’)) impurity
particle of the plasma. The double lines represent free, heavy
initial (2) particles (such as p, d), their intermediate state (2’),
target nuclei (3) and reaction products (4, 5, 6). The filled
dot denotes Coulomb-interaction and the open circle denotes
nuclear (strong) interaction. FIG. 1(a) is a capture process
and FIG. 1(b) is a reaction with two fragments.

interaction pushes the protons (virtually) into an inter-
mediate state. In this state protons have large enough
(virtual) momentum to get over the Coulomb repulsion
of nuclei A3

z3 X and so they may captured by the nuclei
A3

z3 X due to strong interaction to create a A3+1
z3+1 Y nucleus.

The particles (impurities) A1

z1 V (initial) and A1

z1 V
′ (final)

assist the process only. (Details of calculations can be
found in the Appendix.)
The virtual momentum of the intermediate state can

be determined in the following way. Energy and mo-
mentum conservations determine the wave-vectors k1′

and k4, which are wave vectors of particles 1’ and 4,
respectively, as k1′ = −k4 and |k1′ | = |k4| = k0 with
k0 = ~

−1
√
2m0a14∆. Here m0c

2 = 931.494 MeV is
the atomic energy unit and a14 is determined by (25).
(It is assumed that initial momenta and kinetic energies
are negligible.) Because of momentum conservation in
Coulomb scattering of plane waves the wave vector k2′

of particle 2’ is determined as k2′ = −k1′ , i.e. |k2′ | = k0
too. Consequently |k2′ | is large enough for particle 2’ to
effectively overcome the Coulomb repulsion.
A generalization of (1) is the reaction

A1

z1 V + A2

z2 w + A3

z3 X → A1

z1 V
′ + A3+A2

z3+z2 Y +∆ (4)

that will be briefly discussed to draw conclusions as to
the possible modification of appropriate fuels of nuclear
fusion reactors by impurity assisted reactions.
The Section II. is devoted to the discussion of rate and

power of impurity assisted p+d → 3He reaction, which is

the simplest impurity assisted proton capture reaction, in
an atomic-atom ionic gas mix. (The physical background
namely the so-called Coulomb factor, general considera-
tions about impurity assistance, applied model of impu-
rity assisted nuclear p-capture reactions and basis of rate
and power calculations can be found in the Appendix
(Section VI.). Section III. is a partial overview of some
other impurity assisted low energy nuclear reactions. In
Section IV. the Xe-atomic Li mixture is discussed which
may be useful in nuclear energy production in the future.
Section V. is a Summary.

II. RATE AND POWER IN A p− d−Xe ATOMIC

ATOM-IONIC GAS MIX

Reaction (3) is not suitable for energy production since
its cross section (the S(0) value, see [5]) is rather small
compared to other candidate reactions and only a minor
part of the reaction energy ∆ = 5.493 MeV = 8.800 ×
10−13 J is taken away by 3He (E3He = ∆2/

(

6m0c
2
)

=
5.4 keV ) and the main part Eγ = 5.488 MeV is taken
away by γ radiation which is difficult to convert to heat.
But in the impurity assisted version of the p+ d → 3

2He
reaction in the

A1

z1 V + p+ d → 3
2He+A1

z1 V ′ + 5.493MeV (5)

reaction the reaction energy is taken away by particles
3
2He and A1

z1 V
′ as their kinetic energy that they can lose

in a very short range to their environment converting the
reaction energy efficiently into heat. This reaction can
happen in an atomic-atom ionic gas mix (briefly called
special gas environment in the following). Moreover, as
was said earlier the reaction (3) is governed by electro-
magnetic interaction and reaction (5) happens due to
Coulomb and strong interactions.
If deuterons are present in the special gas environment

then the following

A1

z1 V + d+ d → A1

z1 V
′ + 4

2He+ 23.847MeV, (6)

A1

z1 V + d+ d → A1

z1 V
′ + n+ 3

2He+ 3.269 MeV (7)

and

A1

z1 V + d+ d → A1

z1 V
′ + p+ t+ 4.033 MeV (8)

impurity assisted dd reactions may also take place. In
these reactions the energy of the reaction is carried by
particles A1

z1 V
′ and 4

2He which have momentum of equal
magnitude but opposite direction in the case of (6), by
particles A1

z1 V
′, n and 3

2He in the case of (7) and by par-

ticles A1

z1 V
′, p and t in the case of (8).

