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A B S T R A C T

As a much-enriched supplement to the previous review paper entitled the ‘‘Effective work
functions for ionic and electronic emissions from mono- and polycrystalline surfaces’’ [Prog.
Surf. Sci. 83 (2008) 1–165], the present monograph summarizes a comprehensive and up-
to-date database in Table 1, which includes more than ten thousands of experimental and
theoretical data accumulated mainly during the last half century on the work functions (𝜙+,
𝜙e and 𝜙−) effective for positive-ionic, electronic and negative-ionic emissions from mono- and
polycrystalline surfaces of 88 kinds of chemical elements (1H–99Es), and also which includes
the main experimental condition and method employed for each sample specimen (bulk or
film) together with 490 footnotes. From the above database originating from 4461 references
published to date in the fields of both physics and chemistry, the most probable values of 𝜙+, 𝜙e

and 𝜙− for substantially clean surfaces are statistically estimated for about 600 surface species
of mono- and polycrystals. The values recommended for 𝜙e together with 𝜙+ and 𝜙− in Table 2
are much more abundant in both surface species and data amount, and also they may be more
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reliable and convenient than those in popular handbooks and reviews consulted widely still
today by great many workers, because the latter is based on less-plentiful data on 𝜙e published
generally before ∼1980 and also because it covers no value recommended for 𝜙+ and 𝜙−.

Consequently, Table 1 may be more advantageous as the latest and most abundant database
on work functions (especially 𝜙e) for quickly referring to a variety of data obtained under
specified conditions. Comparison of the most probable values of 𝜙e recommended for each
surface species between this article and other literatures listed in Tables 2 and 3 indicates that
consideration of the recent work function data accumulated particularly during the last ∼40
years is very important for correct analysis of these surface phenomena or processes concerned
with either work function or its changes.

On the basis of our simple model about the work function of polycrystal consisting of a
number of patchy faces (1–i) having each a fractional area (F i) and a local work function
(𝜙i), its values of both 𝜙+ and 𝜙e are theoretically calculated and also critically compared
with a plenty of experimental data. In addition, the ‘‘polycrystalline thermionic work function
contrast’’ (𝛥𝜙∗ ≡ 𝜙+−𝜙e) well-known as the thermionic peculiarity inherent in every polycrystal
is carefully analyzed as a function of the degree of monocrystallization (𝛿m) corresponding to the
largest (Fm) among F i’s (Tables 4–6 and Fig. 1), thereby yielding the conclusions as follows:
(1) 𝛥𝜙∗ ≃ const (>0) holds for the generally called ‘‘polycrystalline’’ surfaces (usually 𝛿m <
50%), (2) 𝛥𝜙∗ ranges from ∼0.3 eV (Pt) to 0.7 eV (Nb) depending upon the polycrystalline
surface species, (3) in the case of the ‘‘submonocrystal’’ (50 < 𝛿m < 100%) tentatively named
here, 𝛥𝜙∗ decreases parabolically down to zero as 𝛿m increases from ∼50% up to 100%
(monocrystal), (4) 𝛥𝜙∗ = 0.0 eV applies to a clean and smooth monocrystalline surface (𝛿m ≈
100%) alone, (5) regarding negative ion emission, on the other hand, our theoretical prediction
of 𝛥𝜙∗∗ ≡ 𝜙− − 𝜙e = 0.0 eV is experimentally verified to hold for any surface species under any
surface conditions (Table 7), (6) every polycrystal (usually, 𝛿m < 50%) may be concluded in
general to have a unique value of 𝜙e characteristic of its species with little dependence upon 𝛿m,
(7) this conclusion affords us first a sound basis for supporting theoretically the experimental
fact (Table 2) that every species of polycrystal has a nearly constant value of 𝜙e as well as
𝜙+ (usually within the uncertainty of ±0.1 eV) depending little upon the difference in the
surface components (F i and 𝜙i) among specimens so long as 𝛿m < 50%, (8) on the contrary to
polycrystal (𝛿m < 50%), any submonocrystal (50 < 𝛿m < 100%) has such an anomaly that it does
not possess the unique value of work function characteristic of the surface species itself, because
its 𝜙e as well as 𝜙+ changes considerably depending upon 𝛿m, (9) consequently, submonocrystal
must be taken as another type (category) different from both poly- and monocrystals, (10) in
this way, 𝛿m acts as the key factor mainly governing the work functions in the different mode
between poly- and submonocrystals with 𝛿m lower and higher than the ‘‘critical point’’ of 50%,
respectively, (11) on the contrary to 𝛿m, 𝜙m belonging to 𝛿m has a differential effect on both 𝜙+

and 𝜙e, but their values remain nearly constant so long as 𝛿m < 50% and, thus interestingly,
(12) the complicate governance of 𝜙+ and 𝜙e by both 𝛿m and 𝜙m and also the anomaly of
submonocrystal (cf. (8) above) observed first by our theoretical analysis may be considered as
a new contribution to the work function studies developed to date.

Together with brief comments and experimental conditions, typical data on 𝜙e and/or 𝜙+

are summarized from the various aspects of (1) examination of the work function dependence
upon the surface atom density of low-Miller-index monocrystals of typical metals such as
Al, Ni, W and Re (Table 8), (2) demonstration of the above dependence usually called the
‘‘anisotropic work function dependence sequences’’ of both 𝜙e(110) > 𝜙e(100) > 𝜙e(111)
and 𝜙+(110) > 𝜙+(100) > 𝜙+(111) for various bcc-metals (e.g., Nb, Mo, Ta and W) exactly
obeying the Smoluchowski rule (Table 9), (3) substantiation of both 𝜙e(111) > 𝜙e(100) >
𝜙e(110) for a variety of fcc-metals (except Al and Pb) and 𝜙+(111) > 𝜙+(100) > 𝜙+(110) for
Ni strictly following the above rule (Table 10), (4) verification of the quantitative relations
between work function and surface energy and also melting point of the three low index
planes of several metals (typically, Ni), (5) examination of the work function change (𝛥𝜙e)
due to allotropic transformation from 𝛼 to 𝛽 or 𝛽 to 𝛾 phase (Table 11) together with a
concise outline of the Burgers orientation relationship, (6) evaluation of 𝛥𝜙e due to liquefying
(Table 12), (7) estimation of 𝛥𝜙e due to transformation from ferro- to paramagnetic state
(Table 13) in addition to a brief description of the Curie point dependence upon metastable
metal film thickness above one monolayer, (8) estimation of 𝛥𝜙e due to transition from normal
to superconducting state (Table 14), (9) study of the work function dependence on the Wigner–
Seitz radius and also comparison between its theoretical values (by Kohn) and experimental
data (Fig. 2), (10) inspection of the annealing effect on work function for layers or films, (11)
verification of the coincidence of work function values among different experimental methods,
and (12) inquisition of the work function dependence upon the size of fine particles (∼20–100 Å
in radius) studied by theory and experiment.
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1. Introduction

The work function (𝜙) of a solid surface is the minimum energy necessary for an electron to transfer from the Fermi level
to field-free space, and it is one of the important factors governing the electronic and ionic emissions from any surfaces by any
means. Typically, positive-ionic, electronic and negative-ionic emissions from a patchy surface by various mechanisms (processes)
are strongly dependent upon the effective work functions of 𝜙+, 𝜙e and 𝜙−, respectively, and they are evaluated theoretically from
Eqs. (1)–(3) [1351].

𝜙+ = 𝑘𝑇 ln[Σ𝐹i exp(𝜙i∕𝑘𝑇 )], (1)

𝜙e = −𝑘𝑇 ln[Σ𝐹i exp(−𝜙i∕𝑘𝑇 )], (2)

𝜙− = −𝑘𝑇 ln[Σ𝐹i exp(−𝜙i∕𝑘𝑇 )]. (3)

Here, F i is the fractional surface area of the patch site (i) having the local work function (𝜙i), where the total of Σ𝐹i is unity.
All of the three above are the mean work functions weighted statistically according to the tendencies that positive ions (M+) are
predominantly emitted from high work function sites but that negative ions (X−) and electrons (e−) are done so from the sites of
low 𝜙i. This predominance has a very important role in governing (determining) mainly the effective work functions of a patchy
surface having various values of 𝜙i’s and F i’s. Namely, 𝜙m belonging to Fm (≡𝛿m), the latter of which is named here the ‘‘degree
of monocrystallization’’ correspondent to the largest among F i’s, has the ‘‘differential effect’’ upon both 𝜙+ and 𝜙e according to the
condition whether 𝜙m is relatively higher or lower than the others among 𝜙i’s, as will be demonstrated later (Section 4.4).

Such a theoretical prediction as mentioned just above is supported experimentally by a typical example of a Na/W system [85],
as clearly shown in Fig. 20 [1351]. Of course, both 𝜙+ and 𝜙e of a patchy surface are generally different from the simple average
given by

𝜙a = Σ𝐹i𝜙i. (4)

Needless to say, 𝜙a is not weighted statistically according to the predominance mentioned just above. Consequently, the inequality
of 𝜙+ > 𝜙a > 𝜙e always holds for any patchy surfaces, and it is to clean and smooth monocrystalline ones (𝛿m = 100%) alone
that the equality of 𝜙+ = 𝜙a = 𝜙e is applicable, as will be demonstrated in Section 4. On the contrary, it is reported for an actual
specimen of polycrystalline W (F i = 46.3%-(310), 18.9%-(110), 15.5%-(112), 14.0%-(100) and 5.4%-(111) oriented) that 𝜙a = 4.59 ≈ 4.6
eV calculated from Eq. (4) is taken as 𝜙e and also that the value (𝜙a = 𝜙e = 5.6 eV) is considered to agree well with 𝜙e = 4.8 ± 0.05
eV determined for the same specimen by field emission [489] (for further information, see W(D) in Table 6 to be given later in
Section 4.2). Regarding an imaginary specimen of W consisting of the four (100)–(112) faces with each 25% fractional area, 𝜙+ is
theoretically estimated to be 4.51 eV [3843], which is much smaller than 𝜙a = 4.74 eV to be evaluated from Eq. (4) and also than
𝜙+ = 5.12 eV done so from Eq. (1) [3844]. Again, this result of 𝜙+ = 4.51 eV < 𝜙a = 4.74 eV also is not well consistent with our
theoretical prediction (for detail, see Footnote 295 in Table 1).

Eqs. (1)–(3) are theoretically derived according to our simple model of thermal stimulation (thermal ionic and electronic
emissions) [281]. However, the work functions to be thus calculated for a given species are generally expected to agree either well
or fairly with those determined experimentally by any other methods without depending upon any of the emission mechanisms
(processes) such as ion bombardment (secondary ion emission), electron impact (electron-stimulated ion desorption), fast-atom
incidence (fast or cold surface ionization), photon irradiation (photoelectron and photoion emissions), very high electric voltage
application (field-electron and -ion emissions) and so on [1351]. The progress achieved up to ∼1980 for the studies of thermal
positive ionic and electronic emissions is outlined or summarized in several books [14–17] and review articles [2,18–22]. Both
of the features and data on the emissions studied mainly after ∼1980 are summarized together with experimental conditions
in Sections 2 and 3 [1351]. For other emissions due to various mechanisms, a brief information may be obtained from several
books [13,615,1354,2829].

Since the work function (𝜙e) is very important in many fields of pure and applied physics and chemistry and also since it
is necessary to know the accurate or most probable value of 𝜙e as the universal (or material) constant characteristic of each
of the essentially clean mono- and polycrystalline surface species of the chemical elements, many handbooks [10–12,1352–
1354,1358,1359,4137,4191,4318] and reviews [13,488,1045,1312,1355–1357] are published to summarize the recommended or
selected values of 𝜙e for a variety of surface species. Especially, both Michaelson [1045,1355] and Fomenko [10,12,1354] have made
a valuable contribution to compiling critically the work function data on various poly- and monocrystalline surfaces. However, their
publications don’t include any work function data published after ∼1980. In addition, their contents summarized for monocrystals are
not sufficiently abundant in both surface species and work function data themselves, compared with those generally expected today
in many fields of science and technology. Consequently, many workers may feel inconvenience in finding the accurate or reliable
values of work function of various surface species, especially of monocrystalline ones interested in quite many workers. Typically,
a theoretical study published in 2003 [4130] states that any experimental data for 𝛼-Fe(110) are not available for comparison with
the theoretical value of 4.73 eV calculated by the authors themselves [4130], although many experimental data of 4.72–5.32 eV
determined for 𝛼-Fe(110) by PE, CPD or FE [e.g., 530,1273,2035] were already published in 1971−2000 (see Table 1 to be shown
later). For another example published in 2008 [4131], 𝜙e = 4.94 eV for Cu(111) and 5.03 eV for 𝛽-Co(111) are cited from Table 2 in
our previous review (in 2008) [1351] and from a theoretical article (in 2007) [2910], respectively, because any data on the latter
are not included in any of the reviews and books published in 1949−2008 [1351], in contrast to this article tabulating seven data on
𝛽-Co(111) (4.93–5.76 eV [e.g., 229,2068,3192] published in 1992−2008) in Table 1. Similarly in an experimental study reported for
4
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Pr in 1998 [4263], it is stated that 𝜙e has not yet been experimentally determined for Pr. But, several articles [2011,4066,4251,4253]
ublished already in 1974–1982 include 𝜙e = 2.6–2.67 eV for Pr measured by FE or CPD (see Table 1), the data of which are slightly
arger than 2.50 eV done by IP of Pr-clusters [4263] (see Result (18) in Section 11.3 about clusters).

The recent or present situation exemplified above suggests that a new and enriched handbook on work function should be widely
istributed among all of the workers active in the fields of pure and applied surface sciences so as to be ready for consulting the
ecent data on work function and also for easily finding the most probable value of any surface species of chemical elements under
tudy. From this point of view, the present author has tried to compile Table 1 covering the up-to-date and abundant work function
ata on a vast number of surface species of almost all the chemical elements and also to make up Table 2 recommending the most
robable value of each species. Both of the tables may be very effective for filling up such a great blank in work function data as
ound in many handbooks and also for covering a very long absence from compiling new data during the last several tens of years
ince ∼1980.

As will be shown later in Tables 2 and 3 and also discussed concretely in Section 3.2, some of the recommended or selected values
typically, 12,1045,1354,1358] don’t seem to be very accurate or reliable enough to be fully acceptable today, mainly because many
f them are usually based on the meager or scanty data published entirely before ∼1980. Nevertheless, many of the preferable values
f work function (𝜙e) [1045], for example, have long been often and widely cited still to date by total 1935 groups of workers at
resent (May 2017) [4158] since the progressive review was published by Michaelson [1045] in 1977. In addition, many publications
typically, 1045,1352,1353,1355,1356,1358,1359] don’t include any data on 𝜙+ and 𝛥𝜙∗. Consequently, they seem to be scarcely
uitable enough in general for analyzing correctly these data on positive ion emission from polycrystals, although such emission or
ositive surface ionization (PSI) has long been employed widely as a very convenient technique for various purposes such as positive
on beam production, atomic and molecular beam detection, isotopic ratio determination, ionization potential measurement, analysis
f surface state and processes, and so on [2,4–7,15,16,18,19,21,22]. Even a recent publication such as CRC Handbook (97th Ed. in
016−2017) [1358] is entirely based on the data published before ∼1980, similarly with those (82nd−96th editions in 2001−2015)
e.g., 11,1359]. Consequently, some of the work function values recommended in the above publications don’t seem to be fully
ccurate or reliable enough to be straight or undoubtedly acceptable today. Typically for Cu(100), 𝜙e = 5.10 eV [358] cited in CRC
andbooks (1997−2017) [typically, 1358,4318] deviates considerably from our value of 4.58 ± 0.06 eV to be recommended in
able 2 and also from 4.59 ± 0.03 eV [953,2006] considered to be most reliable at present. Such a deviation as ranging from ∼0.2
o 1.0 eV is found also for many other surface species, as will be demonstrated later in Section 3.2 and Table 3.

Recently (2015) after ∼35 years’ absence since ∼1980, Derry et al. [4088] have published a compact review on clean
onocrystalline metal surface work function, where the recommended values are based on these experimental data about 45 species

f low-Miller-index surfaces for 15 kinds of very familiar metals without including much data achieved by theory for a variety of
urface species of various elements. Consequently, it seems to be still confidently expected to publish such a comprehensive article
n both experimental and theoretical work function data as covering not only low- but also high-Miller-index surfaces together with
olycrystalline ones for more than several tens of quite many chemical elements interested generally in physics and chemistry.

It must be kept in mind that (1) the generally called ‘‘work function (𝜙)’’ appearing in usual publications [e.g., 1045,1352,1358]
eans 𝜙 = 𝜙e unless otherwise stated, (2) the equality of 𝜙+ = 𝜙e = 𝜙− = 𝜙a = 𝜙 holds for clean and smooth monocrystalline

surfaces alone, (3) the partial inequality of 𝜙+ > 𝜙a > 𝜙e = 𝜙− = 𝜙 conforms to these cases other than the case (2) mentioned
just above and, hence, the relation of 𝜙+ − 𝜙e ≡ 𝛥𝜙∗ > 0 applies always to both polycrystalline surfaces (𝛿m < 50%) and non-clean
and/or non-smooth monocrystalline ones (𝛿m = 100%) in addition to the tentatively named ‘‘submonocrystalline’’ ones (50 < 𝛿m <
100%) to be fully explained later (Sections 4.3–4.5) and (4) 𝜙e = 𝜙− = 𝜙 is applicable to any surface species under any conditions
irrespective of the degrees in both surface contamination and irregularity [1351]. Much data on 𝛥𝜙∗ > 0 will be listed in Tables 4
and 5 based on both theory and experiment.

In principle, work function is generally expected to be the universal constant for each of the ‘‘clean and smooth’’ monocrystalline
surface species. In practice, however, its data are found to scatter in a wide range (typically, ∼4.1–5.2 eV for W(100), see Table 1)
among different specimens or workers for the same surface species of actual ‘‘monocrystals’’. In other words, the degree of deviation
from ideal surface conditions is different more or less among the actual specimens under study. This difference is usually due to
such causes that the degrees of both surface contamination and defects and also of heteroatom density are different among the
monocrystalline specimens under study and also that the extents of error in both measurement and data-processing are not identical
among the corresponding workers. As one more cause, we can not deny the possibility that some of the specimens under study are
somewhat less than 100% in the degree of monocrystallization (𝛿m), as will be discussed later in Section 4. Especially in the case
f a polycrystalline species consisting of patchy faces having 𝐹i and 𝜙i, on the other hand, 𝛿m (largest among 𝐹i’s) also may be

attributable as an additional cause to the difference in 𝜙e among various specimens. Typically for ‘‘submonocrystalline’’ tungsten
(50 < 𝛿m < 100%), 𝜙e is 4.87 ± 0.06 eV at 𝛿m = 80%, while 𝜙e of the usually called ‘‘polycrystalline’’ tungsten (𝛿m < 50%) remains
nearly constant at 4.52 ± 0.10 eV with little dependence upon 𝛿m so long as 𝛿m < 50%, as will be demonstrated in Table 6 and
ection 4. There, the anomaly of the former quite different from the latter is described thoroughly.

In the case of theoretical calculation, much larger scattering (typically, ∼3.7–7.8 eV for W(100), see Table 1) is found for any
onocrystalline surface species among different authors. This is probably because some of the theoretical models themselves are
ot yet fully perfect or reasonable and/or because some of their selections of numerical values of the parameters governing work
unction are neither adequate nor suitable.

Such a present situation outlined above suggests powerfully that much work function data accumulated to date by using various
ethods should be collected from not only regular publications in a variety of scientific fields but also special reports, conference
roceedings and doctoral theses as many as possible and also that the abundant data coming from such a broad survey should be
5
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examined carefully, in order to estimate accurately the most probable values of 𝜙e as well as 𝜙+ and 𝜙− for a large number of
he mono- and polycrystalline surface species which are widely interested in theoretical and/or experimental researches by many
orkers.

From the above aspect, the present author has already published a comprehensive review paper [1351], where many of the work
unction data published to ∼2005 are tabulated and also examined carefully to estimate the most reliable value of work function for
ach of mono- and polycrystalline surfaces of popular elements together with several compounds. Regarding the chemical elements,
owever, the previous review includes the work function data for only 18 kinds of elements, and it involves the best estimate of the
ork function value for 74 surface species alone, thereby strongly indicating that a new article about the work function database
nriched in both quality and quantity should be published in order to estimate the most probable values of work function for much
ore surface species of most of the solid and liquid elements in the periodic table.

The above viewpoint has made the present author to prepare this new article, which is intended mainly (1) to summarize
omprehensively a larger amount (more than ten thousands) of theoretical and experimental work function data published to date,
2) to estimate accurately the most probable values of work functions (𝜙e, 𝜙+ and 𝜙−) for both mono- and polycrystalline surfaces
f almost all the solid elements and also for some of the liquid ones so long as the work function data are available today, (3)
o determine correctly the polycrystalline thermionic contrasts (𝛥𝜙∗ ≡ 𝜙+ − 𝜙e and 𝛥𝜙∗∗ ≡ 𝜙− − 𝜙e), (4) to reveal clearly the key
actor of 𝛿m governing mainly the work functions of both poly- and submonocrystals, (5) to examine carefully the anisotropic work
unction dependence upon surface atom density for the three low-Miller-index planes of both bcc- and fcc-monocrystals, (6) to
pitomize concisely the work function dependence upon the Wigner–Seitz radius together with a comparison between theory and
xperiment, (7) to inspect closely the work function changes caused by allotropic, magnetic, superconductive and solid–liquid
ransitions according to the temperature variation around each critical point, (8) to outline briefly the work function and Curie
oint of metastable metal films and also (9) to explicate fully the work function dependence upon the size of fine particles.

Together with the specified condition and method employed for each work function measurement, the database on 𝜙e, 𝜙+

nd 𝜙− to be summarized later for mono-, submono- and polycrystalline surfaces in Table 1 may be useful for quickly surveying
ore than ten thousands of sample systems (bulk or film) employed to date for a variety of work function studies by theory and

xperiment. As will be shown in Table 2 together with the literature values either recommended or selected previously by other
uthors [12,1045,1354,1358] and also by the present author [1351], many of the most probable values estimated from the above
atabase (Table 1) may be citable or consultable as probably the most accurate and reliable reference data, nowadays at least,
n 𝜙e, 𝜙+ and/or 𝜙− for general studies on work function and related subjects, and also many of them thus recommended for
onocrystalline surfaces may be useful at present as the most reliable sources of local work function (𝜙i) to be employable in Eqs.

1)–(3). The general reliability of our most probable values of 𝜙e to be listed in Table 2 is examined objectively by comparison with
hose recommended by others [12,1045,1354,1358]. In addition, the work function difference between the former and the latter
ill be discussed considerably in Section 3.2, and also the distribution of the difference ranging from 0.05 to 1.0 eV between the

wo will be summarized in Table 3.
For better understanding the polycrystalline thermionic contrast (𝛥𝜙∗ ≡ 𝜙+ − 𝜙e) dependent upon the degree of surface

nhomogeneity in work function over the entire surface area, many experimental data are summarized for 32 surface species in
ables 4 and 5, clearly showing that clean and smooth monocrystalline surfaces alone stand upon 𝛥𝜙∗ = 0.0 eV and also that
olycrystalline ones have 𝛥𝜙∗ ≈ 0.3 − 0.7 eV, dependent upon the polycrystalline species. These data on 𝛥𝜙∗ may be helpful for
nalyzing correctly these positive ion emission data obtained for polycrystalline surface systems, where 𝜙e is not available in general
or an accurate or reliable analysis of the latter data (see Section 4.1).

In order to clarify the problem how the work function of a patchy surface is governed by both local work function (𝜙i) and its
fractional surface area (𝐹i), some of the typical examples for calculating both 𝜙+ and 𝜙e from Eqs. (1) and (2) are summarized for W
together with 𝛥𝜙∗ in Table 6. In addition, the quantitative relation between the contrast (𝛥𝜙∗) and the maximum value (𝛿m ≡ 𝐹m)
mong the various areas (𝐹i’s) will be shown in Fig. 1 (see Section 4.3).

To examine closely the theoretical prediction that 𝛥𝜙∗∗ ≡ 𝜙−−𝜙e ≈ 0 always holds without depending upon both surface species
nd condition, all of the experimental data available today are summarized for several elements in Table 7, which suggests strongly
hat 𝛥𝜙∗∗ = 0.0 eV fitly applies to any mono-, submono- and polycrystals even when their surfaces are neither atomically clean nor
lat (smooth), in contrast to 𝛥𝜙∗ = 0.0 eV applicable only to those surfaces homogeneous in work function over the entire area.

From the viewpoint of the Smoluchowski rule [1040] concerning the relationship between surface-atom density and work
unction for monocrystalline surfaces of the three low-Miller-index orientations, the anisotropic sequences of both 𝜙e(110) > 𝜙e(100)
𝜙e(111) for various bcc-metals and also 𝜙e(111) > 𝜙e(100) > 𝜙e(110) for fcc-ones are examined by using many experimental and

heoretical data listed in Tables 8–10, fairly indicating that more than half of the respective data on Al and Pb (both fcc) alone does
ot satisfy the latter sequence (mentioned just above) in contrast to many other fcc-metals (Table 10). It cannot be emphasized
nough that 𝜙+(hkl) is first reported here for both bcc-metals (Nb, Mo, Ta and W) and fcc-one (Ni) to follow faithfully the above
ule.

To investigate the work function changes (𝛥𝜙e) due to allotropic, magnetic, superconductive and solid–liquid transitions,
xperimental data of many or several surface species are summarized in Tables 11–14, indicating that quite many of the surface
pecies have |𝛥𝜙e

| < 0.l eV. In addition, the peculiarity of metastable metal films is outlined together with typical data on work
unction and Curie point depending upon film thickness. Finally, work function dependence upon the size of fine particles will be
ummarized together with comparison between theory and experiment in Section 11.
6
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2. Database

The present author believes it very important to estimate the most probable work function values of many mono- and
polycrystalline surfaces and also to solve the problem how the work function of an actual surface depends upon the specimen and/or
condition employed by each individual group of workers. From this viewpoint, he has tried to do best for obtaining work function
data as much as possible since ∼2000 and also for inspecting both experimental condition and surface processing employed by each
group of workers. In consequence, he has managed to summarize theoretical and experimental work function data based on 4461
references published to date in various fields of not only physics but also chemistry, as shown in Table 1. It contains the data for
about 600 surface species of 88 kinds of chemical elements (1H–99Es) and also does the main conditions (residual gas pressure and
surface temperature) and method together with 490 footnotes in order to provide further information about specimen preparation,
surface treatment, data processing, etc. Such description may be very helpful to judging the questions whether the surface under
study is substantially clean and/or whether the sample layers are essentially uniform over the entire surface area, in addition to
resolving the problem how 𝜙e changes depending upon the degree of monocrystallization (𝛿m) correspondent to the largest among
the patchy surface areas (𝐹i’s) for the poly- or submonocrystalline specimen having various values of local work function (𝜙i’s).

Table 1 consists of the nine columns to be explained concisely below, where the main points of experimental conditions are
entered in Columns 2–5. In addition, several subjects and topics related to the items present in some of the columns will be outlined
together with brief discussions.

Table 1
Theoretical and experimental data on the effective work functions (𝜙+ or 𝜙− and 𝜙e) determined for various surfaces under the conditions specified herein.
The value of 𝜙− is given with a superscript of N in the column of 𝜙+. Each of the recommended values herein is compared with that selected or recommended
by other workers in Table 2.

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

1. Hydrogen H

fcc
H(100) – – – – – 3.73 TC [231]

H(110) – – – – – 3.75 TC [231]

H(111) – – – – – 3.80 TC [231]

H – – – – – 3.77 TC [1924]
H – – – – – 3.84 TC [231]
H – – – – – 3.86 TC [231]
H – – – – – 4.0 TC [944]
H – – – – – 4.0 TC [2648]
H – – – – – 4.41 TC [1924]
H – – – – – 4.67 TC [2648]
H – – – – – 5.25 TC [1955]
Recommended – – – – – 3.89 ± 0.09 – –

3. Lithium Li

bcc
Li(100) – – – – – 2.310 TC [2947]
Li(100) – – – – – 2.40 TC [475]3

Li(100) – – – – – 2.61 TC [1159,1980,3067]
Li(100) – – – – – 2.9 TC [474]
Li(100) – – – – – 2.92 TC [231]
Li(100) – – – – – 2.93 TC [1595]
Li(100) – – – – – 2.96 TC [1595]
Li(100) – – – – – 2.96 TC [4461]490

Li(100) – – – – – 2.986 TC [4091]
Li(100) – – – – – 3.0 TC [474]
Li(100) – – – – – 3.00 TC [1095]
Li(100) – – – – – 3.02 TC [2427]
Li(100) – – – – – 3.03 TC [553]
Li(100) – – – – – 3.03 TC [637,2418]
Li(100) – – – – – 3.037 TC [2432]
Li(100) – – – – – 3.04 TC [3467]
Li(100) – – – – – 3.05 TC [1595]
Li(100) – – – – – 3.06 TC [637,2418]
Li(100) – – – – – 3.09 TC [1595]
Li(100) – – – – – 3.1 TC [474]
Li(100) – – – – – 3.10 TC [478]

(continued on next page)
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Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Li(100) – – – – – 3.10 TC [321]
Li(100) – – – – – 3.11 TC [3478]
Li(100) – – – – – 3.11 TC [1595]
Li(100) – – – – – 3.11 TC [711]
Li(100) – – – – – 3.135 TC [4460]490

Li(100) – – – – – 3.15 TC [334]
Li(100) – – – – – 3.20 TC [3478]
Li(100) – – – – – 3.25 TC [476]
Li(100) – – – – – 3.26 TC [711]
Li(100) – – – – – 3.27 TC [1237]
Li(100) – – – – – 3.28 TC [1595]
Li(100) – – – – – 3.28 TC [3814]
Li(100) – – – – – 3.30 TC [475]
Li(100) – – – – – 3.30 TC [1030]
Li(100) – – – – – 3.32 TC [555]
Li(100) – – – – – 3.32 TC [556]
Li(100) – – – – – 3.36 TC [637]
Li(100) – – – – – 3.39 TC [476]
Li(100) – – – – – 3.4 TC [1088]
Li(100) – – – – – 3.47 TC [1030]
Li(100) – – – – – 3.56 TC [472]
Li(100) – – – – – 3.60 TC [1557]
Li(100) – – – – – 3.70 TC [1414]
Li(100) – – – – – 3.71 TC [1414]
Recommended – – – – – 3.12 ± 0.03 – –

Li(110) – – – – – 2.31 TC [2835]
Li(110) – – – – – 2.40 TC [475]
Li(110) – – – – – 2.45 TC [593]
Li(110) – – – – – 2.479 TC [2947]
Li(110) – – – – – 2.75 TC [3712]
Li(110) – – – – – 2.78 TC [1159,1980,3067]
Li(110) – – – – – 2.90 TC [3713]
Li(110) – – – – – 2.96 TC [3693]
Li(110) – – – – – 3.00 TC [1095]
Li(110) – – – – – 3.09 TC [231]
Li(110) – – – – – 3.10 TC [2835]
Li(110)/W(110)1 Li – ? ∼300 – 3.11 ± 0.05 CPD [3361]
Li(110)/Mo(110)1 Li – ? ∼300 – 3.11 ± 0.05 CPD [3361]
Li(110) – – – – – 3.12 TC [3692]
Li(110) – – – – – 3.18 TC [711]
Li(110) – – – – – 3.18 TC [4461]490

Li(110) – – – – – 3.22 ± 0.01* TC [4440]
Li(110) – – – – – 3.221 TC [4091]
Li(110) – – – – – 3.25 TC [1086]
Li(110) – – – – – 3.26 TC [2427]
Li(110) – – – – – 3.27 TC [553]
Li(110) – – – – – 3.286 TC [2432]
Li(110) – – – – – 3.31 TC [476,711]
Li(110) – – – – – 3.32 TC [3467]
Li(110) – – – – – 3.33 TC [334]
Li(110) – – – – – 3.35 TC [1734]
Li(110) – – – – – 3.359 TC [4460]490

Li(110) – – – – – 3.37 TC [1086]
Li(110) – – – – – 3.40 TC [637]
Li(110) – – – – – 3.43 TC [637,2418]
Li(110) – – – – – 3.43 TC [3814]
Li(110) – – – – – 3.44 TC [476]
Li(110) – – – – – 3.45 TC [1734]
Li(110) – – – – – 3.46 TC [637,2418]
Li(110) – – – – – 3.5 TC [1086,1088]
Li(110) – – – – – 3.54 TC [1237]
Li(110) – – – – – 3.55 TC [475]
Li(110) – – – – – 3.55 TC [555]
Li(110) – – – – – 3.55 TC [556]
Li(110) – – – – – 3.58 TC [1030]
Li(110) – – – – – 3.6 TC [3137]
Li(110) – – – – – 3.6 TC [1086,1088]
Li(110) – – – – – 3.61 TC [321]
Li(110) – – – – – 3.61 TC [2402]
(continued on next page)
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Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Li(110) – – – – – 3.63 TC [555]
Li(110) – – – – – 3.63 TC [1086]
Li(110) – – – – – 3.66 TC [1086]
Li(110) – – – – – 3.75 TC [1086]
Li(110) – – – – – 3.77 TC [472]
Li(110) – – – – – 3.78 TC [1086]
Li(110) – – – – – 3.87 TC [1030,1089]
Li(110) – – – – – 3.91 TC [1089]
Li(110) – – – – – 3.92 TC [1087]
Li(110) – – – – – 3.93 TC [3713]
Li(110) – – – – – 3.99 TC [3693]
Li(110) – – – – – 4.05 TC [1089]
Li(110) – – – – – 4.24 TC [3692]
Recommended – – – – – 3.37 ± 0.05 – –

Li(111) – – – – – 2.30 TC [475]
Li(111) – – – – – 2.35 TC [593]
Li(111) – – – – – 2.58 TC [1159,1980,3067]
Li(111) – – – – – 2.6 TC [4461]490

Li(111) – – – – – 2.746 TC [4091]
Li(111) – – – – – 2.90 TC [231]
Li(111) – – – – – 2.90 TC [1095]
Li(111) – – – – – 2.925 TC [4460]490

Li(111) – – – – – 2.93 TC [553]
Li(111) – – – – – 2.94 TC [3467]
Li(111) – – – – – 2.96 TC [711]
Li(111) – – – – – 2.97 TC [321]
Li(111) – – – – – 3.09 TC [637,2418]
Li(111) – – – – – 3.12 TC [476,711]
Li(111) – – – – – 3.12 TC [637,2418]
Li(111) – – – – – 3.13 TC [1237]
Li(111) – – – – – 3.13 TC [556]
Li(111) – – – – – 3.15 TC [3814]
Li(111) – – – – – 3.16 TC [1030]
Li(111) – – – – – 3.19 TC [555]
Li(111) – – – – – 3.2 TC [1088]
Li(111) – – – – – 3.20 TC [1030]
Li(111) – – – – – 3.25 TC [475]
Li(111) – – – – – 3.26 TC [476]
Li(111) – – – – – 3.42 TC [472]
Li(111) – – – – – 3.44 TC [637]
Li(111) – – – – – 3.58 TC [1557]
Recommended – – – – – 3.04 ± 0.08 – –

Li(112) – – – – – 3.30 TC [321]

Li/W Li – ? ∼300 – 1.84 PE [2206]
Li/Si(100) Li – 8 × 10−11 360 – 2.1* CPD [2414]
Li – – – – – 2.1 TC [2845]
Li/Si(100) Li – <1 × 10−10 133, ∼300 – 2.1* PE [2057]
Li – – – – – 2.19 TC [3725]
Li/Cu(100) – – – – – 2.2* TC [3205]
Li/Si(100)n Li – <1 × 10−10 ∼300 – 2.22 ± 0.05* PE [3935]
Lin(n → ∞)389 – – – – – 2.25 TC [4262]
Li/? Li – ? ? – 2.28 ? [3785]
Li/Si(100) Li – 8 × 10−11 360 – 2.3* CPD [2414]
Li/Ru(001) Li – 4 × 10−11 200 – 2.3 ± 0.1* CPD [3606]
Li/glass Li – ? ∼300 – 2.32 ± 0.032 CPD [349]
Li/Si(100) Li – <8 × 10−11 ∼300 – 2.36* PE [2278]
Li/Si(100) Li – <2 × 10−10 ∼300 – 2.36 ± 0.16* PE [2412]
Li/Si(100) Li – <3 × 10−10 ∼300 – 2.38* CPD [1929]
Li/Si(100)n Li – 8 × 10−11 360–500 – 2.4* CPD [1874]
Li/Si(111)n Li – 8 × 10−10 ∼300 – 2.4 CPD [2736]
Li/Cu(110) Li – 5 × 10−11 140 – 2.4 ± 0.1 PE [3454]
Li/Pt(111) – – – – – 2.400 TC [3245]
Li/Ni Li – <10−9 77 – 2.42 CPD [2139,3698]
Li/? Li – ? ∼300 – 2.42 PE [3027]
Li – – – – – 2.45 TC [1744]
Li/Ni(110) Li – 8 × 10−11 150 – 2.47* CPD [3219]
Li/graphene – – – – – 2.49 TC [4079]
(continued on next page)
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Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Li/Ni Li – <10−9 77 – 2.49 CPD [3128]
Li/glass Li – ? ∼300 – 2.49 ± 0.022 CPD [1374]
Li/Si(100)p Li – 8 × 10−11 380–525 – 2.5* CPD [1874]
Li – – – – – 2.5 TC [3558]
Li/W Li – (<10−10) 77 – 2.5 FE [2711]
Li/Na/Cu(100) Li – ≤1 × 10−10 180 – 2.5 PE [2678]
Li/Si(100) – – – – – 2.5 ± 0.1* TC [3647]
Li – – – – – 2.50* TC [1955]
Li – – – – – 2.51 TC [1571]
Li – – – – – 2.52 TC [1571]
Li/Cu(100) Li – ∼10−10 ∼300 – 2.52 ± 0.08* PE [3297]
Li/Ni(110) Li – 8 × 10−11 ∼300 – 2.53* CPD [3219]
Li/Si(100)422 Li – 2 × 10−10 ∼300 – 2.53 CPD [4016]
Li/steel Li – ∼10−10 ∼300–400 – 2.54 ± 0.02 PE [4298,4299]
Li/Si(100) Li – <3 × 10−10 ∼300 – 2.58* CPD [1929]
Li/Si(111) Li – 5 × 10−10 ∼300 – 2.6 CPD [2485]
Li/MgO(100) Li – 1 × 10−10 ∼300 – 2.6 CPD [1942]
Li/Si(100) – – – – – 2.6* TC [732,4068]
Li/glass Li – ≤10−7 ∼300 – 2.6 PE [3253]
Li/Ru(001) Li – ≤2 × 10−10 100 – 2.6* PE [344]
Li – – – – – 2.60 TC [3477]
Li – – – – – 2.63 TC [3477]
Li – – ∼10−10 ∼300 – 2.64 ± 0.02 PE [4298,4315]
Li/Ru(001) – – – – – 2.68 TC [346]
Li/Ru(001) Li – ≤2 × 10−10 100 – 2.7* PE [344]
Li/Mo Li – ≤3 × 10−7 ∼300 – 2.7 PE [1433]
Li/W(111) Li – (≤10−11) 77 – 2.7 FE [1977]
Li/W(110) Li – ? 5 (100) – 2.7 CPD [2387]
Li/Si(111) Li – <2 × 10−11 90 – 2.7 ± 0.1* PE [3487]
Li/W(110)39 Li – (≤10−10) 77 – 2.75 FE [1974]
Li/W(111)39 Li – (≤10−10) 77 – 2.75 FE [1974]
Li/W(112)39 Li – (≤10−10) 77 – 2.75 FE [1974]
Li/Ru(001) Li – 4 × 10−11 ∼100–200 – 2.8 CPD [1875,2285]
Li/Mo(112) Li – (≤10−11) 77 – 2.8 CPD [2027]
Li/Mo(110) Li – ? 77 (100) – 2.8 CPD [2387]
Li/Ni(100) Li – ≤3 × 10−10 ∼300 – 2.8 CPD [936]
Li/Ir Li – ≤10−4 (Li) ∼700–1200 – 2.80 TE [169]
Li/W(111)39 Li – (≤10−10) 77 – 2.80* FE [1974]
Li/Ge(100) Li – <1 × 10−10 78 – 2.80* FE [4081]
Li/Ru(001) – – – – – 2.86 TC [346]
Li – – – 0 – 2.86 TC [4419]
Li/Ag(111) Li – 1 × 10−10 ∼300 – 2.86* CPD [2866,2873]
Li/Ni(110) Li – 8 × 10−11 150 – 2.87 CPD [3219]
Li – – – – – 2.87 TC [3312]
Li/W(110)39 Li – (≤10−10) 77 – 2.87* FE [1974]
Li/Ge(111) Li – <1 × 10−10 78 – 2.87* FE [4081]
Li(fp) – – ? 453 – 2.88 PE [4256]
Li/W(112)39 Li – (≤10−11) 77 – 2.88 ± 0.02 CPD [380]
Li/Ge(100) Li – ≤10−10 ∼300 – 2.88 ± 0.08* FE [3936]
Li/W(110) Li – (≤10−11) 77 – 2.9 FE [1977]
Li/W(112) Li – (≤10−11) 77 – 2.9 FE [1977]
Li/C60/Ni(110) Li – 8 × 10−11 ∼300 – 2.9 CPD [696]
Li – – – – – 2.9 TC [706]
Li/W(100) Li – (<10−11) ∼300 – 2.9 CPD [2034,3976]
Li/W(111) Li – ∼10−11 ∼300 – 2.9 CPD [2535]
Li/W(112) Li – (≤10−11) ∼300 – 2.9 CPD [259,380]
Li/W(110) Li – (≤10−11) 77 – 2.9 FE [259]
Li/W(111) Li – (≤10−11) ∼300 – 2.9 CPD [259]
Li/W(110) Li – (≤10−11) 5 – 2.9 CPD [2387]
Li/Mo(110) Li – (≤10−11) 77 – 2.9 CPD [2387]
Li/Si(100) Li – <2 × 10−11 ∼300 – 2.9* PE [2283]
Li/Ta(112) Li – (≤10−11) 77, ∼300 – 2.9 CPD [2662]
Li/Si(100) – – – – – 2.9 ± 0.1* TC [3647]
Li/Ge(111) Li – ≤10−10 ∼300 – 2.90 ± 0.09* FE [3936]
Li/W(112)39 Li – (≤10−11) 77 – 2.91 ± 0.03 FE [380]
Li – – – – – 2.92 TC [298]
Li/W(111) Li – ∼10−9 77 – 2.92 FE [363]
Li/W(112)39 Li – (≤10−11) ∼300 – 2.93 CPD [380,3341]
Li/W(112)39 Li – (≤10−10) 77 – 2.93* FE [1974]
Li/Ni(110) Li – 8 × 10−11 ∼300 – 2.93 CPD [3219]
(continued on next page)
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Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Li(fp)42 – – ? ? – 2.93 ± 0.05 PE [3482]
Li(fp) – – ? 77 – 2.94 PE [4256]
Li/W Li – ∼10−9 77 – 2.94 FE [363]
Li/W(112) Li – (≤10−11) ∼300 – 2.94 CPD [380]
Li(cluster) – – – – – 2.95 TC [3479]
Li/Pt(100) – – – – – 2.96 TC [3168]
Li/Au(100) – – – – – 2.96 TC [3168]
Li/Mo(110) – – – – – 2.990 TC [4046]
Li/Ni(110) Li – ≤8 × 10−11 ∼300 – 3.0 CPD [696]
Li/Si(111) Li – ? ∼300 – 3.0* ? [1716]
Li/Re Li – ∼10−9 77 – 3.05 FE [363]
Li/sapphire Li – ∼10−9 78 – 3.05 PE [1512]
Li/W(100) Li – ∼10−9 77 – 3.06 FE [363]
Li – – – – – 3.07 TC [231]
Li/Re(2111) Li – ∼10−9 77 – 3.09 FE [363]
Li/W(100) Li – (<10−11) ∼300 – 3.1 CPD [259]
Li/W(110) Li – (<10−11) ∼300 – 3.1 CPD [259]
Li/W(110) Li – (<10−11) 77 – 3.1 CPD [259]
Li/Pt Li – ∼10−10 ∼300 – 3.1 CPD [437]
Li – – – – – 3.10 TC [1066]
Li – – – – – 3.10 TC [3467]
Li/W(011) Li – (≤10−11) 77 – 3.10 CPD [2500]
Li/W(011) Li – (≤10−11) 77 (250) – 3.10 CPD [2500]
Li – – – – – 3.11 TC [521]
Li/W(112) Li – ∼10−9 77 – 3.12 FE [363]
Li/Pt(100) – – – – – 3.154 TC [3245]
Li – – – – – 3.18 TC [231]
Li/W(110) Li – ∼10−9 77 – 3.19* FE [363]
Li/Mo(112) – – – – – 3.2 TC [468]
Li – – – – – 3.21 TC [1924]
Lin(n → ∞)389 – – – – – 3.21 TC [4262]
Li/Re(2112) Li – ∼10−9 77 – 3.21* FE [363]
Li/Al(111) Li – ? ∼300 – 3.22 CPD [734]
Li/Re(2110) Li – ∼10−9 77 – 3.24 FE [363]
Li – – – – – 3.24 TC [4101]
Li – – – – – 3.24 TC [2427]
Li/Ru(0001) Li – ? ∼300 – 3.3 PE [4020]
Li – – – – – 3.3 TC [3558]
Li/W(110) – – – – – 3.30 TC [531]
Li – – – – – 3.31 TC [2629]
Li – – – – – 3.32 TC [3312]
Li – – – – – 3.32 TC [1613]
Li – – – – – 3.33 TC [1924]
Li – – – – – 3.33 TC [2061]
Li/Re(1011) Li – ∼10−9 77 – 3.33* FE [363]
Li/W(100) – – – – – 3.34 TC [531]
Li/W(111) – – – – – 3.34 TC [531]
Li – – – – – 3.36 TC [553,2427]
Li – – – – – 3.36 TC [3477]
Li – – – – – 3.36 TC [3168]
Li – – – – – 3.37 TC3 [475,519,2474]
Li – – – – – 3.39 TC [3220]
Li/W(112) – – – – – 3.40 TC [531]
Li – – – – – 3.43 TC [230]
Li – – – – – 3.44 TC [3467]
Li – – – – – 3.45 TC [738]
Li/Ru(001) – – – – – 3.51 TC [346]
Li – – – – – 3.52 TC [1571]
Li – – – – – 3.53 TC [1582]
Li – – – – – 3.56 TC [1167]
Li – – – – – 3.58 TC [1578,1582]
Li – – – – – 3.60 TC [1167]
Li – – – – – 3.61 TC [1167]
Li – – – – – 3.63 TC [1167]
Li – – – – – 3.75 TC [2382]
Li/Ru(001) – – – – – 3.89 TC [346]
Li/Pt(110) – – – – – 4.004 TC [3245]
Li – – – – – 4.08 TC [2629]
Recommended – – – – – 2.90 ± 0.03469 – –
(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

4. Beryllium Be

hcp (𝜶,𝑻 < 𝟖𝟎𝟎 𝐊)
Be(0001) – – – – – 4.7 TC [3150]
Be(0001) – – – – – 4.95 TC [4427]
Be(0001)/mica4 Be – ∼10−10 ∼300 – 4.98 ± 0.10 PE [2009]
Be(0001) – – ? 77 – 5.0 PE [2998]
Be(0001) – – – – – 5.0 ± 0.1 TC [3514]
Be(0001) – – – – – 5.02 ± 0.05 TC [3242]
Be(0001)/glass4 Be – ? ∼300 – 5.08 ± 0.08 CPD [1782]
Be(0001) – – – – – 5.1 ± 0.1 TC [3514]
Be(0001) – – <5 × 10−11 ∼300 – 5.10 ± 0.02 PE [2025]
Be(0001) – – – – – 5.23 TC [4417]
Be(0001) – – – – – 5.25 ± 0.04 TC [720]
Be(0001) – – – – – 5.29 TC [4004]
Be(0001) – – – – – 5.3 TC [1711]
Be(0001) – – – – – 5.32 TC [4461]490

Be(0001) – – – – – 5.321 TC [4460]490

Be(0001) – – – – – 5.35 TC [1734]
Be(0001) – – – – – 5.36 TC [3481]
Be(0001) – – – – – 5.4 TC [1704]
Be(0001) – – – – – 5.45 TC [4004]
Be(0001) – – – – – 5.54 TC [1925,1927,3200]
Be(0001) – – – – – 5.556 TC [4460]490

Be(0001) – – – – – 5.57 TC [3481]
Be(0001) – – – – – 5.61 TC [4005]
Be(0001) – – – – – 5.62 TC [334]
Be(0001) – – – – – 6.83 TC [321]
Recommended – – – – – 5.27 ± 0.11 – –

Be(1010) – – – – – 4.48 TC [4461]490

Be(1010)/W(110) Be – <1 × 10−10 ∼300 – 4.6 CPD [3122]
Be(1010) – – – – – 4.6 ± 0.1* TC [4442]
Be(1010) – – – – – 4.644 TC [4461]490

Be(1010) – – – – – 4.71 TC [4004]

Be(1011) – – – – – 5.03 TC [4004]
Be(1011) – – – – – 5.23 TC [4004]

Be(1012) – – – – – 4.81 TC [4004]
Be(1012) – – – – – 5.04 TC [4004]

Be(1013) – – – – – 4.46 TC [4004]
Be(1013) – – – – – 4.73 TC [4004]

Be(1121) – – – – – 4.58 TC [4004]
Be(1121) – – – – – 4.82 TC [4004]

Be(1122) – – – – – 4.81 TC [4004]
Be(1122) – – – – – 4.94 TC [4004]

Be(1123) – – – – – 4.25 TC [4004]
Be(1123) – – – – – 4.42 TC [4004]

Be(1124) – – – – – 5.72 TC [321]

Be(2130) – – – – – 4.17 TC [4004]
Be(2130) – – – – – 4.38 TC [4004]

Be(3140) – – – – – 4.23 TC [4004]
Be(3140) – – – – – 4.55 TC [4004]

Be/W Be – ∼10−10 ∼300 (1070) – 2.5 FE [1784]
Be45(cluster) – – – – – 2.94 TC [2657]
Be/W Be – ∼10−7 ∼300 (1070) – 3.0 FE [1784]
Be – – ? ∼300 – 3.10 CPD [2297]
Be – – – – – 3.11 TC [2493]
Be45(cluster) – – – – – 3.16 TC [2657]
Be – – – – – 3.17 TC [2493]

(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Be – – ? ? – 3.17 PE [3027]
Be(wire) – – <2 × 10−9 ∼1100–1250 – 3.22 ± 0.08 TE [2241]
Be/W(111) Be – ? ? – 3.27 ± 0.13 FE [1803]
Be – – ? 293 – 3.28 PE [3028]
Be – – – – – 3.50 TC [1569]
Be – – – – – 3.51 TC [1571]
Be(block) – – ? (Cs) ∼900–1600 – 367 TE [3413]
Be(block) – – ∼10−9 ∼900–1200 – 3.67 ± 0.03 TE [179]
Be – – ? ∼300 – 3.7 PE [2090]
Be – – – – – 3.75 TC [521]
Be – – – – – 3.8 TC [1955]
Be – – – – – 3.80 TC [2639]
Be/Al2O3/Al390 Be – ? ∼300 – 3.89 CPD [3057]
Be/Al2O3/Al390 Be – ? ∼300 – 3.905 ± 0.05 CPD [3057]
Be – – <8 × 10−10 ∼300 – 3.92 CPD [2657,2666,3286]
Be/metal Be – ? ∼300 – 3.92 PE [2561]
Be – – – – – 3.93 TC [1569]
Be – – 5 × 10−11 ∼300 – 3.95 CPD [3289]
Be/W Be – ? ∼300 (≤850) – 4.0 ± 0.1 FE [1798]
Be – – – – – 4.04 TC [1744]
Be/Al2O3/Al390 Be – ? ∼300 – 4.04 ± 0.06* CPD [3057]
Be/W Be – ? ∼300 – 4.1 CPD [2577]
Be/W(110) Be – ∼10−10 ∼300 (∼850) – 4.1 FE [2837]
Be33(cluster) – – – – – 4.11 TC [2657]
Be – – – – – 4.21 TC [738]
Be/GaAs Be – ? ? – 4.26 ? [3054]
Be – – – 0 – 4.30 TC [4419]
Be – – – – – 4.35 TC [2629]
Be – – – – – 4.39 TC [1976]
Be/W Be – ∼10−10 ∼300 (∼850) – 4.4 FE [2837]
Be33(cluster) – – – – – 4.41 TC [2657]
Be45(cluster) – – – – – 4.43 TC [2666,3790]
Be∞(cluster) – – – – – 4.5 TC [2365]
Be/W Be – ≤2 × 10−9 ∼300 – 4.53 CPD [3530]
Be – – – – – 4.62 TC [1613]
Be45(cluster) – – – – – 4.62 TC [2666,3790]
Be/W(110) Be – 2 × 10−10 300, 600 – 4.75 CPD [3550]
Be/Mo(112) Be – ∼10−11 5{∼300} – 4.77* CPD [4450]
Be – – – – – 4.79 TC [1571]
Be – – – – – 4.8 TC [944]
Be/W Be – ? ? – 4.8 ± 0.05 FE [3937]
Be – – – – – 4.80 TC [1569]
Be/Mo(110) Be – ∼10−11 ∼300 – 4.82* CPD [4450]
Be/W(100) Be – 2 × 10−10 ∼300 – 4.86 ± 0.03* CPD [3550]
Be/W(100) Be – ? ∼300 – 4.90 CPD [3981]
Be – – – – – 4.91 TC [298]
Be – – – – – 4.97 TC [1564]
Be/mica4 Be – ∼10−10 ∼300 – 4.98 ± 0.10 PE [2009]
Be/W Be – <10−8 ∼300 – ∼5.0 FE [2308]
Be/W(112) Be – <5 × 10−11 ∼300 – 5.00* CPD [1700]
Be – – – – – 5.04 TC [1564]
Be19(cluster) – – – – – 5.04 TC [2657]
Be/glass4 Be – ? ∼300 – 5.08 ± 0.08 CPD [1782]
Be – – – – – 5.11 TC [1569]
Be – – – – – 5.11 ± 0.06 TC [3366]
Be – – – – – 5.19 TC [3729]
Be/W(111) Be – ∼10−10 ∼300 (∼850) – 5.3 FE [2837]
Be19(cluster) – – – – – 5.35 TC [2657]
Be – – – – – 5.35 ± 0.16 TC [1577]
Be – – – – – 5.37 TC [2629]
Be – – – – – 5.39 TC [1578,3458]
Be/W(112) Be – 1 × 10−10 ∼300 – 5.6 CPD [3117]
Be/W(112) Be – ∼10−10 ∼300 (∼850) – 6.0 FE [2837]
Recommended – – – – – 4.28 ± 0.13 – –

Hexagonal (𝜷,𝑻 > 𝟖𝟎𝟎 𝐊 for bulk)
Be – – ? ? – 3.66 TE [3410]
Be – – ≤10−9 ∼900–1200 – 3.665 ± 0.03 TE [650]
Be – – ? (Cs) ∼1200–1600 – 3.67 TE [3413]
Be – – ≤1 × 10−9 ∼900–1250 – 3.67 ± 0.03 TE [179,3413]
(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Be/W(100) Be – 2 × 10−10 1200 – 4.56 ± 0.03* CPD [3550]
Be/W(100) Be – 2 × 10−10 1170 – 4.59 ± 0.03* CPD [3550]
Be/W(110) Be – 2 × 10−10 1000 – 4.65 CPD [3550]
Be/W(110) Be – 2 × 10−10 800 – 4.69 CPD [3550]
Be/W(100) Be – 2 × 10−10 1000 – 4.87 ± 0.03* CPD [3550]
Recommended – – – – – 4.2 ± 0.5 – –

5. Boron B

B(mono)391 – – ? ? – 3.8 ± 0.1 TE [1415]
B(mono)391 – – ? ∼300 – 4.3 ± 0.1 PE [1415]
B(mono)391 – – ∼10−9 ∼300 – 4.30 ± 0.05 PE [3100]
B(mono) – – ≤3 × 10−10 ∼1300–2400 – 4.45 TE [1397]

B(hexagonal) – – – – – 3.64 TC [1571]
B(graphitic) – – – – – 3.88 TC [1571]
B479 – – – – – 4.09 TC [4359]
B – – – – – 4.10 TC [1744]
B – – – – – 4.11 TC [4358]
B – – – – – 4.16 TC [4358,4439]
B – – <2 × 10−6 1550–1855 – 4.38 TE [3431]
B – – – – – 4.44 TC [298]
B/W392 – – – – – 4.5 TC [913,4344]
B/W392 B – ? ? – 4.5 FE [3503]
B/Ta B2H6 – <3 × 10−8 ∼300 (1000) – 4.5 ± 0.1 PE [1371]
B(nanowire) – – – – – 4.52 TC [4411]
B(graphitic) – – – – – 4.66 TC [1571]
B – – – – – 4.77 TC [1901]
B479 – – – – – 4.89 TC [4359]
B – – – – – 4.9 TC [1955]
B/W B – 2 × 10−10 ? – 5 FE [2772]
B/W B – 2 × 10−10 1230 – 5.1 FE [2376]
B/Mo(110) B – 2 × 10−10 ∼300 (∼900) – 5.3 CPD [2698]
B479 – – – – – 5.39 TC [4359]
B/Mo(110)252 B – 2 × 10−10 ∼300 – 5.8 CPD [2698,2700,3655,

3963,4271]
B/La/Mo(110)252 B – 2 × 10−10 ∼300 – 5.8 CPD [2700]
B/Gd/Mo(110)252 B – 2 × 10−10 ∼300 – 5.8 CPD [2700]
Recommended – – – – – 4.50 ± 0.09 – –

6. Carbon C

Diamond (Diamond Structure)
C(100)B5 – – ∼10−8 ∼300 – 2.9 FE [2751]
C(100)B5 – – ∼10−8 ∼300 – 3.6 FE [2751]
C(100)B – – <2 × 10−10 ∼300 – 3.85 ± 0.2 CPD [224]
C(100)N – – 1 × 10−11 ∼300 – 4.7 PE [1830]
C(100)B – – <2 × 10−10 ∼300 (∼1000) – 4.75 ± 0.2 CPD [224]
C(100) – – – – – 5.04 TC [3485]
C(100)B6 – – 1 × 10−11 ∼300 – 5.3 PE [1830]
C(100) – – – – – 5.5 TC [2884]
C(100) – – – – – 5.54 TC [2758,2759]
C(100)B6 – – 1 × 10−11 ∼300 – 5.7 PE [1830]
C(100)B – – ∼10−10 ∼300 – 6.00 PE [1829]
Recommended – – – – – 5.0 ± 0.6 – –

C(111)/Mo7 – – 5 × 10−8 ∼300 – 3.2 PE [544,4059]
C(111)/Mo8 – – 5 × 10−8 ∼300 – 3.2 PE [1205]
C(111)/Mo8 – – 5 × 10−8 ∼300 – 3.3 PE [1205]
C(111)/Mo8 – – 5 × 10−8 ∼300 – 3.4 FE [1205]
C(111)/Mo8 – – 5 × 10−8 ∼300 – 3.5 FE [1205]
C(111)/Mo8 – – 5 × 10−8 ∼300 – 3.8 FE [1205]
C(111)/Mo8 – – 5 × 10−8 ∼300 – 3.8 PE [1205]
C(111)/Mo7 – – 5 × 10−8 ∼300 – 4.8 PE [544,4059]
C(111)B – – ∼10−10 ∼300 (1400) – 4.85 CPD [3597,3598]
C(111)B – – ∼10−10 ∼300 – 4.97 ± 0.07 CPD [1733,1736,3598]
C(111)/Mo7 – – 5 × 10−8 ∼300 – 5.1 PE [544,4059]
C(111) I2 I−2 5 × 10−10 723 5.4N – NSI [3771]
C(111) – – ∼10−10 ∼300 – 5.5 ± 0.05 PE [2131]
C(111)B – – 1 × 10−11 ∼300 – 5.6 PE [1830]
(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

C(111) – – ∼10−8 ∼300 – 5.96 PE [3434]
C(111) – – 6 × 10−4 ∼300 – 6.1 PE [3434]
C(111) – – – – – 7 ± 0.7 TC [2213]
Recommended – – – – – 5.4 ± 0.5 – –

C(112) – – – – – 5.17 TC [1627]

Polycrystalline Diamond or Diamond-like-Carbon
C/Si(100) CH4, N2 – 1 × 10−7 500 – 1.5–4.5 FE [3489]
C/Mo/Si C – <10−5 ∼300 (670) – 1.51 FE [1726]
C/Si(100) CH4, N2 – 1 × 10−7 ∼300 – 1.7–5.4 FE [3489]
C/W C+ – <10−10 ∼300 – 2 FE [2904]
C/Si(nw)/Si CH4, Ar – ? ∼300 (673) – 2.23 FE [3305]
CP/Mo480 PH3, CH4 – ? ∼700{∼1200} – 2.3 TE [4371]
C/Si(nw)/Si CH4, Ar – ? ∼300 (673) – 3.43 FE [3305]
C/Si9 – – ∼10−9 ∼300 – 3.7 FE [3568]
C/Mo9 – – ∼10−9 ∼300 – 3.7 FE [3568]
C/Si CH4, H2 – ∼10−6 ? – 3.9 TE [4286]
C/W10 – – <10−8 ∼300 – 4.1 FE [2230]
C/Si CH4, N2 – 1 × 10−7 ∼300 – 4.1 ± 0.1 FE [3489]
C/Mo,Ta CH4, H2 – ? ∼300 (∼2300) – 4.15 ± 0.05 FE [2682]
C/cnt CH4, H2 – ∼10−6 ∼1200–1350 – 4.26 TE [4286,4287]
CB/W(100) CH4, B2H6 – ∼10−8 1362{1100} – 4.57 TE [3015]
C/Mo,Ta CH4, H2 – ? ∼1500–1700 – 4.75 ± 0.05 TE [2682]
C/Si(100) ? – ≤10−8 ∼300 – 4.9 PE [2060]
C/Si C+ – 4 × 10−9 ∼300 – 4.9 ± 0.1 CPD [297]
C/Si CH4, H2 – ? ∼300 (?) – 4.98 FE [3742]
C/Si/Si(111) CH4, H2 – ≤10−9 ∼300 (∼900) – 5.0 FE [2527]
C/Si – – – – – ≥5.1 TC [3299]
C/Si(mono) CH4, H2 – 4 × 10−9 ∼300 (?) – 5.19 ± 0.1 PE [699]
C/Mo CH4, H2 – <10−9 ∼300 (∼1200) – 5.2 FE [3649]
C/Si(100)29 CH4, H2 – ≤10−10 ∼300 (≥1200) – 5.2 ± 0.2 FE [698]
C/Si(100)29 CH4, H2 – ≤10−10 ∼300 (≥1200) – 5.6 ± 0.2 FE [698,3620]
C/Si(100)p CH4, H2 – ≤10−10 ∼300 (≥1200) – 6 ± 0.3 FE [2066]
C(natural) – – ∼10−8 ∼300 – 6.02 ± 0.1 PE [3411]
C/Si(100) CH4, H2 – ≤10−10 ∼300 (≥1200) – 6.3 ± 0.3 FE [3620]
C/Si9 – – ∼10−9 ∼300 – 7.1 FE [3568]
C/Mo9 – – ∼10−9 ∼300 – 7.1 FE [3568]
Recommended – – – – – 4.6 ± 0.6 – –

Monocrystalline Graphite488

C(0001) – – – – – 3.6 TC [1573]
C(0001) – – – – – 4.1 TC [1573]
C(0001) – – – – – 4.44 TC [1174]
C(0001) – – 4 × 10−11 ∼300 – 4.5 PE [4415]
C(0001) – – – – – 4.65 ± 0.2011 TC [1174]
C(0001) – – 2 × 10−10 95 – 4.7 CPD [525]
C(0001) – – ∼10−10 ∼300 – 4.7 ± 0.1 PE [236]
C(0001) – – – – – 5.23 TC [1174]
C(0001) – – – – – 6.36 TC [1503]
C(0001) – – – – – 6.62 TC [1503]
C(0001) – – – – – 10.1 TC [1503]
Recommended – – – – – 4.6 ± 0.3 – –

C(mono) – – ? ? – 3.9312 FE [2581]
C(mono) – – ≤1 × 10−10 ∼300 – 4.45 CPD [286,450,537,665,

839]
C(mono) – – 2 × 10−10 ∼300 – 4.6 PE [289,2653]
C(mono) – – ? ∼300 – 4.60 PE [1094]
C(mono) – – ∼10−10 ∼300 – 4.7 PE [235]
C(mono) – – ∼10−10 ∼300 (1800) – 4.7 ± 0.2 PE [2508]

Highly Oriented Pyrolytic Graphite (HOPG)488

C(HOPG) – – <10−10 ∼300 – 4.4 PE [284,1441]
C(HOPG) – – 4 × 10−10 ∼300 – 4.4 PE [4001]
C(HOPG)/C ? – ∼10−8 ∼2000–2400 – 4.4 ± 0.2 TE [631]
C(HOPG) – – ? ∼300 – 4.45 PE [4437]
C(HOPG) – – ? ∼300 – 4.475 ± 0.005 CPD [287]
C(HOPG) – – ? ∼300 – 4.5 FE [622]
C(HOPG) – – ? ∼300 – 4.5 PE [4430]
(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

C(HOPG) – – 6 × 10−11 ∼300 – 4.5 ± 0.1 PE [632]
C(HOPG) – – 1 × 10−10 ∼300 – 4.50 ± 0.05 PE [3666]
C(HOPG)170 Cs Cs+ ≤6 × 10−9 ∼1200–1500 4.51 ± 0.15* (4.58 ± 0.02) PSI [1049]
C(HOPG) – – ≤6 × 10−9 ∼1200–1500 (4.65 ± 0.10) 4.58 ± 0.02 TE [112,524,1049]
C(HOPG) – – 1 × 10−9 ∼300 – 4.6 PE [289,2653]
C(HOPG) – – ? 90 – 4.6 PE [1620]
C(HOPG) – – ? ∼300 – 4.6 ± 0.03 CPD [4422]
C(HOPG)170 Cs Cs+ ≤6 × 10−9 ∼1200–1500 4.60 ± 0.11* (4.58 ± 0.02) PSI [112,524,1049]
C(HOPG) Cs Cs+ ≤6 × 10−9 ∼1200–1500 4.62 ± 0.17* (4.58 ± 0.02) PSI [1049]
C(HOPG) – – 4 × 10−11 ∼300 – 4.65 PE [292]
C(HOPG) – – 2 × 10−11 ∼300 – 4.67 CPD [4279]
C(HOPG) Cs Cs+ ≤6 × 10−9 ∼1200–1500 4.69 ± 0.19* (4.58 ± 0.02) PSI [1049]
C(HOPG) – – ? ∼300 – 4.7 PE [293]
C(HOPG) – – <10−9 ∼300 – 4.7 PE [234,294]
C(HOPG) – – 1 × 10−9 ∼300 – 4.7 PE [2784]
C(HOPG)13 – – <10−10 ∼300 – 4.7 CPD [3215]
C(HOPG) – – ∼10−10 ∼300 – 4.7 ± 0.1 PE [526]
C(HOPG) – – ? ∼300 – 4.79 PE [4278]
C(HOPG) – – ? ∼300 – 4.80 PE [1166,3061]
C(HOPG) – – – – – 4.81 TC [296]
C(HOPG) Cs Cs+ ≤6 × 10−9 ∼1200–1500 4.82 ± 0.14* (4.58 ± 0.02) PSI [1049]
C(HOPG)13 – – <10−10 ∼300 – 5.0 CPD [3215]
C(HOPG) – – ? ∼300 – 5.0 CPD [1600]
Recommended – – – – 4.65 ± 0.12 4.66 ± 0.05 – –

