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Electromagnetic fields of current structures 
N.E. NEVESSKY 

Current structures of various complexity are often 
used as nodes in all kinds of electronic circuits. Each 
of such structures, powered by alternating current, 
creates an electromagnetic field in the surrounding 
space with a characteristic configuration reflecting 
the features of the emitting structure. Reference 
books usually provide expressions for the field of a 
dipole or, at best, for a ring with a current. There are 
no formulas for fields of current structures of higher 
order, although these fields are very interesting in 
their own right. 

The interest is due to the fact that, among other 
reasons, as follows from a number of observations, 
these fields are biologically active. A probable reason 
for the activity may be the correspondence between 
the chiral characteristics of the electromagnetic field 
and the macromolecules of living matter [1]. 
Moreover, these fields are interesting because they 
are determined not only by the first, but also by 
higher current derivatives. This provides an inductive 
contribution to the active resistance of the receiving 
systems, which can be both positive and negative in 
sign. The latter circumstance can be used to explain 
the anomalously high energy conversion coefficient 
observed in electronic systems with resonant 
transformers [2]. Finally, investigating 
electromagnetic fields of different current structures, 
we can experimentally analyze different non-
Maxwellian versions of electromagnetic theory, some 
consequences of which have direct practical interest. 
These include the charge-equivalent theory of 
Dokuchaev V.I. [3], "spinor electrodynamics" 
(Khvorostenko N.P., 1990), "electrodynamics-2" 
(Nevesky N.E., 1991) and others, not yet published. 

In this regard, it seems appropriate to obtain 
classical expressions for the electric and magnetic 
fields of current structures of different orders, and the 
present paper is devoted to this purpose. All 
calculations are based on Maxwell theory and in a 
low-frequency approximation: 2𝜋𝒸/𝑅! ≫ 𝜔, where 
𝑅! is the largest is the largest characteristic size of 
current structure. 

1. Dipole. Consider a dipole consisting of a fixed 
negative charge (−)𝑞, located at the origin, and a 
positive charge (+)𝑞 oscillating along the Oz axis 
(Fig. 1). 

 
Fig. 1 

 
The potentials 𝜑 and 𝐴 of a point dipole at 

distances much greater than the maximum 
displacement of the positive charge from the 
equilibrium position are obtained directly from the 
delayed Leenard-Wichart potentials [4]. 

 

𝜑! = #
𝐷(𝑡")
𝑟#$

+
�̇�(𝑡")
𝑐𝑟#

, cos 𝜃# ; 𝐴! =
�̇�(𝑡")
𝑐𝑟#

𝑒%.								(1) 

 
Here 𝐷 is the dipole moment: 𝐷(𝑡) = 𝑞𝜀(𝑡), 𝜀(𝑡) 

is positive charge displacement; 𝑡" = 𝑡 − 𝑟# 𝑐⁄  is 
"lagging time". 

Accordingly, 𝐸 and 𝐻 of the dipole fields, which 
are equal by definition 

 
𝐸 = −∇𝜑 −

1
𝑐 	
𝛿𝐴
𝛿𝑡 ; 				𝐻 = rot𝐴, (2) 

 
have the form; 
 

𝐸! = #
𝐷(𝑡")
𝑟#&

+
�̇�(𝑡")
𝑐𝑟#$

, @2 cos 𝜃# 𝑒'! + sin 𝜃# 𝑒(!D +

+
�̈�(𝑡")
𝑐$𝑟#

sin 𝜃# 𝑒(!;

𝐻! = #
�̇�(𝑡")
𝑐𝑟#$

+
�̈�(𝑡")
𝑐$𝑟#

, sin 𝜃# 𝑒)! . ⎭
⎪⎪
⎬

⎪⎪
⎫

(3) 

 
2. Ring. Consider a ring of radius 𝑅, through 

which current 𝐼(𝑡) flows. The fields of an alternating 
current ring can be found as a superposition of the 
fields of the dipoles that make up the ring. Such a 
representation is admissible at low frequencies, when 



Translation (V.02) from Electricity Journal, 1993, pp. 49-52 article by Bob W. Greenyer B. Eng. – RemoteView.ICU 

 2 

𝑅 𝑐𝜏! ≪ 1⁄  (𝜏! is the characteristic time) and, 
consequently, all dipoles can be considered to 
oscillate in phase (Fig. 2). Then 

 
𝜑* = ∮𝜑!