The rate (dnf/dt) and power (∆dnf/dt) densities of
impurity assisted p + d → 3

2He reaction are determined
by (43) and (44) (see the Appendix) with

S = 1.96× 10−54z21 cm6s−1, (9)
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where z1 is the charge number of the assisting nucleus
and with

P = 1.72× 10−66z21 cm6W, (10)

respectively. Taking z1 = 54 (Xe) and n1 = n2 = n3 =
2.65×1020 cm−3 (n1, n2 and n3 are the number densities
of Xe, p and d, i.e. particles 1, 2 and 3) one gets

dnf/dt = 1.06× 1011 cm−3s−1 (11)

and

∆dnf/dt = 0.093 Wcm−3 (12)

rate and power densities of considerable value. If the
impurity is Hg or U then the above numbers must be
multiplied by 2.2 or 2.9, respectively.
One must emphasize that both rate and power densi-

ties (dnf/dt and p) are temperature independent. It must
be mention too that the effect does not affected by the
Coulomb screening and the only condition is that the par-
ticipants must be in atomic or in atom-ionic state. This
condition and the temperature independence of dnf/dt
and p greatly weaken necessary experimental conditions.

III. OTHER IMPURITY ASSISTED NUCLEAR

REACTIONS

Now let us consider the impurity assisted proton cap-
tures [see (1) and Fig. 1a] in general. The reaction energy
∆ is the difference between the sum of the initial and fi-
nal mass excesses, i.e. ∆ = ∆p + ∆A3,z3 − ∆A3+1,z3+1.
Since particle 1 assists the nuclear reaction its rest mass
does not change. ∆p, ∆A3,z3 and ∆A3+1,z3+1 are mass

excesses of proton, A3

z3 X and A3+1
z3+1 Y nuclei, respectively

[6]. Moreover, the capture reaction may be extended to
the impurity assisted capture of particles A2

z2 w (see re-
action (4)), e.g. the capture of deuteron (d), triton (t),
3He, 4He, etc.. In this case ∆ = ∆A2,z2 + ∆A3,z3 −
∆A3+A2,z3+z2 . ∆A2,z2 , ∆A3,z3 and ∆A3+A2,z3+z2 are the
corresponding mass excesses. Investigating the mass ex-
cess data [6] one can recognize that in the case of both
processes the number of energetically allowed reactions
is large, their usefulness from the point of view of energy
production is mainly determined by the magnitude of
the numerical value of the factor f2

2′3 (see the Appendix)
which belongs to the actual reaction.
Impurity

(

A1

z1 V
)

assisted d−Li reaction may take place

with 6
3Li and

7
3Li isotopes:

A1

z1 V + d+ 6
3Li →A1

z1 V ′ + 242He+ 22.372 MeV, (13)

A1

z1 V + d+ 7
3Li →A1

z1 V ′ +242He+n+15.122 MeV (14)

and

A1

z1 V + d+ 7
3Li →A1

z1 V ′ +9
4 Be + 16.696 MeV. (15)

If there are deuterons present then the

A1

z1 V + d+ A3

z3 X → A1

z1 V
′ + A3+2

z3+1 Y +∆ (16)

impurity assisted d capture process (see e.g. (15)) and if
there is Li present then

A1

z1 V + A2

3 Li+ A3

z3 X → A1

z1 V
′ + A2+A3

z3+3 Y +∆ (17)

impurity assisted Li capture reactions may happen.