Graphitic Carbon Film (not Carbidic)443,452

C/Co(0001) – – – – – 3.32 TC [2423]
C/Mo C2H2 – <10−10 ∼300 (558) – 3.5* FE [2674]
C/Ni C60 C−

60 5 × 10−10 850–950 3.5–4.0N – NSI [3772,3773,3775]
C/Pt(210) CO – ∼10−11 ∼300 (850) – 3.6 FE [453]
C/W ? – ? ∼300 (?) – ∼3.6 CPD [3767]
C/Ni(111) – – – – – 3.60 TC [2423]
C/Ru(0001) – – – – – 3.7 TC [542]
C/TaC(111)393 C2H4 – <2 × 10−10 ∼300 (1570) – 3.7 ± 0.1 PE [290]
C/Pt C2H2 – ∼10−9 ∼300 (1270) – 3.75 ± 0.15 FE [539,673]
C/Ni C60 C−

60 5 × 10−10 850–950 3.9–4.4*N – NSI [3772,3773]
C/Si14 – – ? ∼300 (770) – 4.0 ± 0.15 PE [1611]
C/Re C6H6 – 2 × 10−9 ∼300 (2140) – 4.1 CPD [407]
C/Ru(0001) – – – – – 4.1 TC [542]
C/Re–C(5%) – – ? ∼300 (2200) – 4.1 ± 0.1* CPD [2840]
C/Ru(001) C2H4 – 2 × 10−10 82 (>800) – 4.2* CPD [455]
C/TaC(111)393 C2H4 – <2 × 10−10 ∼300 (1270) – 4.2 ± 0.1 PE [290]
C/Ir Cs Cs+ 3 × 10−7 ∼1200–1300 4.2 ± 0.1 (4.5 ± 0.1) PSI [1290]
C/Si14 – – ? ∼300 – 4.2 ± 0.15 PE [1611]
C/Ni(111) CO – ∼10−10 ∼300 (∼560) – 4.3 PE [313]
C/Si14 – – ? ∼300 – 4.3 ± 0.1 PE [1611]
C/Ni CH4,H2 – ? ∼300 (953) – 4.3 ± 0.3 CPD [1211]
C/Re(1010) C6H6 – ∼10−10 ∼1350–1750 (4.30 ± 0.05) 4.30 ± 0.05 TE [4458]
C/Re(1010) Na Na+ ∼10−10 ∼1150–1750 4.30 ± 0.05 (4.30 ± 0.05) PSI [4458]
C/Ir CH4 – ? (CH4) ∼1200–1800 (4.6 ± 0.1) 4.4 TE [107]
C/Pt C2H2 – 1 × 10−6 1150–1750 (4.4N) 4.4 TE [675]
C/Pt UF6 UF−6 1 × 10−6 1000 4.4N (4.4) NSI [675]
C/Pt–W(8%) UF6 UF−6 1 × 10−6 1000 4.4N – NSI [675]
C/V(100) – – – – – 4.4 TC [1617]
C/graphite ? – ∼10−8 ∼1700–2100 – 4.4 ± 0.2 TE [631]
C/Re15 C6H6 – 2 × 10−9 ∼300 (<1900) – 4.4 ± 0.3 CPD [407,408]
C/Pt338 Cs Cs+ 2 × 10−7 ∼1400–2000 4.40 ± 0.03* – PSI [50]
C/Pt–W(8%)16 K K+ ? 1290 4.42 – PSI [1299]
C/Ir(111) K K+ <1 × 10−9 ∼800–2000 4.44 – PSI [252]
C/Mo(100) C6H6 – <10−10 ∼300 (1600) – 4.45 CPD [324,527]
C/Re(1010) Cn, C6H6 – 1 × 10−10 ∼300 (1600) – 4.45 CPD [286,537,665,839]
C/Ir(111) Na Na+ <5 × 10−10 1600 4.45 – PSI [410]
C/Ir(111) K K+ <5 × 10−10 1600 4.45 – PSI [409,411–413]
C/Ir(111) Cn, C6H6 – <5 × 10−10 ∼1600 – 4.45 TE [3277]
C/Pt(111) C6H6 – <10−10 ∼300 (1200) – 4.45 CPD [527,857,889]
C/Pt–W(8%)170 K K+ ? 950–1100 4.46 ± 0.09 – PSI [397]
C/Ir C6H6 – ≤5 × 10−6 1650–1900 – 4.47* TE [3751]
C/Pt338 K K+ 2 × 10−7 ∼1300–2000 4.48 ± 0.01* – PSI [50]
C/Pt–W(8%)341 K K+ ? 950–1100 4.48 ± 0.08 – PSI [397]
C/Pt–W(8%) K K+ 2 × 10−7 ∼1200–1700 4.49 ± 0.01 – PSI [1285]
(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

C/Pt338 Rb Rb+ 2 × 10−7 ∼1200–2000 4.49 ± 0.01* – PSI [50]
C/Pt338 K K+ 2 × 10−7 ∼1300–2000 4.49 ± 0.01 – PSI [1285]
C/Ir(111) C6H6 – ≤8 × 10−9 ? (1700) (4.5) 4.5 TE [168]
C/Ir(111) Ba Ba+ ≤8 × 10−9 ? 4.5 (4.5) PSI [168]
C/Ir(111) In In+ ≤8 × 10−9 ? 4.5 (4.5) PSI [168]
C/Ru(0001) C2H2 – ∼10−11 ∼300 (870) – 4.5 PE [542]
C/W ? – <5 × 10−9 ∼300 (?) – 4.5 FE [288]
C/Ir(111) In In+ ≤8 × 10−10 ∼1200–1600 4.5 ± 0.1 – PSI [105,3292,3546,

3547,3551,3783,
3784]

C/Ir C2H4 – 3 × 10−7 ∼1100–1200 (4.2 ± 0.1) 4.5 ± 0.1 TE [1290]
C/Pt–W(8%) C4H10 – 2 × 10−6 1250–1770 (4.50 ± 0.05) 4.50 ± 0.02 TE [108]
C/Pt–W(8%) K K+ 2 × 10−6 ∼900–1700 4.50 ± 0.05 (4.50 ± 0.02) PSI [108]
C/Pt–W(8%) Rb Rb+ ? 1230 4.50 ± 0.09* – PSI [737]
C/Pt–W(8%) K K+ ? 1230 4.51 ± 0.05* – PSI [737]
C/Pt–W(8%) Na Na+ ≤3 × 10−7 ∼1100–2150 4.54 – PSI [136]
C/Pt–W(8%) C4H10 – 5 × 10−7 ∼1500 (1750) (4.58 ± 0.03) 4.54 ± 0.06 TE [676]
C/Pt Cs Cs+ ≤6 × 10−9 ∼1400–1600 4.55 – PSI [98]
C/Ir(111) In In+ ≤8 × 10−10 ? 4.55 – PSI [105]
C/Pt C – ? ∼1200–1900 – 4.55 TE [857]
C/Pt–W(8%) K K+ 2 × 10−6 ∼900–1700 4.55 ± 0.07 (4.63 ± 0.06) PSI [108]
C/Pt C2H4 – 4 × 10−9 ∼1400–1650 – 4.57 TE [1295]
C/Pt–W(8%) Na Na+ 5 × 10−7 ∼900–1500 4.58 ± 0.03 (4.54 ± 0.06) PSI [676]
C/Ir K K+ ? (CH4) ∼1200–2000 4.6 ± 0.1 (4.4) PSI [107]
C/? C – ? ? – 4.6 ± 0.2 ? [2640]
C/Pt–W(8%) C4H10 – 2 × 10−6 1250–1770 (4.55 ± 0.07) 4.63 ± 0.06 TE [108]
C/quartz C – ? ∼300 – 4.67 ± 0.12* PE [762]
C/Fe–Cu C2H2 – ∼10−8 1109 (873) – 4.7 TE [764]
C/W C – <3 × 10−10 77 (∼1000) – 4.7 ± 0.05 FE [663,4015]
C/Re C6H6 – ∼10−5 <1800 – 4.7 ± 0.1 TE [3753]
C/Rh CsCl Cs+ <10−8 ∼1000–1500 4.7 ± 0.1 – PSI [647]
C/Mo17 – – <10−9 1650–1950 – 4.71 ± 0.18 TE [791]
C/Mo17 – – <10−9 1650–1950 – 4.73 ± 0.20 TE [791]
C/Au(110) C – ? ∼300 {∼500} – 4.74 CPD [4404]
C/Au(110) – – – – – 4.76 TC [4404]
C/Al–Mg18 C – ? ∼300 – 4.79 PE [2743]
C/Ir(111) C – 7 × 10−9 1615–1785 (4.8) 4.8 TE [103]
C/Ir(111) Cs Cs+ 7 × 10−9 1685 4.8 (4.8) PSI [103]
C/Ir(111) In In+ 7 × 10−9 1685 4.8 (4.8) PSI [103]
C/W C4H10 – ? 1470–1810 – 4.8 TE [237,295]
C/Re415 Cs Cs+ <10−8 ∼700∼1800 4.94* – PSI [3753]
C/Ni CH4, H2 – ? ∼300 (∼1300) – 5 FE [2802]
C/Si CH4, H2 – ? ∼300 (∼1300) – 5 FE [2802]
C/Ir(111) C – ? ∼300 – 5 CPD [3858]
C/Fe(110) C2H2 – 1 × 10−10 ∼300 (550) – 5.0 PE [1541]
C/Mo C – ∼10−8 ∼300 – 5.0 ± 0.1 CPD [299,2958]
C/Ag/Mo C – ∼10−8 ∼300 – 5.0 ± 0.1 CPD [299]
C/Si – – ∼10−10 ∼300 – 5.0 ± 0.1 PE [1738]
C/Si(100)p C – ≤10−10 ∼300 – 5.0 ± 0.2 PE [2066]
C/Pt(111) CH4, H2 – ∼10−10 ∼300 (∼600) – 5.1 CPD [3650]
C/Si(mono) ? – 4 × 10−9 ∼300 (?) – 5.19 ± 0.1 PE [699]
C/Al–Mg18 C – ? ∼300 – 5.32 PE [2743]
C/Pt(111) C6H6, etc. – ? ∼300 (∼500) – 5.4* CPD [1425]
C/Ni(100) CO – <5 × 10−10 ∼300 (∼450) – 5.7 CPD [1790]
C/Re UF4 U+ <1 × 10−8 ∼2400–2700 5.84 ± 0.16 – PSI [276]
C/Fe(100)427 – – – – – 6.3* TC [4026]
Recommended – – – – 4.50 ± 0.04 4.47 ± 0.05 – –
Recommended – – – – 4.4 ± 0.1N – – –

Polycrystalline Graphite488

C(filament) – – <10−6 ? – 3.41 TE [2919]
C – – – – – 3.54 TC [1796]
C(tip)/W – – 5 × 10−9 ∼300 (3655) – 3.8 FE [3607]
C(filament) – – ? ? – 3.94 TE [2456]
C(filament) – – ? ? – 4.1 TE [2459]
C(filament) – – <5 × 10−8 ? – 4.1 TE [1482]
C – – ? (Ba) ∼1100–1400 – 4.30 TE [1773]
C(filament) – – ? ∼1700–2200 – 4.34 TE [115]
C(filament) – – <10−5 ∼1350–2100 – 4.35 ± 0.06 TE [114]
C – – ∼10−8 ∼300 – 4.38 ± 0.01 PE [760]
(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

C(rod) – – ? 0E – 4.39 TE [113]
C – – ? ∼1500 (∼2800) – 4.4 TE [761]
C – – ? ? – 4.4 TE [3402]
C – – ? ? – 4.4 TE [3599]
C(ribbon) – – 3 × 10−7 ∼1500–2200 (4.45 ± 0.08) 4.40 ± 0.02 TE [71]
C(vitreous) – – ∼10−10 ∼300 – 4.42 CPD [1516]
C(filament) – – <10−6 ≤1610 – 4.44 TE [285]
C(ribbon) In In+ 3 × 10−7 1660–2310 4.44 ± 0.08 (4.40 ± 0.02) PSI [71]
C(ribbon) K K+ 3 × 10−7 ∼1500–2000 4.46 ± 0.02 (4.40 ± 0.02) PSI [71]
C – – ? ? – 4.5 TE [2360]
C(filament) – – ? ? – 4.55 TE [2457]
C(rod) – – ? ∼1300–2200 – 4.56 TE [113]
C(filament) – – ? ≤2335 – 4.59 TE [285]
C – – 2 × 10−9 ∼300 – 4.6 PE [1165,3225]
C(disk) – – ? ∼300 – 4.6 CPD [4175]
C393 – – <2 × 10−10 ∼300 – 4.6 ± 0.1 PE [290]
C(ribbon) N+

2 CN− <1 × 10−10 1070–1290 4.6 ± 0.2N – NSI [617]
C(filament) – – ? ≤2125 – 4.61 TE [285]
C(chamber) – – ? 0E – 4.62 TE [1460]
C(chamber) – – <10−5 ∼1500–1650 – 4.62 ± 0.02 TE [633,2303]
C – – 2 × 10−9 ∼300 – 4.65 ± 0.05 PE [291]
C – – – – – 4.7 TC [765]
C – – <10−9 ∼300 – 4.7 PE [1894]
C – – ? ∼300 – 4.72 PE [2080]
C(vitreous) – – ∼10−6–10−8 ∼300 – 4.75 PE [1894]
C(tip) – – 1.8 × 10−7 ∼300 – 4.8 ± 0.3 FE [4445]
C – – <10−6 ∼300 – 4.81 PE [2919]
C/SnO2 – – ? ∼300 – 4.81 PE [4453]
C – – – – – 4.8119 TC [296]
C – – ? ? – 4.83 TE [2569]
C – – ? ? – 4.84 TE [1462]
C(rod, etc.) – – ? ? – 4.85 ± 0.05 TE, etc. [238]
C(colloidal)/glass – – <10−9 ∼300 – 4.85 ± 0.08 CPD [766]
C – – – – – 4.91 TC [767]
C – – – – – 5.0 TC [298]
C – – ? ∼300 – 5.0 CPD [3994]
C – – – – – 5.2319 TC [296]
C – – – ∼300 – 5.8, 5.8520 PE [1735]
Recommended – – – – 4.45 ± 0.05 4.63 ± 0.06 – –
Recommended – – – – 4.6 ± 0.2N – – –

Graphene401,462,468,471,483,489

C/Pd(111) – – – – – 4.03–4.738 TC [4308]
C/Ni C2H2 – <2 × 10−8 ∼300 (1113) – 4.15 ± 0.05 CPD [4438]
C/Cu CH4, H2 – 5 × 10−10 ∼300 (∼1220) – 4.25 ± 0.10 PE [4243,4245]
C – – – – – 4.26 TC [4126]
C/Pd(111) CH4, Ar – ? ∼300 (∼1200) – 4.3 ± 0.1 CPD [4282]
C/SiC(0001) – – – – – 4.33 TC [4409]
C – – – – – 4.38 TC [4079]
C/SiO2/Si – – ? ∼300 – 4.4 PE [4376]
C/Pd(111) CH4, Ar – <1 × 10−10 ∼300 (∼1200) – 4.42–4.49 CPD [4308]
C – – – – – 4.43 TC [4451]
C(zigzag) – – – – – 4.46 TC [4360]
C455 – – – – – 4.48 TC [3240]
C – – – – – 4.48468 TC [4174,4284]
C – – – – – 4.60 CT [4359]
C439 – – – – – 4.5 TC [4105]
C/Cu – – ? ∼300 – 4.5 CPD [4103]
C – – – – – 4.50 TC [4127]
C – – – – – 4.53 TC [1168]
C/SiC – – ? ∼300 (?) – 4.55 ± 0.02 CPD [4443]
C/SiO2/Si – – ? ∼300 – 4.56 ± 0.04 PE [4129]
C/SiO2/Si442 – – ? ∼300 – 4.57 ± 0.05 CPD [4128]
C – – – – – 4.58 TC [4426]
C – – – – – 4.60 CT [4359]
C/HfO2/Si – – 5 × 10−10 ∼300 – 4.62 ± 0.08 PE [4285]
C/Cu–Ni417 C2H2, etc – ? ∼300{∼1500} – 4.63–4.79 CPD [3996]
C(sheet) – – – – – 4.66 TC [891]
C/Cu417 ? – ? ∼300 (?) – 4.67–4.78 CPD [3996]
C(sheet) – – – – – 4.68 TC [2557]
(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

C/SiO2/Si442 – – ? ∼300 – 4.69 ± 0.05 CPD [4128]
C/Re(1010) Na Na+ ∼10−10 ? 4.7 ± 0.05 – PSI [4458]
C – – – – – 4.7321 TC [767]
C/? – – ? ∼1200 – 4.74 ± 0.04 TE [4283]
C/Cu(111) – – – – – 4.77 TC [4402]
C – – – – – 4.80 TC [1743]
C/SiOx//Si(100)418 ? – ? ∼300 (?) – 4.81 ± 0.06 CPD [3997]
C – – – – – 4.8421 TC [767]
C/Cu418 CH4 – ? ∼300{1308} – 4.92 ± 0.06 CPD [3997]
C/Ir(111) – – – – – 4.96 TC [4219]
C(isolated) – – – – – 5.11 TC [4409]
C(ribbon) – – – – – 6.30 TC [3008]
Recommended – – – – – 4.67 ± 0.11 – –

Carbon Fullerene433,454

C60(111)/GeS(001)394 C60 – 2 × 10−10 ∼300{450} – 4.7 PE [457]
C60(111)/GeS(001)394 C60 – 2 × 10−10 ∼300{450} – 4.74 ± 0.03 PE [543]
C60(111)/GeS(001)394 C60 – 2 × 10−10 ∼300{450} – 4.83 ± 0.05 PE [543]

C60/Ag395 C60 – ≤1 × 10−10 ∼300 – 4.46 CPD [2198]
C60/Au395 C60 – ≤1 × 10−10 ∼300 – 4.47 CPD [2198]
C60/Au(111) C60 – ? ∼300 – 4.53 CPD [4449]
C60/Cu395 C60 – ≤1 × 10−10 ∼300 – 4.59 CPD [2198]
C60/Ag395 C60 – ≤1 × 10−10 ∼300 – 4.60 CPD [2198]
C60/Au395 C60 – ≤1 × 10−10 ∼300 – 4.62 CPD [2198]
C60/Ag(111) C60 – 1 × 10−10 ∼300 (520) – 4.63 ± 0.10 PE [1195]
C60/Au(111) C60 – 1 × 10−10 ∼300 (570) – 4.7 PE [1070]
C60/Al C60 – ∼10−10 ∼300 – 4.7 ± 0.1 PE [1220]
C60/Au/Sin C60 – ? ∼300 – 4.70 ± 0.01 CPD [3228]
C60/Cu395 C60 – ≤1 × 10−10 ∼300 – 4.72 CPD [2198]
C60/Rh(111) C60 – 1 × 10−10 ∼300 – 4.80 ± 0.03 PE [568,2282]
C60/Au(110)396 C60 – ? ? – 4.82 ± 0.05 ? [3002,3006]
C60/Cu(111)22 – – – – – 4.85* TC [233]
C60/Cu C60 – ? ∼300 – 4.85 ± 0.05 PE [3178]
C60/Cu(111)396 C60 – <2 × 10−10 ∼300 (570) – 4.86 PE [316]
C60/Au(110) C60 – ? ∼300 (700) – 4.9 CPD [1144]
C60/Cu(111) C60 – 4 × 10−11 ∼300 – 4.9 PE [4415]
C60/Ag(110) C60 – ? ∼300 (700) – 4.92 CPD [1144]
C60/Ni(111) C60 – <2 × 10−10 ∼300 (570) – 4.93 PE [316]
C60/Au(111)22 – – – – – 4.94 TC [233]
C60/Ag(111)22 – – – – – 4.96 TC [233]
C60/Au(111)22 – – – – – 4.96 TC [233]
C60/Ag(111)22 – – – – – 4.99 TC [233]
C60/W C60 – ≤10−9 ∼300 – 5 FE [3717]
C60/Cr/C(HOPG) C60 – 1 × 10−10 ∼300 – 5.0 PE [2794]
C60/Rh(111)23,396 C60 – 6 × 10−11 ∼300 (≤700) – 5.05 CPD [1007]
C60/Cu(100) C60 – ? ∼300 – 5.06 CPD [4449]
C60/Cu(111) – – – – – 5.15 TC [3486]
C60/Al(111)396 C60 – ∼10−10 ∼300{620} – 5.15 ± 0.05 PE [458,2681,2683]
C60/Ag(111) C60 – ? ∼300 – 5.19 CPD [4449]
C60/Al(110)396 C60 – ∼10−10 ∼300{620} – 5.25 ± 0.05 PE [458,2681,2683]
C60/Ta(110)396 C60 – ? ∼300 – 5.4 PE [460]
C60/Ni(110) C60 – 8 × 10−11 ∼300{650} – 5.61 CPD [459,696]
C60/Pt(111)397 C60 – 4 × 10−11 100 (900) – 5.7 PE [697]
C60 – – – – – 5.74 TC [3486]
C60 (fine cryst.) C60 – ? ∼300 – 6.5 PE [1166,3061]
C60/W C60 – <1 × 10−10 298, 370 – 11.7 ± 0.5 FE [2520]
Recommended – – – – – 4.87 ± 0.06 – –

Single-Walled Carbon Nanotube28,402,481

C(zigzag) – – – – – 3.07–5.25 TC [1743]
C(chiral) – – – – – 3.47–4.92 TC [1743]
C(armchair) – – – – – 3.67–5.01 TC [1743]
C/Si(100) CH4,H2 – ≤10−10 ∼300{1200} – 3.7 ± 0.3 FE [1171]
C/Ag/Ti/Cr/Si – – <2 × 10−7 ∼300 (?) – 4.21 FE [2201]
C(quartz) – – ? ∼300 (∼1200) – 4.31 PE [2446]
C(open ended) – – – – – 4.47 TC [1740]
C/Ni/W C2H2 – <5 × 10−8 ∼300{870} – 4.5 FE [2288]
C(armchair)455 – – – – – 4.5 TC [3240]
C24 – – – – – 4.5 ± 0.1 TC [1168]
(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

C(chiral)455 – – – – – 4.5–5.5 TC [3240]
C(zigzag)455 – – – – – 4.5–5.9 TC [3240]
C/Si(111)25 – – ∼10−10 ∼300 – 4.62 ± 0.06 PE [3246]
C – – – – – 4.64 TC [1877]
C(𝑑 ≥ 1 nm) – – – – – 4.69 ± 0.01 TC [1169]
C(flake) – – 8 × 10−10 ∼300 – 4.7 PE [3229]
C/SiO2 ? (CVD) – 1 × 10−10 ∼300{1200} – 4.7 PE [3233]
C(𝑑 → ∞)21 – – – – – 4.73 TC [767]
C/Si ? (CVD) – ? ∼300{∼1200} – 4.73 PE [1172]
C – – – – – 4.73 TC [4446]
C(metallic) – – – – – 4.73 ± 0.03 TC [767]
C/W – – <3 × 10−9 ∼300 (∼1300) – 4.76 FE [546]
C(capped) – – – – – 4.78 TC [1740]
C/ITO – – <10−10 ∼300 – 4.8 PE [284]
C/GaAs – – 2 × 10−9 ∼300 (?) – 4.8 PE [291,1165]
C/W – – ? ∼300 – 4.8 FE [3572]
C/SiO2/Si ? (CVD) – 1 × 10−7 ∼1800–2100 – 4.8 ± 0.1 TE [2555]
C/glass – – ? ∼300 – 4.83 PE [3795]
C(𝑑 → ∞)21 – – – – – 4.84 TC [767]
C(mouth)27 – – – – – 4.86 TC [3570]
C/ITO – – ? ∼300 – 4.86 PE [3795]
C/Si(111)25 – – ∼10−10 ∼300 – 4.86 ± 0.10 CPD [3246]
C/W – – <3 × 10−9 ∼300 (∼1300) – 4.88 FE [546]
C – – – – – 4.89 TC [3787]
C/Si(111)26 – – ∼10−10 ∼300 – 4.94 ± 0.07 CPD [3246]
C(mouth)27 – – – – – 4.95 TC [3570]
C/Si(111)25 – – ∼10−10 ∼300 – 4.97 ± 0.07 CPD [3246]
C/Si(111)26 – – ∼10−10 ∼300 – 5.01 ± 0.17 CPD [3246]
C(bundle) – – – – – 5.02 ± 0.05 TC [767]
C/? – – ? ∼300 – 5.05 PE [1166,3061]
C(capped) – – – – – 5.05 TC [2918,3682]
C (5,5)28 – – – – – 5.08 TC [3570]
C(rope)/Pt – – 5 × 10−9 ∼300 – 5.1 FE [547]
C/? – – ? ∼300 – 5.10 PE [3061]
C/ITO – – ? (air) ∼300 – 5.19 PE [3795]
C(bundle) – – – – – 5.2–5.4 TC [3239]
C(neighbor)27 – – – – – 5.20 TC [3570]
C/glass – – ? (air) ∼300 – 5.24 PE [3795]
C(neighbor)27 – – – – – 5.25 TC [3570]
C(bundle) – – – – – 5.3 TC [3239]
C(armchair) – – – – – 5.46 ± 0.02 TC [548]
C(zigzag) – – – – – 5.60 ± 0.03 TC [548]
Recommended – – – – – 4.78 ± 0.06 – –

Multi-Walled Carbon Nanotube402,481

C(yarn)470 – – ? ∼2000–2100 – 3.9 TE [4307]
C(yarn)470 – – ? ∼2100–2200 – 4.1 TE [4307]
C/glass – – ? ∼300 – 4.18 ± 0.09 PE [4003]
C/? ? – ∼10−6 ∼300 – 4.2 FE [1724]
C(pentagon)/Ta30 – – 5 × 10−10 ∼300 – 4.2–4.3 FE [3942]
C/ITO – – <10−10 ∼300 (∼470) – 4.3 PE [284,1441]
C/W ? (CVD) – 1 × 10−9 ∼300{?} – 4.3 ± 0.1 FE [2546]
C/Si31 ? (CVD) – 8 × 10−10 ∼300{∼570} – 4.4 PE [3223,3225]
C – – – – – 4.51–5.23 TC [3240]
C(armchair) – – – – – 4.53–4.54 TC [3240]
C(zigzag) – – – – – 4.53–4.99 TC [3240]
C/Si31 ? (CVD) – 8 × 10−10 ∼300 (∼570) – 4.6 PE [3223]
C/W ? (CVD) – 1 × 10−9 ∼600–1400 – 4.6 ± 0.7 TE [2546]
C(yarn) – – 4 × 10−8 1500–2200 – 4.60 ± 0.04 TE [1092,4306]
C(powder) – – ? ∼300 – 4.61 ± 0.03 PE [4003]
C/W ? (CVD) – ∼10−7 ∼300 – 4.61 ± 0.09 CPD [1208]
C(𝑟 > 1 nm) – – – – – 4.63 ± 0.02 TC [1169]
C/?32 ? – ? ∼300 – 4.7 ± 0.1 FE [545]
C/W ? (CVD) – 1 × 10−9 ∼300–720 – 4.7 ± 0.4 FE [2546]
C/SiO2/Si ? (CVD) – 1 × 10−7 ∼1800–2100 – 4.85 ± 0.03 TE [2555]
C/Si(100) CH4, H2 – ≤10−10 ∼300 (∼1200) – 4.85 ± 0.2 PE [1171]
C/Si(100)p CH4, H2 – ≤10−10 ∼300 (≥1220) – 4.9 FE [2066]

(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

C/? – – ? ∼300 – 4.95 PE [1166,3061]
C/Si(100)403 CH4, H2 – <10−9 ∼300{∼1200} – ∼5 FE [3649]
C/Si(100) CH4, H2 – ≤10−10 ∼300{∼1200} – 5 ± 0.3 FE [1171]
C/W ? – 2 × 10−10 770 (970) – 5.0 FE [1840]
C/SiO2 ? (CVD) – 2 × 10−10 ∼300{1000} – 5.1 ± 0.2 FE [1837,3601]
C/Si(100)403 CH4, H2 – ∼10−8 ∼300{∼1200} – 5.3 ± 0.2 FE [698,2425,3943]
C/epoxy – – ∼10−6 ∼300 – 5.4 FE [1728]
C/SiO2 ? (CVD) – ∼10−10 ∼300 (?) – 5.4 FE [3601]
C/?32 ? – ? ∼300 (?) – 5.6 FE [545]
C/?33 ? – ? ∼300 – 5.7 PE [1735]
C/?33 ? – ? ∼300 – 5.75 PE [1735]
C/W34 – – ≤2 × 10−11 ∼300 (1000) – 7.3 ± 0.7 FE [1170]
Recommended – – – – – 4.63 ± 0.04 – –

Conical Carbon Nanotube467

C/graphite CH4, H2 – ∼10−7 ∼1300–1400 – 4.1–4.7 TE [4280,4286]
C/Pt CH4, H2 – ∼10−7 ∼1400–1500 – 4.2 TE [4280,4286]
C/Pt CH4, H2 – ∼10−8 ∼300 (?) – 4.5 PE [4280,4286]

11. Sodium Na

bcc
Na(100) – – – – – 2.355 TC [2947]
Na(100) – – – – – 2.38 TC [1254]
Na(100) – – – – – 2.40 TC [1159,3067]
Na(100) – – – – – 2.45 TC [1556]
Na(100) – – – – – 2.58 TC [231]
Na(100) – – – – – 2.60 TC [3467]
Na(100) – – – – – 2.638 TC [4091]
Na(100) – – – – – 2.65 TC [2427]
Na(100) – – – – – 2.66 TC [553]
Na(100) – – – – – 2.66 TC [3477]
Na(100) – – – – – 2.69 TC [4222]
Na(100) – – – – – 2.7 TC [2851]
Na(100) – – – – – 2.7 TC [763]
Na(100) – – – – – 2.71 TC [1408]
Na(100) – – – – – 2.75 TC [475]
Na(100) – – – – – 2.76 TC [334]
Na(100) – – – – – 2.77 TC [711]
Na(100) – – – – – 2.80 TC [1557]
Na(100) – – – – – 2.80 TC [721]
Na(100) – – – – – 2.83 TC [3477]
Na(100) – – – – – 2.83 TC [1553]
Na(100) – – – – – 2.84 TC [556]
Na(100) – – – – – 2.86 TC [473]
Na(100) – – – – – 2.88 TC [555]
Na(100) – – – – – 2.88 TC [1030]
Na(100) – – – – – 2.89 TC [3814]
Na(100) – – – – – 2.9 TC [1088]
Na(100)43 – – – – – 2.9 TC [2222]
Na(100) – – – – – 2.93 TC [476]
Na(100) – – – – – 2.94 TC [711]
Na(100) – – – – – 2.95 TC [321]
Na(100) – – – – – 3.0 TC [1088]
Na(100) – – – – – 3.03 TC [554]
Na(100) – – – – – 3.04 TC [476]
Na(100) – – – – – 3.07 TC [1030]
Na(100) – – – – – 3.08 TC [472]
Na(100) – – – – – 3.27 TC [1095]
Recommended – – – – – 2.80 ± 0.04 – –

Na(110) – – – – – 2.01 TC [3379]
Na(110) – – – – – 2.18 TC [3379]
Na(110) – – – – – 2.25 TC [3379]
Na(110) – – – – – 2.464 TC [2947]
Na(110) – – – – – 2.52 TC [1159,3067]
Na(110) – – – – – 2.59 TC [2685]
Na(110) – – – – – 2.7 TC [1556]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Na(110) – – – – – 2.75 TC [231]
Na(110) – – – – – 2.76 TC [3467]
Na(110) – – – – – 2.839 TC [4069]
Na(110) – – – – – 2.839 TC [4091]
Na(110) – – – – – 2.85 TC [2427]
Na(110) – – – – – 2.86 TC [4222]
Na(110) – – – – – 2.87 TC [3477]
Na(110) – – – – – 2.87 TC [2835]
Na(110) – – – – – 2.88 TC [553]
Na(110) – – – – – 2.9 TC [3137]
Na(110) – – – – – 2.9 TC [2851]
Na(110) – – – – – 2.9 TC [1086]
Na(110)/Ni(100)35 Na – ∼10−11 173 – 2.90 ± 0.10 CPD [1417]
Na(110) – – – – – 2.91 TC [711]
Na(110) – – – – – 2.93 TC [1086]
Na(110) – – – – – 2.93 TC [2835]
Na(110) – – – – – 2.94 TC [334]
Na(110) – – – – – 2.94 TC [1921]
Na(110) – – – – – 3.0 TC [1734]
Na(110) – – – – – 3.00 TC [473]
Na(110) – – – – – 3.00 TC [3477]
Na(110) – – – – – 3.00 TC [721]
Na(110) – – – – – 3.04 TC [3814]
Na(110) – – – – – 3.06 TC [476,711]
Na(110) – – – – – 3.06 TC [1086]
Na(110) – – – – – 3.08 TC [1030]
Na(110) – – – – – 3.1 TC [763]
Na(110) – – – – – 3.1 TC [1088]
Na(110) – – – – – 3.1 TC [2395]
Na(110) – – – – – 3.10 TC [475]
Na(110) – – – – – 3.11 TC [555]
Na(110) – – – – – 3.11 TC [2402]
Na(110) – – – – – 3.13 TC [556]
Na(110) – – – – – 3.15 TC [593]
Na(110) – – – – – 3.16 TC [476]
Na(110) – – – – – 3.22 TC [3379]
Na(110) – – – – – 3.22 TC [3712]
Na(110) – – – – – 3.22 TC [472,554]
Na(110) – – – – – 3.3 TC [1088]
Na(110) – – – – – 3.3 TC [1086]
Na(110) – – – – – 3.32 TC [1086]
Na(110) – – – – – 3.33 TC [1030,1089]
Na(110) – – – – – 3.36 TC [1087]
Na(110) – – – – – 3.39 TC [1086]
Na(110) – – – – – 3.40 TC [1089]
Na(110) – – – – – 3.43 TC [3713]
Na(110) – – – – – 3.44 TC [3713]
Na(110) – – – – – 3.44 TC [321]
Na(110) – – – – – 3.44 TC [3693]
Na(110) – – – – – 3.46 TC [3693]
Na(110) – – – – – 3.49 TC [1089]
Na(110) – – – – – 3.61 TC [3692]
Na(110) – – – – – 3.62 TC [1095]
Na(110) – – – – – 3.64 TC [3692]
Na(110) – – – – – 5.93 TC [3622]
Recommended – – – – – 3.05 ± 0.04 – –

Na(111) – – – – – 2.26 TC [3477]
Na(111) – – – – – 2.39 TC [1159,3067]
Na(111) – – – – – 2.48 TC [3477]
Na(111) – – – – – 2.54 TC [231]
Na(111) – – – – – 2.56 TC [711]
Na(111) – – – – – 2.57 TC [3467]
Na(111) – – – – – 2.585 TC [4091]
Na(111) – – – – – 2.59 TC [553]
Na(111) – – – – – 2.6 TC [2851]
Na(111) – – – – – 2.60 TC [1557]
Na(111) – – – – – 2.63 TC [4222]
Na(111) – – – – – 2.65 TC [475]
Na(111) – – – – – 2.7 TC [1088]
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Na(111) – – – – – 2.70 TC [593]
Na(111) – – – – – 2.71 TC [473]
Na(111) – – – – – 2.72 TC [3814]
Na(111) – – – – – 2.73 TC [476,711]
Na(111) – – – – – 2.75 TC [1553]
Na(111) – – – – – 2.75 TC [1030]
Na(111) – – – – – 2.76 TC [555]
Na(111) – – – – – 2.76 TC [556]
Na(111) – – – – – 2.79 TC [721]
Na(111) – – – – – 2.79 TC [1030]
Na(111) – – – – – 2.8 TC [1088]
Na(111) – – – – – 2.82 TC [472,554]
Na(111) – – – – – 2.83 TC [321]
Na(111) – – – – – 2.85 TC [476]
Na(111) – – – – – 3.17 TC [1095]
Recommended – – – – – 2.68 ± 0.06 – –

Na(112) – – – – – 3.14 TC [321]

Na – – – – – 1.55 TC [2704]
Na – – ? ∼300 – 1.60 CPD [2297]
Na/Si(100) Na – 1 × 10−10 ∼300 – 1.7* CPD [3294]
Na/Si(100) Na – 2 × 10−10 ∼300 – 1.7* PE [1727]
Na/Si(100) Na – ∼10−11 ∼300 – 1.7* PE [2277]
Na/Si(100) Na – <6 × 10−11 ∼300 – 1.7* CPD [2433]
Na – – – ∼300 – 1.8 TC [3737]
Na – – – – – 1.82 TC [2456]
Na/Rh(111) – – – – – 1.869 TC [4008]
Na/Si(100) Na – 1 × 10−10 ∼300 – 1.9* CPD [3294]
Na/Si(100) – – – – – 1.9* TC [2413]
Na/? Na – ? ∼300 – 1.9 ± 0.1 PE [3258]
Na/? Na – ? ∼300 – 1.95 ± 0.02 PE [3258]
Na/? Na – ? ∼300 – 1.97 ± 0.03 PE [3260]
Na/Rh(111) – – – – – 1.987 TC [4008]
Na/TiO2(110) Na – 5 × 10−11 ∼300 – 2.0 PE [2787]
NaTiO2/(110) – – – – – 2.0* TC [3833]
Na/Cs – – – – – 2.0* TC [3984]
Na/Si(100) – – – – – 2.0* TC [2406]
Na/W(100) Na – ? ∼300 – 2.0 PE [1697]
Na/? Na – ? ∼300 – 2.01 ± 0.03 PE [3260]
Na/W Na – ? ∼300 – 2.04* CPD [1459]
Na – – – – – 2.05 TC [1150]
Na/Si(100) Na – 1 × 10−10 ∼300 (450) – 2.06* CPD [3294]
Na/Ge(100) Na – <1 × 10−10 ∼300 – 2.1* CPD [2753]
Na/Si(111) – – – – – 2.1 TC [2731]
Na/Pt Na – ? ∼300 – 2.1 PE [2206]
Na – – – – – 2.11 TC [1951]
Na/W Na – ? 380 – 2.11 ± 0.05 FE [3062]
Na/W Na – ? 80 – 2.14* CPD [3746]
Na – – – – – 2.15 TC [3725]
Na/Ge(001) – – – – – 2.168 TC [3499]
Na/Ag(100) Na – 1 × 10−10 150 – 2.2 PE [2038]
Na/Si(100) Na – 1 × 10−10 293 – 2.2* PE [2184]
Na/W Na – ? ∼300 – 2.2 FE [3062]
Na/Ru(0001) Na – 6 × 10−11 50 – 2.2* CPD [2188]
Na/TiO2(110) Na – 8 × 10−11 ∼300 – 2.2 PE [3188]
Na/Ge(111) Na – ∼10−10 ∼300 – 2.2 CPD [2948]
Na/W Na – ∼10−6 ∼300 – 2.25 PE [3934]
Na/? Na – ? ∼300 – 2.26 CPD [2808]
Na/Si(100) Na – 1 × 10−10 ∼300 (450) – 2.26 CPD [3294]
Na/W(111) Na – (<10−10) 77 – 2.26 FE [2323]
Na/metal Na – ≤10−7 ∼300 – 2.27 PE [1765]
Na/glass Na – ≤3 × 10−11 195 – 2.27 ± 0.01 PE [2615]
Na/glass Na – ∼2 × 10−8 ∼300 – 2.28 PE [2564]
Na/Ni Na – <10−9 77 – 2.28 CPD [2139,3128,3698]
Na/Ge(111) Na+ – 1 × 10−10 ∼300 – 2.28 CPD [3423]
Na – – – – – 2.28 TC [3637]
Na/quartz Na – ∼10−10 ∼300 – 2.28 ± 0.08 PE [1999]
Na/Si(111) Na+ – 1 × 10−10 ∼300 – 2.29 CPD [3423]
Na/glass Na – ? ∼300 – 2.29 PE [2561]
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Na/Ru(0001) Na – 3 × 10−10 ∼300 – 2.29 CPD [1824]
Na/Ge(111) Na – ? ∼300 – 2.3 CPD [2812,2813]
Na/Ge(111) Na – 2 × 10−10 ∼300 – 2.3* PE [3648]
Na/W(112) Na – (<10−10) 77 – 2.3 FE [2323]
Na/quartz Na – ∼10−10 90 – 2.3 PE [2605]
Na/Si(111) – – – – – 2.3* TC [3962]
Na/Si(100) Na – ? 295 – 2.3 PE [2174]
Na/Rh(100) Na – ? ∼300 – 2.3 PE [2158]
Na/Si(111) Na – <1 × 10−11 ∼300 – 2.3* CPD [3484]
Na/Y Na – 2 × 10−10 ∼300 – 2.3 ± 0.1 PE [1813]
Na/Sc Na – 2 × 10−10 ∼300 – 2.3 ± 0.1 PE [1813]
Na/? Na – ? ∼300 – 2.3 ± 0.1 PE [3258]
Na/Cu, Ag Na – 5 × 10−9 ∼300 – 2.3 ± 0.1 PE [3081]
Nan(n → ∞) – – ? ∼300 – 2.30 IP [4200]
Na – – – – – 2.30 TC [3728]
Na – – – – – 2.30 TC [1744]
Na/glass Na – ≤10−7 ∼300 – 2.30 PE [1765]
Na/W(100) Na – (<10−10) 77 – 2.32 FE [2323]
Na/? Na – ? 77 – 2.33 ± 0.05 PE [2945]
Na/glass Na – ≤3 × 10−11 195 – 2.34 ± 0.01 PE [2615]
Na – – – – – 2.35 TC [1458]
Na/Ge(001) – – – – – 2.353 TC [3499,3500]
Na – – – – – 2.36 TC [3352]
Na/Re(1122) Na – <2 × 10−9 ∼300 – 2.36 FE [811]
Na/Mo Na – ∼10−10 293 – 2.36 ± 0.02 PE36 [3336,3337]
Na/quartz Na – ? ∼300 – 2.36 ± 0.02 PE [1988]
Na/glass Na – ≤3 × 10−11 77 – 2.37 ± 0.01 PE [2615]
Na – – ∼10−9 298 – 2.38 ± 0.02 PE [2612,2613,4208]
Na – – ∼10−9 370 – 2.39 ± 0.02 PE [4241,4314]
Na/Ni(110) Na – ? >360 – 2.4* PE [2665]
Na/Si(111) Na – <4 × 10−11 ∼300 – 2.4* CPD [2894]
Na/W(110) Na – ∼10−10 ∼300 – 2.4 PE [2775,3768,3769]
Na/Si(111) Na – 4 × 10−11 ∼300 – 2.4* CPD [3471]
Na – – – – – 2.4* TC [1955]
Na/Mg(0001) – – – – – 2.4* TC [2438]
Na/Cu(110) Na – 5 × 10−11 140 – 2.4 ± 0.1 PE [3454]
Na/Al/glass Na – <10−8 ∼300 – 2.40 PE [1457]
Na/Mo Na – 4 × 10−10 80 – 2.40 ± 0.03 PE37 [3336]
Na – – ∼10−9 183 – 2.41 PE [2612,2613]
Na/Mo Na – ∼10−10 80 (293) – 2.41 PE [3337]
Na/graphene – – – – – 2.42 TC [4079]
Na/Re Na – <2 × 10−9 ∼300 – 2.45 FE [811]
Na/W(110) Na – (<10−12) ∼300 – 2.45 CPD [1084]
Na/Cu(100) Na – ≤1 × 10−10 180 – 2.45 PE [2678]
Na/Si(111) Na – <6 × 10−11 ∼300 – 2.45* CPD [2433]
Na/Mo Na – 4 × 10−10 80 (293) – 2.45 ± 0.04 PE36 [3336]
Na/Mo Na – 4 × 10−10 80 – 2.45 ± 0.05 PE37 [3336]
Na/Si(111) Na – <5 × 10−10 ∼300 – 2.46 PE [2795]
Na/quartz Na – ? ∼300 – 2.46 PE [4300]
Na/Ta(110) Na+ – ∼10−10 ∼300 – 2.46 CPD [506]
Na/Ge(100) Na – <1 × 10−10 77–120 – 2.46* FE [1550,3170]
Na/Ge(100) – – – – – 2.46* TC [4042]
Na/? Na – ? ? – 2.46 ? [3785]
Na/Al(100) – – – – – 2.46 ± 0.10 TC [1036]
Na/Ge(001) – – – – – 2.475 TC [3499]
Na/Al(111) – – – – – 2.48 TC [1594]
Na/Ge(111) Na – <1 × 10−10 77–120 – 2.48* FE [1550,3170]
Na(fp, 𝑟 → ∞)460 – – ? ∼300 – 2.48* IP [4198]
Na(fp, 𝑟 → ∞)460 – – ? ∼300 – 2.49* IP [4198]
Na/TiO2(441) Na – 5 × 10−11 ∼300 – 2.5 PE [2787]
Na/Ge(111) Na – <2 × 10−10 100 – 2.5* PE [2421]
Na/Si(111) Na – <1 × 10−10 130 – 2.5 PE [1839]
Na/Si(100) Na – 1 × 10−10 100 – 2.5* PE [2184]
Na/Si(100) – – – – – 2.5* TC [2406]
Na/W(112) Na – <5 × 10−11 ∼300 – 2.5 CPD [1666]
Na – – – – – 2.5 TC [2845]
Na/W(112) Na – (≤10−11) 77 – 2.5 CPD [2611]
Na/W(100) – – – – – 2.5 TC [1443]
Na/Li/Cu(100) Na – ≤1 × 10−10 180 – 2.5 PE [2678]
Na/Al(100) – – – – – 2.51 ± 0.10 TC [1576]
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Na(fp, 𝑟 → ∞) – – ? ∼300 – 2.52 ± 0.04 IP [2383,4148]
Na/Si(mono) Na – 5 × 10−10 ∼300 – 2.53* AI38 [1103]
Na/Re(1112) Na – <2 × 10−9 ∼300 – 2.54 FE [811]
Na/Ru(0001) Na – ? ∼300 – 2.54 PE [4020]
Na – – – – – 2.55 TC [1066]
Na/Al(111) Na – ? ∼100 (150) – 2.55 CPD [2654]
Na/W(111) Na – <2 × 10−9 ∼300 – 2.55 FE [811]
Na(nanowire)453 – – – – – 2.55 ± 0.05* TC [4178]
Nan(n → ∞)40 – – – – – 2.56 TC [2171]
Na/W(110) Na – (<10−10) 77 – 2.57 FE [2323]
Na/Cu(111) Na – 5 × 10−11 ∼300 – 2.57 PE [969]
Na/W(110) Na – (<10−12) 77 – 2.58 CPD [1084]
Na/W(110) Na – (<10−12) 77{300} – 2.58 CPD [1084]
Na – – – – – 2.58 TC [478]
Na/Cu(110) Na – <5 × 10−10 ∼300 – 2.58 PE [3182]
Na/Co(0001) Na – 5 × 10−11 ∼300 – 2.58 ± 0.03 PE [1926]
Na – – – – – 2.59 TC [3312]
Na/Mo Na – 5 × 10−10 ∼300 – 2.59 AI [4027]
Na – – – – – 2.59 TC [4031]
Na/Si(111) Na – ? ∼300 – 2.6* CPD [1585]
Na/Ru(001) Na+ – ? ∼300 – 2.6* CPD [2391]
Na/Ni(110) Na – ? ∼100 – 2.6* PE [2665]
Na/Al(111) Na – ∼10−10 ∼300 – 2.6 CPD [2833]
Na/Al(111) – – – – – 2.6 TC [2223]
Na/Ni(111) Na – <5 × 10−10 ∼300 – 2.6 PE [2183]
Na/Cu(110) Na – <5 × 10−10 ∼300 – 2.6 PE [2183]
Na/Cu(111) Na – <5 × 10−10 ∼300 – 2.6 PE [2183]
Na/W(112) Na – (≤10−11) 300, 400 – 2.6 CPD [2611]
Na/W Na – <2 × 10−9 ∼300 – 2.6 FE [811]
Na/Ni(100) Na – 8 × 10−11 ∼300 – 2.6* CPD [3807]
Na/W(112) Na – <2 × 10−9 ∼300 – 2.6 FE [811]
Na/Cu(110) Na – <3 × 10−10 ∼300 (370) – 2.6* PE [2529]
Na – – – – – 2.60 TC [3312]
Na – – – – – 2.61 TC [298]
Na/Al Na – 5 × 10−10 ∼300 – 2.61* AI38 [1103]
Na – – – – – 2.62 TC [3467]
Na – – – – – 2.62 TC [4150]
Na/Cs/Pt38 Na – 4 × 10−10 20 – 2.62 AI38 [3496]
Na – – – – – 2.63 TC [2382]
Na – – – – – 2.63 TC [4031]
Na/Ni(111) Na – ∼10−11 ∼300 – 2.64* PE [3185]
Na/Cu(111) Na – ∼10−11 ∼300 – 2.64* PE [3185]
Na/Pt Na – 5 × 10−10 ∼300 – 2.65 AI [4027]
Nan(fp) – – ? 423 – 2.65 PE [4256]
Na/Cu(111) Na – ∼10−11 ∼300 – 2.66* PE [3183]
Na/Mg Na – 5 × 10−10 ∼300 – 2.67* AI38 [1103]
Na/graphite – – – – – 2.67* TC [1843]
Na/W(110) Na – <2 × 10−9 ∼300 – 2.68 FE [811]
Nan(n → ∞)40 – – ? 110 ± 20 – 2.68 PE [2171]
Na/Fe(110) Na – 5 × 10−11 ∼300 – 2.69 ± 0.03 PE [1926]
Na – – – – – 2.7 TC [2439]
Na/W Na – ∼430 (Na) ∼1900 – 2.7 TE [1443]
Na/C(HOPG) Na – ? 40 – 2.7* PE [1618]
Na/Cu(111)227 Na – 1 × 10−10 ∼300 – 2.7* CPD [2495,2496]
Na/Ni(100) Na – 1 × 10−11 ∼300 – 2.7* CPD [1413]
Na/Ni(100) Na – ∼10−10 ∼300 – 2.7* CPD [1992]
Na/Ni(110) Na – ∼10−10 ∼300 – 2.7* CPD [1992]
Na/Ni(100) – – – – – 2.7 TC [509]
Na/Al(100) Na – ∼10−10 ∼300 – 2.7* CPD [2833]
Na/Si(100) Na – ? 100 – 2.7 PE [2174]
Na/Cu(100) Na – ? ∼300 – 2.7 PE [3451]
Na/Ru(001) Na – ? ∼300 – 2.7* CPD [2984]
Na/Ni(111) Na – <3 × 10−10 ∼300 – 2.7* PE [2177]
Na/Cu(111) Na – <3 × 10−10 ∼300 – 2.7* PE [2177]
Na/Si(100) Na – ? 70 – 2.7 PE [2178]
Na/Cu(110) Na – ? ? – 2.7* ? [3702]
Na/W(110) Na – <2 × 10−11 ∼300 – 2.7 CPD [2658]
Na/Al38 Na – ? ∼300 – 2.70* AI [3789]
Nan(n → ∞) – – ? ∼300 – 2.71 IP, TC [4197]
Na/Cu(111) – – – – – 2.73 TC [1246]
(continued on next page)
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Nan(n → ∞) – – – – – 2.75 TC [4193]
Na(𝑟 → ∞)41 – – – – – 2.75 TC [2860]
Na/quartz Na – ∼10−11 77 – 2.75 PE [3424]
Na – – – – – 2.75 TC [477]
Na/C(0001) Na – 2 × 10−10 95 – 2.75 CPD [525]
Na/Re(1120) Na – <2 × 10−9 ∼300 – 2.75 FE [811]
Na(fp)42 – – ? ? – 2.75 ± 0.05 PE [3482]
Na/Y Na – ? ∼300 – 2.75 ± 0.1 PE [1691]
Na/W(100) Na – <2 × 10−9 ∼300 – 2.76 FE [811]
Na/Mo(112) Na – (≤10−11) 77 – 2.76 CPD [2030]
Na/graphite – – – – – 2.77* TC [1843]
Na – – – – – 2.77 TC [3208]
Na/Cu(111) Na – ∼5 × 10−11 ∼300 – 2.77 ± 0.03 PE [1922,1926]
Na – – – – – 2.78 TC [3477]
Na(cluster) – – – – – 2.78 TC [3479]
Na – – – – – 2.78 TC [1901]
Na/Cr38 Na – 5 × 10−10 ∼300 – 2.79 AI38 [1103,4027]
Na/Al(100) Na – 1 × 10−10 100 – 2.8 CPD [2875]
Na/Al(111)43 – – – – – 2.8 TC [2222]
Na/Si(100) – – – – – 2.8* TC [2406]
Na/Al(111) Na – ∼10−11 100 (240) – 2.8* CPD [3296]
Na – – – – – 2.8 TC [706]
Na/Ti Na – ? ∼300 – 2.8 ± 0.1 PE [1691]
Na/Al38 Na – ? ∼300 – 2.80* AI [3789]
Nan(n → ∞)44 – – ∼10−6 ∼300 – 2.81 IP [2053]
Na – – – – – 2.81 TC [231]
Na/Cu Na – 5 × 10−10 ∼300 – 2.81 AI [4027]
Na – – – – – 2.83 TC [231]
Na – – – – – 2.84 TC [2493]
Na – – – – – 2.84 TC [3467]
Na/Al(111) Na – ? 140, ∼300 – 2.85 CPD [734]
Na – – – – – 2.85 TC [738]
Na/Au(100) Na – ∼10−11 130, ∼300 – 2.87 CPD [2746]
Na – – – – – 2.88 TC [477]
Na/Pt(100) – – – – – 2.88 TC [3168]
Na/Au(100) – – – – – 2.88 TC [3168]
Nan(n → ∞) – – – – – 2.89 TC [4254]
Na/Ni(111) – – – – – 2.9* TC [2177]
Na/NbC(111) Na – ∼1 × 10−10 ∼300 – 2.9 PE [2799]
Na/Al(100) – – – – – 2.9 TC [3149]
Na/Al(111) Na – ∼5 × 10−10 ∼300 – 2.9* CPD [2748]
Na/Ni(111) Na – ∼10−10 ∼300 – 2.9* CPD [1992]
Na/Al(001) – – – – – 2.9 TC [1711]
Na/metal – – – – – 2.9 TC [2195]
Na/Cu(111) Na – <1 × 10−10 ∼300 – 2.9* CPD [3295]
Na – – – – – 2.90 TC [477]
Nan(n → ∞) – – ? ∼300 – 2.90 TC [4197]
Na – – – – – 2.91 TC [2061]
Na – – – – – 2.91 TC [1924,4035,4036]
Na – – – – – 2.91 TC [477]
Na – – – – – 2.92 TC [477]
Na – – – – – 2.92 TC [2427]
Na – – – – – 2.92 TC [1924,3208,4035]
Na – – – – – 2.93 TC [1613]
Na – – – – – 2.93 TC [4101]
Na/Re(1011) Na – <2 × 10−9 ∼300 – 2.93 FE [811]
Na – – – – – 2.93 TC [521]
Na – – – – – 2.93 TC [3628]
Na – – – – – 2.93 TC [4431]
Na – – – – – 2.94 TC [3477]
Na – – – – – 2.94 TC [553,2427]
Na – – – 186 – 2.949 TC [2419]
Na – – – – – 2.97 TC [2493]
Na – – – – – 2.98 TC [2629]

(continued on next page)
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Na – – – 0 – 2.983 TC [2419]
Na/Al(111) – – – – – 3.02 TC [1594]
Na – – – – – 3.06 TC3 [475,519,2474]
Na – – – – – 3.06 TC [3168]
Na/C(100) – – – – – 3.1* TC [2759]
Na/Si(111) Na – <4 × 10−11 ∼300 – 3.1* CPD [3947]
Na – – – – – 3.1 TC [944]
Na/Al(111) – – – – – 3.11 TC [3158]
Na – – – – – 3.16 TC [1578]
Na – – – – – 3.17 TC [230]
Na/C(HOPG) Na – ? 90 – 3.2 PE [1618]
Na/ZrC(100) Na – ? ∼300 – 3.4 PE [2798]
Na/quartz Na – ? ∼300 – 3.45 ± 0.04 PE [1988]
Na/Ta(110) – – – – – 3.51 TC [2538]
Recommended – – – – – 2.54 ± 0.03 – –

Liquid (𝑻 > 𝟑𝟕𝟏 𝐊)
Na – – ∼10−8 371 – 2.38 PE [4208]
Na – – ∼10−9 372 – 2.39 PE [4241]
Na – – – 371 – 2.924 TC [2419]

12. Magnesium Mg

hcp
Mg(0001) – – – – – 3.0 TC [3137]
Mg(0001) – – – – – 3.2 TC [1215]
Mg(0001) – – – – – 3.3 TC [1215]
Mg(0001) – – – – – 3.4 TC [1215]
Mg(0001) – – – – – 3.44 TC [231]
Mg(0001) – – – – – 3.58 TC [3467]
Mg(0001)45 – – 5 × 10−11 100–150 – 3.65 CPD [3174]
Mg(0001) – – – – – 3.65 TC [1179]
Mg(0001) – – – – – 3.66 TC [3004]
Mg(0001) – – – – – 3.69 TC [2427]
Mg(0001) – – – – – 3.69 TC [1699]
Mg(0001) – – – – – 3.69 TC [1028]
Mg(0001) – – – – – 3.7 TC [1704,1711]
Mg(0001) – – – – – 3.705 TC [4460]490

Mg(0001) – – – – – 3.71 TC [4417]
Mg(0001) – – – – – 3.71 TC [553]
Mg(0001) – – – – – 3.718 ± 0.009 TC [2556]
Mg(0001) – – – – – 3.72 TC [3234]
Mg(0001) – – – – – 3.72 TC [343]
Mg(0001) – – – – – 3.72 TC [4326]
Mg(0001) – – – – – 3.74 TC [4215]
Mg(0001)46 – – – – – 3.75 ± 0.05* TC [2552]
Mg(0001) – – – – – 3.76 TC [3481]
Mg(0001) – – – – – 3.76 TC [4004]
Mg(0001) – – – – – 3.80 TC [1179]
Mg(0001) – – – – – 3.83 TC [1028,1179]
Mg(0001) – – 1 × 10−10 ∼300 – 3.84 ± 0.02 PE [2135]
Mg(0001) – – – – – 3.86 TC [334]
Mg(0001) – – – – – 3.87 TC [4005]
Mg(0001) – – – – – 3.88 TC [3481]
Mg(0001) – – – – – 3.88 TC [1030,1089]
Mg(0001) – – – – – 3.89 TC [4004]
Mg(0001) – – – – – 3.9 TC [2851]
Mg(0001) – – – – – 4.0 TC [2851]
Mg(0001) – – – – – 4.0 TC [2400]
Mg(0001) – – – – – 4.00 TC [1089]
Mg(0001) – – – – – 4.01 TC [1030]
Mg(0001) – – – – – 4.05 TC [475]
Mg(0001) – – – – – 4.06 TC [3004]
Mg(0001) – – – – – 4.10 TC [593]
Mg(0001) – – – – – 4.18 TC [556]
Mg(0001) – – – – – 4.2 TC [1088]
Mg(0001) – – – – – 4.20 TC [1089]
Mg(0001) – – – – – 4.38 TC [1087]
Recommended – – – – – 3.79 ± 0.07 – –
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Mg(1010) – – – – – 3.39 TC [4461]490

Mg(1010) – – – – – 3.64 TC [4004]
Mg(1010) – – – – – 3.652 TC [4460]490

Mg(1010) – – – – – 3.76 TC [4004]
Mg(1010) – – – – – 3.79 TC [4005]

Mg(0111) – – – – – 3.70 TC [4004]
Mg(0111) – – – – – 3.88 TC [4004]

Mg(0112) – – – – – 3.63 TC [4004]
Mg(0112) – – – – – 3.74 TC [4004]

Mg(0113) – – – – – 3.58 TC [4004]
Mg(0113) – – – – – 3.66 TC [4004]

Mg(1121) – – – – – 3.56 TC [4004]
Mg(1121) – – – – – 3.68 TC [4004]

Mg(1122) – – – – – 3.67 TC [4004]
Mg(1122) – – – – – 3.80 TC [4004]

Mg(1123) – – – – – 3.53 TC [4004]
Mg(1123) – – – – – 3.68 TC [4004]

Mg(2130) – – – – – 3.49 TC [4004]
Mg(2130) – – – – – 3.72 TC [4004]

Mg(3140) – – – – – 3.48 TC [4004]
Mg(3140) – – – – – 3.68 TC [4004]

Mg/glass – – ? ∼300 – >2.4 PE [4010]
Mg – – – – – 2.7 TC [2456]
Mg – – ? ∼300 – <3.0 PE [2295]
Mg – – – – – 3.1 TC [1955]
Mg/ins/Al47 Mg – ? ∼300 – 3.10 ± 0.09 CPD [2028]
Mg – – – – – 3.15 TC [1744]
Mg/SiO2/Si Mg – ? ∼300 (570) – 3.19 PE [2355]
Mg – – ∼7 × 10−9 ∼300 – 3.25 PE [2001]
Mg – – – – – 3.33 TC [521]
Mg – – – – – 3.34 TC [231]
Mg – – – 0 – 3.34 TC [4419]
Mg/SiO2/Si(100) Mg – ? ∼300 – 3.4548 PE [1442]
Mg – – – – – 3.46 TC [1924]
Mg – – – – – 3.48 TC [3467]
Mg – – – – – 3.5 TC [944]
Mg – – 1 × 10−5 ∼300 – 3.53 CPD [1883]
Mg – – – – – 3.54 TC [231]
Mg – – – – – 3.54 TC [2427]
Mg – – ? ∼300 – 3.55 CPD [1883]
Mg240 – – ? ∼300 – 3.58* CPD [1367]
Mg – – ? ∼300 – 3.58 CPD [2297]
Mg – – – – – 3.58 TC [3467]
Mg/Al2O3/Si(100) Mg – ? ∼300 – 3.648 PE [1442]
Mg/Mo(112) Mg – ? ? – 3.6 CPD [2404,2407]
Mg – – ? ∼300 – 3.60* CPD [3621]
Mg/Mo Mg – ? ∼300 – 3.60 ± 0.02 PE [1635]
Mg/Ta Mg – ? ∼300 – 3.60 ± 0.02 PE [1635]
Mg/glass Mg – ? ∼300 – 3.60 ± 0.02 PE [1635]
Mg/glass49 Mg – ? ∼300 – 3.61 ± 0.03 CPD [1368]
Mg/? Mg – ? ∼300 – 3.63 PE [1639]
Mg – – – – – 3.65 TC [2704]
Mg/glass50 Mg – ? ∼300 – 3.65 ± 0.05 CPD [1368]
Mg – – – – – 3.66 TC3 [475,2474]
Mg/quartz51 Mg – 1 × 10−6 ∼300 – 3.66 PE [1968,1973]
Mg – – – – – 3.66 TC [2629]
Mg – – – – – 3.66 TC [4418]
Mg/TiO2(100) Mg – ? ∼300 – 3.66 PE [1612]
Mg/glass Mg – ? ∼300 – 3.67 ± 0.02 PE [1640]
Mg/glass Mg – ? ∼300 – 3.68 PE [2561]
Mg – – <3 × 10−11 ∼300 – 3.68 ± 0.15 AI [4055]
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Mg/glass88 Mg – <10−9 ∼300{77} – 3.7 CPD [1526]
Mg/Mo(112) Mg – ? ∼300 – 3.7 CPD [2409]
Mg – – – – – 3.7 TC [1993]
Mg – – – – – 3.70 TC [1066]
Mg – – – – – 3.70 TC [738]
Mg – – 5 × 10−10 ∼300 – 3.72 PE [594]
Mg/Cr Mg – 5 × 10−10 ∼300 – 3.72 AI38 [1103]
Mg – – – – – 3.75 TC [3729]
Mg – – – – – 3.75 TC [1613]
Mg/W244 Mg – ≤2 × 10−9 ∼300, ∼900 – 3.76 CPD [3530]
Mg – – – – – 3.77 TC [298]
Mg – – – – – 3.77 TC [1924]
Mg/glass49,50 Mg – ? ∼300 – 3.78 CPD [1368]
Mg/W Mg – ≤2 × 10−9 ∼300 – 3.78 CPD [3530]
Mg/Ni Mg – ? ∼300 – 3.79 PE [1640]
Mg – – – – – 3.8 TC [706]
Mg/W(112) Mg – (≤10−11) 77 – 3.8 CPD [2635]
Mg38 – – ? ∼300 – 3.80* AI [3789]
Mg – – – – – 3.82 TC [553,2427]
Mg – – – – – 3.82 TC [3477]
Mg – – – – – 3.84 TC [3477]
Mg/Au(100) – – – – – 3.87 TC [4326]
Mg – – – – – 3.99 TC [1578]
Mg/Si – – – – – 4.08 TC [1653]
Mg/Si – – – – – 4.11 TC [1653]
Mg/Re(1010) Mg – (<10−11) 77 (∼300) – 4.11 CPD [4275]
Mg/GaP – – – – – 4.14 TC [1653]
Mg/ZrO2/Si(100) Mg – ? ∼300 – 4.1548 PE [1442]
Mg – – – – – 4.18 TC [1976]
Mg/GaP – – – – – 4.25 TC [1653]
Mg(foil) – – <1 × 10−10 ∼300 – 4.3 ± 0.2 PE [3584]
Recommended – – – – – 3.65 ± 0.05 – –

