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PREFACE TO DOVER EDITION

Some explanation would seein to be required for the reprinting,
alter more than a quarter of u century, of this ook which s
exerted little detectable influence and which employs an elomen-
tary nod inelegant msthematicoal lungusge ahimost totally replaced
by the elegant formalism of Onsager. The essentials of the ideas
in thi= book were presented 1o the 2alvay Congress in 1924, Fur
ther development of the same lines of thought resulved in the
diseovery o year ar two later of 4 new thermoeleotrie effeet in won-
eubie eryatals, "This, together with some other results of my thermo-
dynamie annlysis, was recognized as one of the reasons for the
award to me m S of the Comstock Prize of the National Aesl-
emy of Seieneces, Exeept Tor that award, however, the ideas of this
haok have been largely stillborn, and when, sinee the publieation
(1931) by Ousager of lis powerful method of analysis, they have
been memtioned in the litergbure at all, it has been only for the
sake of historieal campleteness,

[f at this late date [ consent to the attempred resuseitation of
Lhese ideas now, 1t 1= because 1 believe that Che elementary, inele-
parit, intuitionn approaels s some phivsieal insights ta offer in
contrast with the formal mathematieal approach. o me, one of
the most surprising resulis of my elementary analyvsis was the
diseovery of Lhe neeessity [or g new physieal eoneept, “thermo-
mative foree,”” to deseribe the possible existenee of o stale of
affairs not previously known or suspeeted, namely, the permanent
existenes of temperature differenees in systems noa steady state
with no heat flow, no energy dissipation, und the possibility of
reversible processes, It is tene that this state of affairs finds o
place in Onsager's formalism, but it s so coneeded in mathematies
that no one apparently has thought it worth the effort to state
in elementury language what it implies, moeh less be surprised by
it. Another result of the clementary analysi= was thal the phepon-
ecnologienl terms in whieh the steady Qow of éleetrieal surrent in
maszive conductors is conventionally desenbed i= inadequate 1o
deseribe the phenomena in the presence of temperature gradients
and magnetic fields, but that the ordinary econcept of electromotive
foree has to be generalized to inelude two kinds of electromotive
force—what | ealled the “driving” amd the “warking”” electro-
motive foree. These are al=o doubtless coneealed in Uhe Onsaper
formalism, but they do not spring to the eve,
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SRome of the results of the analvsis m the later part of the book
liwve nat vel apparéntly been subyjeeted 1o experimental elieck or
search, Amang these mayv be mentioned g new kind of electro-
motive foree in o conductor carrving o teady earrent when the
temperature is varving with fime. This may be expected to be
lorger near absolute zero. and this is the plice to searel for it.

It i= perhaps worth meationing that 1 have always felt a porsonal
disquietude in attempting to apply the Onsager analysis to a
brand-new situntion. The analysis rests on the assumption of
microseopie reversibility, Bat it is well known that when magnetie
fields are present, phenomena beeoe reversible only when the
direction of the feld = reversed, This situalion ean be easily
handled when the magnetie field which has 1o be reversed is a
maeroseopie field, But suppose that | am dealing with some
maeroscopie  phenomenon which mvolves mieroscopie  magnetie
fields, ns for instanee, some lerromagnetic phenomens which
involve the domnin size. The eryplomagnetic purameters do not
enter a thermodynamie analyvsi= Shall 1o reverse the mierosecapie
magnelie ields when applying the On=ager analysis or not? One
should not be driven to careving through the analysis in order 1o
answer =teh o question. [n any event, the answer to such i gues-
Hon would invelve & connmand of nderoscopie mechani=tic details
foreign 1o the spirit of the eonventional thermaodynamie approach,

For these various reasons il scems to me that the elementary
approsch of thi= ook =till has something to contribute,

The book is here reprinted substantially in it orginal form. A\
few minor typographical errors have been corrected, and 1 am
indebted to Professor H. P. Stabler of Williams College for point-
ing out an crror i formulas V1, 130 V1 04, and VI 15, which is
here vorrected,

More ar less s an appewdix to this hook, | have taken advantage
of the opportunity to reprint my Condonsed Collection of Thermio-
dyrecmie Formolas, which has< long been out of prnt. A prefatory
note with regard Lo these formmlas will be found  immedintely
preceding the formulas,

P. W. Bripayax
Cumbridge, Massachusetls
1860
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The following pages contain essentially the substance of a
number of papers which I have written during the last ten years
on inter-relations of a thermodynamic character between various
electrical properties of metals. These papers are given in detail
in the list of references at the end of the book.

The substance of these papers has been here consolidated into
a more or less coherent whole, some extensions and new relations
have been added, a couple of suggestions made as to new experi-
mental possibilities, and several important modifications or
corrections made in some of the original formulas. My original
treatment of photo-electric phenomena has to be modified to
meet our new apprehension of the experimental situation, em-
phasized by Fowler, that the photo-clectric threshold is not
sharp at ordinary temperatures but under stimulation of a single
frequency electrons of a range of velocities are emitted. This
modification probably does not mean any great qualitative change
in many of the relations which I previously deduced, but the
deduction becomes more complicated, the relations are less clean
cut, and the situation cannot be finally clarified until much more
and better experimental material is available. A suggestion
which T made about cold eclectron emission under intense fields
turns out on further analysis not to be pertinent, but to be con-
cerned with another and simpler phenomenon, not of particular
importance experimentally ; this is treated briefly in Chapter V.
One of the relations which I had previously deduced between the
four transverse galvanomagnetic effects turns out to be erroneous ;
this clarifies the situation because previously there were too many
relations to allow consistency with experiment. The final
chapter on miscellanies contains much material not in my original
papers, but more or less common property, and added for com-
pleteness.

No attempt whatever has been made to refer to all the work of
others, or to make this treatment in any sense exhaustive. The

Vil
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discussion is, however, carried back sufficiently to its elements
so that it should be self-contained and possible to read without
reference to other works except for a background of the most
rudimentary information. I would lay particular emphasis on
the discussion of fundamental matters in the Introduetion and
Chapter I, because I feel that an adequate conception of fun-
damentals in this field is not common, and that the attitude of
physicists toward these fundamentals cannot help but react on
all attempts to understand the electrical properties of metals.
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INTRODUCTION

The progress of physies is unsystematie. The activities of the
moment are determined by the most compelling interests of phys-
icists at that moment, and into this enter many complex and
human elements.  There is a little of the element of sheer fashion,
for most physicists are gregarious and enjoy talking over com-
mon activities with their fellows ; there is the strategical element,
for it is only human prudence to cultivate the fields in which =ue-
cess is most probable, and this usually means a new field; and
there is the economice element, which demands that an experiment
shall not involve too costly an apparatus. The development of
physies is thus not always in that direction which would be taken
by a competent dictator, charged with the task of getting intellee-
tual mastery of the physical world as rapidly as possible, nor,
indeed, is it in the direetion which would be chosen by the major-
ity of physicists themselves, if they could be freed from ulterior
considerntions.  The result is that physics sometimes passes on
to new territory before sufficiently consolidating territory already
entered : it nssumes sometimes too casily that results are seeure
and bases further advanee on them, thereby laying itself open to
future possible retreat.  This is easy to understand in a subject
in which development of the great fundamental coneepts is often
slow: o new generation appears before the concept has been really
salted down, and a=sumes in the uneritical enthusiasm of youth
that everything taught it in school is gospel truth, and forgets
the doubts and tentative gropings of the great founders in its
engerness to make applications of the concepts and pass on to the
next trinmph.

In particular has all this been true of the development of cur
theories of the eleetrical properties of matter. The historical
development of the fundamental ideas spread over a long time,
sixty vears from Poisson to the formulation of the field equations

i



2 ELECTRICAL PHENOMENA IN METALS

for stationary bodies by Maxwell, to pick out two important land-
marks. It is true that the expression for the mechanical action
of an electric current was formulated at once by Ampére in its
final form “‘leaping, full grown and full armed, from the brain of
the ‘Newton of electricity,’” to quote Maxwell, but this was only
an episode and a rare exception. The ideas of the proper way
to measure the strength of an electric current, the equivalence of
static and current electricity, the conception of resistance and the
proper way of measuring it, the conception of electromotive force,
all were of slow growth, and involved continual rumination and
chewing of the cud of contemplation to determine whether the
picture that was forming itself was a consistent picture and ea-
pable of including new facts as they were discovered. But each
new young physicist, as he enters the lists, is in danger of forget-
ting all the past rumination and the present uncertainty, and of
starting with an uncritical acceptance of the concepts in the stage
of development in which he finds them.

The electrical concepts entered a stage of crystallization with
the formulation of the field equations by Maxwell. The experi-
ence back of the equations was a pretty exhaustive knowledge of
electrical phenomena in empty space (except for radio phenomena),
but with regard to the electrical properties of material bodies the
range of experimental material was much more restricted, and
was confined to comparatively simple conditions, such as isotropic
bodies at constant temperature. The electrical properties of
matter are, however, most complicated, and many of them have
been discovered since the crystallization of the concepts. Some
of these are included in the phenomena with which we shall be
specially concerned here: thermo-electric properties, including
Peltier and Thomson thermal effects, the Volta effect, thermionie
emission, photo-electric emission, auto-electric emission (cold
discharges in intense fields), phenomena in crystals, including
anisotropic resistance and various reversible heating effects, and
various effects in the magnetic field, of which the Hall effect is
the best known. Each of these effects, as discovered, should
have been carefully scrutinized, to find whether it fitted into the
scheme already evolved, or whether modification was demanded.
Such an examination, because it is nobody’s business, and because
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the fundamental concepts have already been accepted, is in dan-
ger of being made superficially, without the care that would have
been given it if the effect had been known at the time the concept
was formulated. To take a simple example: how many physi-
cists have ever seen the field equations of Maxwell written out
for the interior of a conductor carrying a current in a magnetic
field in which there is a Hall effect, or indeed how many physi-
cists could tell whether field equations are possible in a medium
exhibiting the Hall effect? Yet every conducting medium carry-
ing a current is a seat of a magnetic field and therefore of a Hall
effect, and the Hall coefficient should enter somewhere into the
field equations, even although the effect may be numerically
unimportant.

Historically, the development of new points of view and the dis-
covery of new experimental facts came too rapidly for complete
assimilation into what was already known. A further difficulty,
of course, is that the experimental facts are often not discovered
in the logical order. The electron theory came crowding on the
heels of the formulation of the field equations, with its thesis that
the properties of all matter could be explained in terms of the
motion of concealed discrete electrical particles, and that the
motion of these particles was controlled by the field equations,
extrapolated to miscroscopic dimensions hopelessly beyond direet
experimental verification, and before their validity had been
checked even over the entire experimental domain. And finally,
crowding on the heels of electron theory, is wave mechanics, forced
on us by the new experimental facts of atomic physics, in which
we give up the idea of discrete electrical particles with individ-
uality, but retain the concept of the electrodynamic field to con-
trol the motion of what replaces the electron, and determine the
magnitude of this field (as, for example, in the neighborhood of
the nucleus of an atom) in terms of a fictitious discrete elementary
charge acting after the fashion of the charges of large scale
experience.

In the face of a historical development like this it would not
be surprising if points had been missed, and it seems to be worth
while that at least one physicist should attempt a critical review
and record somewhere his findings. It seems to me that two
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important sorts of thing have been missed. In the first place,
there are relations between the various effeets which are demanded
by the broad general prineiples of thermodynamics.  Apart from
the intrinsic interest in these relations, many of which are new,
they are of importance in directing the development of any
detailed theory because it is necessary, on the one hand, that the
theory be capable of giving an account of these relations, bui, on
the other hand, the fact that the theory ecan give an aceount of
the relation raises no presumption whatever as to the truth of the
theory. The establishment of such a result by any theory is
merely a check on its correct formal working out, sinee any
theory, not violating the most general prineiples, must be con-
sistent with thermodynamics. It is important to know all the
thermodynamie relations, in order that no theory may derive a
spurious support from ils ability to deduce a relation of this
sort. The second sort of thing whiech I believe to have been
missed is the fact that the concepts themselves, in terms of which
we have attempted to deseribe the electrieal state inside a metal,
are not broad enough, but have to be amplified in a way which
turns out not to be diflicult.

Insistence on the importance of the general relations of ther-
modynamiecs does not obscure our recognition that eventually
nothing will satisfy the physicist except a detailed pieture which
will make possible not only an explicit derivation of all the rela-
tions obtainable from general cunsiderations, but also a deriva-
tion of all the other special relations.



CHAPTER 1
EXAMINATION OF FUNDAMENTALS

We start with an examination of the fundamental notions and
experiments involved in the notion of the electrical field, and,
following convention, we shall first be concerned with electro-
statics. The experiments discussed in the following are largely
idealized experiments introduced to show the nature of the funda-
mental ideas; we shall not be concerned with questions of experi-
mental accuracy or feasibility.

Consider first experiments made in empty space with bodies all
of whose dimensions are of microscopic size and which carry elec-
trical charges. By measuring the force acting between various
pairs of these charged bodies at different distances we arrive at
the ideas of quantity of electricity and the inverse square law of
force. By studying the force under the mutual action of several
bodies we find that the force is additive. In terms of the force
exerted on a single one of these bodies carrying a unit charge at
various distances from a system composed of others of our
charged bodies held in a rigid framework we develop the idea of
a field of force at every point of space, equal to the force on unit
charge, and the idea of the potential of this field. Mathemati-
cally we find that the force field surrounding a distribution of
charges acting according to the inverse square law is a conserva-
tive field. We find mathematically that the total charge inside
a closed region is determined by an integral of the force over a
surface enclosing that region,

We next allow some of our charged bodies to become of finite
size, and make the discovery that the force at a fixed point of
space experienced by a charged test body of microscopic dimen-
sions carrying unit charge is not equal to one-half the force experi-
enced by another microscopic body carrying a double charge.

b
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More generally, the force experienced by a test charge in the
presence of two charged metallic bodies of finite size is not the
sum of the forces experienced first with only one charged body
present and then with the other. But we discover that as we
make the charge on our test body smaller, the limit of the ratio
of force to charge approaches a definite limit, which we now
define as the electric ficld at a point in the field due to charged
bodies of finite size.* This is evidently consistent with the pre-
vious definition of the field in the presence of charged bodies all
of microscopic dimensions, and we therefore now redefine the field
at a point as in all cases equal to the limit of the ratio of forece to
charge. Our previous mathematical theorems continue to apply :
the field has a potential and is conservative and Gauss’s theorem
holds.

In spite of the fact that a charged metallic body of finite size
is not surrounded by a constant force ficld rigidly attached to it,
we find by applying Gauss's theorem to a surface surrounding
the charged metal that as long as the metal remains isolated
from its surroundings the total charge which it bears remains
constant no matter what other charged bodies are present. We
discover that if two charged metals of finite size which bear
numerically equal but opposite charges are brought into contact,
go as to become effectively a single body, the system becomes
electrically neutral, the field vanishing at every point. This con-
dition of affairs would be exactly brought about by a proper
rearrangement in the bodies of their original charges, which
together totaled zero. We are thereby led to the conception of
electrical conductors in which charges may move about, and we
seek to explain, by the displacements of the electrical charge in
the conductor, the failure of a single charged conductor to sur-
round itself with a rigidly attached field.

A detailed examination of the field surrounding charged con-
ductors shows that as we approach the surface of such a conduc-

* It is of course not possible in any actual experiment. to let the test charge really
approach zerv; the justification for our definition is that as n matter of experiment
the ratio of force to charge remains sensibly constant after the charge has decreased
helow a certain size, and we assume that there would be no further departures from
this constant value if at some time in the future we were able to make experiments
with very much smaller charges than those which we can now handle.
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tor the field always becomes normal to the surface, the component
along the surface vanishing. Examination of the fields about
many conductors leads finally to this generalized picture: the
total charge on each conductor remains constant in amount, but
rearranges itself in such a way that the surface of the conductor
is always an equipotential surface; the interior of the conductor
is a region free from a field, and the charge resides entirely on
the surface.

In arriving at this picture we have made several steps that
require careful examination. In saying that the interior of the
conductor is free from field we have passed beyond quantities
with direct physical meaning and have introduced mathematical
constructions. The field in empty space was defined in terms of
physical measurements that were capable of approximate execu-
tion, for although of course the test charge could not actually be
made to go to zero, we could at least approach to the idealized
definition by actual physical measurements. But no such meas-
urements of force can be executed, even ideally, in the interior
of a metallic conductor, and the field inside a conductor therefore
becomes a construction, so designed as to degenerate under the
proper conditions into the constructions already made. In par-
ticular, the field at internal points of the conductor is calculated
by the inverse square law from the position of all electrical
charges, exactly as in the simple original case where we had only
microscopic bodies in empty space, disregarding the fact that
part of space may now be filled with conducting bodies. In other
words, the conductor is not supposed to exert any effect on the
propagation of force from one point to another; unit charge at
the center of a heavy metallic spherical shell produces in our cal-
culations exactly the same field at external points as if the shell
were not present. With this convention about the meaning to
be assigned to “field” in regions where the physical measure-
ments cannot be executed, it is found, as already suggested, that
the measurable fields at external points can always be calculated
by assuming that the total charge on conductors collects on the
surface in such a way as to leave the interior free from field.

The idea that the interior of a metal must be free from field
appeals to us very much, because it fits into a picture consistent
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with our previous experience. A metal is pictured as the seat of
positive and negative charges, normally present in equal amounts,
and mingled together, so as to be neatral electrically, bul freely
moveable and separable under the action of any foree. The
interior of a conductor in a static condition, according to this
picture, cannob be n region in which there is a net foree acting
on eleetrieity, for this would produce a continual motion of the
eleetricity in the metal and so lead to a non-statie condition,
Now assuming that in the interior of the metal there are no forees
not derivable from the inverse square law acting on the clectrie-
ity, and also picturing the foree which the eleelrie feld exerts on
the distributed eleetricity as determined by the produet of charge
and field in exactly the sime way as the foree on one of our orig-
inal test bodies of microscopie dimensions, we are led al onee to
the eonelusion that our constructional field must vanish inside
the metal. Gauss's theorem demands that there ean be no net
charge in o region free [rom foree, =o thal the interior of the con-
ductor must be free from charpe as well as foree, and the charge
must all reside on the surface. But gt the surface of the con-
duetor we must assume forees which restrain the choarge from
leaving the surface, sinee il 5 an easy matter to prove that the
total forees derived from the inverse souure law exert a resultant,
2 7p%, on the surface charge perpendicular to the surfaece, whore
p is “surface density " of charge.  The forees which prevent the
chitrge from leaving the surfnee under this so-ealled " boiler
pressure’’ foree must be deseribed as non-eleetrical forees.  This
non-¢leetrieal foree is exaetly equal and opposite to the eleetrienl
foree, and has no component langential to the surface, sinee the
electrieal foree has no tangential component.

The picture thug obtained is very simple and pleasing, but from
the mathematical point of view it 15 not uniquely determined by
the eondilions in the region of physical mweaning of the =alution,
TFor example, we would obtain exaetly the =uane field ot external
points i we supposed the neighborhood of the surface of the
conductor to be a double ayer armngement, the region hotween
the layers being by hypothesis inegpable of physieal exploration,
g0 construeted that one hall the pet ehinrge §s glways construined
to remain in the outer layer and one balf in the inner layoer, esch
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layer itself being an equipotential surface. An infinite number
of other solutions are also possible in which some of the charge
resides in the interior of the metal. The reason that we adopt a
mathematical construction which is not uniquely demanded by
the physical measurements is, in the first place, because it is the
simplest, and in the second place because it fits in most consist-
ently with other physical experience which we have not yet
brought explicitly into the picture. We have no evidence from
other sorts of phenomena of inhomogeneities inside the metal,
and we would be merely going out of our way to adopt a picture
for electrical phenomena which demanded such inhomogeneities
merely because they were not forbidden by the mathematics. The
mathematical construction actually adopted furthermore has the
very pleasing property that, subject to the additional assump-
tions about homogeneity, ete., it is uniquely determined every-
where, not only where measurements may be made, but within
the body of the metal. The quality of uniqueness is intimately
associated, in the minds of most of us, with the idea of ‘‘reality,”
so that we may think of the solution which we have adopted as
having “physical reality.”

The introduction of mathematical constructions in regions
where in the very nature of things no direct corresponding phys-
ical operation can be carried out must not be thought to be by
any means reprehensible, but is something to which we are con-
tinually forced in all our physical theorizing. This is shown
by the very simplest sorts of example; for instance, our idea
that the interiors of the bodies which surround us are uniformly
occupied by homogeneous material can never be directly verified,
because our exploration of the interior itself destroys the homo-
geneity which we are seeking to establish. The picture of a
homogeneous interior is a construction, so simple and useful as
to be almost inevitable, and unconsciously endowed with com-
plete “reality.” A somewhat more complicated sort of thing is
the stress inside a solid body. We never directly measure a
stress; this is a complicated mathematical construction describ-
ing the condition at inaccessible interior points, and connected in
a definite way with the forces acting across the surface of the
body, which can be measured directly. The usefulness of such
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construetions is in large mensure determined by the carrelations
which they make possible with physical phenomena not in the
original picture ; as, for example, the optical double refraetion
observed In a transparent body across whose surfuee forees are
acting may be predicted in terms of the stresses. There is
nothing inherently ohjectionable, therefore, in the coneept of a
field at inaceessible points inside solid Dadies, but we mnst demand
that this construction fit consistently with other constructions
that we may be foreed to make, and with other physical informa-
tion not contained in the original picture,

Dur physieal experiments with eharged canduetors have com-
pelled another pregnant extension of our ariginal ideas, namely,
the introduction of the idea of a surface density of clectricity on
the surfnee of the conductor to deseribe the state of the eleetricity
in the surface.  We started with systems campozed of charged
bodies of microsecopie dimensions; we later introdueed test
charges to determine the field, but slways our cleetrienl system
conld be regarded ns built up of eleetrical particles.  The foree
on electricity is given in terms of the particle picture, the praduet
of field strength and charge, the eharge having only magnitude
and no other structure.  But on the surface of a conductor our
mathematies demands a continuous distribution., Later, in
dealing with phenomena in dicleetries, which we shall not disenss
here, we find it desirable 1o still further gencralize this picture,
and think of eontinuous distributions of electricity in three
dimensions. Now a uniformly distributed mediun is 8 more
complicated thing than a puarticle, and one would at onee expect
new paramelers to be necessary in order to deseribie it com-
pletely.,  For example, one would expect the analog of the stresses
of ordinary solids and gases, and these stresses would be expeeted
to enter Lhe equations of equilibrium along with the forees arizing
from the hield. Bul the possible existence of stresges in addition
to volume forees, to which we are thus led, is merely ignored in
the conventional development of the subject snd the fmplicn-
tions in such possibilities ars not at all exaonined. 1t s reeog-
miged that if a4 conduetor bears a aurface eliree of density p, the
lield exerts on thig charge o total foree divected pormally away
from the conduciar of 2 =" per unit area. It s recognized thal
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in some way the material of the conductor must exert on the
surface charge an equal and opposite total normal force of 2 mp?,
but no attempt is made to analyze this action further, and in fact
the significance of the mere fact that we are thus compelled to
recognize the existence of forces acting on electricity which can-
not be derived from the field is usually lost sight of. Moreover,
whenever it proves convenient to picture the electrical state of
the interior of a massive body in terms of a volume distribution
of electricity we go even further than in treating surface charges,
and set the total force acting on electricity as the product of field
strength and charge density, ignoring not only a possible effect
arising from the hypothetical analog with internal stresses in the
electrical medium, but completely forgetting the possibility of
non-clectrical forces which we know must exist in the case of
surface charges. Fortunately in the simple case of a homogene-
ous metallic conductor at constant temperature carrying no
current (or even carrying a steady current, as appears later)
these complications can have no effect, because the volume density
of electric charge is zero under such conditions, and there is there-
fore no room for such cffects. But if more complicated cases
should arise, in which perhaps the conductor becomes non-
homogeneous, thus making possible the existence of distributed
charges within it, or cases in which it is necessary to scrutinize
the transfer of electricity from one conductor to another across
surfaces which need not be simple, we may be on the lookout for
difficulties arising from the neglect of these effects.

Passing on now to more complicated conditions, we give up the
requirement that the system be in a steady state, and study
simple systems in which there are linear currents. We may best
approach this subject from the standpoint of static electricity.
Given two large metallic conductors of the same metal, charged
with equal and opposite amounts of electricity, connected by a
long and very fine wire of the same metal. It is found that the
electric field in the space surrounding the conductors does not
remain steady, but gradually drops toward zero, which it even-
tually reaches at every point of space and the system becomes
electrically neutral. This phenomenon, consistently with our
previous experience with conductors, is naturally ascribed to the
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passage of charge through the wire from one conductor to the
other, this passage thus constituting an eleetrie current. The
magnitude of the eurrent is simply defined in terms of the rate
at which the conductors are losing charge, and this may be
determined by an application af Green's theorem to surfaces sur-
rounding each of the conduetors, It ean furthermore be estab-
lished by direet exploration of the field surrounding the con-
duetors that the rate at which the current is flowing in the wire
is proportional to the instantaneous difference of patential le-
tween the conductors, as measured by an exploring churge of
infinitesimal size moved through intervening empty space from a
point immediately outside one conductor to o point immediately
outside the other. The constant of proportionality between cur-
rent and difference of potential between the conductors is found
to be simply eonnected with the properties of the connecting wire,
being inversely as itg length and direetly as its eross seclion.
The constant also changes when the metul of which the system
i construeted is changed.  The concept thus arises of a resistance
to current flow offered by the metal of the wire, and & new con-
stant of the metal is recognized, its specifie resistance.  Because
of the inverse dependence of total resistance on eross seetion, the
current in the wire is pictured as uniformly distributed over its
entire eross seetion,  Here again we are dealing with a construe-
tion, for the distribution of current in the solid conductor eannaot
be dircetly examined. It is, however, almost an inevitable con-
struction, as shown by experimenis on compound conduetors
built up of many fine wires. A simple picture thus develops of
the condition at interior points of 4 conduetor in which a steady
current is flowing. The eurrent flows beeause the conduelor is
the seat of an electric field acting on the electricity which is
always present in the body of the conductor; the intensity of the
current is directly as this feld, and inversely as the resistance.
If the current is steady, this demands that the divergence of the
field at interior points vanish, and this by Gauss’s theorem means
that there can be no internal eharge density,  We have the para-
dox of electricity in motion through a region in which there is no
electricity, The parndox is resolved by recognizing that only
one of the two Kinds of electricity originally present in equal
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quantities in the metal need be in motion, the other remaining
stationary. A mathematical indetermination now appears, how-
ever, because a motion of positive electricity in one direction is
as effective as motion of negative electricity in the other direction,
or indeed all intermediate states of combined motion are possible.
The origin of the field in the conducting wire is found in a dis-
tribution of charge over the surface of the wire, as revealed by
an exploration of the electric field outside the wire. Mathemati-
cally, the requirements that there be a constant field inside, that
any charges be located entirely on the surface of the conductor,
and that the field everywhere shall be determined from the
charges by the inverse square law, are found always to lead to a
possible solution, which furthermore is unique. The solution at
interior points of the wire, which is only a mathematical construc-
tion, thus acquires the status of physical reality. Notice again
that under these simple conditions we say that the force on the
electricity inside the wire is determined only by the electric field ;
our scruples as to possible non-electric forces or actions analogous
to stresses are laid by the observation that the electric charge
density vanishes, so that other actions would not be expected to
exist. It is not so obvious, however, what to expect in more
complicated cases.