IV. Xe-ATOMIC Li MIXTURE - A CANDIDATE

FOR NUCLEAR FUEL

Let us examine the impurity assisted

A1

z1 V + A2

3 Li+ A3

3 Li → A1

z1 V
′ + A2+A3

6 C +∆ (18)

Li capture reactions. Using (29) with z2 = z3 = 3, A2 =
6, A3 = 7, A2 +A3 = A4 = 13 which corresponds to the

A1

z1 V + 6
3Li+

7
3Li →A1

z1 V ′ + 13
6 C + 25.869 MeV (19)

reaction, and taking A1 = 130, η2′3 = 0.486 and f2
2′3 =

0.151.
The reactions

A1

z1 V + 6
3Li+

6
3Li → A1

z1 V
′ + 12

6 C + 28.174 MeV, (20)

A1

z1 V + 6
3Li+

6
3Li → A1

z1 V
′+ 342He+20.898 MeV, (21)

A1

z1 V + 7
3Li+

7
3Li →A1

z1 V ′ + 14
6 C + 26.795 MeV (22)

may have importance too. (This list of reactions is in-
complete. Reactions of smaller reaction energy are omit-
ted.)
Since the screening of the Coulomb potential is not es-

sential (k0 ≫ qsc, see the Appendix) the above reactions
bring up the possibility of a quite new type of appara-
tus since the processes need atomic state of participant
materials only. Thus e.g. a Xe − atomic Li mixture
may be appropriate which needs very low temperature
compared to the working temperature of fusion power
stations planned these days as the boiling temperature
of metallic Li is T = 1615 K at normal pressure.

V. SUMMARY

The consequences of impurities in nuclear fusion fu-
els of plasma state are discussed. According to calcula-
tions in certain cases second order processes may produce
greatly higher fusion rate than the rate due to direct (first
order) processes. In the examined problem it is found
that Coulomb scattering of the fusionable nuclei on the
screened Coulomb potential of the impurity can dimin-
ish the hindering Coulomb factor between them. Since
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the second order process does not demand the matter to
be in ionized state the assistance of impurities can allow
to decrease significantly the plasma temperature which
is determined only by the requirement that all compo-
nents must be in atomic or atom-ionic state. The results
suggest that, on the other hand, the density of the com-
ponents has to be considerably increased. Promising new
fuel mixes are also put forward. On the base of these re-
sults it may be expected that new implementation for
energy production by nuclear fusion may be found.

VI. APPENDIX

A. Coulomb factor and general considerations

The cross section (σ) of usual fusion reactions reads as
[5]

σ (E) = S (0) exp [−2πηjk (E)] /E, (23)

where

ηjk (E) = zjzkαf

√

ajk
m0c2

2E
(24)

is the Sommerfeld parameter. zj and zk are the charge
numbers,

ajk =
AjAk

Aj +Ak
(25)

is the reduced mass number of mass numbers Aj and Ak,
and E is the energy of the relative motion of the react-
ing particles of rest masses mj = Ajm0, mk = Akm0.
m0c

2 = 931.494 MeV is the atomic energy unit, αf is
the fine structure constant. E is taken in the center of
mass (CM) coordinate system. S (0) is the astrophysical
factor at E = 0.
The cross section (23) can be derived applying the

Coulomb solution ϕCb(r), which is the wave function
of a free particle of charge number zj in a repulsive
Coulomb field of charge number zk [7], in the descrip-
tion of relative motion of projectile and target. ϕCb(r) ∼
e−πηjk/2Γ(1 + iηjk) and

∣

∣

∣
e−πηjk/2Γ(1 + iηjk)

∣

∣

∣
=

√

2πηjk (E)

exp [2πηjk (E)]− 1
= fjk(E),

(26)
which is the Coulomb factor. (23) is proportional to
f2
jk(E) and one can show that the exponential factor in

(23) comes from f2
jk(E). Thus the smallness of rate at

low energies is the consequence of f2
jk(E) becoming very

small at these energies. So the magnitude of the Coulomb
factor fjk(E) is crucial from the point of view of magni-
tude of the cross section and therefore we concentrate on
it.

