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Abstract

Long-lived excited states of atomic nuclei can act as energy traps. These states, known as nuclear iso-

mers, can store a large amount of energy over long periods of time, with a very high energy-to-mass ratio.

Under natural conditions, the trapped energy is only slowly released, limited by the long isomer lifetimes.

Dynamical external control of nuclear state population has proven so far very challenging, despite ground-

breaking incentives for a clean and efficient energy storage solution. Here, we describe a protocol to achieve

the external control of the isomeric nuclear decay by using electrons whose wavefunction has been espe-

cially designed and reshaped on demand. Recombination of these electrons into the atomic shell around the

isomer can lead to the controlled release of the stored nuclear energy. On the example of 93mMo, we show

that the use of tailored electron vortex beams increases the depletion by four orders of magnitude compared

to the spontaneous nuclear decay of the isomer. Furthermore, specific orbitals can sustain an enhancement

of the recombination cross section for vortex electron beams by as much as six orders of magnitude, provid-

ing a handle for manipulating the capture mechanism. These findings open new prospects for controlling

the interplay between atomic and nuclear degrees of freedom, with potential energy-related and high-energy

radiation sources applications.
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Nuclear isomers are metastable, long-lived excited states of atomic nuclei. Their direct decay to

lower-lying levels is strongly suppressed, typically due to large differences in either spin, nuclear

shape or spin projection on the nuclear symmetry axis [1, 2]. In some nuclei with an advantageous

configuration of the nuclear excited states, an excitation to a level above the isomeric state (termed

gateway state) can lead to the nuclear decay directly to a level below the isomer itself, thus reaching

the ground state in a fast cascade.

Such a process is called isomer depletion, since it allows for the depopulation of the isomeric

state and thus a controlled release of the energy stored in the metastable nucleus. A typical example

is the case of the 2425 keV 93mMo isomer with a halflife of 6.8 h, for which we present the relevant

partial level scheme in Fig. 1. A 4.85 keV excitation from the isomer to the gateway state at 2430

keV should release the entire stored energy within only 4 ns. This appealing example has been

often mentioned in the context of potential nuclear energy storage solutions without involving

fission or fusion [1, 3–5].

One of the most intriguing means to externally drive the transition from the isomer to the gate-

way state is via coupling to the atomic shell. In the process of nuclear excitation by electron

capture (NEEC), an electron recombining into an atomic vacancy of an ion transfers resonantly its

energy to the nucleus. The sum of the free electron energy and capture orbital binding energy must

thereby match, within the uncertainty relations, the nuclear transition energy. This process, origi-

nally predicted in 1976 [6], attracted a number of theoretical studies [7–11] prior to the first claim

of experimental observation in 2018 [5]. Interestingly, the NEEC experiment was investigating

exactly the isomer depletion transition in 93Mo. As theoretical works contradict the experimental

results [12, 13], the subject is at present a matter of vivid debate [14, 15]. Controversy aside, the

overall consensus is that due to the small nuclear transition energy to the gateway state of 93mMo,

NEEC should be stronger than photoexcitation.

So far, the NEEC process has been considered for the case of plane-wave electrons captured

by ions which are initially in their electronic ground state. However, few recent works suggested

that the NEEC cross section can be influenced by the ion’s out of equilibrium conditions [16,

17] or a different shape of the electronic wave function [18]. Here, we take an important step

to investigate the process of NEEC considering specially designed electron beams, which are

tailored to enhance the nuclear excitation. Our results show that capturing an electron with a

properly reshaped wavefunction can lead to an increase of the NEEC cross section by few orders

of magnitude, depending on the specific situation considered.

In recent years, the achieved capability to fabricate phase masks with nanometer precision ren-
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dered possible to control the coherent superposition of matter waves producing typical interference

patterns by spatial reshaping of a particle’s wave-function [19–23]. Particularly interesting is the

case of so-called vortex beams, which consist of a stream of particles whose wavefunction spatial

profile has been modulated to become chiral and carry an orbital angular momentum.