Experiment also discloses in the neighborhood of a wire carry-
ing a current a magnetic field. This can be simply calculated
from the distribution of the current; the details are not of inter-
est here. The important point is that by measuring the magnetic
field we have an independent method of measuring the current,
so that we may give physical meaning to the current in those
cases in which it is not possible, as above, to determine the cur-
rent in terms of an actual transfer of charge from one place to
another. There are other phenomena accompanying a current,
such as chemical effects, which may also be used to give inde-
pendent meaning to current strength, although perhaps not as
simply as the magnetic effects.

Among the phenomena accompanying flow of current there is
a heating effect in the wire. The rate at which heat is generated
is precisely equal to the rate at which the electrostatic energy of
the charged conductors at the ends of the wire is disappearing,
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the energy being determined in terms of the charges and their
potentials. The total generation of heat between the initial fully
charged state and the final state of complete neutrality is the
initial total electrostatic energy of the distribution. The rate at
which heat is generated in the body of the conductor is 7% per
unit volume. Since the electric field £ is equal to ir, the rate of
heat generation might also be written as<&. €'is the difference of
potential of points unit distance apart, and 7 is the quantity of
electricity per unit time. The heat may then be rewritten as
gAV, which is the work done when quantity q of electricity flows
between two points at potential difference AV. Under these con-
ditions the work received is entirely turned into heat. The
details of the conversion of the original electrostatic energy of the
distribution into heat may be followed by means of the Poynting

vector. This vector is % € X H. It may be determined at any
i

point by independent measurements of electric and magnetic
fields, and is a possible expression for the energy crossing unit
area in unit time. The excess of influx over efflux into a given
region in unit time of the Poynting vector (that is, its divergence)
represents energy deposited in the region, which must therefore
appear in some recognizable form. It is found that the net
Poynting vector influx into the wire connecting our two charged
conductors exactly accounts for the energy appearing as heat.
The other ends of the lines of the Poynting vector are distributed
through the space where there is an electric field. The picture
is one of transfer into the wire along the Poynting vector of the
electrostatic energy originally distributed throughout the electric
field in empty space; in the wire this energy appears as heat.

The conversion of electrostatic energy into heat is completely
irreversible, like any friction effect ; it is not possible by uniformly
raising the temperature of a conductor to produce a current of
electricity in it.

Although for formal purposes it is possible to develop our no-
tions of electric currents from the discharge of quasi-electrostatie
systems, there is one important difference between such currents
and the currents which we usually encounter. The current from
the quasi-static system slowly decays until the system becomes
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electrically neutral, whereas most of the currents of practice may
continue to flow at their original strength indefinitely. For
example, the current from a battery flows indefinitely as long as
we renew the chemicals of the battery. Such systems evidently
contain some source of action fundamentally different from that
in the static system. As far as the wire is concerned, in which
the current flows when connected to the terminals of the battery,
there is no reason to think that the action is any different from
that when the same wire is used to discharge a condenser. De-
tailed exploration of the field surrounding the wire bears out this
expectation ; if the current in the wire is so adjusted as to be the
same in the two cases, as determined for example by its magnetic
field, the electric field in the surrounding space is also the same.
This electric field at the surface of the wire has both normal and
tangential components, the tangential component indicating a field
inside the wire which drives the current. This tangential com-
ponent has its origin in a surface charge distributed along the
wire with varying density, the actual density at any point being
determined by the normal component of the field. Inside of the
wire, therefore, we must think of the current as maintained by
an electric field derived by the inverse square law from suitably
situated electric charges. These charges are maintained in posi-
tion against the natural tendency of every electrical system on
conductors to sink back to a position of electrical neutrality by
the action of the battery. The battery is the seat of some sort of
action by which a difference of electric potential is maintained
between its terminals. This difference of potential may be
directly measured if the battery is open circuited by exploring
with a test charge the space between terminals attached to the
electrodes of the battery, taking the precaution to make the ter-
minals of the same metal. This is also the difference of potential
found by an exploration between the ends of a wire joining the
terminals in which a steady current is flowing, provided that the
wire is fine enough and the cross section of the battery sufficiently
large. We may therefore measure the action of the battery by
the difference of electrostatic potential which it is able to produce;;
we call this the electromotive force (E.M.F.) of the battery, and
for simplicity put it equal to the potential difference. The cur-
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rent in the wire we already know to be equal to the difference of
potential between its ends divided by its resistance, or AV/R. If
R is high enough, AV = EM.F., and { = EMF./R. Ii the
resistance of the wire is low, the current is less than would be
given by this relation, but we find that for all values of B the
current iz given by 1 = EANLF./(R + r), and the inevitable
interpretation is that ry is Lo be aseribed to the internal resistance
of the battery, u point of view which is checked by studying the
effect of varying the cross section of the battery or the distance
between the plates. In the external circuit, where the anly
action in the wire is an electrie field derived by the inverse square
law from charges, the enrrent is§ = AV/R.  In the whole cirenit,
in which there can be no net change of potential, since V derived
from the inverse square law is conservative, the current is given by
t = EMF./(R 4 ). In the battery itself, beeause of the con-
servative praperty of the field, the inverse square potential must
experience a rise equal to its drop in the rest of the eireuit: in
spite of this rise eurrent flows in the battery in the same direction
us in the rest of the cirenit. The obvious reason is that the
E.MLF. in the battery overcomes the backward drive of the electric
field, producing a net foree in the forward direction.  In fact, we
find at onee, for the inside of the battery i = (E.M.F. — AV) /7,
the AV having the same value as already demanded, namely

AV = R _EMT.
R r

The energy manifestations in the wire connecting the terminals
of the battery are thus the same as those in the same wire in
which the same ewrrent flows when discharging a2 condenser.
There is a uniform generation of heat in the wire, the totsl heat
per unit time being R = AV, 'The energy gets into the wire
on the Poynting vector, which at the wire has exactly the sumne
configuration as in the case of the condenser. Detailed tracing
out of the Poynting vector shows, however, that the other end of
the vector does not originate at points in spaee where electric
energy of the field is situated, but the origin of the Poynting flux
is in the battery, the total efflux from the battery being exactly
equal to the total influx into the wire. The source of the thermal
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energy appearing in the wire is therefore the battery, as indeed
it must be, because there is no other possibility. This conclusion
may be checked by studying the chemical transformations
which take place in the battery when current flows. The total
heat supplied by the battery to the external circuit is therefore
PR = AV = i —E
R + T
internal heating in the battery because of the current flow-
ing through its internal resistance. This we put = %, =

i{(EMF. — AV) = i—>— (E.M.F.). The total heat is the
R + Ty

sum of these or ¢ X E.M.F., which is the total rate at which
energy is supplied by the E.M.F. of the battery as current flows
through it.

In the case of the battery the relations are, therefore, exceed-
ingly simple. 1 = (E.M.F. — AV)/r,, Ohm’s law, and rate of
work of battery = 1 X E.M.F., where AV is the difference of
electrostatic potential in going through the battery between termi-
nals of the same metal and E.M.¥. measures the action of the
battery. It is to be noticed that the E.M.F. may be obtained
either from a measurement of the total heating effect by means
of the energy equation, or it may be obtained from a measurement
of the current from the expression for Ohm’s law. It is also to be
noticed that we have not had to go inside the battery in any of
this analysis; the quantities entering our equations are all
derived from measurements actually made in the space outside
the battery. We are therefore dealing with actual physical quan-
tities, not constructions, and our results may be checked by
direct measurement.

We now seek to generalize what we have obtained, and in par-
ticular ask what is the potential within the battery itself. We
first simplify to the extreme by supposing that the action in the
battery takes place uniformly in the space between its electrodes.
If the distance between electrodes is I, then the average of the
total E.M.F. taken per unit of length is E.M.F./l, which we
write as em.f. The average of AV per unit length isAV/l =— £,
where € is the electric vector. If we take the cross section of the
battery as unity, write = for the specific resistance of the material

(E.M.F.). By analogy we expect an
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of the battery, and write the equations above for unit length of
the battery, we obviously have for the current density

t. — (E.Tﬂ.i;: + EJ I' ll
and for the rate at which the hattery supplies energy per unit
volume . ‘

i X e, I, 2.

These local values obviously give correet results when integrated
over the complete circuit, because they were so construeted,

The conventional and elassieal development of the subjecl now
assumes that these results hold univerzally, and may be applied
in the mosl general ease where woe have to recognize that the
souree of the action which is eapable of maintaining a eurrent is
distributed continuously throughout o volume.  In the applica-
tion of these equations it is supposed (o nake no difference
whether or not the material is homogencous, or whether it is at
uniform temperature, or whether there is a volume distribution
of charge in the region of action,

In the two equations all the quantities ave direetly mensur-
able except the em.f,  In 1, 2 the energy supplied by the souree
of the et in unit volume is dircetly measurable by a studv of
the changes taking place in unit volume, chemieal changes if the
source of energy is chemieal, or thermal input if the souree is
thermal as in a thermo-couple, or other ehanges for other sorts of
action.  The @ of this equation may be obtained from measure-
ments of the surrounding magnetie field. In 1, 1 ocours the same
i.  The # of this equation may be abtained from the irreversible
Joulean heat with different currents, and the & of this cquation
may in principle be determined by loeating the electrie charges
by exploration with a test charge, and then integrating by the
inverse square law of foree,® The thesis invelval in wriling

* 1 do pot want to complieate the discusaton by eonsidering in detail what happens
when phe symtem contalos parts in motion, s in a dvpame.  Jo will be syfBeiopt 4
sy Lhigt in wuely mope goneml enses the £ il £ which antisiies the Maxwell equn-
toms, ped ie may be dotormined in perms of che slarges and sortain boundary compdie
tinns nt sarfaces of diseontiply in the motion, wheme thore i loestad g “surface
enrl ™ of € In sigeh systomis cantaining moving paets £ s not dervable frony o sealar

potentinl, and 18 19 noi conservative, Due pevertholess £ mny be givion o tueapiog o
EYErY tu:iul ol e EyELE,



EXAMINATION OF FUNDAMIENTALS 19

these two equations for the most general case now is that the
e.m.f. found by solving the first after substituting into it the
measurable quantities will be the same as the e.m.f. found by
similarly solving the second. But we have already secen that in
regions of inhomogeneity, where there may be distributed charges,
complicated effects may be anticipated, perhaps analogous to
those found in ordinary media in which a stress is acting. We
might therefore anticipate that the two equations obtained from
a generalization of very simple conditions might prove not to be
adequate. This in fact I believe to be the case, and I shall later
show that at least in the case of a metal carrying currents derived
from a thermal electromotive force the action must be more com-
plicated, and the e.m.f. derived from the first equation is not the
same as that derived from the second.

We shall for the present satisfy ourselves with defining an e.m.{.
which is obtained by the solution of equation 2 as a “working
e.m.f.” or (e.m.f.)., and one obtained from the solution of equa-
tion 1 as a “driving e.m.f.” or (e.m.f.)s. We thus have in general
the equations:

Rate at which source delivers energy per unit length

= 1 X (e.m.f.), I, 3.
;= (em.f.)s + & _ (e.m.f.)s — Grad Pot I 4
r r ) ? .

where r is resistance per unit length.

We now at last are ready to let drop the requirement that the
various metallic bodies in our system are all of the same metal.
Consider two metallic spheres of
different metals, A and B, each l A
being itself electrically neutral, &7 a
as shown by the absence of any é
electric field in the surrounding
space when explored by a small
test charge. Now connect the
two spheres by a fine wire, half
of metal 4 and half of B. The exploring charge now reveals the
presence of a static field in the surrounding space, lines of force
running across from one sphere to the other, and also from one
point of the connecting wire to another, as shown by Figure 1.

Fta. 1
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The configuration of the lines of force is such as to indicate one
constant potential at all points immediately outside the metal A,
whether this metal 1s found in the sphere or the wire, and another
constant potential at all points outside the metal B. This is
general ; two different melals in contact apparently get them-
selves into such an elecetrical condition that there is a eonstant
diffierence of potential between all points immediately outside one
metal as compared with all points outside the other, the surface
of each metal by itself remaining an equipotential surface, as
we have already found in our experiments on systems of con-
ductors all made of the same metal. We denote this difference
of potential, which is ealled the Volta difference, by Vg, indicat-
ing by the order of the letters the inerease of potential on passing
from a point outside A to one outside B, or V,,; = Vy — V,.
Application of Gauss's theorem to a small pill-box-shaped region,
partly inside and partly outside the surface of the metal, as indi-
cated in the figure at P, now demands at once that there be a surface
charge on the conductor, if we assume as before that the interior
of the conductor 15 a region free from fleld. [t 1z almost neces-
sary that we continue to assume this, for we can see no reason
why conditions inside a mass of metal should be altered by
moving another mass of metal about in the vieinity. The reality
of the existence of this surface charge may be shown by a con-
denser experiment. Two parallel plates of A and B confront
each other at a distanee {,. The field in the space between them
is found to be uniform, of amount &, directed from 4 toward B,
where &y, = V, g This is in aceordance with the fundamental
experimental fact that the system comes to such a state that there
18 a constant potential difference between all points outside one
metal as compared with the other. Guauss's theorem demands
that on the surface of A there be a positive charge of superficial
7
density p, = —LE‘U = -:—'-‘E’i, and an equal density of negative
= iy T Tip
charge on the surface of B, the surface charges on the two metals
thus together totaling zero. Now change the distanee between
the plates to ;. The charge on A now changes to il_ & = {-i{i’-,
e g
and the charge on B to the equal negative value. The change of
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surface charge can be brought about only by electricity passing
through the conneeting wire ; the motion of eharge constitutes an
eleetrie current in the wire. Thiz eurrent may be messured by
its magnetie effcets,  The total quantity of eleetricity conveyed
by the current during the change of the distance between the
condenser plates moy be measured with a ballistie galvanometer,
and is IT‘”'- [ !I-- — ;u] per unit surface of the condenser.  Measure-
= LA

ment of the ballistic throw gives at onee, Lherefors, & method of
measuring the Volta potential differenee.  This is the method of
Kelvin, and is paturally mueh more seeurate than the result of
attempting to direetly messure the field in the intervening space
with a test charge.

The values which are obtained for the Volta difference of poten-
tial hetween two metals under ordinary laboratory eonditions
prove to be highly ercatie, and long experimenting was neeessary
before it eould be aceepted as conclusively proved that the effeet
is highly sensitive o fluetnations in the surface conditions, films
of absorbed gas or olher substances too minute Lo he detected by
ordinary methods being sufficient to entively change the Volta
differences. It now appears, however, that characteristie repro-
duecible values ean be obinined for the Volta differences il the
experiments are made with the best modern high vacuuwm tech-
nique, taking pains to entirely clean the swifaces of the metals
from foreign contamination.  In the following it will be assumed
that the experiments are made under these eonditions,

The “Valta Law of Tensions™ is found o apply to the Volla
potential difference between different metals. This law states
that if A, B, and O are any three metals, then

Vap + Ve = Viye I, 5.

Applied to a closed system of three metals as indicated in Figure 2
this means that the sum of the three jumps of potential outside
the three surfaces of sepuration of the melals must add to zero.
This, however, i= o necessary consequence of the faet that a sys-
tem composed only of metals like this can have no permanent
source of energy in il, as would be the ease if there were a battery,
for example, hut must come to a stationary condition, in which
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at most there can be an electrostatic field at external points.
But now the electrostatic field is conservative, and the total
change of potential in a closed path is zero. Such a closed path
is indicated in the figure. But the parts of this path indicated
by the dotted lines encounter no
change of potential because of
our fundamental experimental
fact that the surface of a single
metal not carrying a current
comes to constant potential. The
system, therefore, must automati-
cally come to such a condition
that the Volta law of tensions is
satisfied, and it might appear
that in enunciating the law we
have not been saying much, but
have committed a tautology.
Fia. 2 This, however, is not the case,
but the significance of the Volta
law is slightly different from what might be inferred from its
customary formulation. The significance is not that the three
potential differences add to zero, but that each of the three terms,
Vas, Ve, and V¢ is characteristic of only that pair of metals
appearing in the subseripts, and is always the same, independent
of the presence in the system of other metals.
The Volta law of tensions may be formulated as:

VA: + VxB = VABr I’ 6'

where z is any metal, and V,, does not depend on 2. It is easy
to show analytically that if this relation is satisfied it must be
possible to split V4, into two parts, one of which depends only
on A and the other in the same way on z, or in other words, we

must have,
Vi = f(z) — f(4). L7

That this is a sufficient condition is obvious at once on substitut-
ing back into the Volta law of tensions. That it is also necessary
can be shown by a simple functional analysis which we need not
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bother with here. This resolution of V,, into two parts is not
unique, but f is undetermined by a term the same for all metals,
which may in general be a function of temperature. We shall
find later a possible way of making this resolution.

Next consider various energy relations connected with the
existence of a Volta effect. Imagine the two condenser plates of
Figure 3 with the wire between
them broken, and separately A
charged to equal and opposite
surface densities, such that the
difference of potential between
points immediately outside them,
as found by a test charge, is V. b
Connect them by a wire fine
enough so that the plates slowly
discharge. The current in the wire may be measured by a gal-
vanometer; the heating cffect in the wire during the discharge
may also be measured. The fundamental fact is now found that
the total heating effect while the quantity of electricity ¢ flows
between the plates at potential difference V is not ¢V, as it was
in the simple case of a condenser made of two plates of the same
metal, but is now

Fic. 3

gV — V). I, 7 bis.

That is, the effective potential difference in the wire from which
energy is derived by the passage of electricity must be figured
from the threshold value V4 to which the system automatically
sinks back. But now the conditions in the wire itself, while heat
is being generated by the motion of current against resistance,
must be thought of as the same as when the system is all of the
same metal. It would appear, then, as though in this compound
system consisting of two metals the effective potentials ¢n the
metals were different from the potentials measured between
points immediately outside the metals.

This at once gives a clue to the sort of action that may be
responsible for the existence of the Volta effect. We apparently
want some sort of discontinuity of the potential on passing across
the surface into the metal. Mathematical analysis provides
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what is wanted in the fiction of a double surface layer, A plane
parallel condenser charged to potential diffierence V receives a
surfuce charge of density —1; ‘I:T- where | 1= the distance of separa-
tion of the plates.  If now £ is allowed (o approach zero at the
sume time that the surface density inereases n such o way that
V' remains constant, we are left in the limit with a surface of
discontinuity of potential on which there is o distribution of
doublets with axis perpendicular o e surfnee. The relations
Liere are reversible : a diseontinuity of potentind demands o double
laver and a double layer demands o discontinmty of potential.
Imagine now a spherical eonduetor surrounded with such a
double layer. Gauss's thearem shows that there is no field at
either external or internal point<; the only effeet of such a double
layer 18 to raise the potential of the entire interior of the sphere
by o uniform amount above that of the surroundings.  As long
ns we stay ontside the body of the metal there is no methad by
which the physical existenee of sueh a double layer ean be
detected. The same state of affairs holds no matter what the
shape of the eonductor.

This jump in potential at the surfaee s entirely independent
of the presence of any ordinary surface charges on the surface,
for such eharges produce no discontinnity of potential.

If now we suppose that on the surfuece of all metallie conductors
there are double layers, we have the sort of thing required. If

Vas in Figure 4 there are aruuﬁlm;..l. double

S T lnyers and therefore constunt juimps of
% ; potential al the three surfaces separat-

A "-t- B g A from B, A [rom empty spuee, anid
B [rom emply spaee, then the exisience

oo 4 of s econstant Volta jump Vi, between

points immedintely outside A and B is
at once provided for, as we see on deseribing the closed path in-
dieated by the dotled linu, and applying the condition thal the
total ::hﬂnge of pnlr'nu'tl in any closed path must be zero, and
also the condition that in the lmniy of e massive metal lhem
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can be no potential gradient if the state of affairs is steady, as
we assume. The relation between the jumps is obviously:

Vaa= (Internal jump 4 to B) + (Jump B to empty space) 4- (Jump empty space to A)
= V'an + Vas — Vas. 1,8

The existence of a Volta potential jump is thus provided for,
but the solution we have obtained is not determinate; we are
obviously not able to assign unique values to the three quantities
on the right-hand side of equation 8 on the basis of the single
condition that their sum shall be fixed. It is important to empha-
size, however, that the existence of the jump V,z demands the
existence of some other compensating jump, and therefore the
existence of an electrostatic double layer somewhere on the sur-
face (1) or (2) or (3), or in suitable combination on all three; we
cannot get rid of a double layer somewhere.

Various hypotheses have been set up to partition exactly the
potential jumps between the three possible surfaces, and there
has been much controversy on the subject. For example, Lord
Kelvin believed that the jump was entirely located at the sur-
face 1, the interface between the two metals, the jumps and
therefore the double layers on 2 and 3 vanishing. Maxwell and
Heaviside, on the other hand, would make the jump at the inter-
face identically zero, except for a small effect to be discussed
later, and would distribute the total jump in some way between
surfaces 2 and 3. It is obvious that other considerations than
those already discussed must be advanced to justify any such
detailed partition of the jumps between the various possible loca-
tions. Heaviside attempts to find such a further argument in
the transformations of energy in a circuit in which a current is
flowing and in which there are Volta differences. I believe, how-
ever, that any such arguments rest on a misconception and that
any requirements as to energy transformations automatically
adjust themselves in conformity to whatever special assumption
is made about the distribution of the potential jumps between
the three possible localities, and that no additional information
whatever can be obtained from the energy requirements. The
situation well repays careful examination.

Let us in the first place assume a double layer at the interface
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between A and B and see what is involved. The system is sup-
posed in static equilibrium, with no current flowing across the
junction. Physically we do not have infinite quantities, so that
actually we do not have two layers of infinite surface density of
positive and negative electricity separated by an infinitesimal
distance, but we have concentrations of positive and negative
electricity of high densities separated by distances small com-
pared with the distances involved in ordinary measurements. In
the region between the positive and negative charges there must
be an intense electric field. If electricity passes from A to B, this
field does work on the electricity of amount equal to the product
of quantity of electricity and the total potential change associated
with the field. Call this potential change V. Now let a steady
current flow across the boundary. We assume that this has no
effect on the potential jump at the boundary; the evidence for
this can of course only be indirect, and rests on the fact that no
difference in the Volta potential difference between metals is
observed when a current is flowing. I imagine that this point
has not been very carefully examined experimentally. However,
the point is not important for our present purposes, for the fol-
lowing considerations would still apply even if the potential
jump were a function of current. The point is that an electric
current flowing across the interface must continually receive
energy from the electrie field, and the question is where does this
energy come from? In solid metals there is no material change
accompanying current flow such as there is in a battery, and
therefore no apparent source of energy. This led Heaviside to
argue that since there is no source of energy there ecan be no
potential jump. It is true that there is a small reversible heat-
ing effect at the interface, the Peltier heat, so that there is a
continual inflow of thermal energy, but this effect is of a smaller
order of magnitude than that corresponding to the Volta jump,
and Heaviside did, as & matter of fact, assume a potential jump
corresponding to this thermal effeet. We return to this thermal
effect later in discussing the thermo-electric circuit; for the
present we neglect it.

There is nevertheless a source of cnergy detectable by ordinary
physical measuring instruments which Heaviside neglected, and
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which exactly meets the requirements; this is the energy carried
by the Poynting vector. Let the two metals A and B take the
form of two cylindrical wires of radius a. Just outside the sur-
face of the wire, girdling the transition zone from one metal to the
other, there is an intense electric field parallel to the axis of the
wire. The intensity of this field is of course such that its product
into the width of the transition zone gives the characteristic
Volta difference V5. If the field is € in the direction from 4 to
B and the width of the zone Al, then EAl = — V, 5. When electrie
current flows in the wire there is in addition a circumferential
magnetic field at every point external to the wire of amount
H = 21i/a. Over the transition zone magnetic and electric vec-
tors are at right angles and together determine a Poynting vector,
S = EXH
T
flow of energy carried by the Poynting vector is the product of
its magnitude and the total area across which it aets, which is
2 maAl. Substituting the values for & and H, we find that the
total inward flow of energy carried by the Poynting vector is 2V 45
in unit time. This expression holds no matter what assumption
is made about the distribution of the potential jumps between
the three possible surfaces. If we assume that the total Volta
jump is situated at the interface between the two metals, so that
the V of the last paragraph is equal to V45, then the total work
done on the current by the forces at the interface is exactly pro-
vided for by the inflow along the Poynting vector, and Heavi-
side’s objection is met.