Taking into account the Coulomb repulsion between
particles 2′ and 3 an approximate form

ϕ(r) = fjk(k [E]) exp(ik · r)/
√
V (27)

of the Coulomb solution ϕCb(r) valid in the nuclear vol-

ume is used that produces the same |ϕ(0)|2 = f2
jk/

√
V

contact probability density as ϕCb(r).
Let us consider the impurity assisted p + d → 3

2He
model-reaction in a plasma with Xe admixture. (It is
an example of the general impurity assisted p+ A3

z3 X →
A4

z4 Y process with A4 = A3 + 1, z4 = z3 + 1). The

particles (Xe, proton, d and 3
2He) must fulfill energy and

momentum conservation in their initial and final states.
As a consequence, the energy E2′(CM) of the pushed
proton in the CM system of particles 2′ and 3 where the
Coulomb factor must be calculated is

E2′(CM) =
A3

A2 (A2 +A3)
a14∆. (28)

Substituting E2′(CM) in (24)

η2′3 = z2z3αfA2

√

m0c2

2a14∆
. (29)

It gives η2′3 = z3αf

√

m0c2/ (2a14∆) with z2 = 1, A2 =
1. A1 is the nucleon number of Xe and z3 = 1, A4 = 3
corresponding to impurity assisted p+d → 3

2He reaction
with particle 2 is the proton. In this reaction ∆ = 5.493
MeV and if A1 = 130 which is a typical mass number of
the Xe isotopes then 2a14∆ = 32.21 MeV , η2′3 = 0.039
and f2

2′3 = 0.88. If particle 2 is a deuteron (z2 = 1) then

A2 = 2 resulting η2′3 = 2z3αf

√

m0c2/ (2a14∆) = 0.078
and f2

2′3 = 0.77.
Thus, the Coulomb scattered proton will have (virtual)

momentum (virtual kinetic energy) in the intermediate
state that is large enough to make a drastic increase of
the Coulomb factor f2′3 as has been demonstrated.

B. Model of impurity assisted nuclear p-capture

reactions in an atomic-atom ionic gas mix

The reaction of heavy particles in the special gas en-
vironment is modeled in the following way. The un-
perturbed Hamiltonian contains the kinetic part only,
a plausible choice because of the screening due to the
plasma and the remaining electrons of ions. Accordingly,
the initial, intermediate and final states of all components
of the special gas environment, which is supposed to be
electrically neutral, are all plane waves. The interaction
Hamiltonian HI which describes the interaction between
the free particles has the form

HI = VCb + VSt. (30)

where VCb is the screened Coulomb interaction potential
and VSt is the interaction potential of the strong inter-
action. Therefore according to (30), the lowest order of
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S-matrix element of impurity assisted nuclear reaction,
which is at least of second order in terms of standard
perturbation calculation, has two terms (see Fig. 1a). In
the following we only deal with the dominant term which
results the transition rate [4] as

W
(2)
fi =

2π

~

∑

f

∣

∣

∣
T

(2)
fi

∣

∣

∣

2

δ(Ef −∆) (31)

with

T
(2)
fi =

∑

2′

VSt,f2′VCb,2′i

E2′ − Ei
. (32)

Here ∆ is the reaction energy, i.e. the difference between
the rest energies of the initial (Ei0) and final (Ef0) states
(∆ = Ei0 − Ef0). Ei, E2′ and Ef are the kinetic energies
in the initial, intermediate and final states, respectively.
The initial momenta and kinetic energies of particles 1,
2 and 3 are neglected (Ei = 0).

