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In the collision of two heavy ions the strong repulsion coming from the Coulomb field is enough to
produce e+e− pair(s) from vacuum fluctuations. The energy is provided by the kinetic energy of the
ions and the Coulomb interaction at the production point. If, for instance the electron is located at
the center of mass (C.M.) of the two ions moving along the z-axis, and the positron at a distance x
from the electron (fig.1), the ions can be accelerated towards each other since the Coulomb barrier
is lowered by the presence of the electron. This screening may result in an increase of the fusion
probability of light ions above the adiabatic limit.

PACS numbers:

The exchange of a virtual photon is responsible for the
Coulomb force. In this process virtual electron-positron
pairs can be created and annihilated. These virtual
charges polarize the vacuum, resulting in a correction
to the 1/r potential. Uehling was the first to derive the
vacuum polarization correction to first order in the fine
structure constant α [1] important in the analysis of p−p
scattering data [2]. In ref. [3] we showed that the vacuum
polarization correction is on the order of one percent of
the Coulomb energy in nuclear collision systems. This
value seems small, but the strong fields in fission pro-
cesses can be on the order of 200 MeV. A correction on
the order of 2 MeV could noticeably affect the height
of the Coulomb barrier, where the nuclear and Coulomb
energies roughly cancel. A lower/higher Coulomb bar-
rier increases/decreases the cross-section of sub-barrier
fusion, e.g. Carbon-Carbon fusion in the cores of stars.

The vacuum polarization is not just a perturbative ef-
fect; production of real e+e− pairs can occur during the
dynamics in the presence of strong fields, when the avail-
able energy exceeds twice the electron mass [4–7]. In the
1980s, experimentalists at GSI found some anomalous
production of e+e− pairs in heavy ion collisions. Vari-
ous explanations were proposed, including production of
a hypothesized new light particle and experimental error
[8]. To our knowledge, there is no consensus [9–12]. In
this first paper we discuss the non-perturbative calcula-
tion of pair production for light nuclei. We will show
that in opportune conditions, the pair may screen the
Coulomb repulsion between the ions giving them an ex-
tra acceleration towards each other. This effect may in-
crease the fusion cross section above the adiabatic limit
[13–18].

For the positron to become a real particle, it must tun-
nel from the vacuum through the Coulomb barrier and
leave the electron behind. We will compute the probabil-
ity of tunneling through this barrier. We have two nuclei
each with charge +Ze (for simplicity) a distance R apart
(fig. 1). We assume that the electron is at the center of
mass of the two nuclei, and the positron is tunnelling on
a line perpendicular to the beam axis. The distance from
the electron to the positron is labeled by the coordinate

x. The Coulomb energy of the positron is (in units where
4πε0 = 1)

V+(R, x) =
2Ze2√(
R
2

)2
+ x2

− S(x)
e2

x
, (1)

where S(x) is a screening factor to be discussed in the se-
quel. When the positron emerges from the barrier, it can
have a momentum pT perpendicular to the x-axis, and
the electron will have momentum −pT . To a good ap-
proximation [4, 5] the positron satisfies the Klein Gordon
(K.G.) equation with energy E+,[

(E+ − V+(R, x))2 − p2
x −m2

T

]
ψ = 0, (2)

where mT =
√
m2 + p2

T is the transverse mass of the
positron. The Dirac equation leads to the K.G. equa-
tion with an extra term α · ∇V , which comes from the
spinor nature of the fermion wave function and gives only
high-order effects in the tunneling probability thus it is
neglected in this paper [5]. Following Wong [5], we divide
Eq. (2) by −2mT to obtain[

p2
x

2mT
+
mT

2
− (E+ − V+(R, x))2

2mT

]
ψ = 0. (3)

We have implicitly factored out the transverse plane
wave part of the wave function. This is formally equiva-
lent to the (time independent) Schrödinger equation

(
p2
x

2mT
+ Veff

)
ψ = Eeffψ, (4)

for a particle of mass mT in an effective potential of

Veff (x) =
mT

2
− (E+ − V+(R, x))2

2mT
, (5)

with energy Eeff = 0. The classical turning points are
where Veff = 0, or

E+ − V+(R, x) = ±mT . (6)
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FIG. 1: (Color online) Geometry of the pair production.