Let us now suppose that the jumps which together make the
Volta jump are situated on two surfaces, one the metallie inter-
face and the other the external surface of B separating it from
empty space. Then in the double layer surrounding B there is
an intense electric ficld normal to ihe surface. When current
flows, the magnetic field is circumferential as before; the two
together produce a Poynting vector which now points along the
axis of the wire. The total Poynting flux coming in from outside
space into the girdle about the transition zone now splits; part of
it turns and runs in a sheath along the surface of the wire, and
the rest penetrates into the interspace between the two metals.

, directed normally into the wire. The total inward
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Detailed ealeulntion shows at once that the modified amount now
penetrating into the interspace is exaetly equal to the modified
demands of the eleetrie forees at the interface. OF course the
energy Howing along the wire in a sheath eseapes into the sur-
rounding space at the other junction between 4 and B, for in a
complete eireuit there must be anather junetion. IT the total
Volta jump is supposed to be divided in any possible way between
the three possible surfaces, or if other metals are introdueced into
the eireuit, it will be found that in every ecase the Poynting flow
automatically takes up the correel distribution. No informa-
tion whatever ean be obtained about the distribution of the
potential jumps from energy consideralions,

We next have to ask what happens to the erorgy transferred
by the eleetrie forees to the eleetricity as it erosses the interface,
The dimensiong make it obvious that we cannol think that this
energy is associpted with the eleetricity in virtue of the fact that
it constitutes a current, for the energy transferred is a definite
amount per unil quantity of eleetricity, not per unit current.  Elee-
tricity in the metal £ must therefore have a different energy from
that in A ; the precise amount of this difference of energy depends
on the assumption that we make about the patential jump at the
interface, Maxwell and Heaviside would say that the encrgy
difference is zero exeept for a small effect of the magnitude of the
Peltier heat.  OF eourse the particular value which we will prefer
for this energy difference depends on what partieular detailed
theory we adopt of the eleetrical constitution of a metal; it is
not the place now, while we are dealing only with general con-
siderations, to consider further what this may be. It is lo be
emphasized, however, that we have already been foreed to recop-
nize the exigtence of effects which amply provide for such possible
energics of position of eleetricity inside a metal,  We have had
to assume non-electric forees ot the surfuec of 2 melal to keep
an cleetrie charge from being blown off the surfaee; i there am
sitilar non-electrie forees ot the interface bebween two metals,
as there may perfecdy wall be, there will bie of necessity a diffor-
erice of enerzy of cleetrieity n the twa metals, We Liave seon
that the aseumption of spatislly distebated sleetricity mvolves
the possibility of internal stresses in tie distribution ; there may
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well be effects analogous to differences of internal pressure of the
electricity in the two metals, which would involve a difference of
energy. We even admit the possibility, if the electrical forces
are unopposed in the passage of electricity across the boundary,
that electricity may arrive in B with a greater kinetic energy
than in A, so that the difference of energy in A and B may corre-
spond to a difference of kinetic energy of concealed motions in
the electricity.

It will perhaps pay to stop for a moment to make one general
comment on what we have been doing in the last few pages.
In talking about the Poynting flow at points inside a double
layer, or in following the motion of the electricity in the interior
of a solid metal across the interface, we have evidently ceased to
deal with things directly accessible to measurement, and are
therefore in the realm of constructions. We have, however,
talked about and calculated with these constructions just as if
they were tangible physical things. The only comment to be
made on this situation is that we are justified in thus handling
our constructions because they have been made with this require-
ment in view. We do not regard a construction as sufficiently
justified to warrant retaining it unless we can perform mental
operations with it just as we have above, just exactly as if the
construction were accessible to direct measurement. If we get
into trouble in doing this, we either discard the construction, or
try to modify the physical picture back of the construction so
that it will not lead to an inconsistency. Just what requirements
we make of our constructions are usually not submitted to
detailed analysis, but have to be judged by the context and the
physical feeling that every physicist acquires as his experience
ripens. It would lead us very far afield to attempt to stop for a
detailed analysis of the requirements that we put on our construc-
tions. The requirements made of the constructions that we shall
employ here are as easy to analyze out of the context as in any
other theoretical discussion of physics, and there is no more
reason to anticipate trouble because of them.

Another pgeneral matter will pay for careful examination,
namely, the way in which we have to handle potential energy in
dealing with electrical problems. Great confusion is easy and
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common heve beecause of o fundamental difference between the
role of potentinl energy in eloetrieal systems and in gravitational
ﬁ:.‘!'itl.l“l'."i, \\riiil'h Irg ‘”ftl'l-l “]“H'!Hi‘l'll |} ill l.'l":l."-”l'ti:".l{ *I_‘.' :[[l]'l..l{l!.l:i" i“
the attempt to reduce the electrical problem to one of greater
fumiliarity,  We examine two probilems, lirst o gravitational one,
and then the corresponding eleetrieal one.
Consider water in g pipe with two vighl-angled bends in o gravi-
tational fickl, as shown in Figure 5. It is in equilibrium under
the saetion of two pistons, as
""""" == shown,  DImagine the pipe con-
tinedd in o closed box, and the
pistons reaching into it from out-
side and manipulated from ont-
side, The upper and lower pistons
experience different pressures,
and py, when the syslem is in
equilibrium.  p, is greater than
p: by the pressure due o the
head of waler, or p; = p: 4+ &
Now push the lower piston in
Fid. § by unit distance and simultane-
ously withdraw the upper hy the
anme amount. The system inside the box pnins energy in
amaunt equal to the dilference of work done by Lthe two pistons,
or Al = py — pe= k. Thig energy change must be assoeinted
with some permanent change inside the box.  Exwmination of the
contents of the box discloses the transfer of water from a lower
ta o greater height, and the inerense of energy of the system is
evildently deseribed by saving that the water in it hins aequired
greater potential energy of position in the gravitationul field.
Now divide the box into three paris by the partitions A and B,
and consider what aeeount we shall give in detail of the energy
transformation. Tt is obvious that there is no change in the
middle third of the box, between A and B, Water has left the
left=hand third and entered the right-hand thivd ; we must evi-
dently say that the left-hand third has lost a certain amount of
encrgy and the right-hand thivd has gained an amount greater
by A, the total inerense of energy of the system.  What is the

>
w

=

|

i
q--l-ul——-.———.--



EXAMINATION OF FUNDAMENTALS 31

process by which the left-hand third loses energy and the right-
bhand third gains it? The left-hand third gains energy in amount
p1, because the piston moves into it, exerting a force p;, and
doing work equal to the product of force and displacement.
Similarly the right-hand third loses energy p., because the piston
moves out, receiving this amount of work. But since p, is greater
than p,, this account of the situation would represent the left-
hand third as gaining energy instead of the right-hand third.
There must be other factors, and these evidently are associated
with the motion of the water across the partitions A and B.
What energy is convected by the water to give the correct total
energy transformation? It is obvious in the first place that there
must be a term arising from the potential energy in the gravita-
tional field. This is arbitrary in amount, only differences being
significant. Call the potential energy of unit mass in the left-
hand compartment A, and in the right-hand one ho + A. Then
the left-hand third loses energy ko and the right-hand gains
ho + h. But now consider the middle third. Because of con-
vection this gains energy ho at the lower end and loses ko + & at
the upper end, making a net loss of h, unless there are other
factors. But since we have already secn that the net change of
energy of the middle third must be zcro, there must be other
factors. Consideration discloses this missing effect in the pv
energy of a liquid, familiar in thermodynamics. A liquid in which
there is a pressure p convects energy in amount pv with it when
moving across a surface. Does this give the desired null net
effect at the middle third? The middle third now gains at the
left-hand partition the energy p: + ho, and loses at the right-hand
partition ps + (ho + k). These two are equal because of the
relation between the pressures, and the necessary condition at the
middle third is satisfied. The left-hand third now gains the net
amount p; — [p1 + ho] =— ho, and the right-hand third gains
— p2 + [p2 + ho + k], making the net gain by the entire system
b, as it should be.

This seems to be the only way of accounting for the energy
changes in the gravitational system. The point to be empha-
gized is that we are driven to associate with the liquid a potential
energy in the gravitational field, which it convects with it.
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Consider now an analogous electrical wrrangement. Imagine
an electrically neutral pipe filled with eleetrically eharged balls,
capable of moving without friction in the pipe. The whole is
placed in a uniform electrie field provided by a parallel plate con-
denser, the plites of which are so far apart that any reaction of
the charged balls back on the distribution of eharge on the plates
may be neglected,  The balls tend to fall out of the pipe in the
divection of the eleetrical foree, and may be restrained by pistons
at the ends, which exert pressures differing by the amount of the
electrie foree. The eleetrie field is supposed =0 intense that the
mutual forees of repulsion between the balls vanish in compari-
son with the forces of the external field,  The clectrie field pro-
duees o pressure gradient along the line of balls exaetly like the
pressure gradient in the water in the gravitational ease. Now
displace the piston: and consider the energy changes.  The pis-
tons do exactly the smme work as in the gravitabional case,  But
there is an important difference elsewhere.  As the electrified
halls move they constitute an electrieal eurrent, which gives rise
to & magnetie field, which i conjunetion with the eleetrie field
produces at every point of spaee u Poynting flow of energy,
Mensuring instruments stationed on the outside of the box would
diselose the existence of this Poynting flow.  Detailed analvsis
somewhat Tike that already applied to the problem of the Volta
jump of potential will now show that the net inflow on the
Poynting vector into the entire syatem exnctly balanees the work
done by the pistons, so that the net inerease of encrgy inside the
box is zero, contrary to the gravitational ease, What detailed
aeeount shall we give of this? [ is obvious, as before, that the
middle third of the box can receive no net energy, because there
hns been no ehange of anyvthing nside it,  But the detailed
unalysis shows that the net flow into the system on the Poynting
veetor is confined to the middle third, There must then be a
compensating net effeel due to the flow of cleetricity, In the
gravitational ease the net energy conveeted into the middle third
by the feld was zero. Henee if the net eonveetion is the same
m the two eazes the dewsils mest be different,  In general we
woulid be prepared to say that the energy convested by the alee-
Pricity eomprises & pressure part and o potential encrgy part. A
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fow trinls, however, will at onee eonvinee one that the only way
of meeting all the requirements is to discard the potential energy
contribution, and =ay that the electricity convects with it only
the energy corresponding to stress, or pr. "The left-hand third
now pains worlk from the piston and loses an exaetly equal amound
of prenergy conveeled out of it by the electrieity ; the right-hand
third loses work to the piston and gaing an exaetly equal amonnt
of pr energy conveeted into it by the eleetricity, and the middle
third pains work from inflow along the Poynting veetor and loses
an exnetly equal amount which i= the net difference of the con-
veeted pr energies of the electricity ot entrance and exit.

The essential difference between the two eases is therefore that
in the electrical case we ean aseribe no conveeted energy of posi-
tion in the electrostalie field to the cleciricity as it moves about.
The difference arises quile obyviously beeause in the gravitational
ease there is no veetor eorrespanding Lo the Poynting veetor.  In
the electrieal ecase the eleetricity i entirely nentral in the field,
merely an intermediary link through which energy pels trans-
ferred from one position or form to another, but not itself the seat
of electrieal energy.  The work done by the pistons in our elee-
trical example is transferred to the field surrounding the system
by the mediary of the Poynting vector, and is not to be regarded
as stored up inside the box, This essential difference bhetween
the two eases is quite often lost sight of in reasoning by analogy
from the provitational to the electrical ease.

Physieally the state of affairs is much more satisinctory for the
pleetrieal than for the grovitational system. T we explore the
malerinl inside the box before and after the motion of the pis-
tnng, there i no known instrument that will diselose a change of
eneriy, for absolute position in o uniform field makes no differ-
ence in physical propertics.  'We are driven, therefore, to assaci-
ale with pravitating matter a store of energy which can be
diselosed by no known measuring instrument.  In the eleetrical
system, the energy is obviously in the field, as shown by meas-
urable modifications in the field, The pravitational ease 5 20
unsatisfactory that one is strongly tempted to postulate the
existence of a new effeet not vet discovered corresponding 1o the
Povnling veetor, and to search for it experimentally,  However,
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it is well known that there are difficulties connected with the
conditions at infinity not yet surmounted in attempting to local-
ize energy in the gravitational field, which would apparently be
necessary if the analogue of the Poynting vector for gravitation
exists.

One may, if one prefers, entirely ignore the Poynting vector
and then say that an electric charge has potential energy of posi-
tion in an electric field, analogous to gravitational energy of posi-
tion, and that no electrical energy of position is stored in the field.
If consistently carried through, this must give the same result as
the other method, but I feel it to be dangerous, and in the follow-
ing I shall explicitly deal with the Poynting vector.

By way of illustration, consider what account we shall give of
the energy transformations when current flows across the inter-
face between two metals at which there
is assumed to be a potential jump, as in
B Figure 6. Let us consider the energy
balance of a region embracing this in-
terface. Since the state of affairs is

Fio. 6 steady, and since there are no material

changes within the region, we must say

that the net energy flow into the region vanishes, irrespective
of what point of view we take about the Poynting vector. Let
us first describe the situation recognizing the Poynting vector.
There is an energy flow into the region on this vector, so that
there must be a corresponding net convection of energy out of
the region by the current, or the electricity as it flows away on
the B side must have a greater intrinsic energy than the elec-
tricity which enters on the A side. This excess of intrinsic en-
ergy in B must be described as non-electrical, because with a
Poynting vector electricity does not have encrgy of position
in an electric field. Now ignore the Poynting vector. Elec-
tricity flowing through from A to B passes through an intense
electric field, and is now to be described as carrying out with it
a smaller potential energy of position in the field than that with
which it entered. But since the net inflow is zero, the electricity
must carry away with it a compensating greater energy due to
its presence in B than that with which it entered due to its
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presence in A. In either case, therefore, the electricity has to be
assipned a non-electrical energy of position in the metal. This
difference of non-clectrical energy can in principle be disclosed by
measuring instruments, for surely it is possible to recognize by
ineasuring instruments a difference between metals A and B.

So far all our considerations have been from the classical point
of view which considered clectricity as a uniformly distributed
fluid, a point of view that found its culminating expression in the
Maxwell field equations. But of course no physicist can forget
that the picture of electricity as a continuous fluid was presently
displaced by the picture which represented it to be composed of
indivisible particles, and all his thinking about cleetricity is un-
avoidably colored by his conception of the electronic structure of
clectricity. It is too carly as yet to tell how this clectronic pic-
ture will eventually be modified by wave mechanics, which pic-
tures electricity again as having under some conditions properties
analogous to a continuous fluid, but there can be no question that
very broad aspects of the clectronic picture will continue to prove
more useful than the continuous medium picture of Maxwell,
and we 1nust therefore inquire what modification the electronic
picture will introduce into our point of view. Since the point of
view of this book is purposely almost exclusively the large-scale
point of view which is embraced in Maxwell’s equations, the elec-
tronic point of view can make little formal difference. Our care-
ful consideration of these fundamental matters has been given
not so much in order to enable us to make a direct attack on the
question of the correctness of the clectronic pictures, as rather to
enable us to inquire whether the eonventional large-scale descrip-
tions are themselves adequate. Of course if the large-scale
deseriptions prove inadequate, the electronic pictures devised to
explain them must be modified.

In spite of the fact that the clectronic point of view dces not
compel any striking changes in our formal descriptions, never-
theless recognition of it essentially modifies our feeling for cer-
tain situations, and it will pay us to examine the matter a little
in detail.

Consider the fundamental matter of the electrie field at a point.
We defined the field as the limit of the ratio of force to charge
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as the charge is made vanishingly small. But if electricity is
atomie in strocture, we cannot use a test charge smaller than a
single eleetron, and the definition, from a physieal point of view,
becomes merely academie,  Now the reason for making the test
churge vanishingly small is that it by itself affects the distriby-
tion of eleetricity whose field we are Leying to measure. I we
could in some way freeze every electrical eharge in position, so
that it eould not move under the influence of the test charge,
then we could perfectly well define the field as the foree on unit
charge, provided this charge was concentrated in sulficient]y
sinall volume,  Or il we choose to use the eleetron as the explor-
ing body, 25 we do in many mental experiments, then the field
= merely the ratio of the foree on the electron to its charge, ull
other charges being frozen in position and unaffected by the
presenee of the eleetron, Now the eharge on the electron is sa
small that as long a= it remaing at a distanee from other bodies
beyond the reach of ordinary measuring instriuments no appre-
ciable rearcangement of charge is produced by ils presenee, and
the foree on the electron gives a sufficiently good measure of the
fiekl.  But there are eonditions under which the eleetron may
peb so elose to the distribution as to produce important rearrange-
ments of charge, so that the actual foree on the electron does nat
measure the field of the original distribution. The best known
und the most important of such situstions is when an electron
approaches very close to an infinite conducting plane surface.
The mathematical trentment from the eontinuous medinm point
of view ix well known. The approaching charge induces on the
plane o charge of opposite sign, which heaps up on the neaver
parts of the surfaee and exerts an atiraction. The total net
attraction is the same as that which would be exeried by the
oplical image of the charge in the plane, and i= ¢/4 22, whore r is
the distanee betwoeen charge and plane.  This foree is ealled the
“1mage foree.'”  When we get to eleetronie dimensions, there ean-
not, of course, bo a smooth distribution of heaped-up charge
beneath the approaching eleetron, but as suflicient distances the
quivering atoms of positive eliarge are supposed (o give an ofieet
which on the avernge over u sullicient interval of time appronehes
closely onough to the mathematical image foree,  The maenitude
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of this image force becomes already inappreciable in comparison
with others at distances of the order of 10~-¢ cm, so that for ordi-
nary purposes it is negligible, but if the electron should actually
come out through the surface, as it does, for example, in phe-
nomena of thermionic emission, then the image force may become
important. In fact, if xr goes actually to zero, the image force
goes to infinity, and its potential also goes to infinity, which
would mean an infinite amount of work to get an electron out
through the surface against its own image force. But we do not
have infinite forces or infinite energies in nature. At close dis-
tances the situation is saved by the atomic structure of matter,
or even by the finite size of the electron itself. We need not
trouble at present about the details of the behavior at short range.
The important point for us is that from the point of view of the
large-scale equations, and the definition of the electrie field which
demands that the charges be frozen in position, there is no room
for the image force nor for the work done by it when the electron
leaves the surface. From the large-scale point of view this force
and the corresponding work must be described as non-electrical,
although from the electron point of view they are obviously of
electrical origin. The importance of clearly distinguishing be-
tween the two sorts of force is evident; the electrostatic field of
the large-scale smooth equations is conservative, and no net work
can be received from the field on taking the electron around a
closed path. On the other hand, there is no such condition on
the image force, and net work may be received from such forces
in a closed circuif. In the following, in order to avoid confusion,
when we deal with the conservative forces of the large-scale
smooth distribution, we shall speak of the ‘‘electrostatic’ field,
and the “electrostatic’’ potential, instead of merely ‘‘electric’’
field and potential. By doing this we do not fail to recognize that
when there are moving parts in the system, as in a dynamo, the
large-scale smooth electric field need not be conservative, but
we shall not encounter such cases in this book, and no confusion
will thereby result. The image force may be referred to as a ‘“non-
electrostatic’ force.

It is apparent that whenever an electron moves from one region
to another physically different from it there may be accompany-
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ing rearrangements of the surrounding distributions of other
charges, leaving open thie possibility of forees anaulogous o the
bmage foree, =0 that there may be pon-eleetrostaliec forees and
non=electrostatic work under such eonditions. In particalar,
when current passes across the interface separating two metals,
such forees may be ealled into existenee,  The existence of siueh
non-electrostatie forees is consistent with the necessity which we
have already recognized of 2 “non-cleetrie™ difference of energy
of position in the two metals,  In the futore, in order to avoid
eonfus<ion, it will be well to refer to this as 4 “non-eleetrostatie”
difieremee of energy of position.

Sueh “non-clectrostatie™ forees are seen to he eapable of
accounting for various kinds of phenomenn.  Thus the motion
gecompanying the rencrangement of the other ehinrpes as an elee-
tron is earried about must react with the thermal motion which
all charges normally have, so that associated thermal effeets are
possible.  Or in an electron gas, the collisions of the eleetrans are
resisted by the mutual forees of repulsion as they npprouch closely
together, so that the pressure in an eleetron gns arises from forees
eventually cleetrieal in origin, but which from the large-seale
point of view must be deseribed ae “non-cleetrostatie.”  In the
Body of the metal we may similarcly anticipate effeets analogous
lo stresses in clectricity, bul of nop-eleetrostatie nature, It is
further most important to potice that although sueh non-clee-
trostatic forees are eventually of electrical arigin, they muy vary
greatly an their modes of action. Thus the work done on an
electron ngainst the nage Toree as it loaves the surfiuee of @ metal
i= merely the integral of foree into displacement, like an ordinary
cleetrostatie foree, wherens the work done by the pressure in an
eleetron gus when the s is displaced s pdo, where de is the
volume expansion of the gas, and has no neeessary conneetion
with its displacement,  This dilferenee in the various possible
ways in which the non-electrostatie forees can do work may prove
vital.



CHAPTER II
THERMO-ELECTRIC PHENOMENA

Construet a circuit of two wires of different homogeneous
metals A and B and maintain the junctions between A and B at
different temperatures 7, and 7,. A current will be found to flow
in this circuit; this current may be measured by the magnetic
field surrounding the wire, or by a galvanometer so inserted in
the circuit that its two binding posts are at the same temperature,
or in any other convenient way, such perhaps as by breaking the
circuit and connecting the broken ends to the opposite plates of
a condenser of sufficiently large capacity. Whatever the meas-
uring instrument, it must be so inserted into the circuit as to be
all at the same temperature, so that there may be no compli-
cations from thermo-electric phenomena in the measuring
instrument.

A current produced in this way in a circuit of two different
metals is called a thermo-electric current, and the circuit giving
rise to it a thermo-couple. Study of the current produced by
such a thermo-couple under various conditions shows that the
couple must be recognized to be the seat of an E.M.F. by which
the current is produced.  As long as the two junctions are at the .
same temperatures the effective E.M.F. remains constant to a
high degree of precision. The thesis that the E.M.F. depends
only on the temperatures of the two junctions and does not, in
particular, depend on the way in which temperature is distributed
between the two junctions, is known as the law of Magnus. It
has been called in question by o great many cxperiments, but
most of the apparent failures of the law have been traced to lack
of sufficient homogeneity in the metals. Tt is certainly possible,
however, by using for the two branches of the couple unicrystal-
line wires of the same metal but with diffcrent orientations with
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respeet to the prineipal erystal axis, to produce thermo-currents
in & eireuit composed of a single metal, and that in its state of
most perfeet homogeneity. Il is obviously necessary, therefore,
to modify the original statement of the law of Magnus to the
statement that in a thermo-couple composed of a homogeneous
and isotropie metal, which means in practise a metal erystallizing
in the eubie system, the total IK.NLE. depends only on the tem-
perature of the two junctions, and we shall in the future, unless
specifically dealing with eryvstals, assume such isotropie and homo-
egencous metal.  We must reeognize that in prineiple no couple
composed of solid metals ean be entirely in the condition de-
manded by the law, because there are stresses and strains in any
solid metal in which there is a temperature gradient, and no
metal in which there are varying stresses can be ealled homoge-
neous. Similarly if we are dealing with couples whose branches
are liquid metals, we must recognize the possibility of effects
arising from pressure gradients in the liquid.  All such effects
are very small, however, and negligible for our purposes.

Even with the proviso, however, that the metal be isotropic
and free from stress, there is not yet completely unanimous aceept-
ance of the law of Magnus. In particular, Benedicks ' claims
the existence of certain thermo-elecetrie effects not generally con-
sidered, the most important of which is a ““homogeneous thermo-
electrie effeet,” which is a temperature difference in the steady
state between the ends of a long uniform wire carrying o steady
current. | personally have not been able to verify the existence
of this effect, and am doubtful of its existence.® In any event,

* Since my experiments yielding a negative result for the “ Benedicks™ effeet
have never been published in detail, the following briefl account is given.

A loop of constantan wire abiout 1.0 mm in diameter and 4 m total length was used,
the distance between the two parallel arms of the loop being sbout 5 em.  The
central meter of the wire was protected by a heavy brass tube, which was ex-
hansted to 6 mm pressure in order to avold disturbances due to air currents srising
from the heating effects of the current, A differentinl thermo-couple of 12 junctions
was stretehed between two points 50 cm from the entrance and the exit ends of the
loop, Currents ns high us 067 amp were used.  The methoed was to search for a
change of temperiture difference on reversing eurrent.  No drift of temperature on
reversing current greater than 3 X 107 Centigrade degrees in two minutes could
be detected. This 18 sbout one twenty-filth of the cffect which the data of
Benedicks would lead one to expect.
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even if the effect exists, it must be very small, and would require
highly special methods for its demonstration; I shall not con-
sider it in the following.

The E.M.F. of a thermo-couple composed of metals A and B
with junctions at temperatures », and 7y, 7, being the higher
temperature, we shall write as £ ,5(r1, 70). The order of the sub-
scripts indicates that the E.M.F. is in such a direction that posi-
tive current flows from A to B at the hot junction. The E.M.F.
of a couple satisfies two important additive relations. The first
is:

EAB(TI, To) = EAB(TI, T-z) + EAB(Tz, 1’0), II, L.

where 7; is any temperature, intermediate or not between r, and
1o. This formula expresses that the sum of the E.M.F.’s of the
two couples of Figure 7 a is the same as
that of the single couple of Figure 7 b,
and is an illustration of the general fact,
demanded by the second law of thermo-
dynamics, that no energy changes arising
from thermal effects are produced by re-
arrangements of systems in localities all
at the same temperature. Evidently the
energy received by unit quantity of elec-
tricity when carried in suceession around
the two circuits of Figure 7 a is the same
as that received when carried around the
single circuit of Figure 7 b.