13. Aluminium Al

fcc
Al(100) – – – – – 3.22 TC [2697]
Al(100) – – – – – 3.36 TC [3638]
Al(100) – – ? ∼300 – 3.38 ± 0.07 PE [239]
Al(100) – – – – – 3.62 TC [231]
Al(100) – – – – – 3.63 TC [3467]
Al(100) – – – – – 3.71 TC [473]
Al(100) – – – – – 3.77 TC [553]
Al(100) – – – – – 3.780 TC [560,2432]
Al(100) – – – – – 3.782 TC [1626]
Al(100) – – – – – 3.8 TC [2982]
Al(100) – – – – – 3.805 TC [1626]
Al(100) – – – – – 3.806 TC [2914]
Al(100) – – – – – 3.83 TC [476]
Al(100) – – – – – 3.831 TC [1626]
Al(100) – – – – – 3.87 TC [3004]
Al(100) – – – – – 3.9 TC [1088]
Al(100) – – – – – 3.92 TC [1159,3067]
Al(100)/Ge(100)52 – – – – – 3.94 TC [3949]
Al(100) – – – – – 4.00 TC [321]
Al(100) – – – – – 4.06 TC [476]
Al(100) – – – – – 4.1 TC [2851]
Al(100) – – – – – 4.1 ± 0.3 TC [1568]
Al(100) – – – – – 4.16 TC [1030]
Al(100) – – – – – 4.175 ± 0.052 TC [2352]
Al(100) – – – – – 4.20 TC [475]
Al(100)/Al(100)53 Al – ∼10−10 ∼300 (∼520) – 4.20 ± 0.03 PE [612]
Al(100)/KCl(100) Al – ∼10−10 ∼300 (∼520) – 4.20 ± 0.03* PE [612]
Al(100) – – – – – 4.21 TC [2548]
Al(100) – – – – – 4.22 TC [1921]
Al(100) – – – – – 4.227 TC [2523]
Al(100) – – – – – 4.24 TC [1175]
Al(100) – – – – – 4.25 TC [593]
Al(100) – – – – – 4.25 TC [556]
Al(100) – – – – – 4.255 TC [4460]490
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Al(100) – – – – – 4.259 TC [1175]
Al(100) – – – – – 4.27 TC [555,715]
Al(100) – – – – – 4.27 TC [3004]
Al(100) – – – – – 4.27 TC [4233]
Al(100) – – – – – 4.27 TC [4401]
Al(100) – – – – – 4.27 ± 0.01 TC [3241]
Al(100) – – – – – 4.28 TC [3241]
Al(100) – – – – – 4.29 TC [4233]
Al(100) – – – – – 4.29 TC [4357]
Al(100) – – 1 × 10−10 ∼300 – 4.29 PE [1572]
Al(100) – – – – – 4.30 TC [1030]
Al(100) – – – – – 4.30 TC [4087,4410]
Al(100) – – – – – 4.30 TC [1435]
Al(100) – – – – – 4.32 TC [4434]
Al(100) – – – – – 4.35 TC [1936]
Al(100) – – – – – 4.36 TC [1943]
Al(100) – – – – – 4.38 TC [1943]
Al(100) – – – – – 4.38 TC [561,721,1936,

4398]
Al(100) – – – – – 4.39 TC [3595]
Al(100) – – – – – 4.39 TC [2065,3485]
Al(100) – – – – – 4.39 TC [1936]
Al(100) – – – – – 4.4 TC [2905]
Al(100) – – – – – 4.40 TC [1936]
Al(100) – – – – – 4.40 TC [2065,2067]
Al(100) – – – – – 4.41 TC [557]
Al(100) – – <10−10 ∼300 – 4.41 ± 0.03 PE [241]
Al(100) – – – – – 4.42 TC [482,721,4398]
Al(100) – – – – – 4.42 ± 0.04 TC [719]
Al(100) – – – – – 4.43 TC [4117]
Al(100) – – – – – 4.432 ± 0.004 TC [720]
Al(100) – – – – – 4.45 TC [1557]
Al(100) – – – – – 4.46 TC [716]
Al(100) – – – – – 4.46 TC [1943]
Al(100) – – – – – 4.46 TC [716]
Al(100) – – – – – 4.46 ± 0.03 TC [1935]
Al(100) – – – – – 4.49 TC [244]
Al(100) – – – – – 4.50 TC [3203]
Al(100) – – – – – 4.50 TC [714,984]
Al(100) – – – – – 4.505 TC [481]
Al(100) – – – – – 4.51 TC [1821]
Al(100) – – – – – 4.51 ± 0.03 TC [717,718]
Al(100) – – – – – 4.53 TC [1002]
Al(100) – – – – – 4.54 TC [240,2221]
Al(100) – – – – – 4.56 TC [1943]
Al(100) – – – – – 4.59 TC [1259]
Al(100) – – – – – 4.63 TC [240,714,984]
Al(100) – – – – – 4.67 TC [245,3149]
Al(100) – – – – – 4.69 TC [1563]
Al(100) – – – – – 4.69 TC [2697]
Al(100) – – – – – 4.7 TC [1088]
Al(100) – – – – – 4.7 TC [1711,1734]
Al(100) – – – – – 4.7 TC [3149,3156]
Al(100) – – – – – 4.7 ± 0.1 TC [713]
Al(100) – – – – – 4.82 TC [3339]
Al(100) – – – – – 4.82 TC [1871]
Al(100) – – – – – 4.85 TC [3477]
Al(100) – – – – – 4.86 TC [2697]
Al(100) – – – – – 4.90 TC [1095]
Al(100) – – – – – 5.07 ± 0.10 TC [1576]
Al(100) – – – – – 5.24 TC [3477]
Al(100) – – – – – 5.45 ± 0.1 TC [1036]
Recommended – – – – – 4.28 ± 0.05 – –

Al(110) – – – – – 2.83 TC [2697]
Al(110) – – – – – 3.59 TC [553]
Al(110) – – – – – 3.60 TC [473]
Al(110) – – – – – 3.642 TC [1626]
Al(110) – – – – – 3.643 TC [1626,2914]
Al(110) – – – – – 3.65 TC [475]
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Al(110) – – – – – 3.7 TC [2851]
Al(110) – – – – – 3.7 TC [2982]
Al(110) – – – – – 3.70 TC [593]
Al(110) – – – – – 3.73 TC [1159,3067]
Al(110) – – – – – 3.76 TC [321]
Al(110) – – – – – 3.8 TC [1088]
Al(110) – – ? ∼300 – 3.80 PE [239]
Al(110) – – – – – 3.81 TC [231]
Al(110) – – – – – 3.82 TC [3467]
Al(110) – – – – – 3.85 TC [1435]
Al(110) – – – – – 3.87 TC [3004]
Al(110) – – – – – 3.88 TC [555]
Al(110) – – – – – 3.88 TC [3004]
Al(110) – – – – – 3.89 TC [715]
Al(110) – – – – – 3.89 TC [1030]
Al(110) – – – – – 3.92 TC [4401]
Al(110) – – – – – 3.95 TC [1030]
Al(110) – – – – – 3.97 TC [474]
Al(110) – – – – – 3.97 TC [1563]
Al(110) – – – – – 4.02 TC [556]
Al(110) – – – – – 4.06 TC [4233]
Al(110)/Al(110)53 Al – ∼10−10 ∼300 (∼520) – 4.06 ± 0.03 PE [612]
Al(110) – – – – – 4.07 TC [474]
Al(110) – – – – – 4.07 TC [1175]
Al(110) – – – – – 4.09 TC [4087,4410]
Al(110) – – – – – 4.10 TC [476]
Al(110) – – – – – 4.11 TC [4233]
Al(110) – – – – – 4.12 TC [559]
Al(110) – – – – – 4.14 TC [559]
Al(110) – – – – – 4.15 TC [474]
Al(110) – – – – – 4.19 TC [1943]
Al(110) – – – – – 4.2 TC [2905]
Al(110) – – – – – 4.20 TC [557]
Al(110) – – – – – 4.20 TC [1212]
Al(110) – – – – – 4.20 TC [1943]
Al(110) – – – – – 4.21 TC [2548]
Al(110) – – – – – 4.21 ± 0.04 TC [719]
Al(110) – – – – – 4.22 TC [557]
Al(110) – – – – – 4.22 TC [1213]
Al(110) – – – – – 4.25 TC [3203]
Al(110) – – – – – 4.26 TC [1943]
Al(110) – – – – – 4.28 TC [476]
Al(110) – – – – – 4.28 TC [4117]
Al(110) – – <10−10 ∼300 – 4.28 ± 0.02 PE [241,242]
Al(110) – – – – – 4.29 TC [721,4398]
Al(110) – – – – – 4.30 TC [561,721,4398]
Al(110) – – – – – 4.30 TC [2697]
Al(110) – – – – – 4.32 ± 0.03 TC [247,718]
Al(110) – – – – – 4.35 TC [1095]
Al(110) – – ∼10−10 ∼300 – 4.35 ± 0.05 PE [458,2681]
Al(110) – – – – – 4.36 TC [1943]
Al(110) – – – – – 4.44 TC [3477]
Al(110) – – – – – 4.47 TC [2697]
Al(110) – – – – – 4.5 TC [1088]
Al(110) – – – – – 4.5 TC [1214]
Al(110) – – – – – 4.83 TC [248]
Al(110) – – – – – 4.91 TC [3477]
Recommended – – – – – 4.05 ± 0.06 – –

Al(111) – – ? ∼300 – 3.11 ± 0.10 PE [239]
Al(111) – – – – – 3.13 TC [2697]
Al(111) – – – – – 3.47 TC [1030,1089]
Al(111) – – – – – 3.48 TC [476]
Al(111) – – – – – 3.53 TC [1089]
Al(111) – – – – – 3.6 TC [3137]
Al(111) – – – – – 3.6 TC [1086]
Al(111) – – – – – 3.7 TC [1176,1216]
Al(111) – – – – – 3.7 TC [1011,1215]
Al(111) – – – – – 3.72 TC [231]
Al(111) – – – – – 3.73 TC [476]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Al(111) – – – – – 3.73 TC [3467]
Al(111) – – – – – 3.77 TC [473]
Al(111) – – – – – 3.78 TC [3491]
Al(111) – – – – – 3.79 TC [1086]
Al(111) – – – – – 3.8 TC [1011,1215]
Al(111) – – – – – 3.8 TC [2222,2223]
Al(111) – – – – – 3.83 TC [1089]
Al(111)54 – – – – – 3.83–4.59 TC [1101]
Al(111) – – – – – 3.86 TC [3004]
Al(111) – – – – – 3.87 TC [1042]
Al(111) – – – – – 3.87 TC [1086]
Al(111) – – – – – 3.87 TC [3158]
Al(111) – – – – – 3.9 TC [2982]
Al(111) – – – – – 3.92 TC [1030]
Al(111) – – – – – 4.0 TC [1086,1088]
Al(111) – – – – – 4.0 TC [1011,1215]
Al(111) – – – – – 4.02 TC [4087,4410]
Al(111) – – – – – 4.04 TC [1028,1179]
Al(111) – – – – – 4.05 TC [475]
Al(111) – – – – – 4.05 TC [4233]
Al(111) – – – – – 4.059 TC [1626]
Al(111) – – – – – 4.06 TC [1175]
Al(111) – – – – – 4.07 TC [3220]
Al(111) – – – – – 4.08 TC [4233]
Al(111) – – – – – 4.08 TC [2427]
Al(111) – – – – – 4.08 TC [4215]
Al(111) – – – – – 4.085 TC [735]
Al(111) – – – – – 4.09 TC [343]
Al(111) – – – – – 4.09 TC [553,1177]
Al(111) – – – – – 4.092 TC [735]
Al(111) – – – – – 4.094 TC [735]
Al(111) – – – – – 4.096 TC [560,2432]
Al(111) – – – – – 4.1 TC [1011,1215]
Al(111) – – – – – 4.1 TC [1088,2851]
Al(111) – – – – – 4.10 TC [1011]
Al(111) – – – – – 4.117 TC [1626,2914]
Al(111) – – – – – 4.12 TC [1159,3067]
Al(111) – – – – – 4.12 TC [1176]
Al(111) – – – – – 4.12 TC [1086,2844]
Al(111) – – – – – 4.12 TC [4029,4255]
Al(111) – – – – – 4.13 TC [2444]
Al(111) – – – – – 4.15 TC [2844]
Al(111) – – – – – 4.16 TC [2444]
Al(111) – – – – – 4.17 TC [1943]
Al(111) – – – – – 4.17 TC [3004]
Al(111) – – – – – 4.17 TC [1178]
Al(111) – – – – – 4.18 TC [555,715]
Al(111) – – – – – 4.18 TC [2402]
Al(111) – – – – – 4.18 TC [1921]
Al(111) – – – – – 4.18 TC [1943]
Al(111)/Ru(0001)57 Al – 8 × 10−11 ∼300 – 4.18 ± 0.06* CPD [301]
Al(111) – – – – – 4.181 TC [1626]
Al(111) – – – – – 4.19 TC [557]
Al(111) – – – – – 4.19 TC [1179]
Al(111) – – – – – 4.19 TC [1435]
Al(111) – – – – – 4.2 TC [2400]
Al(111) – – – – – 4.2 TC [2851]
Al(111) – – – – – 4.2 TC [734]
Al(111) – – – – – 4.2 TC [1011,1215]
Al(111) – – – – – 4.20 TC [3491]
Al(111) – – 5 × 10−11 ∼300 – 4.20 ± 0.05 PE [1915]
Al(111) – – – – – 4.21 TC [3491]
Al(111) – – – – – 4.21 TC [2548]
Al(111) – – – – – 4.21 TC [1028,1179]
Al(111) – – – – – 4.22 TC [1086]
Al(111) – – – – – 4.22 TC [1943]
Al(111) – – – – – 4.22 TC [4174,4284]
Al(111) – – – – – 4.23 TC [482,721,4398]
Al(111) – – – – – 4.238 TC [2523]
Al(111) – – – – – 4.24 TC [3175]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Al(111) – – <10−10 ∼300 – 4.24 ± 0.02 PE [241,242]
Al(111) – – – – – 4.24 ± 0.04 TC [1101]
Al(111) – – – – – 4.25 TC [561,721,4398]
Al(111) – – – – – 4.25 TC [3203]
Al(111) – – ? 100 – 4.25 CPD [2654]
Al(111) – – – – – 4.25 TC [2685]
Al(111)/Ru(0001)57 Al – 8 × 10−11 ∼300 – 4.25* CPD [301,2417]
Al(111) – – ∼10−10 ∼300 – 4.25 ± 0.05 PE [458,2681]
Al(111) – – – – – 4.26 TC [248]
Al(111) – – – – – 4.26 TC [1086]
Al(111) – – – ∼20–300 – 4.26 TC [4310]
Al(111)/Al(111)53 Al – ∼10−10 ∼300 (∼520) – 4.26 ± 0.03 PE [612]
Al(111) – – – – – 4.26 ± <0.1 TC [1559]
Al(111) – – – – – 4.27 TC [556]
Al(111) – – – – – 4.275 TC [1096,2377]
Al(111) – – – – – 4.28 TC [2636]
Al(111)/quartz Al – ∼10−10 ∼300 (∼520) – 4.28 ± 0.01 PE [612]
Al(111) – – 1 × 10−10 ∼300 – 4.29 PE [1572]
Al(111)/quartz55 Al – ∼10−9 ∼300 (623) – 4.29 PE [3313]
Al(111) – – ∼10−11 ∼300 – 4.29 ± 0.02 PE [1217,1598]
Al(111) – – <10−10 ∼300 – 4.3 PE [249]
Al(111) – – – – – 4.3 TC [1011]
Al(111) – – – – – 4.3 TC [1176,1216]
Al(111) – – – – – 4.3 TC [2905]
Al(111) – – ? 20, 40 – 4.3 PE [1688,2642]
Al(111) – – ? ? – 4.30 ? [1218]
Al(111) – – – – – 4.31 TC [1011]
Al(111) – – – – – 4.31 TC [4401]
Al(111)/quartz55 Al – ∼10−9 ∼300 – 4.31 PE [3313]
Al(111) – – – – – 4.31 ± 0.03 TC [718]
Al(111) – – – – – 4.32 TC [321]
Al(111) – – – – – 4.32 TC [1943]
Al(111) – – – – – 4.32 TC [1594]
Al(111) – – – – – 4.33 TC [4117]
Al(111) – – – – – 4.34 TC [1011]
Al(111) – – 8 × 10−11 90 – 4.36 PE [250]
Al(111) – – – – – 4.36 TC [1557]
Al(111) – – – – – 4.37 TC [474]
Al(111) – – – – – 4.38 TC [1086]
Al(111) – – 1 × 10−10 90, 300 – 4.38 ± 0.02 PE [566]
Al(111) – – – – – 4.39 TC [1592,1594]
Al(111)/Ag(111)56 Al – ≤5 × 10−10 150, 300 – 4.4 CPD [2888]
Al(111) – – – – – 4.4 TC [1011]
Al(111) – – – – – 4.4 TC [1097]
Al(111) – – – – – 4.40 TC [1734]
Al(111)/Ru(0001)57 Al – 8 × 10−11 ∼300 – 4.41* CPD [301,2417]
Al(111) – – – – – 4.43 TC [1011]
Al(111) – – ? ? – 4.48 ? [3661]
Al(111) – – – – – 4.48 ± 0.08* TC [474]
Al(111) – – – – – 4.49 TC [1098]
Al(111) – – – – – 4.491 TC [481]
Al(111) – – – – – 4.5 TC [1011]
Al(111) – – – – – 4.52 TC [474]
Al(111) – – ∼10−11 40 – 4.53 PE [1219]
Al(111) – – – – – 4.53 TC [1011]
Al(111) – – – – – 4.54 TC [334]
Al(111) – – – – – 4.545 TC [1096]
Al(111) – – – – – 4.55 TC [2636]
Al(111) – – – – – 4.55 ± 0.05 TC [558]
Al(111) – – – – – 4.56 TC [1594]
Al(111) – – – – – 4.56 TC [474]
Al(111) – – – – – 4.60 TC [2697]
Al(111) – – – – – 4.62 TC [1099]
Al(111) – – – – – 4.7 TC [1011]
Al(111) – – – – – 4.7 TC [1001,1097,3441]
Al(111) – – – – – 4.74 TC [1011]
Al(111) – – – – – 4.75 TC [1095]
Al(111) – – – – – 4.77 TC [2697]
Al(111) – – – – – 4.81 TC [1563]
Al(111) – – – – – 4.82 TC [1259]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Al(111) – – – – – 4.90 TC [1087]
Al(111) – – – – – 4.99 TC [3477]
Al(111) – – – – – 5.2 TC [1100]
Al(111) – – – – – 5.35 TC [3477]
Al(111) – – – – – 5.4 TC [3441]
Recommended – – – – – 4.24 ± 0.04 – –

Al – – – – – 2.62 TC [3080]
Al – – – – – 2.87 TC [1436]
Al – – ? ∼300 – 2.98 PE [2460]
Al – – – – – 3.0 TC [2456]
Al – – – – – 3.08 TC [1436]
Al/? Al – ? ∼300 – 3.15 CPD [2708]
Al130 – – – – – 3.194 TC [2887]
Al/Si(110) Al – ∼10−11 ∼300 – 3.2 ± 0.2 FE [2394]
Al – – ? ∼300 – 3.23 CPD [2539]
Al(fp)130 – – – – – 3.233 TC [2887]
Al – – ∼10−8 ∼300 – 3.26 PE [3315]
Al(fp)130 – – – – – 3.269 TC [2887]
Al – – ? ∼300 – 3.38 CPD [2297]
Al – – ? ∼300 – 3.41* CPD [3621]
Al – – 6 × 10−3 ∼300 – 3.43 ± 0.10 PE [2079,2080]
Al – – – – – 3.44 TC [738]
Al/quartz51 Al – ∼10−5 ∼300 – 3.47 PE [1973]
Al/Si(111) – – – – – 3.5 TC [1679]
Al – – ? ∼300 – 3.58 PE [4278]
Al – – – – – 3.62 TC [231]
Al – – – – – 3.64 TC [521]
Al – – – – – 3.65 TC [477]
Al – – – – – 3.66 TC [1066]
Al – – ? ∼300 – 3.70 PE [239]
Al – – – – – 3.73 TC [3467]
Al – – – – – 3.74 TC [477,1924,4035,

4036]
Al – – – – – 3.77 TC [2427]
Al/quartz – – ∼10−5 ∼300 – 3.78 PE [1973]
Al – – – – – 3.79 TC [1436]
Al – – – – – 3.8* TC [1955]
Al – – – – – 3.80 TC [2949]
Al – – – – – 3.815 TC [2523]
Al – – – – – 3.83 TC [231]
Al – – – – – 3.83 TC [3467]
Al – – – – – 3.87 TC3 [475]
Al – – – – – 3.88 TC [2474]
Al – – 1 × 10−5 ∼300 – 3.88 CPD [1883]
Al/Al2O3/Si(100) Al – ? ∼300 – 3.948 PE [1442]
Al – – – – – 3.93 TC [230]
Al – – – – – 3.99 TC [4419]
Al/glass Al – ∼10−6–10−8 ∼300 – 4.0 PE [1894]
Al – – ∼10−10 ∼300 – 4.0 ± 0.1 PE [1220]
Al – – – – – 4.00 TC [1901]
Al/Ag(110) Al – <4 × 10−11 ∼300 – 4.04* PE [3466]
Al/Si3N4 Al – ? ? – 4.06 ? [3519,3520]
Al/glass Al – <10−8 ∼300 – 4.08 PE [1457]
Al/Pd/Ta(110)398 Al – 8 × 10−11 ∼300 – 4.1 PE [2271]
Al – – ? ∼300 – 4.1 PE [1412]
Al/quartz102 Al – ≤10−8 4.2 – 4.1 ± 0.2 CPD [1686]
Al – – ∼10−7 ∼300 – 4.12 CPD [3513]
Al – – – – – 4.12 TC [477]
Al/SiO2/Si Al – ? ∼300 (570) – 4.13 PE [2355]
Al/SiO2 Al – ? ? – 4.14 ? [3519,3520]
Al – – – – – 4.14 TC [2629]
Al – – 5 × 10−10 ∼300 – 4.15 PE [594]
Al/GaP – – – – – 4.15 TC [1653]
Al/Si(100) – – – – – 4.15 TC [3485]
Al/Pd(001) Al – 5 × 10−11 325 – 4.15 CPD [3206,3209]
Al/glass Al – <1 × 10−9 ∼300 – 4.15 ± 0.05 CPD [655]
Al(nanowire)453 – – – – – 4.15 ± 0.05* TC [4178]
Al – – – – – 4.16 TC [2005]
Al – – ∼10−9 ∼300 – 4.16 PE [3212]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Al – – – – – 4.17 TC [477]
Al/Si(111) Al – 5 × 10−11 ∼300 – 4.17 ± 0.05 CPD [613,636]
Al/glass59 Al – 5 × 10−11 ∼300 – 4.17 ± 0.07 CPD [1071,2100]
Al – – – – – 4.18 TC [3637]
Al – – – – – 4.19 TC [3264,3265,3267]
Al/W(111) Al – <1 × 10−10 ∼300 – 4.19* FE [2616]
Al/glass Al – ≤10−8 ∼300 – 4.19 ± 0.03 CPD [349]
Al – – – – – 4.2 TC [706]
Al – – – – – 4.2 TC [4031]
Al – – – – – 4.2 TC [944]
Al – – ? ∼300 – 4.2 PE [4281]
Al/quartz Al – ≤10−8 293 – 4.2 ± 0.2 CPD [1686]
Al/quartz Al – ≤10−8 135 – 4.2 ± 0.2 CPD [1686]
Al102 – – ≤10−8 5 – 4.20 FE [1686]
Al – – ≤10−8 77 – 4.20 FE [1686]
Al/glass Al – ? 90 – 4.20 ± 0.02 PE [3031]
Al/glass Al – ? ∼300 – 4.20 ± 0.02 PE [3031]
Al/W Al – ∼10−10 ∼300 (≤800) – 4.20 ± 0.05 FE [2715]
Al/glass Al – ∼10−8 ∼300 – 4.20 ± 0.05 CPD [133]
Al/glass Al – 5 × 10−11 ∼300 – 4.20 ± 0.07 CPD [1071]
Al/SiO2 Al – ? ∼300 – 4.208 CPD [1221]
Al/W Al – <1 × 10−10 ∼300 – 4.21 ± 0.04 FE [2616]
Al – – – – – 4.22 TC [1399]
Al – – ? ∼300 – 4.22 ± 0.04* CPD [3867]
Al/glass Al – 5 × 10−11 ∼300 – 4.22 ± 0.06 CPD [1071]
Al – – – – – 4.24 TC [477,1924,4035]
Aln(n → ∞)459 – – ? ∼300 – 4.25 TC [4194,4197]
Al – – ? ? – 4.25 ? [1535]
Al/ZrO2/Si(100) Al – ? ∼300 – 4.2548 PE [1442]
Al – – – – – 4.25 TC [2439]
Al – – – – – 4.25 TC [4031]
Al – – ? ∼300 – 4.25 PE [3249]
Al/W Al – ≤5 × 10−8 ∼300 – 4.25 ± 0.05 CPD [690]
Al/quartz Al – <1 × 10−9 ∼300 – 4.25 ± 0.10 CPD [655]
Al – – <3 × 10−11 ∼300 – 4.25 ± 0.15 AI [4055]
Al – – – 466.5 – 4.259 TC [2419]
Al/GaP – – – – – 4.26 TC [1653]
Al/quartz Al – <5 × 10−10 293 – 4.26 PE [1102]
Al/Mo(011) Al – ≤2 × 10−10 ∼300 – 4.26 CPD [2655]
Al/Al2O3/Mo(011) Al – ≤2 × 10−10 ∼300 – 4.26 CPD [2655]
Al/MgO/Mo(011) Al – ≤2 × 10−10 ∼300 – 4.26 CPD [2655]
Al/quartz Al – ≤5 × 10−10 78 – 4.26 ± 0.01 PE [435]
Al/Si Al – <6 × 10−9 ∼300 – 4.26 ± 0.02 FE [1540]
Al/Ta(110)398 Al – 8 × 10−11 ∼300 – 4.27 PE [2271]
Al – – – – – 4.27 TC [553,2427]
Al – – – – – 4.27 TC [3477]
Al/quartz Al – <2 × 10−9 ∼300 – 4.27 ± 0.02 PE [725,1498]
Al – – – 0 – 4.276 TC [2419]
Al – – – – – 4.28 TC [3220]
Aln(n → ∞) – – – – – 4.28 TC [4193]
Al2000(z → 0)60 – – ? ∼300 – 4.28 ± 0.03 IP [2199]
Al32000(z → 0)60 – – ? ∼300 – 4.28 ± 0.03 IP [2199]
Al/quartz55 Al – ∼10−9 ∼300 (623) – 4.29 PE [3313]
Al/quartz Al – <5 × 10−10 293 (618) – 4.29 PE [1102]
Al/quartz Al – <5 × 10−10 78 (293) – 4.29 ± 0.01 PE [435]
Al/quartz Al – <5 × 10−10 78 (550) – 4.29 ± 0.01 PE [435]
Al/glass Al – 5 × 10−11 ∼300 – 4.29 ± 0.09* CPD [1071]
Al – – – – – 4.292 TC [2649]
Al – – – – – 4.3 TC [1173]
Al/? Al – ∼10−5 ∼300 – 4.3 CPD [1376]
Al58 – – ? ∼300 – 4.3 CPD [2550]
Al/Mo Al – 7 × 10−11 ∼300 – 4.3 PE [2226]
Al – – – – – 4.3 TC [1993]
Al – – – – – 4.30 TC [2914]
Al – – <3 × 10−9 ∼300 – 4.30 CPD [1180]
Al/quartz Al – ≤5 × 10−10 293 (∼550) – 4.30 PE [435]
Al – – – – – 4.30 TC [1626,4431]
Al/quartz55 Al – ∼10−9 ∼300 – 4.31 PE [3313]
Al/Si(001) – – – – – 4.317 TC [1941]
Al/Si(111) Al – 2 × 10−10 ∼300 – 4.32 ± 0.1 PE [2623]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Al32−95(∞) – – ? 230 – 4.338 IP [4192]
Al/W(001) Al – <1 × 10−10 ∼300 – 4.34* FE [2616]
Al/Al Al – ? ∼300 – 4.34 PE [3250]
Al – – – – – 4.34 TC [298]
Al32−95(∞) – – ? 65 – 4.349 IP [4192]
Al – – – – – 4.35 TC [1976]
Al/SiO2 Al – ? ∼300 – 4.353 CPD [1221]
Al/glass Al – ? ∼300 – 4.36 PE [1948]
Al/W(111) Al – <1 × 10−10 ∼300 – 4.36 FE [2616]
Al32000

449 – – – – – 4.36 ± 0.03* TC [2199]
Al – – – – – 4.37 TC [1613]
Al/Si – – – – – 4.39 TC [1653]
Al/Ag(110) Al – <4 × 10−11 ∼300 – 4.40 PE [3466]
Al/Si – – – – – 4.42 TC [1653]
Al/Si(111) Al – <5 × 10−10 ∼300 – 4.45 PE [1694]
Al/Mo(110) Al – <3 × 10−10 ∼300 – 4.50 CPD [2403]
Al2000

449 – – – – – 4.51 ± 0.03* TC [2199]
Al/W(001) Al – <1 × 10−10 ∼300 – 4.65 FE [2616]
Al/Si(111) – – – – – 4.70 ± 0.1 TC [3549,3740]
Al61 – – ? ∼300–600 – 4.75 ± 0.22 PE [1222]
Al/Si(111) Cs, Li Cs+ ? ∼300 4.8* – CPD [1342]
Al61 – – ? ∼300–600 – 4.90 ± 0.06 PE [1222]
Al Cs Cs+ ? ∼300 4.96* – CPD [611]
Recommended – – – – 4.9 ± 0.1 4.26 ± 0.03 – –

Liquid (𝑻 ≥ 𝟗𝟑𝟑 𝐊)
Al – – – – – 4.241 TC [2419]

14. Silicon Si

Diamond Structure
Si(100) – – – – – 4.33 TC [2521,2525]
Si(100) – – – – – 4.36 TC [2521]
Si(100)p – – ≤10−9 300E – 4.41*62 TE [1225]
Si(100)65 – – – ∼300 – 4.47* TC [2097]
Si(100)n – – ? ∼300 (?) – 4.5 PE [2242]
Si(100)n – – 7 × 10−9 ∼1200–1500 (4.54–4.84) 4.53 ± 0.1 TE [74]
Si(100)n64 K K+ 7 × 10−9 ∼900–1550 4.54 ± 0.2 (4.53 ± 0.1) PSI [74]
Si(100)n – – ? ∼300 – 4.6 PE [2059]
Si(100)p – – 3 × 10−11 ∼300 – 4.6 PE [1872]
Si(100)n64 Li Li+ 7 × 10−9 ∼1050–1550 4.60 ± 0.03 (4.53 ± 0.1) PSI [74]
Si(100) – – – – – 4.604 TC [1941]
Si(100)n – – ? ∼300 (1170) – 4.7 PE [768]
Si(100)n64 Na Na+ 7 × 10−9 ∼1000–1550 4.70 ± 0.02 (4.53 ± 0.1) PSI [74]
Si(100) – – – – – 4.712 TC [4460]490

Si(100)n – – 4 × 10−11 200 – 4.72 ± 0.05 CPD [880]
Si(100)n63 Li Li+ 7 × 10−9 ∼1050–1550 4.74 ± 0.05 (4.53 ± 0.1) PSI [74]
Si(100) – – – – – 4.79 TC [4461]490

Si(100)p – – 5 × 10−11 ∼300 – 4.8 PE [1868,1869,3605]
Si(100)p – – <10−9 ∼300 (773) – 4.81 CPD [116]
Si(100)n63 Tl Tl+ 7 × 10−9 ∼950–1550 4.81 ± 0.03 (4.53 ± 0.1) PSI [74]
Si(100)n64 Tl Tl+ 7 × 10−9 ∼950–1550 4.81 ± 0.07 (4.53 ± 0.1) PSI [74]
Si(100)p – – <10−9 ∼300 (773) – 4.82 CPD [116,1771]
Si(100)/W(110) Si – ? ∼300 – 4.83 PE [3448]
Si(100)p – – ≤10−9 1330–1500 – 4.83 ± 0.03 TE [1225]
Si(100)n63 Na Na+ 7 × 10−9 ∼1000–1550 4.84 ± 0.03 (4.53 ± 0.1) PSI [74]
Si(100)n63 K K+ 7 × 10−9 ∼900–1550 ≥4.84 (4.53 ± 0.1) PSI [74]
Si(100) – – 1 × 10−10 ∼300 – 4.85 PE [2972]
Si(100)p – – ? ∼300 – 4.85 TCS [4050,4177]
Si(100) – – 2 × 10−10 ∼300 – 4.85 FE [275,440]
Si(100) – – ∼10−10 200 – 4.85 CPD [302]
Si(100)n – – ∼10−11 ∼300 – 4.85 ± 0.1 PE [2130]
Si(100) – – – – – 4.859 TC [3498,3501]
Si(100)65 – – – 1000 – 4.86* TC [2097]
Si(100)n – – 5 × 10−11 ∼300 – 4.87 PE [2150]
Si(100)p – – – – – 4.876 TC [4179]
Si(100) – – – – – 4.9 TC [1223]
Si(100) – – 5 × 10−11 ∼300 – 4.9 PE [1224]
Si(100)p – – <1 × 10−10 ∼300 – 4.9 PE [3177,3187,3189,

3191]
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Si(100)n – – ? 70 (1200) – 4.9* PE [2178]
Si(100) – – 3 × 10−11 ∼300 – 4.9 ± 0.1 PE [2951]
Si(100) – – – – – 4.9 ± 0.1 TC [2680]
Si(100)p – – 2 × 10−10 ∼300 – 4.91 FE [1387]
Si(100)p – – ≤10−9 ∼300 (1550) – 4.91 ± 0.05 CPD [1225]
Si(100)n – – ∼10−10 ∼300 (∼1200) – 4.92 PE [4125]
Si(100)p – – <10−9 ∼300 – 4.92 ± 0.02 CPD [116,1771]
Si(100)p – – <10−9 ∼300 (1350) – 4.96 CPD [116]
Si(100)n – – 4 × 10−11 ∼300 – 4.96 CPD [1861]
Si(100)p – – ∼10−10 ∼300 – 5.05 ± 0.05 PE [1851]
Si(100) – – – – – 5.1 TC [3362]
Si(100) – – <1 × 10−10 ∼300 (1120) – 5.11 ± 0.03 PE [1491,3950]
Si(100)65 – – – 1500 – 5.14* TC [2097]
Si(100) – – – – – 5.12 TC [2067,3485]
Recommended – – – – 4.72 ± 0.10 4.82 ± 0.05 – –

Si(110)p70 – – ? 1250–1400 – 3.17 ± 0.05 TE [1500]
Si(110)p434 Na Na+ ≤5 × 10−7 1000 3.32 (3.40) PSI [1472]
Si(110)p434 K K+ ≤5 × 10−7 1000 3.32 (3.40) PSI [1472]
Si(110)p434 – – ≤5 × 10−7 1000 (3.32) 3.40 TE [1472]
Si(110)n70 – – ? 1250–1400 – 3.76 ± 0.05 TE [1500]
Si(110)p70 – – ? 1400–1625 – 4.12 ± 0.05 TE [1500]
Si(110)p – – ∼10−9 1265–1500 – 4.12 ± 0.05 TE [635]
Si(110)p434 Na Na+ <5 × 10−7 1600 4.14 (4.70) PSI [1472]
Si(110)p434 K K+ <5 × 10−7 1600 4.14 (4.70) PSI [1472]
Si(110)n70 – – ? 1400–1625 – 4.14 ± 0.05 TE [1500]
Si(110)p434 – – ≤5 × 10−7 1300 (4.31) 4.31 TE [1472]
Si(110)p434 Na Na+ ≤5 × 10−7 1300 4.31 (4.31) PSI [1472]
Si(110)p434 K K+ ≤5 × 10−7 1300 4.31 (4.31) PSI [1472]
Si(110)p434 Na Na+ ≤5 × 10−7 1600 4.38 (4.70) PSI [1472]
Si(110)p434 K K+ ≤5 × 10−7 1600 4.38 (4.70) PSI [1472]
Si(110)p434 Na Na+ ≤5 × 10−7 1500–1600 4.38 ± 0.01 (4.69 ± 0.01) PSI [1472]
Si(110)p434 K K+ ≤5 × 10−7 1500–1600 4.38 ± 0.01 (4.69 ± 0.01) PSI [1472]
Si(110)p – – ≤10−9 ∼300 – 4.41* TE [1225]
Si(110)65 – – – 300 – 4.47* TC [2097]
Si(110)p434 – – ≤5 × 10−7 1500–1600 (4.38 ± 0.01) 4.69 ± 0.01 TE [1472]
Si(110)p434 – – ≤5 × 10−7 1600 (4.38) 4.70 TE [1472]
Si(110)p – – <10−9 ∼300 (773) – 4.70 CPD [116,1771]
Si(110) – – <1 × 10−10 ∼300 (1120) – 4.73 ± 0.03 PE [1491,3950]
Si(110)n – – ≤2 × 10−10 ∼300 – 4.75 ± 0.01 PE [3184]
Si(110)p – – <10−9 ∼300 (1350) – 4.85 CPD [116]
Si(110)65 – – – 1000 – 4.86* TC [2097]
Si(110)p – – ≤10−9 1300–1600 – 4.87 ± 0.06 TE [1225]
Si(110)p – – <10−9 ∼300 – 4.89 ± 0.02 CPD [116,1771]
Si(110)p – – <10−9 ∼300 (1350) – 4.91 CPD [116]
Si(110)65 – – – 1500 – 5.14* TC [2097]
Recommended – – – – 4.36 ± 0.03 4.44 ± 0.24 – –

Si(111)p432 – – ? ∼1100–1150 – 3.2 TE [3540]
Si(111) – – – – – 4.0 TC [1679,2219]
Si(111)n66 – – ≤1 × 10−7 1340–1600 (4.86–4.90) 4.04 ± 0.05 TE [72]
Si(111)p66 – – ∼10−9 1265–1500 – 4.05 ± 0.04 TE [635]
Si(111)p66 – – 1 × 10−7 ∼1300–1600 (4.84, 4.86) 4.07 ± 0.05 TE [73]
Si(111) – – ? 1080–1600 – 4.1 ± 0.1 TE [1662]
Si(111)n – – ? ∼300 – 4.15 CPD [4368]
Si(111)p432 – – ? ∼1150–1450 – 4.2 TE [3540]
Si(111) – – ? >1300 – 4.20 TE [1510]
Si(111) – – 4 × 10−10 ∼300 – 4.40 ± 0.05 PE [1181,1227]
Si(111) – – – – – 4.44 TC [2688]
Si(111)n64 K K+ 7 × 10−9 850–1550 4.44 ± 0.1 (4.55 ± 0.1) PSI [74]
Si(111)n67 – – <5 × 10−11 60 – 4.5 PE [2893]
Si(111) – – – – – 4.5 TC [300]
Si(111) – – 5 × 10−11 ∼300 – 4.50 PE [2865,3461]
Si(111) – – <5 × 10−11 ∼300 – 4.50 ± 0.02 PE [3109]
Si(111) – – 2 × 10−10 ? (5.00, 5.23) 4.51 ± 0.05 TE [75]
Si(111)p – – ? ∼300 – 4.52 PE [1229]
Si(111) – – 4 × 10−10 ∼300 – 4.52 ± 0.03 PE [1552]
Si(111) – – <4 × 10−10 400 – 4.53 PE [3708]
Si(111) – – ≤4 × 10−11 ∼300 – 4.53 PE [1429,1430,2733]
Si(111)p – – 1 × 10−10 ∼300 (1000) – 4.55 ± 0.1 PE [118]
(continued on next page)

37



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Si(111) – – 2 × 10−10 ? (4.81 ± 0.05) 4.55 ± 0.05 TE [75]
Si(111) – – 1 × 10−10 ∼300 (?) – 4.55 ± 0.1 PE [118]
Si(111)n – – 7 × 10−9 ∼1200–1500 (4.44–4.99) 4.55 ± 0.1 TE [74]
Si(111)n68 – – <3 × 10−11 ∼300 (550) – 4.56 ± 0.02 PE [1228]
Si(111)p – – 2 × 10−10 ? (4.76 ± 0.05) 4.58 ± 0.05 TE [75]
Si(111)n – – 2 × 10−10 ? (4.78 ± 0.05) 4.59 ± 0.05 TE [75]
Si(111) – – 2 × 10−11 ∼300 – 4.595 PE [3196]
Si(111)n – – 3 × 10−10 ∼300 – 4.6 CPD [1959]
Si(111) – – <5 × 10−10 ∼300 – 4.6 PE [2795]
Si(111) – – 1 × 10−10 298 – 4.6 PE [1900,1906]
Si(111) – – ∼10−10 ∼300 – 4.60 PE [2972]
Si(111) – – <1 × 10−10 ∼300 (1100) – 4.60 ± 0.03 PE [1491,3950]
Si(111)p – – <4 × 10−10 ∼300 – 4.60 PE [3282]
Si(111)p69 – – 1 × 10−10 ∼300 (1000) – 4.60 ± 0.13 CPD [118]
Si(111)p69 – – 1 × 10−10 ∼300 (?) – 4.60 ± 0.13 CPD [118]
Si(111)p,n – – <10−9 1335 – 4.62 CPD [119]
Si(111)n – – 5 × 10−11 ∼300 – 4.63 PE [2150]
Si(111)n Na Na+ 2 × 10−10 ? 4.63 ± 0.05 (4.59 ± 0.05) PSI [75]
Si(111) – – – – – 4.64 TC [4461]490

Si(111)n67 – – 3 × 10−11 60 – 4.65 PE [2660]
Si(111)n – – <4 × 10−10 ∼300 – 4.65 PE [3282]
Si(111)p – – <10−9 ∼300 (773) – 4.66 CPD [116]
Si(111)n – – ? ∼300 – 4.66 ± 0.05 PE [2776]
Si(111) – – – – – 4.667 TC [4460]490

Si(111)p – – <10−9 ∼300 (773) – 4.67 CPD [116,1771]
Si(111)n63 K K+ 7 × 10−9 ∼850–1550 4.69 ± 0.1 (4.55 ± 0.1) PSI [74]
Si(111)p – – 3 × 10−10 ∼300 – 4.7 CPD [1959]
Si(111)p,n – – 5 × 10−11 ∼300 – 4.7 PE [2623,2625]
Si(111) – – 3 × 10−11 ∼300 – 4.7 ± 0.1 PE [2951]
Si(111) – – – – – 4.71 TC [2444]
Si(111)p,n – – <10−9 1638 – 4.72 CPD [119]
Si(111)p – – ∼10−10 ∼300 (1550) – 4.72 PE [902]
Si(111) – – ∼10−10 ∼300 – 4.72 CPD [3696]
Si(111)n425 – – <10−10 ∼300 – 4.73 ± 0.07 CPD [117,118]
Si(111)n425 – – <10−10 ∼300 – 4.73 ± 0.07 PE [117,118]
Si(111)n68 – – <3 × 10−11 ∼300 (800) – 4.74 ± 0.02 PE [1228]
Si(111)p – – ∼10−10 ∼300 – 4.74 ± 0.03 PE [1851]
Si(111)p – – ≤10−9 ∼300 (1550) – 4.74 ± 0.05 CPD [1225,1387]
Si(111)n63 Li Li+ 7 × 10−9 ∼1000–1550 4.75 ± 0.03 (4.55 ± 0.1) PSI [74]
Si(111)p – – <10−9 ∼300 – 4.76 CPD [116]
Si(111)n – – ∼10−10 ∼300 – 4.76 PE [1388]
Si(111)n – – 5 × 10−10 ∼300 – 4.76 ± 0.03 CPD [3043]
Si(111)p Na Na+ 2 × 10−10 ? 4.76 ± 0.05 (4.58 ± 0.05) PSI [75]
Si(111)p – – <10−9 ∼300 – 4.77 ± 0.02 CPD [116,1771]
Si(111)p – – ∼10−10 ∼300 (1600) – 4.77 ± 0.05 PE [1384]
Si(111)n Na Na+ 2 × 10−10 ? 4.78 ± 0.05 (4.59 ± 0.05) PSI [75]
Si(111)n426 – – ∼10−10 ∼300 – 4.79 ± 0.02* PE [1889]
Si(111)n64 Tl Tl+ 7 × 10−9 ∼900–1550 4.79 ± 0.03 (4.55 ± 0.1) PSI [74]
Si(111) – – 3 × 10−11 ∼300 – 4.8 ± 0.1 PE [2951]
Si(111) – – – – – 4.8 TC [2731]
Si(111) – – ∼10−10 130 – 4.8 PE [1817]
Si(111)p K K+ ? 1280 4.80 (4.1 ± 0.1) PSI [272]
Si(111)n – – <10−10 ∼300 – 4.80 ± 0.03 CPD [117]
Si(111)n66 – – ≤1 × 10−7 1340–1600 (4.86–4.90) 4.80 ± 0.04* TE [72]
Si(111)n64 Na Na+ 7 × 10−9 ∼850–1550 4.80 ± 0.04 (4.55 ± 0.1) PSI [74]
Si(111)n63 Na Na+ 7 × 10−9 ∼850–1550 4.81 ± 0.02 (4.55 ± 0.1) PSI [74]
Si(111) Na Na+ 2 × 10−10 ? 4.81 ± 0.05 (4.55 ± 0.05) PSI [75]
Si(111) – – – – – 4.811 TC [4460]490

Si(111) – – 1 × 10−10 ∼300 – 4.82 PE [1226]
Si(111)n−p425 – – <10−10 ∼300 – 4.83 CPD [117]
Si(111) – – ∼10−10 ∼300 – 4.83 PE [3696]
Si(111)p – – <8 × 10−11 ∼300 (1030) – 4.83 CPD [301]
Si(111)p – – ≤8 × 10−11 ∼300 – 4.83 PE [1904]
Si(111)n68 – – <3 × 10−11 ∼300 – 4.83 ± 0.02 PE [1228]
Si(111)p410 – – ≤1 × 10−7 ∼1300–1600 (4.85–4.88) 4.83 ± 0.04* TE [73]
Si(111)p – – ∼10−10 ∼300 – 4.83 ± 0.05 CPD [1396,1971]
Si(111)p – – 1 × 10−10 ∼300 – 4.83 ± 0.07 CPD [117]
Si(111)n64 Li Li+ 7 × 10−9 ∼1000–1550 4.84 ± 0.03 (4.55 ± 0.1) PSI [74]
Si(111)n Na Na+ 2 × 10−10 ? 4.84 ± 0.05 – PSI [75]
Si(111)p66 – – 1 × 10−7 1490–1510 (4.88 ± 0.10) 4.84 ± 0.14 CPD [73]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Si(111)p – – ? ∼300 – 4.85 PE [1229,3719]
Si(111)p – – <5 × 10−11 ∼300 – 4.85 ± 0.02 PE [2019,3109,3699]
Si(111)p – – <10−10 ∼300 – 4.85 ± 0.03 CPD [117]
Si(111) – – ∼10−10 ∼300 – 4.85 ± 0.04 PE [2151]
Si(111)n – – 5 × 10−11 ∼300 – 4.85 ± 0.05 CPD [613,636,3270]
Si(111)p66 Cs Cs+ 1 × 10−7 ∼1100–1600 4.85 ± 0.08 (4.86 ± 0.11) PSI [73]
Si(111)p – – 8 × 10−11 ∼300 (1080) – 4.850 ± 0.030 CPD [301]
Si(111) – – 1 × 10−10 ∼300 – 4.86 PE [1551,3281]
Si(111)n Li Li+ ≤1 × 10−7 1150–1620 4.86 ± 0.07 (4.04 ± 0.05) PSI [72]
Si(111)p66 – – 1 × 10−7 1490–1510 (4.85 ± 0.08) 4.86 ± 0.11 CPD [73]
Si(111) – – <4 × 10−10 ∼300 – 4.87 PE [1566,3279]
Si(111)n−p – – 5 × 10−11 ∼300 – 4.87 ± 0.02 PE [1230,3589,3819]
Si(111)n Na Na+ ≤1 × 10−7 1150–1620 4.87 ± 0.03 (4.04 ± 0.05) PSI [72]
Si(111) – – <5 × 10−10 ∼300 – 4.88 PE [1694]
Si(111)p66 Cs Cs+ 1 × 10−7 ∼1100–1600 4.88 ± 0.10 (4.84 ± 0.14) PSI [73]
Si(111) – – – – – 4.889 TC [4425]
Si(111)n – – ? ∼300 – 4.89 PE [2752]
Si(111)p424 – – 1 × 10−10 ∼300 – 4.9 PE [1226]
Si(111)n Cs Cs+ 2 × 10−10 ∼300 4.9 ± 0.1* – CPD [609]
Si(111)p – – ∼10−10 ∼300 – 4.90 PE [1388]
Si(111)n In In+ ≤1 × 10−7 1290–1620 4.90 ± 0.10 (4.04 ± 0.05) PSI [72]
Si(111) – – – – – 4.902 TC [4424]
Si(111)p – – <10−10 ∼300 – 4.92 ± 0.07 CPD [117]
Si(111)p – – <10−10 ∼300 – 4.92 ± 0.07 PE [117]
Si(111)p426 – – ∼10−10 ∼300 – 4.97 ± 0.02* PE [1889]
Si(111)n63 Tl Tl+ 7 × 10−9 ∼900–1550 4.99 ± 0.05 (4.55 ± 0.1) PSI [74]
Si(111)n424 – – 1 × 10−10 ∼300 – 5.0 PE [1226]
Si(111)/W(100) Si – <5 × 10−10 298 (613) – 5.0 CPD [355]
Si(111) Na Na+ 2 × 10−10 ? 5.00 ± 0.05 (4.51) PSI [75]
Si(111)p67 – – 3 × 10−11 ∼300 – 5.05 PE [2660]
Si(111)n67 – – 3 × 10−11 ∼300 – 5.05 PE [2660]
Si(111)p Na Na+ ? 1280 5.05 (4.1 ± 0.1) PSI [272]
Si(111) – – – – – 5.05 ± 0.1 TC [3549,3740]
Si(111)p Na Na+ ? 1380 5.06 (4.1 ± 0.1) PSI [272]
Si(111)p – – 2 × 10−10 ∼300 – 5.10 PE [1971]
Si(111)p – – <10−10 ∼300 – 5.15 ± 0.08 PE [117]
Si(111) – – <5 × 10−9 ∼300 – 5.18 PE [3714]
Si(111)p424 – – 1 × 10−10 ∼300 – 5.2 PE [1226]
Si(111) Li Li+ 2 × 10−10 ? 5.23 ± 0.05 (4.51 ± 0.05) PSI [75]
Si(111)p67 – – <5 × 10−11 60 – 5.4 PE [2893]
Si(111)p,n – – <10−10 ∼300 – 5.4 PE [3333]
Si(111)p67 – – 3 × 10−11 60 – 5.56 PE [2660]
Si(111) – – – – – 5.92 TC [3151]
Si(111) – – – – – 6.45 TC [3151]
Recommended – – – – 4.83 ± 0.07 4.86 ± 0.09 – –

Si(112)p70 – – ? ∼1250–1400 – 3.86 ± 0.05 TE [1500]
Si(112)n70 – – ? ∼1250–1400 – 3.92 ± 0.05 TE [1500]
Si(112)p70 – – ? ∼1400–1625 – 4.10 ± 0.05 TE [1500]
Si(112)p – – ∼10−9 1265–1500 – 4.22 ± 0.05 TE [635]
Si(112)n70 – – ? ∼1400–1625 – 4.4 ± 0.1 TE [1500]
Si(112) – – – – – 5.11 TC [1627]
Recommended – – – – – 4.1 ± 0.2 – –

Si(541)p70 – – ? ∼1250–1400 – 3.67 ± 0.05 TE [1500]
Si(541)n70 – – ? ∼1250–1400 – 3.74 ± 0.05 TE [1500]
Si(541)p70 – – ? ∼1400–1625 – 4.17 ± 0.05 TE [1500]
Si(541)n70 – – ? ∼1400–1625 – 4.3 ± 0.1 TE [1500]
Recommended – – – – – 4.0 ± 0.3 – –

Si(???) – – ? (Cs) ∼1300 – 3.9 TE [1468]
Si(???) – – ≤3 × 10−10 ∼1300–1700 – 3.96 TE [1397]
Si(???) – – ? ∼1200–1300 – 4.0 TE [1468]
Si(???) – – 5 × 10−10 ∼300 – 4.88 AI38 [1103]

Si/Mo(100) Si – <1 × 10−10 295 – 3.2 FE [1675]
Si/Mo(112) Si – <1 × 10−10 295 – 3.4 FE [1675]
Si – – ? ∼1250–1700 – 3.59 ± 0.1 TE [113]
Si – – ? ? – 3.6 TE [3402]
Si/Mo Si – 6 × 10−11 ∼300 (1000) – 3.81 FE [3343]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Si/W(100) Si – <3 × 10−10 295 – 3.91 FE [1671]
Si/W(111) Si – <3 × 10−10 295 – 3.98 FE [1671]
Si – – ∼10−10 ? – 4.0–4.3 TE [1478]
Si – – ? ∼1373–1623 – 4.02 ± 0.02 TE [1308]
Si(nanowire)71 – – ? ∼300 – 4.13 PE [2200]
Sip – – ? ∼300 – 4.13 ± 0.05 CPD [1309]
Si/Ba/W(110)72 Si – <5 × 10−10 ∼300 – 4.2–4.6 FE [2013]
Si/W(112) Si – <3 × 10−10 295 – 4.21 FE [1671]
Si/Mo Si – <1 × 10−10 295 – 4.23 FE [1675]
Si/W(100) Si – <1 × 10−10 295 – 4.26 FE [1671]
Si – – ∼10−9 1265–1500 – 4.30 ± 0.03 TE [635]
Si – – – – – 4.35 TC [298]
Si – – ? ∼300 – 4.37–4.67 PE [3609]
Si – – – – – 4.4 TC [1955]
Si/Si(111)73 Si – ∼10−11 77 – 4.4 ± 0.1 PE [2822]
Sin441 – – – – – 4.42–4.63 TC [4119]
Sip – – <2 × 10−6 523 – 4.5 CPD [1310]
Sin – – <2 × 10−6 523 – 4.5 CPD [1310]
Sin – – ? ∼300 – 4.5 ± 0.1 CPD [1600]
Si – – – – – 4.56 TC [1901]
Sip – – <2 × 10−6 1023 – 4.6 CPD [1310]
Sin – – <2 × 10−6 1023 – 4.6 CPD [1310]
Si – – <10−10 ? – 4.6 TE [1492]
Si/W76 Si – 2 × 10−10 77 (≤640) – 4.6 FE [2248]
Si/W(111) Si – <1 × 10−10 295 – 4.66 FE [1671]
Si/Mo Si – <1 × 10−10 295 – 4.7 FE [1675]
Si/W(110) Si – ≤5 × 10−10 ∼300 – 4.7 FE [2013]
Si/Ta(100) Si – <5 × 10−11 ∼300 – 4.7 CPD [3776]
Si/W74 – – – – – 4.7 TC [913,4344]
Si/CoSi2(111) Si – ? ∼300 – 4.70 ± 0.05 PE [2169]
Si/Co/CoSi2(111)75 Si – ? ∼300 – 4.70 ± 0.05 PE [2169]
Si/W74 Si – <1 × 10−10 295 – 4.72 ± 0.05 FE [1231]
Si/W Si – 5 × 10−11 ∼300 (≤950) – 4.77 FE [3094]
Si/W76 Si – 2 × 10−10 77 (≤525) – 4.78 ± 0.06* FE [2248]
Si(amorphized) – – <3 × 10−11 ∼300 – 478 ± 0.15 AI [4055]
Si/W Si – <5 × 10−10 298 – 4.8 CPD [355]
Si – – – – – 4.8 TC [1993]
Si/W(110) Si – <1 × 10−9 293 – 4.80 CPD [1520]
Sip(porous) – – <5 × 10−9 ∼300 – 4.80–5.70 CPD [1602]
Si/Si/W Si – 5 × 10−11 ∼300 (≤950) – 4.82 FE [3094]
Si/W(100) Si – ≤5 × 10−10 298 – 4.82 CPD [355]
Si/W(110) Si – ? ∼300 – 4.83 PE [3448]
Sin465 – – 5 × 10−11 ∼300 – 4.85 CPD [613]
Si – – 5 × 10−10 ∼300 – 4.88 AI38 [1103]
Si/W(111) Si – ∼10−10 ∼300 – 4.9 FE [818]
Si/W(100) Si – ? ∼300 – 4.9 FE [1438]
Si/W(111) Si – <1 × 10−10 295 – 4.94 FE [1671,2350]
Si – – – – – 5.0 TC [706]
Si/W(111) Si – ∼10−10 ∼300 – 5.0 ± 0.1 FE [2713]
Si/W(116) Si – ∼10−10 ∼300 – 5.0 ± 0.1 FE [2713]
Si/W(012) Si – ∼10−10 ∼300 – 5.0 ± 0.1 FE [2713]
Si/W(013) Si – ∼10−10 ∼300 – 5.0 ± 0.1 FE [2713]
Si/W Si – <3 × 10−10 77 – 5.0 ± 0.1 FE [4015]
Si/W(100) Si – <1 × 10−10 295 – 5.01 FE [1671,2350]
Si/W(100) Si – ∼10−10 613 – 5.02 CPD [355]
Sip441 – – – – – 5.03–5.10 TC [4119]
Si/W(110) Si – <1 × 10−10 295 – 5.06 FE [1671]
Si – – – – – 5.08 TC [1744]
Si/W Si – ≤10−10 ∼300 – 5.1 ± 0.1 FE [2712]
Si Cs Cs+ ? ∼300 5.14* – CPD [611]
Si/W(116) Si – <1 × 10−10 295 – 5.15 FE [1671,2350]
Si/Mo(112) Si – <1 × 10−10 295 – 5.17 FE [1675]
Si – – – – – 5.17 TC [4285]
Si/W(112) Si – <1 × 10−10 295 – 5.30 FE [1671,2350]
Si/Mo(100) Si – <1 × 10−10 295 – 5.37 FE [1675]
Si/W(112) Si – <1 × 10−10 295 – 5.40 FE [1671]
Si(tip) – – ∼10−10 ∼300 – 5.46 FE [3072]
Si/W(113) Si – <1 × 10−10 295 – 5.82 FE [1671,2350]
Si/W(110) Si – <1 × 10−10 295 – 5.82 FE [1671,2350]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Si/W(110) Si – <1 × 10−10 295 – 5.90 FE [1671]
Recommended – – – – – 4.65 ± 0.09 – –

15. Phosphorus P

P(111) – – ∼3 × 10−10 ∼300 – <1.34 CPD [1681]
P(111) – – ∼3 × 10−10 ∼300 – 1.41 CPD [1681]

P – – – 0 – 3.4–4.1 TC [3034]
P – – – – – 4.9 TC [1905]
P – – – – – 5.04 TC [1901]
P – – – – – 5.1 TC [1955]
P/Fe(100)427 – – – – – 5.1* TC [4026]
Recommended – – – – – 5.0 ± 0.1 – –

16. Sulfur S

Film or Bulk (𝜶, Rhombic, 𝑻 < 𝟑𝟕𝟎 𝐊)
S – – – 0 – 3.9–4.5 TC [3034]
S/Fe(110) – – – – – 4.44 TC [3236]
S/Fe(110) – – – – – 4.66 TC [3946,4337]
S/Fe(100) – – – – – 4.71 TC [4009]
S/Fe(110)77 – – – – – 4.98 TC [4313]
S/Fe(110)77 – – – – – 4.999 TC [4313]
S/Fe(100)423 – – – – – 5.0* TC [4019]
S/Ni S2 – ≤1 × 10−10 77 – 5.0 FE [1560]
S/Ni S2 – ≤1 × 10−10 77 (530) – 5.0 FE [1560]
S/Si(100) S2 – <10−10 ∼300 – 5.0 ± 0.2* CPD [2890–2892]
S/Cu(111) S2 – ? ∼470–870 – 5.067 ± 0.010 CPD [948]
S/Cu(110) S2 – ? ∼470–870 – 5.070 ± 0.010 CPD [948]
S/Cu(210) S2 – ? ∼470–870 – 5.075 ± 0.010 CPD [948]
S/Cu(113) S2 – ? ∼470–870 – 5.078 ± 0.010 CPD [948]
S/Fe(110)77 – – – – – 5.08 TC [4313]
S/Cu(112) S2 – ? ∼470–870 – 5.083 ± 0.010 CPD [948]
S/Ag(111) S2 – ? ∼300 – 5.1* CPD [3118]
S/W S2 – <5 × 10−10 ∼300 (≤770) – 5.1 FE [1524]
S/Ni S2 – <10−11 77 – 5.1 FE [4017]
S/W(100) S2 – <2 × 10−10 ∼300 – 5.1 CPD [2854]
S/W(100) S2 – <2 × 10−10 ∼300 (900) – 5.1 CPD [2854]
S/W(100) H2S – <1 × 10−10 ∼300 (900) – 5.1 PE [2669]
S/Ru(0001) – – – – – 5.16 TC [2554]
S/Cu(100) S2 – ? ∼470–870 – 5.161 ± 0.010 CPD [948]
S/Fe(110) S2 – ∼1 × 10−10 ∼300 (1070) – 5.2 PE [1541]
S/W(310) S2 – ∼1 × 10−10 ∼300 (570) – 5.2 FE [3438]
S/Fe(100) – – – – – 5.2 TC [1104]
S/Si(100) – – – – – 5.2* TC [2062]
S/Mo(100) H2S – ? ∼300 (970) – 5.2* CPD [3660]
S/Ru(001) H2S – <2 × 10−10 350 – 5.2 ± 0.2 PE [2374]
S/Pd(111)79 S2 – ? 550 – 5.20* CPD [2877]
S/Fe(100)78 – – 2 × 10−9 315 (970) – 5.21 ± 0.03 PE [565,3311]
S/Pd(111)79 S2 – ? ∼300 – 5.25* CPD [2877]
S/Fe(100)78 – – 2 × 10−9 315 (970) – 5.26 PE [565,3311]
S/Ni(110) H2S – <1 × 10−10 ∼300 (≥1070) – 5.29 CPD [1110]
S/W S2 – 0.1 (S2) ∼2200 – 5.3 TE [394]
S/Fe(100) – – – – – 5.3 TC [1104]
S/Si(100)n S2 – ∼10−10 ∼300 – 5.30 PE [4125]
S/Fe(100) – – – – – 5.31 TC [1708,1710]
S/Pd(111)79 S2 – ? 100 – 5.31* CPD [2877]
S/Fe(100) S2 – <8 × 10−11 673 – 5.33 ± 0.05* CPD [4324]
S/W(100) S2 – ∼1 × 10−10 ∼300 (570) – 5.4 FE [3438]
S/W(111) S2 – ∼1 × 10−10 ∼300 (570) – 5.4 FE [3438]
S/Ni(111) H2S – <5 × 10−10 ∼300 (∼450) – 5.4* CPD [1790]
S/Rh(100) – – – – – 5.4 ± <0.2 TC [1909]
S/Fe(100) S2 – <8 × 10−11 ∼300 – 5.40 ± 0.05 CPD [4324]
S/Ni(100) H2S – <5 × 10−10 ∼300 (∼450) – 5.45 ± 0.10* CPD [1790]
S/Fe(100) – – – – – 5.47 ± 0.05* TC [4009]
S/W S2 – <5 × 10−10 ∼300 – 5.5 FE [1524]
S/W(110) S2 – <2 × 10−10 ∼300 – 5.5 CPD [2856]
S/W(110) S2 – <2 × 10−10 ∼900 – 5.5 CPD [2856]
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S/W S2 – ∼10−5 (S2) ∼1700 – 5.5 TE [394]
S/Fe(100)427 – – – – – 5.5 TC [1104,4026]
S/Ni(100) S2 – <10−10 ∼300 – 5.5* CPD [2889]
S/Ni(100) ? – ? ? – 5.5 ± 0.1* ? [3355]
S/Mo(100) H2S – ≤10−5 (H2S) 1450 – 5.5 ± 0.1 TE [784]
S/Cu(111) – – – – – 5.53* TC [2699]
S/Mo(100) – – – – – 5.6 TC [3457]
S/Ni(100) ? – ? ? – 5.6 ± 0.1* ? [3355]
S/Ni(100) – – – – – 5.65 TC [1918]
S/Ni(111) H2S – <1 × 10−10 ∼300 (≥1070) – 5.65 CPD [1110]
S/Ta(112) – – <2 × 10−9 ∼1300–1500 – 5.7 TE [802]
S/Ni(100) – – – – – 5.7 ± 0.1* TC [2976]
S – – – – – 5.7 ± 0.1 TC [1905]
S/Ni(100) H2S – <1 × 10−10 ∼300 (≥1070) – 5.73 CPD [1110]
S – – – – – 5.74 TC [1901]
S/Fe(100)423 – – – – – 5.8* TC [4019]
S/Rh(111) S2 – ∼10−10 ∼300 – 6.0* CPD [1910]
S – – – – – 6.0 TC [1955]
S – – – – – 6.02 TC [3512]
S/W(110) S2 – ∼1 × 10−10 ∼300 (570) – 6.2 FE [3438]
S/Ag(111) – – – – – 6.25* TC [2699]
S/Fe(100)423 – – – – – 6.5* TC [4019]
Recommended – – – – – 5.31 ± 0.08 – –

19. Potassium K

bcc
K(100) – – – – – 2.03 TC [1254]
K(100) – – – – – 2.21 TC [231]
K(100) – – – – – 2.214 TC [2947]
K(100) – – – – – 2.224 TC [4091]
K(100) – – – – – 2.25 TC [2427]
K(100) – – – – – 2.25 TC [1159,3067]
K(100) – – – – – 2.26 TC [3467]
K(100) – – – – – 2.27 TC [553]
K(100)/KF(100)80 K – <5 × 10−10 0E – 2.33 ± 0.05 PE [2946]
K(100) – – – – – 2.34 TC [334]
K(100) – – – – – 2.39 TC [1547]
K(100) – – – – – 2.40 TC [475]
K(100) – – – – – 2.43 TC [711]
K(100) – – – – – 2.49 TC [321]
K(100) – – – – – 2.50 TC [1557]
K(100) – – – – – 2.51 TC [1030]
K(100) – – – – – 2.55 TC [3814]
K(100) – – – – – 2.59 TC [472]
K(100) – – – – – 2.60 TC [711]
K(100) – – – – – 2.60 TC [476]
K(100) – – – – – 2.68 TC [476]
K(100) – – – – – 2.7 TC [1088]
K(100) – – – – – 2.71 TC [1030]
K(100) – – – – – 2.8 TC [763]
K(100) – – – – – 2.80 TC [1095]
Recommended – – – – – 2.47 ± 0.04 – –

K(110) – – – – – 2.13 TC [2685]
K(110) – – – – – 2.278 TC [2947]
K(110) – – – – – 2.35 TC [1159,3067]
K(110) – – – – – 2.37 TC [231]
K(110) – – – – – 2.372 TC [4091]
K(110) – – – – – 2.38 TC [334,3179]
K(110)/glass K – <5 × 10−9 286–330 – 2.39 ± 0.01 PE [2476]
K(110)/NaCl(100)80 K – <5 × 10−10 0E – 2.41 ± 0.05 PE [2946]
K(110) – – – – – 2.42 TC [2427]
K(110) – – – – – 2.43 TC [3467]
K(110) – – – – – 2.44 TC [553]
K(110) – – – – – 2.57 TC [1086]
K(110) – – – – – 2.58 TC [711]
K(110) – – – – – 2.64 TC [2835]
K(110) – – – – – 2.7 TC [1088]
K(110) – – – – – 2.7 TC [3137]
(continued on next page)