Optical vortices have been studied in the context of quantum communications, nano-plasmonics

and optical trapping [24, 25], while imparting chirality to massive composed particles has been

proposed as a method to study [26–29] and even manipulate [18, 22, 30, 31] the inner structure

of neutrons, protons, ions and molecules. Electron vortex beams carry both orbital angular mo-

mentum about their beam axis and the electron’s intrinsic spin momentum. Experimentally, they

are produced by a number of techniques such as phase-plates, holographic gratings, magnetic

monopole fields or chiral plasmonic near fields [19–21, 26–28], with angular momenta of up to

1000 ~ already demonstrated. The angular momentum aspect is particularly important for nuclear

transitions which display in the low-energy region mostly a dipole-forbidden character. The tran-

sition multipolarity, for instance, electric quadrupole (E2) or magnetic dipole (M1), together with

the recombination orbital, impose strict selection rules on which angular momentum components

of the incoming electron beam will undergo NEEC. While plane wave electron beams have a fixed

partial wave expansion in all multipoles, vortex beams can be shaped on purpose to enhance and

control the NEEC outcome.

A possible experimental implementation of this idea is depicted in Fig. 1(a). A plane wave

electron beam is incident on a phase mask which reshapes the wavefunction generating an electron

vortex beam. We illustrate here a so-called forked mask as an example. The vortex beam is incident

on ions with atomic vacancies that facilitate the NEEC process. The electron energy is chosen such

as to match resonantly the nuclear transition energy upon recombination into a chosen orbital as

shown in Fig. 1(b). As examples we consider the canonical case of 93Mo, whose partial level

scheme is depicted in Fig. 1(c). The NEEC transition between the isomer and gateway states has

4.85 keV and E2 multipolarity. A second example envisaging a 19.70 keV M1 transition from the
152mEu isomer at 45.60 keV isomer to a gateway state will also be considered. These examples are

generic, and were chosen to demonstrate the effect on the two most frequently occurring nuclear

transition multipolarities (E2 and M1) in the energy range relevant for NEEC. For a plane-wave

electron beam, the maximal NEEC cross section for depletion of 93mMo occurs for recombination

into the 2p3/2 orbital of a Mo36+ ion [32, 33]. This charge state is sufficient for providing the

maximum number of vacancies in the 2p3/2 orbital. On the other hand, it ensures that the NEEC
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FIG. 1. NEEC and isomer depletion with an electron vortex beam (a) A plane-wave electron beam

incident on a ed mask generates the electron vortex beam. Upon hitting on an ion beam with impact

parameter b, the electrons recombine into atomic vacancies. (b) At the resonant continuum electron energy,

electron recombination (orange atomic shell levels on the left) will be accompanied by nuclear excitation

(magenta nuclear states on the right) in the process of NEEC. (c) Partial level scheme of 93Mo. The nuclear

isomeric (I), gateway (GW ), intermediate (F ) and ground state (GS) levels are labeled by their spin, parity

and energy in keV. The transitions IS → GW and GW → F are both of E2 type. Energy intervals are not

to scale.

channel is allowed, with the resonance continuum electron energy of only approx. 52 eV. A

higher charge state would close the NEEC channel due to the slight increase of electronic binding

energies.

We consider a vortex beam with the longitudinal linear momentum pz, the modulus of the trans-

verse momentum |p⊥| = ζ , and the topological vortex charge, a quantity related to the electron

orbital angular momentum, denoted by m [27, 34]. The corresponding electron wave function can

be written as

ψs(r) =

∫
d2p⊥
(2π)2

aζm(p⊥)upse
ip·r, (1)

where aζm(p⊥) = (−i)meimαpδ(|p⊥|−ζ)/ζ and ups is the electron bispinor which corresponds to

the plane-wave solution with momentum p and the spin state s. The linear momenta of the plane-

wave components are given by p = (p⊥, pz) = (ζ cosαp, ζ sinαp, pz), as sketched in Fig. 1. We

choose the Oz axis parallel to the incident electron beam. To specify the lateral position of the ion
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with regard to the central axis of the incident electron beam, the impact parameter b is introduced

[27, 35]. The advantage of the vortex beam comes into play when restricting the impact parameter

[27, 35]. Otherwise, an average over arbitrary impact parameters in the entire beam range will

limit the enhancement factor for the NEEC rate to a factor p/pz. We therefore restrict the impact

parameter region to |b| 6 b, with b chosen accordingly as a function of the incoming electron

momentum. The incident electron current is averaged over the impact parameter region.