It is an obvious consequence of this
additive relation that the E.M.F. of a
couple reaching from a lower tempcra-
ture = to an upper temperature v + 1 is
the same as the derivative with respect Fia. 7
to the upper temperature of a couple
reaching from a lower temperature r, to an upper temperature
r, and this derivative in its turn is independent of the tempera-
ture of the lower junction. This derivative, or the E.M.F. of a
couple with unit difference of temperature, is often called the
thermo-electric power, and may be written e, 5(7).
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The second additive relation is:
Ero(ry, 10) + Egelry, 7o) = Eaielri, 7o) i, 2.

This is what might be expeeted, the motal B appearing in the two
couples corresponding to Iy and Eye in the identieal way exeept
for the sign. If, therefore, the contribution which the metal B
makes to the total EMLE, is distributed throughout it in a way
_ depending only on the temperature, and indepen-
todent of the presenee in the eirenit of other metals,
d Lhe action will caneel when the two couples of

Figure 8 are joined, and the relation follows, T

A i the analogue of the Volla law of tensions.
W Obvious  consequences are that there 8 no
al ls IEALF, in a couple ol of the sane metal, no

al le matter what ils temperntore disteibntion, and
that the FE.ALF. of a couple is not altered by
breaking il and inserting into it any third metal,

e b beeas provided the two junctions with the third metal
' ":i nre {:1. the same temperature, With this - pre-
L oeee gy eaubion, galvanometers, or molors Lo extract me-

a— chanieal work from the F.M I, may be inserted

into the thermo-eleetrie eireuit,

The source of the energy which may be extracted from a
thermo-couple when eleetricity s allowed to flow around it is
thermal ; this must ebviously be the ease, sinee there are no ma-
terial changes aceompanying the dow of current, and there i2 no
other souree,  The thermnd efieets which are responsilile for the
encrgy manifestations are of two sorts, locsted in the junetions
between the two metals, and located in the single and isotropic
metals in the regions where there i3 a temperature gradient,

Consider frst the junetions. When current is allowed o Mow
in a thermo-conple, it 15 foumd that the temperature of the june-
Lions changes unless heat is artificially supplied or abstracted.
The rate at which heat must be supplied to the junetion to main-
Lain ils temperature constant is proportional to the carrent, and
reverses sign when the dircetion of current low changes, 1t s,
therefore, in no way like & heat due to an overcoming of resistance,
which is proportional to the sguare of the eurrent.  This heat is
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called the Peltier heat. It depends only on the two metals and
the temperature of the junction, and is independent of the nature
of the other parts of the circuit. When a current passes across
a junction from A to B at a definite temperature, there is always
the same absorption or generation of heat at the junction inde-
pendent of whether the current is driven by an external agency,
or whether it is the current that spontancously flows in the
thermo-couple itself. If the direction of current flow reverses,
the sign of the heat effect reverses, independent of the reason
for the reversal. We denote the Peltier heat by P.z(7), indicat-
ing that the junction is between the two metals A and B and at
temperature 7. A positive sign will be taken to mean that heat
must flow into the junetion from the surroundings in order to
maintain temperature constant when positive current flows from
A to B at the junction. We express this by saying that the
current absorbs heat at the junction when flowing from A {o B.
The complete reversibility of P, which means analytically that it
must be expressible in terms of odd powers of the current, is
assumed in all theoretical discussions. The reversibility has been
checked by experiment with an accuracy which is continually
improving. It is not impossible, however, that thcre may be
some irreversible effects, but we shall ignore them in this discus-
sion. It is to be noted that any cffects at the junction involving
even powers of the current, and therefore irreversible, can be
deseribed in terms of a resistance at the junction, a function of
the current if necessary, and can therefore be treated by the usual
methods for dealing with non-ohmic resistances. With regard to
the reversible part of the heat, there i1s no experimental evidence
that the Peltier heat departs from strict proportionality to the
eurrent, so that the first-power term in the current will be assumed
to be sufficient in this discussion, where any assumption has to
he made at all.

The Peltier heat is in general a function of temperature; this
means that when current flows in a thermo-couple, the heat inflow
at one junction is not in gencral balanced by the heat outflow at
the other, so that there is a nct appearance or disappearance of
heat. We have here evidently a possible source of the energy
that drives the current. When thermo-electric effects were first

L]
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discovered, it was thought that the net Peltier heat was the only
source of electrieal energy. By comparing the net Peltier heat
with the product of E.M.I'. and quantity of electricity, it should
have been possible to check this idea.  Actually, however, this
was not done, since the direet measurement of the Peltier heat
15 not a particularly casy matter, and it was many years before
direct measurements of it were made with any accuracy. The
correciness of the idea was examined by indireet methods, how-
ever, by Lord Kelvin, at that time Sir William Thomson. He
applied a thermodyvnamical argument, which we shall consider in
detail presently, and deduced from it that if the Peltier heat were
the only source of energy, the IXM.F. of a thermo-couple should
be a linear function of absolute temperature. Experimentally
this was far from the truth, and Kelvin was therefore driven to
postulate the existence of other sources of energy. The only
evident such cource is in the body of the metal, where there is a
temperature gradient.  If there is such an efifeet, Kelvin showed
that the temperature distribution in the wire should be altered
by the flow of current. The effect to be expected was small,
almost beyond the reach of the temperature-measuring instru-
ments of the time, but after a number of attacks on the problem
extending over several years, Kelvin was able to establish the
existence of the effect. The heat inflow involved in this eifeet
is called the Thomson heat. The original papers of Kelvin
reveal the inspiring tenacity with which he clung to his eonvie-
tion of the existence of this eficet in the faece of discouraging experi-
mental conditions.

The existence of a Thomson heat means that when a eurrent
flows in a metal between two points at a difference of tempera-
ture, the temperature distribution will in general be disturbed.
The temperature ean be foreed to maintain its ortginal distribu-
tion only by the artificial supply or abstraction of heat from the
metal.  The amount of extra heat which must be thus supplied
when unit quantity of electricity Hows from a point at one tem-
perature to a point one degree higher is by definition the Thomson
heat at the mean temperature, and is denoted by the letter o, It
1s in general a function of metal and temperature. Thus o, (7)
denotes the additional heat supplied by the environment per
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degroe temperature difference in the metal A at mean lemperi-
ture r when unit quantity of electeicity flows up the temperature
gradient,  This heat is additional to the Joulean heat doveloped
in overcoming the resistance;  the Joulean heat ean be allowed
for by independent measurements of resistunee as a funetion of
temperature, 1 this definition of the Thomson heat eorvesponds
to the experimental faets and is not aeademie or trivial, it inplies
that this heating effeet reverses sign when the divection o eur-
rent flow changes, o that we ghould again be dealing with o
reversible phenomenon.  This does indeed correspond to the fncts
a8 far as they have been established experimentally, but the
aceuraey with whieh the reversibility of the Thomson heat haos
been proved by direet experiment is much less than the corre-
sponding aceurney for the Peltier heat, and there s doubtiess
room for further experimental work here.  Neither is there any
experimental evidenee at present for a dependenee of “Thomson
heat on eurrent strength, which means that these heating effeets
double when ihe current doubles,

The mutual relations between these heating effects and the
method of measuring them may now be made more precise,  Con-
struet a thermo-couple of metals A and B stretehing frow v, Lo .
Nreak the wire of B and maintain the broken ends at some inter-
mediate tempersture r.  Heat flows along the wires down the
temperature gradient by thermal eonduction,  Imagine the wires
lagzed o that there is no lateral loss of heat.  If the wires are
not lagged, the lateral loss may be allowed for by independent
blank experiments, When the stendy state is reached, there are
certain thermal inputs or outputs in the three regions 7y, , and
i, and & certain temperature distribution is set up in the wire,
‘These quantities are measured.  The broken ends of the wire B
are now joined, permitting current to How. Wi can bmsgine
these ends to be joined through a motor in the box at tempera-
ture . By allowing the motor to run at various speeds, thus
exerting different baek EMLE = in the eirealt, the current may
bio varied, It is now found in genernl that the temperature dis-
tribution in the wires and the heat inputs at the three reservoirs
have beepn altered.  We find thav the origing]l wmperature dis-
(ribution in the wires may be estorad by the artineial injeetion
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into the wire of suitable amounts of heat at every point of it, and
by suitably modifying the inflow at the reservoirs, the reservoirs
of course being maintained at the original temperatures. The
modified heat inputs to maintain the original distribution are
found to be unique, and we suppose that they have been deter-
mined by measurement. The Peltier heats are now the differ-
ence between the final and the original heats supplied by the
reservoirs (this effect at the intermediate reservoir r vanishes),
and the Thomson heats are the heats supplied at every point of
the body of the wire, all taken per unit quantity of electricity
flowing in the circuit. This neglects the Joulean heat, which may
either be allowed for by calculation or may be made to vanish in
comparison with the other effects by decreasing the current, the
Joulean heat decreasing as the square of the current and the
others decreasing as the first power.

The Peltier and the Thomson heats are to be thought of, there-
fore, as given by a sort of phantom experiment, the difference
between two actual ones.

Actually, the idealized experiments just deseribed would be
difficult of execution, particularly the requirement that a suitably
adjusted amount of heat be fed in laterally to the wire at every
point, and the constants P and ¢ are actually determined in some-
what different ways. For example, the Peltier heat may be
determined by the rate at which the junction of two metals A
and B changes temperature when current is led across the june-
tion, enlarging the junction so as to make a sort of calorimeter of
it, and correcting for the loss of heat by conduction and laterally
by suitable blank experiments. The Joulean heating is usually
allowed for by reversing the direction of current flow, assuming
that the Peltier heat is reversible. The Joulean heat may be
calculated, however, and in this way the reversibility of the Pel-
tier heat checked.

The Thomson heat may be determined by measuring the
altered temperature distribution when a current of electricity
flows in a wire normally carrying 2 thermal conduction current.
We suppose the two ends of the wire maintained at constant
temperature difference, and the temperature distribution deter-
mined by a sufficient number of thermo-couples situated along the
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wire so that a smooth curve of temperature as a function of length
may be drawn, and thus the temperature gradient determined at
every point with and without the electric current. We suppose
the wire so lagged that there is no lateral loss. In the absence
of electric current the temperature gradient is constant, and there
is o uniform flow of heat along the wire. When current flows, the
gradient is no longer constant, so that the heat flowing into an
clement of length is not the same as that flowing out. The differ-
ence between the conduction heat flowing in and out is accounted
for by the Joulean heat and the Thomson heat inside the element.
The net conduction heat flowing out of the region in unit time is

2
— K Az s—;—,, where «; is the linear thermal conductivity. The rate

of generation of Joulean heat is i% Az, where r; is the linear resist-
ance of the conductor, and the rate of absorption of Thomson

heat by the current is ic Az dr, The condition of heat balance

dz
now gives at once
. T
. i+ k5
—mAx%=€‘nAx—io'A:cQ, or o = ,;Qfdx. 11, 3.
dz

This is the equation actually used in the experimental determina-
tion of ¢. Ideally the equation contains the possibility of
establishing the reversibility of ¢ by checking it over a wide
range of conditions, but actually the effects are so small that the
measurements, even under the optimum conditions, do not have
a high degree of accuracy.

The equation can obviously be generalized at once for threc-
dimensional flow, and the thermal conductivity may be allowed

to be a function of temperature, giving :
{ - ¢ Grad + = 1% + Div (x Grad 7), I1, 4.

where 7 and « have now the obvious three-dimensional sig-
nificance.
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We are now ready to consider the thermodynamie areument by
which Kelvin deduced eertain relations between the Peltier and
Thomson heats and the EALF. of a thermo-vouple. Imagine a
couple of metals A and B rmnning from absolute temperature r
to r -+ Ar.  The EALF. of this couple is g:;—‘" Ar driving cur-

T

rent around the couple from A to B at the hot junction. This is
therefore the energy delivered by the E. M., when unit current
of electricity Hows around the eirenit. The first law of thermio-
dynamies demands that the source of this energy be the net heat
inflow into the system, There are four such heat inflows.  There
15 heat inflow at the hot junction of nmount Pyu(r + A7), heat
inflow at the cold junetion of Puy(s) = — Pyu(7), heat inflow
laterally into the wetal A in the region of temperature gradient
between the junetions of amount o Ar, and similar infiow into B
of amount — epdr.  Equating these two amounts of energy,

a7 T2A% = Pn(r + A1) = Pan(s) + (o — oa) A
Whenee :
Can . as 4 (5, — ap). 11, .

The equations which have just been deduced obviously apply
to our phanlom experiment, the differenee between two actual
ones,  Bul exactly the same equation would have heen obtained
if we ananlyze the actual experiment.  Imagine the thermo-couple
set up in a box, with only the two junctions at r + Ar and » pro-
truding, and the couple short eirenited inside o that all the work
of the E.M.F. goes to generating Joulean heat inside the hos.
When a steady stale is reached, heat flows into the box at one
place and out at another. The box delivers no work, the only
exchange with the environment being thermal. Furthermore,
exarnination of the contents of the box discloses the most impor-
tant fuet that there i< no alteration in the physieal properties of
the contents of the box as time goes on. Tt must be, therefore,
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that the total heat flowing into the box is equal to that Aowing
out, ar:

(Heat flowing in at 7 -+ Ar) = (Heat Aowing out at 7)
Now,
(Heat flowing in at + 4 Ar) = (Peltier heat lowing in at r 4 A7)
-+ (conduction heat in at r - A7),
and,
(Heat flowing out at #) = (Peltier heat Howing oul at 7)
4 (eonduetion heat out ot 7).

But the conduetion heat flowing out has been augmented over
that flowing in by the Joulean heat developed in the metal, and
diminished by the Thomson heat absorbed by the eurrent. Henee

(conduection heat out at 7) = (conduction heat in at 7 4 Ar)
4 'R — gy — on)ar.
Bul
dl 4

— Ar,
ilr

PR =i X EMFE. =i

Substituting these quantities gives an equation from which the
conduction heat enneels, leaving exactly the same result as boefore.
That iz, equation 5, whieh is dedueed from the law of the conser-
vation of energy, is a rigorous deduction from the setual experi-
ment, and does not apply only to the phantom experiment,
although the deduetion is simpler if anly the phaytom experiment
is considered.

The first law thus gives one relution eonnecting Peltier and
Thomson heats with EMF. A seeond relation 18 needed to
completely determine these heats; such a relation could obvi-
ously be obtained if there were some way of applying the second
lnw of thermodynamics also.  But application of the second law
demands complete reversibility in the phenomena, and these
phenomena are obviously not reversible, since there are fwo
essentinlly irreversible phenomens always present, Joulean heat-
ing and thermal conduction. What Kelvin did was to neglect
these irreversible phenomena and eonsider only the phantom
experiment, which deals only with completely roversible phe-
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nomena. Statements are sometimes made that the irreversible
aspects may be made vanishingly small by suitably changing the
dimensions of the circuit. But the matter is not entirely simple,
because if, for example, the cross section of the wire is halved, the
resistance is doubled, the current halved, and the ©*R loss halved.
At the same time the thermal resistance is doubled and the ther-
mal loss halved. But when current is halved, the reversible
effects are also halved, so that there is nothing here gained in the

ratio of reversible to irreversible effects.

I THAT We will discuss later what can be done in
1 : the way of choosing optimum conditions.
"""\L'b (ear) Kelvin knew perfectly well, however, that
AB the irreversible aspects could not be made

to vanish in any such way, and he expli-

Af\B citly recognized and stated that his appli-

cation of the second law to the phantom
experiment was an assumption, to be jus-

E tified by the agreement with experiment
IT 4 } of the relations thus deduced. At the
~" same time, Kelvin had a pretty vigorous
v conviction of the correctness of this as-

sumption, as shown by his obstinate per-

sistence in searching for the Thomson

B (T) heat. This conviction doubtless had back

¥ of it the physical feeling that the mecha-

nisms responsible for electrical resistance

and thermal conductivity had no connec-

Fra. 0 tion with the thermo-clectric mechanism,

as shown by the lack of any apparent

correlation between the thermo-clectric parameters of various
substances and their electrical and thermal resistance.

Let us now apply the second law to the phantom experiment,
in which all the effects are entirely reversible. The second law
states that the entropy of the entire universe eannot change as
long as only reversible effects take place. The universe consists
of the thermo-couple and four reservoirs which feed into the
couple the heats required for the two Peltier heats and the two
Thomson heats, as indicated in Figure 9. Allow unit quantity
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of electricity to flow around the circuit. Since the effects are
reversible, the net entropy of the four reservoirs and of the couple
cannot be changed. Detailed examination of the thermo-couple
shows absolutely no detectable change in it after the flow of elec-
tricity, so that we are bound, by the principle of sufficient reason,
to say that there is no change in the entropy of the couple. The
nct change in the entropy of all the reservoirs must, therefore,
vanish. Each reservoir by itself changes in entropy because of
heat transfer. The condition for no net change on all four
together 1s obviously :

_PAB(T+AT)+PAB(T) 0447 + o1 _ g

T+ Ar T .+ %1_' .+ 921
The first two terms combine at once to give — d%(l—-):—ﬁ Ar, 80
that we obtain at once
%(P:") +2 (o4~ on) =0. 11, 6.

Now eliminate in succession Pap or 04 — ¢ between equations 5
and 6, getting:

Pup = a8 IL, 7.
dr
and
2
op — oa = 12742, 11, 8.

These equations determine P4p and o4 — g5 in terms of the
measured E.M.F. of a thermo-couple as a function of tempera-
ture. Measurements oi thermal E.M.F. are easy, and this
proves to be the simplest method of determining P and . The
values so obtained should agree with the values obtained by the
direct methods already outlined. As long as there is any doubt
as to the legitimateness of neglecting the irreversible processes of
Joulean heat and thermal conduction, comparison of values ob-
tained by the direct and indirect methods is not superfluous. At
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present, however, there is no evidence whatever of any discrep-
ancy between the two values, and it is tacitly assumed in most
theoretical discussions that negleet of the irreversible processes is
Justified.

The argument in the form just given is preferable, I believe,
to the argument that is sometimes advanced. The thermo-couple
18 sometimes treated as the aonalog of an ordinary steam engine,
for example, in which the eleetricity i the analog of the working
fluid of the engine.  The entropy change of the Auid in a com-
plete working eyele is then put equal to zero, as it must be since
the fluid returns to its initial condition. The assumption of
reversibility enters in the nssumption that the change of entropy
of the fluid at various parts of the evele ean be obtained from
the corresponding changes in the reservoirs, heat interchange be-
tween reservoir and fluid taking place with no gain of entropy
beeause there is no sensible tempernture difference.  Applied to
our example, evidently the same result is obtained as by the argu-
ment actually employed.  Buf this treatment is ebjectionable
beeause in the first place it demands the assumption of details
which are not necessary to the thermodynamic argument, and
thermodynamies dispenses with details as far as possible. The
detsils in this case furthermore have more or less the character
of “ constructions,” electrienl eurrent ns a “ fluid " not having
full experimental status.  In the second place, the requirement
that the clectricity which constitutes the current shall have
returned to ils initinl position has no phyzgical significance, since
there is no way of assigning a velocity to the eleetricity whose
motion constitutes the eurrent, or of recognizing the individual
parts of the eleetricity and determining when they have returned
ko the starting point.

The question of the propriety of negleeting the irreversible phe-
nomena associgted with the thermo-electrie cirenit is of such
importanee Lhat I eonsider in more detail two aspeets of it.  Can-
sider in the first pluee the results that would be abiained by a
rigorous appliention of thermodynnmies, not negleeting the irre-
versible aspects.  Iagine & thenmo-cauple of twa metals 4 and
B reaching from r lo r 4 Ar.  Useiul work is extracted from the
aystem by inserting a motor with baek ENLE.  The length and
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the cross section of the conductors may be altered, thus chang-
ing the resistance and over-all thermal conductivity, and thus
also changing the Joulean loss and the heat conducted from one
reservoir to another. The dimensions of the circuit and the back
E.M.F. are now to be given such values that the ratio of the
useful work done against the back E.M.F. to the total increase
of entropy of the reservoirs shall be a maximum. With these
dimensions for the circuit the thermodynamic condition is written

down that W = @ &’ where W is the useful work, @ the total
T

heat leaving the upper reservoir, = its temperature, and Ar the
temperature difference of the reservoirs. The result is the ine-
quality :

di‘:s - PAB _S_ 2 T}[(ded)i 4 (TBKB)&], II, 9.
where 7 and « are the specific electrical resistances and thermal
conductivities of the metals, and the metals are so designated

that the sign of LAY, is positive. This relation was deduced by
Boltzmann.®

The result previously obtained, neglecting irreversibility, cor-
responds to putting the right-hand side of 9 equal fo zero, and

T

using the equality sign. The relation so obtained, 7 %{f— = P, is

approximately satisficd, as a matter of experiment. Certainly
the experimental check is good enough to justify the statement
dEag

dr

— P is a small quantity, much less

that P,.s is always positive when is positive. Thus, as a

A
V]

matter of experiment, 7
dr

than = 95 iiself. Now an cxamination of the experimental
T

numerical values shows that in practically every case the right-
hand side of 9 is greater than 7 Z—E It is therefore all the more
T
dl

T

— P. In fact the difference between the two

greater than 7=
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sides of the inequality is so great that no useful resteiction is
imposed by it, and in practieal application the inequality is with-
out interest.

The wide discrepancy between the numerieal magnitude of the
fuantitiez on the two sides of the inequality is connected with
the very small over-all efficieney of actual thermo-coupls, 1Tt
will be found that no actual couple composed of metals in any
feasible range of temperture has an eflicieney of more than a
Fraction of one per ceat.

The very great failure of the vigorous thermodynamie inogual-
ity to fmpose any useful restriction on nwnerieal moenitades
cannot help but inerease our convietion that it iy legitimate to
negleet the irreversible aspects of the process, and that Kelvin's
relation is justified. It is to be remembered, furthermore, that
wee would be able by proper choiee of the dimensions of the eir-
eutt to get rid of cither irreversible Joulean heat or thermal eon-
duction taken by itself. 1t is only beeause bhoth are present
simultaneously that we are in diffieulty.  In most other cnses
there is only one irreversible process that has to be made vanish-
ingly small, as for example conduetion loss due o g finite tom-
perature difference between souree and reeipient.  The point of
view is therefore to a certain extent o most natural one that (he
faet that we are here concerned with two intrinsically irveversilile
processes which are =0 conneeted that they esnnol hoth he e
to vanish simultancously is more or Jess fortuitons.  The early
eonvietion of Kelvin, however, that the irreversible aspects eould
be neglected because there was no neeessary conneetion helween
the mechanisms of termal aod eleetrieal conduetion and thermo-
electrieity had to be given up with the advent of electron theories
of metsls and the recognition that the eloetrons were primarily
responsible for all three phenmuoens, Tt s therefore of great in-
terest that it has proved 1o be one of the ensiest tasks of the
eleetron theory of metals to reproduce Kelvin' thermeodyvigmnie
relations, in apite of failure o reproduce sabisfnetorily othier
npartant aspects of the experimental itantion,  This has negain
ledd Lo the apparantly widesproad convietion that Kelvin's rola-
lions are all right,

[ e, therefore, that it is nat neonecivabile that there might
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be some way of rephrasing the argument of Kelvin which would
Justify negleet of the irreversible aspects, or al least make us a
little betver satisfied to negleet them. It does prove possible, as
fomatter of fael, to so rearrange the argument by seting up the
cirenit in such a way that the irreversible effects are a waximum,
wstead of g0 that they are o

minimum, as Jdid Boltzmann.

Imagine a thermally insulated A %
box into which lead two heavy B |
bats of metal A, whieh are short A —/
eireuited inside the box by a |
short block of metal 2, as shown Fra, 10

in Figure 10, The whole system

is initially ot constant tempernture,  Eleetrie current is now led
into and out of the box through the external leads of A, We
imagine this enrrent delivored by a perfeetly efficient dynamo
with windings made of the metal A, The entive external eireuit
is then of one metal, and by hypothesis at constant tomperature, so
that there are no external heating effects. Passage of the eurrent
across the junctions A o B is aceompanied by a positive Peltier
leat al one junction and & negative heat at the other: one june-
Lion will rise in temperature and the other Tall.  The difference
of temperature thus generated between the junctions will be
accompanted by a thermal conduetion eurrent through B, whose
magnitude depends on the temperature differenee. The tempera-
Lure differenee belween the junetions will obviously rise until the
thermal conduetion exactly aceounts for the Peltior heats at the
junetions.  There will of course also be eonduction from the june-
tions into the vods A, but as time goes on the quantity of heat
cseaping i this way beeomes vanishingly small in eomparison
with that condueted directly across B, provided the rods are made
long enough. A gquasi-stendy state is therefore reached, in which
the Peltier heals are dissipated in the thermal eonduetion current
aerass B, Let the final temperature differenee between the june-
tions be Ar, and the current i The hewt 1P passes by condue-
tion in unit time down a temperature drop Av.  If an ordinary
thermal conduetion current passes irom ¢ to v — Ar, the increase
of entropy accompunying passage of amount of heat @Q is
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Q%[=Q(T—1AT—%)}.

We now introduce the hypothesis that thermal conduction is an
essentially irreversible process, always accompanied by its char-
acteristic increase of entropy, whether or not the conduction is
accompanied by other processes. This means that in the case of
our thermo-couple entropy is increasing, because of irreversible

thermal conduction, by the amount :P 45 A—: per unit time. This
T

inerease of entropy must manifest itself in a rise of temperature
of the material inside the box, there being no other possibility.
The whole box is therefore slowly rising in temperature, carrying
with it the temperature difference Ar between the junctions. The
origin of this rise of temperature is obviously in the neighborhood
of the block B, there being no other place. The conduction loss
to the outside because of this rise of temperature vanishes if the
rods A arc made long enough. The risec of temperature of the
entire contents of the box is evidently produced by the energy
fed into the box by the source of the current, the energy so fed
in being entirely converted into thermal effects within the box,
since no mechanical work is involved. The energy delivered by

dE.p A48 A1 is the E.M.F.