𝑁
2𝜋𝑅 𝑑𝑙, 

 
where N is the total number of dipoles, or since 
𝑑𝑙𝑒) = 𝑑𝑙;			cos 𝜃 = '+"

'
,	   then 

 

𝜑* =
𝑁
2𝜋𝑟 ∮ #

�̇�(𝑡 − 𝑟 𝑐⁄ )
𝑐𝑟 +

𝐷(𝑡 − 𝑟 𝑐⁄ )
𝑟$ ,

𝑟𝑑𝑙
𝑟 ≡ 0	. 

 
The integral becomes zero like a circular gradient, 

since 𝑑𝑙 = −𝑑𝑟. This is, however, the way it should 
be, since the ring is neutral.  

 

 
Fig. 2 

 
For 𝐴 we obtain 
 

𝐴* =
𝑁*
2𝜋𝑅 ∮ 𝐴!𝑑𝑙 = ∮

𝐼(𝑡 − 𝑟 𝑐)⁄
𝑐𝑟 𝑑𝑙	,										(5) 

 
since, by definition, the current is 𝐼 = 𝑁�̇�/2𝜋𝑅. 

The value 𝐼(𝑡 − 𝑟/𝑐) cannot simply be taken out of 
the integral sign. However, it can be expanded in 
powers of a small parameter (𝑟# − 𝑟) 𝑐𝜏!~𝑅/⁄ 𝑐𝜏! ≪
1: 

 
𝐼(𝑡 − 𝑟 𝑐)⁄ = 𝐼(𝑡 − 𝑟# 𝑐)⁄ + 𝐼(̇𝑡 − 𝑟# 𝑐)⁄ (𝑟# − 𝑟) 𝑐⁄ +⋯. 
 
Substituting this expansion into (4) and taking the 

integral, we obtain 
 

𝐴* = #
𝐼(𝑡")
𝑟#$

+
𝐼̇(𝑡")
𝑐𝑟#

,
𝜋𝑅$

𝑐 sin 𝜃# 𝑒()! .											(6) 

 
Accordingly, 𝐸 and 𝐻 fields of the ring are equal: 
 

𝐸 = −
𝜋𝑅$

𝑐 #
𝐼̇(𝑡")
𝑐𝑟#$

+
𝐼̈(𝑡")
𝑐$𝑟#

, sin 𝜃# 𝑒)!;

𝐻 =
𝜋𝑅$

𝑐 X#
𝐼(𝑡")
𝑟#&

+
𝐼̇(𝑡")
𝑐𝑟#$

, @2 cos 𝜃# 𝑒'! +

+	sin 𝜃# 𝑒(!D +
𝐼̈(𝑡")
𝑐$𝑟 sin 𝜃# 𝑒(!Y	. ⎭

⎪⎪
⎬

⎪⎪
⎫

						(7) 

 
(Here 𝑡", as before, is the lagged time: 𝑡" = 𝑡 −

𝑟#/𝑐.) 
Comparison of expressions (3) and (7) shows their 

symmetry. In these expressions, E and H seem to 
have changed places. The fields for the ring can be 
obtained from the dipole fields by a formal 
substitution: 𝐸 → 𝐻; 				𝐻 → −𝐸 and 𝐷 → 𝑀$, where 
𝑀$	is the magnetic moment of the ring; 

 

𝑀* =
𝜋𝑅$

𝑐 𝐼(𝑡")								(8) 

 
The magnetic moment of the ring is related to the 

dipole moment D by the relationship 
 

𝑀* =
𝑁𝑅
2𝑐 �̇�	.							 

 
It is interesting that the ring fields depend not only 

on the first derivative of current 𝐼,̇ but also on the 
second derivative of 𝐼.̈ In the far zone the role of 𝐼 ̈
becomes decisive. 

3. Torus. Consider a torus of radius 𝑅% composed 
of 𝑁% rings of radius 𝑅 and fed by alternating current 
𝐼(𝑡) (Fig. 3). 

 

 
Fig. 3 

 
The fields of the torus can be found as a 

superposition of the fields of its constituent turns. At 
low frequencies, when 𝑅 < 𝑅% ≪ 𝑐𝜏!, we may again 
assume that the currents in all turns change in phase. 
In this case 

𝜑, = 0;				𝐴, = ∮
𝑁,
2𝜋 𝐴*𝑑𝜑	. 
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Since according to (6) 𝐴$ ∼ sin 𝜃# 𝑒&- =
O𝑒𝓏- + 𝑟#P/, /𝑟#	then, replacing in accordance with 
Fig. 3 𝑟# → 𝑟;  𝑒𝓏- → 𝑒&, we get 

 

𝐴, = −
𝑁,
2𝜋 ∮ 	𝑑𝜑 #

𝐼(𝑡 − 𝑟/𝑐)
𝑟$ +

𝐼̇(𝑡 − 𝑟/𝑐)
𝑐𝑟 ,

𝜋𝑅$

𝑐
^𝑟 × 𝑒)`

𝑟 		. 