In order to calculate the NEEC cross sections, the vortex beam is mapped upon the partial wave

expansion of the continuum electron wave function. The resulting NEEC rate Y i→g
neec can be written

as a function of the reduced transition probability for the nuclear transition, electronic radial wave

function integrals, and the vortex beam parameters m, ζ and αp (see Methods). The total NEEC

cross section can be written as a function of the continuum electron energy E,

σi→gneec(E) =
4π2

pJz
Y i→g
neecL(E − E0), (2)

where p is the modulus of the continuum electron momentum, Jz is the total incident current which

can be calculated via Ref. [34], and L(E−E0) a Lorentz profile centered on the resonance energy

E0 and with a full width half maximum given by the width of the nuclear excited state. Typically,

the nuclear widths are very narrow (for example, Γg = 10−7 eV for the case of 93mMo), such that

L(E−E0) is approximated with a Dirac-deltalike profile. Integrating over the continuum electron

energy, we obtain the so-called resonance strength Sv. We compare this value with the resonance

strength Sp obtained for the case of a plane wave electron beam.

We focus our attention first to the case of 93mMo and electron recombination into the ground

state of the Mo36+ ion. We consider NEEC into the ground state configuration of the Mo36+ ion

into orbitals ranging from 2p3/2 to 4f7/2. The continuum electron resonance energy for recombi-

nation into 2p3/2 is 52 eV, while for the higher shell orbitals the values lie between 2.7 keV and

2.9 keV for the M shell and between 3.6 keV and 3.8 keV for the N shell. The ratio Sv/Sp as

a function of the capture orbital for three values of topological charge m = 3, 4, 5 is presented

in Fig. 2(a). The vortex beam parameters are chosen such that ζ = pz for the impact parameter

range b = 1/ζ . Figure 2(a) shows that, depending on the recombination orbital, the tailored vor-

tex electron beam leads to an enhancement between two (p orbitals) and six orders of magnitude

(f orbitals) in the NEEC resonance strength. Although the enhancement for the capture into M -

and N -shell orbitals is impressive, these are not the capture orbitals with the largest cross section.

Provided that atomic vacancies are available, NEEC into the 2p3/2 is the most efficient isomer

depletion channel. For an incident vortex beam, the resonance strength for NEEC into this orbital
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is increased by two orders of magnitude as compared to the plane wave electron beams so far con-

sidered in the literature. This is demonstrated in Fig. 2(b) which shows the vortex beam resonance

strength scaled by the maximum value reached for a plane wave setup. In the vortex beam setup,

also NEEC into the 3d or 4d and 4f orbitals exceeds the plane wave value for recombination into

2p3/2, however only by one order of magnitude. Still, this might become advantageous to ease

the charge state requirements, or when the continuum electron energy cannot be decreased to very

small energies.

Angular momentum conservation in the NEEC process imposes selection rules for the con-

tinuum electron partial wave (see Methods) as a function of recombination orbital and nuclear

transition multipolarity. These selection rules reflect also upon and determine the most efficient

vortex charge m for a particular NEEC process. For instance a vortex beam with m > 5 would

further increase NEEC into d and f orbitals. However, increasing m at values above m = 5 has

less further enhancement effect on the NEEC resonance strength for the 2p3/2 orbitals. Depend-

ing on the envisaged electron beam energy (and therefore capture orbital), the proper choice of

vortex beam topological charge m can maximize the NEEC resonance strength. The new aspect

here, specifically related to vortex beams, is that m acts as a new degree of freedom and can be

dynamically controlled on an ultrafast timescale, as detailed below.
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FIG. 2. NEEC integrated cross section enhancement for the 4.85 keV nuclear transition depleting
93mMo. (a) The enhancement ratio Sv(nlj)/Sp(nlj) comparing vortex and plane wave electron beams for

recombination orbitals in the range 2p3/2 to 4f7/2. (b) The ratio Sv(nlj)/Sp(2p3/2) of vortex beam versus

maximal plane wave NEEC resonance strengths corresponding to recombination into the 2p3/2 orbital (left-

hand axis, grey dashed curve with circle), and the absolute values of Sv(nlj) (right-hand axis, vertical

colored bars). We consider three values of the topological charge m = 3, 4, 5 (a) or just m = 5 (b), with