At, where -
of a couple constituted of metals 4 and B with junctions at tem-

T T
perature difference Ar. This cnergy appears as heat at tempera-
ture 7, increasing entropy by 1 [z% Af]- Equating the two
T T

the current to the box is ¢

entropy changes gives

Pap p. _ ;41 dEas

T T dr

1

Whence :

dEAB
T dr
This is the first of Kelvin’s relations; the second follows at

once from the first law of thermodynamies, which is certainly
applicable whether there is or not irreversibility.

=PAB¢



THERMO-ELECTRIC PHENOMENA 57

In this argument we have neglected the Thomson heat and the
Joulean resistance heating. The effect of the Thomson heat is
of a different order, for the total Thomson heat developed in B
is iog Ar. This escapes by conduction through a temperature
difference less on the average than Ar, so that the increase of
entropy associated with the Thomson heat in the metal B is less

(A7)?

than icp —~, which is thus of a lower order than the increase
72

due to the Peltier heat. The situation with respect to the Thom-
son heat in A is of course similar. The effect of the Joulean heat
exactly adds to the effect already considered, and leaves the final

result unchanged. If the resistance of the circuit is R, the

y2
Joulean heat is *R, and the resulting increase of entropy YR,
.

But the input IE.M.F. must now be greater than before by iR, so
that the input energy is greater by *R, and the associated entropy

2

increase vk exactly cancels the amount just found. By putting
T

the argument in this form the fact that there are two irreversible
processes taking place simultaneously introduces no complication.

It cannot be claimed that this is a rigorous deduction of Kel-
vin’s relations using only classical thermodynamies. The hypoth-
esis that the irreversible process of heat conduction and Joulean
heating are always accompanicd by the same characteristic in-
crease of entropy whether or not accompanied by other processes
must be recognized to be a new hypothesis, going beyond any
explicit formulation to be found in eclassical thermodynamies.
The new hypothesis scems to be a most natural one, certainly not
opposed in spirit to classical thermodynamies, and quite con-
sistent with statistical pictures of the nature of entropy. In fact,
the new hypothesis may be usefully used in attacking problems
which can also be treated by classical methods, and the fact that
it has not been previously explicitly enunciated appears to be
more or less accidental. My ideas on this subject have not
been accepted by Kennard, however, who sees in thermo-electrie
phenomena very strong analogies with phenomena of thermal
transpiration in gases, which certainly have unremovable irre-
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versible aspects. It appears to me that this analogy might jus-
tily one in repudinting the fundamental experimenial assumption
that Peltier and Thomson heats are completoly reversible, and in
secking experimentally Jor effects involving imperfeet reversi-
hility. This 1 feel to be an entirely defensible position, but,
eranted the reversibility, which was fundamental to the argu-
ment, Istill feel that the eonsiderations above are very plausible,
The matter has been diseussed in print,” and the reader may
Form his own apinion.

The two relations of Kelvin are as much as ean be got by appli-
eafion of the first and second laws of Thermodynamies,  Addi-
tional information about the behavior in U neighborhood of 07
Abs, may be obtained by an application of the third law. We

; ¥
have at all temperatures Pan _ ['E:I_ U, The left-hand side rep-
i 7
resents the entropy change of the junction when eurrent crosses it.
The passage of the current is a reversible phenomenon : the third
law would lead us to expeet thierefore that this entropy change must

anish at 0% Abs., or t—h—rd = 0 ai 07 Abs., which is another way of
T

saving that the thermo-electric power of any couple vanishes at
0% This expeetation s apparently supported by experiment.,
Similarly 72724 papresents the change of entropy in the body
T
of the metal in which there is a temperature gradient when eur-
rent {lows. If we suppose the tempeeatiore geadient maintained
by some ageney that suppresses the irreversible flow of heat, then
: ; 3 - ity
we may apply the third law here also, which gives lim r—:‘" = ().
r— r-
The experimental evidenee on this point is more diffienlt, how-
ever, and there would seem ta be more uncertainty than with
respect to the first derivative, as indeed there is with respect to
the theoretieal argmment also,

Thiz 1= probably as far ne we can pel by general thermody-
namics which does not analyze the details and which deals only
with quantities dircetly mensurable, for 1t = {0 be emphasized
that all the quantities of our analysis up to this point, E.M.F.,
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Peltier and Thomson heats; are diveetly measurmble.  But sinee
in talking about electrie currents we have alresdy intraduesd
constructions, such for example, us the eleetrie potential alb points
inside a metal, it 15 inevitable that we should seek to go further,
and see what service these eonstroetions enn do us and whal pie-
ture they give of internal conditions,  How shall we represent the
aelion ot an interfaee between two mictals where there iz a Peltior
heat, or the action in the body of @ metal with a temperature
gradient where Thomson heat is alsorhed ?

The conventional aceount is as follows. When eleetricity
erosses Lhe interfoce it receives thermal encrey Trom 105 surroumd-
ings,  This = deseribed as due (o the action of an F.ALF. which
delivers in unil time Lo the earrent when it erosses the inlerfaee
an amount of energy equal to the produet of eurrent and EMLE,
and this is also ciqual to . The 1M, at the interfaee is thore-
fore equal to the Peltior heat,  Normully the foree which is
invoalved in the existenes of this EALF. wends to drive eleetricity
from one metal to the other, and this would praduce an infinite
current across the interface, sinee the thickness and therefore the
resistanee of the interfaee vanish,  But sinee there is no infinite
eurrent, this tendeney must be resisted by an equnl and opposite
electrostadie foree, which therefore involves a double layer.  The
interface is, then, the seat of o double layer of strength equal
lo P, This double luyer iz independent of any double layer
demanded by the Volta potential difference, and is the only dou-
ble layer supposed Lo exist by Heaviside, for exmmple,  Stmilarly
in the body of the metal where there i= o temperature gradient,
the eonventional pieture sees o digiributed e, of magnitude
o Grad = per unil length, which 1= opposed when the eireuit s
open by un equal and opposite eleetrastatie foree, fur otherwise o
steady eurrent would flow in the open cirenit. On elozed eirenit
the normal internal electrostatic foree i« diminished by the (8
drop.

It seems to me that very grave abjections eun be made to this
picture on perfectly general groonds=. If there = an eleetrostatic
double luyer and hence an electrostatic difference of potential
at the interface, then when current flows there is o Povnting
veetar eareving energy away fram the region of the interfaee, The
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analysis is exactly like that for the corresponding Volta difference,
and it appears at once that the energy carried away in this way
from the interface by the Poynting vector is exactly equal to the
Peltier heat. The net inflow into the system from outside at the
junction is therefore zero. Similarly there is a Poynting outflow
at all points of the homogeneous metal where there is a tempera-
ture gradient which exactly neutralizes the inflow of energy as
Thomson heat. The result is that there is no net inflow into the
complete system, so that there is no source for the cnergy delivered
by the E.M.F. of the complete circuit.

The incorrectness of the conventional point of view I believe
can be made absolutely certain if one considers thermo-electric
phenomensa in single metal crystals of a non-cubic metal. Two
wires made of single crystals of such a metal inclined to the axis
at different angles behave toward each other exactly like two
different metals. In particular, there is a Peltier heat when cur-
rent passes across an interface at which the orientation of the
crystal changes, and the conventional point of view would there-
fore demand a double layer at the inter-
face equal in magnitude to the Peltier
D heat. Consider now a crystal block from
. which a cubically shaped piece has been
c cut out and replaced in a different orien-
Be[eA tation, as shown in Figure 11. In the
steady state at uniform temperature no

L currents can flow in the compound block.
In passing perpendicularly across the in-
terface from A to B, that is, in passing

Fia. 11 from a region where one moves parallel

to the crystal axis to a region where one

is moving perpendicularly, one would, according to the argument
above, encounter a discontinuity of potential equal to P,.
Similarly in passing from C to D, one passes through the same
change of orientation, so that the potential at D must be greater
than that at C also by P;,. But C and B are two points inside a
homogeneous metal all at the same temperature with no currents
flowing, and therefore C and B must be at the same potential.
Hence the potential of D exceeds that of 4 by 2 P;,. But D
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and A are also two points in the same homogeneous piece of
metal and hence must also be at the same potential. Hence a
contradiction, and it follows that the potential of all four points
must be equal, and there can be no jump of electrostatic potential
at the interface.

Examination shows at once that our difficulty has arisen
because we have said that the agent which delivers energy to the
clectricity is like the force of electrostatics, that is, we have
recognized no difference between what we called in chapter I a
working IS.M.F. and a driving E.M.F. If we recognize the dis-
tinction between these two things, the phenomena in a thermo-
clectric circuit receive an entirely consistent deseription.

We confine our considerations at first to a couple whose two
branches are made of single erystals of the same metal, in one
branch the axis being parallel to the length, and in the other per-
pendicular. If the rods are inclined to the axis at angles other
than 0° and 90°, there are other complicating phenomena which
will be considered in the special chapter on erystals. The for-
mulas already found for different metals apply without change.
In particular, we have at the interfaces Peltier heat of amount
P;., and in the body of the metal Thomson heats ¢, and o,. We
have Kelvin’s relations.

1 dE

;P“ = __d:l, 11, 10.
1 a:k
; (0, — a;) = d‘r';u' II, 11.

At the interface thermal energy is absorbed, and therefore there
must be a working E.M.T. of magnitude P,,, as there always is
when energy in any form is delivered to the current. But there
is no electrostatic potential jump at the interface, and therefore
no double layer, and henee by equation I, 4 no driving E.M.T,
The driving E.M.F. of the couple must therefore be situated in
the body of the metal where there is a temperature gradient.
Furthermore, the net driving e.m.f. integrated around the circuit
must be such as to equal the directly measured total E.M.F. of
the complete circuit, which is also the net working e.m.f. inte-
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prated around the eircuit, and is equal to the net heat mput.™
Can woe now so distribute an (comaf) g in Cthe body of the metal as
to meet this condition?  This can ot onee be done by integra-
d*Ey,
dr?

d.H“ =fr'1* ilr —fr"’-"dr -+ Conslt,
it a T i T

The canstant may be found [rom equation 10 on putting r =
and is obviously,

Coust, = 1| (P

n'r

tion of equation 11 for Tntegrate this onee, obtaining :

L

If we put o = 0% Abs., the two integrals vanish beeause their
limits eoineide, and the constant vanishes by the third law.

Henee dEy, f L= j ) dr. 1T, 12,
dr

Integrate again, obtaining :

FOE R TY =tfti'r Ty —f f——rfr,
I B

or, in parcticular:

Ey.(r, 0) —f-:‘frf L dr ~f u'rf 7t dy. IT, 13.

* The proof i3 simple that the integral of tem Ly around any line of current flow
i always equal Lo thie itegeal of (ol )y, or

J.h*.m.f.l.t fh'.m-'l".l.,.

(el )y
By integenting equation T, 4 wa gel ot anee @ = —a where R is the total

reststinee of the eireuit, hoeagss f &=
Tatal encrgy delivered 1o the corrent = |f|:c.m.f.l. (by defimtion)

w PR = Qi) = i} (e.m.f)a
and

fe.m.l e = | (eomud)a QE.D.
Jemtso-f
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The constant of integration is again zero, because the total E.M.F.
of a couple both of whose junctions are at the same temperature
is zero.

This expression for the total E.MLF. evidently represents the
total as the sum of contributions made by each element of the
circuit whose ends are at a temperature difference dr of amount

— dr f Z dr, the direction being such as to drive electricity up
0o T

the temperature gradient, and this is therefore a possible expres-
sion for the driving e.m.f. This expression is uniquely deter-
mined except for an additive term which must be such as to
integrate to zero around a complete circuit. The completely
general expression in an element of unit length is therefore :

dr o
(em.f.)s = — E"x[ [ar + f(f)], 1, 14.

where f(7) is a temperature function, the same for all metals.

In a linear metallic conductor along which there is a tempera-
ture gradient, and which is open circuited so that no current
flows, an electrostatic potential gradient is automatically pro-
duced by which this driving e.m.f. is neutralized.

The working e.m.f. in any element is given by the heat absorp-
tion, and is therefore :

(emf). = o j—;' I, 15.

The working e.m.f. and the driving e.m.f. in the body of the
metal are therefore quite different, and in general are of opposite
sign. At the interface there is no driving e.m.f. but there is a
working e.m.f. equal to the Peltier heat.

We next seek to account for the energy transformations in the
separate elements of the circuit which acecompany the flow of
current. Imagine a linear conductor in which there is a tempera-
ture gradient, and in which a steady current is flowing. Since
the state of affairs is steady, the net amount of energy flowing
into any clement must be zero. We suppose no lateral flow of
heat, the Thomson heat requirement of the current being ab-
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stracted from the thermal energy of the conductor, and manifest-
ing itself in a rearrangement of the temperature gradient. There
are therefore just three ways in which energy can get into an
element of the conductor; it may be carried in by the Poynting
vector, it may get in by thermal conduetion, and it may be con-
vected in by the current. If we call U the energy convected by
unit current, then the equation of energy balance is obviously,

d o df df\ _ .dV _
_E(,U).FE(K,E)-zE;_o, 11, 16.

where the first term is the net energy convected into an element
of unit length by the current, the second term is the net heat
conducted in, and the third term the net inflow on the Poynting
vector, all per unit time.

We may now fasten our attention on the current. This leaves
the element with a different amount of energy from that with
which it entered. The difference must have been acquired
within the region. Within the element the current is concerned
in three kinds of action. It absorbs thermal energy from the

material of the conductor in amount o gi, it delivers Joulean heat

to the metal in amount #%r; in flowing against the resistance of the
metal, and it receives from the Poynting vector an amount

1&=—1 % Setting the net gain equal to the amounts received

gives :
%(i(j) =iag—z“?f,—i%- 11, 17.

If Edi (tU) is eliminated between equations 16 and 17, we obtain :

o 3—; =+ % (x:%),

which is equatiun 3 already obtained for the determination of the
Thomson heat, thus checking our present account of the energy
transformations.
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We may now substitute in equation 17 the expression for

(e.m.f.)s. In general 7 = [(e.m.f.)a - ﬂ] / ri. Whence
dx
2 _ﬂ]=-[_¢ s _d_V].
i, z[(e.m.f.)d A AL R ORE:
On substituting back in 17, ¢ % and %, cancel, leaving
Lo =il @ (og ]
2 (iv) z[adx+dx (" dr — 1)
But now the state of affairs is steady, so that % = 0, and
d .oy _ QU |
E('J,U) =i Furthermore

dr  dr (7o Ei[ s ]
adx+d:cordf dx T_L--rdr’

as may be checked by direct differentiation. Hence:
dU _d o ]
v _ @ Tar| = f(m),
dr dzx [T_[ , Jr)

U=ffgdf—ff(f)dz+v.,.

and

Now it is an obvious requirement that U shall be a function of
temperature only. This demands that f(r) vanish; if this were
not the case we see that U would increase indefinitely as current
flows along a uniform conductor all at the same temperature,
which is absurd. The gencral relation is therefore :

T

U=ff'2dr+ U, 11, 18.
0

where U, is independent of temperature, but, as far as this
argument goes, may be a function of the orientation of the

crystal rod.
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It is to be noticed that this value for the convected energy is
essentinlly different from that which would be given by the con-
ventional deseription, which would set the convected energy

equal to f a dr, treating the Thomson heat as the analog of the

(1)
spocific heat of ordinary matter. [t is furthermore speeially to
be noted that if working e.mu . and driving e.ndf. are set equal
to each other, as is conventionally done, we would have obtained
another expression for 7 consistent with neither. 1t muy be

!
verified in & moment that if we had pul § = [n’ dr _ d_i‘:l ,f'rﬂ.
dx dxl

which comes from replacing (e.m.f.)s by (e.m.f.),, and substituted
back in 17, we would have obtained UV = Const,  This again is
confirmation of the difficulties of the conventionul deseription.

So far we have considered only what huppens in the body of
the ervatal where there is a temperature gradient.  Consider now
the interfuce.  The energy convected on opposite sides of the
interface is, by the expression above, different, so that there must
be an absorption of energy by the current at the interface. In
fact, on flowing from || to L we have !

(Energy absorbed at interfoce by unil quantity on fowing
from || te L) =

,f'ﬂ_i g .,.f'*’_’i dr 4 Ugy — U, 11, 19.

i a T
Since there is no Poynting flow into the interface, this must be
exactly equal to the Peltier heat flowing in at the interface. But
dE,,

!, and this by equation 12 is exactly
dr

T 4
i i
) 2 = dr — '.rf A iy,
i T g T

Henee the energy requirements at the inlerface are exactly met if
Ue, = Uy, That is, Uy may be a function of the metal, but
must be the snme Tor gl orientations in the erystal,

Unit eurrent therefore conveets with it energy

ff'-:: dr + [V,.
(R

Pn=r
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The first part of this, omitting the term U7y which is independent
of temperature, must be formally deseribed as thermol energy,
which the ecurrent convects with it exactly as a stream of water
convects thermal energy.  The essentinl difference between the
current of water and the electrieal eurrent is that the thermal
energy conveeted by the eleetrie current is a funetion of the metal
in which it flows, as if the speeilie heat of a stresm of water were
dependent on the kind of pipe earrying it,  In the bady of the
metal, in whicl eurrent Hows from one tempersture to another,
there is a transformation of this econveeted thermal energy to
other forms, exactly as in & thermodynamie engine working be-
tween diffevent temperatures, The cleetricity takes the role of
the working fuid of an ordinary thermodynmmie engine. The
first law now demands that the difference between heal energy
entering ut the higher temperature and leaving at the lower tem-
perature be equal to the amount transformed ta other Torms, This
demund of the rst lnw we have already =een to be sutisfied. The
second law demands that if the proeess is reversible, 15 we sup-
pose it is, the amount of energy transformed be equal to the
fraction dr/r of the entering thermal energy.  This demand may
be shown at onee to be satisfied. The epergy transformed in an

element of the body of the conduetor of unit length is: § E

dr
which fows out on the Poynting wvector, plus the Joulean heat
(which might have appeared as useful mechanieal work instead
of heat if & motor with proper back E.NLF. had been ingerted in
the element). Using the expression for the driving e.m.f. already
given we get ab onee

e
dr dr fo T

This should be cqual to the fraction dr/r of the entering energy.

For unit length dr = :E Substituting the value for the con-

vected energy, the amount — 1dr [r f '!dr] should be trans-
' rdz 0T
formed per unit current. (The negative sign comes from the fact
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that we have here to consider the energy entering at the higher
temperature.) The two expressions are at once seen to be con-
sistent, and our scheme of description is justified.

Thus far our argument has assumed a couple made of two
branches of the same single crystal but with different orientations.
We seek to extend to any isotropic material the description which
is satisfactory for the crystal. We can make connection by way

of the expression for the convected energy, U = 7 2dr + U,
o 7T

in which the first term is thermal energy, and the second non-
thermal, a function of the metal but not of temperature, We are
bound to retain this expression for the convected cnergy for any
metal ; this is intuitively evident, or we can make an argument
for it by starting with a fictitious non-cubic metal nearly like the
actual isotropic (or cubic) metal, and continually decreasing the
difference between the different orientations until in the limit we
reach the cubic metal. Our expression for convected energy
always holds for the erystal and must hold in the limit for the
isotropic metal. It follows that when current flows across an
interface between two different isotropic metals there is a differ-
ence of convected energy

UB—UA=T|:f”—_0'idT]+UOB—U0A

T

to be accounted for at the junction. The first term on the right-
hand side is difference of thermal energy, and is equal to the
Peltier heat flowing in at the interface. The second term
Uoss — U, is difference of non-thermal energy, and is accounted
for by the Poynting flow from outside into the interface.
Uoa — Uya is therefore the jump of electrostatic potential in pass-
ing across the interface between points in the interior of the two
metals; it is a constructional quantity, and is not capable of
direct measurement. It is not equal to the total Poynting flow
into the region of the junction from outside space determined by
the Volta potential difference, but is this flux diminished by the
Poynting flux through the double layers along the surfaces of the
metals A and B. We have not yet any way of knowing what
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the potential jumps are at the interface between metal and sur-
rounding empty space, so that the difference Uop — Uy, is not
yet uniquely connected with V4. If the two metals A and B
are two orientations of the same crystal, however, the potential
jump at the interface vanishes, and the double layers responsible
for any Volta difference between two different orientations must
be entirely situated on the free surfaces,

The expressions which we have derived for driving and working
e.m.f. in crystals evidently carry over immediately to the general
case, and we have for a unit elcment with a temperature gradient :

(e.m.f.)y = o Grad . 11, 20.
(em.f)y = —Grad 7 [fri dr] . 11, 21.
-JO

T

Finally, it is to be emphasized that the various quantities which
we have introduced here, driving and working e.m.i.’s, convected
energy, and potential jumps between points inside the metal, are
purely constructional and not capable of direct measurement.
But if we are going to admit constructional quantities at all, as
we almost certainly must, and if we are going to demand of them
that they satisfy thermodynamics and join on smoothly with
directly measurable quantitics, as we must if they are to be use-
ful, it would seem that there is no stopping short of what we
have done here. It is certainly a pratification that it is possible
to find a set of constructional quantities which are internally con-
sistent, and furthermore up to a certain point, unique. Those
quantities which are uniquely determined we naturally think of
as having physical reality, and we should, therefore, seek to so
frame any detailed picture of the mechanism of electrical phe-
nomena in a metal that these constructional quantities have their
counterparts in distinet features of the mechanism.



CHAPTER TT11
THERMODYNAMIC ANALYSIS OF THE VOLTA EFFECT

Any phenomenon which involves reversible energy transforma-
tions may be made the subjeet of a thermodyuamic annlysis in
which the first and second laws of thermodynamies are applied.
Lorentz and later Lord Kelvin™ independently made such an
analysis of the Volta effect. The following argument gives
essentinlly their results.

A parallel plate condenser is composed of fwo metals A and B
the distance of separation of the plites is smull enough compared
with the aren so that edge effects may be negleeted, and we may
consider the energy changes per unit area of the plate. The
plates are conneeted by a wire partly of A and partly of B, =0
that the junction bhetween A and B is at 2ome point in the wire,
The Volla difference of potential is automatically set up hetween
the plates, which thereby nequire a surface charge.  The result-
ing electrie field between the plates tends to draw them togetler,
and this tendency must be resisted by the applieation of 2 foree
rom outsude. If the plates are allowed to draw together against
this foree, the system delivers mechanical work to the exterior.
At the same time that the plates draw together eharge must pass
from one to the other through the conneeting wire to maintain
the Volla potential difference, and this motion of eleetricity con-
stitutes a current which is eapabile of delivering energy ta g suita-
ble engine placed in the connecting wire.  Conversely, by working
this engine and charging the plates, they may be hrought to
any desired difference of potentinl,  The whaole system is furthor-
more 1o be maintained at constant temperatuee, and this tem-
perature may be varied by proper heal interchange with the
surroundings,  As the variables specifying the state of the systen
we may take lemperature, 1, distanee of separation of the plates,

70



VOLTA EFFECT 71

l, and surface charge per unit area on A, p, which varies when
the potential difference varies and may conveniently replace the
potential diffcrence as an independent variable for purposes of
analysis. The first law applied to the system now gives:

dQ = aU + dW. II1, 1.

where dQ is heat absorbed by the system from the surroundings,
aU change of internal energy, and dW work done by the system.
We express dWW in terms of the independent variables :

aw =W, 4 Wy W, 111, 2.
or al dp

Work is done only when the distance between the plates changes

or current flows in the wire, so that W _ 0. The mechaniecal

or
force pulling the plates together is, per unit area, 2 #p? so that
"
% = — 27mp% 'The electric work done when current flows is the
product of the quantity into the effective potential difference,
which we have already seen to be V — Vg4, where V is the actual
potential difference between the plates, measured between points

immediately outside them, and is 4 7pl. Hence

W o — (dmpl — Vi),
dp
the minus sign resulting from the fact that the current delivers
work when positive charge on A decreases.
We may also express dU as a function of the independent
variables, writing :
aU

_aU, ,3U, . aU
dU = = dr + 3l dl + % dp. 111, 3.

Substituting these various values now gives:
aUu

dQ=—dr+ (— 2mp*+ -—-)dl + (VBA — 4xpl + Qg)dp. 111, 4.
d ol dp
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This is the complete expression of the first law. The second
law may now be applied in the form that d@/7 is an exact differ-
ential. The condition that the differential be exact is that the
cross derivatives of the coefficients of dr, dl, and dp in the expres-
sion for dQ/r shall be equal. There are three such coeflicients
and three conditions on the cross derivatives.

(1) The condition on the coeflicients of dr and dl is ;

al1alU} _allf ,_ . a_Q):I
al[r 61'] 61'[1'( 2mp® ol

This gives, on expansion

13U 18U _1(_, s, 9U)
ralar 7 9ral 72( 2t + 27 )

or
U _o5_»
Py 2 mp?.
But
U _9Q _ W
al ol al'
and we have already found that
oW __ 5
Y 2 7p?.
Hence this condition reduces to
(@) =0, 11, 5.
ol/+e

which states that no heat has to be absorbed to maintain the
system isothermal if the distance between the plates is changed
at constant surface charge. In other words, there are no heating
effects connected with merely moving the plates back and forth.
This, of course, is what we have all along assumed in electrostatics,
but probably we never troubled to examine whether this was
consistent with thermodynamics, or to find what was involved if
it was consistent.
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(2) The condition on the coeflicients of d! and dp is :

L Cror ) 3 (ram i+ )
ap( 21rp+al 3 Vpa — 4dwpl + %

Expanding,
(‘W"") =0, I11, 6.
P

or the Volta difference is not a function of the distance of separa-
tion of the plates as long as surface charge and temperature
remain constant. This we bhave assumed, although the assump-
tion has not appeared explicitly above.