 
By expanding 𝐼(𝑡 − 𝑟/𝑐) by powers of the small 

parameter (𝑟# → 𝑟)/𝑐𝜏( and taking the integral, we 
obtain 

 

𝐴, =
𝑁,𝑅,
2𝑐 𝜋𝑅$ X#

𝐼(𝑡")
𝑟#&

+
𝐼̇(𝑡")
𝑐𝑟#$

, @2 cos 𝜃# 𝑒'! +sin 𝜃# 𝑒(!D + 

+
𝐼(̈𝑡")
𝑐$𝑟#

sin 𝜃# 𝑒(!Y								(10) 

 
Accordingly, E and H of the torus field are equal: 
 

𝐸, = −
𝑁,𝑇,
2𝑐

𝜋𝑅$

𝑐 #
𝐼̇(𝑡")
𝑟#&

+
𝐼(̈𝑡")
𝑐𝑟#$

, @2 cos 𝜃# 𝑒'! +

+	sin 𝜃# 𝑒'!D +
𝐼b(𝑡")
𝑐$𝑟#

sin 𝜃# 𝑒(!Y ;

𝐻, = −
𝑁,𝑅,
2𝑐

𝜋𝑅$

𝑐 #
𝐼̈(𝑡")
𝑐𝑟#$

+
𝐼b(𝑡")
𝑐$𝑟#

, sin 𝜃# 𝑒)! 	. ⎭
⎪⎪
⎬

⎪⎪
⎫

						(11) 

 
It is remarkable that the fields of the torus are 

identical in configuration to the fields of an electric 
dipole with a dipole moment: 

 

𝐷, =
𝑁,𝑅,
2𝑐

𝜋𝑅$

𝑐 𝐼̇(𝑡")	.					(12) 

 
Expressions (11) can be formally obtained from 

expressions (7) for the ring fields by replacing here 
 
𝐸 → 𝐻; 		𝐻 → (−)𝐸;		𝑀* → 𝐷, =

𝑁,𝑅,
2𝑐 �̇�*	.						(13) 

 
The same procedure, as noted above, relates the 

fields of the ring to the fields of the dipole. 
It is further curious that the expression for the 

fields of the torus already contains the third 
derivative of the current 𝐼Q. In the far zone, it becomes 
decisive. In the near zone, the magnetic field is 
determined by the second derivative 𝐼 ̈(and does not 
depend on the first derivative at all). The 
circumstance is important. So, for example, the 
inductive coupling of two misaligned tori should be 
determined precisely by the second derivative of the 
current. 

4. Supertor. This is the next most complex current 
structure. Let us consider a supertor of radius 𝑅), 
made of 𝑁) tori (Fig. 4). 

 

 
Fig. 4 

 
The procedure for obtaining fields is still the 

same. We consider, as before, the frequencies are 
sufficiently low, i.e., 𝑅) ≪ 𝑐𝜏!, and the current in all 
elements of the supertorus is the same (there is no 
phase shift). Then 

 
𝐴. = ∮

𝑁.
2𝜋 𝐴,𝑑𝜑	. 

 
Substituting here 𝐴% from (10) and substituting 

here according to Fig. 4 𝑟# → 𝑟;	𝑒𝓏- → 𝑒&, and 
hence, cos 𝜃# = T𝑟𝑒&U/𝑟, we obtain 

 

𝐴. =
𝑁.
2𝜋 ∮ 𝑑𝜑

𝑁,𝑅,
2

𝜋𝑅$

𝑐 X#
𝐼(𝑡 − 𝑟 𝑐⁄ )

𝑟& +
𝐼̇(𝑡 − 𝑟 𝑐⁄ )

𝑐𝑟$ , × 

× d3 /'+"0
'
𝑒' − 𝑒)e +

1̈(45' 6⁄ )
6#'

d'+"
'
𝑒' − 𝑒)ef . 