42



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

K(110) – – – – – 2.7 TC [1086]
K(110) – – – – – 2.72 TC [1030]
K(110) – – – – – 2.74 TC [1086]
K(110) – – – – – 2.74 TC [2402]
K(110) – – – – – 2.75 TC [476,711]
K(110) – – – – – 2.75 TC [475]
K(110) – – – – – 2.75 TC [2835]
K(110) – – – – – 2.76 TC [472]
K(110) – – – – – 2.790 TC [4069]
K(110) – – – – – 2.80 TC [593]
K(110) – – – – – 2.82 TC [476]
K(110) – – – – – 2.83 TC [1087]
K(110) – – – – – 2.84 TC [3693]
K(110) – – – – – 2.86 TC [3713]
K(110) – – – – – 2.9 TC [1088]
K(110) – – – – – 2.9 TC [1086]
K(110) – – – – – 2.90 TC [321]
K(110) – – – – – 2.94 TC [1086]
K(110) – – – – – 2.95 TC [1086]
K(110) – – – – – 2.96 TC [3814]
K(110) – – – – – 2.97 TC [3692]
K(110) – – – – – 3.01 TC [1030,1089]
K(110) – – – – – 3.02 TC [3693]
K(110) – – – – – 3.03 TC [3712]
K(110) – – – – – 3.03 TC [3713]
K(110) – – – – – 3.06 TC [1089]
K(110) – – – – – 3.07 TC [1086]
K(110) – – – – – 3.09 TC [1086]
K(110) – – – – – 3.10 TC [1089]
K(110) – – – – – 3.15 TC [1095]
K(110) – – – – – 3.15 TC [3692]
K(110) – – – – – 3.2 TC [763]
K(110) – – – – – 5.14 TC [3622]
Recommended – – – – – 2.74 ± 0.04 – –

K(111)/Au/Si(111)419 K – ∼10−10 ∼300 – 2.0 PE [3999]
K(111) – – – – – 2.17 TC [231]
K(111) – – – – – 2.18 TC [4091]
K(111) – – – – – 2.19 TC [553]
K(111) – – – – – 2.21 TC [3467]
K(111) – – – – – 2.21 TC [711]
K(111) – – – – – 2.24 TC [1159,3067]
K(111) – – – – – 2.35 TC [475]
K(111) – – – – – 2.38 TC [476,711]
K(111) – – – – – 2.39 TC [1030]
K(111) – – – – – 2.39 TC [321]
K(111) – – – – – 2.40 TC [593]
K(111) – – – – – 2.40 TC [3814]
K(111) – – – – – 2.42 TC [472]
K(111) – – – – – 2.45 TC [1030]
K(111) – – – – – 2.47 TC [1557]
K(111) – – – – – 2.48 TC [476]
K(111) – – – – – 2.5 TC [1088]
K(111)/C12/Au/
Si(111)419

K – ∼10−10 ∼300 – 2.66 PE [3999]

K(111) – – – – – 2.75 TC [1095]
Recommended – – – – – 2.39 ± 0.02 – –

K(112) – – – – – 2.65 TC [321]

K – – – – – 1.05 TC [2704]
K/NiO(100) K – <1 × 10−10 ∼300 – 1.3 ± 0.2 CPD [2401]
K/Si(100) – – – – – 1.4* TC [2406]
K/Si(100) K – <4 × 10−11 ∼300 – 1.4* PE [3709]
K/Si(100) – – – – – 1.5* TC [3665]
K/Ge(100) K+ – 1 × 10−10 ∼300 – 1.5 CPD [3423]
K/Si(100) K – ∼10−11 295 – 1.5* PE [2274,2276]
K/Si(100) K – <3 × 10−10 ∼300 – 1.50* CPD [1929]
K/Si(100) K – <6 × 10−11 ∼300 – 1.57* CPD [2433]
K/Si(111)221 K – ∼10−9 ∼300 – 1.6* PE [1823]
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K/Pt K – ? ∼300 – 1.6 PE [2206]
K/Si(100) K – ? ∼300 – 1.6* PE [2994]
K/Si(111) K – ∼10−11 ∼300 – 1.6* PE [3685]
K – – – ∼300 – 1.6 TC [3737]
K/Cu(100) – – – – – 1.6* TC [3810]
K/Si(100) K – 5 × 10−11 ∼300 – 1.6 PE [1868,1869]
K/Si(100) K – 3 × 10−11 ∼300 – 1.6 PE [1872]
K – – ? ∼300 – 1.60 CPD [2297]
K/Pt K – 1 × 10−8 273 – 1.61 CPD [2083]
K/W K – ? ∼300 – 1.66* CPD [1459]
K/Si(100) K – ≤1 × 10−10 ∼300 – 1.7 PE [3191]
K/TiO2(110) K – 4 × 10−11 ∼300 – 1.70 PE [2192]
K/Si(100) K – <3 × 10−10 ∼300 – 1.70* CPD [1929]
K/Si(100) – – – – – 1.75* TC [2399]
K/Si(100) K – <10−10 ∼300 – 1.75* CPD [2885]
K/Pt(111) K – ? 95 – 1.8 PE [859]
K/Si(100) K – ? ∼300 – 1.8* PE [2741]
K/Pt(111) K – 8 × 10−11 ∼300 – 1.8 PE [427,1584,2863]
K/W(100) K – ? ∼300 – 1.8 PE [1697]
K/TiO2(110) K – 8 × 10−11 ∼300 – 1.8 PE [3188]
K/W(110) K – ≤1 × 10−10 ∼300 – 1.8 PE [3191]
K/Si(111) K – 2 × 10−11 ∼300 – 1.8 PE [3196]
K/Si(111) K – 3 × 10−11 ∼300 – 1.8* CPD [3470]
K/Si(111) K – <8 × 10−11 ∼300 – 1.8* PE [2991]
K/Si(111) K – 4 × 10−10 ∼300 – 1.8* CPD [2781]
K/Si(100) K – 5 × 10−11 273 – 1.8* PE [2882]
K/Si(111) K – ? ∼300 – 1.8* CPD [1587]
K/Si(100) – – – – – 1.8* TC [2339]
K/Si(111) K+ – 1 × 10−10 ∼300 – 1.80 CPD [3423]
K/Ge(111) K+ – 1 × 10−10 ∼300 – 1.82 CPD [3422,3423]
K/Pt(111) K – 1 × 10−10 ∼300 – 1.9 PE [3989]
K/Si(100) K – 2 × 10−10 ∼300 – 1.9* CPD [2785]
K/Si(100) K – <8 × 10−11 250 (∼300) – 1.9* PE [2677]
K/Pt(111) K – ∼10−10 ∼300 – 1.9 PE [1565]
K/Pt(111) K – ≤1 × 10−10 ∼300 – 1.9 PE [3191]
K/W(110) K – ? 78 (400) – 1.9 FE [267,3818]
K/Si(111) K – 5 × 10−11 ∼300 – 1.9* PE [3464,3465]
K/Rh(111) – – – – – 1.925 TC [4008]
K/W K – ? 375 – 1.95 FE [3859]
K/Si(111) K – <6 × 10−11 ∼300 – 1.96* CPD [2433]
K/TiO2(110) K – 4 × 10−11 ∼300 – 1.97 PE [2192]
K/Au/Si(111)419 K – ∼10−10 ∼300 – 2.0 PE [3999]
K/Ni K – ∼1 × 10−10 78 (242) – 2.0 FE [1570]
K/Pd(111) K – <10−10 100 (450) – 2.0 PE [3817]
K/W(110)81 – – – – – 2.0 TC [267,3818]
K/Si(100) K – ? ∼300 – 2.0* PE [2741]
K/Co K – ? 320 – 2.0* PE [3373]
K/Pt(111) K – 2 × 10−10 ∼300 – 2.0 PE [3455]
K/ZrC(111) K – <4 × 10−10 ∼300 – 2.0 PE [2800]
K/Si(100) – – – – – 2.0* TC [2224]
K/? K – ? ? – 2.0 PE [2231]
K/W(100) K+ – ∼10−10 ∼300 – 2.01 CPD [506]
K – – – – – 2.03 TC [1254]
K/Pt K – 1 × 10−8 195 – 2.03 CPD [2083]
K/Ag(111) K – 4 × 10−10 100 – 2.04 PE [1579,2988]
K – – – – – 2.05 TC [1150]
K/W(110)82 K – <1 × 10−11 78 – 2.05* FE [373]
K – – – – – 2.07 TC [4031]
K/W(111) K – ∼3 × 10−9 ∼300 – 2.08 FE [2766]
K – – – – – 2.09 TC [1951]
K – – – 0 – 2.09 TC [4419]
K/W(111) K – ? 78 (400) – 2.1 FE [267]
K/W(112) K – ? 78 (400) – 2.1 FE [267]
K/W K – ? 78 (400) – 2.1 FE [267]
K/NbC(100) K – <5 × 10−10 ∼300 – 2.1 PE [2796,2797]
K/W(111) – – – – – 2.1 TC [509]
K/Fe(110) – – – – – 2.1* TC [3663]
K/Cu(110) K – ? ∼300 – 2.1 PE [1242]
K/Si(100) K – 4 × 10−10 ∼300 – 2.1* CPD [2781]
K/Ag(100) K – ? ∼300 – 2.10 PE [2740]
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K/Ag(111) K – 1 × 10−10 ∼300 – 2.10 CPD [2867]
K – – – – – 2.11 TC [1066]
K/Cu(100) K – 1 × 10−11 123 – 2.11 ± 0.02 PE [3900]
K/W(100) K – 3 × 10−9 ∼300 – 2.12 FE [2766]
K/Ag K – ? 20, 80 – 2.12 PE [3028]
K/Ag/glass83 K – <10−8 ∼300 – 2.12 CPD [1456]
K/Cu(119) K – 1 × 10−11 123 – 2.12 ± 0.02* PE [3900]
K – – – – – 2.13 TC [4031]
K/quartz K – ? 82 – 2.137 ± 0.003 PE [1961]
K/W(112) – – – – – 2.14* TC [2978]
K/Mo K – <1 × 10−11 78 – 2.14 FE [648]
K/Ge(100) K – <1 × 10−10 78 – 2.14 FE [1550,3164]
K/Rh(111) – – – – – 2.149 TC [4008]
K/W K – <10−11 78 – 2.15 FE [267]
K/W(111) K – <1 × 10−11 78 – 2.15 ± 0.05 FE [373]
K/W K – ? ∼300 – 2.15 ± 0.05 PE [3797]
K/Ag/glass83 K – <10−8 ∼300 – 2.16 CPD [1456]
K/Ge(111) K – <1 × 10−10 78 – 2.16 FE [1550,3164]
K/GaAs(110) K – <1 × 10−10 ∼300 – 2.16 CPD [2793]
K/Ag(100) K – 8 × 10−11 125–150 – 2.17 CPD [2790]
K/Ag/glass83 K – <10−8 ∼300 – 2.17 ± 0.05* CPD [1456]
K/quartz K – ? 206 – 2.177 ± 0.004 PE [1960,1961]
K/W K – 3 × 10−9 ∼300 – 2.18 FE [2766]
K(fp) – – ? 279 – 2.18 PE [4256]
K/Re K – <10−10 ∼300 – 2.18 ± 0.05 FE [1800]
K – – – – – 2.2 TC [1955]
K/Si(100) K – ? 200 – 2.2 CPD [2783]
K/W K – ? 295 – 2.2 FE [3859]
K/Si(100)422 K – 2 × 10−10 ∼300 – 2.2 CPD [4016]
K/Mg(0001) – – – – – 2.2 TC [2438]
K/Al(100) K – 1 × 10−10 100 – 2.2 CPD [2875]
K/W K – (<10−10) 77 – 2.2 FE [2709]
K/Ru(001) K – ? ∼300 – 2.2* CPD [2984]
K/quartz K – ∼10−10 90 – 2.2 PE [2605]
K/C/Fe–Cu K – ∼10−8 873–973 – 2.2 TE [764]
K/Rh(111) K – 1 × 10−10 ∼300 – 2.2 PE [568,2282]
K/Fe(110) K – 1 × 10−10 ∼300 – 2.2 PE [1232]
K/TiO2(100) K – 4 × 10−11 ∼300 – 2.2 ± 0.1 PE [1717]
K/Cu(100) K – <5 × 10−11 120 – 2.2 ± 0.1* CPD [1819]
K/C(100) K – <2 × 10−10 90, 300 – 2.2 ± 0.2* CPD [2197]
K/Ta(111) K – <1 × 10−11 78 – 2.20 FE [648]
K/Mo(100) K – <1 × 10−11 78 – 2.20 FE [648]
K/W K – <1 × 10−11 78 – 2.20 FE [373]
K/Ru(0001) K – 3 × 10−10 295 – 2.20 CPD [1822]
K – – – – – 2.20 TC [3725]
K/Ni K – ≤4 × 10−7 ∼300 – 2.20 PE [1765]
K – – – – – 2.21 TC [3728]
K/W(112) K – ∼3 × 10−9 ∼300 – 2.21 FE [2766]
K/W(100) K – ? 78 – 2.21 CPD [3981]
K/quartz K – ? ∼300 – 2.216 ± 0.004 PE [1960,1961]
K/Ni K – <10−9 77 – 2.24 CPD [2139,3128,3698]
K/W K – <5 × 10−8 77 (400) – 2.24 FE [267,269]
K/Ag/glass K – ∼10−8 ∼80 – 2.24 PE [1452]
K/Ag/glass83 K – <10−8 ∼300 – 2.24 CPD [1456]
K/? K – ? ? – 2.24 ? [3785]
K/W(112) – – – – – 2.25 TC [267]
K/Ru(001) K – 1 × 10−10 100 – 2.25 PE [529]
K/Pd(100) K – ? 80 – 2.25 PE [3176]
K/Ru(1010) K – 3 × 10−10 430 – 2.25 CPD [2161]
K/Mo(112) K – <1 × 10−11 78 – 2.25 FE [648]
K/glass K – ∼10−9 82 – 2.25 PE [2576]
K/Ta K – <1 × 10−11 78 – 2.26 FE [648]
K/Si(100) K – 1 × 10−10 70 – 2.26 PE [2190]
K – – ? ∼300 – 2.26 PE [2614]
K/Re(001) K – 2 × 10−10 100 – 2.26 CPD [513,3378]
K/Si(100) K – 5 × 10−11 60, 273 – 2.26 PE [1715]
K/Ta(110) K+ – ∼10−10 ∼300 – 2.26 CPD [506]
K – – 10−9 298 – 2.26 PE [2612–2614]
K/Pt K – 2 × 10−6 ∼300 – 2.26 ± 0.02 PE [2562]
K/Cu(111) K – 5 × 10−11 ∼300 – 2.26 ± 0.03 PE [1926]
(continued on next page)

45



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

K – – ∼10−9 335 – 2.27 PE [4241]
K/metal K – ≤4 × 10−7 ∼300 – 2.27 ± 0.03 PE [1765]
K/W(112) K – <1 × 10−11 78 – 2.27 ± 0.05 FE [373]
K – – – – – 2.28 TC [3477]
K – – – – – 2.28 TC [3352]
K(cluster) – – – – – 2.28 TC [3479]
K – – – – – 2.28 TC [4150]
Kn(n → ∞) – – ? ∼300 – 2.28 IP [4161]
K(fp)42 – – ? ? – 2.28 ± 0.05 PE [3482]
K/Pt(111) K – <3 × 10−10 ∼300 – 2.29 PE [2529]
K – – ∼10−9 183 – 2.29 PE [2612,2613]
K – – – – – 2.29 TC [3312]
Kn(n → ∞) – – – – – 2.29 TC [4244]
K/graphite464 – – – – – 2.29* TC [4211]
Kn(n → ∞) – – ? 195–395 – 2.29 PE [4227]
K156 – – <10−8 298 – 2.29 ± 0.03 PE [2470,4208]
K/glass K – ≤5 × 10−9 298 – 2.29 ± 0.015 PE [2476]
K/W K – ? 4.2, 21 – 2.3 FE [3065]
K/Ni(111) K – 5 × 10−11 120 – 2.3* CPD [3806]
K/Mo(112) – – – – – 2.3 TC [509]
K – – – – – 2.3 TC [706]
K/? K – <8 × 10−11 77 – 2.3 PE [3675]
K/Ni(100) K – 2 × 10−10 120 – 2.3 PE [2505]
K/Si(100)422 K – 2 × 10−10 ∼300 – 2.3* CPD [4016]
K/Al(111) – – – – – 2.3 TC [2223]
K/Fe(111) K – <10−10 ∼300 – 2.3* CPD [1865,2497]
K/Au(100) K – ∼10−10 130, 300 – 2.3 CPD [3202]
K/Ru(001) K – 5 × 10−11 80 – 2.3 CPD [1815]
K/Re(1010) K – ≤10−11 77 – 2.3 CPD [2503]
K – – – – – 2.3 TC [1993]
K/Rh(100) K – <1 × 10−10 100 – 2.3 CPD [3456]
K/Cu(110) K – 5 × 10−11 140 – 2.3 ± 0.1 PE [3454]
K/Cu, Ag K – 2 × 10−8 ∼300 – 2.3 ± 0.1 PE [3081]
K/C(0001) K – 3 × 10−10 83–160 – 2.3 ± 0.1 CPD [2801]488

K/Ta(100) K – <1 × 10−11 78 – 2.30 FE [648]
K/Ta(112) K – <1 × 10−11 78 – 2.30 FE [648]
K – – – – – 2.30 TC [3467]
Kn(n → ∞) – – ? ∼300 – 2.30 IP,TC [4197]
Kn(n → ∞) – – – – – 2.30 TC [4244]
K/Pt K – 1 × 10−8 85 – 2.30 CPD [2083]
K/Mo K – ∼10−10 ∼300 – 2.30 ± 0.02 PE [3337]
K/Fe(110) K – 5 × 10−11 ∼300 – 2.32 ± 0.03 PE [1926]
K – – – – – 2.33 TC [298]
K/W(100) K – <1 × 10−11 78 – 2.34 FE [373]
K/graphite – – – – – 2.35* TC [1843]
K/NbC(111) K – ≤1 × 10−10 ∼300 – 2.35 PE [2797]
K/graphite464 – – – – – 2.36 TC [4211]
K/Au(100) K – ∼10−11 130, 300 – 2.37 CPD [2746]
K/Mo K – ∼10−10 80 (293) – 2.38 PE [3337]
K – – – – – 2.38 TC [3312]
K – – – – – 2.38 TC [4031]
K/Mo(112) K – (≤10−11) 77 – 2.38 CPD [2031]
K/glass K – ≤3 × 10−11 77 – 2.38 ± 0.01 PE [2615]
K/glass K – ∼10−10 77 – 2.39 ± 0.01 PE [1481,1489]
K/Si(111) K – 3 × 10−10 90 – 2.4* PE [2801]
K/Cu(111) K – 3 × 10−10 90 – 2.4* PE [2801]
K/Au(111) K – ? ∼300 – 2.4 PE [1297]
K/cnt/Al2O3 K – 5 × 10−8 ∼300 (340) – 2.4 PE [4373]
K/Ni K – ∼1 × 10−10 78 (242) – 2.4* FE [1570]
K/Re(1010) K – (≤1 × 10−10) ∼300 – 2.4 CPD [2490]
K/Ni(100) K – ? 20 – 2.4* PE [3662]
K/Ni(100) K – ? 20 (150) – 2.4* PE [3662]
K/Ag(111) K – 1 × 10−10 ≤300 – 2.4 CPD [1907]
K/Cu(100) K – ? 110 – 2.4* PE [3155]
K/Ta(100) – – – – – 2.4 TC [509]
K/Al(111) K – ? 100 – 2.4* PE [3629]
K/Si(100)n K – 8 × 10−11 55, 273 – 2.4 PE [2668]
K/Ru(001) K – <2 × 10−10 85 – 2.4 CPD [2176]
K/Cu(111) K – ∼10−11 ∼300 – 2.4* PE [1825]
K/Ru(001) K – ∼1 × 10−10 85 – 2.4 CPD [1818]
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K/Rh(111) K – ≤5 × 10−10 45 – 2.4 PE [1128]
K/Pd(100) K – <2 × 10−10 250 – 2.4* CPD [1574]
K/Ru(001) K – 4 × 10−11 120 – 2.4* PE [2886]
K/Ru(001)84 K – <8 × 10−11 130 – 2.4 PE [528]
K/Rh(111) K – 1 × 10−10 50 (845) – 2.4 PE [1204]
K/W K – <1 × 10−11 78 – 2.4 ± 0.05 FE [373]
K/Ni(100) K – ∼10−10 ∼300 – 2.4 ± 0.1* CPD [1411]
K/Si(100) – – – – – 2.4 ± 0.2* TC [1702]
K/Cu(111) K – <5 × 10−10 ∼300 – 2.40 CPD [2517,3459]
K/W(100) K – ? 78 – 2.40 FE [373]
K/Mo(111) K – <1 × 10−11 78 – 2.40 FE [648]
K(fp, 𝑟 → ∞)460 – – ? ∼300 – 2.40* IP [4198]
K/glass K – ≤3 × 10−11 195 – 2.40 ± 0.01 PE [2615]
K – – – – – 2.42 TC [4441]
K/glass K – ≤3 × 10−11 195 – 2.43 ± 0.01 PE [2615]
K/Cu(111) K – <8 × 10−11 90–100 – 2.44 CPD [2191]
K – – – – – 2.45 TC [231]
K/C(0001)85 K – <2 × 10−10 83 – 2.45 ± 0.15 PE [2193]
K/W(112) K – ? 78 – 2.48 CPD [658]
K – – – – – 2.48 TC [2061]
K – – – – – 2.49 TC [1924]
K/Ta(110) – – – – – 2.5* TC [3663]
K/C(0001)85 K – ∼10−10 83 – 2.5* PE [1725]
K/Si(111) K – 5 × 10−11 77 – 2.5* PE [3465]
K/Au(100) K – ∼10−10 100 – 2.5 CPD [3173]
K/Au(100) K – ∼8 × 10−10 ∼300 – 2.5* CPD [2792]
K/Ni(100) K – ∼1 × 10−11 ∼300 – 2.5* CPD [1413]
K/Cu(111) K – 3 × 10−10 85, 160 – 2.5* PE [2801]
K/Re(1010) K – (≤1 × 10−10) 245 – 2.5 CPD [2490]
K/W(112) K – (<10−11) 245 – 2.5 CPD [658]
K – – – – – 2.50 TC [553,2427]
K – – – – – 2.50 TC [3477]
K(fp, 𝑟 → ∞)460 – – ? ∼300 – 2.50* IP [4198]
K/Mo(110) K – <1 × 10−11 78 – 2.50 FE [648]
K – – – – – 2.51 TC [231]
Kn(n → ∞) – – ? ? – 2.52 IP [4227]
K – – – – – 2.53 TC [1924]
K/W(110) K – ∼3 × 10−9 ∼300 – 2.54 FE [2766]
K/Fe(100) K – ? ∼300 – 2.55 PE [1709]
K – – – – – 2.55 TC [738]
K/W(110)82 K – <1 × 10−11 78 – 2.55 ± 0.05 FE [373]
K – – – – – 2.56 TC [3467]
K – – – – – 2.56 TC [2427]
K – – – – – 2.58 TC [1901]
K – – – – – 2.58 TC [4101]
K/Si(111) K – 5 × 10−11 77 – 2.6* PE [3465]
K/Ag(111) K – <1 × 10−10 ∼300 – 2.6 CPD [1426]
K/Si(100) K – 8 × 10−10 ∼300 – 2.6* CPD [3278]
K/Ag(111) K – ? 100 – 2.6* CPD [3569]
K – – – – – 2.6 TC [2845]
K/Co(0001) K – ∼10−10 200 – 2.6 ± 0.3 PE [3381]
K/Ta(110) K – <1 × 10−11 78 – 2.60 FE [648]
K/Al(111) K – ? 140 – 2.61 CPD [734]
K/Al(111) K – ? ∼300 – 2.61 CPD [734]
K – – – – – 2.62 TC [1613]
K – – – – – 2.62 TC [2382]
K/graphite – – – – – 2.63* TC [1843]
K/W K – ? (K) ∼750–950 – 2.65 TE [2292]
K/Cu(332) K – <2 × 10−10 95 – 2.65* PE [1604]
K/C12/Au/Si(111)419 K – ∼10−10 ∼300 – 2.66 PE [3999]
K/Cu(100) K – <5 × 10−10 ∼300 – 2.67* CPD [1431]
K – – – – – 2.67 TC [1578]
K – – – – – 2.68 TC [2629]
K – – – – – 2.69 TC [767]
K/Au(001) K – ∼8 × 10−10 ∼100 – 2.7* CPD [2792]
K/Pt(111) K – 1 × 10−11 ∼300 (>500) – 2.7 FE [3227]
K – – – – – 2.74 TC3 [475,519,2474]
K – – – – – 2.74 TC [230]
K – – – – – 2.76 TC [521]
K – – – – – 2.76 TC [3628]
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K – – – – – 2.8 TC [944]
K/Ni(100) K – ? 40 – 2.8 ± 0.1* ? [2047]
K/graphite K – 4 × 10−10 90 – <2.9 ± 0.2 CPD [2185]
K/Si(111) – – – – – 2.9 TC [300]
K/cnt86 K – 8 × 10−10 ∼300 – 3.3 PE [3229]
K – – – – – 3.30 TC [2629]
K/C(100) – – – – – 3.62* TC [2759]
K – – – – – 3.71 TC [3080]
K/cnt K – <2 × 10−7 ? – 3.99 FE [2201]
Recommended – – – – – 2.29 ± 0.02 – –

Liquid (𝑻 > 𝟑𝟑𝟕 𝐊)
K – – ∼10−9 338 – 2.27 PE [4241]
K – – ≤5 × 10−9 338 – 2.30 ± 0.015 PE [2476]
K156 – – <10−8 338 – 2.30 ± 0.03 PE [2470]

20. Calcium Ca

fcc (𝜶, 𝑻 < 𝟓𝟐𝟑 𝐊)
Ca(100) – – – – – 2.55 TC [1254]
Ca(100) – – – – – 2.758 TC [4091]
Ca(100) – – – – – 2.87 TC [4222]
Ca(100) – – – – – 2.9 TC [3653]
Ca(100) – – – – – 2.9 TC [1711]
Ca(100) – – – – – 2.94 TC [231]
Ca(100) – – – – – 2.97 TC [3467]
Ca(100) – – – – – 3.38 TC [476]
Ca(100) – – – – – 3.52 TC [476]
Ca(100) – – – – – 3.57 TC [1030]
Ca(100) – – – – – 3.96 TC [1030]
Ca(100) – – – – – 4.09 TC [321]
Recommended – – – – – 3.4 ± 0.4 – –

Ca(110) – – – – – 2.813 TC [4091]
Ca(110) – – – – – 2.83 TC [4222]
Ca(110) – – – – – 2.92 TC [231]
Ca(110) – – – – – 2.92 TC [3467]
Ca(110) – – – – – 3.20 TC [1030]
Ca(110) – – – – – 3.29 TC [476]
Ca(110) – – – – – 3.41 TC [476]
Ca(110) – – – – – 3.43 TC [1030]
Ca(110) – – – – – 3.84 TC [321]
Recommended – – – – – 3.3 ± 0.3 – –

Ca(111) – – – – – 2.86 TC [334,3179]
Ca(111) – – – – – 2.936 TC [4091]
Ca(111) – – – – – 2.98 TC [4215]
Ca(111) – – – – – 2.98 TC [4222]
Ca(111) – – – – – 3.10 TC [231]
Ca(111) – – – – – 3.14 TC [3467]
Ca(111) – – – – – 3.26 TC [2427]
Ca(111) – – – – – 3.35 TC [476]
Ca(111) – – – – – 3.4 TC [1711]
Ca(111) – – – – – 3.4 TC [3653]
Ca(111) – – – – – 3.49 TC [476]
Ca(111) – – – – – 3.68 TC [1030,1089]
Ca(111) – – – – – 3.70 TC [1030]
Ca(111) – – – – – 3.76 TC [1089]
Ca(111) – – – – – 3.91 TC [1089]
Ca(111) – – – – – 4.40 TC [321]
Recommended – – – – – 3.5 ± 0.2 – –

bcc (𝜸, 𝑻 > 𝟕𝟐𝟑 𝐊)
Ca(100) – – – – – 3.52 TC [321]

Ca(110) – – – – – 2.84 TC [334]
Ca(110) – – – – – 4.09 TC [321]

(continued on next page)
48



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Ca(111) – – – – – 3.37 TC [321]

Ca(112) – – – – – 3.75 TC [321]

fcc (𝜶, 𝑻 < 𝟓𝟐𝟑 K for bulk)
Ca – – – – – 2.1 TC [2845]
Ca/silica87 Ca – ∼10−11 ∼300 – 2.2 PE [1418]
Ca/? Ca – <10−6 ? – 2.24 TE [2919]
Ca174 – – – 0E – 2.24 TC [1747]
Ca – – – – – 2.35 TC [1744]
Ca/W Ca – ≤1 × 10−9 ∼300 (670) – 2.4 FE [2587]
Ca/? Ca – ? ∼300 – 2.42 PE [3027]
Ca – – – – – 2.50 TC [2704]
Ca – – – – – 2.53 TC [3476]
Ca – – – – – 2.55 TC [1254]
Ca/silica87 Ca – ∼10−11 ∼300 – 2.55 PE [1418]
Ca – – – – – 2.6 TC [1955]
Ca – – – – – 2.64 TC [3476]
Ca/glass Ca – ? ∼300 – 2.66 PE [2924]
Ca – – ? 298 – 2.66 ± 0.07 PE [3394]
Ca/Ir Ca – ≤1 × 10−9 ∼300 (770) – 2.7 ± 0.1 FE [2587]
Ca – – – – – 2.70 TC [1066]
Ca/glass Ca – ? 298 – 2.706 ± 0.004 PE [2232]
Ca – – – – – 2.75 TC [3318]
Ca/W Ca – <2 × 10−9 ∼300 – 2.75 ± 0.05 FE [1687]
Ca – – ∼10−6 298 – 2.76 PE [3389,3394]
Ca – – – – – 2.78 TC [298]
Ca – – – – – 2.80 TC [2949]
Ca/W244 Ca – ≤2 × 10−9 ∼900 – 2.84 CPD [3530]
Ca – – – – – 2.87 TC [4418]
Ca/quartz Ca – <5 × 10−10 ∼300 – 2.87 ± 0.06 PE [1997,1998,2024]
Ca/graphite Ca – ∼10−9 ∼300 – 2.89 CPD [2957]
Ca/Mo Ca – ∼10−9 ∼300 – 2.89 CPD [2957]
Ca – – – – – 2.9 TC [1993]
Ca/Cu(100) Ca – ∼1 × 10−11 110, 300 – 2.9 CPD [2997]
Ca/Cu Ca – <2 × 10−9 ∼300 – 2.9 PE [2332]
Ca/? Ca – <8 × 10−11 ∼300 – 2.9 ± 0.1 CPD [3868]
Ca/W244 Ca – ≤2 × 10−9 ∼300 – 2.90 CPD [3530]
Ca – – – – – 2.91 TC [3476]
Ca/Re Ca – <8 × 10−11 ∼300 – 2.92 CPD [342]
Ca/graphite Ca – ∼10−9 ∼300 – 2.95 CPD [2957]
Ca/silica87 Ca – ∼10−11 ∼300 – 2.98 ± 0.05 PE [1418]
Ca/glass88 Ca – <10−9 ∼300{77} – 3.0 CPD [1526]
Ca/Ir Ca – ≤1 × 10−9 ∼300 (770) – 3.0 ± 0.1 FE [2587]
Ca – – – – – 3.00 TC [3931]
Ca – – – – – 3.01 TC [3467]
Ca/quartz Ca – ∼10−9 ∼300 – 3.06 CPD [2957]
Ca/graphite Ca – ∼10−9 ∼300 – 3.06 CPD [2957]
Ca – – ? ∼300 – 3.08 PE [2080]
Ca – – – – – 3.08 TC [231]
Ca/W Ca – ∼2 × 10−9 ∼300 – 3.1 CPD [3259]
Ca/Pt Ca – ? ∼1200 – 3.1 TE [4266]
Ca – – – – – 3.1 TC [706]
Ca – – – – – 3.11 TC [521]
Ca – – – – – 3.13 TC [3729]
Ca/Mo89 Ca+ – <1 × 10−9 ∼300 – 3.13 PE [2211]
Ca – – – – – 3.15 TC [1578]
Ca – – – – – 3.19 TC [231]
Ca – – – – – 3.2 TC [3030]
Ca/Ni Ca – ? ∼300 – 3.20 PE [2922]
Ca/Ta Ca – ∼10−7 ∼300 – 3.21 PE [2463]
Ca – – – – – 3.24 TC [3467]
Ca/Mo89 Ca+ – <1 × 10−9 ∼300 – 3.26 PE [2211]
Ca – – – – – 3.28 TC [1613]
Ca – – – – – 3.30 TC [2629]
Ca – – ? ∼300 – 3.33 CPD [2297]
Ca – – – – – 3.39 TC [2474]
Ca/quartz Ca – 5 × 10−10 ∼300 – 3.7 ± 0.3 PE [2003,2008]
Recommended – – – – – 2.91 ± 0.03 – –
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21. Scandium Sc399

hcp (𝜶, 𝑻 < 𝟏𝟔𝟔𝟎 𝐊)
Sc(0001) – – – – – 2.1 TC [1090]
Sc(0001) – – – – – 3.39 TC [4461]490

Sc(0001) – – – – – 3.556 TC [4460]490

Sc(0001) – – – – – 3.74 TC [229,334,3179]
Sc(0001)/W(110)90 Sc – ≤1 × 10−9 ∼300 – 3.8 CPD [1982]
Sc(0001) – – – – – 3.81 TC [4005]
Sc(0001) – – – – – 4.81 TC [321]

Sc(1010) – – – – – 3.10 TC [4005]
Sc(1010) – – – – – 3.35 TC [4461]490

Sc(1010) – – – – – 3.563 TC [4460]490

Sc(1010) – – – – – 3.772 TC [4460]490

Sc(1010) – – – – – 4.60 TC [321]

Sc(1124) – – – – – 4.03 TC [321]

fcc (𝜷, 𝑻 > 𝟏𝟔𝟔𝟎 𝐊)
Sc(100) – – – – – 4.39 TC [321]

Sc(110) – – – – – 4.13 TC [321]
Sc(111) – – – – – 3.84 TC [229,334]
Sc(111) – – – – – 4.73 TC [321]

hcp (𝜶, 𝑻 < 𝟏𝟔𝟔𝟎 K for bulk)
Sc/W91 Sc – 1 × 10−10 ∼300 (≤1300) – 2.8 FE [1811]
Sc/W91 Sc – 1 × 10−10 ∼300 (≤1300) – 2.9 FE [1811]
Sc – – – – – 2.9 TC [1744]
Sc/W(100) – – – – – 3.0 TC [4258]
Sc/W Sc – ≤7 × 10−8 ∼300 – 3.0 FE [1804]
Sc/Mo Sc – ≤7 × 10−8 ∼300 – 3.1 FE [1804]
Sc/W(111) Sc – (<10−10) 77 – 3.1 ± 0.1 FE [3323]
Sc – – – – – 3.15 TC [3318]
Sc/W(111) Sc – ≤10−8 ∼1100–1150 – 3.17 ± 0.03 TE [2337]
Sc/W(111) Sc – ∼10−9 ∼300 – 3.2 FE [2011]
Sc379 – – – – – 3.2 TC [1955]
Sc/W(100) Sc – 1 × 10−9 ∼300 – 3.2 CPD [1985]
Sc – – – – – 3.23 TC [1956]
Sc(foil)255 – – <10−7 1300 – 3.23 TE [3071]
Sc/W(112) Sc – ? ∼300 – 3.26 CPD [4011]
Sc – – ? (N2) ∼300 – 3.28 ± 0.02 CPD [4066]
Sc – – – – – 3.29 TC [3476]
Sc160 – – – – – 3.3 TC [1355]
Sc/W Sc – 1 × 10−9 ∼300 – 3.3 CPD [3617,4447]
Sc/Nb Sc – ≤10−8 ∼1000–1150 – 3.3 ± 0.03 TE [2359]
Sc/Ta Sc – ≤10−8 ∼1000–1150 – 3.3 ± 0.03 TE [2359]
Sc/Ru Sc – ≤10−8 ∼1000–1150 – 3.3 ± 0.03 TE [2359]
Sc/Os Sc – ≤10−8 ∼1000–1150 – 3.3 ± 0.03 TE [2359]
Sc/Ir Sc – ≤10−8 ∼1000–1150 – 3.3 ± 0.03 TE [2359]
Sc/Nb(110) Sc – ≤10−8 ∼1000–1150 – 3.3 ± 0.03 TE [2359]
Sc/W(100) Sc – (<10−10) 77 – 3.3 ± 0.1 FE [3323]
Sc – – – – – 3.30* TC [1955]
Sc/Re Sc – ≤10−8 ∼1000–1150 – 3.32 ± 0.03 TE [2359]
Sc – – – – – 3.33 TC [1066]
Sc/Mo Sc – ≤10−8 ∼1000–1150 – 3.34 ± 0.03 TE [2359]
Sc/W Sc – ≤10−8 ∼1000–1150 – 3.34 ± 0.03 TE [2359]
Sc/W(100) Sc – ∼10−10 ∼300 (≤1070) – 3.36 CPD [2528]
Sc – – – – – 3.39 TC [3476]
Sc – – – – – 3.4 TC [3318]
Sc/Re–Sc(9%)92 – – ? 1200 – 3.4 TE [1979]
Sc/Nb(100) Sc – ≤10−8 ∼1000–1150 – 3.4 ± 0.03 TE [2359]
Sc – – 2 × 10−10 ∼300 – 3.4 ± 0.1 PE [1813]
Sc – – ? 1200 – 3.45 TE [1979]
Sc – – – – – 3.5 TC [706]
Sc/W(121) Sc – (<10−10) 77 – 3.5 ± 0.1 FE [3323]
Sc/quartz Sc – ∼10−10 ∼300 – 3.5 ± 0.15 PE [304]
Sc – – – – – 3.53 TC [298]
Sc/W(100) Sc – ≤10−8 ∼1000–1150 – 3.56 ± 0.03 TE [2337,2359]
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Sc – – – – – 3.6 TC [1993]
Sc – – ∼10−9 <1660 – 3.62 TE [4356]
Sc/W(112) Sc – ? ∼300 (∼600) – 3.60 CPD [4011]
Sc/W(110) Sc – ≤10−8 ∼1000–1150 – 3.62 ± 0.03 TE [2337,2359]
Sc/W(110) Sc – (<10−10) ∼300 – 3.66* CPD [3329]
Sc – – – – – 3.71 TC [3476]
Sc – – – – – 3.9 TC [944]
Sc – – ? ∼300 – 4.2 CPD [2202]
Recommended – – – – – 3.33 ± 0.04 – –

fcc (𝜷, 𝑻 > 𝟏𝟔𝟔𝟎 𝐊 for bulk)
Sc – – – – – 3.44 TC [1066]
Sc – – ∼10−9 >1660 – 3.46 TE [4356]

22. Titanium Ti

hcp (𝜶, 𝑻 < 𝟏𝟏𝟓𝟓 𝐊)
Ti(0001) – – – – – 3.8 TC [1090,1899]
Ti(0001)/W(110)93 Ti – <10−11 ∼300 (∼650) – 4.10 FE [2196]
Ti(0001) – – – – – 4.25 TC [4417]
Ti(0001) – – – – – 4.29 TC [1980]
Ti(0001) – – – – – 4.38 TC [4087,4410]
Ti(0001) – – – – – 4.38 TC [1179]
Ti(0001) – – – – – 4.40 TC [1028,1179]
Ti(0001) – – – – – 4.42 TC [894]
Ti(0001) – – – – – 4.45 TC [2553]
Ti(0001) – – – – – 4.51 TC [4032,4086]
Ti(0001) – – – – – 4.54 TC [1179]
Ti(0001) – – – – – 4.56 TC [4284]
Ti(0001) – – <10−10 ∼300 – 4.58 ± 0.05 FE [2258]
Ti(0001) – – – – – 4.59 TC [229,334]
Ti(0001) – – ? ∼300 – 4.6 ± 0.2 PE [3627]
Ti(0001) – – 4 × 10−11 ∼300 – 4.60 ± 0.1 PE [1902]
Ti(0001) – – – – – 4.63 TC [4032]
Ti(0001) – – – – – 4.64 TC [892]
Ti(0001) – – – – – 4.66 TC [1028,1179]
Ti(0001)/W(110) Ti – (<5 × 10−11) ∼300 (∼900) – 4.7 ± 0.1 CPD [4234]
Ti(0001) – – – – – 4.72 TC [4005]
Ti(0001) – – – – – 4.75 TC [893]
Ti(0001)/glass94 Ti – ? ∼300 – 5.0 CPD [2378]
Ti(0001) – – – – – 5.00 TC [321]
Recommended – – – – – 4.53 ± 0.10 – –

Ti(1010) – – – – – 3.63 TC [4005]
Ti(1010) – – – – – 4.13 TC [1980]
Ti(1010)/O=Ti95 Ti – ? ∼300 – 4.15 CPD [2378]
Ti(1010) – – – – – 4.78 TC [321]

Ti(1011)/O=Ti95 Ti – ? ∼300 – 4.75 CPD [2378]

Ti(1124) – – – – – 4.18 TC [321]

bcc (𝜷, 𝑻 > 𝟏𝟏𝟓𝟓 𝐊)
Ti(100) – – – – – 3.94 TC [321]

Ti(110) – – – – – 4.57 TC [321]

Ti(111) – – – – – 3.76 TC [321]

Ti(112) – – – – – 4.18 TC [321]

hcp (𝜶, 𝑻 < 𝟏𝟏𝟓𝟓 𝐊 for bulk)
Ti – – – – – 2.4 TC [2456]
Ti/Ag Ti – 1 × 10−7 ∼300 – 2.7–3.9 CPD [1785]
Ti/Au Ti – 1 × 10−6 ∼300 – 3.0–4.2 CPD [1785]
Ti/W(016)96 Ti – <8 × 10−11 ∼300 – 3.03 FE [3222]
Ti – – <10−3 ∼300 – 3.10 ± 0.07 PE [2571]
Ti/W Ti – <8 × 10−11 ∼300 – 3.18 FE [3222]
Ti/W(116) Ti – ∼10−10 ∼300 – 3.47 FE [4237]
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Ti/W(012) Ti – ≤10−10 ∼300 – 3.5 FE [3327]
Ti/W Ti – <8 × 10−10 78 (≤1100) – 3.50 FE [1731]
Ti/W(111)96 Ti – <8 × 10−11 ∼300 – 3.50 FE [3222]
Ti – – – – – 3.51 TC [3476]
Ti/W(011)96 Ti – <8 × 10−11 ∼300 – 3.52 FE [3222]
Ti/glass Ti – <10−9 77–90 – 3.52 PE [2096,3052,3053]
Ti/Ni Ti – ? ∼300 – 3.55 ± 0.05 PE [2617]
Ti/glass Ti – <10−9 293 (383) – 3.57 PE [3052]
Ti/Ge(111) Ti – ≤10−9 ∼300 – 3.6 FE [1496]
Ti/W Ti – ≤10−10 ∼300 – 3.6 FE [3327,3334]
Ti/W(110) – – – – – 3.6* TC [2975]
Ti – – – – – 3.61 TC [3476]
Ti/W(023) Ti – ∼10−10 ∼300 – 3.65 FE [4237]
Ti/W Ti – ≤10−10 ∼300 – 3.65 ± 0.06 FE [3545]
Ti/W(112) Ti – ∼10−10 ∼300 – 3.66 FE [4237]
Ti/W(111) Ti – ≤10−10 ∼300 – 3.7 FE [3327]
Ti/W(100) Ti – ? <1600 – 3.7 FE [1438]
Ti/Au Ti – 2 × 10−9 ∼300 – 3.7–4.7 CPD [1785]
Ti/W(100) Ti – <10−10 800–1100 – 3.70 ± 0.05 FE [4014]
Ti – – 10–12 (Ar) ∼300 – 3.72 PE [1652,4236]
Ti – – – 0 – 3.72 TC [339]
Ti Cs Cs+ ? (Cs) ∼1000 3.74* (3.75) PSI [650]
Ti – – ? (Cs) ∼1000–1100 (3.74*) 3.75 TE [650]
Ti/W(001)96 Ti – <8 × 10−11 ∼300 – 3.75 FE [3222]
Ti – – ≤1 × 10−9 1115 – 3.76 TE [179]
Ti – – ≤10−7 900–1170 – 3.77–5.5 TE [2810]
Ti – – – – – 3.78 TC [3318]
Ti/SiO2 Ti – ? ∼300 – 3.8 PE [2899]
Ti/W(111) Ti – ≤1 × 10−10 77 – 3.8 FE [2372]
Ti/glass Ti – 6 × 10−10 293 (383) – 3.81 PE [3053]
Ti – – – – – 3.81 TC [1066]
Ti – – 3 × 10−11 77 – 3.81 FE [2424]
Ti – – ? ∼300 – 3.82 ± 0.02 CPD [2544]
Ti/W(100) Ti – ? <1600 – 3.82 ± 0.05* FE [1438]
Ti – – – – – 3.83 TC [3318]
Ti/W(110) Ti – <5 × 10−10 ∼300 – 3.85 ± 0.03 CPD [1863]
Ti/W(100) Ti – 2 × 10−9 ∼1550–1800 – 3.85 ± 0.04 TE [2461]
Ti/glass Ti – <10−9 90 (383) – 3.87 PE [2096]
Ti – – – – – 3.87 TC [1901]
Ti – – – – – 3.88 TC [2005]
Ti/W(001)97 Ti – ∼10−10 293 – 3.88 ± 0.09 FE [1404]
Ti/W(110) Ti – ≤1 × 10−10 77 – 3.9 FE [2372]
Ti/W(112) Ti – ≤1 × 10−10 77 – 3.9 FE [2372]
Ti/W Ti – ≤7 × 10−8 ∼300 – 3.9 FE [1804]
Ti/Mo(110) Ti – ∼10−10 ∼300 – 3.9 CPD [3679]
Ti/W Ti – ∼10−9 293 (900) – 3.9 FE [3738]
Ti – – – – – 3.9 TC [1993]
Ti – – ? ? – 3.9 TE [3402]
Ti/SiO2 Ti – ? ∼300 (670) – 3.9 ± 0.1 PE [2899]
Ti/glass Ti – ? ∼300 – 3.95 PE [3027]
Ti/W(111)98 Ti – ∼10−11 ∼300 (600) – 3.95 PE [2194]
Ti/W(112)96 Ti – <8 × 10−11 ∼300 – 3.95 FE [3222]
Ti – – ∼10−6 ∼300 – 3.95 PE [3027]
Ti/W99 Ti – 5 × 10−11 ∼300 – 3.95 FE [1522]
Ti – – – – – 3.95 TC [2949]
Ti – – <2 × 10−10 ∼300 – 3.96 ± 0.04 CPD [1898]
Ti – – – – – 3.98 TC [3476]
Ti – – – – – 4.0 TC [2583]
Ti – – – – – 4.0 TC [1955]
Ti/Ag Ti – 1 × 10−7 ∼300 – 4.0–4.6 CPD [1785]
Ti – – – – – 4.00 TC [3637]
Ti/Re(1010)97 Ti – ∼10−10 293 – 4.00 ± 0.05 FE [1404]
Ti – – ? ∼300 – 4.07 PE [4278]
Ti – – – – – 4.09 TC [1744]
Ti – – 3 × 10−11 77 – 4.1 FE [2424]
Ti – – – – – 4.1 TC [706]
Ti – – – – – 4.10 TC [3264,3265,3267]
Ti – – ∼10−8 ∼1400–1700 – 4.10 TE [4221]
Ti – – 1 × 10−9 ∼300 – 4.13 CPD [1252]
Ti – – ? ∼300 – 4.14 CPD [2297]
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Ti/TiI4/W – – ? ∼300 (?) – 4.17 PE [2927]
Ti/Au Ti – 2 × 10−9 ∼300 – 4.2–5.6 CPD [1785]
Ti – – – 0 – 4.22 TC [4419]
Ti – – ? ∼300 – 4.23 CPD [3338]
Ti/W(110) Ti – (<5 × 10−11) ∼300 – 4.25 CPD [4234]
Ti – – ≤1 × 10−9 1113 – 4.26 TE [179]
Ti – – 2 × 10−10 ∼300 – 4.33 PE [1814]
Ti/quartz Ti – ∼10−10 ∼300 – 4.33 ± 0.1 PE [304]
Ti/Si3N4 – – – – – 4.36 TC [3517]
Ti – – – – – 4.36 TC [298]
Ti – – ≤1 × 10−9 1156 – 4.36 TE [179]
Ti – – <10−3 ∼300 – 4.36 ± 0.04 PE [2571]
Ti/W(110) Ti – ≤10−10 ∼300 – 4.4 FE [2372]
Ti – – – – – 4.4 TC [944]
Ti – – <10−3 ∼300 – 4.45 ± 0.05 PE [2571]
Ti/O=Ti95 Ti – ? ∼300 – 4.60 CPD [2378]
Ti/glass94 Ti – ? ∼300 – 4.76 CPD [2378]
Recommended – – – – – 3.87 ± 0.05 – –

bcc (𝜷, 𝑻 > 𝟏𝟏𝟓𝟓 𝐊 for bulk)
Ti – – ≤10−9 ∼1100–1600 – 3.5–4.4 TE [124]
Ti – – ≤10−9 ∼1100–1600 – 3.55–4.25 TE [650]
Ti/W(111)98 Ti – ∼10−11 ∼300 (1100) – 3.6 PE [2194]
Ti/W99 Ti – 5 × 10−11 ∼300 (1100) – 3.65 FE [1522]
Ti/W(001)97 Ti – ∼10−10 293 (1300) – 3.65 ± 0.05 FE [1404,1405]
Ti – – ? (Cs) ∼1100–1400 – 3.7 TE [650,3413]
Ti – – ∼10−9 1115–1537 – 3.76 ± 0.03 TE [179]
Ti/graphite Ti – <10−5 1370–1510 – 3.95 ± 0.02 TE [769,2304]
Ti – – ∼10−8 ∼1200–1600 – 4.00 ± 0.05 TE [1775,1776]
Ti – – 3 × 10−9 ∼1000–1430 – 4.1 TE [159]
Ti – – ∼10−9 ∼1000–1450 – 4.10 TE [1773]
Ti – – ≤1 × 10−9 1253–1585 – 4.23 ± 0.06* TE [179]
Ti – – ≤1 × 10−9 1156–1585 – 4.32 ± 0.08* TE [179]
Recommended – – – – – 3.93 ± 0.16 – –

23. Vanadium V

bcc
V(100) – – – – – 3.66 TC [4412]
V(100) – – – – – 3.7 TC [1617]
V(100) – – – – – 3.88 TC [321]
V(100) – – – – – 3.93 TC [2437]
V(100) – – ∼10−10 ∼300 – 3.95 CPD [3641]
V(100) – – – – – 4.068 TC [4460]490

V(100) – – ∼10−11 ∼300 – 4.1 ± 0.1 PE [2428,3371]
V(100) – – <8 × 10−11 ∼300 – 4.10 ± 0.05 PE [3380]
V(100)100 – – – – – 4.19 ± 0.02 TC [3671]
V(100) – – – – – 4.2 TC [3615]
V(100) – – – – – 4.28 TC [1980,3067]
V(100) – – – – – 4.29 TC [2548]
V(100) – – – – – 4.3 TC [3615]
V(100) – – ∼10−11 ∼300 – 4.3 ± 0.1 PE [3371,3372,3374,

3375]
V(100) – – 2 × 10−11 250 – 4.3 ± 0.15 PE [3368,3374]
V(100) – – ? ? – 4.46 TE [3695]
V(100)195 – – – – – 4.56 TC [1876]
V(100) – – – – – 4.57 TC [229]
Recommended – – – – – 4.27 ± 0.05 – –

V(110) – – – – – 4.52 TC [321]
V(110) – – <8 × 10−11 ∼300 – 4.65 ± 0.08 PE [2428]
V(110) – – – – – 4.96 TC [2548]
V(110) – – – – – 4.97 TC [1980,3067]
V(110) – – ? ? – 5.00 TE [3695]
V(110) – – – – – 5.017 TC [4460]490

V(110) – – – – – 5.12 TC [229,334]
V(110) – – – – – 5.13 TC [3179]
Recommended – – – – – 5.04 ± 0.07 – –
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V(111) – – – – – 3.72 TC [321]
V(111) – – – – – 4.10 TC [2548]
V(111) – – – – – 4.11 TC [1980,3067]
V(111) – – ? ? – 4.19 TE [3695]

V(112) – – – – – 4.13 TC [321]
V(112) – – – – – 4.50 TC [1980,3067]

V(116) – – ? ? – 3.95 TE [3695]
V(116) – – – – – 4.11 TC [1980,3067]

V/quartz101 V – ≤10−8 15 – 2.9 ± 0.2 CPD [1686]
V/quartz V – ≤10−8 293 – 3.0 ± 0.2 CPD [1686]
V/quartz101 V – ≤10−8 4.2 – 3.1 ± 0.2 CPD [1686]
Vn(n → ∞) – – – – – 3.68 ± 0.10 TC [4261]
V – – – – – 3.7 TC [1744]
V101 – – ≤10−8 4.2–15 – 3.77 FE [1686]
V – – ? 0E – 3.77 PE [3027]
V/W(110) V – ∼10−11 ∼300 – 3.8 CPD [2430]
V/W(012) V – <1 × 10−10 ∼300 – 3.81 ± ≤0.06 FE [1529]
V/Mo(110) V – ≤2 × 10−10 77 – 3.85 CPD [328]
V/W(023) V – <1 × 10−10 ∼300 – 3.86 ± ≤0.06 FE [1529]
V/W(111) V – <1 × 10−10 ∼300 – 3.88 ± ≤0.06 FE [1529]
V – – – – – 3.89 TC [3476]
V – – – – – 3.9 TC [706]
V/TiO2(110) – – – – – 3.9* TC [4074]
V – – – – – 3.94 TC [3476]
V – – – – – 4.0 TC [3928]
V/W(112) V – <1 × 10−10 ∼300 – 4.01 ± ≤0.06 FE [1529]
V/W V – 1 × 10−10 77, 300

(∼1300)
– 4.02 FE [4018]

V – – – – – 4.03 TC [1901]
V – – ? ∼300 – 4.08 ± 0.02 CPD [2544]
V/W V – 1 × 10−10 77, 300

(∼1300)
– 4.08 ± 0.03* FE [4018]

V/TiO2(110) V – 1 × 10−10 ∼300 – 4.1 PE [3564]
V – – – – – 4.10 TC [3318]
V/graphite V – <10−5 1410–1540 – 4.12 ± 0.02 TE [769,2304]
V – – – – – 4.15 TC [1066]
V – – <2 × 10−10 ∼300 – 4.17 ± 0.04 CPD [1898]
V – – – – – 4.18 TC [3318]
V/W(110) V – <1 × 10−10 ∼300 – 4.19* FE [1529]
V – – – – – 4.2 TC [1993]
V – – 1 × 10−10 ∼300 – 4.2 PE [3564]
V/Ag(001) V – 2 × 10−10 30 – 4.25 ± 0.05 PE [3154,4377]
V/quartz V – ∼10−10 ∼300 – 4.3 ± 0.1 PE [304]
V – – 1 × 10−9 ∼300 – 4.30 CPD [1252]
V – – – – – 4.32 TC [298]
V – – – – – 4.33 TC [2949]
V – – – – – 4.37 TC [3476]
V/W(110) – – <1 × 10−10 ∼300 – 4.42 ± ≤0.06 FE [1529]
V – – ? ∼300 – 4.44 CPD [2297]
V – – – – – 4.44 TC [3264,3265,3267]
V/Mo(110) V – ≤2 × 10−10 ∼300 – 4.54 CPD [328]
V/Mo(110) V – ≤2 × 10−10 700 – 4.71 CPD [328]
V – – – – – 5.1 TC [944]
Recommended – – – – – 4.10 ± 0.05 – –

24. Chromium Cr

bcc
Cr(100) – – – – – 3.710 ± 0.005 TC [2805]
Cr(100) – – – – – 3.88 TC [2818]
Cr(100) – – – – – 3.90 TC [321]
Cr(100)103 – – 5 × 10−10 ∼300 – 3.90 ± 0.1 PE [2870,3951]
Cr(100)/W(100) Cr – 5 × 10−10 ∼300 (1700) – 4.0 ± 0.1 CPD [1488]
Cr(100) – – – – – 4.05 TC [1911,1912]
Cr(100)/Au(100)103 Cr – 5 × 10−10 ∼300 – 4.05 ± 0.1 PE [3951]
Cr(100) – – – – – 4.06 TC [2805]
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Cr(100) – – ? ∼300 – 4.10 ± 0.05 PE [2638]
Cr(100) – – – – – 4.25 TC [1911]
Cr(100) – – – – – 4.27 TC [4034]
Cr(100) – – – – – 4.40 TC [1912]
Cr(100) – – – – – 4.46 TC [1011]
Cr(100) – – ∼10−10 ∼300 – 4.46 ± 0.06 CPD [3445,3446]
Cr(100) – – – – – 4.48 TC [1011]
Cr(100) – – – – – 4.50 TC [2701]
Cr(100) – – – – – 4.51 TC [1011]
Cr(100) – – – – – 4.57 TC [1159]
Cr(100) – – – – – 4.57 TC [2701]
Cr(100) – – – – – 4.58 TC [229]
Cr(100) – – – – – 4.60 TC [1011]
Cr(100) – – – – – 4.93 TC [1011]
Cr(100) – – – – – 4.94 TC [229]
Recommended – – – – – 4.43 ± 0.14 – –

Cr(110) – – – – – 4.44 TC [4034]
Cr(110) – – – – – 4.44 TC [2685]
Cr(110) – – – – – 4.53 TC [321]
Cr(110) – – – – – 4.70 TC [2818]
Cr(110) – – – – – 4.81 TC [4421]
Cr(110) – – (≤10−11) ∼300 – 4.85 CPD [2380]
Cr(110)/W(110) Cr – ∼10−11 ∼300 (∼700) – 4.9 CPD [4260]
Cr(110)/Au(111) Cr – ≤5 × 10−10 ∼300 (>670) – 5.0 CPD [3266]
Cr(110)/Ir(111) Cr – ≤5 × 10−10 ∼300 (>670) – 5.00 ± 0.04 CPD [3266]
Cr(110) – – – – – 5.08 TC [1159]
Cr(110)/Nb(110) Cr – ∼10−11 ∼300 (∼700) – 5.2 CPD [4260]
Cr(110) – – – – – 5.30 TC [229]
Cr(110) – – – – – 5.45 TC [229,334]
Recommended – – – – – 4.99 ± 0.19 – –

Cr(111) – – – – – 3.72 TC [321]
Cr(111) – – – – – 3.78 TC [4034]
Cr(111) – – – – – 3.88 TC [2818]

Cr(112) – – – – – 4.05 TC [2818]
Cr(112) – – – – – 4.15 TC [321]

Cr(116) – – – – – 3.75 TC [2818]

Cr(210) – – – – – 4.15 TC [2805]

Cr – – ? (Cs) ∼1000–1400 – 3.57 TE [650,3413]
Cr/ins/Al47 Cr – ? ∼300 – 3.71 ± 0.07 CPD [2028]
Cr/W(100) Cr – ≤5 × 10−10 293 (∼900) – 3.8 ± 0.1 FE [1494,1515]
Cr/W(100) Cr – 5 × 10−10 ∼300 (1200) – 3.8 ± 0.1 CPD [1488]
Cr – – ? ∼300 – 3.88 ± 0.04 CPD [2544]
Cr – – ? ? – 3.89 TE [3410]
Cr/W Cr – ≤7 × 10−8 ∼300 – 3.9 FE [1804]
Cr – – ≤1 × 10−9 ∼1100–1400 – 3.90 ± 0.04 TE [179,3413]
Cr – – ≤10−9 ∼1050–1450 – 3.90 ± 0.05 TE [650]
Cr/W Cr – ≤7 × 10−8 ∼300 – 4.0 FE [1804]
Cr/W(110) – – – – – 4.0* TC [3001]
Cr/W(100) Cr – 5 × 10−10 ∼300 (1700) – 4.0 ± 0.1 CPD [1488]
Cr/W(111) Cr – ? 77 – 4.07* FE [4250]
Crn(n → ∞) – – – – – 4.07 ± 0.14 TC [4261]
Cr/W(110) Cr – <1 × 10−10 100 – 4.1* CPD [1580]
Cr/W Cr – 1 × 10−9 ∼300 – 4.10 ± 0.08 FE [2618]
Cr/W(112) Cr – ? 77 – 4.10* FE [4250]
Cr/SiO2/Si Cr – ? ∼300 (570) – 4.18 PE [2355]
Cr – – – – – 4.18 TC [3476]
Cr/glass Cr – ∼4 × 10−10 77–90 – 4.19 PE [2096,3053]
Cr/Ta(111) Cr – ∼10−9 ∼300 – 4.2 ± 0.1 FE [1786,1789]
Cr – – – – – 4.22 TC [3476]
Cr – – – – – 4.3 TC [706]
Cr – – – – – 4.3 TC [3318]
Cr/Mo(110) Cr – ∼10−10 ∼300 – 4.3 CPD [3679]
Cr – – ? ∼300 – 4.34 PE [2924]
Cr – – – – – 4.38 TC [1399]
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Cr – – ? ∼300 – 4.38 CPD [2297]
Cr – – – – – 4.4 TC [1993]
Cr/quartz Cr – ≤5 × 10−9 ∼300 – 4.4 PE [2309]
Cr – – – – – 4.40 TC [3264,3265,3267]
Cr/glass Cr – 2 × 10−10 293 (373) – 4.40 PE [3053]
Cr – – – – – 4.40 TC [3637]
Cr – – – – – 4.42 TC [1066]
Cr – – – – – 4.44 TC [4031]
Cr/glass Cr – ? 77 (373) – 4.44 PE [2096]
Cr/glass Cr – 4 × 10−10 293 (378) – 4.48 PE [3053]
Cr – – – – – 4.49 TC [3318]
Cr/quartz Cr – ∼10−10 ∼300 – 4.5 ± 0.15 PE [304]
Cr – – – – – 4.51 TC [298]
Cr/ins/Al47 Cr – ? ∼300 – 4.51 ± 0.09 CPD [2028]
Cr – – – – – 4.56 TC [2949]
Cr/W(110) Cr – (≤10−11) ∼300 – 4.56 CPD [2380]
Cr – – 5 × 10−10 ∼300 – 4.57 AI38 [4027]
Cr – – – – – 4.57 TC [4031]
Cr/graphite Cr – <10−5 ∼1450–1620 – 4.58 ± 0.02 TE [769,2304]
Cr – – ? ? – 4.6 TE [3402]
Cr/? Cr – ∼10−5 ∼300 – 4.6 CPD [1376]
Cr/Au/glass104 Cr – ? ∼300 – 4.6 CPD [3207]
Cr/Ni Cr – ? ∼300 – 4.6 ± 0.1* CPD [3592]
Cr – – 2 × 10−8 ∼1000–1500 – 4.60 TE [3400]
Cr/W(110) Cr – ∼10−11 ∼300 – 4.65 CPD [4260]
Cr – – – – – 4.68 TC [3476]
Cr/Cu Cr – <1 × 10−9 80 – 4.68 PE [2472]
Cr – – ? ∼80 – 4.7 CPD [2294]
Cr/W(110) Cr – <1 × 10−10 100 (1100) – 4.8* CPD [1580]
Cr/Au/glass104 Cr – ? ∼300 – 4.8* CPD [3207]
Cr – – – – – 4.8 TC [944]
Cr/W(110) Cr – 3 × 10−9 722 – 4.8 FE [1615]
Cr – – 1 × 10−10 100 – 4.80 ± <0.1 PE [672]
Cr/Au(100)105 Cr – ∼10−11 ∼300 – 4.87 PE [3557]
Cr – – – – – 4.88 TC [1744]
Cr/W(110) Cr – 3 × 10−9 ? – 4.9 FE [1616]
Cr/Au(111) Cr – ≤5 × 10−10 ∼300 – 4.9 CPD [3266]
Cr/Ir(111) Cr – ≤5 × 10−10 ∼300 – 4.9 CPD [3266]
Cr/W(110) Cr – 3 × 10−9 ∼300 – 5.0 FE [1615]
Cr – – <2 × 10−10 ∼300 – 5.05 ± 0.04 CPD [1898]
Cr – – – – – 5.2 TC [3179]
Cr/Fe/Cr(110) Cr – – – – 5.45 TC [3010]
Cr/W Cr – ? ∼300 – 7.4 FE [2225]
Recommended – – – – – 4.38 ± 0.04 – –

25. Manganese Mn

fcc (𝜸, 𝑻 = 1352–1407 K)
Mn(100) – – – – – 4.58 TC [463]
Mn(100) – – – – – 4.97 TC [321]
Mn(100) – – – – – 5.37 TC [229]
Mn(100) – – – – – 5.55 TC [463]
Mn(100) – – – – – 5.76 TC [229]

Mn(110) – – – – – 4.67 TC [321]

Mn(111) – – – – – 5.18 TC [229]
Mn(111) – – – – – 5.36 TC [321]
Mn(111) – – – – – 5.45 TC [229,334]

bcc (𝜹, 𝑻 > 𝟏𝟒𝟎𝟕 𝐊)
Mn(100) – – – – – 4.27 TC [321]
Mn(100) – – – – – 4.90 TC [229]
Mn(100) – – – – – 5.31 TC [229]

Mn(110) – – – – – 4.97 TC [321]
Mn(110) – – – – – 5.34 TC [229]
Mn(110) – – – – – 5.69 TC [229]
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Mn(111) – – – – – 4.09 TC [321]

Mn(112) – – – – – 4.57 TC [321]