The maximum occurs when E+ = V+(R, x) and the bar-
rier height is given by mT /2.

Considering a positron in an occupied negative en-
ergy state at x = 0, by definition, it has energy E+ ≤
V+(R, 0) −mT . In order to tunnel into the positive en-
ergy region, its energy must be E+ ≥ mT . Taking these
conditions together, we obtain a constraint on V+ for pair
production, namely,

V+(R, 0) ≥ 2mT . (7)

This result confirms the intuition that pair production is
possible for electrostatic energies exceedingly twice the
mass of the electron.

The total energy before e+e− production is

Ecm = Ek + VII(R) =
P 2

2µ
+
Z2e2

R
. (8)

Where µ is the reduced mass of the colliding ions and we
assume R ≥ R1+R2, the nuclear radii, i.e. beam energies
below the Coulomb barrier. The e+e− are produced with
transverse mass mT at a relative distance xe which will
be discussed below. The potential energy seen by the
positron is

V+(R, xe) =
2Ze2√(
R
2

)2
+ x2

e

− S(xe)
e2

xe
. (9)

The energy of the positron is the sum of its mass, kinetic
energy, and potential energy,

E+ = mT + V+(R, xe). (10)

We have introduced a dynamical screening factor S(x) =

1− exp(−x/xs). The choice xs = e2

2mT
, sometimes called

the classical screening value, implies that for x→ 0, the
e+e− are on top of each other and the mass is given by the

Coulomb screened interaction, S(x)e2/x→ 2mT which is
the energy needed from an external source (the Coulomb
field of the ions) to produce the pair, see eq. (7). This
assumption ensures energy conservation avoiding the ul-
traviolet divergence of the Coulomb field. This screening
could come from the virtual particles in the vacuum. For
instance, we imagine the vacuum as containing a den-
sity of pairs proportional to the energy density of the
Coulomb field, which in our units is

u =
1

8π
E2. (11)

A typical value for the electric field in our system is

E =
Ze

(R/2)2
. (12)

We divide the energy density u by 2mT to get the number
density of e+e− pairs

np =
Z2e2

πR4mT
=

2Z2xs
πR4

. (13)

The pairs we consider in our model originate in the region
between the two nuclei, which we model as a cylinder of
radius xs and length R. Multiplying the volume of this
cylinder by the density of pairs obtained previously, we
obtain the expected number of virtual pairs available to
tunnel

Np =
2Z2x3

s

R3
. (14)

For two uranium nuclei with their surfaces touching,
Np ≈ 14 [9], for carbon in the same configuration,
Np ≈ 1.2. This low value for light ions barely justifies
a perturbative treatment of the production and we are
going to use it to normalize the predicted cross section
for pair production.

Since the total energy must be conserved, after pro-
duction we have:

Ecm = E′k + VII(R) + V+(R, xe)−
4Ze2

R
+ 2mT . (15)

The system is completely symmetric, but a small fluc-
tuation will push the e+ away from the e− due to the
Coulomb repulsion between the positron and the ions.
The positron tunnels through the Coulomb barrier and
exits at xe where its (and the electron’s) momentum
along the x-direction is zero, fig. 1. At xe, the total
energy is given by eq. (15). If the positron is very fast
compared to the ion motion, then we can assume the ions
do not move much.

A microscopic calculation is needed to determine the
final energy distribution between the electron and the
positron. Our approximation is good if mT is large so
that the pair has a good amount of kinetic energy when
it is created. Notice that in the case of very large mT ,
the e+ and e− emerge at about 180o in the center of
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mass frame. Comparing our various expressions for the
energy, eqs (8), (15), we find the kinetic energy of the
ions changes by an amount

E′k − Ek = −
(
V+(R, xe)−

4Ze2

R
+ 2mT

)
. (16)

Since V+(R, xe) = E+ −mT , we can also rewrite this as

∆Ek = E′k − Ek = −
(
E+ +mT −

4Ze2

R

)
. (17)

And

E+ =
4Ze2

R
−mT −∆Ek ≥ mT . (18)

The last condition gives

R ≤ 4Ze2

2mT + ∆Ek
, (19)

that is the largest distance for which the production may
occur. We stress that other pair’s configurations are of
course possible, for instance exchanging the positron and
the electron in fig. 1. Different configurations cost more
energy and are less probable but calculations can be eas-
ily performed for any configuration.