(3) The condition on the cocflicients of dr and dp is:

10U _ 9 ( _ )]
ap[ ar] or Vaa 41rpl+ dp

Expanded, this gives
Vg4
dr

Inspection of the original expression for d¢ shows at once that
the bracket on the right-hand side is %Q, so that
p

Ql’_n_f_l) =1 Q_Q)
( ar /ue T \dp/ni 1L, 7.

This relation is essentizlly new; it was first obtained by
Lorentz after making a correction in the original argument which
was pointed out by Budde, and then later and independently by
a superficially entirely different argument by Kelvin.

The temperature derivative of the Volta difference which
appears on the left-hand side of 7 is a partial derivative, the dis-
tance between the plates and the density of surface charge being
maintained constant. Experimentally, there would seem to be
no evidence for a dependence of the Volta difference on p, but

the possibility of such a dependence must be kept in mind. %Q
0

on the right-hand side is the heat absorbed in order to maintain

= 1(VBA — 4 7pl + ﬂ}--)
T dp
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the system isothermal when the density of surface eharge on A
increases by unit amount, the distance between the plates being
maintained constant. The surface charge on B deerenses at the
same Lime by unity, =o that this involves the passage of o cur-
rent through the wire sonneeting the plates, the divection of the
current. being from B o A, We know that sueh o current is
accompunied by the ordinary Peltier heat at the junction of the

i

two metals; it 18 therefore natural to identify the heat ,_,_] - with
dp
this Peltier heat, and this indecd iz what Kelvin at first did,

- - - tf I.. - - .
writing the equation as — ™ = ! Pasr Kelvin was led to iden-

tr r
) . 3 =
= with Pgy all the more naturally beeause his express pur-
p

pose in making an analysis of the Volta effeet was to find some
thermodynamie relation involving the parameters of the thermo-
eleetrie eireuit by a method which should be free from the objec-
bion that irreversible processes were invaolved. It is to be
emphasized that in the analysis above the system is always iso-
thermal, so that no irreversible proecesses are involved, and the
conelusions are thermodynamically rigorous,  Apparently Kelvin
wis nlways bothered by the lack of rigor of his analyvsis for the
thermo-electrie eircuil, and was constantly seeking to find some
more rigorous line of argument.  Kelvin then attempted to verify
the equation experimentally, Tt the verification failid by a
Factor of more than o thousandiold.  From this Kelvin drew the
conelusion, as he had in o corresponding situation with respeet
to the thermo-electrie eireuit, that there must be some as vet
unknown thermal phenomenon involved.  Tle therefore postu-
lated the existence of a reversible heating effect in the surfnee of
a conduetor when charge is added to or subitracted from it.  This
should be an effect per unit. aren, and should be linear in the
churge, changing sign when the sign of the eharge changes, The
reason that just this effect was postulated is that it seems to be
thee valy conecivable one that meeis all the requirements, There
may, of eourse, bo other heating offcets,  Thus there is cortainly
an effeet due to the stresses set up in the matorial of the eon-
duetor resisting the tendeney of the charge to leave the surface,

Lify
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but this effect will be proportional to the square of the charge,
and may be made vanishingly small in comparison with the other.
Then there may conceivably be transient effects while the current
is building up to a steady state, but such effects have not the
right dimensions, and may be made to vanish by making the
changes sufficiently slowly. There is also a Joulean development
of heat as charge spreads over the surface, but this is irreversible,
is not linear in the charge, and again may be made to vanish by
making the changes sufficiently slowly.

The necessity of assuming just such a new surface heating
effect as did Kelvin was also recognized by Lorentz after his atten-
tion had been called to it by Budde. Lorentz’s analysis yielded
the same result as the analysis of Kelvin, or the analysis above,
which is formally different from either.

Granting now the existence of the * surface heat of charging ”’
as Tonks and Langmuir  have called it, the thermodynamic rela-
tion becomes:

Vs _1p 111, 8.

ar T

where P’ is not the ordinary Peltier heat but includes both ordi-
nary Peltier heat and the new surface heat of charging. Let us
call the heat of charging P,g and Pgs for metals A and B. Then
since passage of positive current from A to B means a decrease
of the surface charge on A, we evidently have

Plap = Pyg — Pag + Ppgg I11, 9.
and
QM = 1 (PAB - PAS + PB.;)- IH, 10.
dr T
AV as

Kelvin’s attempted experimental evaluation of > in order

.
to compare with the Peltier heat was, of course, made under
extremely unfavorable conditions, and his failure to verify the
relation can be given no significance whatever. The cxperiment
is evidently one requiring all the extreme refinements of modern
high vacuum technique, and I gather from those conversant with
such matters that it is doubtful whether the technique is even yet
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good enough to permit a direct determination of ?;—V which would

T
give a reproducible result, truly characteristic of the metal. So

far as I know, the best evaluation of %—K has brought Kelvin’s
T

factor of discrepancy of 1000 down to about 50. If one assumes
that this factor 50 is genuine, one can calculate an upper limit
for the magnitude of the surface heat. The numerical magnitude
thus obtained shows that it would be of almost prohibitive
experimental difficulty to attempt to detect directly the surface
heat from a change of temperature of a surface receiving a charge.
The difficulty is that any change of temperature of the surface
is immediately swallowed by the inert mass of metal back of the
surface, and if one seeks to reduce by a suitable amount the inert
mass of metal, the electrostriction effects become correspondingly
large. Perhaps it might be possible to eliminate the electro-
striction effects because they are proportional to the square of the
charge. But probably the best way of establishing the existence

of the effect is by so improving vacuum technique as to give a

good value for v,
dr

In spite of the experimental difficulty of measuring the effect,
it 1s of extreme importance in theoretical thermodynamic analy-
sis, and, as we shall see, occurs also in the phenomena of ther-
mionic emission. It must not be disrcgarded, as very large
differences may thereby be introduced in the relations deduced.
Such a surface heat is not inconsistent with the most recent views
as to the nature of the clectronic structure of metals, which
would suggest that the binding forces on the electrons are differ-
ent on the surface and in the interior, so that the characteristic
frequency would be different on the surface and in the interior,
and so the upper available level of the degenerate Fermi gas.

The relations just found are essentially all that ean be got by
thermodynamics; other relations may of course be found, but
they involve only formal transformations. Our relations have

involved certain quantities, principally V and %‘{, which must
T
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be determined by experiment, and about which thermodynamics
has nothing to say. Before dismissing the problem finally it is
intercsting to inquire what is the complete list of independent
quantitics which must be determined by experiment in order to
completely characterize the thermal behavior of the system.
Thermodynamically the behavior of the system in any small
neighborhood is completely determined if we know the six coeffi-
6(_::/, aaI;V, aal:, ?_’% %(%, and ';—(3- The three derivatives of
W are determined by the mechanics of the system and have been
written down. Vg is involved in these derivatives. Of the Q

cients

derivatives, we have shown that %Q— = 0, and have found Q.

{ dp
There remains only %Q, a specific heat, which must be determined
T

by experiment and about which thermodynamics can say nothing,
This specific heat is in general a [unction of 7, I, and p, and the
dependence on any of these parameters is thermodynamically
undetermined. In particular, if it depends on p, there is a con-
tribution to the specific heat made by the surface charge, which
means that the surface charge has a specific heat different from
the neutral metal. This must be determined by experiment; we
shall see later in discussing thermionic emission that there are
reasons for thinking that the specific heat of the surface charge
must be nearly the same as that of the metal.

It is interesting to notice that the mathematical assumptions
which we have made about the form of the heating effects impose
definite restrictions on any physical picture which is permissible
to represent the phenomena. We have assumed the surface heat
to be linear in the surface charge; this means that the heating
effect when one electron is added to the surface is the negative
of that when one electron is subtracted. The physical picture
must therefore in some way achieve syminetry with regard to the
addition and subtraction of electrons. The most natural picture
perhaps is to think of the positive surface charge in the form of
positive ions in the surface, and the negative surface charge in
the form of electrons miscellaneously added to the surface. But
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this picture does not have the requisite symmetry,  If the posi-
tive charge is to be thought of os due to the presence of ndditional
positive jons in the surface, then the negative charge must be
also thought of as due to negulive fons in the surface, thal is,
each electron added to the surface must attach itsell 1o zome
definite surface atom, Another way of achieving the necessary
gymmetry i@ ta think of the free eleetrons in the interior of the
metal, which are perbaps samething like o jelly in which the pogi-
tive jons are embedded, a8 extending dight up to the surfaco -
positive surfaes charge then moeans the sublaction of an oleciron
from this jelly, and negative surface charge the addition of an
electron to it.



CHAPTER IV
THERMIONIC PHENOMENA

It iz establishied by experiment that negative electricity is
spontancously emitted from o heated metal; if the metal is
isolated in an indefinitely lorge empty space, the emission proceeds
until the aceumulation of positive charge on the surface prevenls,
by static attraction, the emission of further negative charge.
If the metal is not j=olated, bul attached to a souree of negative
cleetricity, such as a battery, the emission goes on indefinitely.
The process 18 analogous in many respects to ordinary evapori-
tion, with the complication that the vapor is charged and so is
subjeet to clectrostatie forees in addition to the gas pressure in
an ordinary vapor. The emission of eleetricity is a very strong
function of temperature ; in regions where it is eapable of measure-
ment formulas hove been found whieh sueccessfully  reproduce
the emission over a range of perhaps 10° fold, These formulas
demand some emission at all teniperatures, so that in theoretical
diseussions such emission is aceordingly considered at every
teriperature, although it may be far below any possibilivy of
experimental detection at present.

Every metal, therefors, is to be picturod as surrounded by an
atmosphere of negative eleetricity when in a state of complete
equilibrium,  The existence of this atmosphere ean be detected
by =uitable probes ol high enough temperatures. We always go
further, however, and pieture this surrounding atmosphere as
maide up of electrons just as we piclure an ordinary vapor as
e up of gns moleeules. 10 must be reeognized thal we are
here dealing with o construstion, bul it is one which has proved
so extremely useful everywhere, just as have the molecules of
kinetie gas theory, that no physicist will hesitate very much to
aeeept this eonstruction as real, or to think of the electrieal
atmosphere surrounding a metal a= 4 mon-atomie gne of electrons,

An electrical gas composed of electrons will exert an ordinary

CEL
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gas pressure in virtue of the momentum which the clectrons have
because of temperature agitation. The mechanism by which the
momentum gets transferred to the walls of the vessel is doubtless
electrical in character, just as the rebound of two electrons in
collision is brought about by the force of clectrostatic repulsion.
The pressure forces are, however, only called into play by the
proximity of the electron itself and do not correspond to a large-
scale, smooth electrical field of foree which can le included in
the Maxwell equations. This is the sort of thing that we have
already come across; the collisional or pressure forces are, from
this point of view, to be described as ‘‘non-electrostatic.” In
addition to the pressure forces an electron gas experiences other
forces properly to be described as electrostatic, due to the average
potential of its own distributed charge. An electron finds itself
on the average in the midst of a similarly charged electrical jelly.
The force on each clectron doubles if the average density of the
jelly doubles (that is, if the electron gas density doubles). Fur-
thermore, the number of clectrons acted on doubles when the
density doubles. It follows that the contribution to the pressure
on the walls arising from this clectrostatic (or body charge) effect
increases as the square of the density, whereas the ordinary gas
pressure increases as the first power. Hence the electrostatic
gas pressure may be made vanishingly small in comparison with
the ordinary gas pressure by going to small densities. Further-
more, the total amount of gas present is a factor in determining
the ratio between ordinary gas pressure and electrostatic gas
pressure, This may be scen qualitatively by considering that
the electrostatic force at the surface of a sphere of constant
density varies dircctly as the radius of the sphere. The ratio
of electrostatic gas pressure to ordinary gas pressure is therefore
smaller in vessels of smaller size. This whole matter has been
considered quantitatively by von Laue,” who has shown that
in the range of conditions corresponding to laboratory practice it
is justifiable to neglect the electrostatic forces, and treat the
electron vapor in equilibrium with ordinary metals as an ordinary
perfect mon-atomic gas of neutral atoms,

We may now apply thermodynamics to the evaporation of
electrons from a metal exactly as we may apply it to the evapora-
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tion of ordinary substances. Imagine a metal at the bottom of
a cylindrieal box covered with a freely moving piston, the whole
system to be maintained at constant temperature. The piston
is originally in contact with the metal, so that the volume of the
vapor phase is zero. We now withdraw the piston so slowly that
the equilibrium vapor pressure is continuously maintained.
During this process the piston receives mechanical work deter-
mined by the vapor pressure, and heat flows into the system in
order to maintain it isothermal. The relations are cxactly the
same as in the evaporation of an ordinary substance, and the
same thermodynamies applies. In particular, Clapeyron’s equa-
tion applies which gives the dependence of vapor pressure on
temperature, or:
dr _ 1y

d[) L

where Av is the change of volume of the system when one gm mol
(or any definite quantity) of the solid evaporates, and L is the
latent heat of evaporation of one gm mol (or of the same definite
quantity), under the conditions just specified, that is, in an
isolated system.

This equation is cxact; it involves no assumption as to the
nature of the substances, nor is any assumption involved as to
whether the system obeys the classical or the quantum statisties.
To get further, we may approximate by applying the perfect gas
law to the electron gas, ncglecting the volume of the solid in
comparison with that of the vapor, which amounts to selting
Av cqual to the volume of the gas. This approximation can
introduce no appreciable error when one considers that at room
temperature the eleetron gas pressure is so low that in the electron
vapor in equilibriutn with tungsten, for example, there is only
one electron in a sphere of 350 light years radius. For gases of
such densities quantum mechanies shows that the perfect gas
law is an entirely adequate approximation. Ior such a gas we
have, therefore, p = n«7, where n is the number of molecules of
gas (here electrons) per em?, and « is the gas constant per molecule,
or 1.35 X 107, Differentiation of the gas equation now gives

dp = x(rdn 4+ ndr).
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Substitute this in Clapeyron's equation, and also replace As
by v, obtaining :

dy = r;—:u{rdn + ndr)

o +E rf'r)'
R 'I-_'(" Ty

ny

But L is obviously the latent heat per electron. Denote this

ney
by 7, and rearrange the equadion, getting
dn | dr
A oy = S0 S0
KT° H T

Intepration gives at onee
f—"_ dr = log n + log v 4 log Const,
KTt

of, no= J:ﬂi"', IV, 1.
in which € is nol a funetion of lemperature but may, as far as this
argument goes, be a funetion of the metal, becanse € = ngry,
where 7, 15 arbitracy.  We evidently cannot put = = 0 in this
expression beeause of mathematical diffienlty with the conver-
renee of e integral,

Now apply cquation 1 to the eleetron vapor which surrounds
two metals which constitute a Volta condenser. [T the systom
is maintained sothermal, it must ecome to equilibricm.  The
density of the electron vapor immedintely outside cach metal is
given by the equation.  But in the gpaee surrounding the metals
the Voltw difference of potentinl is spontancously maintained.
This gives rise to an electrie force i the electron gas, which in
general would produce aomigration from the weaker to the stronger
parts of the lield until o pressure gradient is built up to eounteract
this hGeld. Equilibriom demands that the pressure prodient
necessary to equilibrate the Valta potentinl difference be exactly
the same ¢ that produced spontancously by the evaporation of
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eleetrons ul the surfaces of the two metals. The equation of
equilibrium in the electron gus is obviously

dp = eEnilr = &L da.
XT

¢ I8 the charge of the eleetron, and is taken as intrinsieally nem-
Live, — 4.7 X " S
Integration gives
|n[_ = 'qu_"u'.!'.r = — rj‘-'_” i = — (Vg V)= Z W e
| L§" KT xr) odr AT KT
or, since p is proportional to a,

L]
|

na v, 2
LT
or,
Vg = 2 Jog 04 V. 3.
[ - nn

It is interesting to notice parenthetically that this expression
gives the means of splitting V. into two lerms depending only
on Lhe respective melals, which we have alreasdy =een to he
demanded by the Volta law of tensions.  This is obvious, for

KT KT
Van = = Ilogny — == log na.
LI i
We may evidently add to both terms any universal temperature
funetion.
Equation 1, applied to eaeh metal, now gives
7 Cy | M=y
—-‘ = _‘ L t. '-'rl " r. Iv. "I;-'!
ng Uy

or eliminoting ny/ng between equations 3 and 4,

=

L Vauw=TlogCy— lﬂgf'u+ .t = '“nfr. IV,

KT
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But C, and Cp are independent of temperature and may therefore
be eliminated by differentiating with respect to =, giving, after
a simple reduction,
na — 1 =—¢eVan+ er Q’Q, IV, 6.
dr
a relation between the latent heats of evaporation and the Volta
potential difference.

The “ latent heat of evaporation” of electrons has been meas-
ured experimentally and may be found in the literature. The
method is to measure the additional heat input, in the form of
Joulean heating against resistance, required to maintain a metal
isothermal when the emitted electrons are continually drawn off by
an applicd external ficld, in excess of that required to maintain

the wire at the same temperature but with no electrone mission.

It would appear at first sight therefore as if we could obtain %Z

T
from cquation 6 in terms of the measured values of the latent
heat, and so obtain an estimate of the ‘‘ surface heat of charging "’
discussed in the last chapter. It is especially to be emphasized,
however, that the latent heat measured by the method just out-
lined is not the same as the latent heat in equation 6 above.
The n above is the latent heat in the isolated system in which a
positive charge builds up on the surface as the electron vapor
is formed. When the latent heat is measured experimentally,
however, a fresh supply of electrons is continually being fed into
the metal to replace those which evaporate, so that the surface
charge is maintained constant. To distinguish this experi-
mentally measured latent heat from that above we write »,, and
call it the latent heat at constant surface charge. We mayluse
an additional subscript to dcnote the metal when necessary.
There is an obvious relation between the two surface heats
and the surface heat of charging, namely :

1 =19, — cPs. IV, 7.
We may now obtain another relation involving the heats of

evaporation by a simple cyclic process. Given the two metals A
and B, as shown in Figure 12, at constant temperature. They
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are surrounded by chambers, connected by a tube as shown, with
insulating walls, in which the clectron vapor comes to its equilib-
rium density. At the surface of each metal the densities are as
already given. The surface of each metal is also all at constant
potential, the difference between

the two being Vaa. In the re- ' I !
gion conneccting the two enclo- R

sures there is a potential drop \\\\\\\\’////%//
of amount V,4s, and a pressure A /
gradient in the electron gas to N 7. A
balance the resulting -electric
field.

Imagine a piston in the con- Fre. 12
necting pipe. This is electrically
neutral and is exposed to the same pressurc on the two sides.
Now displace this piston toward B so slowly that the system is
always in equilibrium. The result of the motion of the piston
is to condense electrons into B, move them through the metal
across the interface B-A, evaporate them from A, and transfer
them in the vapor phase from the surface of A to the surface of B.
The process is isothermal and reversible, and hence no work is
done and no heat absorbed. Obviously the piston does no work,
the pressure on its two sides always being the same. We write
down the condition that no net heat be absorbed. _Teat is
absorbed in four places : at the two metal surfaces where evapora-
tion or condensation takes place, at the metal interface, and in
the body of the gas. The heats of vaporization are obviously
the heats at constant surface charge. The heat at the interface
is the ordinary Peltier heat Pas. Call the heat absorbed by the
gas per cleetron transferred Q. Then the condition of no net
heat absorption is :

np.'i_'npﬂ + CI)H:I + Q = 0- IV, 8.

The heat Q absorbed by the vapor requires special consideration.
The problem is evidently the exact analog of a risiug eurrent of
air in the earth’s gravitational field. It is well known that there
is a cooling effeet under these conditions, so that heat inflow
would be necessary to maintain the rising air isothermal. The
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first law of thermodynamies applied to the rising gas demands
that the initial internal energy plus the energy received during
the rise be equal to the ool internal energy. But in a perfect
pas at constant temperature the internul energy s independent
of volume. Therefore, sinee there is no change of in-
pe ternal energy, the total energy received during the
s pige must vanish,  The energy so received is of three
sorls: pressure work across the boundaries, work
~=|====|== against gravitation {or in our case against the elec-
cefe=afe= trie field), and heat., The pressure work received
peross the boundaries vanishes, as may be scen by
an inegpeetion of Figure 13. lor the total pressure
4 e work is that received by the lower surface on rising
from A to O minus that done by the upper surflace in
Fe. 13 TiEing from B to D, For positions of the upper und
lower surfaces between B and C the work received by
one surface in any displacement, s indicated by the dotted lines,
is nullified by that done by the other surface during the ssne dis-
placement.  The total is therefore the differenes between that re-
eoivied by the lower surface in moving Tecrn A to B and thad done
b the upper in woving from C to D, Bul these two are equal,
sinee for an isothermal gas pyy = pare.  The total pressure work
is therefore zero, and the net work done against the gravitational
(or electrie) feld must be provided by the heat input.  This
gives at onee, applied to our evele above, Q = eV 45, and equa-
tion 8 reduces to

o

c

Moa= M = ¢ (Pan — Vyn), IV, 6.

an equation involving only quantities direetly measurable, and
furthermore of such magnitodes that they bave actually been
determined. T am not aware that the sopetion has been eheeked,
however, by mensurements all made under the saome conditions,
We may replaee g, in this equation by its equivalent g +4 Py
(aeeording to equation 7), and then eliminate 5, — g between
the equation thus oblained and equation 6, obtaining :
T rﬂ__”.; = Pﬂu S FJ,_-, + Pm. IV, ll'.l'.

dr

Thi= ix the 2ame as cquation TIT, 10: we have here oblained o
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by an entirely independent method, and have thus checked the
consistency of our analysis.

It is to be noticed that if we had identified 5, with 5, we would
dVas

;
which is the same as 10, in which the surface heats have been set
cqual to zero. But neglecting the surface heats is exactly equiv-
alent to setting », = 7, as we see at once from cquation 7. If the
surface heats do vanish, then since for the thermo-electrie circuit
@B _ 1 Pas, we would have @Van _ dE4p,
dr T dr dr
may be found in various places in the literature ; it can be correct
only if the effect of the surface heats vanishes. There is no
experimental evidence for the correctness of this equation, the
dVas

-
heats by this method.

Additional relations may now be obtained connecting the heats
of vaporization with the Thomson heat of the ordinary thermo-
electric circuit. Solve equation 9 for V4 and differentiate with
respect to temperature, obtaining :

dVAB 1 (dﬂ R d’? A) dPAB
Qv as _ ZHpB _ “lad A8 1.
dr €\ dr dr + dr v, 1

1
;[PAB_PAS‘l'PBS]

have obtained immediately on combining 9 with 6, =

=PAB,

I

This equation

error in

being high, so that we get no hold on the surface

]

by equation 10.

But the equations of the thermo-electric circuit give

1 _GEap dPas _ dEas .
T Pas dr '’ and dr dr t o = oa
Substituting,
dﬂ A 1 _ d’?pB 1
"—L+6 0'4-'-P.45 = —F-4e¢ 0‘3——P33 IV, 12.
d, T dr T
or,

dn, (o' - 1P3) IV, 13.
dr T
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g the same for all metals, and therefore must be a universal
Lemperature funetion.

The universal value of 13 may now be derived by an argument
similar to one used by Richardson,  Given o dumb-bell-shaped
picee of metal, 2 shown in Figure 14, with the two ends main-
tained at o temperature difference Ar.  Fach end is surrounded
by & chamber into which evapo-
ation of electrons Lukes place
= until the equilibrim pressure at
N each  tempernture s reached.
. There will also be a charaeteristie
differenee of eleetrostatiec poten-
tigl between the vapors imenediately over the metals at the two
ends. Now push o piston into the chimber ab the lower tem-
perature, condensing into the metal a eertain number of elec-
trons, amd simultancously withdeaw a piston from the ehamber
al higher temperalure, evaporaling e same number of electrons
from the hot end.  The system is now transferred to its initinl
eondition by expanding the lransferred electrons from p 4+ Ap
and = 4 Ar back to p and v at the potential ¥ -4 AV characteristic
of the upper Wwmperatuee, and then moving this electron gns
bodily at eonstant p und « back from V' 4 AV to V, where it may
b incorpornted into the chamber ol lower tomperalare with no
additional mechanical or thermal effects.  The eondensation and
evaporation are accompanied by Leat of evaporation, which is
evidently the heal b eonstant sarfaee ehorge, . We neglect
the trreversible teansfor of heat by conduetion through the metal
during this process, just as we did for the thermo=cloetrie cireuit,
and set the total ehinnge of entropy in the process equal 1o zero,
sinee the system hos been restored to fus initial condition.  The
total ehange of entropy for unit quantity of cleetricity transferred
gives the equation :

LR o I AL
B, T NN

Frg. 14

ﬂ":;r
“J'I_"'j'r »
=AMy B8 X S ednyen W
ar T T Ar '

where AS is the entropy change per electron of the electron gas.
The process of transfer Trom V4 AV to Vs evidently without
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change of entropy, because only mechanical forces are here
involved, just as lifting a closed box of gas at constant temperature
through the earth’s gravitational field involves no change of
entropy. We have then,

AS =~ (B_S) Ar — (—6—5) Ap.
dr/»p ap T

In general, for any substance,

(49, - S (), -~ (2);
ar/» T ap T ar/»

But the electron vapor satisfies the perfect gas laws, and hence

C, = ; : 1 X,
where y is the ratio of the specific heats, § for a mon-atomic gas,
(av) K
and (—) = —-
or/» Y/

Hence

AS = — X _AT 4 Xpp,
y—1r7 Y/

Substituting above gives :
li(ze)+£+l[__:1~_+.'s§£] —o.

edr \r T elr(y—1) pdr
But we have already found
ldr=ﬂe_?_e_&df=§1‘+ﬂ=@.
k72 K72 n T P
Substitution gives at once
%+e(o-—1—3‘§)= ye . IV, 15.
dr T v —1

This 1s the desired universal function, which thus appears not
only independent of the metal, but also independent of temper-
ature.
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Additional information mayv be oblained by applying the first
law to the eyele just deseribed, putting the total heat absarbed
prual to the total work done. Work is done in the manipulation
of the pistons and in the transfer of gas from V 4 AV o V,
Heat is absorbed during evaporation and condensation, transfer
of the electricity throngh the unequally heated metal, and
expansion of the gus from p 4+ Ap, v + Ar Lo p, 7.