Cubic (𝜶–𝜷, 𝑻 < 𝟏𝟎𝟕𝟗 𝐊 for bulk)
Mn – – – – – 3.0 TC [1744]
Mnn(n → ∞) – – 5 × 10−4 77 – 3.1 IP [4264]
Mn/steel Mn – <2 × 10−10 ∼300 (?) – 3.54 ± 0.04 CPD [1898]
Mn/ins/Al108 Mn – ? ∼300 – 3.60 ± 0.04 CPD [2028]
Mn – – ? ∼300 – 3.70 ± 0.04 CPD [2544]
Mnn(n → ∞) – – – – – 3.74 ± 0.13 TC [4261]
Mn – – ? ∼300 – 3.76 PE [3027]
Mn – – – – – 3.76 TC [3637]
Mn – – – – – 3.8 TC [2583]
Mn/glass Mn – <10−9 90 – 3.82 PE [2096,3052,3053]
Mn/Cu(111)106 Mn – 4 × 10−11 ∼300 – 3.9 CPD [3710]
Mn – – – – – 3.90 TC [3264,3265,3267]
Mn/glass Mn – 8 × 10−10 293 (373) – 4.06 PE [3053]
Mn/glass Mn – <10−9 90 (373) – 4.08 PE [2096,3052]
Mn/glass Mn – 6 × 10−10 293 – 4.1 PE [3053]
Mn/quartz Mn – ∼10−10 ∼300 – 4.1 ± 0.2 PE [304]
Mn – – – – – 4.10 TC [4418]
Mn – – ? ∼300 – 4.14 CPD [2297]
Mn/Cu(100)107 Mn – 1 × 10−8 293 – 4.2 ± 0.1 PE [1554]
Mn/silica Mn – <2 × 10−10 290 – 4.24 ± 0.02 PE [923,2113]
Mn – – – – – 4.27 TC [3476]
Mn – – – – – 4.37 TC [298]
Mn – – – – – 4.4 TC [706]
Mn/ins/Al108 Mn – ? ∼300 – 4.40 ± 0.07* CPD [2028]
Mn – – – – – 4.44 TC [3318]
Mn – – – – – 4.46 TC [3476]
Mn – – – – – 4.52 TC [3318]
Mn – – – – – 4.7 TC [3928]
Mn – – – – – 4.88 TC [3476]
Mn – – – – – 5.1 TC [944]
Recommended – – – – – 4.08 ± 0.11 – –

fcc (𝜸, 𝑻 = 1352–1407 K for bulk)
Mn – – – – – 4.28 TC [3318]
Mn – – – – – 4.34 TC [3318]

bcc (𝜹, 𝑻 > 𝟏𝟒𝟎𝟕 𝐊 for bulk)
Mn/graphite Mn – <10−6 ∼1400–1500 – 3.83 ± 0.02 TE [769,2304]

26. Iron Fe

bcc (𝜶, 𝑻 < 𝟏𝟎𝟒𝟐 𝐊)407

Fe(100)109 – – – – – 3.7 TC [2901]
Fe(100) – – – – – 3.80 TC [3946]
Fe(100) – – – – – 3.85 TC [4222]
Fe(100) – – – – – 3.85 TC [4374]
Fe(100) – – – – – 3.86 TC [4218]
Fe(100) – – – – – 3.87 TC [1625]
Fe(100) – – – – – 3.88 TC [4009]
Fe(100)109 – – – – – 3.9 TC [2901]
Fe(100) – – – – – 3.90 TC [1623]
Fe(100) – – – – – 3.91 TC [1619]
Fe(100) – – – – – 3.91 TC [1625]
Fe(100) – – – – – 3.94 TC [4019]
Fe(100) – – – – – 4.06 TC [2911]
Fe(100)110 – – <8 × 10−10 77 – 4.17 ± 0.03 CPD [920,3044]
Fe(100)109 – – ? ∼300 – 4.24 PE [2901]
Fe(100)110 – – <8 × 10−10 77 – 4.24 ± 0.02 CPD [920]
Fe(100) – – – – – 4.29 TC [549,1105]
Fe(100) – – – – – 4.30 TC [463]
Fe(100) – – – – – 4.35 TC [2777,3614]
Fe(100) – – <1 × 10−10 ∼300 (1070) – 4.4 PE [919]
Fe(100) – – – – – 4.4 TC [2157]
Fe(100) – – – – – 4.45 TC [1708,1710]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Fe(100) – – – – – 4.47 TC [1105]
Fe(100) – – – – – 4.50 TC [229,317]
Fe(100) – – – – – 4.55 TC [321]
Fe(100) – – – – – 4.57 TC [1105]
Fe(100) – – – – – 4.586 TC [4337]
Fe(100) – – – – – 4.6 TC [2650]
Fe(100) – – 5 × 10−10 ∼300 – 4.64 ± 0.03 PE [3310]
Fe(100) – – ≤5 × 10−11 ∼300 – 4.65 ± 0.05 PE [1607]
Fe(100) – – 2 × 10−9 ∼300 (720) – 4.66 ± 0.02 PE [3311]
Fe(100) – – ∼10−9 ∼300 (720) – 4.67 ± 0.03 PE [921]
Fe(100) – – ? ∼300 – 4.7 PE [1709]
Fe(100) – – <5 × 10−11 ∼300 – 4.70 ± 0.05 PE [1831]
Fe(100) – – 2 × 10−9 ∼300 (820) – 4.75 ± 0.03 PE [565]
Fe(100) – – – – – 4.77 TC [1106,4386]
Fe(100) – – – – – 4.78 TC [461]
Fe(100) – – 1 × 10−9 ∼300 – 4.88 ± 0.07 PE [564,1107]
Fe(100) – – ? 98 – 4.9 PE [3988]
Fe(100) – – 1 × 10−10 ∼300 – 5.0 PE [1531]
Fe(100) – – – – – 5.01 TC [1703]
Recommended – – – – – 4.64 ± 0.05 – –

Fe(110) – – – – – 4.71 TC [3761]
Fe(110)/Cu(100) Fe – ? 100 – 4.72 PE [1273]
Fe(110) – – – – – 4.73 TC [4121]
Fe(110) – – – – – 4.73 TC [4130]
Fe(110) – – – – – 4.75 TC [1625]
Fe(110) – – – – – 4.76 TC [1625]
Fe(110) – – – – – 4.77 TC [4120]
Fe(110) – – – – – 4.80 TC [1623]
Fe(110) – – – – – 4.81 TC [1619]
Fe(110) – – – – – 4.82 TC [1619]
Fe(110) – – – – – 4.84 TC [3226]
Fe(110) – – – – – 4.86 TC [2911]
Fe(110) – – – – – 4.86 TC [3236]
Fe(110)/W(110) Fe – ? ∼300 – 4.98 CPD [2035]
Fe(110)/W(110) Fe – ? 100 – 5.02 ± 0.04 PE [1273]
Fe(110) – – 1 × 10−10 ∼300 – 5.05 PE [1182,1232,1541,

2342]
Fe(110)/W(110) Fe – ? ∼300 (800) – 5.1 CPD [4231]
Fe(110) – – 5 × 10−9 ∼300 – 5.12 PE [1107]
Fe(110) – – – – – 5.12 TC [4222]
Fe(110) – – 5 × 10−11 ∼300 – 5.12 ± 0.06 PE [922,969]
Fe(110) – – – – – 5.16 TC [334]
Fe(110) – – – – – 5.21 TC [229,317]
Fe(110) – – – – – 5.30 TC [321]
Fe(110) – – – – – 5.30 TC [2745]
Fe(110)/W(110) Fe – 3 × 10−10 ∼300 (≤1100) – 5.32 ± 0.02 FE [530]
Fe(110) – – – – – 5.45 TC [3179]
Recommended – – – – – 4.99 ± 0.04 – –

Fe(111) – – – – – 3.81 TC [4222]
Fe(111) – – – – – 3.89 TC [1625]
Fe(111) – – – – – 3.90 TC [1619,1623]
Fe(111) – – – – – 3.91 TC [1619]
Fe(111) – – – – – 3.95 TC [1625]
Fe(111) – – – – – 4.35 TC [321]
Fe(111) – – – – – 4.44 TC [462]
Fe(111) – – ∼10−9 ∼300 (720) – 4.81 ± 0.02 PE [487]
Recommended – – – – – 4.4 ± 0.3 – –

Fe(210) – – – – – 4.20 TC [1625]
Fe(210) – – – – – 4.27 TC [1625]

Fe(211) – – – – – 4.06 TC [1625]
Fe(211) – – – – – 4.12 TC [1625]
Fe(211) – – – – – 4.85 TC [321]

Fe(310) – – – – – 3.95 TC [1625]
Fe(310) – – – – – 4.05 TC [1625]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Fe(321) – – – – – 4.27 TC [1625]
Fe(321) – – – – – 4.32 TC [1625]

bcc (𝜶 − 𝜷, 𝑻 < 𝟏𝟏𝟕𝟗 𝐊)
Fe(100) – – – – – 4.5 ± 0.3 TC [1104]

bcc (𝜷, 𝑻 = 1042–1179 K)
Fe(100) – – – – – 4.07 TC [463]
Fe(100)427 – – – – – 4.2 TC [1104]
Fe(100) – – – – – 4.77 TC [1106,2650]
Fe(100) – – – – – 4.86 TC [549]
Fe(100) – – – – – 5.06 TC [229]

Fe(110) – – – – – 5.78 TC [229,334]

Fe(111) – – – – – 4.81 TC [462]

fcc (𝜸, 𝑻 = 1179–1674 K)
Fe(100) – – – – – 4.53 TC [463]
Fe(100) – – – – – 4.86 TC [549,1105,2777,

3614]
Fe(100) – – – – – 5.00 TC [1914]
Fe(100) – – – – – 5.1 TC [2650]
Fe(100) – – – – – 5.28 TC [321]
Fe(100) – – – – – 5.3 TC [1916,2650]
Fe(100) – – – – – 5.45 TC [1913]
Fe(100) – – – – – 5.55 TC [229]
Recommended – – – – – 5.28 ± 0.19 – –

Fe(110) – – – – – 4.97 TC [321]

Fe(111) – – – – – 5.54 TC [229,334]
Fe(111) – – – – – 5.70 TC [321]

fcc (metastable, 𝑻 < 𝟏𝟎𝟒𝟐 𝐊)114,407

Fe(100)/Cu(100)412 Fe – ? ∼300 – 4.62 PE [2673]
Fe(100)/Cu(100)412 Fe – ? ∼300 (500) – 4.67 PE [2673]
Fe(100)/Cu(100) Fe – ? ∼300 (460) – 4.95 ± 0.05 PE [2650]
Fe(100)/Cu(100) – – – – – 5.10 TC [1914]
Fe(100)/Cu(100) Fe – ? ∼300 – 5.4 PE [1913,4386]
Fe(100)/Cu(100) – – – – – 5.4 TC [1914]
Fe(100)/Cu(100) – – – – – 5.48 TC [1913,4386]
Fe(100)/Cu(100) Fe – ? ∼300 – 5.5 ± 0.1 PE [1913,4386]
Fe(100)/Cu(100) – – – – – 5.58 TC [1913,4386]
Fe(100)/Cu(100) – – – – – 5.6 TC [1916]
Recommended – – – – – 5.38 ± 0.22 – –

bcc (𝜶, 𝑻 < 𝟏𝟎𝟒𝟐 𝐊 for bulk)
Fe – – – – – 3.7 TC [2456]
Fe/quartz51 Fe – ∼10−5 ∼300 – 3.86 PE [1973]
Fe – – ∼10−6 ∼300 – 3.91 PE [3389,3394]
Fe – – ? ∼300 – 3.92 ± 0.02 PE [3388,3394]
Fe/silica Fe – ∼10−8 ∼300 – 4.0 PE [2010]
Fe/glass Fe – <1 × 10−10 78 – 4.06 PE [414]
Fe – – ? ∼300 – 4.06 ± 0.01 CPD [2544]
Fe/glass369 Fe – ∼10−10 77 – 4.10 ± 0.02 PE [2132,2133,2147]
Fe/glass Fe – <10−9 90 – 4.11 PE [1957]
Fe/glass Fe – 2 × 10−10 273 – 4.12 PE [2096,3053]
Fe/glass Fe – <10−9 273 – 4.12 PE [2307,3048]
Fe/glass Fe – ∼10−10 77 – 4.13 PE [3052]
Fe – – ? ∼300 – 4.16* CPD [3621]
Fe/glass Fe – <10−9 90 – 4.16 PE [2763,3046]
Fe/glass Fe – ∼10−8 ∼300 – 4.16 ± 0.02 CPD [13,349]
Fe/glass Fe – ∼10−8 ∼300 – 4.17 ± 0.03 CPD [133]
Fe/Ag(100) Fe – ? ? – 4.2 ? [1696]
Fe/W Fe – ∼10−10 ∼300 – 4.2 FE [2369]
Fe – – <10−6 ∼300 – 4.2 PE [2919]
Fe/W(110) – – – – – 4.20 TC [1270]
Fe K K+ ∼10−9 ∼700–1100 4.24 – PSI [2115]
Fe/W – – ? ? – 4.25 FE [3346]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Fe/W(110) – – – – – 4.26 TC [1270]
Fe/W(100) Fe – <2 × 10−10 ∼300 – 4.27 FE [2257]
Fe/W(100) Fe – <2 × 10−10 ∼600 – 4.27 FE [2257]
Fe – – 6 × 10−3 ∼300 – 4.30 ± 0.06 PE [2079,2080]
Fe/W(111) – – – – – 4.31 TC [1270]
Fe/W(112) – – 3 × 10−10 ∼300 (900) – 4.31 ± 0.02 FE [530]
Fe/W(111) – – – – – 4.33 TC [1270]
Fe/Ta(111) Fe – <1 × 10−10 ∼300 – 4.35 CPD [3302]
Fe/W(100) Fe – <5 × 10−11 ∼300 – 4.35 CPD [2035]
Fe/glass Fe – <1 × 10−10 78 (293) – 4.36 PE [414]
Fe/glass Fe – ? 77 – 4.38 PE [3075]
Fe/glass Fe – <10−10 77 (323) – 4.38 ± 0.02 PE [2147]
Fe – – ? ∼300 – 4.40 CPD [2297]
Fe – – ? ∼300 – 4.40 PE [4278]
Fe – – – – – 4.40 TC [1885]
Fe/glass369 Fe – ∼10−10 77 (323) – 4.40 PE [2133]
Fe/W(111) Fe – <5 × 10−11 ∼300 – 4.40* CPD [2429]
Fe/glass Fe – ? 273 – 4.42 PE [3075]
Fe – – – – – 4.43 TC [4031]
Fe/W(100) Fe – 3 × 10−10 ∼300 (900) – 4.43 ± 0.02 FE [530]
Fe/W(110) Fe – ? 90 – 4.47 CPD [2754]
Fe/W(100) – – – – – 4.49 TC [1270]
Fe – – – – – 4.49 TC [3476]
Fe/TiO2(001) Fe – ∼10−10 ∼300 – 4.5 CPD [1567]
Fe – – – – – 4.5 TC [706]
Fe/Au(001) – – – – – 4.5 TC [1719]
Fe/W(110) Fe – ? 90 – 4.5 CPD [2755]
Fe/Ag(001) Fe – 2 × 10−10 30 – 4.5 ± 0.05 PE [3145,4377]
Fe/quartz Fe – ∼10−10 ∼300 – 4.5 ± 0.15 PE [304]
Fe – – – – – 4.51 TC [2005]
Fe – – – – – 4.51 TC [1399]
Fe – – – – – 4.52 TC [1645]
Fe/W(100) – – – – – 4.53 TC [1270]
Fe – – – – – 4.53 TC [3318]
Fe – – – – – 4.53 TC [3476]
Fe – – – – – 4.56 TC [4031]
Fe/glass Fe – <10−9 273 (393) – 4.56 PE [2307]
Fe/W(110) – – – – – 4.57 TC [1270]
Fe/glass Fe – <10−9 90 (393) – 4.57 PE [3048]
Fe/W(116) Fe – 3 × 10−10 ∼300 (900) – 4.57 ± 0.03 FE [530]
Fe/Si(111) Fe – 5 × 10−9 ∼300 – 4.58 ± 0.05 CPD [3270]
Fe – – – – – 4.6 TC [2583]
Fe – – ∼10−7 ∼300 (750) – 4.6 ± 0.03 CPD [2346]
Fe/glass Fe – 2 × 10−10 293 (393) – 4.60 PE [3052,3053]
Fe – – ? ∼300 – 4.60 PE [2924]
Fe – – – – – 4.61 TC [298]
Fe/glass Fe – <10−9 90 (393) – 4.63 PE [2096]
Fe – – ? ∼300 – 4.63 PE [2924]
Fe/W(111) Fe – 3 × 10−10 ∼300 (900) – 4.63 ± 0.02 FE [530]
Fe – – – 0 – 4.64 TC [4419]
Fe – – – – – 4.65 TC [3352]
Fe – – – – – 4.65 TC [3264,3265,3267]
Fe406 – – ∼10−8 870 – 4.65 ± 0.01 PE [305]
Fe/glass Fe – 3 × 10−10 90 (393) – 4.66 PE [3053]
Fe/W(110) Fe – ? 90 (150) – 4.66 CPD [2754]
Fe/? ? – ∼10−6 ∼300 – 4.68 PE [3027]
Fe – – ∼10−10 ∼300 – 4.68 CPD [3131]
Fe – – – – – 4.68 TC [3637]
Fe/W(111) Fe – <5 × 10−11 ∼300 – 4.68 CPD [2035]
Fe/W(111) – – – – – 4.69 TC [1270]
Fe/? Fe – 2 × 10−10 4.2 (400) – 4.7 PE [1506]
Fe/glass Fe – <10−8 78 – 4.7 ± 0.02 CPD [1646]
Fe/steel Fe – ∼10−10 4.2 – 4.7 ± 0.1 PE [1410]
Fe406 – – ∼10−8 ∼300 – 4.70 ± 0.01 PE [305]
Fe/glass Fe – <10−9 90 (373) – 4.71 PE [2763,3046,3052]
Fe/W(112) Fe – <5 × 10−11 ∼300 – 4.71 CPD [2035]
Fe – – 1 × 10−8 ∼300 – 4.71 ± 0.02 PE [306]
Fe/silica Fe – <2 × 10−10 290 – 4.71 ± 0.02 PE [923,2113,2114]
Fe/glass Fe – <10−9 293 (373) – 4.72 PE [1957,3046]
Fe/W(110) Fe – ? 90 (600) – 4.72 CPD [2754]
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Fe – – ∼10−8 ∼300 – 4.72 ± 0.07 PE [1630]
Fe/W(110) – – – – – 4.73 TC [531]
Fe – – ? ∼300 – 4.74 PE [2464]
Fe – – ∼10−7 ∼300 (≤1070) – 4.75 ± 0.08 CPD [2346]
Fe/W(110) Fe – ? 90 (175, 250) – 4.76 CPD [2754]
Fe/W(100) – – – – – 4.77 TC [1270]
Fe – – – – – 4.77 TC [2949]
Fe – – 1 × 10−8 ∼300 – 4.77 PE [306]
Fe/W(110) Fe – ? 90 (∼300) – 4.77 CPD [2754]
Fe – – 1 × 10−8 ∼300 – 4.77 ± 0.02 PE [306]
Fe/Al(001) – – – – – 4.79 TC [3003]
Fe/W Fe – 3 × 10−10 ∼300 (900) – 4.8 FE [530]
Fe – – – – – 4.8 TC [944]
Fe/W(110) Fe – ∼10−11 ∼300 – 4.8 CPD [2430]
Fe – – ∼10−8 ∼300 – 4.8 ± 0.05 CPD [1542]
Fe – – ∼10−9 ∼300 (≤1070) – 4.80 ± 0.04 CPD [2346]
Fe – – <10−9 ∼300 – 4.81 PE [307]
Fe – – <2 × 10−10 ∼300 – 4.85 ± 0.04 CPD [1898]
Fe/W(111) – – – – – 4.86 TC [531]
Fe/? Fe – ∼10−5 ∼300 – 4.9 CPD [1376]
Fe/W(110) Fe – ? ∼300 – 4.9 CPD [2755]
Fe/W(110) Fe – ? ∼300 (600) – 4.9 CPD [2755]
Fe/W(100) – – – – – 4.92 TC [531]
Fe – – – – – 4.92 TC [1066]
Fe – – 6 × 10−9 ∼300 – 4.95 PE [1139]
Fe/W(110) Fe – <5 × 10−11 ∼300 – 4.98 CPD [2035]
Fe – – – – – 5.00 TC [3476]
Fe/W(112) – – – – – 5.05 TC [531]
Fe/Mo(110) Fe – 3 × 10−11 500 – 5.07 CPD [3293]
Fe/Mo(110) Fe – 3 × 10−11 ∼300 – 5.09 CPD [3293]
Fe/W(110) Fe – 3 × 10−10 ∼300 (900) – 5.32 ± 0.02 FE [530]
Recommended – – – – – 4.55 ± 0.05 – –

bcc (𝜷, 𝑻 = 1042–1179 K for bulk)
Fe – – ≲1 × 10−9 ∼1100–1160 – 4.33 TE [179]
Fe – – – – – 4.44 TC [3318]
Fe – – – – – 4.45 TC [3318]
Fe – – 3 × 10−8 1120–1180 – 4.48 ± 0.06 TE [310]
Fe Na Na+ ∼10−9 1180 4.49112 – PSI [303]
Fe K K+ ∼10−9 1180 4.49112 – PSI [303]
Fe406 – – ∼10−8 1125 – 4.62 ± 0.01 PE [305]
Fe – – 3 × 10−8 1120–1180 – 4.64 ± 0.06* TE [310]
Fe113 – – <10−6 1110–1170 – 4.77 TE [3024]
Recommended – – – – – 4.52 ± 0.17 – –

bcc–fcc (𝜷–𝜸, 𝑻 = 1042–1674 K for bulk)
Fe111 – Na+ 5 × 10−9 (O2) ∼1050–1350 3.6 ± 0.1 (4.0 ± 0.1) PSI [277]
Fe111 – K+ 5 × 10−9 (O2) ∼1050–1350 3.8 ± 0.1 (4.0 ± 0.1) PSI [277]
Fe – – 5 × 10−9 (O2) ∼1050–1350 (3.6–4.3) 4.0 ± 0.1 TE [277,2115]
Fe – – ∼10−9 ∼1100–1300 (4.4 ± 0.2) 4.0 ± 0.2 TE [308]
Fe – – ∼10−9 ∼1100–1300 – 4.3 TE [309]
Fe111 – K+ 5 × 10−9 (O2) ∼1050–1350 4.3 ± 0.1* (4.0 ± 0.1) PSI [277]
Fe Na Na+ ∼10−9 ∼1050–1350 4.4 ± 0.2 (4.0 ± 0.2) PSI [308]

fcc (𝜸, 𝑻 = 1179–1674 K for bulk)
Fe – – ? ∼1300–1500 – 4.04 TE [1762]
Fe473 – – 3 × 10−8 1180–1250 – 4.21 ± 0.05 TE [310]
Fe – – 1 × 10−9 1205–1494 – 4.28 ± 0.06 TE [179]
Fe/graphite Fe – <10−5 ∼1400–1600 – 4.31 ± 0.02 TE [769,2304]
Fe – – ≤1 × 10−9 ∼1200–1550 – 4.47 ± 0.09 TE [179,3413]
Fe – – ≤10−9 ? – 4.5 TE [650]
Fe – – ≤1 × 10−9 1240–1510 – 4.50 ± 0.05 TE [179]
Fe – – ≤1 × 10−9 1283–1492 – 4.52 ± 0.04 TE [179]
Fe Na Na+ ∼10−9 1183 4.55112 – PSI [303]
Fe K K+ ∼10−9 1183 4.55112 – PSI [303]
Fe – – ≤1 × 10−9 1350–1494 – 4.55 ± 0.06 TE [179]
Fe – – ? ? – 4.6 TE [3402]
Fe473 – – 3 × 10−8 1180–1250 – 4.66 ± 0.05* TE [310]
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Fe406 – – ∼10−8 1243 – 4.68 ± 0.01 PE [305]
Fe113 – – <10−6 1170–1230 – 4.77 TE [3024]
Recommended – – – – – 4.54 ± 0.05 – –

bcc (𝜹, 𝑻 > 1674 K for bulk)
Fe/graphite Fe – ? 1643–1763 – 4.76 TE [2568]
Fe – – ? 1780–1850 – 4.76 TE [2608]

fcc (metastable, 𝑻 < 𝟏𝟎𝟒𝟐 𝐊)114

Fe/Cu(100) Fe – ∼10−10 ∼300 (400) – 4.46 PE [2175]
Fe/Cu(100) Fe – ∼10−10 ∼300 – 4.59 PE [2175]
Fe/Cu(100) Fe – ? 30 – 4.7 ± 0.1 PE [2878,4377]
Fe/Cu(100) – – – – – 5.09 TC [3654]

27. Cobalt Co

hcp (𝜶, 𝑻 < 695 K for bulk)474

Co(0001) – – – – – 5.00 TC [2910]
Co(0001) – – <2 × 10−10 ∼300 – 5.1 ± 0.1 PE [2036]
Co(0001) – – – – – 5.18 TC [2423]
Co(0001) – – ? ? – 5.2 PE [2173]
Co(0001) – – 4 × 10−11 100–300 – 5.2* PE [2141]
Co(0001) – – 5 × 10−11 ∼300 – 5.20 ± 0.03 PE [922,969]
Co(0001)115 – – <4 × 10−10 ∼300 – 5.264 CPD [3192,3193]
Co(0001)/Mo(110) Co – <6 × 10−11 ∼300 – 5.45 CPD [3293]
Co(0001) – – – – – 5.48 TC [334]
Co(0001) – – – – – 5.53 TC [229,317]
Co(0001) – – ≤5 × 10−10 160–300 – 5.55 ± 0.20 PE [2537,3381,3633]
Co(0001) – – – – – 5.62 TC [4005]
Co(0001) – – – – – 5.69 TC [463]
Co(0001) – – – – – 5.75 TC [321]
Co(0001) – – – – – 5.80 TC [463]
Co(0001) – – – – – 5.81 TC [229,334]
Recommended – – – – – 5.30 ± 0.18 – –

Co(1010) – – – – – 5.50 TC [321]

Co(1011) – – <4 × 10−10 300 – 5.250 CPD [3193]

Co(1120) – – 4 × 10−11 100–300 – 4.1* PE [2141]

Co(1124) – – – – – 4.83 TC [321]

fcc (𝜷, 𝑻 > 695 K for bulk)474

Co(100) – – – – – 5.047 TC [2510]
Co(100) – – – – – 5.174 TC [2510]
Co(100) – – – – – 5.25 TC [321]
Co(100) – – – – – 5.52 TC [229,317]
Co(100) – – – – – 5.83 TC [229]
Recommended – – – – – 5.25 ± 0.17 – –

Co(110) – – – – – 4.95 TC [321]

Co(111) – – – – – 4.93 TC [2068]
Co(111) – – – – – 5.03 TC [2910]
Co(111) – – – – – 5.05 TC [4421]
Co(111)115 – – <4 × 10−10 ∼300E – 5.266 CPD [3192]
Co(111) – – – – – 5.44 TC [4174,4284]
Co(111) – – – – – 5.55 TC [229,317]
Co(111) – – – – – 5.68 TC [321]
Co(111) – – – – – 5.76 TC [229,334]
Recommended – – – – – 5.39 ± 0.23 – –

bcc (metastable phase, 𝑻 < 695 K)428

Co(100)/GaAs(110) – – – – – 4.66430 TC [4023]
Co(100)/GaAs(110) – – – – – 4.75430 TC [4023]
Co(100)/GaAs(110) – – – – – 5.10429 TC [4023]
Co(100)/GaAs(110) – – – – – 5.20430 TC [4023]
Co(100)/GaAs(110) – – – – – 5.55429 TC [4023]
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fcc (metastable phase, 𝑻 < 695 K)
Co(100)/Cu(100)412 Co – ? ∼300 – 4.72 PE [2673]

hcp (𝜶, 𝑻 < 695 K for bulk)474

Co – – ∼10−6 ∼300 – 3.90 ± 0.02 PE [3389,3394]
Co – – ? ∼300 – 3.92 PE [3388]
Co/glass Co – <10−8 78 – 4.1 ± 0.02 CPD [1646]
Co116 – – ≤3 × 10−8 ∼300 (1120) – 4.12 ± 0.04 PE [1631,1632]
Co – – – – – 4.16 TC [1399]
Co – – – – – 4.2* TC [1955]
Co – – ? ∼300 – 4.21 CPD [2297]
Co – – ? ∼300 – 4.25 CPD [2469]
Co – – ? ∼300 – 4.27 ± 0.01 CPD [2544]
Co – – ∼10−6(Ar) 293 – 4.35 ± 0.02 CPD [3977]
Co/W Co – ? ? – 4.4 FE [3346]
Co/W(100) Co – 1 × 10−10 100 (1100) – 4.4* CPD [2270]
Co/?117 Co – 2 × 10−10 4.2 – 4.4 ± 0.1 PE [1506]
Co – – – – – 4.41 TC [3476]
Co/glass Co – <10−10 77 – 4.426 PE [2136]
Co/glass Co – <10−10 77 – 4.43 ± 0.02 PE [2132,2147]
Co/glass369 Co – ∼10−10 77 – 4.44 PE [2133]
Co – – – – – 4.47 TC [2005]
Co – – – – – 4.48 TC [3318]
Co/? Co – 5 × 10−9 ∼300 – 4.5 PE [3506]
Co – – – – – 4.53 TC [3476]
Co/glass Co – <10−10 77 (196) – 4.54 ± 0.02 PE [2147]
Co/glass Co – <10−10 77 (273) – 4.544 PE [2136]
Co – – – – – 4.56 TC [3318]
Co/glass Co – 2 × 10−10 293 – 4.59 PE [3053]
Co – – – – – 4.60 TC [3637]
Co/glass Co – <10−9 90 – 4.60 PE [2096,3052,3053]
Co/glass Co – 2 × 10−10 90 – 4.61 PE [3053]
Co/glass Co – <10−10 77 (273) – 4.63 ± 0.02 PE [2147]
Co – – – – – 4.7 TC [706]
Co/Pt(110) Co – ∼8 × 10−11 100 – 4.7 ± 0.1 PE [1923]
Co – – – – – 4.70 TC [3264,3265,3267]
Co – – – – – 4.70 TC [3352]
Co/W(110) – – – – – 4.72 TC [531]
Co/CoSi2(111) Co – ? ∼300 – 4.75 PE [2872]
Co/glass Co – <10−10 77 (478) – 4.82 ± 0.02 PE [2147]
Co/glass Co – <10−10 77 (≤478) – 4.83 ± 0.01 PE [2136]
Co/Si(111)118 Co – 4 × 10−11 ∼300 – 4.86 ± 0.05 PE [2451]
Co – – – – – 4.87 TC [2949]
Co/silica Co – <2 × 10−10 290 – 4.89 ± 0.04 PE [923,2113,2114]
Co/?117 Co – 2 × 10−10 400 – 4.9 ± 0.1 PE [1506]
Co/glass369 Co – ∼10−10 77 (323) – 4.91 PE [2133]
Co – – <2 × 10−10 ∼300 – 4.92 ± 0.04 CPD [1898]
Co119 – – <4 × 10−10 663 – 4.923 CPD [1148]
Co/Pt(111) – – – – – 4.94 TC [4024]
Co/glass Co – 2 × 10−10 293 (393) – 4.95 PE [3053]
Co/CoSi2(111) Co – ? ∼300 – 4.95 ± 0.05 PE [2169]
Co – – – – – 4.96 TC [3476]
Co119 – – <4 × 10−10 300 – 4.960 CPD [1148,3193]
Co/glass Co – <10−9 293 (393) – 4.97 PE [2096,3052]
Co – – ∼10−10 300 – 4.97 CPD [3153]
Co/Si(111) Co – <5 × 10−9 ∼300 – 4.97 ± 0.05 CPD [3270]
Con(n → ∞) – – – – – 4.98 ± 0.09 TC [4261]
Co/Pd(111) Co – <3 × 10−10 ∼300 – 5.0 PE [3645]
Co/W(110) Co – 1 × 10−10 100 – 5.0* CPD [2270]
Co – – – – – 5.0 TC [944]
Co/quartz Co – ∼10−10 ∼300 – 5.0 ± 0.1 PE [304]
Co/glass Co – 2 × 10−10 293 (393) – 5.00 PE [3053]
Co – – – – – 5.00 TC [298]
Co/Pd(111) – – – – – 5.00 TC [4024]
Co/glass Co – ? 77 (≤373) – 5.05 ± 0.15 PE [2127]
Co/W(111) – – – – – 5.08 TC [531]
Co/W(110) Co – 1 × 10−10 100 (1100) – 5.1* CPD [2270]
Co – – – – – 5.10 TC [4024]
Co/Cu/Co(0001) – – – – – 5.12 TC [3490]
Co/W(112) – – – – – 5.17 TC [531]
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Co/Fe(001) Co – <5 × 10−11 ∼300 – 5.20 ± 0.02 PE [1831]
Co/Si(111) Co – 5 × 10−11 ∼300 – 5.27 PE [1820,2865]
Co/W(100) – – – – – 5.28 TC [531]
Co – – – – – 5.32 TC [950]
Co – – – – – 5.44 TC [1066]
Recommended – – – – – 4.71 ± 0.03 – –

fcc (𝜷, 𝑻 > 695 K for bulk)474

Co/W(100) Co – <8 × 10−11 ∼300 – 3.6 FE [364]
Co/W Co – <8 × 10−11 ∼300, 580 – 3.9 FE [364]
Co/W(110) Co – <8 × 10−11 ∼300 – 4.1 FE [364]
Co116 – – ≤3 × 10−8 ∼300 (1120) – 4.25 ± 0.08 PE [1632]
Co – – ? ? – 4.3 TE [3402]
Co/graphite Co – <10−6 ∼1400–1600 – 4.41 ± 0.02 TE [769,2304]
Co – – 3 × 10−8 >1120 – 4.41 ± 0.10 TE [310]
Co/W(100) – – <8 × 10−11 580 – 4.5 FE [364]
Co120 – – ? 1340–1390 – 4.6 ± 0.3 TE [3604]
Co120 – – ? 1390–1440 – 4.8 ± 0.3 TE [3604]
Co119 – – <4 × 10−10 673 – 4.925 CPD [1148]
Co – – <4 × 10−10 720 – 4.93 CPD [3153]
Co119 – – <4 × 10−10 300E – 4.966 CPD [1148]
Co/W(110) Co – <8 × 10−11 580 – 5.1 FE [364]
Recommended – – – – – 4.50 ± 0.13 – –

fcc (metastable, 𝑻 < 695 K)
Co/Cu(100) Co – 1 × 10−10 <50 – 4.4 PE [950]
Co/Cu(100) Co – ∼1 × 10−10 <50 – 4.5 PE [950]
Co/Cu(100) Co – <8 × 10−11 400 – 4.72 ± 0.03 PE [3475]
Co/Cu(100) Co – <8 × 10−11 400 – 4.78 ± 0.03 PE [3475]
Co/Cu(100) – – – – – 4.83 TC [3377]
Co/Cu(100) – – – – – 4.93 TC [3377]
Co/Cu(111) Co – <8 × 10−11 ∼300 – 5.02 PE [968]
Co/Cu(001) – – – – – 5.15 TC [3377]
Co/Cu(001) – – – – – 5.30 TC [2897]
Co/Cu(001) – – – – – 5.31 TC [2897]
Co/Cu(001)121 Co – 2 × 10−10 30 – 5.0 ± 0.2 PE [2879,4377]
Co/Cu(001)122 – – – – – 5.34 TC [3654]
Recommended – – – – – 4.94 ± 0.30 – –

28. Nickel Ni

fcc
Ni(100) – – – – – 4 TC [2884]
Ni(100) – – – – – 4.7 TC [935,1006]
Ni(100) – – ∼10−10 ∼300 – 4.75 ± 0.1 CPD [1983]
Ni(100){95%} – – – – (5.21 ± 0.01) 4.80 ± 0.09 TC [283,630,1351]
Ni(100) – – 2 × 10−10 460 (750) – 4.84 ± 0.03 PE [1032]
Ni(100) – – – – – 4.86 TC [3224]
Ni(100) – – 2 × 10−10 343 (705) – 4.89 ± 0.03 PE [1032]
Ni(100) – – 1 × 10−9 ∼1400–1600 – 4.89 ± 0.03 TE [312,837]
Ni(100) – – ? ∼300 – 4.9 CPD [1379]
Ni(100) – – – – – 4.95 ± 0.02 TC [4331]
Ni(100) – – <5 × 10−11 ∼300 – 4.95 ± 0.05 CPD [1005,2830]
Ni(100) – – – – – 4.96 TC [4454]
Ni(100) – – – – – 4.97 TC [311]
Ni(100) – – – – – 5.0 TC [935,3556]
Ni(100) – – – – – 5.02 TC [463]
Ni(100) – – – – – 5.05 TC [2701]
Ni(100) – – – – – 5.05 TC [4258]
Ni(100)123 – – ∼10−10 ∼300 – 5.08 PE [903]
Ni(100) – – ? ∼300 – 5.08 PE [2673]
Ni(100) – – – – – 5.09 TC [4229]
Ni(100) – – ? ∼300 – 5.09 ± 0.03 PE [3180]
Ni(100) – – – – – 5.1 TC [1006,1108,1109]
Ni(100) – – <1 × 10−10 ∼300 – 5.1 ± 0.1 CPD [1110,1517]
Ni(100)123 – – ∼10−10 ∼300 (623) – 5.12 PE [903]
Ni(100)/mica124 Ni – 2 × 10−9 ∼300{593} – 5.12 ± 0.02 PE [314]
Ni(100) – – ∼10−10 ∼300 (?) – 5.135 PE [903]
Ni(100) – – ∼10−10 ∼300 – 5.14 PE [3744]
Ni(100) – – 4 × 10−10 273 – 5.15 ± 0.05 PE [484]
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Ni(100)/glass125 Ni – 2 × 10−9 77 (523) – 5.17 ± 0.02 PE [314]
Ni(100) – – – – – 5.19 TC [2548]
Ni(100) – – 1 × 10−10 100, 300 – 5.2 PE [1808]
Ni(100) – – ≤3 × 10−10 ∼300 – 5.2 CPD [936]
Ni(100) – – ∼10−10 350 – 5.2 ± 0.1 PE [1919]
Ni(100) – – 6 × 10−11 ∼300 – 5.2 ± 0.15 CPD [1791]
Ni(100) – – – – – 5.20 TC [1159,1980,3067]
Ni(100) – – 2 × 10−10 100 – 5.20 PE [3139]
Ni(100)/glass126 Ni – 2 × 10−9 ∼300{573} – 5.20 ± 0.02 PE [314,315]
Ni(100) – – 4 × 10−10 273 – 5.20 ± 0.05 PE [484]
Ni(100) – – ∼10−11 173 – 5.20 ± 0.11 CPD [1417]
Ni(100){95%} – – – – 5.21 ± 0.01 (4.80 ± 0.09) TC [283,630,1351]
Ni(100) – – – – – 5.22 TC [463]
Ni(100)123 – – ∼10−10 ∼300 (1023) – 5.22 PE [903]
Ni(100)/glass127 Ni – 5 × 10−10 ∼300{523} – 5.22 PE [1513]
Ni(100) – – 5 × 10−10 293 – 5.22 ± 0.04 PE [314,315,2604]
Ni(100) – – – – – 5.29 TC [464]
Ni(100) – – – – – 5.29 TC [2701]
Ni(100) – – ∼10−11 77 – 5.3 PE [937]
Ni(100) – – – – – 5.31 TC [2804]
Ni(100) – – – – – 5.31 TC [1237]
Ni(100) – – ∼10−10 ∼300 – 5.34 PE [903]
Ni(100) – – – – – 5.35 TC [464]
Ni(100) – – – – – 5.37 TC [3614]
Ni(100) – – – – – 5.37 TC [466]
Ni(100) – – – – – 5.4 TC [2905]
Ni(100) – – – – – 5.4 TC [1918]
Ni(100) – – – – – 5.5 TC [465]
Ni(100) – – ∼10−10 77, 300 – 5.53 ± 0.05 FE [358]
Ni(100) – – – – – 5.65 TC [984]
Ni(100) – – – – – 5.7 TC [389]
Ni(100) – – – – – 5.71 TC [984]
Ni(100) – – – – – 5.72 TC [1234]
Ni(100) – – – – – 5.73 TC [464]
Ni(100) – – – – – 5.75 TC [229,317]
Ni(100) – – – – – 5.84 TC [229]
Recommended – – – – – 5.19 ± 0.05 – –

Ni(110) – – ∼10−10 ∼300 – 4.20 ± 0.1 CPD [1983]
Ni(110) – – 2 × 10−11 20 – 4.45 PE [2974,2977]
Ni(110) – – – – – 4.46 TC [4454]
Ni(110) – – – – – 4.49 TC [467]
Ni(110) – – ∼10−11 20 – 4.55 PE [1111,2259,3636]
Ni(110) – – – – – 4.6 TC [311]
Ni(110) – – ∼1 × 10−10 ∼300 – 4.62 ± 0.05 PE [770]
Ni(110) – – 1 × 10−9 ∼1200–1600 – 4.64 ± 0.03 TE [312,837]
Ni(110) – – ∼10−11 20 – 4.65 ± 0.1 PE [2142]
Ni(110) – – – – – 4.69 TC [3224]
Ni(110) – – <1 × 10−10 ∼300 – 4.7 ± 0.1 CPD [1110]
Ni(110) – – ∼1 × 10−10 ∼300 – 4.7 ± 0.1 PE [1112]
Ni(110) – – ∼10−10 ∼300 – 4.82 PE [2809]
Ni(110) – – – – – 4.84 TC [2548]
Ni(110) – – – – – 4.84 TC [1159,1980,3067]
Ni(110) – – 6 × 10−11 ∼300 – 4.85 ± 0.15 CPD [1791]
Ni(110) – – 1 × 10−10 100, ∼300 – 4.9 PE [1808]
Ni(110) – – – – – 4.90 TC [1237]
Ni(110){97%} – – – – (5.03 ± 0.01) 4.91 ± 0.04 TC [630,1351]
Ni(110) – – – – – 4.93 TC [467]
Ni(110) – – ? ? – 5.03 ? [2821]
Ni(110){97%} – – – – 5.03 ± 0.01 (4.91 ± 0.04) TC [630,1351]
Ni(110) – – 5 × 10−10 293 – 5.04 ± 0.02 PE [314,315,2604]
Ni(110) – – – – – 5.1 TC [2905]
Ni(110) – – – – – 5.1 TC [465]
Ni(110) – – – – – 5.2 TC [465]
Recommended – – – – – 4.96 ± 0.10 – –

Ni(111) – – – – – 3.9 TC [1043]
Ni(111) Ca Ca+ <10−6 ∼1300 4.5 ± 0.2 – PSI [126]
Ni(111) Rb Rb+ <10−6 1280 4.57 ± 0.05 – PSI [126]
Ni(111) – – ∼10−10 ∼300 – 4.68 ± 0.1 CPD [1983]
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Ni(111){89%} – – – – (5.33 ± 0.01) 4.68 ± 0.10 TC [283,630,1351]
Ni(111) – – <1 × 10−10 ∼300 – 4.9 PE [249]
Ni(111) – – – – – 5.00 TC [4454]
Ni(111) – – ? 298 – 5.07 PE [1392]
Ni(111) – – – – – 5.11 TC [311]
Ni(111)/Mo(110) Ni – <6 × 10−11 ∼300 – 5.14* CPD [3293]
Ni(111) – – – – – 5.15 TC [2423]
Ni(111) – – <5 × 10−11 ∼300 – 5.15 ± 0.1 PE [938]
Ni(111) – – ∼10−10 220 – 5.17 ± 0.05 PE [2040]
Ni(111) – – ? ? – 5.2 TE [771]
Ni(111) – – ? ∼300 – 5.2 PE [1113]
Ni(111)/glass Ni – <10−9 77 (∼600) – 5.2 PE [2934]
Ni(111)/Ru(0001) Ni – ? ∼300 – 5.2* PE [3591]
Ni(111) – – ∼1 × 10−10 ∼300 – 5.2 ± 0.07 PE [1114]
Ni(111) – – ? ? – 5.20 ? [1994]
Ni(111) – – ? 1033 – 5.20 PE [1392]
Ni(111) – – – – – 5.22 TC [3224]
Ni(111) – – ∼1 × 10−9 ∼1400–1600 – 5.22 ± 0.03 TE [312,837]
Ni(111) – – – – – 5.23 TC [4258]
Ni(111) – – – – – 5.23 TC [4317]
Ni(111) – – 5 × 10−11 ∼300 – 5.25 PE [939,940,1920]
Ni(111) – – 5 × 10−11 ∼300 – 5.25 ± 0.03 PE [922]
Ni(111) – – <2 × 10−10 ∼300 – 5.27 ± 0.04 CPD [1898]
Ni(111) – – – – – 5.28 TC [2068]
Ni(111) – – – – – 5.29 TC [4056]
Ni(111)/glass Ni – ≤3 × 10−10 77 (∼460) – 5.29 PE [3058]
Ni(111) – – 8 × 10−11 100 – 5.3 PE [772]
Ni(111) – – 1 × 10−10 80, ∼300 – 5.3 PE [616,2962]
Ni(111) – – ∼10−10 ∼300 – 5.3 PE [313]
Ni(111) – – <1 × 10−10 ∼300 – 5.3 ± 0.1 CPD [1110]
Ni(111) – – ∼10−10 350 – 5.3 ± 0.1 PE [1919]
Ni(111)/glass Ni – 2 × 10−9 ∼300{523} – 5.30 ± 0.04 PE [314,315]
Ni(111)/glass Ni – 2 × 10−9 77 (523) – 5.32 ± 0.05 PE [314]
Ni(111){89%} – – – – 5.33 ± 0.01 (4.68 ± 0.10) TC [283,630,1351]
Ni(111)/glass126 Ni – 2 × 10−9 ∼300{523} – 5.34 ± 0.02 PE [314]
Ni(111) – – ? ? – 5.35 ? [2821]
Ni(111)/glass128 Ni – 5 × 10−10 ∼300{523} – 5.35 PE [315,1513]
Ni(111) – – 5 × 10−10 293 – 5.35 ± 0.05 PE [314,315,2604]
Ni(111) – – <2 × 10−10 ∼300 – 5.36 PE [316]
Ni(111) – – ∼10−10 85 – 5.36 PE [773]
Ni(111) – – – – – 5.39 TC [4056]
Ni(111) – – 6 × 10−11 ∼300 – 5.40 ± 0.15 CPD [1791]
Ni(111) – – <2 × 10−10 27, 90 – 5.42 CPD [4107]
Ni(111) – – ≤3 × 10−9 ∼300 – 5.42 ± 0.04 PE [1115]
Ni(111)/Mo(110) Ni – <6 × 10−11 ∼300 – 5.43 CPD [3293]
Ni(111) – – ? <85 – 5.45 ± 0.1 PE [1033]
Ni(111) – – – – – 5.46 TC [2804]
Ni(111) – – – – – 5.47 TC [4174,4284]
Ni(111) – – – – – 5.50 TC [1237]
Ni(111) – – – – – 5.56 TC [2548]
Ni(111) – – – – – 5.56 TC [1159,1980,3067]
Ni(111) – – – – – 5.6 TC [2905]
Ni(111) – – – – – 5.68 TC [334,3179]
Ni(111) – – – – – 5.70 TC [229,317]
Ni(111) – – – – – 5.77 TC [229,334]
Ni(111) – – 3 × 10−11 80 – 6.27 FE [2514]
Recommended – – – – – 5.32 ± 0.05 – –

Ni(113) – – – – – 4.52 TC [3224]

Ni(133) – – – – – 4.43 TC [3224]

Ni(fp)130 – – – – – 2.941 TC [2887]
Ni(fp)130 – – – – – 2.955 TC [2887]
Ni(fp)130 – – – – – 2.972 TC [2887]
Ni/W Ni – ? ∼300 – 3.4 ± 0.03 FE [1856]
Ni – – ∼10−5 ≤1200 – 3.60 TE [2216]
Ni/? Ni – ? ∼300 – 3.67 PE [2460]
Ni – – ∼10−6 ∼300 – 4.05 PE [3388]
Ni – – ∼10−6 ∼300 – 4.05 ± 0.02 PE [3394]
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Ni – – 6 × 10−3 ∼300 – 4.05 ± 0.07 PE [2079,2080]
Ni – – ∼10−6 ∼300 – 4.06 PE [3389,3394]
Ni – – <10−6 ∼300 – 4.12 PE [2919]
Ni – – ? ∼300 – 4.12 ± 0.02 CPD [2544]
Ni3(cluster) – – – – – 4.16 TC [2990]
Ni – – ? ∼300 – 4.2 PE [4278]
Ni/steel Ni – 3 × 10−10 20 (∼300) – 4.2 ± 0.1 PE [1410]
Ni – – 4 × 10−9 673 – 4.23 ± 0.08 PE [1116]
Ni – – 4 × 10−9 533 – 4.24 ± 0.07 PE [1116]
Ni/W(111) Ni – <2 × 10−10 78 (375) – 4.3* FE [1591]
Ni/W(100) Ni – <2 × 10−10 78 (870) – 4.3* FE [1591]
Ni/W(100) Ni – <2 × 10−10 78 (375) – 4.3* FE [1591]
Ni/W(112) Ni – <3 × 10−10 ∼300 (580) – 4.30 FE [3213]
Ni – – ? ∼300 – 4.32 CPD [2297]
Ni/Si – – – – – 4.33 TC [1653]
Ni – – ? ∼300 – 4.35 CPD [2469]
Ni – – – – – 4.36 TC [1976]
Ni – – ? 90 – 4.37 CPD [2294]
Ni/NaCl131 Ni – 2 × 10−9 ∼300{573} – 4.39 ± 0.02 PE [314]
Ni/W(111) Ni – <2 × 10−10 78 (870) – 4.4* FE [1591]
Ni – – – – – 4.4* TC [1955]
Ni/steel Ni – 3 × 10−10 20 – 4.4 ± 0.1 PE [1410]
Ni413 – – ∼10−9 1170–1250 – 4.41 ± 0.02 TE [179,650,3410,

3413]
Ni – – <10−6 773 – 4.44 ± 0.05 CPD [4142]
Ni/NaCl131 Ni – 2 × 10−9 ∼300{573} – 4.47 ± 0.06 PE [314]
Ni – – – – – 4.49 TC [3476]
Ni – – – – – 4.5 TC [3262]
Ni – – – – – 4.5 TC [3318]
Ni/W(111) Ni – <2 × 10−10 78 – 4.5* FE [1591]
Ni/Re Ni – <4 × 10−10 ∼300 – 4.5 CPD [1586]
Ni/Al2O3/Si(100) Ni – ? ∼300 – 4.548 PE [1442]
Ni413 – – ? ∼300 – 4.5 PE [942]
Ni/graphite Ni – <10−5 ∼1400–1600 – 4.50 ± 0.02 TE [769,2304]
Ni/W Ni – <2 × 10−9 430 – 4.51 FE [2239]
Ni – – 4 × 10−9 294 – 4.51 ± 0.03 PE [1116,3788,4082,

4134]
Ni/W134 Ni – 2 × 10−10 78, 300 – 4.52 ± 0.03 FE [2249]
Ni/glass Ni – <10−9 77 – 4.54 PE [3051]
Ni/glass Ni – 2 × 10−9 77 – 4.54 ± 0.02 PE [314]
Ni/glass Ni – <10−9 77 – 4.55 PE [3051]
Ni/W Ni – <3 × 10−10 ∼300 (580) – 4.55 FE [3213]
Ni/glass369 Ni – ∼10−10 77 – 4.55 ± 0.02 PE [2132,2133,2147]
Ni/glass Ni – 5 × 10−10 ∼300{523} – 4.56 PE [1513]
Ni/glass Ni – <1 × 10−10 78 – 4.56 PE [414,2719]
Ni – – 12 (Ar) ? – 4.56 PE [4236]
Ni – – – – – 4.57 TC [3318]
Ni – – – – – 4.57 TC [3224]
Ni/glass Ni – <10−9 77 – 4.57 PE [1469]
Ni/glass Ni – <10−9 77 – 4.58 PE [2310]
Ni/glass Ni – <10−9 77 – 4.58 PE [2929]
Ni/glass Ni – <10−9 77 – 4.59 PE [1957]
Ni/glass Ni – <10−9 77 – 4.59 PE [2929]
Ni – – 27 (Ne) ? – 4.59 PE [4236]
Ni/glass Ni – ≤3 × 10−10 77 – 4.59 ± 0.02 PE [3058]
Ni – – – – – 4.6 TC [1645]
Ni – – – – – 4.6 TC [2583]
Ni/W(100) Ni – <2 × 10−10 78 – 4.6* FE [1591]
Ni – – ? ∼300 – 4.6 CPD [1379]
Ni/glass Ni – <10−9 77 – 4.6 PE [1469]
Ni/Ta(111) Ni – <1 × 10−10 ∼300 – 4.60 CPD [3302]
Ni/glass Ni – <10−9 77 – 4.60 PE [2310]
Ni/glass Ni – <10−9 77 – 4.60 PE [2934]
Ni/glass Ni – <10−9 77 – 4.60 PE [1957]
Ni/glass Ni – ≤3 × 10−10 77 – 4.60 ± 0.02 PE [1153]
Ni/quartz Ni – ≤5 × 10−10 78 – 4.60 ± 0.03 PE [435]
Ni/glass Ni – <10−9 77 – 4.61 PE [2763,3046]
Ni/glass Ni – <10−9 77 – 4.61 PE [2929]
Ni/glass Ni – <10−9 77 – 4.61 PE [2310]
Ni – – 3 × 10−8 ? – 4.61 ± 0.05 TE [310]
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Ni – – ? ∼1300–1500 – 4.63 TE [1762]
Ni/glass Ni – <10−10 77 (196) – 4.64 ± 0.02 PE [2147]
Ni132 – – 4 × 10−10 ∼300 – 4.645 CPD [503]
Ni – – 27 (Ne) ∼300 – 4.65 ± 0.02 PE [788]
Ni132 – – 4 × 10−10 400 – 4.653 CPD [503]
Ni – – – – – 4.66 TC [3476]
Ni132 – – 4 × 10−10 400 – 4.660 CPD [503]
Ni – – 12 (Ar) ∼300 – 4.67 ± 0.02 PE [788]
Ni{89%(111)} – – – – (5.33 ± 0.01) 4.68 ± 0.10 TC [283,630,1351]
Ni132 – – 4 × 10−10 660 – 4.690 CPD [503]
Ni/? Ni – ∼10−5 ∼300 – 4.7 CPD [1376]
Ni/W(110) Ni – <2 × 10−10 78 – 4.7* FE [1591]
Ni/W(110) Ni – <2 × 10−10 78 (375) – 4.7* FE [1591]
Ni/W(110) Ni – <2 × 10−10 78 (870) – 4.7* FE [1591]
Ni/W(112) Ni – <2 × 10−10 78 – 4.7* FE [1591]
Ni/W(112) Ni – <2 × 10−10 78 (375) – 4.7* FE [1591]
Ni/glass Ni – ? 77 – 4.7 CPD [2577]
Ni/W(112) Ni – <2 × 10−10 78 (870) – 4.7* FE [1591]
Ni – – ∼10−9 973 – 4.7 TE [3112]
Ni/Mo(111) Ni – <1 × 10−10 ∼300 – 4.7 ± 0.1* CPD [3307]
Ni132 – – 4 × 10−10 740 – 4.700 CPD [503]
Ni/W(111) Ni – <5 × 10−11 ∼300 – 4.72* CPD [2429]
Ni – – – – – 4.73 TC [3264,3265,3267]
Ni – – – – – 4.73 TC [3352]
Ni – – ? ∼300 – 4.74 PE [1371]
Ni – – ∼10−10 ∼300 – 4.74 CPD [3131]
Ni/W(110) – – – – – 4.74 TC [531]
Ni/glass Ni – ∼10−8 ∼300 – 4.74 ± 0.04 CPD [133]
Ni/ZrO2/Si(100) Ni – ? ∼300 – 4.7548 PE [1442]
Ni/glass Ni – <10−9 77 (195) – 4.76 PE [2310]
Ni – – ≤10−9 1500 – 4.77 TE [179,650]
Ni/W(100) Ni – <1 × 10−11 77 – 4.78 FE [1549]
Ni/W Ni – <3 × 10−10 900, 1150 – 4.78 FE [3684]
Ni – – ∼10−11 ∼300 – 4.79 CPD [3338]
Ni/W(110) Ni – ? 90 – 4.8 CPD [3732]
Ni – – – – – 4.8 TC [706]
Ni413 – – ∼10−9 1440–1490 – 4.80 ± 0.02 TE [179,650,3410,

3413]
Ni{95%(100)} – – – – (5.21 ± 0.01) 4.80 ± 0.09 TC [283,630,1351]
Ni/TiO2(110) Ni – ∼4 × 10−11 ∼300 – 4.80 ± 0.10 PE [2788]
Ni/glass Ni – <10−9 ∼300 – 4.8–5.1 PE [1469]
Ni/W Ni – <3 × 10−10 900, 1150 – 4.82 FE [3684]
Ni/glass129 Ni – 2 × 10−9 273 – 4.82 ± 0.04 PE [314]
Ni/mica133 Ni – 2 × 10−9 ∼300{593} – 4.82 ± 0.04 PE [314]
Ni – – – – – 4.83 TC [1399]
Ni6(cluster) – – – – – 4.83 TC [2990]
Ni/W(111) Ni – <3 × 10−10 ∼300 (580) – 4.83 FE [3213]
Ni/glass Ni – <10−10 77 (293) – 4.83 ± 0.02 PE [2147]
Ni10(cluster) – – – – – 4.84 TC [2990]
Ni/W134 Ni – 2 × 10−10 78, 300 – 4.85 FE [2249]
Ni7(cluster) – – – – – 4.85 TC [2990]
Ni/quartz Ni – ≤5 × 10−10 293 – 4.86 ± 0.04 PE [435]
Ni/glass Ni – <10−9 77 (293) – 4.87 PE [3051]
Ni – – ? ∼300 – 4.87 PE [2924]
Ni/glass Ni – 2 × 10−9 ∼300 (573) – 4.87 ± 0.04 PE [314,315]
Ni/Ni(mono)414 Ni – <5 × 10−10 678{∼300} – 4.87 ± 0.04 PE [3971]
Ni/glass369 Ni – ∼10−10 77 (323) – 4.88 PE [2133]
Ni/glass Ni – <10−10 77 (293) – 4.88 ± 0.02 PE [2147]
Ni/glass Ni – <10−9 77 (293) – 4.89 PE [2929]
Ni – – ≤10−9 1380 – 4.89 TE [179,650]
Ni/glass Ni – 5 × 10−10 ∼300{523} – 4.89 PE [1513]
Ni/glass135 Ni – 2 × 10−9 273 – 4.9 PE [315]
Ni/? Ni – 2 × 10−10 4.2 (400) – 4.9 PE [1506]
Ni/SiO2 Ni – ? ∼300 – 4.9 PE [2899]
Ni – – ∼10−9 ∼300 – 4.9 PE [2667]
Ni – – – – – 4.9 TC [2667]
Ni/steel Ni – 3 × 10−10 4.2 – 4.9 ± 0.1 PE [1410]
Ni/glass Ni – 3 × 10−10 78 (∼300) – 4.90 PE [414,2722]
Ni/glass Ni – <1 × 10−10 78 (293) – 4.90 ± 0.02 PE [414,2722]
Ni{97%(110)} – – – – (5.03 ± 0.01) 4.91 ± 0.04 TC [630,1351]
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Ni – – ∼10−10 ∼300 – 4.93 PE [724]
Ni – – 1 × 10−8 ∼300 – 4.93 ± 0.02 PE [306]
Ni/mica133 Ni – 2 × 10−9 ∼300{593} – 4.93 ± 0.02 PE [314]
Ni/glass Ni – <10−9 77 (293) – 4.95 PE [2310]
Ni/glass Ni – ∼10−10 78 (293) – 4.95 PE [2719]
Ni/glass Ni – 2 × 10−10 77 – 4.95 ± 0.01 CPD [945]
Ni/glass Ni – <10−10 77 (373) – 4.95 ± 0.02 PE [2147]
Ni/mica Ni – 2 × 10−9 ∼300{593} – 4.95 ± 0.03 PE [314]
Ni/Si(110) Ni – ∼10−10 220 (?) – 4.95 ± 0.05* CPD [2737]
Ni/W Ni – ? ∼300 – 4.96 CPD [1460]
Ni/W(111) – – – – – 4.97 TC [531]
Ni/Ni(mono)414 Ni – <5 × 10−10 295 – 4.97 ± 0.02 PE [3971]
Ni/glass Ni – 5 × 10−10 ∼300 (523) – 4.99 PE [1513]
Ni – – 1 × 10−9 ∼300 – 5 PE [3511]
Ni/W Ni – ∼10−9 ∼300 – 5–7 FE [3619]
Ni – – ? ? – 5.0 TE [3402]
Ni413 – – ? ∼300 – 5.0 PE [942]
Ni/W(110) Ni – 4 × 10−11 ∼300 (1100) – 5.0* CPD [2386]
Ni/glass135 Ni – <2 × 10−9 273 – 5.0 PE [315]
Ni/glass Ni – <10−8 78 – 5.0 ± 0.02 CPD [1646]
Ni/steel Ni – 3 × 10−10 4.2 – 5.0 ± 0.1 PE [1410]
Ni/glass129 Ni – 2 × 10−9 273 – 5.00 ± 0.02 PE [314]
Ni/quartz Ni – ≤5 × 10−10 293 (∼550) – 5.01 PE [435]
Ni – – 1 × 10−8 ∼300 – 5.01 PE [306]
Ni/glass Ni – 2 × 10−9 ∼300{523} – 5.01 ± 0.04 PE [314]
Ni – – ∼10−10 ∼300 – 5.01 ± 0.07* CPD [2645]
Ni/SiO2 Ni – ? ∼300 – 5.017 CPD [1221]
Ni/glass Ni – <10−9 90 (380) – 5.02 PE [3045]
Ni/glass Ni – <10−9 90 – 5.02 PE [3046]
Ni/W(110) Ni – ? 90 (800) – 5.02 CPD [3469]
Ni/glass Ni – <10−10 ∼300 (∼370) – 5.02 ± 0.02 PE [1117]
Ni/quartz Ni – <10−8 77, 300 – 5.03 PE [3032,3036]
Ni/quartz Ni – <5 × 10−10 293 – 5.03 PE [1102]
Ni/quartz Ni – <5 × 10−10 293 (618) – 5.03 PE [1102]
Ni{97%(110)} – – – – 5.03 ± 0.01 (4.91 ± 0.04) TC [630,1351]
Ni – – ≤3 × 10−8 1370–1500 – 5.03 ± 0.05 TE [3608]
Ni/glass Ni – 2 × 10−9 ∼300{573} – 5.04 ± 0.04 PE [314,315]
Ni/glass Ni – ≤3 × 10−10 77 (470) – 5.04–5.24 PE [1153]
Ni/glass Ni – <10−9 77 (373) – 5.05 PE [2763,3046]
Ni405 – – ≤8 × 10−8 623 – 5.05 PE [943]
Ni/glass Ni – 2 × 10−10 77 (398) – 5.05 ± 0.01 CPD [945]
Ni405 – – ≤8 × 10−8 623 – 5.05 ± 0.05 PE [943]
Ni405 – – ≤8 × 10−8 ∼300 – 5.06 PE [943]
Ni/glass Ni – <10−9 77 (373) – 5.06 PE [2929]
Ni/glass Ni – <10−9 77 (373) – 5.06 PE [3051]
Ni/W Ni – <3 × 10−10 ∼300 (580) – 5.06 FE [3213]
Ni/glass Ni – 2 × 10−9 77{523} – 5.06 ± 0.04 PE [314]
Ni/SiO2 Ni – ? ∼300 – 5.063 CPD [1221]
Ni – – ∼10−7 ∼300 – 5.07 CPD [3513]
Ni/glass Ni – <10−9 90 (293) – 5.07 PE [3046]
Ni – – – – – 5.09 TC [1066]
Ni/glass Ni – ∼10−10 90 – 5.09 PE [3048]
Ni – – – – – 5.1 TC [944]
Ni(fp)448 – – ∼10−9 ∼300 – 5.1 PE [2667]
Ni/W Ni – 3 × 10−10 ∼300 (760) – 5.1* FE [3680]
Ni/W Ni – ? ∼300 (1070) – 5.1 ± 0.03 FE [1856]
Ni – – – – – 5.10 TC [3476]
Ni – – – – – 5.10* TC [4185]
Ni405 – – ≤8 × 10−8 770 – 5.10 PE [943]
Ni/glass Ni – <10−9 77 (373) – 5.10 PE [1957]
Ni/glass Ni – ∼10−10 78 (373) – 5.10 PE [2719]
Ni/Si(111) Ni – <1 × 10−10 ∼300 – 5.10 ± 0.05 CPD [3270]
Ni/glass Ni – <1 × 10−10 78 (406) – 5.11 PE [414]
Ni/glass Ni – ∼10−10 90 – 5.11 PE [3048]
Ni/glass Ni – <10−10 77 (473) – 5.11 ± 0.02 PE [2147]
Ni/Ag(100) – – – – – 5.12 TC [2166]
Ni/glass Ni – 3 × 10−10 78 (570) – 5.12 PE [2722]
Ni/mica124 Ni – 2 × 10−9 ∼300{593} – 5.12 ± 0.02133 PE [314]
Ni/Mo(110) Ni – <6 × 10−11 ∼300 – 5.14* CPD [3293]
Ni/glass Ni – <10−8 293 – 5.145 PE [1386]
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Ni/W(110) Ni – ? 90 – 5.15 CPD [3468,3469]
Ni/W(112) – – – – – 5.15 TC [531]
Ni – – 3 × 10−11 ∼300 – 5.15 FE [2227]
Ni – – <2 × 10−10 27, 90 – 5.15 CPD [4107]
Ni/W(110) Ni – <2 × 10−10 27, 90 – 5.15 CPD [4107]
Ni/quartz Ni – ∼10−10 ∼300 – 5.15 ± 0.1 PE [304]
Ni/glass Ni – <1 × 10−10 78 (589) – 5.16 PE [414]
Ni/glass129 Ni – 2 × 10−9 273 – 5.16 ± 0.03 PE [314]
Ni/W(110) Ni – 4 × 10−11 ∼300 – 5.16 ± 0.05* CPD [2386]
Ni/glass Ni – ∼10−10 78 (573) – 5.17 PE [2719]
Ni405 – – ≤8 × 10−8 975 – 5.17 PE [943]
Ni/glass125 Ni – 2 × 10−9 77 (523) – 5.17 ± 0.02 PE [314]
Nin(n → ∞) – – – – – 5.2 TC [1866]
Ni/glass Ni – <10−9 77 (≤650) – 5.2 PE [2934]
Ni/glass135 Ni – <2 × 10−9 273 – 5.2 PE [315]
Ni/ZnO(0001)Zn Ni – <5 × 10−11 ∼300 – 5.2 ± 0.1 PE [3119]
Ni/glass Ni – <10−9 77 (373) – 5.20 PE [2310]
Ni – – – – – 5.20 TC [3637]
Ni/glass Ni – 2 × 10−9 ∼300 (523) – 5.20 ± 0.02 PE [314]
Ni/glass126 Ni – 2 × 10−9 ∼300{573} – 5.20 ± 0.02 PE [314,315]
Ni405 – – ≤8 × 10−8 1108 – 5.20 ± 0.05 PE [943]
Ni/glass Ni – <10−10 ∼300 (∼470) – >5.2 PE [1117]
Ni/? Ni – ? ? – 5.21 PE [1403]
Ni/glass Ni – ≤3 × 10−10 77 (373) – 5.21 PE [3058]
Ni Cs Cs+ ? ∼300 – 5.21* CPD [611]
Ni{95%(100)} – – – – 5.21 ± 0.01 (4.80 ± 0.09) TC [283,630,1351]
Ni – – 3 × 10−10 ∼300 – 5.21 ± 0.02 PE [1504]
Ni/glass Ni – <10−9 77 (∼600) – 5.22 PE [2934]
Ni/glass Ni – 2 × 10−9 ∼300{523} – 5.22 ± 0.02 PE [314]
Ni/glass Ni – <10−9 77 (473) – 5.23 PE [2929]
Ni405 – – ≤8 × 10−8 ≥1150 – 5.24 TE [943]
Ni/glass Ni – <10−9 77 (423) – 5.25 PE [1957]
Ni/glass Ni – 2 × 10−10 77 – 5.25 ± 0.03 FE [945]
Ni – – – – – 5.26 TC [298]
Ni/glass Ni – <10−9 77 (423) – 5.28 PE [2310]
Ni/glass Ni – ≤3 × 10−10 77 (∼460) – 5.29 PE [3058]
Ni – – ? ∼300 – 5.3 PE [1371]
Ni28(cluster) – – – – – 5.30 TC [4063]
Ni/glass Ni – 2 × 10−9 ∼300{523} – 5.30 ± 0.04 PE [314,315]
Ni/glass Ni – 2 × 10−9 77 (523) – 5.32 ± 0.05 PE [314]
Ni{89%(111)} – – – – 5.33 ± 0.01 (4.68 ± 0.10) TC [283,630,1351]
Ni/W(100) – – – – – 5.34 TC [531]
Ni/glass Ni – <2 × 10−9 ∼300{523} – 5.35 PE [315]
Ni/W(110) Ni – ? ∼300 – 5.36 CPD [3469]
Ni/Mo(110) Ni – <6 × 10−11 ∼300 – 5.43 CPD [3293]
Ni/Cu(100) – – – – – 5.45 TC [1121]
Ni/W(110) Ni – <3 × 10−10 ∼300 (580) – 5.57 FE [3213]
Ni/? Ni – ? ? – 5.76 PE [1403]
Ni/Cu(100) – – – – – 6.10 TC [1121]
Ni/W Ni – ∼10−9 ∼300 – 7.2 FE [2225]
Recommended – – – – 5.19 ± 0.12 5.06 ± 0.06 – –