 
The integral is calculated in the same way as 

before. Finally, we find 
 

𝐴. = −
𝑁.𝑅.
2

𝑁,𝑅,
2𝑐

𝜋𝑅$

𝑐 #
𝐼̈(𝑡")
𝑐𝑟#$

+
𝐼b(𝑡")
𝑐$𝑟#

, sin 𝜃# 𝑒)! 	.					(14) 

 
Accordingly, E and H of the supertor field are 

equal: 
 

𝐸. =
𝑁.𝑅.
2𝑐

𝑁,𝑅,
2𝑐

𝜋𝑅$

𝑐 #
𝐼b(𝑡")
𝑐𝑟#$

+
𝐼h	(𝑡")
𝑐$𝑟#

, sin 𝜃# 𝑒)!;

𝐻. = (−)
𝑁.𝑅.
2𝑐

𝑁,𝑅,
2𝑐

𝜋𝑅$

𝑐 X#
𝐼̈(𝑡")
𝑟#&

+
𝐼b(𝑡")
𝑐𝑟#$

, @2 cos 𝜃# 𝑒'! +

+	sin 𝜃# 𝑒(!D +
𝐼h(𝑡")
𝑐$𝑟#

sin 𝜃# 𝑒(!Y	. ⎭
⎪⎪
⎬

⎪⎪
⎫

(15) 
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Again, we see the same symmetry. The supertor 
fields can be obtained from the fields of the previous 
structure (torus) with the same procedure: 

 
𝐸 → 𝐻,			𝐻 → (−)𝐸,			𝐷, → 𝑀. =

𝑁.𝑅.
2𝑐 �̇�,	.						(16) 

The fields of the supertor are equivalent to the 
fields of the ring with magnetic momentum: 

 

𝑀. =
𝑁.𝑅.
2𝑐

𝑁,𝑅,
2𝑐

𝜋𝑅$

𝑐 𝐼̈(𝑡′)	.						(17) 

 
The role of higher derivatives of the current has 

increased even more. The supertorus fields do not 
depend on the first derivative at all. In the near zone, 
they are determined by the derivatives 𝐼 ̈and 𝐼Q, and in 
the far zone, by the fourth derivative of the current 𝐼V. 

The study can be extended further; consider the 
"supersupertor", i.e., a torus composed of supertori, 
and so on. However, this is not necessary since the 
nature of the regularity has already emerged. There is 
a deep symmetry between the electromagnetic fields 
of elementary current structures of different orders. If 
we determine the order of the structure according to 
the rule: the dipole is the structure of the first order; 
the ring is a second-order structure; the torus is a 
third-order structure, and so on, then the following 
generalization can be made. 

The fields of all elementary structures are dipole 
fields: electric for odd-order structures (dipole, 
supersupertor, etc.) or magnetic for even-order 
structures (ring, supertor, etc.). 

The fields of the next most complex elementary 
structure can be obtained from the fields of the 
previous structure using the recurrent procedure: 

 
𝐸9 → 𝐻9:;,			𝐻9 → (−)𝐸9:;,			𝐷<:; =

𝑁9:;𝑅9:;
2𝑐 �̇�9	. 

 
Physically, the moment 𝐷* is electric for odd 𝑛 

and magnetic for even 𝑛. Expressions (3) are valid 
for a first-order structure, a dipole. 

When passing to the structure of the next order, 
the next derivative of the current also appears every 
time. In the far zone, the fields of the 𝑛-th structure 
are determined entirely by the 𝑛-th derivative of the 
current: 𝐼(*) The fields in the near zone are 
determined, respectively, by the derivatives and 
𝐼(*-.) and 𝐼(*-/) (only three derivatives always 
appear in the expressions for the fields: 𝑛-th, (𝑛-1)-th 
and (𝑛-2)-th). 

The dependence of the fields of elementary 
structures on the higher derivatives is significant. The 

presence of this dependence changes the nature of the 
inductive coupling of the structures: the odd-order 
derivatives give an additional contribution to the 
reactive resistance, while the even-order derivatives 
𝐼,̈ 𝐼V give a contribution to the active resistance. This 
contribution can be negative (e.g., the contribution 
from 𝐼)̈ and therefore reduce the overall resistance of 
the circuit. 

With respect to radiation (far-field), the role of 
higher derivatives becomes decisive. The Poynting 
vector in the far field has the form 

 

𝑆! =
1
4𝜋

〈'�̈�!*
"〉

𝑐#𝑟$"
sin" 𝜃$ 𝑒%! 	. 

 
Accordingly, its value is proportional to (𝐼)̈ / for a 

ring, (𝐼)Q / for a torus, (𝐼)V / for a supertorus, and so on. 
Thus, systems composed of elementary current 

structures should have unusual properties both with 
respect to their own functioning and with respect to 
radiation, and this makes them an interesting subject 
for theoretical and experimental research. 
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