The work done per electron 1s:

all’ W
Lpt), 4 a0 — (pv), — (E)“ﬁr _ ‘:I;_F)- Ap -+ e AV,

The heat abzorbed per electron is:

dy, a) agy\
3 + co Ar — (ﬂ;‘).«- Ar — -:'}F)-&P'

(r]'“' B (Eh') (.r‘.l FF) _ (E}:')
=] a:pi{n=); =) mopl==
dr /p dr/p A /v dpte
(). ()
are " Nap/s ar/u

and in particular, for a perfeet pas:

(o) (1) -
dr /v C Ndp /s I

(flfiz') - (f"-’) A
arly  ¥—1" \ap/s L

Substitution gives at onee

In general :

d—n'-“ T —_ vE = ‘:i_l'r.. I 1
i i T—1 @ il

Combining with equation 15 gives

EF <29, IV, 17

r T
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This equation was also obtained by Lorentz by an entirely
different method, so that again we have presumptive evidence of
the correctness of the analysis.

The meaning of the ‘;—V of this equation is to be carefully
T

noticed ; it is the difference of potential which is automatically
set up between points at unit difference of temperature immedi-
ately outside an unequally heated metal, free circulation of the
eleclrons through the vapor being prevented. It is the Volta differ-
ence of potential which would be observed between two plates
of the same metal at different temperatures, the absolute temper-
ature being so low that spontaneous emission of electrons from the
metal is negligible. It is a quantity which should be capable of
measurement at ordinary temperatures. We have here therefore
a possible experimental method of determining the surface heat.
It is not evident, however, that experimentally it would be easier

to obtain reproducible values of %K between plates of the same
T

metal at different temperatures than to obtain reproducible values

dg‘“’ - A determination of Z—V offers the advantage, however,
T T

that it gives directly the surface heat of the single metal involved,

instead of the difference of two surface heats, as does %-

.

The Volta difference of potential set up between two plates of
the same metal at different temperatures would not be expected
in general to be such that the electron atmosphere in the space
between the plates would be in equilibrium at the pressures auto-
matically generated by the evaporation from the two surfaces.
Failure of such equilibrium would result in a continuous circula-
tion of electrons across the intervening space and back through
the solid metal. Such a circulation would be maintained at the
expense of heat conveyed by the circulation between the two
reservoirs which maintain the two plates at different temperatures.
Such a circulation is actually observed in the case of many metals;
it may obviously be described in other words as a spontaneous
thermionic emission of electrons between a hot and cold specimen
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of the same metal. If there were no such spontaneous circulation,
a pressure gradient in the electron vapor would be required of

Ap _ _ AV,
P KT
But
Ap _ M 4, =1 —¢ls Ar.
y/) Kt KT
. . .. AV Py
This, combined with ol would demand that 4, = 0. But
T T

n, is capable of direct experimental measurement, and is certainly
not zero. This confirms the experimental observation of spon-
taneous thermionic emission between different pieces of the same
metal at different temperatures, and means that Pg cannot be zero.

We have here therefore obtained positive evidence of the reality
of a surface heat not identically zero, so that this quantity must
be scrupulously retained in any thermodynamic analysis.

Thus far in the analysis of this chapter we have dealt only with
quantities which in principle are capable of direct measurement;
this is obviously true of most of the quantities, which have
actually been measured. The difficulty with the surface heat is
not one of principle, but is one of numerical magnitude. Simi-
larly in principle we might explore the space surrounding o metal
and by drawing off the electron vapor actually determine the
density of space charge, and so the n4 of our analysis. It is now
of interest to go a little further, and introduce some of the con-
structional quantities which we have alrcady considered in
previous chapters. Consider in the first place the electric poten-
tial in the body of the metal and the jumps in this potential at
the vartous interfaces. Call the jump in potential between the
metal A and surrounding empty space S;g and the potential
gradient inside the metal spontaneously set up on open ecircuit
¢’’4. At temperatures so low that there is no spontaneous emission
of electrons from the metul let the system come to electrical
equilibrium on open circuit with the lwo ends of the metal at a
difference of temperature Ar. The total change of clectrostatic
potential in deseribing a complete circuit, into the metal at one
end, through the metal, out at thc other end, and back to the
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starting point through empty space, must be zero. This gives
at once:

— Sug+ o' A7 + (SAE + Ar d‘gf‘ﬁ') — AV = 0.
T
Whence
dSAB r — ‘-}_I_/A —_
dr T o dr ’
or, replacing av by &,
T T
dSe 4 o _ Ps _ IV, 18.
dr T

for every metal. The ¢' is obviously what we have previously
called the (e.m.f.)q in the unequally heated metal, as is seen at once
on setting ¢ = 0 in the general relation I, 4. But we have already
found the value of (e.m.f.),, so that

o =— 0’ % dr + J(r). 1V, 19,

Combination of equation 18 above for %Sf with equation 15
previously found for %%2 gives:

&% (n, — eSp)+ ¢ [cr + 0’5 dr — f('r):l - ?’1_"—1-, IV, 20.

an equation by which the temperature derivative of the con-
structional quantity Sg is determined, except for the universal
temperature function, in terms of measurable quantities.

It appears therefore that although the absolute value of the
jump of potential at the surface of a metal is not determined by
thermodynamies its temperature derivative is nevertheless fixed,
except for a universal temperature function. If the relative
values of the surface jumps for any two metals are given at 0° Abs,
their relative values at all other temperatures are fixed in terms
of observational quantities.

The temperature variation of the potential jump at an interface
between two metals is now also determined. Calling Sg4 the
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potential jump on erossing the interface from B to A, we have in
general
Sen 4 Spa + Sur+ Van=0. IV, 21.
Whence
dSus _ dVau , dSix _ dSus,
elr dr dr dr

Bul from equation 20,

: "4 — d
E [S.lh' — bﬂﬁ'] = 4y = ap 'I:-f . ﬂﬂdr + 1 ] I.,!.:il = ﬂpul'
l’fr i} T [ I'ir
Also v :
-Tf_:_"= _IF,w — Pas 4+ Pl
and
o Pps — Pa
ti'_; [ma — nul = ¢ [Fn =l —'ﬂ!r—“]
Henee
0 ;] T —
F!i:.ﬂ - £T”! +IF—" - £8 dr. IV, 23,
i

But from the equations of the thermo-electrie circuit

d'F g
Of — 0 =T
dr?
g8 — 04 dr = E_'::l?"!‘g - @EE
0 T iy dr |,=p
and
Pan _ dEqn,
T dr
We have already seen that E!!;lﬂ = () by the third law, so that
T ril
hinally
dSan - ), IV, 23.
dr

or the potential jump at the interface between two metals has at
all temperatures the same value as at 0° Abs.  In particular, this
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checks when applied to different orientations of the same crystal,
for we have already seen that the potential jump at an interface
vanishes at all temperatures.

The last result bas at once a bearing on the hypothesis of Kelvin
that the entire Volta jump is situated at the interface between
the two metals. For if this were the case, Sis would be equal to
V 45, and the temperature derivative of the Volta difference would
vanish. By equation III, 10 this would demand that the surface
heats of any pair of metals differ by their ordinary Peltier heat.

This is as far as I have been able to get by applying thermo-
dynamics to the process of electron emission, treating the electron
vapor as & perfect gas, but making no other assumptions about
it. We can now go further and give a more explicit form to some
of our expressions, and in particular to the expression 1 for the
density of the electron vapor in equilibrium with the metal if we
apply the third law of thermodynamics and quantum theory to
the electron vapor.

Given a neutral metal at 0° Abs. We raise it to temperature
and evaporate from it reversibly at this temperature a certain
number of electrons, leaving behind a corresponding surface
charge on the metal, together with, in general, a residue of neutral
metal. For the purpose of the argument it is convenient to
particularize by evaporating such a number of electrons that
the original neutral metal is entirely used up, leaving as the final
gystem only the electron vapor and surface charge. Any original
metal in excess of this requirement will simply act as & dummy in
the argument, cancelling from the final results. We now consider
the entropy changes in the process just outlined. The entropy
of the final system is the entropy of the electron vapor and surface
charge. If we assume that the entropy of the original neutral
metal was zero at 0° Abs, in accordance with the third law, then
the final entropy is also the entropy imparted to the system in
warming it to temperature and evaporating the electrons from it.

The entropy change during evaporation per electron is /7,
where 7 is obviously the latent heat of evaporation in the isolated
system, a surface charge being created during the evaporation.
The entropy of the electron gas per electron is So + # ¢ log 7 —
xlog p. This expression holds for any gas, S, being the entropy
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at unit pressure and temperature. S, cannot be found by
classical thermodynamics or by classical statistics, but quantum
statistics permits an evaluation, and gives the value:

5 G(2 rm)bd
So = "(§+l°g 2 )

where m is the mass of the electron and 2 Planck’s constant. G
is a weight factor; it was taken as unity in the original calculation
of Sackur and Tetrode in which the electron was treated as a
simple particle, but when electron spin is taken into account, it
must be set equal to 2.

The entropy of the neutral metal at = just before evaporation

IV, 24

is Com dr, where C,n is the specific heat at constant pressure
o 7T

of the metal. We are here neglecting the work done on the metal
in compressing it to the pressure of the electron vapor; in view
of the extreme minuteness of the latter this is entirely legitimate,

Similarly the entropy of the surface charge is Qﬂdr, if we
0o 7T

apply the third law to it and assume that its entropy also van-
ishes at 0° Abs, or if we are unwilling to make this assumption,

then its entropy is S, 4 f gﬁdr. If we now equate the two
o T

different expressions for the entropy of the final system, we get :

‘E'KIOET_KIOgP'l'Su'FSop-I'f%dT =frﬁdr+g-
o T T

o T
IV, 25.
This may be solved for p, giving
as L os_n S, 1 rcEE_CE’_‘ :
p=GWr’e’ "+‘+'J; e IV, 26.

h?

The exponent of the exponential may be further simplified
by expressing n as a function of 7. We have the general ther-
modynamic relation

dy _1_ 1 (6 Av)
dr v Av\adr /s + 4G Iv, 27.
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This is o familiar thermodynamic relation which holds for any
transition between two phases; it may be obtained by applying
the first law to the cycle just considered. Av is the difference of
volume between the two phases, and AC, is the difference of
specific heat of the system before the transition and after it.
To a high degree of approximation we may replace Av by the

volume of the electron vapor, or Av = v = -:77 , which gives

(Q_é\_v) _ K

ar n - P

The first two terms of the right-hand side of equation 27 there-
fore cancel. AC, for the usual transition consists of only two
terms, the difference between the specific heat of vapor and solid.
But here the solid is altered by the evaporation, a positive charge
being left behind on the surface. This surface charge, in the
absence of certain information to the contrary, must be assumed
to have a specifie heat of its own different from that of the metal,
so that we must put AC, = Cp, + C,, — C,.n, where the terms
on the right are in succession the specific heats of gas, surfacc
charge, and neutral metal. Since # is the latent heat per electron,
C,, refers to one clectron in the gas, C,, is the specific heat of the
surface charge per positive ion, and C,. is the specific heat of that
number of atoms of the metal which give rise to one eleetron of
vapor, that is, one atom if the atoms become singly ionized on
evaporation of electrons, 4 atom if they become doubly ionized,
ete. For a perfect mon-atomic gas €, = 3 «; this holds even for
the electron vapor because the vapor pressures are so excessively
low that quantum effects are negligible. We have therefore :

@ = 'g' K + Cpp - Cpm. IV, 28.
dr
which gives on integration
1 =10+ §«r +f (Cpp — Cpm)dr, IV, 29.

where 5o is the value of n at 0° Abs.
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The exponent of the natural base in equation 26, therefore,
becomes

_ Moy Se L Cw=Cmyg. 1 (Mo, —c,0dr IV, 30.

KT K K _Ju r KT _Jfi
Write this s — ™ 4 log o + ¢(r), where we have set Sor log
KT 3
and the two integrals = &(7), giving finally :
| W e
= flg_ti’_ff_f_']_f: .rl' g téir). W-I 31.

hi

If our deduetion hns been correet, this should be essentially
the same as equation 1 for n, the connection being n = p/kr,
exeept for the fact thal the constant of equation 1 is not explicitly
determined. IL may in fact be verified by using the relation for

d ) .
EII that the constant of equation 1 may be given such a value as
dr

to reduce equation 1 identically to 31.

In prineiple, equation 31 conluins only observable quantities,
except for e, Given sufficient experimental skill, it should be
possible by direct measurement of the eleetron vapor pressure as
a funetion of temperature and of the other variables entering the
equation to eheck the constaney of the factor Ga, and so cheek
the equation,  But direet messurement of the pertinent quantities
is at present very far beyond experimental possibility, and we
are forced to an indireet and partial verification of the equation,
In particolar, the equilibrium pressure eannot at present be
messured, but we ecan measure instead the thermionic emission
eurrent, and get a connection between this and p by a theoretieal
argument. To get this connection we assume that the number
of electrons emitted from the interior of the metal into the sur-
rounding space is the same whether these ave drawn away as fast
ng emitted, as in measuring thermionie emission, or whether
they are allowed to acoumulate in the space outside until the
equilibrivm pressure 18 built up.  In the equilibrium eondition
we have a theoretical expression for the number of electrons
approaching the surface of the metal, which must obviously
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be equal to the pumber leaving it. 1§ we enn assume that all the
electrons leaving the suriaee eome from the interior, that is, that
there 18 no reflection at the internal surface of the eleetrons
Il]]].'!'ll.lﬂl.'hlll',l., it, then we have at onee g connection between e
PrisEsion l'urrunl and the vapor prossure,  The theoretieal connee-
tion between gas pressure and number of electrons erossing unit
.:;urfm-u in unit time, assuming Maxwell's distribution in the pas,
1

N = —‘ﬂf", & IV, 32,

.—'?T Le

from which an expression for the thermionic emission eurrent many
at onee be derived ;

= 4--!-“'!

Ly G
[ SN N IV, 33.

“‘h

The equality sign obviously corresponds to the maximum possibile
emission eurrend ; il there iz electron refleetion in the equilibrium
state, at the interior surface of the metal the number of eleetrons
emittedd from the interior of the metal iz less than assumed above,
and henee the current is less,

Experimentally it is known that thermionie emission for all
pure metals ean be represented by a formula of the type § =
Counst %", The variation of the cmission current with
temperature 15 ecnormously rapid ;. this variation is carvied by
the exponential term in the formula,  Deeause of this very rapid
temperature varintion it s extremely dillieult to establish the
other two [aelors, Const amd +, with much aceuracy. [t s
known Lhal exponents for ¢ varying from 1 to 3 or even more
reproduce the results as well as the value 20 With regard to the
econstunt factor, early dertvations uf the thermionie emission

Th I 2
formula gave for the m'mﬁhmtmr:n'h = without the factor (7,

i
beeause the existence of eleetron spin was not known at the time,
and entirely pnegleeting the possible existence of the factor a.
Now the curious fact is that for those metals for which measure-
ments of thermionie emission are most satisfactory, W, Ta, and
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2“;:” ¢, which
corresponds to 60.2 amp/em® The minimum possible value of
the factor « is 1, corresponding to S, = 0, or zero entropy of the
surface charge at 0° Abs. We may perhaps suppose that « is
actually unity for W, Ta, and Mo. But now it is pretty certain
that it is not legitimate to neglect the electron spin factor G,
which has the value 2. Using this value, we can explain the
observed value of the emission current by supposing that at least
half the electrons which strike the surface are reflected. If « is
greater than unity, then more than half must be reflected. It is
not at all impossible that something of this sort actually occurs;
analysis from the quantum point of view of the emission from
the interior of the metal seems to demand something like this. )

If the Const is greater than twice the value originally assigned
to it, that is, greater than 120 amp/cm? then a value of « greater
than unity is demanded. Such high values do seem to be de-
manded by some metals, notably platinum, although the question
is not entirely free from experimental uncertainty. This means
an entropy of the surface charge at 0° Abs greater than zero.
Such is not surprising if it is considered that surface films are
known to have the properties of a two-dimensional gas, and that
the ions which compose the surface charge are doubtless dis-
tributed at random over the surface, their number being very
small compared with that of the surface atoms, so that a regular
arrangement would be difficult. Furthermore, if experiments
are made on the same metal under different degrees of outgassing,
that is, under different surface conditions, a connection is found
between the ‘‘ work function ’’ and Ga. (In fact, the connection
is linear.) Some connection between these quantities seems
consistent with the physical picture.

Let us now fasten our attention on the exponential part of
the emission formula, where the accuracy is high, and inquire
what is the significance of the fact that the exponent is of the
form — b/r. We must have:

_l‘!.i.l[ ﬁd.,-_l ;'d-r:la_é’
0

KT K T TJo T

Mo, the value for the Const seemed to be just
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abbreviating C,, — C,» by ¢. Differentiate this equation by
T, obtaining

Ty 1[1,, i'dr] b

kr® kL7 T2

Multiply by 7%, and differentiate again, obtaining
¢ =0,

or
C,p = Com = 0. IV, 34.

Hence, independent of assumption of electron reflection al
the surface, or uncertainty about the effect of electron spin,
the specific heat of neutral metal and surface charge must be
equal to each other if the emission formula is to have the observed
exponential form.

There is a conneetion between C,, — C,» and the surface
heats. Combine equation 7 with equation 15, obtaining

dPy (_fs): K s IV, :
d+edr+ea - 7—1 .3!\. ,35.

But we also have
d'q = {z“"{"cm_cpm'
dr

Eliminating dn/dr,
C,o— Con=— e[(gjﬁ + o — PJ:I = — e[a‘ + T d (Pj):l, IV, 36.
(

T T {r\ 1

a connection between surface heat, specific heat, and Thomson
heat. If C',, — Cpn = 0, as the emission formula would suggest,
we have a connection between the surfaee heat and Thomson heat,

({ (l)‘\') — a
dr \ r T

j — a«"lt + Const, IV, 37.

or, on intcgrution

and the surface heat is simply connccted with the driving e.m.f.
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We may further obtain information sbout the Volta difference
of potential between two metals whose thermionie emission for-
mulas contain the exponential term ¢~ ", independent of the value
of the coefficient.  For all such metals €, — €', = 0, and equn-
tion 20 becomes

T4 = Maa -+ E KT.

Write this equation for the twe metals, and subiract, obtpining

Ra — Nk = Noa = Yol

Bul we alzo have

na — Mg = P(i"m -4 fdﬂ”)*
ir

Substitution and integration gives :
o g e ,
Van = . (nag = foa) 4 er = Voan <+ e, IV, 38.

where ¢ 8 an undetermined canstant of integration. V,u is
therefore a linear funetion of temperature for such metals.



CHAPTER V

THE EFFECT OF SURFACE CHARGE ON VAPOR PRES-
%‘}ngl‘ill,)sAND ELECTRON EMISSION UNDER INTENSE

Experimentally it is well established that if a sufficiently strong
electric field is applied perpendicularly to the surface of a metal,
an electron current is emitted by the metal. The natural pic-
ture of this phenomenon is that the electrons are pulled away
from or * out of ”’ the metal by the intense field. This phenom-
enon has usually been considered to be entirely beyond attack by
classical methods, as perhaps indicated by the fact that even
under ordinary conditions the force which restrains the charge
on the surface against the ‘ boiler pressure,” 2 mp?, must be
deseribed as a ¢ non-electrostatic ”” force. The problem has been
recently attacked by the methods of wave mechanices and expres-
sions deduced for the current as a function of the field which are
not wide of the mark.®” The subject is one of great difficulty
experimentally, however, since it has been impossible up to the
present to get values for the cold emission current which are
truly characteristic of the metal and not affected by geometrical
irregularities in the surface, and these are practically impossible
to eliminate or reproduce on the scale of dimensions required. It
seemed to me, however, that certain aspects of this problem
should be open to attack by classical methods, since in the Volta
effect we have the possibility of producing fields of any desired
intensity by bringing two metals close enough together, and at
constant temperature the mechanism of the Volta effect is con-
servative and reversible and therefore amenable to thermody-
namic analysis. I published a paper® in which the very intense
fields which may be produced in this way were considered, and I
drew certain conclusions. One of these conclusions was most
paradoxical, namely, that the density of an electron vapor immedi-

103
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ately outside the surface of a metal was changed to the same
extent by a field of given numerical magnitude independent of
the direction of the field, that is, whether the field was pulling
the electrons away from the surface or driving them into it.
This result by itself should have suggested that the phenomenon
analyzed by the use of the Volta effect was not the same as the
phenomenon of cold emission. I have now been able to carry
the analysis further and to find an explicit formula for the effect
of normal field on the vapor pressure of the electrons in equilib-
rium; the electron vapor pressure is given by an exponential in
the square of the field (or surface charge). It is therefore now
cerfain that cold emission must be something quite different.

In the following I give the simple analysis for the effect of nor-
mal field (or surface charge) on ordinary vapor pressure. There
is a certain intrinsic interest in this problem, which I have not
seen discussed anywhere, in spite of the fact that the analysis
does not have the application originally intended. We consider
first the effect of normal field on vaporization when the vapor is
electrically neutral; an cxample would be the effect of charging
_ the surface of a pool of mercury on the pressure of the mercury
vapor in equilibrium with it.

Construct a condenser of two parallel plates of the same metal
and connect the plates to a perfectly reversible electromagnetic

engine by which the plates may

A be charged to any desired differ-
T o ence of potential. Cover the up-
1‘ ? per plate with an impervious
a ! neutral membrane, by which for-
lWW mation of vapor at this plate is
f prevented. Allow vapor to form

o *e freely at the lower plate and

Fic. 15 come to the equilibrium pressure

in the space immediately above

it. In the space between the condenser plates insert a piston,
which is exposed to the vapor pressure, and which may be moved
at pleasure by a suitable external mechanical agency (Figure 15).
Let | be the distance from upper condenser plate to the piston,
and A from upper condenser plate to the upper surface of the
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lower plate. The plates are to be held rigidly in some sort of a
frame, so that no external work is done corresponding to a change
of distance between the plates, A changing only because of con-
densation of vapor on the lower plate or evaporation from it. As
independent variables fixing the condition of the system we may
conveniently choose absolute temperature, 7, surface charge, p, on
the lower plate, and I, the position of the piston. We have taken
the surface charge as the variable instead of the normal field
because it is somewhat easier to handle; the two are evidently
equivalent, since & = 4mp. The following analysis applies to
unit area of the plate.

The general method employed is exactly the same as applied
in Chapter 111 to the Volta condenser. Write

dQ = dU + dW,

where Q is heat absorbed and U internal energy. Work can be
done by this system only by movement of the charge through the
external engine, or by motion of the piston.

Hence, dW =—Vdp — pdi,

where V is difference of potential between the plates and p vapor
pressure. V = 4 7p\, neglecting the very small dielectric con-
stant of the vapor. Express the differentials in terms of the
independent variables :

_oU
dQ_ar

Divide by 7, thus forming dS, the differential of entropy, and
express the condition that this is a perfect differential. There
are 3 conditions.

(1) Condition on the coefficients of = and p.

dr+ 2 ap + Y a1 _ 4rordp — pdl.
dp al

a (1 aU) 1 9 [aU 4 ] 1 3@
— - — =] — —4wpr | — = — ,
dp\ 7 Or T OT dp * dp
which gives, almost at once,
I\ 1 1 4
oA __1.1 9 V.1
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This result is not of any inunediate interest to us; it is evident

that gé is not identically zero because of evaporation when tem-

r
perature changes, und %f!! evidently ineludes 4 heat of vaporiza-
tp

Ltion if the vapm pressure changes when surface eharge changes.
(2} Condition on coeflicients of rand [,

B(IBI,F)=I a[aﬂ_p]_la_r_g

al\r ar/ rarlal ol
which reduces al onee (o :
dp _ _ 18Q -
dr roal Vi 2.

This is the exact anuslog of Clapeyron's equation.
(3) Condition on eocllicienls of p and [,

aflal ] il [&H ]
— | = =dzr]| = -
ﬂ.’.[ﬂp )T Bl ;

which gives at onee:

dp ak
- = .l: -l —
i ol

the desired relation involving an effect of surface charge on vapor
pressure. 1L al onee evident that the sign of d5/dp is negative,
gince N decreases, beesuse of econdensation of vapor, when [
e rEARES,

This equation may be integrated if the vapor satisfies the per-
fect gas law.  Tusdh the piston in fur enovgh to eondense one atom
of viipor. d\ = — iy, where vy 6 the volume of one atom of
the solic,  Purthirmore, i 0 is the volume of one astom of gas
(pr = x7),

V., d.

(At+d\) —(+d) — (=1 =—1,

or
dl = r — 1,

Whence Do el fa, vV, 4
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The last approximation is sufficient because v, is very much less
than ». Hence, substituting,

a_p=—41rp-—vs.;|-=—41rppuw|. V,5.
dp v KT

v, may be treated with sufficient accuracy as a constant inde-
pendent of p and . The equation may be integrated at once,
- gving,

2 Tl

p=pur)e = °, V, 6.

where p, is the normal vapor pressure with no surface charge.