29. Copper Cu

fcc
Cu(100) – – – – – 3.80 TC [475]
Cu(100) – – – – – 3.855 TC [2914]
Cu(100)/NaCl137 Cu – ? ∼300 (473) – 3.96 ± 0.02 PE [3328]
Cu(100)138 – – ≤8 × 10−9 ∼300 – 4.07 CPD [1183]
Cu(100) – – – – – 4.12 TC [947]
Cu(100) – – – – – 4.21 TC [949]
Cu(100) – – – – – 4.22 TC [2523]
Cu(100) – – – –. – 4.26 TC [949]
Cu(100) – – ∼10−10 ∼300 – 4.27 PE [1661]
Cu(100) – – – –. – 4.30 TC [4034]
Cu(100) – – – – – 4.37 TC [949]
Cu(100) – – – – – 4.4 TC [2646]
Cu(100) – – – – – 4.412 TC [1118]
Cu(100)138 – – ≤8 × 10−9 ∼300 – 4.43 CPD [1183]
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Cu(100) – – – – – 4.44 TC [949]
Cu(100) – – <5 × 10−8 ∼300 – 4.45 ± 0.03* CPD [2923]
Cu(100) – – ? 470–670 – 4.458 ± 0.010 CPD [948,2841]
Cu(100) – – – – – 4.47 TC [949]
Cu(100) – – – – – 4.473 TC [4135]
Cu(100) – – – – – 4.48 TC [949]
Cu(100) – – – – – 4.49 TC [949]
Cu(100) – – – – – 4.49 TC [705]
Cu(100) – – – – – 4.49 TC [1184]
Cu(100) – – – – – 4.5 TC [1741,1742]
Cu(100) – – – – – 4.5 TC [951,1108,1109]
Cu(100)/TaN/Ta – – <10−7 ∼300 – 4.5 ± 0.02 PE [1238,4210]
Cu(100) – – 1 × 10−10 <50 – 4.5 ± 0.05 PE [950]
Cu(100) – – – – – 4.506 TC [4091]
Cu(100) – – – – – 4.51 TC [343]
Cu(100) – – – – – 4.52 TC [949]
Cu(100) – – <10−10 ∼300 – 4.52 PE [1239]
Cu(100) – – <5 × 10−8 ∼300 – 4.53 ± 0.03* CPD [2923]
Cu(100) – – – – – 4.54 TC [2917]
Cu(100)/Ir(100)139 Cu – ? 78 (380) – 4.55 ± 0.02 FE [2189]
Cu(100) – – ≤10−10 ∼300 – 4.56 CPD [952]
Cu(100) – – – – – 4.56 ± 0.01 CT [4135]
Cu(100) – – ≤10−10 ∼300 – 4.58 CPD [952]
Cu(100) – – – – – 4.58 TC [3477]
Cu(100) – – – – – 4.58 TC [3304]
Cu(100) – – <10−10 ∼300 – 4.59 ± 0.03 PE [953,2006]
Cu(100) – – 1 × 10−10 ∼300 – 4.6 PE [3707]
Cu(100) – – ≤1 × 10−10 180 – 4.6 PE [2678]
Cu(100) – – – – – 4.6 TC [3205]
Cu(100) – – – – – 4.60 TC [479]
Cu(100) – – – – – 4.60 TC [949]
Cu(100) – – 1 × 10−10 ∼300 – 4.62 PE [2673,3005]
Cu(100) – – ∼1 × 10−11 ∼300 – 4.63 PE [1241]
Cu(100) – – ? ∼300 – 4.63 ± 0.01 PE [1240]
Cu(100) – – ∼2 × 10−10 ∼300 – 4.63 ± 0.02 PE [957,958]
Cu(100) – – <8 × 10−11 400 – 4.63 ± 0.03 PE [3475]
Cu(100) – – ? ∼300 – 4.63 ± 0.03 PE [2903]
Cu(100) – – 2 × 10−10 ∼300 – 4.65 PE [1151]
Cu(100) – – <5 × 10−11 95 – 4.65 PE [1444]
Cu(100) – – ? ∼300 – 4.65 ± 0.05 PE [1913,2650]
Cu(100)/Pd(100) – – ∼10−9 ∼300 – 4.65 ± 0.10 PE [1424]
Cu(100) – – – – – 4.67 TC [3273]
Cu(100) – – – – – 4.67 TC [3477]
Cu(100)140 – – ? ∼300 – 4.68* CPD [959]
Cu(100) – – – – – 4.7 TC [2641]
Cu(100) – – – – – 4.71 TC [4189]
Cu(100) – – ∼10−10 ∼300 – 4.75 ± 0.1 CPD [1507]
Cu(100) – – – – – 4.753 TC [1119,2989]
Cu(100) – – ≤10−10 ∼300 – 4.76 CPD [952]
Cu(100) – – ∼1 × 10−10 ∼300 – 4.76 ± 0.05 PE [950]
Cu(100) – – ∼10−10 ∼300 – 4.77 ± 0.05 PE [955]
Cu(100) – – – – – 4.78 TC [2897]
Cu(100) – – <5 × 10−10 ∼300 – 4.79 ± 0.05 PE [1555]
Cu(100) – – – – – 4.81 TC [3477]
Cu(100) – – – – – 4.81 TC [4405]
Cu(100) – – – – – 4.82 TC [2897]
Cu(100) – – – – – 4.83 TC [2897]
Cu(100) – – <1 × 10−10 ∼300 – 4.83 ± 0.02 PE [1554]
Cu(100) – – – – – 4.85 TC [480]
Cu(100) – – – – – 4.88 TC [463]
Cu(100) – – – – – 4.88 TC [1608]
Cu(100) – – – – – 4.88 TC [1237]
Cu(100) – – – – – 4.89 TC [3477]
Cu(100) – – – – – 4.9 TC [2646]
Cu(100) – – – – – 4.90 TC [2971]
Cu(100) – – – – – 4.91 TC [1120]
Cu(100) – – – – – 4.91 TC [2897]
Cu(100) – – – – – 4.93 TC [950]
Cu(100) – – – – – 4.93 TC [1106,4386]
Cu(100) – – – – – 4.94 TC [1121]
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Cu(100) – – – – – 4.95 TC [956]
Cu(100) – – – – – 4.98 TC [962]
Cu(100) – – – – – 4.99 TC [1159,1980,3067]
Cu(100) – – – – – 4.99 TC [2548]
Cu(100) – – – – – 5.00 TC [4405]
Cu(100) – – – – – 5.01 TC [2803]
Cu(100) – – – – – 5.02 TC [480,4398]
Cu(100) – – – – – 5.02 TC [3007]
Cu(100) – – – – – 5.03 TC [962]
Cu(100) – – – – – 5.05 TC [480,4398]
Cu(100)/Ni(100) – – – – – 5.1 TC [2641]
Cu(100) – – – – – 5.1 TC [389]
Cu(100) – – ≤1 × 10−10 ∼300 – 5.1 PE [3298]
Cu(100) – – ∼10−10 77, ∼300 – 5.10 ± 0.05 FE [358]
Cu(100) – – – – – 5.13 TC [3224]
Cu(100) – – – – – 5.14 TC [3382]
Cu(100) – – <1 × 10−10 77, ∼300 – 5.155 ± 0.054 CPD [963]
Cu(100) – – – – – 5.16 TC [321]
Cu(100) – – – – – 5.20 TC [1596]
Cu(100) – – – – – 5.20 TC [3382]
Cu(100) – – – – – 5.21 TC [1703]
Cu(100) – – – – – 5.22 TC [1234]
Cu(100) – – – – – 5.25 TC [2540]
Cu(100) – – – – – 5.26 TC [229,334]
Cu(100) – – – – – 5.26 TC [962]
Cu(100) – – <5 × 10−8 ∼300 – 5.29 ± 0.04* CPD [2923]
Cu(100) – – – – – 5.31 TC [962]
Cu(100) – – <5 × 10−8 ∼300 – 5.37 ± 0.04* CPD [2923]
Cu(100) – – – – – 5.6 TC [1122]
Cu(100) – – ∼1 × 10−8 ∼300 – 5.61 PE [3308]
Cu(100) – – – – – 5.95 TC [1703]
Cu(100) – – – – – 6.11 TC [1703]
Cu(100) – – – – – 6.3 TC [2646]
Cu(100) – – – – – 6.4 TC [2646]
Cu(100) – – – – – 6.9 TC [2646]
Recommended – – – – – 4.58 ± 0.06 – –

Cu(110) – – – – – 3.55 TC [475]
Cu(110) – – – – – 3.56 TC [962]
Cu(110) – – – – – 3.648 TC [2914]
Cu(110) – – – – – 3.85 TC [321]
Cu(110) – – – – – 3.98 TC [947]
Cu(110) – – – – – 4.1 TC [967]
Cu(110) – – – – – 4.10 TC [962]
Cu(110) – – – – – 4.2 TC [967]
Cu(110) – – – – – 4.20 TC [962]
Cu(110) – – ∼10−10 ∼300 – 4.23 PE [1661]
Cu(110) – – – – – 4.25 TC [3477]
Cu(110) – – – – – 4.27 TC [4034]
Cu(110) – – – – – 4.272 TC [4091]
Cu(110) – – – – – 4.33 TC [3477]
Cu(110) – – ≤10−10 ∼300 – 4.4 CPD [952]
Cu(110) – – ? ∼300 – 4.4 PE [1242]
Cu(110)/TaN/Ta – – ? ∼300 – 4.4 ± 0.02 PE [1238,4210]
Cu(110) – – ≤10−10 ∼300 – 4.40 CPD [952]
Cu(110) – – ? 470–670 – 4.400 ± 0.010 CPD [948,2841]
Cu(110) – – – – – 4.408 TC [1118]
Cu(110) – – – – – 4.421 TC [3574]
Cu(110) – – – – – 4.43 TC [2917]
Cu(110) – – – – – 4.44 TC [3304]
Cu(110) – – <8 × 10−10 ∼300 – 4.46 ± 0.04 PE [4195]
Cu(110) – – – – – 4.48 TC [334]
Cu(110)140 – – ? ∼300 – 4.48* CPD [959]
Cu(110) – – 3 × 10−10 20, 42 – 4.48 PE [2140,2642]
Cu(110) – – <10−10 ∼300 – 4.48 ± 0.03 PE [953,2006]
Cu(110) – – <7 × 10−11 ∼300 – 4.5 PE [1123]
Cu(110) – – ? ∼300 – 4.5 PE [1243]
Cu(110) – – ∼4 × 10−11 20–200 – 4.5 PE [2143]
Cu(110) – – – – – 4.508 TC [1119,2989]
Cu(110) – – <5 × 10−11 90 – 4.52 PE [1444]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Cu(110) – – – – – 4.53 TC [962]
Cu(110) – – – – – 4.53 TC [3477]
Cu(110) – – ? ∼300 – 4.59 CPD [964]
Cu(110) – – – – – 4.61 TC [3477]
Cu(110) – – – – – 4.625 TC [4189]
Cu(110) – – – – – 4.65 TC [1159,1980,3067]
Cu(110) – – – – – 4.66 TC [2548]
Cu(110) – – – – – 4.67 TC [480]
Cu(110) – – ∼10−10 ∼300 – 4.7 ± 0.1 CPD [1507]
Cu(110) – – – – – 4.70 TC [4405]
Cu(110) – – – – – 4.71 TC [1237]
Cu(110) – – – – – 4.78 TC [4405]
Cu(110) – – – – – 4.81 TC [480,4398]
Cu(110) – – – – – 4.83 TC [480,4398]
Cu(110) – – – – – 4.84 TC [1244]
Cu(110) – – <5 × 10−11 ∼300 – 4.87 PE [1124]
Cu(110) – – – – – 4.87 TC [3007]
Cu(110) – – – – – 4.88 TC [3007]
Cu(110) – – – – – 4.9 TC [956]
Cu(110) – – <1 × 10−10 77, ∼300 – 4.92 ± 0.019 CPD [963]
Cu(110) – – – – – 4.94 TC [3224]
Cu(110) – – – – – 4.98 TC [962]
Cu(110) – – – – – 5.04 TC [962]
Recommended – – – – – 4.43 ± 0.04 – –

Cu(111) – – – – – 3.55 TC [3491]
Cu(111) – – – – – 3.90 TC [475]
Cu(111) – – – – – 4.123 TC [2914]
Cu(111) – – – – – 4.17 TC [2522]
Cu(111)/NaCl137 Cu – ? ∼300 (423) – 4.20 ± 0.02 PE [3328]
Cu(111) – – – – – 4.24 TC [947]
Cu(111) – – – – – 4.381 TC [1118]
Cu(111)/
ZnO(0001)409

Cu – 4 × 10−10 ∼300 – 4.5 TCS [2679]

Cu(111) – – ∼10−10 ∼300 – 4.50 PE [1661]
Cu(111) – – – – – 4.54 TC [1608]
Cu(111) – – – – – 4.58 TC [4034]
Cu(111) – – – – – 4.63 TC [2077]
Cu(111) – – ? 470–670 – 4.632 ± 0.010 CPD [948,2841]
Cu(111)/Au(111) – – – – – 4.69 ± 0.02* TC [3214]
Cu(111)/Si(111) Cu – ∼10−10 ∼300 – 4.7 PE [1801]
Cu(111) – – – – – 4.714 TC [4091]
Cu(111) – – – – – 4.76 TC [2971]
Cu(111) – – – – – 4.78 TC [1028,1179]
Cu(111) – – – – – 4.79 TC [3477]
Cu(111)/Ru(0001) Cu – ≤5 × 10−10 400–640 – 4.8* CPD [3705,3706,3731]
Cu(111)/W(110)141 Cu – <5 × 10−11 ∼300 – 4.8 CPD [1519]
Cu(111)/TaN/Ta – – ? ∼300 – 4.8 PE [1238,4210]
Cu(111)/mica420 Cu – 4 × 10−10 ∼300{570} – 4.8 PE [4001]
Cu(111) – – <1 × 10−10 ∼300 – 4.8 ± 0.3 CPD [1186,1245,2284]
Cu(111) – – – – – 4.80 TC [3304]
Cu(111) – – – – – 4.80 TC [2917]
Cu(111) – – – – – 4.80 TC [1246]
Cu(111) – – – – – 4.80 TC [4317]
Cu(111) – – – – – 4.82 TC [1179]
Cu(111)140 – – ? ∼300 – 4.85* CPD [959]
Cu(111) – – <10−10 ∼300 – 4.85 PE [1239]
Cu(111) – – <2 × 10−10 ∼300 – 4.85 ± 0.1 PE [2415,3631,3632]
Cu(111) – – – – – 4.86 TC [2077]
Cu(111) – – ∼10−10 35 – 4.86 PE [2898]
Cu(111) – – 1 × 10−8 ∼300 – 4.86 PE [3308]
Cu(111) – – – – – 4.86 TC [3486]
Cu(111) – – ≤1 × 10−10 ∼300 – 4.87 PE [3571]
Cu(111) – – – – – 4.876 TC [1119,2989]
Cu(111) – – 2 × 10−10 ∼300 – 4.88 PE [939,1124]
Cu(111) – – 2 × 10−10 100 – 4.88 PE [2684,2686]
Cu(111) – – 7 × 10−11 ∼300 – 4.88 ± 0.05 PE [1125]
Cu(111)/W(110) Cu – ? ∼300 – 4.9 CPD [4231]
Cu(111) – – 7 × 10−11 85 – 4.9 PE [4033]
Cu(111) – – ? ? – 4.9 ? [1247]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Cu(111) – – ? ∼300 – 4.9 PE [2509,2512]
Cu(111)/Ru(0001) – – – – – 4.9 TC [2641]
Cu(111)/Ru(0001) Cu – ∼10−10 539 – 4.9 CPD [1685]
Cu(111) – – – – – 4.90 TC [2068]
Cu(111) – – ∼1 × 10−11 ∼300 – 4.90 CPD [2532]
Cu(111)/Pt(111) Cu – ∼7 × 10−11 450 – 4.90 CPD [2747]
Cu(111) – – ∼2 × 10−10 ∼300 – 4.90 PE [1151]
Cu(111) – – ? 95 – 4.90 PE [2687]
Cu(111) – – ? ∼300 – 4.90 PE [4025]
Cu(111)/W(110)142 Cu – <2 × 10−10 ∼300 – 4.90* CPD [2598]
Cu(111)/W(110) Cu – <10−10 ∼300 (?) – 4.90 ± 0.05 CPD [2262]
Cu(111)/Pt(111) Cu – ? 450–475 – 4.91* CPD [2862]
Cu(111) – – – – – 4.91 TC [3477]
Cu(111) – – ? 100 – 4.92 PE [4025]
Cu(111)/Au(111) Cu – – – – 4.92 ± 0.02* TC [3214]
Cu(111) – – <8 × 10−11 ∼300 – 4.93 PE [968,969]
Cu(111) – – <2 × 10−10 ∼300 – 4.93 PE [1187]
Cu(111) – – – – – 4.93 TC [2685]
Cu(111) – – ? ∼300 – 4.93 ± 0.03 PE [2903]
Cu(111) – – ? ∼300 – 4.93 ± 0.03 PE [3180]
Cu(111)/Pt(111) Cu – ∼7 × 10−11 350 – 4.93 ± 0.05 CPD [897,2747]
Cu(111) – – ? 400 – 4.94 CPD [3198]
Cu(111) – – <2 × 10−10 ∼300 – 4.94 PE [316]
Cu(111) – – 1 × 10−10 ∼300 – 4.94 PE [2907,2915]
Cu(111) – – 7 × 10−11 ∼300 – 4.94 ± 0.02 PE [1922]
Cu(111) – – <10−10 ∼300 – 4.94 ± 0.03 PE [953,2006]
Cu(111) – – <2 × 10−11 85 – 4.946 ± 0.010 PE [970]
Cu(111) – – ≤10−10 ∼300 – 4.95 CPD [952]
Cu(111) – – 8 × 10−11 50, 100 – 4.95 PE [898,3197,3603]
Cu(111)/Ru(0001)143 Cu – 1 × 10−10 290–700 – 4.95* CPD [1683,1685]
Cu(111)/Pd(111) Cu – 5 × 10−9 ∼300 – 4.95 CPD [3364]
Cu(111) – – <5 × 10−8 ∼300 – 4.95 ± 0.08* CPD [2923]
Cu(111) – – – – – 4.958 TC [4189]
Cu(111) – – – – – 4.98 TC [3273]
Cu(111) – – – – – 4.99 TC [3477]
Cu(111) – – – – – 5.0 TC [1126]
Cu(111) – – – – – 5.0 TC [3593]
Cu(111) – – ? ∼300 – 5.00 ± 0.03 PE [4213]
Cu(111)/Ru(0001) Cu – ? 400 – 5.01 CPD [3198]
Cu(111) – – ? ∼300 – 5.01 PE [3522]
Cu(111) – – – – – 5.03 TC [1179]
Cu(111) – – <5 × 10−8 ∼300 – 5.03 ± 0.08* CPD [2923]
Cu(111)/Nb(110) Cu – 7 × 10−11 ∼300 – 5.05 PE [2986]
Cu(111) – – – – – 5.1 TC [1126]
Cu(111) – – – – – 5.10 TC [480]
Cu(111) – – – – – 5.10 TC [1178]
Cu(111) – – – – – 5.17 TC [1237]
Cu(111) – – – – – 5.17 TC [3491]
Cu(111) – – – – – 5.19 TC [956]
Cu(111) – – – – – 5.19 TC [2803]
Cu(111) – – – – – 5.19 TC [4402]
Cu(111) – – – – – 5.22 TC [1028,1179]
Cu(111) – – – – – 5.22 TC [4174,4284]
Cu(111) – – – – – 5.24 TC [3486,3491]
Cu(111) – – – – – 5.25 TC [3217]
Cu(111) – – ∼10−10 ∼300 – 5.25 ± 0.1 CPD [1507]
Cu(111) – – – – – 5.30 TC [229,334,3179]
Cu(111) – – – – – 5.305 TC [2971]
Cu(111) – – – – – 5.31 TC [480,4398]
Cu(111) – – – – – 5.32 TC [480,4398]
Cu(111) – – – – – 5.32 TC [1159,1980,3067]
Cu(111) – – – – – 5.32 TC [2548]
Cu(111) – – – – – 5.43 TC [962]
Cu(111) – – – – – 5.44 TC [962]
Cu(111) – – – – – 5.46 TC [2540]
Cu(111) – – <1 × 10−10 77, 300 – 5.54 ± 0.012 CPD [963]
Cu(111) – – – – – 5.55 TC [962]
Cu(111) – – – – – 5.55 TC [3224]
Cu(111) – – – – – 5.56 TC [962]
Recommended – – – – – 4.92 ± 0.05 – –
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Cu(112) – – ? 470–670 – 4.438 ± 0.010 CPD [948,2841]
Cu(112) – – – – – 4.45 TC [3304]
Cu(112) – – ≤10−10 ∼300 – 4.48 CPD [952]
Cu(112) – – – – – 4.48 TC [4405]
Cu(112) – – ≤10−10 ∼300 – 4.49 CPD [952]
Cu(112) – – <10−10 ∼300 – 4.53 ± 0.03 PE [953,2006]
Cu(112) – – ? ∼300 – 4.54 ± 0.03 PE [2903]
Cu(112) – – ? ∼300 – 4.56 CPD [964]
Recommended – – – – – 4.52 ± 0.03 – –

Cu(113) – – – – – 4.31 TC [479,1249]
Cu(113) – – ? 470–670 – 4.418 ± 0.010 CPD [948,2841]
Cu(113) – – – – – 4.74 TC [3224]

Cu(114) – – ≲10−10 ∼300 – 4.59 CPD [952]

Cu(119) – – ∼1 × 10−11 ∼300 – 4.60 PE [1241]

Cu(122) – – ≤10−10 ∼300 – 4.54 CPD [952]
Cu(122) – – – – – 4.56 TC [3304]

Cu(124) – – ≤10−10 ∼300 – 4.48 CPD [952]

Cu(210) – – – – – 4.24 TC [3304]
Cu(210) – – ? 470–670 – 4.370 ± 0.010 CPD [948,2841]

Cu(233) – – ≤1 × 10−10 95 – 4.35 ± 0.05 PE [1604]
Cu(233) – – ≤10−10 ∼300 – 4.57 CPD [952]

Cu(234) – – ≤10−10 ∼300 – 4.50 CPD [952]
Cu(234) – – ≤10−10 ∼300 – 4.52 CPD [952]

Cu(236) – – ≤10−10 ∼300 – 4.41 CPD [952]

Cu(321) – – ? ∼300 – 4.12 CPD [964]

Cu(345) – – ≤10−10 ∼300 – 4.50 CPD [952]

Cu(356) – – ≤10−10 ∼300 – 4.45 CPD [952]

Cu(413) – – ? ∼300 – 4.00 CPD [964]

Cu(018) – – ≤10−10 ∼300 – 4.70 CPD [952]

Cu(???)/W Cu – <1 × 10−9 ∼300 – 4.54 ± 0.01 PE [2313,2317]

Cu – – – – – 3.20 TC [2493]
Cu – – – – – 3.21 TC [2493]
Cu – – – – – 3.24 TC [1150]
Cu – – – – – 3.32 TC [521]
Cu – – – – – 3.65 TC [475]
Cu – – – – – 3.65 TC [2629]
Cu – – – – – 3.66 TC [2474]
Cu – – ? ∼1350 – 3.85 TE [3385]
Cu/W(100) Cu – <2 × 10−10 ∼300 – 3.9* CPD [1519]
Cu/Ti Cu – 3 × 10−11 77 (400) – 3.92 FE [2424,3749]
Cu – – ? ∼300 – 3.95 ± 0.02 CPD [2544]
Cu/Ti Cu – 3 × 10−11 77 – 3.96 ± 0.04 FE [2424,3749]
Cu – – – – – 4.0 TC [2456]
Cu – – ∼10−10 ∼300 – 4.0 PE [1661]
Cu – – ? ∼300 – 4.05 ± 0.04 PE [3394]
Cu/? Cu – ? ∼300 – 4.07 PE [2460]
Cu – – ? ? – 4.1 TE [3402]
Cu/Ti Cu – 3 × 10−11 77 (800) – 4.15 FE [2424]
Cu/W(100) Cu – <2 × 10−10 78 (600) – 4.16 FE [2255]
Cu – – ∼10−6 ∼300 – 4.18 PE [3389,3394]
Cu/glass Cu – <1 × 10−10 78 – 4.19 PE [414,2728]
Cu – – ? (N2) ∼300 – 4.19 CPD [2634]
Cu – – – – – 4.2 TC [944]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Cu/W Cu – 4 × 10−10 77 – 4.2 FE [2586]
Cu – – ? ∼300 – 4.22 CPD [2626]
Cu – – – – – 4.22 TC [3352]
Cu – – ∼10−7 ∼300 (753) – 4.22 ± 0.01 CPD [2627]
Cu/Ir Cu – ? 78 (∼550) – 4.23 FE [2189]
Cu/W(310) Cu – <2 × 10−10 78 (550) – 4.23 FE [2253]
Cu – – 4 × 10−9 673 – 4.23 ± 0.08 PE [1116]
Cu/W(310) Cu – <2 × 10−10 78 (650) – 4.24 FE [2253]
Cu/Mo(100) Cu – <2 × 10−10 ∼300 (≤965) – 4.24* CPD [3121]
Cu – – ∼4 × 10−9 533 – 4.24 ± 0.07 PE [1116]
Cu – – ∼10−10 ∼300 – 4.25 CPD [2426]
Cu – – ? ∼300 – 4.25 ± 0.01 PE [4190]
Cu/V(100) Cu – <8 × 10−11 ∼300 – 4.25 ± 0.07* PE [3380]
Cu – – ? ? – 4.26 TE [1362]
Cu – – – – – 4.26 TC [1626]
Cu – – – – – 4.26 TC [2914]
Cu – – – – – 4.3 TC [706]
Cu/Ru(0001) Cu – ∼1 × 10−10 100 – 4.3 CPD [2159]
Cu/Pt(111) Cu – ∼10−10 293 – 4.3 PE [3138]
Cu/GaP – – – – – 4.30 TC [1653]
Cu/Ti Cu – 3 × 10−11 77 (?) – 4.31 FE [2424]
Cu/W(111) Cu – <2 × 10−10 ∼300 (?) – 4.32 FE [2831]
Cu/W Cu – 5 × 10−10 78 (700) – 4.32 ± 0.01 FE [1673,2238]
Cu/quartz Cu – ≤5 × 10−10 78 – 4.33 ± 0.01 PE [435]
Cu – – – 0 – 4.34 TC [4419]
Cu – – – – – 4.35 TC [1885]
Cu/W(100) Cu – <2 × 10−10 ∼300 (?) – 4.35 FE [2831]
Cu/Ni Cu – 4 × 10−10 ∼300 – 4.35 ± 0.16* CPD [3367]
Cu/W Cu – <2 × 10−10 ∼300 (?) – 4.36 FE [2831]
Cu – – – – – 4.37 TC [1976]
Cu – – ? ∼1200 – 4.38 TE [1944]
Cu/W(112) Cu – <2 × 10−10 ∼300 (?) – 4.38 FE [2831]
Cu – – – – – 4.39 TC [3318]
Cu/glass Cu – <10−9 90 – 4.39 PE [1957]
Cu/glass Cu – <10−8 78 – 4.39 ± 0.02 CPD [1646]
Cu/glass Cu – <10−9 77–90 – 4.395 PE [3052]
Cu144 – – ∼8 × 10−8 ∼1350 – 4.4 TE [1465]
Cu/W(100) Cu – <2 × 10−10 78 – 4.4 FE [2255]
Cu/glass88 Cu – <10−9 ∼300{77} – 4.4 CPD [1526]
Cu/Mo(100) Cu – <2 × 10−10 ∼300 – 4.4* CPD [3121]
Cu/W(100) Cu – <2 × 10−10 78 (850) – 4.40 FE [2253]
Cu/glass369 Cu – ∼10−10 77 – 4.40 PE [2133,2155]
Cu/glass Cu – ∼10−10 90 – 4.40 PE [2763,3046]
Cu – – ∼10−9 ∼1100–1300 (4.42) 4.41 ± 0.02 TE [179,3425]
Cu – – 4 × 10−9 296 – 4.41 ± 0.03 PE [1116]
Cu – – ≤10−9 ∼1100–1250 – 4.415 ± 0.03 TE [650]
Cu – – ? ∼300 – 4.42* CPD [3621]
Cu – – ? (Cs) ∼1100–1250 – 4.42 TE [650,3413]
Cu Cs Cs+ ? 1073 4.42 (4.41 ± 0.02) PSI [179,3425]
Cu – – ? ∼300 – 4.42 ± 0.04 PE [1250]
Cu/W(112) Cu – <2 × 10−10 78 (700) – 4.43 FE [2253]
Cu – – ∼10−10 ∼300 – 4.43 PE [724]
Cu/Si – – – – – 4.43 TC [1653]
Cu – – – – – 4.45 TC [1399]
Cu – – ? ∼300 – 4.45 PE [4278]
Cu – – ∼10−9 ∼1100–1200 – 4.45 ± 0.05 TE [650,3419]
Cu – – 2 × 10−7 (O2) ∼1100–1200 – 4.45 ± 0.05 TE [3419]
Cu – – – – – 4.46 TC [1645]
Cu/Si – – – – – 4.46 TC [1653]
Cu – – 1 × 10−5 ∼300 – 4.46 CPD [1883]
Cu – – ? ∼300 – 4.46 CPD [2297]
Cu/W(110) Cu – <2 × 10−10 78 (750) – 4.46 FE [2253]
Cu/glass Cu – ? ∼300 – 4.46 ± 0.03 CPD [243]
Cu/Ni145 – – ? ∼80 – 4.47 CPD [2294]
Cu – – ≤1 × 10−10 ∼300 – 4.47 CPD [2198]
Cu – – ? ∼300 – 4.48 CPD [1883]
Cu – – – – – 4.48 TC [4441]
Cu/W(110) Cu – <2 × 10−10 78 (600) – 4.48 FE [2253]
Cu/quartz Cu – ≤5 × 10−10 293 – 4.48 ± 0.02 PE [435]
Cu146 – – ∼10−6 ∼300 – 4.48 ± 0.06* CPD [2087]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Cu – – – – – 4.49 TC [3515]
Cu – – ∼10−7 ∼300 (1173) – 4.49 ± 0.02 CPD [2627]
Cu/ZnO(0001)409 Cu – 4 × 10−10 ∼300 – 4.5 TCS [2679]
Cu – – 1 × 10−9 ∼300 – 4.5 PE [3511]
Cu – – – – – 4.5 TC [1993]
Cu – – – – – 4.5 TC [2583]
Cu/Cu,Ag,Au Cu – 2 × 10−9 ∼300 – 4.5 PE [1155]
Cu/W(110)141 Cu – <2 × 10−10 ∼300{800} – 4.5 CPD [1519]
Cu/Al(100) Cu – 1 × 10−10 ∼300 – 4.5 PE [1572]
Cu/W(100) Cu – 5 × 10−10 400, 450 – 4.5 FE [3129]
Cu/W(110) Cu – ≤7 × 10−11 ∼300 (≤1200) – 4.5 CPD [2388]
Cu/W(100) Cu – <2 × 10−10 78 (700) – 4.5 FE [1674]
Cu – – 2 × 10−9 ∼300 – 4.5 PE [1155]
Cu – – 2 × 10−11 ∼300 – 4.5 ± 0.1 PE [1251]
Cu – – – – – 4.50 TC [2629]
Cu – – <5 × 10−8 ∼1150–1350 – 4.50 TE [1466]
Cu – – ? ∼300 – 4.5 ± 0.1 PE [1461]
Cu – – 2 × 10−11 ∼300 – 4.5 ± 0.1 PE [1251]
Cu/Mo(110) Cu – 5 × 10−11 ∼300–750 – 4.5 ± 0.1 CPD [3287]
Cu/graphite Cu – ? ∼1200–1300 – 4.50 ± 0.02 TE [2236]
Cu – – – – – 4.50 ± 0.05 TC [3358]
Cu – – – – – 4.51 TC [3515]
Cu – – – – – 4.51 TC [3318]
Cu – – ≤1 × 10−10 ∼300 – 4.51 CPD [2198]
Cu/W(110) Cu – <2 × 10−10 78 (522) – 4.51 FE [2253]
Cu463 – – ? ∼300 – 4.52 CPD [931,2547]
Cu/glass Cu – <1 × 10−10 78 (293) – 4.52 PE [414,2722,2728]
Cu/glass Cu – ∼10−8 ∼300 – 4.52 ± 0.04 CPD [133]
Cu – – 5 × 10−10 ∼300 – 4.53 AI38 [4027]
Cu/glass Cu – 5 × 10−11 ∼300 – 4.53 ± 0.05 CPD [1071]
Cu/Si(111) Cu – ∼10−10 ∼300 – 4.54 PE [1801]
Cu – – ? ? – 4.55 TE [1764]
Cu – – – – – 4.55 TC [3264,3265]
Cu/TaN/Ta – – ? ∼300 – 4.55 ± 0.02 PE [1238,4210]
Cu/Ir(100)139 Cu – ? 78 (380) – 4.55 ± 0.02 FE [2189]
Cu/Si(111) Cu – ∼10−10 ∼300 – 4.55 ± 0.05 CPD [613,636,3270]
Cu/V(100) Cu – <8 × 10−11 ∼300 – 4.55 ± 0.05 PE [3380]
Cu/glass Cu – 5 × 10−11 ∼300 – 4.55 ± 0.06* CPD [1071]
Cu – – <5 × 10−8 ∼1150–1350 – 4.56 TE [1466]
Cu/glass Cu – 5 × 10−11 ∼300 – 4.57 ± 0.07* CPD [1071]
Cu/W(110) Cu – <2 × 10−10 90 – 4.58 CPD [3983,4107]
Cu/W(110) Cu – <2 × 10−10 78 (600) – 4.58 FE [2253]
Cu/W(110)147 Cu – <2 × 10−10 ∼300 (?) – 4.58 ± 0.05* FE [2831]
Cu/Mo(110) Cu – ∼10−10 ∼300 – 4.6 CPD [3679]
Cu/W142 Cu – ≤2 × 10−10 ∼300 – 4.6* CPD [2598]
Cu/Ru(0001) Cu – ∼1 × 10−10 100 (900) – 4.6 CPD [2159]
Cu – – – – – 4.6 TC [3556]
Cu/? Cu – ∼10−5 ∼300 – 4.6 CPD [1376]
Cu/W(110) Cu – ? 90 (850) – 4.6 CPD [1701,1706]
Cu/quartz Cu – ≤5 × 10−10 293 (∼550) – 4.60 ± 0.02 PE [435]
Cu/Pt(111) Cu – ∼10−10 293 – 4.60 ± 0.08* PE [3138]
Cu/Ni Cu – <10−10 ∼300 (∼370) – 4.61 PE [1152]
Cu/glass Cu – <10−10 ∼300 (∼370) – 4.61 ± 0.02 PE [1117]
Cu/W Cu – ≤5 × 10−8 ∼300 – 4.61 ± 0.04 CPD [690]
Cu144 – – 8 × 10−8 1356 (m.p.) – 4.62 TE [1465,1466]
Cu – – – – – 4.62 TC [339]
Cu/W(110) Cu – <1 × 10−10 ∼300 – 4.62 ± 0.03 FE [2054]
Cu/glass Cu – 5 × 10−11 ∼300 – 4.62 ± 0.07* CPD [1071]
Cu/Au(111) – – – – – 4.63 TC [3217]
Cu – – 6 × 10−3 ∼300 – 4.63 ± 0.05 PE [2079,2080]
Cu/glass369 Cu – ∼10−10 77 (323) – 4.64 PE [2133,2155]
Cu/glass148 Cu – ? 273 – 4.64 PE [3075]
Cu/steel Cu – <6 × 10−9 ∼300 – 4.64 ± 0.02 CPD [1540]
Cu/W Cu – <5 × 10−8 ∼300 – 4.64 ± 0.07 CPD [2570]
Cu – – – – – 4.647 TC [2649]
Cu/Au(100) – – – – – 4.65 TC [3217]
Cu – – – – – 4.65 TC [3016]
Cu – – 1 × 10−10 ∼300 – 4.65 PE [2907]
Cu/glass148 Cu – ? 77 – 4.65 PE [3075]
Cu – – <2 × 10−10 90 – 4.65 CPD [4107]
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Cu/W(110) Cu – <2 × 10−10 90 – 4.65 CPD [3983]
Cu/quartz Cu – ∼10−10 ∼300 – 4.65 ± 0.05 PE [304]
Cu/W(100) Cu – ≤10−10 78 – 4.66 FE [356]
Cu/glass Cu – <10−10 ∼300 (∼470) – 4.66 ± 0.01 PE [1117]
Cu/W(112) Cu – ? 77, 650 – 4.66 ± 0.01 FE [4319,4320]
Cu/W(110) Cu – <1 × 10−10 ∼300 – 4.66 ± 0.03 FE [2054]
Cu/glass Cu – <10−9 90 (343) – 4.67 PE [2096]
Cu/Ni Cu – <10−10 ∼300 (∼470) – 4.68 PE [1152]
Cu – – – – – 4.69 TC [3476]
Cu – – – – – 4.69 TC [298]
Cu/Al(111) Cu – 1 × 10−10 ∼300 – 4.7 PE [1572]
Cu/Ni(100) – – – – – 4.7 TC [3556]
Cu/Ag(110) Cu – <4 × 10−9 ∼300 – 4.7 CPD [2749]
Cu/W(110) – – – – – 4.7* TC [2975]
Cu – – ? (H2) ∼300 – 4.70 PE [2207]
Cu – – – – – 4.70 TC [3267]
Cun(n → ∞) – – ? ∼300 – 4.70 IP, TC [4197]
Cu – – ∼1 × 10−6 ∼300 – 4.71 CPD [2742]
Cu/glass – – ∼10−10 90 – 4.71 ± 0.03 PE [3048]
Cu – – ? ∼300 – 4.71 ± 0.05 PE [2903]
Cu – – 1 × 10−9 ∼300 – 4.73 CPD [1252]
Cu/Co/Cu(100) – – – – – 4.74 TC [2897]
Cu/W(112) Cu – ? ∼300 – 4.74 FE [4319]
Cu – – 3 × 10−11 ∼300 – 4.75 FE [2227]
Cu/Mo(110) Cu – 2 × 10−10 ∼300 – 4.75 PE [3288]
Cu – – – – – 4.76 TC [3637]
Cu – – ? ∼300 – 4.76 PE [3027]
Cu/Si(111) Cu – <4 × 10−10 ∼300 – 4.76 PE [3282]
Cu463 – – ? ∼300 – 4.76 CPD [931,2547]
Cu/Mo(110) Cu – <6 × 10−11 ∼300 – 4.79* CPD [3293]
Cu/W(110)141 Cu – <2 × 10−10 ∼300 – 4.8 CPD [1519,3588]
Cu/Ru(0001) Cu – ≤5 × 10−10 400–640 – 4.8* CPD [3705,3706,3731]
Cu – – ? ∼300 – 4.8 ± 0.2 CPD [3867]
Cu(fp)149 – – <10−9 ∼300 – 4.80 ± 0.1 PE [3190]
Cu/Co/Co(0001) – – – – – 4.86 TC [3490]
Cu146 – – ∼10−6 ∼300 – 4.86 ± 0.01 CPD [2087]
Cu/SiO2/Si Cu – ? ∼300 (570) – 4.87 PE [2355]
Cu – – ? ∼1350 – 4.87 PE [4139]
Cu/glass Cu – <10−9 90, 293 – 4.89 PE [3046]
Cu – – – – – 4.89 TC [3476]
Cu/Co/Cu(100) – – – – – 4.89 TC [2897]
Cu/W(110) Cu – ? 90 (∼300) – 4.9 CPD [1701,1706]
Cu/Pt(100) – – – – – 4.90 TC [2530]
Cu/W(110) Cu – <2 × 10−10 90 – 4.90 CPD [3983]
Cu/glass Cu – <10−9 90 (380) – 4.92 PE [3045]
Cu – – – – – 4.93 TC [4031]
Cu/glass Cu – ∼10−10 90 (348) – 4.94 PE [2763,3046]
Cu – – – – – 4.95 TC [1066]
Cu – – – – – 4.95 TC [4031]
Cu58 – – ? ∼300 – 4.99 CPD [2550]
Cu/Pt(100) – – – – – 5.02 TC [3382]
Cu/Nb(110) – – 7 × 10−11 ∼300 – 5.05 PE [2986]
Cu/Mo(110) Cu – <6 × 10−11 ∼300 – 5.08 CPD [3293]
Cu4(cluster) – – – – – 5.10 TC [3205]
Cu/glass Cu – <10−9 90 (333) – 5.11 PE [1957]
Cu/Co/Cu(100) – – – – – 5.14 TC [950]
Cu4(cluster) – – – – – 5.16 TC [3205]
Cu/Pt(100) – – – – – 5.16 TC [3382]
Cu/W(110)147 Cu – <2 × 10−10 ∼300 (?) – 5.20 FE [2831]
Cu – – – – – 5.24 TC [3476]
Cu – – – – – 5.3 TC [1432]
Recommended – – – – – 4.51 ± 0.04 – –

Liquid (𝑻 > 𝟏𝟑𝟓𝟔 𝐊)
Cu144 – – 8 × 10−8 ∼1356 – 4.5 ± 0.1 TE [1465,1466]
Cu – – ? ∼1360 – 4.75 PE [4139]
Cu – – <5 × 10−8 1356–1520 – 5.3 TE [1466]
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30. Zinc Zn

hcp
Zn(0001) – – – – – 3.0 TC [3137]
Zn(0001) – – – – – 3.24 TC [3211]
Zn(0001) – – – – – 3.500 TC [2914]
Zn(0001) – – 2 × 10−7 ∼300 – 3.56 PE [1758]
Zn(0001)150 – – 10−9 45–290 – 3.63 PE [2591,2601]
Zn(0001) – – – – – 3.65 TC [1030,1089]
Zn(0001) – – ? ∼300 – 3.7 PE [2264]
Zn(0001) – – – – – 3.74 TC [1089]
Zn(0001) – – – – – 3.77 TC [3467]
Zn(0001) – – – – – 3.79 TC [3004]
Zn(0001) – – – – – 3.83 TC [231,556]
Zn(0001) – – – – – 3.92 TC [4461]490

Zn(0001) – – – – – 4.00 TC [1089]
Zn(0001) – – – – – 4.07 TC [1030]
Zn(0001) – – – – – 4.075 TC [4460]490

Zn(0001) – – – – – 4.15 TC [1159,3067]
Zn(0001) – – – – – 4.15 TC [475,1095]
Zn(0001) – – – – – 4.19 TC [3004]
Zn(0001) – – – – – 4.2 TC [1088]
Zn(0001) – – – – – 4.20 TC [593]
Zn(0001) – – – – – 4.21 TC [4461]490

Zn(0001) – – – – – 4.24 TC [553]
Zn(0001) – – ? 100 – 4.25 CPD [2370,2633]
Zn(0001) – – ∼10−7 ∼300 – 4.26 ± 0.01 PE [2298]
Zn(0001) – – – – – 4.30 TC [556]
Zn(0001) – – ∼10−11 ∼300 – 4.4 PE [2137]
Zn(0001) – – – – – 4.43 TC [4005]
Zn(0001) – – – – – 4.442 TC [4460]490

Zn(0001) – – – – – 4.7 TC [2375]
Zn(0001) – – – – – 4.81 TC [1087]
Zn(0001) – – – – – 4.85 TC [1095]
Zn(0001) – – ≤1 × 10−10 70 – 4.9 ± 0.6 CPD [1508]
Zn(0001) – – – – – 6.88 TC [321]
Recommended – – – – – 4.35 ± 0.28 – –

Zn(1010) – – – – – 5.04 TC [4005]
Zn(1010) – – – – – 6.57 TC [321]

Zn(1124) – – – – – 5.76 TC [321]

Zn – – ? ∼300 – 3.08 PE [2460]
Zn – – ? ∼300 – 3.09 ± 0.01 PE [2703]
Zn – – ? ∼300 – 3.1 PE [1454]
Zn – – – – – 3.14 TC [1744]
Zn – – – – – 3.2 TC [944]
Zn – – ? 648 – 3.24 PE [1454]
Zn – – ? ∼300 – 3.28 ± 0.01 PE [2703]
Zn – – 2 × 10−7 ∼300 – 3.32 PE [1758]
Zn – – – – – 3.4 TC [2456]
Zn – – ? ∼300 – 3.40 CPD [2761]
Zn/Pt(100) – – – – – 3.45 TC [3168]
Zn/Au(100) – – – – – 3.45 TC [3168]
Zn – – – – – 3.50 TC [521]
Zn – – – – – 3.51 TC [231]
Zn – – ? ∼300 – 3.52 PE [4278]
Zn – – 2 × 10−7 ∼300 – 3.57 PE [1758]
Zn – – 6 × 10−3 ∼300 – 3.60 ± 0.08 PE [2079,2080]
Zn – – – – – 3.62 TC [1924]
Zn – – ? ∼300 – 3.66 CPD [2297]
Zn – – – – – 3.68 TC [3467]
Zn – – – 0 – 3.69 TC [4419]
Zn – – ? ∼300 – 3.69 ± 0.09 CPD [2544]
Zn – – ? ∼300 – 3.72 PE [4159]
Zn – – – – – 3.73 TC [231]
Zn – – <10−6 ∼300 – 3.74 PE [2919]
Zn – – – – – 3.77 TC [230]
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Zn – – – – – 3.77 TC [3467]
Zn – – – – – 3.79 TC [3168]
Zn – – – – – 3.8* TC [1955]
Zn – – – – – 3.80 TC3 [475]
Zn – – – – – 3.80 TC [3352]
Zn – – ? (N2) ∼300 – 3.80 ± 0.02 CPD [2624,4226,4232]
Zn – – ? ∼300 – 3.84* CPD [3621]
Zn – – ? ∼300 – 3.85 ± 0.01 PE [3394]
Zn – – ∼10−6 ∼300 – 3.89 PE [3389,3394]
Zn – – – – – 3.93 TC [2629]
Zn – – – – – 3.95 TC [1399]
Zn/ins/Al47 Zn – ? ∼300 – 3.98 ± 0.09 CPD [2028]
Zn – – 1 × 10−5 ∼300 – 4.01 CPD [1883]
Zn – – – – – 4.02 TC [1924]
Zn – – – – – 4.04 TC [3318]
Zn – – – – – 4.07 TC [1901]
Zn – – – – – 4.09 TC [553]
Zn – – – – – 4.09 TC [3477]
Zn – – – – – 4.1 ± 0.09 TC [1990]
Zn – – – – – 4.10 TC [1626,2914]
Zn/glass151 Zn – ? ∼300 – 4.11 ± 0.03 CPD [1370]
Zn – – – – – 4.12 TC [738]
Zn/brass Zn – ≤10−8 ∼300 – 4.16 ± 0.12 PE [2848]
Zn – – – – – 4.18 TC [3318]
Zn – – – – – 4.2 TC [1993]
Zn/steel Zn – ≤10−10 ∼300 – 4.2 ± 0.05 PE [1523]
Zn – – ? ∼300 – 4.2 ± 0.1 CPD [2364]
Zn/SrTiO3(100) Zn – ? ∼300 – 4.2 ± 0.1 TCS [4220]
Zn/Mo Zn – ∼2 × 10−8 ∼300 – 4.24 PE [1763]
Zn – – – – – 4.24 TC [298]
Zn152 – – ∼10−6 ∼300 – 4.27 ± 0.06* CPD [2087]
Zn/glass151 Zn – ? ∼300 – 4.28 ± 0.02 CPD [1370]
Zn – – – – – 4.3 TC [706]
Znn(n → ∞)472 – – – – – 4.3* TC [4329]
Zn:ZnO(0001) – – <5 × 10−11 ∼300 – 4.3 ± 0.1 PE [3119]
Zn – – – – – 4.30 TC [3264,3265,3267]
Zn/glass Zn – ? 90, 300 – 4.307 PE [3031]
Zn – – – – – 4.31 TC [2005]
Zn – – – – – 4.317 TC [2649]
Zn/glass Zn – <10−9 90, 293 – 4.32 PE [3046]
Zn/glass Zn – ∼10−10 77–90 – 4.33 PE [2763,3046,3052]
Zn/glass Zn – ∼10−10 77–90 (373) – 4.33 PE [2763,3046]
Zn/glass Zn – <10−9 77–90 – 4.335 PE [3031]
Zn/glass Zn – <10−9 77–90 (293) – 4.335 PE [3031]
Zn/glass Zn – <10−9 77–90 – 4.34 PE [2307,3048]
Zn/glass Zn – <10−9 77–90 (383) – 4.34 PE [2307,3048]
Zn – – – – – 4.34 TC [4418,4420]
Zn – – ∼4 × 10−9 294 – 4.35 ± 0.03 PE [1116]
Zn152 – – ∼10−6 ∼300 – 4.65 ± 0.01 CPD [2087]
Zn – – – – – 4.76 TC [3477]
Zn – – – – – 4.85 TC [2629]
Zn – – ? ∼300 – 4.9* CPD [3867]
Zn – – – – – 5.35 TC [1066]
Recommended – – – – – 4.22 ± 0.11 – –

31. Gallium Ga

fcc
Ga(100) – – – – – 3.35 TC [3211]

Ga(110) – – – – – 4.08 TC [3211]

Ga(111) – – – – – 3.79 TC [3211]

Rhombic (𝑻 < 303 K for bulk)
Ga – – – – – 3.55 TC [3211]
Ga – – – – – 3.56 TC [521]
Ga – – – – – 3.57 TC [3211]
Ga – – – – – 3.58 TC [1744]
Ga – – – – – 3.7 TC [3318]
(continued on next page)

80



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Ga – – – – – 3.8* TC [1955]
Ga – – ? ∼300 – 3.80 CPD [2297]
Ga – – – – – 3.84 TC [3211]
Ga – – – 0 – 3.84 TC [4419]
Ga – – – – – 3.94 TC [3318]
Ga/Au/Cu Ga – 5 × 10−11 10 – 4.0 PE [3130]
Ga – – – – – 4.0 ± 0.05 TC [1990]
Ga – – – – – 4.02 TC [1399]
Ga – – – – – 4.02 TC [2629]
Ga – – ? 293 – 4.07 PE [4139]
Ga – – – – – 4.1 TC [944]
Ga – – – – – 4.1 TC [2583]
Ga – – ? ∼300 – 4.12 PE [3027]
Ga – – – – – 4.16 TC [298]
Ga – – ? 187 – 4.19 PE [4249]
Ga – – – – – 4.2 TC [706]
Ga – – – – – 4.20 TC [1885]
Ga – – ∼10−7 ∼300 – 4.20 ± 0.03 CPD [2767]
Ga – – – – – 4.21 TC [4418]
Ga – – – – – 4.22 TC [1613]
Ga – – – – – 4.25 TC [3267]
Ga/Cu Ga – ∼10−11 20 – 4.3 PE [1111]
Ga – – – – – 4.3 TC [1645]
Ga/Au/Cu Ga – 5 × 10−11 <10 – 4.3 ± 0.1 PE [2267]
Ga – – – – – 4.30 TC [3264,3265]
Ga – – ? ∼290 – 4.31 PE [4139]
Ga/Si(111) Ga – <8 × 10−11 ∼300 – 4.33 PE [1904]
Ga – – 10−6 ∼300 – 4.34 ± 0.06 CPD [2942]
Ga – – ? 273 – 4.35 ± 0.03 PE [2770,2771]
Ga/Si(111) Ga – <8 × 10−11 ∼300 – 4.36 PE [1904]
Ga – – – – – 4.36 TC [1901]
Ga – – <10−10 273 – 4.36 ± 0.03 PE [2026]
Ga/Si(111) Ga – 5 × 10−11 ∼300 – 4.37 ± 0.1 PE [2623,2625]
Ga/glass Ga – <10−9 90 – 4.40 PE [3046]
Ga/Al(100) – – – – – 4.41 TC [1932]
Ga – – – – – 4.44 TC [2005]
Ga/glass Ga – <10−9 90 (<273) – 4.45 PE [2763,3046]
Ga/glass Ga – <10−9 293 – 4.45 PE [3052]
Ga/Si(111) Ga – <4 × 10−10 ∼300 – 4.45 PE [1566]
Ga/W(110) Ga – ∼10−11 20 – 4.5 FE [2218]
Ga/W(112) Ga – ∼10−11 20 – 4.5 FE [2218]
Ga/Al(100) – – – – – 4.57 TC [1932]
Ga/W(111) Ga – ∼10−11 20 – 4.6 FE [2218]
Ga/Mo(111) Ga – ∼10−11 20 – 4.6 FE [2218]
Ga/W Ga – ? 78 (?) – 4.65 ± 0.1 FE [2725]
Ga/W(114) Ga – ∼10−11 20 – 4.7 FE [2218]
Ga/Mo(112) Ga – ∼10−11 20 – 4.7 FE [2218]
Ga/W Ga – <2 × 10−10 77 (≤500) – 4.75 FE [2727]
Ga/W Ga – ? 78 (?) – 4.75 ± 0.1 FE [2725]
Ga/Mo(110) Ga – ∼10−11 20 – 4.9 FE [2218]
Ga – – – – – 4.96 TC [2629]
Recommended – – – – – 4.27 ± 0.06 – –

Liquid (𝑻 > 𝟑𝟎𝟑 𝐊)
Ga – – ? 323 – 4.30 ± 0.01 PE [2770,2771]
Ga – – <10−10 323 – 4.30 ± 0.02 PE [2026]
Ga – – ≤10−9 473 – 4.31 SP [2349]
Ga – – 8 × 10−10 320–820 – 4.33 ± 0.05 PE [2726]
Ga – – ≤10−9 473 – 4.35 ± 0.05 PE [2345,2349,2353]
Ga – – ? 313 – 4.37 PE [4139]
Ga – – ≤3 × 10−9 >300 – 4.39 ± 0.06 CPD [1542,3106]
Recommended – – – – – 4.33 ± 0.03 – –

32. Germanium Ge

Diamond structure
Ge(100) – – <2 × 10−10 ∼300 – 4.46484 FE [3539]
Ge(100) – – ? ∼300 (770) – 4.55 CPD [1768]
Ge(100) – – ? ∼300 (870) – 4.55 CPD [1768]
Ge(100) – – – – – 4.649 TC [3499,3500]
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Ge(100) – – ? ? – 4.7 ? [1857]
Ge(100) – – ? ∼300 (620) – 4.72 CPD [1768]
Ge(100) – – ? ∼300 – 4.75 CPD [1768]
Ge(100) – – ≤2 × 10−8 ∼300 – 4.76 ± 0.3 CPD [1382]
Ge(100) – – 5 × 10−10 ∼300 – 4.77 ± 0.015 CPD [1769,1770]
Ge(100) – – ∼10−11 ∼300 – 4.9 FE [3097]
Ge(100) – – ∼10−11 ∼300 – 5.0 FE [3097]
Recommended – – – – – 4.68 ± 0.08 – –

Ge(110)436 – – ≤2 × 10−8 ∼300 – 4.72 ± 0.3 CPD [1382]
Ge(110)n – – 5 × 10−10 ∼300 – 4.73 ± 0.015 CPD [1770]
Ge(110) – – ∼10−10 ∼300 – 4.77 CPD [3696]
Ge(110) – – 5 × 10−10 ∼300 – 4.78 ± 0.015 CPD [1770]
Ge(110) – – <2 × 10−10 ∼300 – 4.85484 FE [3539]
Ge(110) – – ∼10−10 ∼300 – 4.88 PE [3696]
Recommended – – – – – 4.79 ± 0.06 – –

Ge(111) – – ∼10−6 ∼900–1050 – 4.01 ± 0.05 TE [3272]
Ge(111) – – ∼10−6 ∼900–1050 – 4.07 ± 0.05 TE [3272]
Ge(111) – – ? ∼1070–1170 – 4.1 TE [1660]
Ge(111)n153 – – ∼10−9 ∼300 – 4.12 PE [2093]
Ge(111) – – – – – 4.5 TC [2213]
Ge(111)n154 – – 4 × 10−10 ∼300 (≤470) – 4.5 PE [2620]
Ge(111)n – – 5 × 10−11 ∼300 (623) – 4.53 ± 0.02 PE,

CPD
[2023,2029]

Ge(111) – – – – – 4.548 TC [4424]
Ge(111) – – – – – 4.569 TC [4425]
Ge(111)p – – 2 × 10−10 ∼300 (450) – 4.61 CPD [1969]
Ge(111)n – – 5 × 10−11 ∼300 – 4.65 ± 0.02 PE, CPD [2023,2029,3109,

3819]
Ge(111)n154 – – 4 × 10−10 ∼300 (570) – 4.7 PE [2620]
Ge(111) – – ∼10−10 ∼300 – 4.7 CPD [2948]
Ge(111) – – ≤2 × 10−8 ∼300 – 4.70 ± 0.3 CPD [1382]
Ge(111)p – – 5 × 10−11 ∼300 – 4.72 ± 0.02 PE, CPD [2029,3819]
Ge(111)421 – – <2 × 10−9 ∼300 – 4.73 ± 0.05 CPD [1991]
Ge(111)p – – 2 × 10−10 ∼300 (450) – 4.74 CPD [1969]
Ge(111)n153 – – ∼10−9 ∼300 – 4.75 PE [2093]
Ge(111)n – – 5 × 10−10 ∼300 – 4.79 ± 0.015 CPD [1769,1770]
Ge(111)p – – ? ∼300 – 4.8 FE [2955]
Ge(111)p – – ≤10−9 ∼300 – 4.8 ± 0.1 FE [1496]
Ge(111)p155 – – 2 × 10−10 ∼300 – 4.80 PE [1971]
Ge(111)p155 – – 2 × 10−10 ∼300 – 4.80 ± 0.05 CPD [1969,1971]
Ge(111)/W Ge – 2 × 10−10 480 – 4.85 ± 0.05 FE [2248]
Ge(111)n154 – – 4 × 10−10 ∼300 – 4.9 PE [2620]
Ge(111) – – – – – 5.1 TC [3151]
Ge(111) – – – – – 5.4 TC [3151]
Ge(111)421 – – <2 × 10−9 ∼300 – 5.45 ± 0.05 CPD [1991]
Recommended – – – – – 4.60 ± 0.09 – –

Ge(112) – – – – – 4.72 TC [1627]
Ge(112) – – <2 × 10−10 ∼300 – 4.94 FE [3539]

Ge(113) – – <2 × 10−10 ∼300 – 4.88 FE [3539]

Ge(114) – – <2 × 10−10 ∼300 – 4.90 FE [3539]

Ge(122) – – <2 × 10−10 ∼300 – 4.90 FE [3539]

Ge(133) – – <2 × 10−10 ∼300 – 4.85 FE [3539]

Ge(155) – – <2 × 10−10 ∼300 – 4.80 FE [3539]

Ge(???)p – – ? ∼300 – 4.87 PE [1229]
Ge(???) – – <10−10 ∼300 – 5.1 ± 0.1 PE [3333]

Ge/graphite461 – – <5 × 10−8 670–1230 – 2.4–3.5 TE [1466]
Gen – – ? 273 – 3.52 PE [3688]
Ge/Nb Ge – <10−10 ∼300 – 3.55 FE [3796]
Gen – – ? 493 – 3.62 PE [3688]
Ge – – ? ∼300 (?) – 3.82 ± 0.05 PE [3577]
(continued on next page)

82



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Ge – – ? 900 – 3.97 TE [3274]
Ge – – – – – 4.00 TC [298]
Ge – – ? ∼300 – 4.00 ± 0.05 PE [3577]
Ge/W(111) Ge – 1 × 10−8 ∼1550–1650 – 4.1 TE [1499]
Gep – – ? 613–943 – 4.10 ± 0.05 PE [3688]
Ge – – ? 1050 – 4.16 TE [3274]
Ge – – ? ∼300 – 4.16 ± 0.02 PE [3394]
Ge – – ∼10−6 ∼300 – 4.29 PE [3389,3394]
Gen – – ? 298 (903) – 4.32 PE [3688]
Gen – – – – – 4.33 ± 0.05 TC [3860]
Gep – – ? 298 – 4.34 ± 0.05 PE [3688]
Ge – – ? ∼300 (?) – 4.35 PE [1470]
Gep – – ? 298 (≤943) – 4.36 PE [3688]
Ge – – – – – 4.4* TC [1955]
Gen – – ∼10−10 ∼300 – 4.43 ± 0.05 FE [3069]
Ge(nanowire)71 – – ? ∼300 – 4.43 PE [2200]
Ge – – ? ∼300 – 4.45 PE [1470]
Ge/W(110) Ge – 1 × 10−8 1550–1650 – 4.5 TE [1499]
Gen – – <2 × 10−6 523 – 4.5 CPD [1310]
Gen – – <2 × 10−6 1023 – 4.5 CPD [1310]
Ge – – ? ∼300 – 4.50 CPD [2297]
Ge – – – – – 4.59 TC [3318]
Gep – – – – – 4.65 ± 0.03 TC [3860]
Ge – – ? ∼300 – 4.73 PE [3027]
Ge/Mo Ge – <3 × 10−8 ∼300 – 4.73 ± 0.07 PE [1371]
Ge – – ? ∼300 – 4.77 PE [3387]
Ge – – ≤5 × 10−8 ∼300 – 4.77 ± 0.04 CPD [3658]
Ge – – 5 × 10−10 ∼300 – 4.78 ± 0.015 CPD [1770]
Ge – – – – – 4.8 TC [1993]
Ge – – – – – 4.8 TC [706]
Ge – – ≤10−10 ∼300 – 4.8 FE [1502]
Ge/W Ge – ? ∼300 – 4.8 FE [3594]
Ge/W Ge – ? ∼300 – 4.8 CPD [2577]
Ge/W Ge – ∼10−9 ∼300 – 4.85 ± 0.05 CPD [1954]
Ge/W Ge – 2 × 10−10 480 – 4.85 ± 0.05 FE [2248]
Gep – – ∼10−10 ∼300 – 4.90 ± 0.05 FE [3069]
Ge/W Ge – ≤10−10 ∼300 – 4.90 ± 0.06 FE [3545]
Ge/Ti/W Ge – ≤10−10 ∼300 – 4.90 ± 0.06 FE [3545]
Ge/W Ge – ∼10−10 ∼300 (∼380) – 4.95 ± 0.05 FE [2588]
Ge/glass Ge – <10−9 77–90 – 4.98 PE [2311]
Ge/glass Ge – 2 × 10−10 77 – 4.98 ± 0.02 PE [3052,3056,3059,

3060]
Ge/W Ge – ∼10−9 ∼300 – 5.0 FE [3554]
Ge/W Ge – ? ∼300 (400) – 5.0 FE [3594]
Ge/glass Ge – 5 × 10−10 273 (293) – 5.00 ± 0.02 PE [3056]
Ge/W Ge – 2 × 10−10 460 – 5.01 ± 0.02 FE [2248]
Ge/glass Ge – 2 × 10−10 273 (≤373) – 5.02 ± 0.02 PE [3059,3060]
Ge/glass Ge – 2 × 10−10 77 (293) – 5.03 ± 0.02 PE [3052,3059,3060]
Ge/glass Ge – <10−9 77 (293) – 5.04 PE [2311]
Ge/glass Ge – 5 × 10−10 293 (373) – 5.04 ± 0.02 PE [3056]
Ge/W(110) Ge – ≤1 × 10−9 293 – 5.05 CPD [1520]
Ge/glass Ge – 5 × 10−10 77 (293) – 5.05 ± 0.03 PE [3056]
Ge – – – – – 5.08 TC [2554]
Ge/W Ge – ? ∼300 (1130) – 5.1 ± 0.05 FE [3553,3555,3903]
Ge/W Ge – ≤10−9 ∼300 (380) – 5.15 ± 0.05 FE [3063]
Ge/W Ge – <10−9 ∼300 (≤400) – 5.2 FE [2580,2584,2596]
Ge/O/W Ge – <10−9 ∼300 (≤400) – 5.2 FE [2596]
Ge/W Ge – ≤3 × 10−10 ∼300 – 5.2 ± 0.1 FE [3544]
Ge/Mo Ge – ≤3 × 10−10 ∼300 – 5.2 ± 0.1 FE [3544]
Ge/W Ge – 2 × 10−10 395 – 5.21 ± 0.01 FE [2248]
Gen – – ? ∼300 – 5.8 FE [1855]
Gep – – ≤10−9 77 – 6.2 FE [1395]
Gen – – ≤10−9 77 – 6.2 FE [1395]
Recommended – – – – – 4.76 ± 0.05 – –

Liquid (𝑻 > 𝟏𝟐𝟑𝟐 𝐊)
Ge/graphite461 – – <5 × 10−8 ∼1300–1500 – 3.60* TE [1466]
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33. Arsenic As

Rhombohedral (arsenic structure)
As(111) – – ∼10−9 ∼300 – 3.75 ± 0.05 PE [2952]