ζ = pz and impact parameter range ζb = 1. The resonant electron energy E0 is presented in color coding.
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We now turn to a different example which investigates NEEC for a M1 nuclear transition in
152Eu. This isotope has an isomer with 9.3 h halflife lying 45.60 keV above the ground state. The

envisaged gateway state lies at 65.30 keV and is connected by an M1 transition to the isomer.

Once the gateway state is reached, the nucleus will decay within approx. 1 µs with a branching

ratio of 0.42 to the ground state. For this case, we consider NEEC occuring into a bare Eu ion.

Table I displays the plane wave and vortex electron beam NEEC resonance strengths for the cases

of m = 3 and m = 5, assuming ζ = pz and ζb = 1.

The enhancements compared to the equivalent plane wave case are less dramatic, with factors

between 1.4 and approx. 600. The lowest factor of 1.4 occurs in the case of NEEC into the 2s1/2

orbital and stems mainly from the factor p/pz. However, the startling feature in the case of 152Eu is

the ability to change the most efficient capture orbital. For an M1 transition, the strongest NEEC

resonance strength for a plane wave electron beam occurs for the recombination into the lowest

available s orbital. For the specific case of 152Eu, with its nuclear transition and electronic binding

energies, this would be the 2s orbital. Surprisingly, the tailored vortex beam changes this rule of

thumb, as the strongest NEEC occurs for the 2p1/2 orbital (for m = 3) or for the 2p3/2 orbital

(m = 5). Thus, by manipulating the wavefunction of the incident electronic beam, it is possible

not only to enhance rates but also to shift the maximum effect between orbitals.

In view of the many methods developed to produce specific atomic vacancies [36, 37], this re-

sult can have important consequences for our ability to manipulate the nuclear excitation. Vortex

beam angular momentum, electron energy and atomic vacancies can be dynamically and simul-

taneously controlled to optimize isomer depletion. In fact, the topological charge of the vortex

beam impinging on the isomers, i.e., the value of m, can be switched dynamically on an ul-

trafast timescale by modulating the properties of plasmonic [28, 38, 39] and light phase masks

[40, 41]. Also when using physical phase plates such as the forked mask in Fig. 1, deflector coils

or apertures can select the desired vortex topological charge [42]. With such dynamical control to

optimize isomer depletion, clear experimental signals can be targeted, aiming at efficient nuclear

energy release from isomers.

Let us now finally turn to the magnitude of isomer depletion for the 93mMo isomer. The isomers

can be obtained in nuclear reactions such as 93Nb(p,n)93mMo [3] or 7Li(90Zr, p3n)93Mo [5]. Since

the resonance condition for electron recombination needs to be fulfilled in the rest frame of the

nucleus, the ion preparation is equally important to the vortex electron beam generation. The

required ion charge state breeding, storage and cooling requires for instance a storage ring or an

electron beam ion trap in conjunction with a radioactive beam facility. Isomeric beams have been
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nlj E0 [keV] Sp [b eV] Sv [b eV] Sv [b eV]

m = 3 m = 5

2s1/2 5.20 8.05× 10−4 1.14× 10−3 1.14× 10−3

2p1/2 5.19 7.85× 10−5 1.35× 10−3 3.34× 10−3

2p3/2 6.02 1.25× 10−5 4.21× 10−4 7.61× 10−3

TABLE I. NEEC resonance strength for isomer depletion of 152mEu for both plane wave Sp and vortex Sv

electron beams. We assume ζ = pz and ζb = 1 and consider two values of the topological chargem = 3, 5.

successfully produced and stored at facilities such as the GSI Darmstadt [43–45]. At a storage

ring the condition ζ = pz could be easily fulfilled by exploiting the Lorentz boost of the ions.