For illustration, we enforce the condition Veff = 0 at
x = 0. There can be two solutions corresponding to

E+ =
4Ze2

R
− 2mT ±mT . (20)

Thus, according to eqs. (17, 18), the ions either gain 2mT

of kinetic energy, or there is no change in kinetic energy
at the moment of production. This situation is very inter-
esting especially in the sub-barrier fusion of light nuclei
since, even in the case of zero kinetic energy gain from
the ions, the presence of the electron in the middle of
the two ions lowers the Coulomb barrier thus enhanc-
ing the fusion probability [13, 18]. We are interested in
unbound positrons with E+ > mT . This requirement to-
gether with eq. (20) gives a maximum transverse mass
for dynamical pair production

mT,max =
2Ze2

R
. (21)

Since our model only includes the Coulomb force between
the ions, we only consider R > R1 + R2 where the nu-
clear force is not as important. For two 12C nuclei with
their surfaces touching, eq. (21) gives a maximum trans-
verse mass of 3.14 MeV. For 238U in the same condition,
mT,max = 17.8 MeV. The corresponding effective poten-
tial for the two solutions is

V
(1)
eff (R, x) =

mT

2
−

[mT + V+(R, x)− 4Ze2

R ]2

2mT
, (22)

V
(2)
eff (R, x) =

mT

2
−

[3mT + V+(R, x)− 4Ze2

R ]2

2mT
. (23)
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FIG. 2: (Color online) An illustrative example when
Veff (R, 0) = 0. In the bottom panel we plot Veff vs x and
the corresponding potential with full line (±mT = me-top
panel, dashed and dotted lines) seen by the positron. The
calculations are performed for 12C+12C collisions.

In figure 2, we plot the effective potential (bottom
panel) and the potential (±mT -top panel) vs the relative
distance between the pair for the case discussed above.
The only acceptable solution is the lowest one given by
the red line. A simple inspection of the top panel shows
that the positron for this case is initially in the nega-
tive energy region and tunnels to the positive one. The
other solution gives the positron already in the positive
energy region (green line) thus is not allowed by our pro-
posed mechanism. Other possible solutions can be found
if Veff (R, x = 0) < 0. From this discussion we learned
that the two ions can gain kinetic energy because of the
location of the electron (in the middle) and the positron
(away from the ions), fig. 1, and may enhance the sub-
barrier fusion probability.

The tunneling probability for the positron is given by:

Πt = [1 + exp(2A)]−1, (24)

where A is the imaginary action integrated between the
turning points of the effective potential, see for instance
fig. 2-bottom. The action can be calculated numerically,
and some case results are displayed in fig. 3 with mT =
me. In the calculations different values of ∆Ek = E′k −
Ek, see eq. (18), have been assumed. The lowest value
of R is given by the classical turning point, i.e.:

Ri =
Z2e2

Ec.m.
. (25)
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FIG. 3: (Color online) Tunnelling probability for the positron
as function of the relative distance of the two C ions, and
Ec.m.=9.4 MeV and different values of ∆Ek.

Since E+ ≥ mT , we can easily estimate the value of R
where the probability becomes zero:

Rx =
4Ze2

∆Ek + 2mT
, (26)

which is consistent with eq. (19). It is easy to show that
Rx ≥ Ri if:

Ec.m. ≥
Z

4
(∆Ek + 2mT ). (27)

From these results and figure 3 we can safely assume that
Πt = 0.5 for Ri < R < Rx.

It should not be surprising that the probability is of
the order of 0.5 since the maximum height of the barrier
ismT /2, see eq. (5), and the barrier width of the order of
10 fm. The probability goes to zero when E+ → mT and
x → ∞. This also agrees with our estimate of the num-
ber of pairs produced in the cylinder of radius xs which
for C+C is of the order of one. For heavier nuclei this
calculation must be performed for each distance and all
the created pairs must be followed microscopically since
barriers may be modified by the presence of previously
created pairs and there may be not enough energy to
produce another pair after the first one. The probability
cutoffs in the figure are essentially determined by energy
conservation for each value of ∆Ek.