As – – – – – 3.23 TC [1744]
As – – – – – 4.64 TC [3318]
As/Cu,Ni,Ta,C As – ∼10−6 ∼300 – 4.66 PE [3251,3252]
As/Ni,Mo,etc. As – <5 × 10−8 ∼300 – 4.72 CPD [1375]
As – – – – – 4.77 TC [298]
As/Nb,Pt,etc. As – <5 × 10−8 ∼300 – 4.79 PE [1375]
As – – – – – 4.8 ± 0.2 TC [1903,1905]
As – – – – – 4.9* TC [1955]
As – – – – – 5.02 TC [1901]
As – – ? ∼300 – 5.11 PE [3027]
As/glass As – ∼3 × 10−7 ∼300 – 5.17 ± 0.04 PE [2950]
As – – – – – 5.2 TC [706]
As/Si(001) – – – – – 5.56 TC [2525]
Recommended – – – – – 4.85 ± 0.14 – –

34. Selenium Se

Hexagonal
Se(1010) – – ∼10−10 ∼300 – 5.9 PE [3429]
Se(1010) Se – 5 × 10−11 ∼300 – 5.9 ± 0.1 PE [4247]

Se – – ? ∼300 – 4.42 CPD [2297]
Se – – ? ∼300 – 4.62 PE [2080]
Se – – – – – 4.8 TC [3318]
Se/W(111) Se – <10−10 ∼300 – 4.80 FE [1677]
Se/W(110) Se – <5 × 10−11 ∼300 – 4.9* CPD [4102]
Se/W(100) Se – <10−10 ∼300 – 4.95 FE [1677]
Se/W Se – <10−9 ∼300 (1000) – 4.96 ± 0.03 FE [2333]
Se/W(100) Se – <5 × 10−11 ∼300 – 5.0* CPD [2852]
Se/W(100) Se – <5 × 10−11 ∼300 (≤800) – 5.1* CPD [2852]
Se/Si(111) – – – – – 5.1* TC [2062,4073]
Se/GaAs(001) Se – ? ∼300 (670) – 5.1 PE [3216]
Se/W Se – <10−10 ∼300 – 5.1 ± 0.1 FE [1677]
Se/Ni(110) H2Se – <1 × 10−10 ∼300 (∼1270) – 5.10 CPD [1110]
Se/? Se – ? ∼300 – 5.11 PE [3027]
Se/Si(100) Se – ? ∼300 – 5.16* CPD [2896]
Se/Si(111) Se – <10−10 ∼300 – 5.17 ± 0.04* CPD [4160]
Se/Ni(100) Se – <5 × 10−10 ∼300 – 5.26 ± 0.06* CPD [1790]
Se – – – – – 5.3 ± 0.3 TC [1905]
Se/Fe(100) Se – 2 × 10−11 ∼300 – 5.34 ± 0.05* CPD [4327]
Se/Ni(100) H2Se – <1 × 10−10 ∼300 (∼1270) – 5.35 CPD [1110]
Se/W Se – ∼10−9 ∼300 – 5.4 FE [394,3342,4052]
Se/Ni(111) H2Se – <1 × 10−10 ∼300 (∼1270) – 5.43 CPD [1110]
Se – – – – – 5.6 TC [706]
Se/W(112) Se – <10−10 ∼300 – 5.65 FE [1677]
Se – – – – – 5.68 TC [1901]
Se – – ? ? – 5.74 ± 0.15 PE [3659]
Se – – – – – 5.8* TC [1955]
Se/brass Se – ? ∼300 (333) – 5.86 PE [2479]
Se/ss Se – ∼10−10 ∼300 – 5.9 PE [3429]
Se – – – – – 5.9 TC [298]
Se/W(110) Se – <10−10 ∼300 – 6.3 FE [1677]
Recommended – – – – – 5.27 ± 0.18 – –

37. Rubidium Rb

bcc
Rb(100) – – – – – 2.01 TC [1254]
Rb(100) – – – – – 2.10 TC [475]
Rb(100) – – – – – 2.115 TC [4091]
Rb(100) – – – – – 2.12 TC [231]
Rb(100) – – – – – 2.15 TC [3467]
Rb(100) – – – – – 2.16 TC [2427]
Rb(100) – – – – – 2.17 TC [553]
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Rb(100) – – – – – 2.177 TC [2947]
Rb(100) – – – – – 2.22 TC [334]
Rb(100) – – – – – 2.28 TC [711]
Rb(100) – – – – – 2.3 TC [763]
Rb(100) – – – – – 2.35 TC [475]
Rb(100) – – – – – 2.36 TC [1030]
Rb(100) – – – – – 2.40 TC [472]
Rb(100) – – – – – 2.40 TC [321]
Rb(100) – – – – – 2.41 TC [3814]
Rb(100) – – – – – 2.45 TC [476,711]
Rb(100) – – – – – 2.47 TC [1095]
Rb(100) – – – – – 2.53 TC [476]
Rb(100) – – – – – 2.54 TC [1030]
Rb(100) – – – – – 2.6 TC [1088]
Recommended – – – – – 2.31 ± 0.08 – –

Rb(110) – – – – – 2.2 TC [1086]
Rb(110) – – – – – 2.2 TC [3137]
Rb(110) – – – – – 2.20 TC [475]
Rb(110) – – – – – 2.230 TC [2947]
Rb(110) – – – – – 2.243 TC [4091]
Rb(110) – – – – – 2.25 TC [593]
Rb(110) – – – – – 2.28 TC [231]
Rb(110) – – – – – 2.32 TC [334,3179]
Rb(110) – – – – – 2.32 TC [2427]
Rb(110) – – – – – 2.33 TC [3467]
Rb(110) – – – – – 2.33 TC [553]
Rb(110) – – – – – 2.40 TC [472]
Rb(110) – – – – – 2.46 TC [711]
Rb(110) – – – – – 2.48 TC [1086]
Rb(110) – – – – – 2.49 TC [1030]
Rb(110) – – – – – 2.56 TC [2402]
Rb(110) – – – – – 2.56 TC [3814]
Rb(110) – – – – – 2.57 TC [1095]
Rb(110) – – – – – 2.6 TC [763]
Rb(110) – – – – – 2.6 TC [1088]
Rb(110) – – – – – 2.63 TC [1086]
Rb(110) – – – – – 2.63 TC [476,711]
Rb(110) – – – – – 2.63 TC [2385]
Rb(110) – – – – – 2.65 TC [475]
Rb(110) – – – – – 2.70 TC [476]
Rb(110) – – – – – 2.71 TC [2835]
Rb(110) – – – – – 2.72 TC [1087]
Rb(110) – – – – – 2.72 TC [1030,1089]
Rb(110) – – – – – 2.741 TC [4069]
Rb(110) – – – – – 2.79 TC [321]
Rb(110) – – – – – 2.81 TC [3693]
Rb(110) – – – – – 2.81 TC [1089]
Rb(110) – – – – – 2.83 TC [3713]
Rb(110) – – – – – 2.84 TC [1086]
Rb(110) – – – – – 2.84 TC [1089]
Rb(110) – – – – – 2.87 TC [1086]
Rb(110) – – – – – 2.88 TC [1086]
Rb(110) – – – – – 2.9 TC [1088]
Rb(110) – – – – – 2.9 TC [1086]
Rb(110) – – – – – 2.93 TC [3693]
Rb(110) – – – – – 2.94 TC [3712]
Rb(110) – – – – – 2.94 TC [3713]
Rb(110) – – – – – 2.96 TC [3692]
Rb(110) – – – – – 3.04 TC [3692]
Rb(110) – – – – – 4.96 TC [3622]
Recommended – – – – – 2.65 ± 0.05 – –

Rb(111) – – – – – 2.05 TC [475]
Rb(111) – – – – – 2.06 TC [711]
Rb(111) – – – – – 2.08 TC [231]
Rb(111) – – – – – 2.09 TC [3467]
Rb(111) – – – – – 2.096 TC [4091]
Rb(111) – – – – – 2.10 TC [593]
Rb(111) – – – – – 2.12 TC [553]
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Rb(111) – – – – – 2.22 TC [472]
Rb(111) – – – – – 2.23 TC [476,711]
Rb(111) – – – – – 2.25 TC [3814]
Rb(111) – – – – – 2.26 TC [1030]
Rb(111) – – – – – 2.28 TC [1030]
Rb(111) – – – – – 2.3 TC [1088]
Rb(111) – – – – – 2.30 TC [475]
Rb(111) – – – – – 2.30 TC [321]
Rb(111) – – – – – 2.32 TC [476]
Rb(111) – – – – – 2.42 TC [1095]
Recommended – – – – – 2.21 ± 0.09 – –

Rb(112) – – – – – 2.56 TC [321]

Rb – – – ∼300 – 1.4 TC [3737]
Rb/Si(100) Rb – <3 × 10−10 ∼300 – 1.5* PE [1729,3803,3804]
Rb/Pt Rb – ? ∼300 – 1.55 PE [2206]
Rb/Si(100) – – – – – 1.906* TC [3501]
Rb/Hf Rb – ? ∼300 – 1.9 ± 0.1 PE [1691]
Rb – – ? 302 – 1.99 PE [4139]
Rb/Cu(110) Rb – 5 × 10−11 140 – 2.0 ± 0.1 PE [3454]
Rb – – – – – 2.01 TC [1254]
Rb – – – – – 2.04 TC [1066]
Rb/W(100) Rb – <1 × 10−10 ∼150 – 2.05 PE [2120]
Rb – – – – – 2.06 TC [1951]
Rb/Ni Rb – <10−9 77 – 2.08 CPD [2139,3128,3698]
Rb/Ag/glass Rb – ∼10−8 ∼80 – 2.09 PE [1452]
Rb/quartz Rb – ∼10−10 90 – 2.1 PE [2605]
Rb/Cu Rb – 3 × 10−11 ∼300 – 2.1 ± 0.1 PE [3091]
Rb/Ag Rb – 3 × 10−11 ∼300 – 2.1 ± 0.1 PE [3091]
Rb/Y Rb – ? ∼300 – 2.1 ± 0.1 PE [1691]
Rb – – – – – 2.11 TC [3728]
Rb/GaAs(110) Rb – <1 × 10−10 ∼300 – 2.12 CPD [2793]
Rb – – – – – 2.13* TC [1955]
Rb – – – – – 2.14 TC [4150]
Rb – – ∼10−9 310 – 2.15 PE [4241]
Rb – – – – – 2.16 TC [2949]
Rb – – ∼10−10 300 – 2.16 PE [4297]
Rb/? Rb – ? ? – 2.16 ? [3785]
Rb156 – – <10−8 298 – 2.16 ± 0.03 PE [2470,4208,4209]
Rb – – ∼10−9 298 – 2.16 ± 0.05 PE [2612,2613]
Rb – – – – – 2.17 TC [3352]
Rb – – ? 303 – 2.17 ± 0.02* PE [4141]
Rb/graphene – – – – – 2.18 TC [4079]
Rb – – – – – 2.19 TC [3467,3477]
Rb(cluster) – – – – – 2.19 TC [3479]
Rb – – – – – 2.2* TC [1955]
Rb – – – – – 2.20 TC [3725]
Rb/glass Rb – ≤3 × 10−11 195 – 2.20 ± 0.01 PE [2615]
Rb/glass Rb – ≤10−10 77 – 2.21 ± 0.02 PE [1489]
Rb/glass Rb – <10−10 77 – 2.21 ± 0.05 PE [2815]
Rb – – – – – 2.22 TC [3312]
Rb – – – – – 2.25 TC [298]
Rb/quartz Rb – <10−10 140–155 – 2.261 ± 0.015 PE [2119]
Rb – – – – – 2.29 TC [1744]
Rb – – – – – 2.3 TC [1993]
Rb – – – – – 2.3 TC [706]
Rb/glass Rb – ≤3 × 10−11 77, 195 – 2.31 ± 0.01 PE [2615]
Rb – – – – – 2.33 TC [3312]
Rb – – – – – 2.36 TC [231]
Rb – – – – – 2.37 TC [2061]
Rb – – – – – 2.39 TC [3477]
Rb – – – – – 2.39 TC [553,2427]
Rb – – – – – 2.40 TC [1924]
Rb/O/W Rb – ≤440 (Rb) ∼600–700 – 2.41 TE [2292]
Rb – – – – – 2.41 TC [3467]
Rb – – – – – 2.42 TC [767]
Rb – – – – – 2.43 TC [231]
Rb – – – – – 2.45 TC [1924]
Rb – – – – – 2.47 TC [2427]
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Rb – – – – – 2.48 TC [4101]
Rb – – – – – 2.49 TC [1613]
Rb/Al(111) Rb – ? ∼300 – 2.52 CPD [734]
Rb – – – – – 2.54 TC [738]
Rb – – – – – 2.55 TC [1578]
Rb – – – – – 2.6 TC [2845]
Rb – – – – – 2.61 TC [2629]
Rb – – – – – 2.61 TC [2382]
Rb – – – – – 2.63 TC3 [475,519,2474]
Rb – – – – – 2.64 TC [230]
Rb – – – – – 2.7 TC [944]
Rb/W Rb – ≤440 (Rb) ∼650–850 – 2.76 TE [2292]
Recommended – – – – – 2.17 ± 0.05 – –

Liquid (𝑻 > 𝟑𝟏𝟐 𝐊)
Rb – – – – – 1.80 TC [4249]
Rb – – ? 322 – 1.93 PE [4139]
Rb – – ? 350 – 2.13 ± 0.02* PE [4141]
Rb – – ∼10−9 313 – 2.15 PE [4241]
Rb – – ∼10−8 313 – 2.16 PE [4208]
Rb – – ∼10−10 313 – 2.16 PE [4297]
Rb156 – – ? 313 – 2.17 ± 0.03 PE [2470]
Recommended – – – – – 2.15 ± 0.02 – –

38. Strontium Sr

fcc (𝜶, 𝑻 < 𝟒𝟖𝟖 𝐊)
Sr(100) – – – – – 2.43 TC [1254]
Sr(100) – – – – – 2.473 TC [4091]
Sr(100) – – – – – 2.79 TC [231]
Sr(100) – – – – – 2.8 TC [1712,1714]
Sr(100) – – – – – 2.95 TC [3467]
Sr(100) – – – – – 3.42 TC [1030]
Sr(100) – – – – – 3.81 TC [321]
Sr(100) – – – – – 3.82 TC [1030]
Recommended – – – – – 3.3 ± 0.4 – –

Sr(110) – – – – – 2.545 TC [4091]
Sr(110) – – – – – 2.75 TC [231]
Sr(110) – – – – – 2.76 TC [3467]
Sr(110) – – – – – 3.05 TC [1030]
Sr(110) – – – – – 3.31 TC [1030]
Sr(110) – – – – – 3.57 TC [321]
Recommended – – – – – 3.1 ± 0.3 – –

Sr(111) – – – – – 2.22 TC [3369]
Sr(111) – – – – – 2.3 TC [3179]
Sr(111) – – – – – 2.38 TC [1722]
Sr(111) – – – – – 2.42 TC [334]
Sr(111) – – – – – 2.569 TC [4091]
Sr(111) – – – – – 2.94 TC [231]
Sr(111) – – – – – 3.07 TC [2427]
Sr(111) – – – – – 3.21 TC [3467]
Sr(111) – – – – – 3.57 TC [1030,1089]
Sr(111) – – – – – 3.61 TC [1030]
Sr(111) – – – – – 3.65 TC [1089]
Sr(111) – – – – – 3.78 TC [1089]
Sr(111) – – – – – 4.10 TC [321]
Recommended – – – – – 3.4 ± 0.3 – –

hcp (𝜷, 𝑻 = 488–878 K)
Sr(0001) – – – – – 4.17 TC [321]

Sr(1010) – – – – – 3.99 TC [321]

Sr(1124) – – – – – 3.49 TC [321]

bcc (𝜸, 𝑻 > 𝟖𝟕𝟖 𝐊)
Sr(100) – – – – – 2.71 TC [1159,3067]
Sr(100) – – – – – 3.27 TC [321]
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Sr(110) – – – – – 2.39 TC [334]
Sr(110) – – – – – 2.63 TC [1159,3067]
Sr(110) – – – – – 3.81 TC [321]

Sr(111) – – – – – 2.80 TC [1159,3067]
Sr(111) – – – – – 3.13 TC [321]

Sr(112) – – – – – 3.61 TC [321]

fcc (𝜶, 𝑻 < 𝟒𝟖𝟖 𝐊 for bulk)
Sr/glass Sr – ? ∼300 – 2.06 PE [1748]
Sr – – – – – 2.08 TC [1744]
Sr/? Sr – ? ∼300 – 2.24 PE [3027]
Sr/W Sr – (∼10−12) ∼300 (819) – 2.24 FE [2585]
Sr/Mo(112) Sr – ∼10−9 ∼300 – 2.25 PE [2398]
Sr/W Sr – ≤1 × 10−9 ∼300 (773) – 2.35 ± 0.05 FE [2587]
Sr/Mo(112) – – – – – 2.43 TC [702]
Sr – – – – – 2.43 TC [1254]
Sr – – – – – 2.46 TC [3318]
Sr – – – – – 2.46 TC [1066]
Sr/W Sr – ? ∼300 – 2.5 FE [1471]
Sr/W Sr – ? ∼300 (≤700) – 2.5–2.6 CPD [2578]
Sr/Mo(100) Sr – ≥10−6(Sr) ∼800–900 – 2.59 TE [1401,1402]
Sr/? Sr – 5 × 10−11 ∼300 – 2.6 PE [2116]
Sr – – – – – 2.6* TC [1955]
Sr – – – – – 2.61 TC [3318]
Sr – – – – – 2.64 TC [298]
Sr/W244 Sr – ≤2 × 10−9 ∼900 – 2.64 CPD [3530]
Sr/quartz Sr – 5 × 10−10 ∼300 – 2.64 ± 0.05 PE [2014,2021,2024]
Sr – – – 0 – 2.68 TC [4419]
Sr – – – – – 2.7 TC [1993]
Sr/? Sr – ? ∼300 – 2.7 PE [2115]
Sr/W244 Sr – ≤2 × 10−9 ∼300 – 2.73 CPD [3530]
Sr/? Sr – ? ∼300 – 2.74 PE [1639]
Sr/W(100) Sr – ≤10−2(Sr) ∼900–1000 – 2.74 TE [1792]
Sr – – – – – 2.77 TC [3729]
Sr/Mo(112) Sr – (≤10−11) 77 – 2.8 CPD [2631]
Sr/glass88 Sr – <10−9 ∼300{77} – 2.8 CPD [1526]
Sr – – – – – 2.8 TC [1711]
Sr/W(110) Sr – (≤10−11) 5 – 2.8 CPD [2347]
Sr/Mo(112) Sr – 2 × 10−11 100 (500) – 2.8 CPD [2431]
Sr – – – – – 2.81 TC [1901]
Sr/Re(1010) Sr – (<10−11) 77 (∼300) – 2.85 CPD [4275]
Sr – – – – – 2.9 TC [706]
Sr – – – – – 2.93 TC [3476]
Sr – – – – – 2.96 TC [231]
Sr – – – – – 2.97 TC [3467]
Sr/W(110)157 Sr – ≤10−10 77 – 3.0 FE [2344]
Sr – – – – – 3.03 TC [231]
Sr – – – – – 3.04 TC [3476]
Sr – – – – – 3.08 TC [1924]
Sr – – – – – 3.09 TC [1924]
Sr – – – – – 3.12 TC [1613]
Sr/W(110) Sr – (≤10−11) 290 – 3.2 CPD [2347]
Sr/W(110) Sr – (≤10−11) 5 (≤400) – 3.2 CPD [2347]
Sr/W(110)157 Sr – (≤10−10) 77 (300) – 3.2 CPD [2344]
Sr – – – – – 3.30 TC [3476]
Sr – – – – – 3.33 TC [3467]
Recommended – – – – – 2.71 ± 0.08 – –

hcp (𝜷, 𝑻 = 488–878 K for bulk)
Sr/W244 Sr – ≤2 × 10−9 750–850 – 2.64 CPD [3530]
Sr – – – – – 2.77 TC [3729]
Sr – – – – – 2.92 TC [1578]
Sr/Mo(110) Sr – ≤10−10 5 (≤300) – 3.1 CPD [3350]

bcc (𝜸, 𝑻 > 878 K for bulk)
Sr/W Sr – (<10−14) ∼850–950 – 2.3 TE [2572]
Sr/? Sr – ? ? – 2.4 TE [3402]
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39. Yttrium Y399

hcp (𝜶, 𝑻 < 𝟏𝟓𝟒𝟎 𝐊)
Y(0001) – – <10−9 ? (∼1700) – 3.0 ± 0.1 TE,PE [4230]
Y(0001){90%} – – ? ∼300 – 3.1 ± 0.1 PE [1691]
Y(0001) – – – – – 3.38 TC [334]
Y(0001) – – 2 × 10−9 1400 – 3.47 TE [3105]
Y(0001) – – – – – 3.60 TC [4005]
Y(0001) – – 2 × 10−9 1250–1500 – 3.62 TE [3105]
Y(0001) – – – – – 4.67 TC [321]

Y(1010) – – – – – 3.08 TC [4005]
Y(1010) – – – – – 4.47 TC [321]

Y(1124) – – 2 × 10−9 1250–1500 – 3.27 TE [3105]
Y(1124) – – 2 × 10−9 1400 – 3.28 TE [3105]
Y(1124) – – – – – 3.92 TC [321]

bcc (𝜷, 𝑻 > 𝟏𝟓𝟒𝟎 𝐊)
Y(100) – – – – – 3.67 TC [321]

Y(110) – – – – – 4.28 TC [321]

Y(111) – – – – – 3.52 TC [321]

Y(112) – – – – – 3.92 TC [321]

hcp (𝜶, 𝑻 < 𝟏𝟓𝟒𝟎 𝐊 for bulk)
Y – – ? (N2) ∼300 – 2.54 ± 0.02 CPD [4066]
Y – – – – – 2.6 TC [1744]
Y/W158 Y – ≤7 × 10−8 ∼300 – 2.6 FE [1804]
Y/W158 Y – ≤7 × 10−8 ∼300 – 2.7 FE [1804]
Y/W(111) Y – ≤10−9 ∼300 – 2.8 FE [1987,2011]
Y/W Y – ∼10−9 500 – 2.85 FE [2817]
Y/W(116) Y – ≤10−9 ∼300 – 2.9 FE [1987]
Y/W(111) Y – ≤10−9 300 (>400) – 2.9 FE [1975,1987]
Y/W Y – ∼10−9 ∼300 – 2.9 FE [2817]
Y/W Y – ≤10−9 ∼300 – 2.95 ± 0.05 FE [2816]
Y(foil)255 – – ∼10−7 1300 – 2.98 TE [3071]
Y/Re–Y(4%) – – ∼10−8 1300 – 2.98 TE [4240]
Y – – – – – 2.99 TC [1066]
Y379 – – – – – 3.0* TC [1955]
Y/W(116) Y – ≤10−9 300 (>400) – 3.0 FE [1975,1987]
Y/W Y – ∼10−9 78 – 3.0 FE [2817]
Y – – 2 × 10−10 ∼300 – 3.0 ± 0.1 PE [1813]
Y/W(111) Y – (<10−10) 77 – 3.00 FE [3335]
Y/W(100) Y – (<10−10) 77 – 3.06 FE [3335]
Y – – – – – 3.07 TC [1956]
Y/W Y – ∼10−9 ∼300 – 3.1 FE [2819]
Y/W(100)159 Y – 1 × 10−9 ∼300 – 3.1 CPD [1985]
Y/W(110) Y – 1 × 10−9 ∼300 – 3.1 CPD [1986]
Y/W(100) Y – ≤10−9 ∼300 – 3.1 FE [1987]
Y/W(112) Y – ≤10−9 ∼300 – 3.1 FE [1987]
Y/W(112) Y – ≤10−9 300 (>400) – 3.1 FE [1987]
Y – – – – – 3.1 TC [1955]
Y/W Y – ∼10−9 ∼300 – 3.1 FE [2819]
Y/Nb(100) Y – ≤10−8 ∼1000–1150 – 3.1 ± 0.03 TE [2359]
Y – – ? ∼300 – 3.1 ± 0.1 PE [1691]
Y/quartz Y – ∼10−10 ∼300 – 3.1 ± 0.15 PE [304]
Yn(n→ ∞) – – – – – 3.11 ± 0.10 TC [4261]
Y/W(111) Y – ≤10−8 ∼1150–1250 – 3.12 ± 0.03 TE [2330]
Y/Nb Y – ≤10−8 ∼1000–1150 – 3.16 ± 0.03 TE [2359]
Y/Ta Y – ≤10−8 ∼1000–1150 – 3.16 ± 0.03 TE [2359]
Y/W(112) Y – (<10−10) 77 – 3.18 FE [3335]
Y174 – – – 0E – 3.19 TC [1747]
Y/W Y – <10−9 300 (>400) – 3.2 FE [1987]
Y – – – – – 3.2 TC [1993]
Y/W(111) Y – ∼10−9 ∼300 – 3.2 FE [3082]
Y/W(012) Y – ∼10−9 ∼300 – 3.2 FE [3082]
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Y – – – – – 3.20 TC [298]
Y/Zr Y – ≤10−8 ∼1000–1150 – 3.25 ± 0.03 TE [2359]
Y/Hf Y – ≤10−8 ∼1000–1150 – 3.25 ± 0.03 TE [2359]
Y/Ru Y – ≤10−8 ∼1000–1150 – 3.25 ± 0.03 TE [2359]
Y/Os Y – ≤10−8 ∼1000–1150 – 3.25 ± 0.03 TE [2359]
Y/Ir Y – ≤10−8 ∼1000–1150 – 3.25 ± 0.03 TE [2359]
Y/Mo Y – ≤10−8 ∼1000–1150 – 3.26 ± 0.03 TE [2359]
Y/W Y – ≤10−8 ∼1000–1150 – 3.26 ± 0.03 TE [2359]
Y/Re Y – ≤10−8 ∼1000–1150 – 3.26 ± 0.03 TE [2359]
Y – – – – – 3.27 TC [3318]
Y – – ∼10−9 ∼1300–1500 – 3.27 TE [4356]
Y160 – – – – – 3.3 TC [1355]
Y/W(112) Y – ∼10−9 ∼300 – 3.3 FE [3082]
Y/Nb(110) Y – ≤10−8 ∼1000–1150 – 3.3 ± 0.03 TE [2359]
Y/W(100) Y – ≤10−8 ∼1150–1250 – 3.38 ± 0.03 TE [2330,2359]
Y – – – – – 3.4 TC [706]
Y/W(100) Y – ≤10−9 ∼300 (>400) – 3.4 FE [1975,1987]
Y – – – – – 3.42 TC [3476]
Y – – – – – 3.51 TC [3476]
Y/W(110) Y – ≤10−8 ∼1150–1250 – 3.53 ± 0.03 TE [2330,2359]
Y – – – – – 3.54 TC [3318]
Y/W(110) Y – ≤10−9 ∼300 – 3.6 FE [1987]
Y/W(110) Y – ≤10−9 ∼300 (>400) – 3.7 FE [1975,1987]
Y – – – – – 3.8 TC [944]
Recommended – – – – – 3.16 ± 0.06 – –

bcc (𝜷, 𝑻 > 𝟏𝟓𝟒𝟎 𝐊 for bulk)
Y – – ∼10−9 ∼1550–1650 – 3.17 TE [4356]

40. Zirconium Zr451

hcp (𝜶, 𝑻 < 𝟏𝟏𝟑𝟓 𝐊)
Zr(0001) – – – – – 4.04 TC [1980]
Zr(0001) – – – – – 4.15 TC [334]
Zr(0001) – – – – – 4.16 TC [4417]
Zr(0001) – – – – – 4.24 TC [3493]
Zr(0001) – – – – – 4.26 TC [1091,3516]
Zr(0001) – – – – – 4.37 TC [1091,3516]
Zr(0001) – – – – – 4.42 TC [4005]
Zr(0001) – – – – – 4.43 TC [892]
Zr(0001) – – – – – 4.49 TC [893]
Zr(0001) – – – – – 4.51 TC [2519]
Zr(0001) – – – – – 5.00 TC [321]
Recommended – – – – – 4.36 ± 0.09 – –

Zr(1010) – – – – – 3.59 TC [4005]
Zr(1010) – – – – – 3.89 TC [1980]
Zr(1010) – – – – – 4.78 TC [321]

Zr(1124) – – – – – 4.18 TC [321]

bcc (𝜷, 𝑻 > 𝟏𝟏𝟑𝟓 𝐊)
Zr(100) – – – – – 3.94 TC [321]

Zr(110) – – – – – 4.57 TC [321]

Zr(111) – – – – – 3.76 TC [321]

Zr(112) – – – – – 4.18 TC [321]

hcp (𝜶, 𝑻 < 𝟏𝟏𝟑𝟓 𝐊 for bulk)
Zr/Mo–Zr(5%)161 – – 1 × 10−10 ∼300 (∼1000) – 2.94 ± 0.02 FE [790]
Zr – – <10−3 ∼300 – 3.10 ± 0.07 PE [2571]
Zr/W Zr – <10−11 ? – 3.25 FE [3039,3042]
Zr174 – – – 0E – 3.28 TC [1747]
Zr – – – – – 3.42 TC [3476]
Zr – – – – – 3.47 TC [1066]
Zr – – – – – 3.51 TC [3476]
Zr – – ? ∼300 – 3.60 CPD [2297]
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Zr/Mo Zr – ∼10−10 ∼300 – 3.63 CPD [2134]
Zr/W(310) Zr – <10−10 295 – 3.65 ± 0.03 FE [1665]
Zr/W(100) Zr – 5 × 10−10 ∼300 – 3.65 ± 0.05 CPD [2526]
Zr – – – – – 3.7 TC [1993]
Zr/Ni Zr – ? ∼300 – 3.73 PE [2922]
Zr – – – – – 3.74 TC [3318]
Zr/W(100) Zr – ? ∼300 – 3.75 CPD [3076]
Zr – – – – – 3.77 TC [3318]
Zr – – – – – 3.8* TC [1955]
Zr – – <10−3 ∼300 – 3.81 ± 0.12 PE [2571]
Zr/W Zr – <10−10 295 – 3.84 ± 0.03 FE [1656,1665]
Zr – – – – – 3.85 TC [3476]
Zr/W(100) Zr – <10−10 295 – 3.87 ± 0.03 FE [1665]
Zr/W Zr – ? ∼300 – 3.87 ± 0.05 CPD [3073,3076]
Zr – – 3 × 10−10 ∼300 – 3.89 ± 0.05 CPD [1812]
Zr – – – – – 3.90 TC [2949]
Zr/W(112) Zr – <10−10 295 – 3.92 ± 0.03 FE [1665]
Zr – – – – – 3.94 TC [1744]
Zr – – – 0 – 3.94 TC [4419]
Zr/W(111) Zr – <10−10 295 – 3.98 ± 0.03 FE [1665]
Zr – – – – – 4.0 TC [2117]
Zr/W(100) Zr – <8 × 10−11 ∼300 – 4.0 CPD [1806]
Zr – – ? ∼300 – 4.00 PE [2927]
Zr – – 2 × 10−10 ∼300 – 4.05 PE [1814]
Zr/quartz Zr – ∼10−10 ∼300 – 4.05 ± 0.1 PE [304]
Zr/W(100) Zr – <8 × 10−11 <450 (1400) – 4.1 CPD [1806]
Zr/W(100) Zr – ? ∼300 – 4.12 CPD [3204]
Zr – – – – – 4.19 TC [298]
Zr – – – – – 4.3 TC [706]
Zr – – – – – 4.3 TC [944]
Zr/W(110) Zr – ? ∼300 – 4.33 CPD [3076]
Zr – – – – – 4.33 TC [3637]
Zr – – <10−3 ∼300 – 4.33 ± 0.07 PE [2571]
Zr/W(110) Zr – <10−10 295 – 4.46 ± 0.03 FE [1665]
Recommended – – – – – 3.85 ± 0.06 – –

bcc (𝜷, 𝑻 > 𝟏𝟏𝟑𝟓 𝐊 for bulk)
Zr/W Zr – ? ? – 3.15 TE [1750]
Zr – – ≤10−8 ? – 3.80 TE [1778]
Zr – – ? ∼1000–1400 – 3.95 TE [1773]
Zr – – ∼10−8 ∼1300–1800 – 3.95 TE [4221]
Zr – – 3 × 10−9 960–1370 – 4.0 TE [159]
Zr – – ? ? – 4.01 TE [2117]
Zr/W Zr – <1 × 10−10 ? (≥1600) – 4.04 ± 0.03 FE [1656]
Zr – – ? ? – 4.1 TE [3402]
Zr – – ? ∼2000 – 4.12 TE [3527]
Zr – – ? ? – 4.13 TE [3524,3525]
Recommended – – – – – 4.01 ± 0.05 – –

41. Niobium Nb

bcc
Nb(100) – – – – – 3.552 TC [4091]
Nb(100) – – – – – 3.6 TC [1154,1188]
Nb(100) – – – – – 3.68 TC [320]
Nb(100) – – ? ∼300 – 3.76 FE [4339]
Nb(100) – – 5 × 10−8 ∼1800–2100 – 3.86 ± 0.05 TE [774]
Nb(100) – – – – – 3.87 TC [4316,4412]
Nb(100) – – ? 77 – 3.87 ± 0.01 FE [1303]
Nb(100) – – 1 × 10−9 ? (4.04*) 3.90 TE [739]
Nb(100) – – ∼10−9 ∼1400–1800 – 3.95 ± 0.03 TE [775]
Nb(100) – – – – – 3.96 TC [321]
Nb(100) – – ≤5 × 10−11 ∼300 – 3.97 ± 0.02 PE [336]
Nb(100) – – ≤2 × 10−9 ∼1700–2000 – 4.0 TE [127]
Nb(100) – – ∼10−9 ? – 4.00 TE [3096]
Nb(100) – – <1 × 10−10 ∼300 – 4.02 CPD [1253]
Nb(100) – – ∼10−10 ∼1600–1850 – 4.02 ± 0.06 TE [779]
Nb(100){68%}162 – – – – (4.39 ± 0.08) 4.02 ± 0.07 TC [803]
Nb(100) Cs Cs+ 1 × 10−9 ? 4.04* (3.90) PSI [739]
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Nb(100) – – – – – 4.06 TC [2548]
Nb(100) – – – – – 4.07 TC [1159,1980,3067]
Nb(100) – – (≤10−11) ∼300 – 4.1 CPD [776]
Nb(100){68%}162 – – ? (Cs) ∼1100–1800 – 4.1 TE [650,3414]
Nb(100) – – ∼10−10 77, ∼300 – 4.18 ± 0.02 FE [358]
Nb(100){70%} – – ∼10−9 ∼1050–2100 – 4.19 ± 0.04 TE [124]
Nb(100) – – – – – 4.23 TC [1254]
Nb(100){68%}162 – – – – 4.39 ± 0.08 (4.02 ± 0.07) TC [803]
Recommended – – – – – 4.02 ± 0.05 – –

Nb(110) – – ∼10−10 ∼300 – 4.33 PE [2764]
Nb(110) – – ∼10−10 ∼300 – 4.37 ± 0.01 CPD [777]
Nb(110) – – – – – 4.488 TC [4091]
Nb(110) – – ≤5 × 10−11 ∼300 – 4.51 ± 0.02 PE [336]
Nb(110) – – ∼10−8 ? – 4.57 TE [3353]
Nb(110) – – – – – 4.61 TC [321]
Nb(110) – – – – – 4.61 TC [2913]
Nb(110) – – 4 × 10−10 ∼300 – 4.62 ± 0.05 CPD [2672]
Nb(110) Cs Cs+ 1 × 10−9 ? 4.64* (4.80) PSI [739]
Nb(110) – – ∼10−8 ∼1450–1750 – 4.65 ± 0.07 TE [960]
Nb(110) – – – – – 4.66 TC [320]
Nb(110) – – ∼10−9 ? – 4.67 TE [3096]
Nb(110) – – – – – 4.74 TC [2548]
Nb(110) – – – – – 4.75 TC [1159,1980,3067]
Nb(110) – – ∼10−10 ∼300 – 4.75 ± 0.05 CPD [2381]
Nb(110) – – 1 × 10−10 ∼300 – 4.75 ± 0.05* CPD [2839]
Nb(110) – – ∼10−9 1290–1540 – 4.75 ± 0.08 TE [778]
Nb(110) – – 1 × 10−9 ? (4.84 ± 0.05) 4.80 TE [726,739]
Nb(110) – – ∼10−7–10−9 2200 – 4.80 TE [3357]
Nb(110) – – – – – 4.80 TC [334,3179]
Nb(110) – – 5 × 10−9 1673–2073 – 4.80 ± 0.02 TE [2000,2016]
Nb(110) – – ? ? – 4.80 ± 0.04 TE [3347]
Nb(110) – – ∼10−9 ∼1500–1800 – 4.80 ± 0.05 TE [775]
Nb(110) – – ∼10−9 ? – 4.82 ± 0.05 TE [1409]
Nb(110) – – – – – 4.82 TC [2073]
Nb(110) – – – – – 4.84 TC [722]
Nb(110) Na Na+ 1 × 10−9 925–1680 4.84 ± 0.05 (4.80) PSI [726]
Nb(110) – – ∼10−8 ? – 4.85 TE [3353]
Nb(110) – – ? ∼300 – 4.87 PE [722]
Nb(110) – – ∼10−10 1650–1850 – 4.87 ± 0.07 TE [779]
Nb(110)/W(110) – – – – – 4.9 TC [2073]
Nb(110) – – 5 × 10−8 ∼1800–2100 – 4.90 ± 0.05 TE [774]
Nb(110) – – 7 × 10−11 ∼300 – 4.93 PE [2986]
Nb(110) – – 7 × 10−11 ∼300 – 4.98 PE [2874]
Recommended – – – – – 4.77 ± 0.05 – –

Nb(111) – – – – – 3.775 TC [4091]
Nb(111) Cs Cs+ 1 × 10−9 ? 3.78* (3.88) PSI [739]
Nb(111) – – – – – 3.80 TC [321]
Nb(111) – – ∼10−9 2200 – 3.80 TE [3357]
Nb(111) – – 5 × 10−8 ∼1800–2100 – 3.84 ± 0.05 TE [774]
Nb(111) – – ∼10−8 ? – 3.85 TE [3353]
Nb(111) – – 1 × 10−9 ? (3.90 ± 0.05) 3.88 TE [726,739]
Nb(111) – – ∼10−9 ∼1600–2050 – 3.88 ± 0.03 TE [775]
Nb(111) – – ∼10−8 1450–1750 – 3.88 ± 0.07 TE [960,3096]
Nb(111) Na Na+ 1 × 10−9 1630–1940 3.90 ± 0.05 (3.88) PSI [726]
Nb(111) – – – – – 3.93 TC [2548]
Nb(111) – – – – – 3.94 TC [1159,1980,3067]
Nb(111) – – ? ∼300 – 4.05 FE [4339]
Nb(111) – – ≤5 × 10−11 ∼300 – 4.08 ± 0.02 PE [336]
Nb(111)163 – – ∼10−10 ∼300 – 4.09 PE [780]
Nb(111) – – ∼10−8 ? – 4.14 TE [3353]
Nb(111) – – 1 × 10−10 ∼300 – 4.30 ± 0.05* CPD [2839]
Nb(111) – – ∼10−10 ∼1600–1850 – 4.36 ± 0.06 TE [779]
Nb(111)163 – – ∼10−10 ∼300 – 4.66 PE [780,2764]
Recommended – – – – – 3.95 ± 0.09 – –

Nb(112) – – – – – 4.20 TC [2818]
Nb(112) – – – – – 4.23 TC [321]
Nb(112) – – – – – 4.33 TC [1980,3067]
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Nb(112) Cs Cs+ 1 × 10−9 ? 4.44* (4.45) PSI [739]
Nb(112) – – 5 × 10−8 ∼1800–2100 (4.44*) 4.45 ± 0.05 TE [739,774]
Nb(112) – – ∼10−10 ∼1600–1850 – 4.63 ± 0.06 TE [779]
Recommended – – – – – 4.33 ± 0.10 – –

Nb(113) – – ∼10−10 ∼1600–1850 – 4.29 ± 0.06 TE [779]

Nb(116) – – ≤2 × 10−9 ∼1700–2000 – 3.7 TE [127]
Nb(116) – – ∼10−9 1450–1800 – 3.70 ± 0.03 TE [775]
Nb(116) – – – – – 3.94 TC [1980,3067]
Nb(116) – – ∼10−10 ∼1600–1850 – 3.95 ± 0.06 TE [779]

Nb(310) – – ∼10−10 ∼1600–1850 – 4.18 ± 0.05 TE [779]

Nb(335) – – ∼10−10 ∼300 – 4.55 PE [2764]

Nb/quartz164 Nb – ≤10−8 28 – 3.8 ± 0.2 CPD [1686]
Nb – – – – – 3.81 TC [521]
Nb – – – – – 3.83 TC [3476]
Nb – – – – – 3.87 TC [3476]
Nb165 CsI Cs+, I− ∼10−8 1879–1942 3.88 ± 0.04 – PSI, NSI [120]
Nb165 CsI Cs+, I− ∼10−8 1879–1942 3.88 ± 0.04N – PSI, NSI [120]
Nb – – ? 295 – 3.89 CPD [2943]
Nb/quartz164 Nb – ≤10−8 4.2 – 3.9 ± 0.2 CPD [1686]
Nb/quartz164 Nb – ≤10−8 293 – 3.9 ± 0.2 CPD [1686]
Nb165 KCl K+, Cl− ∼10−8 1853–2025 3.90 ± 0.07 – PSI, NSI [120]
Nb165 KCl K+, Cl− ∼10−8 1853–2025 3.90 ± 0.07N – PSI, NSI [120]
Nb165 RbBr Rb+, Br− ∼10−8 1928–1940 3.91 ± 0.05 – PSI, NSI [120]
Nb165 RbBr Rb+, Br− ∼10−8 1928–1940 3.91 ± 0.05N – PSI, NSI [120]
Nb – – 5 × 10−9 1373–2073 – 3.95 ± 0.02 TE [2000,2016]
Nb – – 7 × 10−8 ∼1300–1600 – 3.96 TE [121,3401]
Nb – – ? 295 – 3.97 CPD [2943]
Nb – – ? ∼300 – 3.97 ± 0.07 PE [974]
Nb – – <2 × 10−7 1870 – 3.98 TE [1970]
Nb – – – – – 4.0 TC [2583]
Nb – – ? ? – 4.0 TE [3402,3404]
Nb – – ∼700 (Ar) ? – 4.0 TE [2007]
Nb – – ∼10−9 ∼1400–2100 – 4.0 ± 0.05 TE [1775]
Nb – – ∼10−5 ≤1200 – 4.00 TE [2216]
Nb – – – – – 4.01 TC [4433]
Nb – – ? 1470–1980 – 4.013 TE [122]
Nb – – ∼10−9 ∼1200–1800 – 4.02 TE [975]
Nb – – 2 × 10−7 ∼1800–2100 (4.76–4.88) 4.02 ± 0.05 TE [23]
Nb{68%(100)} – – – – (4.39 ± 0.08) 4.02 ± 0.07 TC [803]
Nb – – ∼10−8 ∼1450–1750 – 4.02 ± 0.07 TE [960]
Nb – – ∼10−9 ? – 4.03 TE [3096]
Nb – – – – – 4.05 TC [2949]
Nb – – ≤10−8 ? – 4.05 TE [1778]
Nb/W(111) – – – – – 4.06 TC [531]
Nb163 – – ∼10−10 ∼300 – 4.09 PE [780,2764]
Nb – – – – – 4.1 TC [1993]
Nb{68%(100)} – – ? (Cs) ≤1100 – 4.1 TE [650,3414]
Nb/Si(111)166 Nb – ? ∼300 – 4.12 PE [1430]
Nb – – ? ∼300 – 4.13* PE [3602]
Nb – – ∼10−9 ∼1200–1800 – 4.13 ± 0.06 TE [975]
Nb/W(112) – – – – – 4.15 TC [531]
Nb – – ∼10−9 973 – 4.15 TE [3112]
Nb – – ? ? – 4.16 TE [2117]
Nb – – – – – 4.18 TC [3318]
Nb{68%(100)} – – ∼10−9 ∼1050–2100 – 4.19 ± 0.04 TE [124,650]
Nb – – – – – 4.2* TC [1955]
Nb – – – – – 4.20 TC [3264,3265,3267]
Nb – – – – – 4.22 TC [3318]
Nb{68%(100)} – – – – – 4.23 TC [1254]
Nb – – – – – 4.25 TC [298]
Nb – – – – – 4.28 TC [3476]
Nb – – – – – 4.3 TC [706]
Nb – – <10−7 2200 – 4.3 TE [2582]
Nb/quartz Nb – ∼10−10 ∼300 – 4.3 ± 0.15 PE [304]
Nb – – ? ∼300 – 4.33 PE [2622]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Nb/W(100) – – – – – 4.37 TC [531]
Nb – – <1 × 10−9 ∼300 – 4.37 ± 0.03 CPD [123,349]
Nb – – ? ∼300 – 4.39 ± 0.02* CPD [4277]
Nb{68%(100)} – – – – 4.39 ± 0.08 (4.02 ± 0.07) TC [803]
Nb/W(100) Nb – 1 × 10−11 77 – 4.40 FE [2965]
Nb – – ∼10−11 ∼300 – 4.41 CPD [3338]
Nb – – ∼10−10 ∼300 – 4.41 ± 0.1 FE [996]
Nb – – – – – 4.45 TC [2629]
Nb RbI Rb+ 2 × 10−7 ∼1800–2100 4.76 ± 0.03 (4.02 ± 0.05) PSI [23]
Nb/W(110) – – – – – 4.84 TC [531]
Nb RbBr Rb+ 2 × 10−7 ∼1800–2100 4.87 ± 0.06 (4.02 ± 0.05) PSI [23]
Nb RbCl Rb+ 2 × 10−7 ∼1800–2100 4.88 ± 0.06 (4.02 ± 0.05) PSI [23]
Nb164 – – ≤10−8 5 – 5.01 FE [1686]
Recommended – – – – – 4.11 ± 0.05 – –

42. Molybdenum Mo

bcc
Mo(100) – – – – – 3.842 TC [4091]
Mo(100) – – 12 (Ar) ? – 3.94 PE [4236]
Mo(100) – – – – – 3.98 ± 0.02 TC [4428]
Mo(100) – – – – – 4.01 TC [4057]
Mo(100) – – – – – 4.03 TC [639]
Mo(100) – – – – – 4.05 TC [320]
Mo(100) – – – – – 4.06 TC [4057]
Mo(100) – – 5–50 (Ne) ? – 4.1 ± 0.1 TE [643]
Mo(100) – – – – – 4.10 TC [321]
Mo(100){70%} – – ∼10−9 2000 – 4.10 ± 0.07 TE [124]
Mo(100) – – – – – 4.11 TC [4407]
Mo(100) – – – – – 4.19 TC [1034]
Mo(100){80%} – – ∼10−9 ∼300 – 4.2 FE [3231]
Mo(100) – – – – – 4.20 TC [2181]
Mo(100) – – – – – 4.20 TC [639]
Mo(100)167 Li Li−, Li+ 2 × 10−8 1964–2048 4.20 ± 0.20N – NSI, PSI [125]
Mo(100){70%} – – ∼10−9 1400 – 4.21 ± 0.09 TE [124]
Mo(100) – – <1 × 10−11 78 – 4.26 FE [648]
Mo(100) – – 6 × 10−10 ∼300 – 4.26 ± 0.03 FE [999]
Mo(100) Cs Cs+ <10−6 1190 4.26 ± 0.05 – PSI [126]
Mo(100) – – – – – 4.28 TC [1624]
Mo(100) – – – – – 4.28 TC [3224]
Mo(100) – – 6 × 10−10 ∼300 – 4.28 ± 0.01 FE [999,1668]
Mo(100)167 Li Li+ 2 × 10−8 ∼1250–1450 4.28 ± 0.05 – PSI [129,572,573]
Mo(100)167 CsI I− 2 × 10−8 ∼1750–1850 4.29 ± 0.02N – NSI [572,573]
Mo(100){80%} – – ∼10−9 ∼300 – 4.3 FE [2756,2757]
Mo(100) – – <1 × 10−10 77 – 4.3 ± 0.2 PE [4002]
Mo(100)168 – – ? 1980 – 4.33 ± 0.03 TE [729]
Mo(100) – – 7 × 10−10 77 – 4.35 ± 0.02 FE [3691]
Mo(100) – – ≤10−4 (Br2) ∼1400–2100 (4.36 ± 0.06N) 4.35 ± 0.05 TE [925]
Mo(100) – – ≤10−5 (I2) ∼1500–2000 (4.36 ± 0.05N) 4.35 ± 0.05 TE [571]
Mo(100) – – ≤5 × 10−8 ∼1600–1900 – 4.35 ± 0.07 TE [128,3096]
Mo(100) – – – – – 4.36 TC [3224]
Mo(100) I2 I− ≤10−5 (I2) ∼1500–2000 4.36 ± 0.05N (4.35 ± 0.05) NSI [571]
Mo(100) Br2 Br− ≤10−4 (Br2) ∼1400–2100 4.36 ± 0.06N (4.35 ± 0.05) NSI [925]
Mo(100) – – – – – 4.37 TC [4034]
Mo(100)168 – – ? 1980 – 4.37 ± 0.03 TE [729]
Mo(100) – – ∼10−10 77 – 4.38 FE [1304]
Mo(100)167 Li Li+ 2 × 10−8 ∼1400–2000 4.38 ± 0.01 – PSI [125]
Mo(100){72%}172 – – – – (4.51 ± 0.03) 4.38 ± 0.01 TC [803]
Mo(100)168 – – ? 1980 – 4.38 ± 0.03 TE [729]
Mo(100) – – ≤10−5 (Sr) ∼1400–1800 – 4.40 TE [1401]
Mo(100) – – <2 × 10−9 ? – 4.40 TE [2235]
Mo(100) – – ∼10−10 ? – 4.40 ? [322]
Mo(100) – – – – – 4.40 TC [2701]
Mo(100) – – ? 77 – 4.40 FE [1303]
Mo(100) – – ≤2 × 10−9 ∼1700–2000 – 4.40 ± 0.02 TE [127,144,323]
Mo(100) – – ∼10−9 ? (4.44 ± 0.03) 4.40 ± 0.03 TE [727,2210,3103]
Mo(100) – – 3 × 10−7 1943 – 4.40 ± 0.04 TE [1402]
Mo(100) – – ≤10−9 ∼1700–2100 – 4.40 ± 0.05 TE [323]
Mo(100) – – – – – 4.43 TC [2548]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Mo(100) – – ≤4 × 10−9 ∼1800–2100 – 4.43 ± 0.05 TE [739,781,1407]
Mo(100) – – – – – 4.44 TC [1159,1980,3067]
Mo(100) Na Na+ ∼10−9 ∼900–1700 4.44 ± 0.03 (4.40 ± 0.03) PSI [727,2210,3103]
Mo(100) – – ≤1 × 10−10 200, 300 – 4.45 FE [783,1416]
Mo(100) – – <10−10 ∼1200–2000 – 4.45 TE [324,527,784]
Mo(100) – – ≤1 × 10−10 ? (4.45) 4.45 TE [278]
Mo(100) Na Na+ ≤1 × 10−10 ? 4.45 (4.45) PSI [278]
Mo(100) K K+ ≤1 × 10−10 ? 4.45 (4.45) PSI [278]
Mo(100) – – ∼10−9 ∼1484–1788 – 4.46 ± 0.02 CPD [2963]
Mo(100) – – ∼10−9 ∼1484–1788 – 4.47 ± 0.02 TE [2963]
Mo(100) – – ≤10−6 ∼1770–2170 – 4.5 TE [2339]
Mo(100) – – ∼10−8 ∼1600–1900 – 4.5 ± 0.04 TE [3344]
Mo(100) – – ∼10−10 –1700– – 4.5 ± 0.1 TE [335,1650,1651,

1967]
Mo(100){72%}172 – – – – 4.51 ± 0.03 (4.38 ± 0.01) TC [803]
Mo(100)168 – – ? 1980 – 4.52 ± 0.03 TE [729]
Mo(100) – – ∼1 × 10−10 ∼300 – 4.53 CPD [2632]
Mo(100) – – <1 × 10−10 ∼300 – 4.53 ± 0.02 PE [325]
Mo(100) – – – – – 4.58 TC [3224]
Mo(100) – – 2 × 10−10 ∼300 – 4.60 FE [275,440]
Mo(100) – – ≤1 × 10−8 1789 – 4.60 ± 0.04 TE [2244]
Mo(100) – – ∼10−11 ∼300 – 4.65 PE [326]
Mo(100) – – ∼10−10 ∼300 – 4.67 ± 0.03 PE [2607]
Mo(100) – – – – – 4.84 TC [2701]
Recommended – – – – 4.38 ± 0.08 4.38 ± 0.03 – –
Recommended – – – – 4.34 ± 0.03N – – –

Mo(110) – – 12 (Ar) ? – 4.18 PE [4236]
Mo(110) – – 5–50 (Ne) ? – 4.32 ± 0.07 TE [643]
Mo(110) – – – – – 4.510 TC [4091]
Mo(110) – – – – – 4.59 TC [4057]
Mo(110) – – – – – 4.64 TC [4057]
Mo(110) – – ∼10−8 ∼1600–1900 – 4.7 ± 0.04 TE [3344]
Mo(110)/Si3N4 – – – – – 4.71 TC [3517]
Mo(110)/Si3N4 Mo – ? ∼300 – 4.72 CPD [3517]
Mo(110) – – ∼10−8 ? – 4.75 TE [3353,3357]
Mo(110) – – – – – 4.77 TC [321]
Mo(110)/W(110)169 – – – – – 4.8 TC [2074]
Mo(110) – – 7 × 10−10 77 – 4.81 ± 0.09 FE [3691]
Mo(110) – – – – – 4.82 TC [3224]
Mo(110) – – – – – 4.820 TC [3573,4046]
Mo(110) – – <1 × 10−11 78 – 4.83 FE [648]
Mo(110)169 – – – – – 4.83 TC [2074]
Mo(110) – – – – – 4.84 TC [1624]
Mo(110) – – 5 × 10−9 ? – 4.85 TE [2786]
Mo(110) – – – – – 4.85 TC [639]
Mo(110) – – ≤10−9 ? – 4.85 ± 0.05 TE [323]
Mo(110) – – ∼10−9 ? – 4.87 ± 0.03 TE [3348]
Mo(110) – – – – – 4.88 TC [639]
Mo(110) – – ≤5 × 10−8 ∼1600–1900 – 4.9 ± 0.07 TE [128,3096]
Mo(110) – – ? ? – 4.9 ± 0.1 TE [1962]
Mo(110) – – ∼10−9 ? – 4.90 ± 0.02 TE [3331]
Mo(110) – – ≤1 × 10−8 1789 – 4.90 ± 0.04 TE [2244]
Mo(110) – – ≤4 × 10−9 ∼1800–2100 – 4.90 ± 0.05 TE [781]
Mo(110) – – ? ∼1700–2200 – 4.90 ± 0.05 TE [785]
Mo(110) – – 5 × 10−8 ? – 4.90 ± 0.05485 TE [1400]
Mo(110) – – ∼10−8 ? – 4.91 TE [3353,3357]
Mo(110) – – ∼10−10 ∼300 – 4.92 ± 0.02 CPD [777]
Mo(110) – – – – – 4.94 TC [320]
Mo(110) – – – – – 4.94 TC [3224]
Mo(110) – – ? ? – 4.94 ± 0.03 TE [3107]
Mo(110) – – ∼10−8 ∼1800–2100 – 4.94 ± 0.05 TE [782]
Mo(110) – – 7 × 10−11 ∼300 – 4.95 PE [1035]
Mo(110) – – <1 × 10−10 ∼300 – 4.95 ± 0.02 PE [325]
Mo(110) – – ≤4 × 10−9 ∼1800–2100 – 4.95 ± 0.05 TE [739,1407]
Mo(110) – – ≤10−3 (Cs) >1800 – 5.0 TE [976]
Mo(110) – – ≤10−10 77, ∼300 – 5.0 CPD [327–329]
Mo(110) – – ≤10−11 ∼300 – 5.0 CPD [2380]
Mo(110)/W(110) Mo – ? ∼300 – 5.0 CPD [4231]
Mo(110) – – ≤1 × 10−10 200, 300 – 5.00 FE [1416]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Mo(110) – – (∼10−12) ∼300 – 5.00 ± 0.02 CPD [1795]
Mo(110) – – 5 × 10−9 1673–2073 – 5.00 ± 0.02 TE [2000,2016]
Mo(110) – – ∼10−9 ? – 5.00 ± 0.03 TE [3331,3348]
Mo(110) – – ≤2 × 10−9 ? – 5.00 ± 0.03 TE [3099]
Mo(110) – – 3 × 10−9 ? – 5.00 ± 0.05 TE [2212,2214]
Mo(110) – – ∼10−9 ? – 5.00 ± 0.05 TE [1409]
Mo(110) – – ≤2 × 10−9 ∼1700–2000 – 5.00 ± 0.05 TE [127,144]
Mo(110) – – ≤3 × 10−10 ? – 5.00 ± 0.05 TE [330,331,640]
Mo(110) – – ≤5 × 10−9 ? – 5.05 ± 0.05 TE [3084]
Mo(110) – – ≤10−11 ∼300 – 5.05 ± 0.07 CPD [977]
Mo(110) – – ? ∼300 – 5.07 FE [2676]
Mo(110)/W(110) Mo – 2 × 10−10 1023 – 5.09* CPD [2293]
Mo(110) – – ≤1 × 10−6 1770–2270 – 5.1 TE [2339]
Mo(110) – – ∼10−11 20–200 – 5.1 FE [2218]
Mo(110) – – ∼10−9 ? (5.13 ± 0.03) 5.10 ± 0.03 TE [727,2210,3103]
Mo(110) – – ∼10−9 ? – 5.10 ± 0.03 TE [3331,3348]
Mo(110) – – ≤10−9 ∼1700–2100 – 5.10 ± 0.05 TE [323]
Mo(110) – – 4 × 10−10 ∼300 – 5.10 ± 0.15 FE [999]
Mo(110) – – 4 × 10−10 ∼300 – 5.11 ± 0.07 FE [999,1668]
Mo(110) – – 7 × 10−10 77 – 5.12 ± 0.16 FE [3691]
Mo(110) – – – – – 5.13 TC [4034]
Mo(110) Na Na+ ∼10−9 ∼900–1600 5.13 ± 0.03 (5.10 ± 0.03) PSI [727,2210,3103]
Mo(110) – – ∼10−9 ? – 5.20 ± 0.02 TE [3331]
Mo(110) – – – – – 5.23 TC [2548]
Mo(110) – – – – – 5.23 TC [1159,1980,3067]
Mo(110) – – 5 × 10−11 350 – 5.25 CPD [332,333]
Mo(110) – – ∼10−10 80 – 5.32 ± 0.02 FE [2499]
Mo(110) – – – – – 5.34 TC [334,3179]
Mo(110) – – ∼10−10 –1700– – 5.4 ± 0.2 TE [335,1650,1651,

1967]
Mo(110) – – ∼10−10 300, 550 – 5.46 ± 0.02 FE [2499]
Mo(110) – – – – – 5.90 TC [3224]
Recommended – – – – – 4.98 ± 0.03 – –

Mo(111) – – – – – 3.86 TC [4057]
Mo(111) Cs Cs+ ? ∼800–1050 3.89 – PSI [135]
Mo(111) – – – – – 3.93 TC [321]
Mo(111) – – 6 × 10−10 ∼300 – 3.94 ± 0.05 FE [999]
Mo(111) – – – – – 3.940 TC [4091]
Mo(111)170 Cs Cs+ ? ∼800–1050 3.95* – PSI [135]
Mo(111) – – ∼10−9 ? – 3.95 ± 0.02 TE [3331]
Mo(111) – – 6 × 10−10 ∼300 – 3.99 ± 0.02 FE [999,1668]
Mo(111) – – – – – 4.00 TC [4057]
Mo(111) – – 7 × 10−10 77 – 4.00 ± 0.08 FE [1304,3691]
Mo(111) – – <1 × 10−11 78 – 4.06 FE [648]
Mo(111) – – – – – 4.07 TC [4034]
Mo(111) – – ≤2 × 10−9 ∼1700–2000 – 4.10 ± 0.02 TE [127,144]
Mo(111) – – ∼10−9 ? (4.13 ± 0.03) 4.10 ± 0.03 TE [727,2210,3103,

3348]
Mo(111) – – ∼10−9 ∼1100–1800 (4.10 ± 0.03) 4.10 ± 0.03 TE [786]
Mo(111) Li Li+ ∼10−9 ∼1100–1800 4.10 ± 0.03 (4.10 ± 0.03) PSI [786]
Mo(111) – – 3 × 10−9 ? – 4.10 ± 0.05 TE [2212,2214]
Mo(111) – – ≤4 × 10−9 ∼1800–2100 – 4.10 ± 0.05 TE [739,781,782,1407]
Mo(111) – – 10−8 ? – 4.13 TE [3353,3357]
Mo(111) Na Na+ ∼10−9 ∼1600–2000 4.13 ± 0.03 (4.10 ± 0.03) PSI [727,2210,3103]
Mo(111) – – ≤5 × 10−9 ? – 4.14 ± 0.04 TE [3084]
Mo(111) – – 5 × 10−8 ? – 4.14 ± 0.05485 TE [1400]
Mo(111) – – 2 × 10−10 ∼1480–1850 – 4.15 ± 0.02 TE [678]
Mo(111) – – ≤10−9 ∼1700–2100 – 4.15 ± 0.05 TE [323]
Mo(111) – – ≤1 × 10−10 ∼300 – 4.19 FE [783]
Mo(111) – – ∼10−9 ? – 4.19 ± 0.02 TE [3331]
Mo(111) – – 5 × 10−7 ∼1870–2270 – 4.2 TE [2339]
Mo(111) – – ≤1 × 10−10 200, 300 – 4.20 FE [1416]
Mo(111) – – – – – 4.23 TC [3224]
Mo(111) – – – – – 4.25 TC [2548]
Mo(111) – – ∼10−9 ? – 4.25 ± 0.03 TE [3348]
Mo(111) – – – – – 4.27 TC [1159,1980,3067]
Mo(111) – – – – – 4.27 TC [639]
Mo(111) ? ? ? ? 4.3 – PSI [135]
Mo(111) – – ≤5 × 10−10 ∼300 – 4.3 CPD [2621]
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Mo(111) – – ≤10−9 1650–1850 – 4.3 ± 0.03 TE [787]
Mo(111) – – ∼10−10 –1700– – 4.3 ± 0.1 TE [335,1650,1651,

1967]
Mo(111) – – – – – 4.30 TC [1624]
Mo(111) – – 5 × 10−9 ? – 4.30 TE [2786]
Mo(111) – – – – – 4.32 TC [639]
Mo(111) – – 5–50 (Ne) ? – 4.33 ± 0.01 TE [643]
Mo(111) – – ≤1 × 10−8 1789 – 4.35 ± 0.04 TE [2244]
Mo(111) – – – – – 4.4 TC [1739]
Mo(111) – – ∼10−9 ? – 4.40 ± 0.03 TE [3348]
Mo(111) – – ∼10−9 ? – 4.46 ± 0.03 TE [3348]
Mo(111)171 – – <6 × 10−10 293 – 4.49 ± 0.06 PE [3421]
Mo(111) – – ≤5 × 10−11 ∼300 – 4.52 ± 0.02 PE [336]
Mo(111) – – – – – 4.55 TC [3224]
Mo(111) – – <1 × 10−10 ∼300 – 4.55 ± 0.02 PE [325]
Mo(111) – – ∼10−8 ? – 4.58 TE [3353,3357]
Mo(111) – – ∼10−11 20–200 – 4.6 FE [2218]
Mo(111) – – ? ∼300 – 4.6* FE [1518]
Mo(111)171 – – <6 × 10−10 293 – 4.67 ± 0.02 PE [3421]
Mo(111) – – 1 × 10−5 1820–2270 – 4.7 TE [2339]
Mo(111) – – ∼10−8 ∼1600–1900 – 4.8 ± 0.04 TE [3344]
Recommended – – – – – 4.29 ± 0.03 – –

Mo(112) – – – – – 4.11 TC [702]
Mo(112) – – – – – 4.12 TC [702]
Mo(112) – – – – – 4.25 TC [468]
Mo(112) – – – – – 4.28 TC [1034]
Mo(112) – – – – – 4.35 TC [468]
Mo(112) – – <1 × 10−10 ∼300 – 4.36 ± 0.03 PE [325]
Mo(112) – – – – – 4.37 TC [3224]
Mo(112) – – – – – 4.38 TC [321]
Mo(112) – – 7 × 10−10 77 – 4.45 ± 0.07 FE [3691]
Mo(112) – – <1 × 10−11 78 – 4.46 FE [648]
Mo(112) – – ∼10−9 ∼300 – 4.5 PE [2398]
Mo(112) – – ∼10−10 –1700– – 4.5 ± 0.1 TE [335,1643,1650,

1651,1967]
Mo(112) – – ≤10−11 ∼300 – 4.50 CPD [2533]
Mo(112) – – ≤1 × 10−8 1789 – 4.50 ± 0.04 TE [2244]
Mo(112) – – 7 × 10−10 77 – 4.51 ± 0.07 FE [1304,3691]
Mo(112) – – ≤2 × 10−9 ∼1700–2000 – 4.55 ± 0.05 TE [127,144]
Mo(112) – – ≤4 × 10−9 ∼1800–2100 – 4.55 ± 0.05 TE [726,739,781,1407]
Mo(112) – – ≤1 × 10−10 ∼300 – 4.58 FE [783]
Mo(112) – – ∼1 × 10−11 90 – 4.6 CPD [505]
Mo(112) – – (≤10−11) 77 – 4.6 CPD [1255,2027,2030]
Mo(112) – – ∼10−11 ∼300 – 4.6 CPD [2535]
Mo(112) – – ? ∼300 – 4.6 CPD [2404,2407]
Mo(112) – – ∼10−10 200, 300 – 4.60 FE [1416]
Mo(112) – – ∼10−9 ? (4.63 ± 0.03) 4.60 ± 0.03 TE [727,2210]
Mo(112) – – ≤5 × 10−9 ? – 4.60 ± 0.05 TE [3084]
Mo(112) – – – – – 4.61 TC [3224]
Mo(112) – – (<10−11) ∼300 – 4.61* CPD [2637]
Mo(112) Na Na+ ∼10−9 ∼800–1500 4.63 ± 0.03 (4.60 ± 0.03) PSI [727,2210]
Mo(112) – – – – – 4.64 TC [3224]
Mo(112) – – 2 × 10−10 1480–1850 – 4.67 ± 0.02 TE [678]
Mo(112) – – ∼10−11 20–200 – 4.7 FE [2218]
Mo(112) – – – – – 4.71 TC [1159,1980,3067]
Mo(112) – – – – – 4.8 TC [1739]
Recommended – – – – – 4.51 ± 0.03 – –

Mo(114) – – – – – 4.02 TC [3224]
Mo(114) – – – – – 4.16 TC [3224]
Mo(114) – – ≤5 × 10−8 ∼1600–1900 – 4.18 ± 0.07 TE [128]
Mo(114-116) – – ? ? – 4.3 ± 0.1 TE [1962]
Mo(114) – – – – – 4.50 TC [3224]
Mo(114) – – <1 × 10−10 ∼300 – 4.50 ± 0.04 PE [325]
Recommended – – – – – 4.33 ± 0.15 – –