A dedicated electron vortex beam setup needs to be designed in order to fulfill all experimental

requirements for isomer production, resonance condition match and dynamical control of vortex

beam properties.

Considering the most efficient capture orbital 2p3/2 and topological charge m = 5, the NEEC

resonance strength reaches the value ∼ 1 b eV. In order to obtain a reaction rate per ion, we mul-

tiply this value by the vortex beam flux. We assume here the generic flux of 1024 cm−2 s−1 eV−1

[46, 47]. Variations around this figure depend on the exact continuum electron energy required by

the resonance condition. Electron energies below 1 keV will diminish the electron density, such

that additional compression would be required, whereas much larger energies can even enhance

the flux we are considering. The NEEC reaction rate per ion reaches the value of approx. 1 s−1.

Compared to the natural decay of the isomer (halflife 6.8 h), this represents an enhancement of

approx. 4 orders of magnitude for the isomer depletion rate.

Isomer depletion is a very desirable goal in view of the current search for energy storage so-

lutions [48, 49]. However, the potential of dynamically controlled vortex beams extends farther

than that. We anticipate new opportunities in nuclear physics, where projectile beams, starting for

instance from protons, neutrons or muons with reshaped wave fronts [23, 29] would enhance and

dynamically control nuclear reactions. The beam angular momentum is ideal to specifically select

reaction channels according to the final-state spin. This would enable for instance the targeted

production of isotopes or isomers for medical applications [50, 51] or the search for dark matter

[52]. Thus, nuclear physics and engineering will benefit from the new opportunities raised by

vortex beams with intense flux and dynamical control of beam parameters. In addition, the exper-
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imental methods described above, combining controlled atomic beams (be they electrons or other

particles) with tailored external handles, will offer a unique perspective for the interplay between

the nucleus and its surrounding electronic shells, with potential also for chemistry and molecular

physics applications.

I. METHODS

In order to derive the NEEC rate for vortex electron beams, we relate to the plane wave results

in Refs. [11, 53, 54] and expand the continuum electronic wave function into partial waves of

definite angular momentum. To specify the lateral position of the ion with regard to the central

axis of the incident electron beam, the impact parameter b is introduced [27, 35]. The NEEC rate

can be written as

Y i→g
neec =

∫
Y i→gneec(p,k)aζm(p⊥)a∗ζm(k⊥)ei(k⊥−p⊥)b d

2p⊥
(2π)2

d2k⊥
(2π)2

d2b, (3)

where Y i→gneec(p,k) is the squared transition amplitude for incoming momenta p and k. We restrict

the impact parameter region to |b| 6 b. The NEEC rate takes then the from

Y i→g
neec =

b2

4π

∫ 2π

0

∫ 2π

0

dαp
2π

dαk
2π

eim(αp−αk)Y i→gneec(p,k)0F1(2;u)/Γ(2), (4)

with the condition |p⊥| = |k⊥| = ζ , and the two polar angles αp and αk spanning the in-

terval [0, 2π). The notation 0F1 stands for the confluent hypergeometric limit function, u =

−b2ζ2 [1− cos (αk − αp)] /2, and Γ(2) is the Gamma function.

The remaining factor Y i→gneec(p,k) can be related to the plane-wave NEEC amplitude calculated

in Refs. [11, 53]

Y i→gneec(p,k) =
2π(4π)(2Jg + 1)ρi

2(2Ii + 1)(2Ji + 1)(2jg + 1)
(5)

×
∑
Mis

∑
Mgmg

〈IgMg, ngκgmg|HN |IiMi,ps〉〈IgMg, ngκgmg|HN |IiMi,ks〉†,

where HN is the electron-nucleus interaction Hamiltonian, Ji is the total angular momentum of

the initial electronic configuration of the ion, Jg the total angular momentum of the final elec-

tronic configuration of the ion after NEEC, and ρi the initial density of continuum electron states,

respectively. The nuclear initial state (final state after NEEC) is determined by the total angular

momentum Ii (Ig) and its projection Mi (Mg). The bound electron in the capture orbital is deter-

mined by the principal quantum number ng, the Dirac angular momentum quantum number κg,

and projection mg of the angular momentum. Furthermore, jg is the total angular momentum of
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the bound electron in the capture orbital. The calculation of the electron matrix elements requires

the continuum electron states with definite asymptotic momentum p (or k) and spin projection s to

be expanded in terms of partial waves |εκmj〉 [11, 53], where ε is the kinetic energy, κ is the Dirac

angular momentum quantum number, and mj is the projection of the total angular momentum j.