E2′ =
~
2k2

2′

2m2
+

~
2k2

1′

2m1
, Ef =

~
2k2

1′

2m1
+

~
2k2

4

2m4
(33)

and k1′ , k2′ and k4 are wave vectors of particle 1’, 2’ and
4, respectively. It follows from the calculation that finally
|k1′ | = |k2′ | = |k4| = k0, and k0 see below. Consequently
the screening (see below) will not have essential role since
k0 ≫ qsc. Only capture processes (see Fig. 1a) are dealt
with in detail.
The screened Coulomb interaction potential VCb (r)

with charge number z1 and screening parameter qsc =
z1/a0 ≫ qD (qD the plasma Debye screening parameter
and z1 > z2, z3) has the form

VCb (r) =
z1z2
2π2

e2
∫

exp(iqr)

q2 + q2sc
dq. (34)

Here the coupling strength e2 = αf~c. ~ is the reduced
Planck-constant, c is the velocity of light in vacuum, a0
is the Bohr radius and z2 is the charge number of the
other heavy particle (particle 2).

In the nuclear part of the model the interaction poten-
tial VSt (x) = −V0 if |x| ≤ b and VSt (x) = 0 if |x| > b,
with V0 = 25 MeV and b = 2 × 10−13 cm in the case of
deuteron target [8], and the Weisskopf-approximation are
applied, i.e. for the final nuclear state of the proton we
take ΦfW (r) =

√

3/ (4πR3
0) if r ≤ R0, where R0 is the

nuclear radius, and ΦfW (r) = 0 for r > R0 and assume
that R0 = b. The Coulomb repulsion between particles
2′ and 3 is taken into account using (27).

The Coulomb matrix element with plane waves is

VCb,2′i =
z1z2
2π2

e2
δ (k2′ + k1′)

k2
1′ + q2sc

(2π)
6

V 2
(35)

where V is the volume of normalization.

The matrix element of the strong interaction potential
between particles 2’ and 3 is

V W
St,f2′ = −V0

√
12πR0

k2′
f2′3(k2′)× (36)

×H (k2′)
3

A2

(2π)3

V 3/2
δ (k2′ − k4) ,

where

H (k2′) =

∫ 1

0

sin(k2′R0
A2

3
x)xdx (37)

and (27) is used.
In the case of impurity assisted p + d → 3

2He reac-
tion when calculating the transition rate one has two
terms from two initial states the one of which comes from
z2 = 1, A2 = 1 (particle 2 is a proton and particle 3 is
deuteron) and the other one comes from z2 = 1, A2 = 2
(particle 2 is a deuteron and particle 3 is proton). Con-
sequently the transition probability per unit time of the
impurity assisted pd reaction in a special gas environment
reads as

W
(2)
fi =

216π2
√
2

a
7/2
14 V 2

cR0

z21α
2
fV

2
0 (~c)

4

∆9/2 (m0c2)
3/2

F2′3 (38)

with F2′3 = 1
2

∑

A2=1,2 a
2
12f

2
2′3(k0)H

2 (k0) /A
2
2 and k0 =

~
−1

√
2m0a14∆.

C. Rate and power densities

The cross section σ(2) of the process can be determined

from W
(2)
fi in the usual manner as

σ(2) =
N1W

(2)
fi

v23
V

, (39)

where N1 is the number of particles in the normalization
volume V and v23 is the relative velocity of particles 2
and 3. Thus

v23σ
(2) = n1S (40)

with n1 the number density of impurity, i.e. particles 1
(n1 = N1/V ) and

S =
216π2

√
2

a
7/2
14

cR0

z21α
2
fV

2
0 (~c)

4

∆9/2 (m0c2)
3/2

F2′3, (41)

which is temperature independent. The rate dNf/dt in
the whole volume V can be written as

dNf

dt
= N3Φ23σ

(2) (42)

where Φ23 = n2v23 is the flux of particles 2 with n2 their
number density (n2 = N2/V ) and N3 is the number of
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particles 3 in the normalization volume. The rate density
dnf/dt = V −1dNf/dt of the process can be written as

dnf

dt
= n3n2n1S, (43)

where n3 is the number density of particles 3 (n3 =
N3/V ). The power density is defined as

p = ∆
dnf

dt
= n1n2n3P (44)

with P = S∆. The rate and power densities (dnf/dt and
p) are temperature independent.
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