The vapor pressure decreases, therefore, exponentially as the
square of the surface charge, becoming zero for infinite surface
charge. This effect is purely a result of the change in internal
pressure in the solid phase due to the presence on it of the surface
charge. It is a familiar result of elementary thermodynamics
that if the pressure on liquid or solid phase only is increased, the
excess pressure not acting on the vapor, the vapor pressure is
thereby increased by a factor equal to the ratio of volume of con-
densed phase to volume of vapor phase multiplied into the in-
crease of pressure. Here the internal pressure of the condensed
phase is decreased by the boiler pressure 2 mp? tending to blow the
charge off the surface and producing an equilibrating tension in
the interior of the condensed phase. Under actual conditions the
effect is, of course, very small because the volume of the vapor is
so much greater than that of the solid. It may be calculated
that at 300° Abs a charge of 8 E.S.U. per unit area on mercury,
corresponding to a normal field of 30,000 volts per ¢cm, decreases
the vapor pressure by 1.2 X 10~7,

Our result may at once be applied to the electron vapor in equi-
librium with a metal, replacing vwq bY 9 — ¥, Where v, is the
volume of so much surface charge as corresponds to one electron
in the vapor. No appreciable error is made by neglecting the
space charge in the vapor. It is, however, to be noted that the
moving pistons of the analysis above must be kept so close to the
evaporating surface that the addition to the normal gas pressure
arising from the acceleration of the clectrons in the field may be
neglected. This is a purely mechanical effect, with no thermal
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aspects, and would only complicate the analysis if it were included.
There is no experimental evidence of the sign of v,, — v,, so that
it is not inconceivable that the electron vapor pressure may be
increased by a surface charge, instead of decreasing like an ordi-
nary vapor. One would expect, however, v, and », not to be
markedly different, and thereforc the effect on electron vapor
pressure to be even smaller than on ordinary vapor pressure.

The result of my original analysis is thus verified, namely, that
the effect is independent of the sign of the surface charge, that
is, independent of the direction of the normal field. Cold emis-
sion is therefore an essentially different sort of phenomenon
from that considered here, and is undoubtedly connected with
various quantum effects. It is probably not legitimate to pic-
ture the electron as a point charge or the surface of the plate as
a uniquely defined plane surface in the realm of magnitudes per-
tinent to this phenomenon. In faet, if one calculates the wave
length of the electron under these conditions, it will be found to
be of the same order of magnitude as the distance between the
plates necessary to give rise, by the Volta effect, to fields of suffi-
cient intensity to produce cold emission.

However, the analysis above has, I believe, one suggestion as
to current wave mechanics treatments of this phenomenon. The
intense normal field must give rise to a surface charge; this sur-
face charge is neglected in the wave mechanics treatments, and
in fact I have never seen a description in wave mechanics terms
(altered distribution of the ¢ function) of the surface charge.
One cannot help feeling intuitively that the surface charge must
play some part in the phenomenon.



CHAPTER VI
THERMO-ELECTRIC PHENOMENA IN CRYSTALS

The fundamental fact with respect to erystals has alrcady been
used in Chapter 11, namely, that single metal crystals, except
those crystallizing in the cubic system, are thermo-electrically
non-isotropie, so that rods cut from a crystal in different direc-
tions behave toward each other thermo-clectrically like different
metals. It is to be noticed at once that this fact reduces the law
of Magnus to a purely academic position, except for liquid or
cubic metals, for in any actual wire of a non-cubic metal the size
of the single crystal grains is finite in comparison with the dimen-
sions of the wire, so that the erystal arrangement cannot be abso-
lutely haphazard for all possible distributions of the temperature
gradient, and a sensitive enough measuring device must detect
residual effects determined by the preponderant crystal orienta-
tion.

In Chapter II the simple case was examined in which the rods
were cut cither parallel or perpendicular to the principal axis of
the crystal. In the general case there are much more complicated
phenomena; these we shall consider here. This discussion will
be from an elementary point of view, in which emphasis is laid
on the qualitative nature of the phenomena in various simple
cases. A complete description of thermo-electric phenomena,
not only in crystals, but in any sort of non-isotropic and non-
homogeneous material, has been thrown into exceedingly elegant
and compact form, using tensor analysis, by Ehrenfest and
Rutgers."® In the last part of this chapter a résumé of their anal-
ysis is given. I have preferred, however, the emphasis on the
fundamental physical phenomena which is given by a less elegant
analysis. A treatment of thermo-clectric phenomena in crystals

was first given in complete form by Kelvin."”? His treatment was
109
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also formal to a certain extent. His analysis enabled him to pre-
diet the existence of an effeet peculiar to erystals, a transverse
heating efieet, but, on the other hand, he overlooked another most
interesting phenomenon, the internal Peltier heat. That a man
of Kelvin's profound physical intuition should have failed to
draw this consequence from his analysis illustrates the danger in
any analysis which is confined too much to purely formal manip-
ulations.

Consider a thermo-couple one of whose branches is a long
slender rod cut in any direction from the erystal, and the other
branch is some isotropie metal,

Lr This couple gives a thermal
IL.MLF. dependent only on the

W f,f;’ oriecntation of the rod, the iso-
"§ .'.f’/j--m-—- tropic metal, and the tempera-
/A /A tures of the junetions. The
% % ELM.F. is independent of the
r}f/ h 7 method ol crmn-t'cf.mn-hu(-wm'n
/) erystal rod and isotropie metal,
provided the conneetion is all

] . made in a region at constant

termperature, and is in partieular
Flo. 16 not. dependent on whether the
erystal rod is cul at an angle at
the connecting surface as shown in Figure 16, a, or is eut square
as in Figure 16, b.  The fact that no rearrangements of the eir-
cuit. in the region all at eonstant temperature ean have any effeel
on the net FN.ALF. is a consequence of the seeond law of thermo-
dynamies. T'or if there were such an effect, then we eould con-
struet a system composed only of the two different, arrangements,
all at the same temperature, which wonld give a net F.NLE.,
and this would be contrary Lo the second law, beeause isothermal
systems, in which no material changes are taking place, cannot
deliver energy.

In order not to unduly complicate the following discussion it
will pay to state at the beginning that all known metals erystal-
lize in geometrieal forms with at least one prineipal axis of rota-
tional symmelry, and in facl the axis is either of three-, or four-,
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or six-fold symmetry; two-fold principal axes are not known for
metals. It is also an experimental fact that the two ends of the
principal axis of rotational symmetry are similar, which means
that any axis perpendicular to the principal axis is an axis of two-
fold symmetry. If we accept Neumann’s law that all physical
phenomena must be of at least as high symmetry as the external
geometrical figure of the crystal, then thermo-electric phenomena
must have at least one axis of three-, four-, or six-fold symmetry
in all metals. This is, as a matter of experiment, the ease, and
we shall assume it in the following. If the crystal is cubic (three
axes at right angles of four-fold symmetry), then it is thermo-
electrically isotropic, and need not be considered here.

- I'd
/’ \ 7 \
, Ay . \
] 1 ' L
\ \ P
. A, « BI® -
S o | 7 ~L s

a b
Frac. 17

The mere existence of a thermal E.M.F. in a circuit composed
of rods cut parallel and perpendicular to the axis (we need not
for the present consider the question as to whether the longitude
of the rod in the plane perpendicular to the principal axis makes
any difference) demands the existence of a new thermal effect,
peculiar to crystals. Consider the two circuits of Figure 17, cut
from the same erystal, but differently oriented, as shown. Main-
tdgin each circuit at constant temperature and circulate a current
about it. The second law demands that the net reversible heat-
ing effects in each circuit be zero. Now the one circuit differs
from the other only in the part within the dotted lines. The
heating effect in the parts outside the dotted lines are therefore
the same, which demands that the heating effects within the
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dotted lines also be the same. Now there is certainly a Peltier
heat at the surfaces of discontinuity of orientation AA and BB,
and the heats at these surfaces are certainly different, the eurrent
in one case passing from parallel to perpendicular and in the other
from perpendicular to parallel. There must therefore be other
compensating heating effects, and the principle of sufficient
reason, reinforced by elementary considerations of erystal sym-
metry, shows that the only possible place for such an efiect is in
the body of the metal at the corner where the direction of current
flow changes. We must, therefore, in general recognize the exist-
ence of a reversible heating effect in the body of a crystal where
the direction of current flow changes. This I have called the
“internal ' Peltier heat. It has the same dimensions as the
regular Peltier heat, that is, it is a heat per unit quantity of elec-
tricity, independent of the strength of the current. Expressed in
terms of electrons, this means that every electron that turns the
corner in the crystal must absorb the same amount of heat,
whether it is moving rapidly, as perhaps in a heavy current, or
slowly in a small current. This means further that if an electron
is moving in a definite direction in a crystal and is slowly brought
to rest, it cannot be started moving again, no matter how slowly,
in any other direction without the absorption of a definite and
finite amount of thermal energy. This evidently demands the
existence of some sort of fine structure in the crystal not at all
contemplated by the ordinary large-scale equations.

We can get an exact expression for the internal Peltier heat in
terms of the ordinary Peltier heat at the interfaces in this simple
case. Call the internal Peltier heat when the direction of current
flow in the metal changes from perpendicular to parallel to the
axis I,;. Then setting the total heat generated in the dotted
regions of Figures 17, a and 17, b equal to each other gives at once :

Pu - I.LEI = Iu.r. +4- PJ.E'
Whence, since I,; =— I,, and Py, = — P,,,
1, =P, VI, L

We next consider the relation between the thermal E.M.F. and
the orientation with respect to the crystal, that is, the symmetry
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relations. This question was considered by Kelvin, who found
it necessary to make a special assumption in order to make any
progress. This he called ‘ the axiom of the superposition of
thermo-electric effects,” and is that the heating effect of any
current is the same as the sum of the effects which would be pro-
duced by its vector components separately, no matter what the
method of resolution of current into components. This assump-
tion is at once seen to be consistent with the simplest expression
for the complete reversibility of the heating effects. If the heat-
ing effects are reversible, they must reverse sign when the sign
of the current changes, and the simplest dependence on current
with this property is linear dependence. Ixperimentally, no
higher order terms, which must be of odd degree, have been
detected. Kelvin's assumption, which is that the heating effects
are linear and additive in the components of the current, certainly
satisfies this demand of reversibility, but it is not the only way of
satisfying it, as may be seen by the following very simple example.
Consider these two expressions for a heating effect in terms of the
rectangular components :

(a) Heat = ¢yi.: + c2ty + cit..

_ z’a ,iyﬂ 1:’3

B) Heat = o1 i it it it

The first is reversible and linear in the total current, for if every
current component is multiplied by a constant factor, the total
heating effect is multiplied by the same factor, and in addition
satisfies Kelvin’s assumption of additivity, while the second is
also reversible and linear in the total current, but is not additive,
as one sees by adding the heating effects obtained by sctting in
succession 1., i,, and 2, the only component. Thermodynamics
and reversibility demands only expressions of the form (b), and
there are evidently an infinite number of analytical expressions
satisfying this demand. Kelvin’s assumption is therefore a real
assumption, additional to the fundamental assumption of perfect
reversibility, and must be tested by experiment. Doubtless Kel-
vin was led to it intuitively by analogy with other phenomena
of currents. For example, the magnetic field surrounding a cur-
rent is the vector sum of the magnetic fields produced by the

+ ¢;
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components of the eurrent, or the Joulean heating by any eurrent
is the sum of the Joulean heating of its rectangular components.
But the Joulean heating is not additive for eny method of resolu-
tion, for obviously if the current is resolved into two currents,
each equal to one half the original eurrent, the sum of the heating
effects is only one half the total. It is furthermore to be noticed
that if, in the thermo-electric ease, the heating for any direction
of the current involves odd powers of the eurrent higher than the
first, Kelvin's assumption cannot possibly hold.

In order now to derive the symmetry relations, aceepting Kel-
vin's axiom, we split the current flowing lengthwise in a bar cut,
obliquely to the axis into two eomponents parallel and perpen-
dicular to the axis. The question as to the difference between
bars of the same azimuth but different longitudes with respect to
the erystal axis can be answered after this present discussion.
For the moment we may assume that the longitude of the bar
designated by L is the same as that of the oblique bar under dis-
cussion,  We notice in the first place that if the eurrent flows
parallel to the length in a rod cut either
parallel or perpendicular to the axis, there
can be no heating effects at the lateral sur-
A faces of the bar, for the symmetry of the

crysial allows no differentiation of the
B lateral surfaces by which a heating might
A be determined at one and a ecooling at the
other. To prove this it is necessary to
usge the fact that all axes at right angles to
the principal axis are of two-fold sym-
metry. The existence of a lateral heating
effect In erystals was first deduced by
A Kelvin, and it 1s perhaps anticipating to

mention it here, but it will be seen that
g our method of proof needs the fact that it
A vanishes for the two direetions parallel and
perpendicular.

It now follows from the absence of any
a heating effect at the lateral faces that the
Pio. 18 total Peltier heat absorbed at the interface

e T T

| i

b

I
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of separation when current emerges from a crystal rod into
an isotropic medium is independent of the orientation of the
interface with respect to the length of the rod, provided the
rod is either parallel or perpendicular to the axis. That is,
in Figure 18, a, the heat absorbed at the surface AB when
unit quantity flows along the rod is independent of the orienta-
tion of the surface AB. Or if the interface is given the form
of a series of rectangular steps, as in Figure 18, b, the heat ab-
sorbed is still the same. It is important to notice that this is
not true when the orientation is neither parallel nor perpen-
dicular.

Consider now the heating at the interface between an isotropie
metal and a slender crystal rod with the principal axis inclined
at an angle 8 to the length, as
in Figure 19. We assume that
the rod is of square section, of
unit side, with depth perpendic-
ular to the plane of the paper, and
with the crystal axis in the plane
of the paper. The interface be- Fa. 19
tween crystal and isotropic metal
is to be perpendicular to the length of the rod. There is a heat-
ing effect at the interface which depends on the angle 8, because
it is known experimentally that the total E.M.F. of a thermo-
couple depends on the orientation. Furthermore, all the net
heating effect is at this surface because, although symmetry
allows heating effects at the two transverse surfaces perpendicular
to the plane of the paper, symmetry also demands that the signs
at the two surfaces be opposite, and since we have drawn 4 B per-
pendicular to the length, the areas of the two transverse surfaces
are equal, and hence their total contribution to the net heating
effect vanishes. Call the heating effect at AB under these con-
ditions P,m, m denoting the isotropic metal. Let the longitudinal
current density be 7, and resolve ¢ into two components, ¢, parallel,
and ., perpendicular to the prineipal axis.

‘i| ='il3080,
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According to Kelvin's axiom, the sum of the heating effects of
these two components on erossing A is to be equal to the heat-
ing effect of {, or iP,.. But now we have just scen that the con-
Lribution of @ in erossing AR 1=, sinee there is no contribution on
AR, the smme s its contribution in erassing B3, or the step-like
surface, and this iz evidently the produet of the total eurrent
parullel to the axis and P, or i, cos 8%, Similarly, the total
contribution by the perpendicular component s i sin 0P, ..
Substituting the values of @, and ¢, and setting the sum = iP,,,
Eives 4t once :

Pom = voz Py, 4+ sin® 0 Pyn

= (Pim — Pia) o8t 0 4 P, VI, 2.

and the heating effect at a surfaee perpendicular to the length of
the rod, which makes an angle @ with the prineipal axis, is a linear
function of cos® 0, This i= one of Kelvin's symmetry relations,

We ean obviously get rid of the isotrapic metal e by replacing
it by another pieee of erystal eut, let us say, with axis perpen-
dicular to the length. Then

Pin =P =10,
and,
Ij.lj_ = P];_ ["ﬂ"."'il'. fl, VIr 3-;

Or, the subzeriplt m in equation 2 is usually suppressed, and
equation 2 is then written :

Py = (Py — P eos* 0+ Py, VI, 4,

the meaning of the notation being sufliciently plain. 1t is obvi-
ons that P for every orientation is inereased by a eonstant when
one 1sotropie metal replaces another.

Consider next what happens at the lateral surface perpendie-
ular to the plane of the paper. There is actually no transverse
enrrent fow neross the luteral faeces, =0 that we eannot in general
talk of an ordinary Peltier heat at this mterface. However, hy
the aid of an ingenious deviee due to Kelvin, this is possible under
our present eonditions.  hnngine the ervetal imbedded on both
gides in the i=otropic metal, and the uniform current densily §
Howing everywhere, There is no flow across the lransverss
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boundary, and since there are no heating effects in the isotropic
metal itself, the heating effects are everywhere the same as in
the actual problem in which no isotropic metal touches the
transverse faces. But now each of the components 7; and 7, has
by itself components of lateral flow, and therefore lateral heating
effects due to the corresponding Peltier heats. The total lateral
heating effect is the sum of the contributions of the components.
The total amount of current carried by 7; across unit area of the
upper transverse surface is 4; sin 8, and therefore the total heating
effect per unit area due to this component is

1, 8in § Py, = isin 0 cos 0 Py,..

At the upper surface 7, flows into the crystal from m and the total
generation of heat by it per unit area is

1, coS @ P,,, = i cos #sin 8 P,,,.

Hence by Kelvin’s axiom at the upper transverse surface there
is a net generation of heat per unit area per unit time of :

T =1%cos0sn 0 (P, — P,) = 1cos #sin 0 P;,. VI, 5.

At the lower surface there is a numerically equal generation,
but of the opposite sign, the direction of flow of each component
with respect to the isotropic metal being, of course, reversed.

The positive generation of heat at one transverse face and an
equal absorption at the other face results in a transverse tempera-
ture gradient, just sufficient to carry the heat across the crystal
by ordinary thermal conduction. The rod, therefore, comes to
a steady state, with one face permanently warmer than the sur-
roundings and the other cooler.

This transverse heating effect was predicted by Kelvin in 1857
on the basis of analysis essentially equivalent to the above, It
was first demonstrated experimentally in bismuth by Borelius
and Lindh“® in 1917, and was subsequently independently an-
nounced by me® in 1927, and in the same year by Terada and
Tsutsui."® The effect is large enough for easy experimental
demonstration. With a rod of bismuth 6 mm in diameter and
a total current of 1 amp, temperature differences of 0.5° may be
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set up between opposite transverse faces. The effect is evidently
a maximum when the axis is at 45° to the length.

There is no transverse heating effect on the lateral faces in the
plane of the paper of Figure 19; this is evidently not allowed by
the crystal symmetry. The heating effect on any lateral face not
having either of these two orientations is to be found by resolving
the face into two, perpendicular and parallel to the face of maxi-
mum generation, which is the face in the plane perpendicular
to the plane of the axis and the length.

F1a. 20

The existence of a lateral surface effect demands the existence
of another kind of internal heating. Imagine a crystal with a
central bulge, as in Figure 20. The total heating between A and
B must be the same as if the seetion of the crystal had been uni-
form in this region, as shown by the dotted line; that is, the
total heating is the same as the lateral heating between A and B
of the uniform rod. By making the bulge fat enough, the cur-
rent density at the periphery ACB may be made vanishingly
small, and so the transverse heating at the boundary may be
made to vanish. The internal heating from change of direction
cancels by symmetry throughout the region, symmetrically situ-
ated elements on the entrance and exit sides making equal and
opposite contributions. There is left only a body effect in the
region where the current density changes in the direction at
right angles to the flow. That is, if there are terms 8i./dy in the
current distribution, 2 volume heating is to be expected in gen-
eral. The equations for body distribution developed by Ihren-
fest and Rutgers give an explicit formulation of this effect. So
far as I know, this effect has not been sought for experimentally.

The question as to the variation with longitude about the prin-
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cipal axis may now at once be settled. The argument already
given may be repeated, replacing the rods parallel and perpen-
dicular by two rods perpendicular to each other, but eut from the
plane perpendicular to the principal axis. It may be seen at once
by symmetry that directions are possible in this plane for which
any transverse heats must vanish. Chose one of these directions
as a direction of reference, corresponding to the parallel or per-
pendicular of the preceding analysis. This analysis may be now
repeated and a formula exactly like 2 obtained. But for a crys-
tal with a four-fold axis it is obvious at once that the Peltier heat
for any two directions at right angles must be the same, and
hence at once by the analog of formula 2, P must be the same
in all orientations in this plane. If the cerystal has three- or six-
fold symmetry, then symmetry demands the equality of P for
two directions at 60° to each other, and this, again by the same
formula, is only possible when P is the same for all directions in
the plane. Hence in all cases there is rotational symmetry about
the principal axis, and the formulas just developed hold for all
longitudes, so that another subscript to show the longitude is
superfluous. It is to be noticed that this proof of rotational sym-
metry also involves Kelvin's axiom; without the axiom I have
not been able to find any necessary variation of thermo-electric
properties etther in azimuth or longitude.

The experimental check of Kelvin’s two symmetry relations for
the Peltier heat and the transverse heat has not been made the
object of any extensive inquiry by many investigators. The
relation for the Peltier heat is certainly verified to a small margin
of error, but in the cases of tin and bismuth I have found distinct
departures from the cos? @ relation which seemed to me to be be-
yond experimental error."® Whether these departures will prove
to be real on more exhaustive measurements by other observers
cannot at present be told. One thing is to be noted in this con-
nection, namely, that if cither the total E.ML.F. of a couple, or
the Peltier heat, or the Thomson heat, is proved to be linear in
cos® 8 at every temperature, then the other two must be linear also.
This can be proved at onee by integration or differentiation of
the thermo-electric equations with respect to temperature.

The rotational symmetry of P, that is, the fact that the thermo-
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electric quality of every rod cut perpendicular to the prineipal
axis is the same, seems to be verified within experimental error,
but the experimental aceuracy is considerably less than for change
of azimuth.

A quantitative examination of the symmelry of the transverse
heats has been made only by Stabler “” for bismuth. He found
systematic and consistent deviations from Kelvin’s relation, but
I belicve he is not convinced that the effect is real, but thinks it
may be due to some systematic imperfection in the crystal. It
is also pertinent to add that Uchling “” has given a theoretical
kinetic derivation of the Xelvin symmetry relation under very
general assumptions, but retaining the classical picture of the
electron as a discrete point charge.

At any rate, as far as present experimental evidence goes, there
can be no doubt that Kelvin’s relations are a close approximation
to the facts.

The existence of the transverse heat involves other interesting
consequences. There is in the first place an inverse effect, that
is, if a temperature difference is set up between transverse faces
of a crystal rod, there is a longitudinal E.NLI'. which generates
a current along the rod if the two ends are connected. This is
very easily demonstrated. The magnitude of the transverse
E.M.T. is easily caleulated by an analysis exactly like that used
in deriving the equations of an ordinary thermo-electric cireuit,
allowing the irreversible processes to take place. Consider a bar
of rectangular section of breadth b and unit depth in which a
current of density 7 flows, and in which there is a transverse gen-
eration and absorption of heat at the two opposite faces of amount
T per unit area per unit current density. If the transverse ther-
mal conductivity is &3 a transverse temperature difference will be
set up of amount 7'b/k. In unit time the amount of heat 27" per
unit length passes by conduetion from one side of the plate to
the other, resulting in an increase of entropy of the universe of
zT(zlﬁ) = 1 7% VI, 6.

a2

T Ky

7= N ig
This increase of entropy must manifest itself as an increase of
temperature of the whole system, and this can be brought about
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only by the current working against an additional E.M.F. brought
into existence by the transverse temperature gradient. If we call
the E.M.F. per unit length per unit transverse temperature gra-
dient e, the total E.M.F. per unit length is in this case e:7T/x,,
and the total energy delivered by it is e:2Th/x, and the corre-
sponding increase of entropy ex*Th/(xr). Equating the two
expressions for the entropy gives:

=T
T

€ VI ’ 7.

This transverse E.M.F. is evidently what we have called a
““working ”’ e.m.f. The sources of energy supply are evidently
thermal. If then a temperature difference is maintained between
opposite transverse faces and a longitudinal current allowed to
flow, the work done by the E.M.F. driving this current must be
provided by the net heat input. We may look for this at the
transverse faces or in the body of the metal, between the faces.
Let us in the first place assume that it is all in the transverse
faces. This means that the T at one face is different from that
at the other; there is evidently such an effect, for one face is
warmer than the other, and T may be a temperature function.
d .

— (7).
dr
The work done by the E.M.F. is ¢(iT/x,)(1b). Equating these
two and substituting for ¢, and Ar the values 7/ and 1Tb/«x, gives

£=-"’-', or T = Const 7.

dr T
But this, by 5, would demand that P, — P, be proportional to
absolute temperature, and this we know in general not to be the
case. The situation is exactly analogous to that in the analysis
of the ordinary thermo-electric circuit when we assumed that the
Peltier heat provided the entire E.M.F. of the circuit. We were
then confronted with a contradiction which forced us to assume
another heating effect, the Thomson heat. Similarly here, there
must be another heating effect, and the only place for it is in the
body of the metal, where there is a temperature gradient. This
means that when a current flows lengthwise in a crystal rod

The difference of transverse heat at the two faces is Ar
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across which there is a temperature gradient there is a genera-
tion of heat within the body of the metal. The magnitude of
this transverse Thomson heat can be at once found from the first
law of thermodynamics. If we call o, the heat absorbed per unit
volume per unit current density per unit transverse temperature
gradient per unit time, we have, on setting the total heats equal
to the work done by the E.M.F.:

ar LTy 40,000 = g L,
dr K K¢
or
y Y] 2 2
z—@i(iT) 4 U:sz _ ’LbT,
K T K¢ KT
or
dr _ T
%+ dr
which may be written
a.=—ri(1')- VI, 8.
dr \7

This is obviously the exact analog of the equation of the ordi-
nary thermo-electric circuit

o= (7

Kelvin’s proof of the necessity of the existence of a transverse
heating effcet involved explicitly his axiom of the superposition
of heating effects, which amounts to the same thing as the assump-
tion of the cos? law. Since the cos? law is not perfectly certain,
it is interesting to inquire whether the necessity for the existence
of a transverse heating cannot be made to depend on some
demonstrable experimental fact in the same way that we saw the
existence of an internal Peltier heat depends only on the experi-
mentally established difference between P;., and P,.. Consider
the arrangement of crystal and isotropic metal of Figure 21. If
this is isothermal, the total heat generation when current passes
must vanish. But the effects at the interfaces A;4. and DD,
mutually cancel, and if there are lateral effects, the effect on 4,B,
is cancelled by that on 4,B,, and that on C\D, by that on C.D,,