Since this is a dynamical process, times are important.
A characteristic time for pair production is given by the
Heisenberg principle:

∆τ =
~

2mT
, (28)

thus, the rate at which a given virtual pair can attempt
to tunnel is ∆τ−1.

There is a second characteristic time for the tunnelling
process. A simple inspection of fig. 2, bottom, shows

that the positron may be trapped by the Coulomb bar-
rier up to the inner turning point. This is analogous to
the number of assaults per unit time in the theory of al-
pha decay, fission etc. This quantity may be estimated by
the ratio of the distance travelled by the positron before
hitting the inner barrier (of the order of few Fermis from
figure 2) divided by its average speed. For transverse
masses equal to the rest mass of the electron, the cor-
responding time is smaller than the time obtained from
the Heisenberg uncertainty principle, and we will use the
value given in eq. (28) for an estimate of the cross sec-
tion. Microscopic dynamical calculations are needed for
heavier systems when more than one pair may be pro-
duced and energy conservation must be fulfilled.

Here we will use simple and transparent physical argu-
ments to estimate the value of the cross section for pair
production. We write the cross section as:

σ(Ec.m.) =
π~2

2µEc.m.

n∑
l=0

(2l + 1)ΠlPH . (29)

Since we are interested in sub-barrier reactions, we con-
sider the l = 0 case only and we fix Π0 = Πt = 0.5
as discussed above, and PH = τ/∆τ , see eq. (28).
Thus, in order to estimate the cross section we need
the average τ it takes to the ions to travel from Rx

to Ri, eqs. (25, 26). The total distance travelled is
∆R = 2(Rx−Ri), the factor of two is because the pair can
be produced during the approaching or rebounding phase
of the two ions. Similarly, we can estimate the velocity
as the average at the closest point v(Ri)(= 0) or at Rx,
v(Rx) =

√
2/µ(Ec.m. − VII(Rx)), thus v = v(Ri)+2v(Rx)

3

and τ = 1
Nmax

±

∆R
v . Nmax

± is a parameter determined re-
quiring that the total probability, i.e. the largest number
of produced pair possible without violating energy con-
servation: N0

± = Π0PH ≤ 1. With these approximations
and mT = me, the cross section is:

σ0(Ec.m.) =
π~2

2µEc.m.
0.5

τ

∆τ

=
1

Nmax
±

6π~Ze2me√
2µE2

c.m.(∆Ek + 2me)

×
√
Ec.m. −

Z

4
(∆Ek + 2me). (30)

We stress that this approximation is good for Z ≥ 4.
For smaller nuclei we need to replace Rx with R′x =

Z2e2

2mT +∆Ek
as dictated by energy conservation in the pro-

duction process. For 12C+12C, we find the maximum
number of pairs produced in the collisions by summing
over the trajectory without taking into account the en-
ergy loss after a pair is produced. From the estimate, eq.
(16) we found that at most 1 pair is created in 12C+12C
which is obtained near Ec.m.=2 MeV (∆Ek=0 MeV) in
fig. 4. Thus we normalize the number of maximum pairs
produced at this energy to one. Clearly the maximum
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FIG. 4: (Color online) Upper limit for the integrated cross
section for e+e− production in 12C+12C scattering below the
Coulomb barrier for different values of ∆Ek.

number of pairs produced in the collisions and the rela-
tive cross section of fig. 4 critically depends on the ultra-
violet cutoff xs discussed above and it must be confirmed

or modified by future experimental data. Furthermore,
microscopic calculations able to follow the heavy ion tra-
jectory and the dynamics of one or more pairs created
during the time evolution must be implemented in order
to make prediction also for heavier colliding nuclei and
collisions of different mass number nuclei.

In conclusion, we have discussed pair production from
vacuum within the Schwinger formalism. We have shown
the conditions for tunneling and the possibility that if
the electron is situated at the c.m. of the colliding nu-
clei, extra screening may occur. This screening may en-
hance sub-barrier fusion of light nuclei above the adia-
batic limit. For 12C+12C collisions we predict Ec.m. ≥ 1
MeV for this effect to occur. The cross sections are of
the order of mb or less. These predictions call for de-
tailed experimental investigation of pair production for
this system and their energies also in coincidence with
fusion fragments to be able to extract correlation func-
tions. An enhancement may be revealed by performing a
correlation between fusion events with and without pair
production.
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