The contribution of each partial wave is given by [11, 53]

〈IgMg, ngκgmg|HN |IiMi, εκmj〉

=
1

RL+2
0

∑
M

(−1)Ig+Mi+L+M+mj+3jg

[
4π(2jg + 1)

(2L+ 1)3

]1/2
〈Ig||QL||Ii〉

× C(Ii Ig L;−Mi Mg M) C(j Jg L;−mj mg −M) C(jg L j;
1

2
0

1

2
)R

(E)
L,κg ,κ

, (6)

for transitions of electric multipolarity L, and

〈IgMg, ngκgmg|HN |IiMi, εκmj〉

=
∑
M

(−1)Ii−Mi+M+j−L−1/2
[

4π(2j + 1)

L2(2L+ 1)2

]1/2
〈Ig||ML||Ii〉(κ+ κg)

× C(j L jg;m −M mg) C(Ig Ii L;Md −Mi M)

 jg j L

1
2
−1

2
0

R
(M)
L,κg ,κ

, (7)

for transitions of magnetic multipolarity L. Here 〈Ig||QL||Ii〉 and 〈Ig||ML||Ii〉 are the re-

duced matrix elements of the electric and magnetic multipole moments, respectively. The are

connected to the reduced nuclear transition probabilities by the expression B ↑ (E/ML) =

〈Ig||QL/ML||Ii〉/(2Ii + 1). Furthermore, R0 in Eq. (6) denotes the nuclear radius. The radial

integrals R(E)
L,κg ,κ

and R(M)
L,κg ,κ

for electric and magnetic multipolarities, respectively, are given in

Refs. [11, 53].

With the expansion of the continuum electronic wave function into partial waves of definite

angular momentum, and the above matrix elements for each partial wave, we obtain the factor

Y i→gneec(p,k) = 4πYa
∑
κ,ml

Yb
2l + 1

Y ∗lml
(θk, ϕk)Ylml

(θp, ϕp), (8)

where Ylml
stand for the spherical harmonics with quantum numbers l and ml. Furthermore, θp

(θk) and θp (θk) are the polar and azimuthal angles of the electron momentum p (k) in the spherical

coordinate of the ion. For NEEC transitions of electric multipolarity L,

Ya =
4π2(2Jg + 1)

(2Ji + 1)(2L+ 1)2
1

R
2(L+2)
0

B ↑ (EL)ρi, (9)

and

Yb =

[
C(jg L j;

1

2
0

1

2
)

]2 ∣∣∣R(E)
L,κg ,κ

∣∣∣2 . (10)
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For NEEC transitions of magnetic multipolarity L,

Ya =
4π2(2Jg + 1)

(2Ji + 1)L2(2L+ 1)2
B ↑ (ML)ρi, (11)

and

Yb = (2j + 1)(κg + κ)2

 jg j L

1
2
−1

2
0

2 ∣∣∣R(M)
L,κg ,κ

∣∣∣2 . (12)

In the equations above, j is the total angular momentum of the continuum electron which connects

with κ via j = |κ| − 1/2. The radial integrals R(E/M)
L,jg ,j

that enter Eqs. (10) and (12) are calculated

numerically. We use relativistic Coulomb-Dirac wave functions for the continuum electron and

wave functions calculated with the GRASP92 package [55] considering a homogeneously charged

nucleus for the bound electron. The finite size of the nucleus is not affecting significantly the radial

wave functions. We find the values of R(E/M)
L,jg ,j

are nearly constant whether or not we take into

account the finite size of the nucleus or we use Coulomb-Dirac radial wave functions. However,

the finite size of the nucleus has a sensitive effect on the energy levels of the bound electron. The

bound electron energy levels are calculated with GRASP92 and include quantum electrodynamics

corrections.
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