Mo(116) – – – – – 3.90 TC [3224]
Mo(116) – – 7 × 10−10 77 – 3.96 ± 0.01 FE [3691]
Mo(116) – – ≤2 × 10−9 ∼1700–2000 – 4.00 TE [127,144]
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Mo(116) – – ≤5 × 10−9 ? – 4.02 ± 0.04 TE [3084]
Mo(116) – – – – – 4.11 TC [3224]
Mo(116) – – ≤5 × 10−8 ∼1600–1900 – 4.18 ± 0.07 TE [128]
Mo(116) – – ∼10−10 –1700– – 4.2 ± 0.1 TE [335,1650,1651,

1967]
Mo(116) – – – – – 4.27 TC [1159,1980,3067]
Mo(116-114) – – ? ? – 4.3 ± 0.1 TE [1962]
Mo(116) – – <2 × 10−9 ? – 4.33 TE [134]
Mo(116) – – <2 × 10−9 293, 1000 – 4.41 PE [134]
Mo(116) – – – – – 4.47 TC [3224]
Recommended – – – – – 4.23 ± 0.08 – –

Mo(310) – – ≤1 × 10−10 ∼300 – 4.13 FE [783]
Mo(310) – – – – – 4.13 TC [3224]
Mo(310) – – – – – 4.20 TC [3224]
Mo(310) – – – – – 4.53 TC [3224]

Mo(321) – – ≤1 × 10−10 ∼300 – 4.14 FE [783]
Mo(321) – – – – – 4.15 TC [3224]
Mo(321) – – – – – 4.20 TC [3224]
Mo(321) – – – – – 4.53 TC [3224]

Mo(331) – – <2 × 10−9 ? – 4.33 TE [134]
Mo(331) – – <2 × 10−9 293, 1000 – 4.41 PE [134]

Mo(332) – – – – – 4.04 TC [3224]
Mo(332) – – – – – 4.16 TC [3224]
Mo(332) – – – – – 4.51 TC [3224]
Mo(332) – – <1 × 10−10 ∼300 – 4.55 ± 0.02 PE [325]

Mo(431) – – 7 × 10−10 77 – 4.02 ± 0.06 FE [3691]
Mo(431) – – 7 × 10−10 77 – 4.32 ± 0.14 FE [3691]

Mo – – ≤2 × 10−8 ∼300 – 3.22 ± 0.16 PE [2558]
Mo – – ≤2 × 10−8 ∼1300–1600 – 3.48 ± 0.07 TE [2558]
Mo(porous) – – ? >1600 (4.15) 3.8 TE [3762]
Mo – – – – – 3.92 TC [521]
Mo170 – (Mo+) ∼10−7 ∼2400–2550 4.0 ± 0.1 (4.19 ± 0.02) PSI [954]
Mo – – ? ? – 4.04 TE [1486]
Mo – – <10−9 ∼300 – 4.04 PE [337]
Mo – – 12 (Ar) ∼300 – 4.04 ± 0.02 PE [788,1647]
Mo – – 27 (Ne) ∼300 – 4.06 ± 0.02 PE [788,1647]
Mo – – – – – 4.07 TC [3476]
Mo – – 12 (Ar) ? – 4.07 ± 0.03 PE [4236]
Mo – – – – – 4.08 TC [1066]
Mo – – ? ∼300 – 4.08 CPD [2761]
Mo/W Mo – 5 × 10−10 77 – 4.1 FE [2318]
Mo – – ? ∼300 – 4.10 CPD [2761]
Mo – – – – – 4.10 TC [3476]
Mo – – 27 (Ne) ? – 4.10 ± 0.02 PE [4236]
Mo – – ? ∼300 – 4.11 PE [4190]
Mo{70%(100)}172 – – ∼10−9 1950–2070 – 4.11 ± 0.08 TE [124]
Mo – – ? ∼300 – 4.12 ± 0.03 PE [1635]
Mo – – ? ∼300 – 4.15 PE [2237]
Mo – – ? ? – 4.15 TE [1949]
Mo(porous) Cs Cs+ ? ∼1100–1400 4.15 (3.8) PSI [3762]
Mo262 – – <10−7 ∼1400–2000 – 4.15 ± 0.01 TE [338]
Mo262 – – <10−7 303, 940 – 4.15 ± 0.02 PE [338]
Mo – – ≤2 × 10−10 ∼300 – 4.15 ± 0.05 CPD [3077]
Mo – – 2 × 10−7 ∼300 – 4.16 CPD [642]
Mo – – <2 × 10−7 1870 – 4.16 TE [1970]
Mo – 5–50 (Ne) ? ? – 4.16 ± 0.02 TE [643]
Mo – – <3 × 10−8 ∼1400–1700 (4.50) 4.17 TE [131]
Mo – – 1 × 10−8 ∼300 – 4.17 PE [1433]
Mo – – – – – 4.18 TC [339]
Mo262 – – – 940E – 4.18 TC [3586]
Mo – – ∼10−7 ∼2400–2550 (4.0, 4.5) 4.19 ± 0.02 TE [954]
Mo{70%(100)}172 – – ∼10−9 1360–1460 – 4.19 ± 0.09 TE [124]
Mo – – – – – 4.2 TC [1645]
Mo – – – – – 4.2 TC [1993]
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Mo – – – – – 4.2 TC [2583]
Mo{80%(100)} – – ∼10−9 ∼300 – 4.2 FE [3231]
Mo/W Mo – 5 × 10−10 800 – 4.2 FE [2318]
Mo – – 4 × 10−9 ∼1600–1950 – 4.2 ± 0.05 TE [341]
Mo – – ? ∼1000–1400 – 4.20 TE [1773]
Mo – – ≤10−9 ∼1800–2200 – 4.20 TE [66]
Mo – – ∼10−8 ∼1600–1800 – 4.20 TE [4221]
Mo – – ? ? (4.3, 5.1) 4.20 ± 0.02 TE [132]
Mo – – <10−8 ∼300 – 4.20 ± 0.03 CPD [1163]
Mo – – <10−9 ∼300 – 4.21 PE [337]
Mo/W(100) Mo – 1 × 10−11 77 – 4.21 FE [2965]
Mo RbC Rb+ ? ? 4.21 ± 0.02 – PSI [2306]
Mo/glass Mo – ∼10−8 ∼300 – 4.21 ± 0.04 CPD [349]
Mo – – ? ∼300 – 4.21 ± 0.07 PE [974]
Mo – – ∼10−10 ∼300 – 4.22 PE [789]
Mo – – ∼10−7 ∼300 – 4.22 CPD [3513]
Mo – – ∼10−9 ∼1300–2100 – 4.22 ± 0.05 TE [1775,1777]
Mo – – ∼10−8 ∼300 – 4.22 ± 0.05 CPD [133]
Mo – – ? ∼1600–1900 – 4.23 TE [634]
Mo K K+ ? ? 4.23 ± 0.10* (4.41 ± 0.01) PSI [645]
Mo – – ∼10−9 ? – 4.24 TE [979]
Mo{70%(100)}172 – – – – – 4.25 TC [1254]
Mo – – ≤10−9 ? – 4.25 ± 0.05 TE [650]
Mo – – ∼10−6 ∼1900–2100 – 4.25–4.7 TE [1779]
Mo – – ≤4 × 10−10 ? – 4.26 TE [2091]
Mo – – 1 × 10−10 ∼300 – 4.27 ± 0.02 FE [790]
Mo – – – – – 4.28 TC [3224]
Mo17 – – <10−9 1650–1950 – 4.28 ± 0.6 TE [791]
Mo/W(100) Mo – 1 × 10−11 77 (750) – 4.3 FE [2965]
Mo – – – – – 4.3 TC [2456]
Mo{80%(100)} – – ∼10−9 ∼300 – 4.3 PE [2757]
Mo – – ? ∼300 – 4.3 PE [3640]
Mo – – 700 (Ar) ∼2800 – 4.3 TE [2007]
Mo – – <1 × 10−6 ? – 4.3 TE [3035]
Mo – – ? ? – 4.3 ± 0.1 ? [3780]
Mo – – – – – 4.30 TC [3264,3265,3267]
Mo – – ? ? – 4.30 FE [3544]
Mo – – 5 × 10−9 1373–2073 – 4.30 ± 0.02 TE [2016]
Mo170 – (Mo+) ? ∼2350–2500 4.3 ± 0.1 (4.20 ± 0.02) PSI [132]
Mo – – ? ? – 4.31 TE [2455]
Mo – – <10−6 ? – 4.31 TE [2919]
Mo – – 6 × 10−7 ? – 4.31 TE [1521]
Mo174 – – – 0E – 4.31 TC [1747]
Mo – – ? ∼1500–2100 – 4.31 ± 0.04 TE [792]
Mo – – ≤2 × 10−8 ∼1400–1800 – 4.32 TE [130,1363]
Mo – – <10−6 ∼300 – 4.33 PE [2919]
Mo – – ? ∼80 – 4.33 CPD [2294]
Mo – – ≤10−7 0E (∼1800) – 4.33 TE [1878]
Mo173 – – <2 × 10−9 ? – 4.33 TE [134]
Mo – – ? ∼300 – 4.33 PE [2924]
Mo – – 1 × 10−7 ∼1900–2300 (5.02 ± 0.05) 4.33 ± 0.07 TE [76,77]
Mo17 – – <10−9 1650–1950 – 4.33 ± 0.16 TE [791]
Mo – – ≤10−9 1800–2200 – 4.34 TE [66]
Mo – – ? ∼1600–2000 – 4.34 TE [3526]
Mo/Re Mo – ∼10−9 ∼1200–1800 – 4.35 TE [975]
Mo – – ≤4 × 10−10 ? – 4.35 TE [2091]
Mo{72%(100)}172 – – ? (Cs) ∼1200–1800 – 4.35 ± 0.05 TE [650,3414]
Mo – – 4 × 10−9 ∼1600–1950 – 4.35 ± 0.05 TE [341]
Mo – – ∼10−11 ∼300 – 4.36 CPD [3338]
Mo – – ? ? – 4.36 TE [2088]
Mo – – ∼10−10 –1700– – 4.36 TE [335,1650,1651,

1967]
Mo – – ? ∼2350–2500 (4.6, 5.4*) 4.37 ± 0.02 TE [132]
Mo – – <3 × 10−8 ∼1400–1700 (4.50) 4.38 TE [131]
Mo – – ? ? – 4.38 TE [3524,3525]
Mo – – ? (Cs) ∼1500–2200 – 4.38 TE [1390,3840]
Mo – – 6 × 10−10 ∼1400–2100 – 4.38 TE [2091,2092]
Mo – – ? (Cs) ∼1500–2500 – 4.38 TE [3798,3799]
Mo{72%(100)}172 – – – – (4.51 ± 0.03) 4.38 ± 0.01 TC [803]
Mo KCl K+ ? ? 4.39 ± 0.02 – PSI [2306]
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Mo – – 2 × 10−7 ∼2000–2100 (4.90 ± 0.06) 4.39 ± 0.05 TE [23,39]
Mo – – (∼10−12) ∼300 – 4.4 ± 0.02 CPD [1795]
Mo – – ? ? – 4.40 TE [3402]
Mo – – ? ∼1800 – 4.40 TE [2567]
Mo – – – – – 4.40 TC [2949]
Mo – – ≤1 × 10−6 2055–2140 – 4.40 ± 0.01 TE [2296]
Mo173 – – <2 × 10−9 293 – 4.41 PE [134]
Mo – – – – – 4.41 TC [3637]
Mo – – ? ? (4.23 ± 0.10*) 4.41 ± 0.01 TE [645]
Mo – – 1 × 10−8 1590–2100 (4.96 ± 0.01) 4.41 ± 0.02 TE [78]
Mo/SiO2 Mo – ? ∼300 – 4.42 CPD [3687]
Mo – – – – – 4.42 TC [3318]
Mo K K+ ? (K) 1000 4.42 – PSI [1845]
Mo – – 2 × 10−6 2200 – 4.44 TE [39]
Mo – – ≤1 × 10−7 ∼1700–2500 – 4.45 ± 0.01 TE [978]
Mo – – – – – 4.46 TC [298]
Mo – – – – – 4.46 TC [3318]
Mo173 – – <2 × 10−9 1000 – 4.47 ± 0.03 PE [134]
Mo – – ≤10−7 ∼1450–2150 – 4.48 TE [1878]
Mo – – ? ∼300 – 4.48 CPD [2297]
Mo – – ∼10−7 ∼2000 – 4.49 TE [1398]
Mo – – – – – 4.49 TC [531]
Mo Li+ Li+ ∼10−9 ∼500–1800 4.5 – PSI [1440]
Mo Na+ Na+ ∼10−9 ∼500–1800 4.5 – PSI [1440]
Mo K+ K+ ∼10−9 ∼500–1800 4.5 – PSI [1440]
Mo – – <1 × 10−9 ∼300 – 4.5 PE [2211]
Mo – – ∼10−8 833 – 4.5 CPD [2050]
Mo170 – (Mo+) ∼10−7 ∼2400–2550 4.5 ± 0.1 (4.19 ± 0.02) PSI [954]
Mo – – ∼10−6 ∼1900–2100 – 4.5 ± 0.2 TE [1779]
Mo170 – (Mo+) <3 × 10−8 2150–2630 4.50 (4.17, 4.38) PSI [131]
Mo – – <8 × 10−11 ∼300 – 4.500 ± 0.100 CPD [342,3868]
Mo{72%(100)}172 – – – – 4.51 ± 0.03 (4.38 ± 0.01) TC [803]
Mo – – – – – 4.53 TC [3476]
Mo/W(112) – – – – – 4.55 TC [531]
Mo – – 3 × 10−10 ∼300 – 4.55 ± 0.03 PE [1504]
Mo170 – (Mo+) ? 2350–2500 4.6 ± 0.1 (4.37 ± 0.02) PSI [132]
Mo – – – – – 4.6 TC [944]
Mo/quartz Mo – ∼10−10 ∼300 – 4.6 ± 0.15 PE [304]
Mo – – ? 77 – 4.61 ± 0.02 PE [793]
Mo – – 2 × 10−5 2080–2200 – 4.64 TE [3017]
Mo – – ? (K) 1350–1550 – 4.66 TE [2559]
Mo – – – – – 4.7 TC [706]
Mo170 – (Mo+) ∼10−7 ∼2400–2550 4.7 ± 0.1* (4.19 ± 0.02) PSI [954]
Mo/W(111) – – – – – 4.70 TC [531]
Mo – – – – – 4.70 TC [2629]
Mo – – 5 × 10−10 ∼300 – 4.72 AI [4027]
Mo/Si(111)166 Mo – 4 × 10−11 ∼300 – 4.76 PE [1430]
Mo – – – 0 – 4.78 TC [4419]
Mo KBr K+ 2 × 10−7 ∼2000–2100 4.90 ± 0.06 (4.39 ± 0.05) PSI [23,39,57,2422]
Mo170 – (Mo+) ∼10−10 2350–2500 4.93 ± 0.03* – PSI [3886]
Mo/HfO2 Mo – ? ∼300 – 4.95 CPD [3519,3656]
Mo Bi Bi+ 1 × 10−8 1830–2240 4.96 ± 0.01 (4.41 ± 0.02) PSI [78]
Mo – – – – – 4.97 TC [531]
Mo In In+ 1 × 10−7 ∼1900–2300 5.02 ± 0.05 (4.33 ± 0.07) PSI [76,77]
Mo/SiO2 Mo – ? ∼300 (∼900) – 5.05 ± 0.05 CPD [3519,3687]
Mo170 – (Mo+) ? 2350–2500 5.1 ± 0.1* (4.20 ± 0.02) PSI [132]
Mo170 – (Mo+) ∼10−7 ∼2100–2400 5.1 ± 0.4 (4.33 ± 0.07) PSI [77]
Mo KCl K+ 2 × 10−7 ∼2000–2100 5.10 ± 0.07 (4.39 ± 0.05) PSI [23,39,2422]
Mo170 – (Mo+) ? 2350–2500 5.4 ± 0.1* (4.37 ± 0.02) PSI [132]
Mo – – – – – 5.80 TC [2629]
Mo/W Mo – ? ∼300 – 6.0 FE [2225]
Recommended – – – – 5.03 ± 0.06 4.31 ± 0.02 – –

43. Technetium Tc

hcp
Tc(0001) – – – – – 4.69 TC [4004]
Tc(0001) – – – – – 4.95 TC [4004]
Tc(0001) – – – – – 5.15 TC [4005]
Tc(0001) – – – – – 5.30 TC [321]
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Tc(0001) – – – – – 5.36 TC [334]

Tc(1010) – – – – – 4.31 TC [4005]
Tc(1010) – – – – – 4.50 TC [4004]
Tc(1010) – – – – – 4.83 TC [4004]
Tc(1010) – – – – – 5.13 TC [321]

Tc(1011) – – – – – 4.70 TC [4004]
Tc(1011) – – – – – 5.05 TC [4004]

Tc(1012) – – – – – 4.31 TC [4004]
Tc(1012) – – – – – 4.67 TC [4004]

Tc(1013) – – – – – 4.25 TC [4004]
Tc(1013) – – – – – 4.60 TC [4004]

Tc(1121) – – – – – 4.09 TC [4004]
Tc(1121) – – – – – 4.44 TC [4004]

Tc(1122) – – – – – 4.28 TC [4004]
Tc(1122) – – – – – 4.63 TC [4004]

Tc(1123) – – – – – 4.23 TC [4004]
Tc(1123) – – – – – 4.56 TC [4004]

Tc(1124) – – – – – 4.43 TC [321]

Tc(2130) – – – – – 4.26 TC [4004]
Tc(2130) – – – – – 4.58 TC [4004]

Tc(3140) – – – – – 4.32 TC [4004]
Tc(3140) – – – – – 4.64 TC [4004]

Tc – – – – – 3.91 TC [3476]
Tc – – – – – 4.01 TC [3476]
Tc160 – – – – – 4.4 TC [1355]
Tc – – – – – 4.41 TC [3476]
Tc(wire) – – 5 × 10−8 1970–2120 – 4.51 ± 0.02 TE [3700]
Tc – – – – – 4.66 TC [3318]
Tc – – – – – 4.66 ± 0.02 TC [1045]
Tc – – – – – 4.67 TC [2949]
Tc – – – – – 4.67 TC [3318]
Tc – – – – – 4.7 TC [706]
Tc – – – – – 4.8 TC [298]
Tc – – – – – 4.82 TC [4270]
Tc – – – – – 4.86 ± 0.01 TC [895]
Tc – – – – – 4.88 ± 0.05 TC [895]
Tc – – ≤1 × 10−10 ∼300 – 4.9 ± 0.4 PE [1695]
Tc – – ≤1 × 10−10 ∼300 – 5.1 ± 0.1 PE [1695]
Tc – – – – – 5.2 TC [944]
Recommended – – – – – 4.67 ± 0.02 – –

44. Ruthenium Ru435

hcp
Ru(0001)143 – – ? ? – 4.5 FE [2348]
Ru(0001) – – ∼10−10 ∼300 – 4.7 PE [4340]
Ru(0001) – – – – – 4.97 TC [4004]
Ru(0001) – – – – – 5.0 TC [3011]
Ru(0001) – – – – – 5.03 TC [343]
Ru(0001) – – ∼10−9 1600 – 5.04 ± 0.07 TE [3087]
Ru(0001) – – <2 × 10−10 ∼300 – 5.1 PE [2374]
Ru(0001) – – – – – 5.18 TC [3734]
Ru(0001)/Mo(110) Ru – 1 × 10−10 ∼300 (800) – 5.26 CPD [2876]
Ru(0001) – – ≤1 × 10−10 ∼300 – 5.26 PE [1606]
Ru(0001) – – 4 × 10−11 100 – 5.27 ± 0.08 PE [344]
Ru(0001) – – – – – 5.3 TC [1707]
Ru(0001) – – ≤1 × 10−10 ∼300 – 5.3 PE [1614]
Ru(0001)175 – – – – – 5.3 TC [542]
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Ru(0001) – – <10−10 ∼300 – 5.3 PE [3782]
Ru(0001) – – ? ∼300 – 5.3 ± 0.1 PE [3359]
Ru(0001) – – ? ∼300 – 5.30 PE [4020]
Ru(0001) – – – – – 5.31 TC [4004]
Ru(0001) – – – – – 5.37 TC [4005]
Ru(0001) – – – – – 5.37 TC [3473]
Ru(0001) – – 1 × 10−10 100 – 5.38 PE [759]
Ru(0001) – – – – – 5.4 TC [456]
Ru(0001)175 – – ∼10−11 ∼300 – 5.4 PE [542]
Ru(0001) – – <2 × 10−10 115 – 5.4 ± 0.1 PE [4335]
Ru(0001) – – <8 × 10−11 130 – 5.4 ± 0.1 PE [528]
Ru(0001) – – ∼10−10 ∼300 – 5.4 ± 0.1 PE [2138]
Ru(0001) – – 3 × 10−10 295 – 5.40 CPD [1822,1827]
Ru(0001) – – ∼10−9 ∼1600–2000 – 5.40 ± 0.07 TE [3085,3087,3096]
Ru(0001) – – ? ? – 5.42 ? [2652]
Ru(0001) – – – – – 5.43 TC [1106]
Ru(0001) – – ∼10−10 ∼300 – 5.45 PE [4199]
Ru(0001) – – – – – 5.46 TC [3224]
Ru(0001)/Mo(110) Ru – 1 × 10−10 ∼300 (800) – 5.48 CPD [2876]
Ru(0001) – – 1 × 10−10 100 – 5.50 ± <0.10 PE [672]
Ru(0001)143 – – 1 × 10−10 100 – 5.52 ± 0.1 PE [529,759,2266,

3198]
Ru(0001) – – ≤2 × 10−10 85 – 5.53 CPD [2176]
Ru(0001) – – ? ? – 5.58 ? [3160]
Ru(0001) – – – – – 5.84 TC [334]
Recommended – – – – – 5.35 ± 0.06 – –

Ru(1010) – – – – – 4.59 TC [4005]
Ru(1010) – – 3 × 10−10 ∼300 – 4.6 ± 0.1 PE [846]
Ru(1010) – – – – – 4.79 TC [4004]
Ru(1010) – – – – – 4.88 TC [703]
Ru(1010) – – ∼10−9 1600 – 5.08 ± 0.05 TE [3087]
Ru(1010) – – – – – 5.13 TC [4004]
Ru(1010) – – ∼10−9 ∼1600–1900 – 5.14 ± 0.05 TE [3085,3087,3096]
Recommended – – – – – 4.9 ± 0.2 – –

Ru(1011) – – – – – 4.91 TC [4004]
Ru(1011) – – – – – 5.26 TC [4004]

Ru(1012) – – – – – 4.50 TC [4004]
Ru(1012) – – – – – 4.85 TC [4004]

Ru(1013) – – – – – 4.45 TC [4004]
Ru(1013) – – – – – 4.82 TC [4004]

Ru(1121) – – – – – 4.39 TC [4004]
Ru(1121) – – – – – 4.76 TC [4004]

Ru(1122)435 – – ∼10−9 ∼1510–1540 – 4.12 ± 0.05𝛽 TE [3686]
Ru(1122)435 – – ∼10−9 ∼1400–1500 – 4.45 ± 0.05𝛼 TE [3686]
Ru(1122)435 – – ∼10−9 ∼1580–1730 – 4.45 ± 0.05𝛾 TE [3686]

Ru(1123) – – – – – 4.43 TC [4004]
Ru(1123) – – – – – 4.80 TC [4004]

Ru(1124) – – ∼10−9 ∼1600–1900 – 4.52 ± 0.05 TE [3087,3096]
Ru(1124) – – ∼10−9 1600 – 4.55 ± 0.05 TE [3085,3087]

Ru(1125)435 – – ∼10−9 ∼1510–1540 – 4.10 ± 0.05𝛽 TE [3686]
Ru(1125)435 – – ∼10−9 ∼1400–1480 – 4.65 ± 0.05𝛼 TE [3686]
Ru(1125)435 – – ∼10−9 ∼1560–1730 – 4.65 ± 0.05𝛾 TE [3686]

Ru(2130) – – – – – 4.47 TC [4004]
Ru(2130) – – – – – 4.86 TC [4004]

Ru(3140) – – – – – 4.37 TC [4004]
Ru(3140) – – – – – 4.96 TC [4004]

Ru – – – – – 4.10 TC [3476]
Ru – – – – – 4.21 TC [3476]
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Ru – – 7 × 10−10 ∼300 – 4.3 PE [2328]
Ru/glass Ru – <1 × 10−10 78 – 4.50 PE [414]
Ru/glass Ru – 5 × 10−10 78 – 4.51 PE [1495]
Ru/glass363 Ru – ∼10−10 ∼78 – 4.52 PE [436]
Ru – – ? ∼300 – 4.52 CPD [2297]
Ru – – – – – 4.52 TC [1399]
Ru/glass Ru – <5 × 10−10 78 – 4.52 ± 0.03 PE [1256]
Ru/Mo Ru – ∼10−8 ∼1600–2000 – 4.55 ± 0.05 TE [794,2824]
Ru – – ? (Cs) ? – 4.57 TE [2099]
Ru – – ? (Cs) ? – 4.57 TE [2936]
Ru/Mo Ru – ∼10−4–1 (Cs) ≥2000 – 4.57 ± 0.05 TE [794,2824]
Ru – – – – – 4.60 TC [1066]
Ru – – – – – 4.61 TC [3476]
Ru/HfSiOx/Si Ru – 2 × 10−10 ∼300{620} – 4.62 PE [4186]
Ru – – ∼10−9 ? – 4.64 TE [3112]
Ru – – – – – 4.66 TC [3318]
Ru – – – – – 4.67 TC [3318]
Ru – – – – – 4.68 TC [2949]
Ru – – ∼10−9 1600 – 4.68 TE [3087,3096]
Ru – – – – – 4.7 TC [706]
Ru/glass Ru – <1 × 10−10 78 (293) – 4.71 PE [414]
Ru – – ? ∼300 – 4.730 ± 0.01 CPD [13]
Ru/HfSiOx/Si Ru – 2 × 10−10 ∼300 (700) – 4.74 ± 0.01 CPD [4186]
Ru – – ∼10−8 ∼1600–2300 – 4.75 TE [1776,2322,2327]
Ru/82%Ru–Ta – – ∼10−8 ∼1700 (∼2200) – 4.75 TE [2327]
Ru/glass Ru – <1 × 10−10 78 (373) – 4.76 PE [414]
Ru – – – – – 4.80 TC [3264,3265,3267]
Ru – – – – – 4.81 TC [298]
Ru/SiO2/Si Ru – 2 × 10−10 ∼300 (700) – 4.81 CPD [4186]
Ru/glass Ru – <1 × 10−10 78 (473) – 4.82 PE [414]
Ru – – – – – 4.83 TC [3224]
Ru/glass Ru – <5 × 10−10 78 (373) – 4.83 ± 0.03 PE [1256]
Ru/SiO2 Ru – ? ∼300 – 4.84 ± 0.1 CPD [2906]
Ru/W Ru – ? ∼300 – 4.865 ± 0.005 CPD [13]
Ru – – ? ? – 4.89 TE [2105]
Ru/glass Ru – <1 × 10−10 78 (573) – 4.89 PE [414]
Ru – – – – – 4.9* TC [1955]
Ru – – – – – 5.1 TC [944]
Ru/HfO2/SiOx/Si Ru – ? ∼300 (593) – 5.1 CPD [1835]
Ru/quartz363 Ru – <5 × 10−10 ∼78 (≳2800) – 5.10 ± 0.05 PE [436,1256]
Ru/glass Ru – 5 × 10−10 78 (800) – 5.11 PE [1495]
Ru/? Ru – 7 × 10−10 ∼300 – 5.4 PE [2328]
Ru – – – – – 5.46 TC [1744]
Recommended – – – – – 4.71 ± 0.05 – –

45. Rhodium Rh

fcc
Rh(100) – – – – – 4.4 TC [1109]
Rh(100) – – ? ∼300 – 4.6 ± 0.1 ? [1257]
Rh(100) – – – – – 4.8 ± <0.3 TC [1014,1108]
Rh(100) – – – – – 4.91 TC [980]
Rh(100) – – – – – 4.92 TC [981]
Rh(100) – – 1 × 10−10 ∼300 – 4.94 ± 0.03 PE [2396]
Rh(100) – – – – – 4.99 TC [321]
Rh(100) – – – – – 5.040 TC [4091]
Rh(100) – – – – – 5.087 TC [2229,2447]
Rh(100) – – 2 × 10−10 100 – 5.11 PE [1017,2859,3821]
Rh(100) – – – – – 5.15 TC [1008]
Rh(100) – – – – – 5.16 TC [705]
Rh(100) – – – – – 5.17 TC [2912]
Rh(100) – – – – – 5.17 TC [4333,4334]
Rh(100) – – ? ∼300 – 5.2 PE [2158]
Rh(100) – – ? ∼300 – 5.2 ± 0.2 PE [1127]
Rh(100) – – – – – 5.24 TC [1928]
Rh(100) – – – – – 5.25 TC [320,1012,1015]
Rh(100) – – – – – 5.26 TC [981]
Rh(100) – – – – – 5.30 TC [980]
Rh(100)176 – – – – – 5.36 TC [1258]
Rh(100) – – ∼10−11 ∼300 – 5.38 ± 0.05 FE [853]
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Rh(100) – – ? 40–298 – 5.40 ± 0.02 CPD [2832]
Rh(100) – – <10−10 80, 144, 298 – 5.41 ± 0.01 FE [1010]
Rh(100) – – – – – 5.43 ± 0.1 TC [916]
Rh(100) – – – – – 5.45 TC [4228]
Rh(100) – – – – – 5.46 TC [4228]
Rh(100) – – – – – 5.49 TC [982]
Rh(100) – – – – – 5.5 TC [1009,1016]
Rh(100)176 – – – – – 5.57 TC [1258]
Rh(100) – – – – – 5.6 ± >0.2 TC [1016,1909]
Recommended – – – – – 5.24 ± 0.07 – –

Rh(110) – – – – – 4.53 TC [2442]
Rh(110) – – – – – 4.57 TC [2442]
Rh(110) – – – – – 4.59 TC [980]
Rh(110) – – – – – 4.615 TC [2229,2447]
Rh(110) – – – – – 4.62 TC [2442]
Rh(110) – – – – – 4.635 TC [4091]
Rh(110) – – – – – 4.67 TC [2912]
Rh(110) – – – – – 4.69 TC [321]
Rh(110)177 – – ∼10−11 ∼300 – 4.70 ± 0.05 FE [853]
Rh(110) – – – – – 4.72 TC [2442]
Rh(110) – – – – – 4.77 TC [523]
Rh(110) – – – – – 4.78 TC [523]
Rh(110) – – 1 × 10−10 80 – 4.8 FE [2146,2163]
Rh(110)177 – – ∼10−11 ∼300 – 4.80 ± 0.05 FE [853]
Rh(110) – – <10−10 144, 195 – 4.86 ± 0.01 FE [1010]
Rh(110) – – – – – 4.94 TC [320,980]
Rh(110) – – – – – 4.98 TC [523]
Rh(110) – – – – – 4.99 TC [523]
Rh(110) – – – – – 5.07 TC [4228]
Rh(110) – – ? 40–298 – 5.12 ± 0.02 CPD [2832]
Recommended – – – – – 4.75 ± 0.06 – –

Rh(111)178 – – ∼10−11 ∼300 – 4.95 ± 0.05 FE [853]
Rh(111) – – 1 × 10−10 ∼300 – 5.04 ± 0.03 PE [2396]
Rh(111)179 – – ∼10−10 ∼300 – 5.1 PE [1544,1546]
Rh(111) – – – – – 5.105 TC [2229,2447]
Rh(111) – – – – – 5.11 TC [1722]
Rh(111) – – – – – 5.12 TC [2068]
Rh(111) – – – – – 5.132 TC [4008]
Rh(111) – – – – – 5.138 TC [4091]
Rh(111) – – – – – 5.20 TC [2913]
Rh(111) – – – – – 5.21 TC [2912]
Rh(111) – – – – – 5.23 TC [1013]
Rh(111) – – – – – 5.26 TC [3369]
Rh(111) – – 1 × 10−10 80 – 5.3 FE [2146,2163]
Rh(111) – – 4 × 10−11 40 – 5.3 PE [1019]
Rh(111)/Mo(110)180 Rh – 7 × 10−11 ∼300 – 5.36 PE [1035]
Rh(111) – – – – – 5.39 TC [321]
Rh(111) – – <1 × 10−10 ∼300 – 5.4 PE [568,2282]
Rh(111) – – <5 × 10−11 ∼300 – 5.4 PE [1018]
Rh(111) – – 4 × 10−11 ∼300 – 5.4 ± 0.1 PE [2048]
Rh(111) – – – – – 5.40 TC [1011]
Rh(111) – – – – – 5.44 TC [320,1178]
Rh(111) – – – – – 5.44 TC [2534]
Rh(111)/W(110) Rh – 4 × 10−11 350 – 5.47 CPD [2408]
Rh(111) – – – – – 5.56 TC [4228]
Rh(111) – – – – – 5.59 TC [4228]
Rh(111) – – – – – 5.59 TC [1011]
Rh(111) – – <10−10 298 – 5.59 ± 0.01 FE [1010]
Rh(111) – – – – – 5.6 TC [1009,1011]
Rh(111) – – ∼10−11 80 – 5.6 FE [3460]
Rh(111) – – <10−10 195 – 5.60 ± 0.01 FE [1010]
Rh(111) – – 1 × 10−10 45 – 5.60 ± 0.04 PE [1128,1204,2280]
Rh(111) – – <10−10 195 – 5.61 ± 0.01 FE [1010]
Rh(111) – – – – – 5.63 TC [1011]
Rh(111) – – – – – 5.64 TC [1011]
Rh(111) – – ? 40–298 – 5.66 ± 0.02 CPD [2832]
Rh(111) – – <10−10 144 – 5.67 ± 0.01 FE [1010]
Rh(111) – – <10−10 80 – 5.69 ± 0.01 FE [1010]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Rh(111) – – – – – 5.79 TC [1011]
Rh(111) – – – – – 5.91 TC [334,3179]
Rh(111) – – – – – 6.51 TC [1011]
Recommended – – – – – 5.40 ± 0.08 – –

Rh(112) – – ∼10−11 80 – 5.1 FE [3460]

Rh(113) – – 1 × 10−10 80 – 5.0 FE [2146,2163]

Rh(210) – – ∼10−11 ∼300 – 4.64 ± 0.05 FE [853,2511]

Rh(310) – – ∼10−11 ∼300 – 4.76 ± 0.05 FE [853,2511]

Rh(320) – – 1 × 10−10 80 – 4.70 FE [2146,2163]

Rh(321) – – ∼10−11 ∼300 – 4.75 ± 0.05 FE [853,2511]

Rh(410) – – ∼10−11 ∼300 – 4.90 ± 0.05 FE [853]

Rh(430) – – ∼10−11 ∼300 – 4.72 ± 0.05 FE [853,2511]

Rh(520) – – ∼10−11 ∼300 – 4.74 ± 0.05 FE [853,2511]

Rh(531) – – ∼10−11 ∼300 – 4.69 ± 0.05 FE [853,2511]

Rh – – – – – 4.19 TC [3476]
Rh – – – – – 4.35 TC [3476]
Rh – – ? ∼300 – 4.52 CPD [2297]
Rh – – 3 × 10−11 ∼300 – 4.53 FE [2227]
Rh/Nb(110) – – – – – 4.56 TC [2913]
Rh – – – – – 4.57 TC [1399]
Rh – – ∼10−8 513 – 4.57 ± 0.09 PE [1757]
Rh – – ∼10−8 ∼1300–1500 – 4.58 ± 0.09 TE [1757]
Rh – – ? ? – 4.6 TE [3402]
Rh – – – – – 4.62 TC [1066]
Rh – – – – – 4.64 TC [3318]
Rh – – – – – 4.7 TC [3318]
Rh – – 3 × 10−9 ∼1100–1700 – 4.72 TE [159]
Rh – – – – – 4.74 TC [2949]
Rh – – – – – 4.76 TC [3476]
Rh – – – – – 4.8 TC [706]
Rh – – – – – 4.80 TC [298]
Rh – – ≤2 × 10−6 ∼1150–1300 – 4.80 TE [3396]
Rh – – 1 × 10−10 ∼300 – 4.85 PE [3125]
Rh/glass Rh – ∼10−10 78 – 4.87 PE [2719]
Rh/glass Rh – <1 × 10−10 78 – 4.88 PE [414,2723]
Rh – – ? ∼1550–1950 – 4.9 TE [668]
Rh/W(110) Rh – 5 × 10−11 ∼300 (1200) – 4.9* CPD [2420]
Rh/W(111) Rh – ≤10−8 ∼300 – 4.90 ± 0.04* CPD [2338]
Rh/glass Rh – <1 × 10−10 78 (293) – 4.98 PE [414,2722,2723]
Rh – – – – – 4.99 TC [3264]
Rh/quartz Rh – 5 × 10−11 ∼300 – 5.0 PE [1022]
Rh – – – – – 5.0 TC [2583]
Rh – – 1 × 10−10 ∼300 – 5.0 PE [570,2368,3125]
Rh/glass Rh – ∼10−10 78 (293) – 5.06 PE [2719]
Rh/W(110) Rh – 3 × 10−11 200–560 – 5.1* ? [1930]
Rh – – – – – 5.1* TC [1955]
Rh/glass Rh – ∼10−10 78 (373) – 5.11 PE [414,2719,2723]
Rh/W(100) Rh – ≤10−8 ∼300 – 5.12 ± 0.03* CPD [2338]
Rh – – – – – 5.15 ± 0.05 TC [1256]
Rh/glass Rh – <3 × 10−10 78 (458) – 5.18 PE [414,2723]
Rh – – <5 × 10−9 ? – 5.2 ± 0.1 TE [647]
Rh/HfO2/Si181 Rh(ac)3 – 5 × 10−6 ∼300 (423) – 5.25 CPD [2908]
Rh – – ? ? – 5.25 TE [2105]
Rh – – – – – 5.3 TC [944]
Rh/SiO2/Si181 Rh(ac)3 – 5 × 10−6 ∼300 (423) – 5.43 CPD [2908]
Rh/W(110) Rh – ≤10−8 ∼300 – 5.51 ± 0.05* CPD [2338]
Recommended – – – – – 4.87 ± 0.07 – –
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

46. Palladium Pd

fcc
Pd(100) – – – – – 4.3 TC [2033]
Pd(100) – – – – – 5.0 TC [1023,1108,1109,

3126]
Pd(100) – – ? ∼300 – 5.0 ± 0.2 PE [1692]
Pd(100) – – – – – 5.080 TC [4091]
Pd(100) – – – – – 5.11 TC [4087]
Pd(100) – – – – – 5.115 TC [2229,2447]
Pd(100) – – – – – 5.14 TC [602,1008]
Pd(100) – – – – – 5.16 TC [4434]
Pd(100)/Fe(100) – – – – – 5.2 TC [2157]
Pd(100) – – – – – 5.22 TC [705]
Pd(100) – – – – – 5.25 TC [1024,3284]
Pd(100) – – ? ? – 5.3 ? [1025]
Pd(100) – – – – – 5.30 TC [320,1012,1015,

1928]
Pd(100) – – ∼10−11 ∼300 – 5.5 PE [2379]
Pd(100)182 – – – – – 5.50 TC [704,795]
Pd(100) – – – – – 5.50 TC [2701]
Pd(100) – – ? 20 – 5.51 PE [2642]
Pd(100) – – – – – 5.54 TC [2701]
Pd(100) – – <10−9 ∼300 – 5.55 PE [1424]
Pd(100)183 – – 2 × 10−11 40–140 – 5.55 ± <0.1 PE [1129]
Pd(100) – – – – – 5.56 TC [321]
Pd(100) – – – – – 5.6 TC [1734]
Pd(100) – – ? 80 – 5.60 PE [3176]
Pd(100) – – – – – 5.61 TC [2405]
Pd(100) – – ? ? – 5.65 ? [1809]
Pd(100) – – 1 × 10−10 100 – 5.65 ± <0.1 PE [672,914,1026,

3449]
Pd(100) – – – – – 5.68 TC [1259]
Pd(100) – – – – – 5.72 TC [704]
Pd(100) – – ? 110 – 5.8 PE [2980]
Pd(100) – – 2 × 10−10 ∼300 – 5.8 ± 0.2* PE [997]
Pd(100) – – – – – 5.80 TC [1027]
Pd(100)182 – – – – – 5.80 TC [704,795]
Pd(100) – – – – – 5.81 TC [2405]
Pd(100) – – – – – 5.82 TC [704]
Pd(100) – – ∼10−11 77 – 5.9 PE [3845]
Pd(100) – – – – – 5.96 TC [334]
Pd(100) – – – – – 6.11 TC [1259]
Recommended – – – – – 5.48 ± 0.04 – –

Pd(110) – – – – – 4.781 TC [2229,2447]
Pd(110) – – – – – 4.860 TC [4091]
Pd(110) – – – – – 4.87 TC [4087,4410]
Pd(110) – – – – – 4.88 TC [2916]
Pd(110) – – – – – 4.90 TC [602]
Pd(110) – – – – – 4.98 TC [602]
Pd(110)184 – – 1 × 10−10 100 – ∼5 PE [610]
Pd(110) – – – – – 5.13 TC [320]
Pd(110) – – – – – 5.16 TC [1931]
Pd(110) – – ? 110 – 5.2 PE [2980]
Pd(110) – – ? ∼300 – 5.2 PE [1243]
Pd(110)184 – – 1 × 10−10 100 – 5.20 ± <0.1 PE [672,914,1026,

3444]
Pd(110) – – – – – 5.24 TC [321]
Pd(110) – – 1 × 10−10 100 – 5.25 ± 0.1 PE [3449]
Pd(110)/Al(110)185 Pd – 1 × 10−10 ∼300 – 5.5 PE [3495]
Pd(110) – – 4 × 10−10 ∼300 – 5.83 PE [1599]
Recommended – – – – – 5.12 ± 0.09 – –

Pd(111) – – – – – 5.165 TC [4308]
Pd(111) – – – – – 5.18 TC [602]
Pd(111) – – – – – 5.198 TC [2229,2447]
Pd(111) – – – – – 5.20 TC [2063]
Pd(111) – – – – – 5.22 TC [1028,1179]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Pd(111) – – – – – 5.23 TC [4091]
Pd(111) – – – – – 5.239 TC [3657]
Pd(111) – – – – – 5.25 TC [1029,3991]
Pd(111) – – – – – 5.25 TC [4087,4410]
Pd(111) – – – – – 5.26 TC [1179]
Pd(111) – – – – – 5.27 TC [2913]
Pd(111) – – – – – 5.30 TC [1722]
Pd(111) – – – – – 5.31 TC [2068]
Pd(111) – – – – – 5.33 TC [3369]
Pd(111) – – <2 × 10−10 ∼300 – 5.44 ± 0.03 PE [985]
Pd(111)/Nb(110) Pd – ? ∼300 – 5.48 ± 0.05* PE [3439]
Pd(111)/W(110) Pd – <1 × 10−10 ∼300 – 5.5 CPD [2857,3123]
Pd(111)/Si(111) Pd – ∼1 × 10−10 298 (423) – 5.5 PE [2972]
Pd(111)/Ta(111) Pd – <3 × 10−10 ∼300 – 5.5 CPD [3232]
Pd(111) – – – – – 5.53 TC [320,2534]
Pd(111)182 – – – – – 5.53 TC [704]
Pd(111) – – – – – 5.53 TC [1720]
Pd(111)/W(100) Pd – <5 × 10−11 ∼300 – 5.55 CPD [2847]
Pd(111)/Mo(110) Pd – ≤7 × 10−11 ∼300 – 5.55 CPD [2861]
Pd(111) – – <2 × 10−10 27, 90 – 5.55 CPD [4107]
Pd(111) – – ∼1 × 10−10 ∼300 – 5.55 ± 0.1 PE [998]
Pd(111) – – – – – 5.57 TC [2916]
Pd(111) – – – – – 5.58 TC [1720]
Pd(111) – – – – – 5.59 TC [1720]
Pd(111) – – – – – 5.59 TC [4282]
Pd(111) – – <3 × 10−10 ∼300 – 5.6 PE [3645]
Pd(111) – – ∼1 × 10−10 80 – 5.6 PE [616,1799]
Pd(111) – – ? ∼300 – 5.6 PE [1243]
Pd(111) – – ? 140 – 5.6* PE [4067]
Pd(111)/Nb(110) Pd – ∼10−10 ∼300 – 5.6 PE [1864]
Pd(111) – – – – – 5.61 TC [4024]
Pd(111)/Cu(111)186 Pd – 5 × 10−9 ∼300 – 5.61 CPD [3364]
Pd(111)/Al(111) Pd – 4 × 10−10 ∼300 – 5.62 ± 0.02 CPD [1826]
Pd(111) – – – – – 5.63 TC [1179]
Pd(111) – – – – – 5.64 TC [1028,1179]
Pd(111) – – – – – 5.64 TC [1931]
Pd(111)/Al(111) Pd – 4 × 10−10 ∼300 – 5.66 ± 0.04* CPD [1826]
Pd(111) – – – – – 5.67 TC [1931]
Pd(111) – – – – – 5.67 TC [4174,4284]
Pd(111) – – – – – 5.75 TC [1259]
Pd(111) – – – – – 5.76 TC [704]
Pd(111) – – – – – 5.8 TC [624]
Pd(111)182 – – – – – 5.86 TC [704,795]
Pd(111) – – – – – 5.90 TC [334,3179]
Pd(111) – – 1 × 10−10 100 – 5.90 ± <0.1 PE [672]
Pd(111)/Al(111) Pd – 5 × 10−11 ∼300 – 5.95 PE [1915]
Pd(111) – – ∼1 × 10−10 100 – 5.95 ± <0.1 PE [914,1026,3449]
Pd(111) – – – – – 6.02 TC [321]
Pd(111) – – – – – 6.18 TC [1259]
Recommended – – – – – 5.58 ± 0.05 – –

Pd(113) – – – – – 5.64 TC [704,795]

Pd – – – – – 4.01 TC [3476]
Pd – – – – – 4.17 TC [3476]
Pd – – 1 × 10−8 ∼300 – 4.2 PE [3325]
Pd – – – – – 4.38 TC [2990]
Pd/Al/Ta(111)398 Pd – 8 × 10−8 ∼300 – 4.38 PE [2271]
Pd/Si(111) – – – – – 4.4 TC [2219]
Pd/Nb(110) – – – – – 4.44 TC [2913]
Pd – – – – – 4.47 TC [2005]
Pd – – ? ∼300 – 4.49 CPD [2297]
Pd/Si – – – – – 4.50 TC [1653]
Pd – – – – – 4.51 TC [1976]
Pd – – – – – 4.52 TC [3318]
Pd/Si – – – – – 4.53 TC [1653]
Pd – – – – – 4.54 TC [3318]
Pd – – ∼10−8 ∼300 – 4.54 ± 0.20 PE [3104]
Pd – – – – – 4.57 TC [3476]
Pd187 – – ∼10−10 ∼300 – 4.6 ± 0.15 PE [350]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Pd6(cluster) – – – – – 4.61 TC [2990]
Pd188 – – ? ∼300 – 4.61* CPD [1953]
Pd188 – – ? ∼300 – 4.69 ± 0.06* CPD [1953]
Pd/Nb(110) – – – – – 4.72 TC [722]
Pd – – – – – 4.72 TC [1066]
Pd – – – – – 4.73 TC [1399]
Pd – – – – – 4.77 TC [2949]
Pd/C Pd – <2 × 10−10 ∼300 – 4.8 PE [2392]
Pd/W Pd – ∼10−10 1180 – 4.8 FE [2779]
Pd – – – – – 4.80 TC [1590]
Pd – – ∼10−5 ≤1200 – 4.80 TE [2216]
Pd/W Pd – <10−10 800 – 4.83 FE [2964]
Pd4(cluster) – – – – – 4.855 TC [2990]
Pd4(cluster) – – – – – 4.858 TC [2990]
Pd10(cluster) – – – – – 4.87 TC [2990]
Pd7(cluster) – – – – – 4.875 TC [2990]
Pd/glass Pd – <3 × 10−10 78 – 4.88 ± 0.02 PE [1031]
Pd7(cluster) – – – – – 4.882 TC [2990]
Pd/W(110) Pd – ? 90 (900) – 4.9* CPD [3560]
Pd – – – – – 4.9* TC [1955]
Pd/Re Pd – <4 × 10−10 ∼300 – 4.9* CPD [1586]
Pd/Nb Pd – ≤3 × 10−9 ∼300 – 4.9* CPD [3263]
Pd/W(100) Pd – ? ∼300 (≤500) – 4.9* PE [2039]
Pd/W(110) Pd – ? ∼300 (≤500) – 4.9* PE [2039]
Pd – – – – – 4.9 TC [706]
Pd – – – – – 4.9 TC [944]
Pd – – ? ? – 4.9 TE [3402]
Pd/glass Pd – <1 × 10−10 78 – 4.90 PE [414]
Pd/quartz Pd – ≤5 × 10−10 78 – 4.93 ± 0.02 PE [435]
Pd/glass Pd – <10−9 77 – 4.95 PE [2763,3046,3052]
Pd/Ta187 Pd – ∼10−10 ∼300 – 4.95 ± 0.05 PE [350]
Pd – – ? ∼300 – 4.96 PE [1760]
Pd7(cluster) – – – – – 4.96 TC [2990]
Pd264 – – – 400 – 4.966 TC [3586]
Pd264 – – <10−7 400 – 4.97 PE [1189]
Pd264 – – <10−7 925 – 4.98 PE [1189]
Pd264 – – – 305–1078E – 4.985 ± 0.016 TC [3586]
Pd264 – – <10−7 ∼1200–1400 – 4.99 ± 0.04 TE [1189]
Pd264 – – – 925 – 4.997 TC [3586]
Pd/Si(111) Pd – 1 × 10−10 ∼300 – 5.0* CPD [2732]
Pd/W Pd – ∼10−10 1180 – 5.0 FE [2779,2780]
Pd/Ru(0001) – – – – – 5.00 TC [2554]
Pd – – – – – 5.00 TC [3264,3265,3267]
Pd – – – – – 5.01 TC [3264]
Pd/Ta(110) – – – – – 5.05 TC [3473]
Pd/glass Pd – <3 × 10−10 77 (298) – 5.05 ± 0.03 PE [1031]
Pd/cnt/Si(111)25 – – ∼10−10 ∼300 – 5.05 ± 0.06 PE [3246]
Pd/Ta(112) Pd – <1 × 10−10 90, 300 – 5.06 CPD [3314]
Pd/cnt/Si(111)25 – – ∼10−10 ∼300 – 5.06 ± 0.04 CPD [3246]
Pd188 – – ? ∼300 – 5.07 ± 0.01 CPD [1953]
Pd – – – – – 5.08 TC [298]
Pd/W(110) – – – – – 5.08 TC [3473]
Pd/Re(0001) – – – – – 5.09 TC [3473]
Pd/W Pd – ∼10−10 980 – 5.1 FE [2779]
Pd – – – – – 5.1 TC [2583]
Pd – – – – – 5.1 TC [1645]
Pd/Ta(110)398 Pd – 8 × 10−11 ∼300 – 5.1 PE [2271]
Pd/Mo(112) Pd – <1 × 10−10 100 – 5.1 CPD [3210]
Pd/glass Pd – ∼10−10 293 – 5.11 PE [1509]
Pd/glass Pd – <1 × 10−10 78 (293) – 5.12 PE [414]
Pd/quartz Pd – ≤5 × 10−10 293 – 5.12 ± 0.03 PE [435]
Pd/Cu(100) Pd – 2 × 10−10 ∼300 – 5.14* PE [2041]
Pd/W(111) Pd – <5 × 10−11 ∼300 – 5.17 CPD [2429]
Pd/SiO2/Si Pd – ? ∼300 – 5.18 CPD [4330]
Pd/cnt/Si(111)25 – – ∼10−10 ∼300 – 5.19 ± 0.08 CPD [3246]
Pd/Nb(100) Pd – <1 × 10−10 ∼300 – 5.2 CPD [1253]
Pd – – – – – 5.20 TC [3016]
Pd/glass Pd – <1 × 10−10 78 (383) – 5.20 PE [414]
Pd/quartz Pd – ≤5 × 10−10 293 (550) – 5.20 ± 0.01 PE [435]
Pd – – <8 × 10−11 ∼300 – 5.200 ± 0.100 CPD [342]
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Pd/glass Pd – <1 × 10−10 78 (483) – 5.22 PE [414,1031]
Pd/glass Pd – ∼10−10 293 (573) – 5.22 PE [1509]
Pd/glass Pd – <1 × 10−10 78 (583) – 5.22 PE [414]
Pd – – <2 × 10−10 27, 90 – 5.22 CPD [4107]
Pd – – – – – 5.22 TC [3993]
Pd/Mo(111) Pd – ≤1 × 10−10 300 – 5.24 ± 0.07* CPD [1836]
Pd – – – – – 5.25 TC [2205]
Pd/Al/Ta(110)398 Pd – 8 × 10−11 ∼300 – 5.25 PE [2271]
Pd – – – – – 5.27 TC [3978]
Pd/Ru(0001) – – – – – 5.29 TC [3473]
Pd/Ir Pd – ∼10−9 ∼300 – 5.3 CPD [417]
Pd/Mo(112) Pd – <1 × 10−10 ∼300 – 5.3 CPD [3210]
Pd – – 1 × 10−10 100 – 5.30 ± <0.1 PE [672]
Pd – – ∼10−10 90 – 5.4 PE [3048]
Pd/Au(111) Pd – <1 × 10−10 ∼300 – 5.4 PE [3140]
Pd/Mo(111) Pd – ≤1 × 10−10 ∼300 – 5.4 CPD [1836]
Pd/Au(111) Pd – <1 × 10−10 ∼300 – 5.4 PE [3140]
Pd/glass Pd – <10−9 293 (388) – 5.40 PE [3046,3052]
Pd(fp)149 – – <10−9 ∼300 – 5.45 ± 0.1 PE [3190]
Pd/W(110) Pd – <2 × 10−10 27, 90 – 5.46 CPD [4107]
Pd/Ag(111) – – – – – 5.49 TC [1720]
Pd – – 5 × 10−9 ∼300 – 5.5 PE [1020]
Pd/Ta(111) Pd – <1 × 10−10 ∼300 – 5.5 CPD [3232]
Pd/Rh(100) – – – – – 5.5 TC [1009]
Pd/Ag(111) – – – – – 5.51 TC [1720]
Pd/Ru(0001) Pd – 1 × 10−10 ∼300 – 5.53 ± 0.06* TC [2880]
Pd – – <10−9 ∼300 – 5.55 ± 0.05 PE [2968]
Pd/quartz Pd – ∼10−10 ∼300 – 5.55 ± 0.1 PE [304]
Pd – – – – – 5.59 TC [1744]
Pd/W(110) Pd – ? 90 – 5.6 PE [2513,3563]
Pd/Si(111) Pd – ∼1 × 10−10 298 – 5.6 PE [1900,1906]
Pd/Ag(111) Pd – <4 × 10−11 ∼300 – 5.6 PE [3133]
Pd/Cu(111) Pd – <1 × 10−10 ∼300 – 5.6 ± 0.2 CPD [1245,3417]
Pd/Ag(100) – – – – – 5.67 TC [2405]
Pd – – – – – 5.7 TC [944]
Pd/Cu(111) Pd – <1 × 10−10 ∼300 – 5.9 ± 0.2 CPD [1245,3417]
Recommended – – – – – 5.17 ± 0.06 – –

47. Silver Ag404

fcc
Ag(100) – – – – – 3.55 TC [475]
Ag(100) – – – – – 3.8 TC [1260]
Ag(100) – – – – – 3.89 TC [2516]
Ag(100) – – – – – 4.14 TC [705]
Ag(100) – – – – – 4.18 TC [1193]
Ag(100) – – – – – 4.19 TC [4421]
Ag(100) – – – – – 4.2 TC [971,1108,1109,

2981]
Ag(100) – – – – – 4.2 TC [1261]
Ag(100)189 – – <2 × 10−10 ∼300 – 4.2 PE [2128]
Ag(100) – – – – – 4.20 TC [4258]
Ag(100) – – – – – 4.22 TC [1190]
Ag(100) – – ∼10−10 ∼300 – 4.22 ± 0.04 PE [625]
Ag(100) – – – – – 4.246 TC [4091]
Ag(100) – – – – – 4.29 TC [947]
Ag(100) – – – – – 4.3 TC [1692]
Ag(100)/V(100) Ag – 2 × 10−11 250 – 4.3 PE [3368]
Ag(100) – – – – – 4.30 TC [1034]
Ag(100)/NaCl137 Ag – ? ∼300 (473) – 4.30 ± 0.02 PE [3328,3330]
Ag(100) – – 2 × 10−10 ∼300 – 4.3 ± 0.1 PE [1263]
Ag(100) – – – – – 4.31 TC [4429]
Ag(100) – – – – – 4.32 ± 0.03 TC [3280]
Ag(100) – – – – – 4.33 TC [3280]
Ag(100) – – – – – 4.33 TC [1191,1264]
Ag(100) – – <10−10 ∼300 – 4.34 ± 0.03 PE [1192]
Ag(100) – – – – – 4.35 TC [4117]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Ag(100) – – 2 × 10−10 30 – 4.35 ± 0.05 PE [3154]
Ag(100) – – – – – 4.38 TC [1190]
Ag(100) – – ? ? – 4.4 ? [1262]
Ag(100) – – ∼10−10 ∼300 – 4.41 ± 0.04 PE [2064]
Ag(100) – – 2 × 10−10 ∼300 – 4.42 ± 0.02 PE [957,958]
Ag(100) – – – – – 4.43 TC [320]
Ag(100) – – ∼10−10 ∼300 – 4.43 PE [3703]
Ag(100) – – – – – 4.43 TC [1928]
Ag(100) – – ? ∼300 – 4.43 ± 0.01 PE [1131]
Ag(100) – – – – – 4.44 TC [1190]
Ag(100)190 – – – – – 4.45 TC [2405]
Ag(100) – – – – – 4.45 TC [1159,3067]
Ag(100) – – – – – 4.5 TC [1261]
Ag(100) – – 4 × 10−11 ∼300 – 4.5 PE [2164]
Ag(100) – – ? 50 – 4.5 PE [2909]
Ag(100) – – – – – 4.50 TC [2523]
Ag(100)/Ag(100)191 Ag – ? 308–313 – 4.50* PE [2302]
Ag(100) – – – – – 4.53 TC [2524]
Ag(100)/NaCl Ag – ? 473 – ≤4.58 ± 0.01 CPD [1369]
Ag(100) – – – – – 4.60 TC [1193]
Ag(100)/NaCl192 Ag – ? ∼300 – 4.62 ± 0.03 CPD [1157]
Ag(100) – – <4 × 10−11 ∼300 – 4.64 PE [3134]
Ag(100)193 – – <1 × 10−9 290 – 4.64 ± 0.02 PE [626]
Ag(100)/Ag(100)193 Ag – <2 × 10−9 290 (525) – 4.64 ± 0.02 PE [626]
Ag(100) – – <4 × 10−11 ∼300 – 4.65 PE [3133]
Ag(100)/Ag(100)194 Ag – ≤3 × 10−8 ∼300 (red) – 4.72 ± 0.03 PE [1132]
Ag(100) – – – – – 4.74 TC [627]
Ag(100) – – – – – 4.75 TC [1684]
Ag(100)/Ag(100) Ag – ? ∼300 – ≤4.76 PE [1158]
Ag(100)190 – – – – – 4.78 TC [2405]
Ag(100)/NaCl192 Ag – ? ∼300 – 4.79 CPD [1157]
Ag(100)194 – – ≤3 × 10−8 ∼300 – 4.81 ± 0.01 PE [1132,1881]
Ag(100)/Ag(100)194 Ag – ≤3 × 10−8 ∼300 – 4.81 ± 0.03 PE [1132]
Ag(100) – – – – – 4.82 TC [1237]
Ag(100) – – – – – 4.82 TC [1264]
Ag(100) – – – – – 4.94 TC [1428]
Ag(100) – – – – – 4.95 TC [1428]
Ag(100) – – – – – 5.02 TC [334]
Ag(100)/V(100)195 – – – – – 5.02 TC [1876]
Ag(100) – – – – – 5.06 TC [321]
Recommended – – – – – 4.46 ± 0.05 – –

Ag(110) – – – – – 3.35 TC [475]
Ag(110) – – – – – 3.66 TC [2516]
Ag(110) – – <2 × 10−10 ∼300 – 3.9 PE [1265]
Ag(110) – – – – – 4.059 TC [4091]
Ag(110) – – – – – 4.06 TC [3480]
Ag(110)/Re(1122) Ag – (<1 × 10−11) 78 (≤650) – 4.1 ± 0.02 FE [1421]
Ag(110) – – – – – 4.10 TC [947]
Ag(110) – – ∼10−10 ∼300 – 4.14 ± 0.04 PE [625]
Ag(110) – – – – – 4.17 TC [1159,3067]
Ag(110) – – – – – 4.19 TC [3280]
Ag(110) – – ? ∼300 – 4.2 PE [2144]
Ag(110) – – 1 × 10−10 ∼300 – 4.2 ± 0.1 PE [1678]
Ag(110) – – – – – 4.20 TC [4117]
Ag(110) – – – – – 4.23 TC [320]
Ag(110) – – <10−10 ∼300 – 4.25 ± 0.03 PE [1192]
Ag(110) – – 4 × 10−11 ∼300 – 4.3 ± 0.1 PE [2164]
Ag(110) – – – – – 4.30 TC [1264]
Ag(110) – – ? 570 – 4.40 PE [3169]
Ag(110) – – – – – 4.40 TC [334]
Ag(110)/Ag(110)196 Ag – <2 × 10−9 290 (525) – 4.51 ± 0.01 PE [626]
Ag(110)/mica196 Ag – <2 × 10−9 290 (525) – 4.51 ± 0.02 PE [626]
Ag(110)196 – – <1 × 10−9 290 – 4.52 ± 0.02 PE [626]
Ag(110) – – ? 570 – 4.53 ± 0.05 PE [3169]
Ag(110) – – – – – 4.66 TC [1264]
Ag(110) – – – – – 4.68 TC [1237]
Ag(110) – – ? 570 – 4.70 ± 0.03 PE [3169]
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Ag(110) – – – – – 4.75 TC [1684]
Ag(110) – – – – – 4.76 TC [321]
Recommended – – – – – 4.28 ± 0.08 – –

Ag(111) – – – – – 3.56 TC [1194]
Ag(111) – – – – – 3.70 TC [475]
Ag(111) – – – – – 3.96 TC [2516]
Ag(111)/NaCl137 Ag – ? ∼300 (423) – 3.98 ± 0.02 PE [3328,3330]
Ag(111)197 – – ∼10−10 ∼300 – 4.03 CPD [1693]
Ag(111)197 – – ∼10−10 ∼300 – 4.18 PE [1693]
Ag(111) – – – – – 4.25 TC [4117]
Ag(111) – – – – – 4.26 TC [2077]
Ag(111)/quartz198 Ag – ∼10−9 ∼300 – 4.35 PE [3313]
Ag(111) – – – – – 4.368 TC [4091]
Ag(111) – – – – – 4.38 TC [2077]
Ag(111)/mica(111) Ag – <5 × 10−11 ∼300{∼700} – 4.38* CPD [1897]
Ag(111) – – – – – 4.40 TC [3280]
Ag(111) – – – – – 4.40 TC [947]
Ag(111) – – – – – 4.44 TC [2541]
Ag(111) – – – – – 4.45 TC [2541]
Ag(111) – – – – – 4.45 TC [2068]
Ag(111) – – – – – 4.45 TC [2983]
Ag(111) – – ∼10−10 ∼300 – 4.45 PE [4143]
Ag(111) – – <10−10 ∼300 – 4.45 ± 0.03 PE [1192]
Ag(111) – – – – – 4.46 TC [343]
Ag(111)197 – – ∼10−10 ∼300 – 4.46 ± 0.02 PE [625,1693]
Ag(111) – – – – – 4.48 TC [2523]
Ag(111) – – – – – 4.49 TC [2694]
Ag(111) – – 2 × 10−10 ∼300 – 4.49 ± 0.02 PE [1000]
Ag(111) – – <4 × 10−11 ∼300 – 4.5 PE [3133]
Ag(111) – – 2 × 10−10 ∼300 – 4.5 PE [274,1196]
Ag(111)/mica420 Ag – 4 × 10−10 ∼300{570} – 4.5 PE [4001]
Ag(111)/Si(111) Ag – 1 × 10−10 ∼300 – 4.5 PE [1551]
Ag(111) – – – – – 4.5 ± 0.1 TC [3494]
Ag(111) – – – – – 4.50 TC [1197,4215,4413]
Ag(111) – – 1 × 10−10 ∼300 – 4.50 ± 0.10 PE [1195]
Ag(111)/W(110) Ag – <10−10 ∼300 (363) – 4.53 ± 0.05 CPD [2262]
Ag(111)/W(110) Ag – ? ∼300 – 4.55 CPD [4231]
Ag(111)/Cu(111) Ag – <8 × 10−11 ∼300 – 4.56 PE [968]
Ag(111) – – <2 × 10−10 90 – 4.56 PE [1266]
Ag(111) – – <2 × 10−10 ∼300 – 4.56 PE [1133]
Ag(111) – – – – – 4.56 TC [3369]
Ag(111) – – 2 × 10−10 ∼300 – 4.56 PE [939,958]
Ag(111) – – – – – 4.57 TC [1722]
Ag(111) – – 4 × 10−11 ∼300 – 4.6 PE [2164]
Ag(111)/Re(1011) Ag – (<1 × 10−11) 78 (≤650) – 4.6 ± 0.02 FE [1421]
Ag(111) – – ? ∼300 – 4.60 ± 0.03 PE [4213]
Ag(111)/W(110) Ag – 3 × 10−10 ∼300 – 4.61 ± 0.05* CPD [2373]
Ag(111)/PTCDA476 Ag – 2 × 10−10 ∼300 – 4.61 ± 0.05 PE [4341]
Ag(111)/quartz198 Ag – ∼10−9 ∼300 (773) – 4.64 PE [3313]
Ag(111) – – – – – 4.65 TC [1264]
Ag(111)/W(110) Ag – <7 × 10−11 78 (450) – 4.65 ± 0.03 FE [2279]
Ag(111)/H:Si(111)199 Ag – ∼10−10 ∼300 – 4.65 ± 0.15 PE [1198]
Ag(111)/W(110) Ag – ≤2 × 10−10 ∼300 – 4.66* CPD [1538]
Ag(111) – – <1 × 10−10 ∼300 – 4.66 CPD [990]
Ag(111)/Ag(111)194 Ag – ≤3 × 10−8 ∼300 (red) – 4.66 ± 0.03 PE [1132]
Ag(111) – – – – – 4.67 TC [320,1178]
Ag(111)/W(110) Ag – ≤2 × 10−10 500 – 4.68* CPD [1538]
Ag(111) – – 4 × 10−10 100 – 4.68 ± 0.08 PE [1579,2988]
Ag(111)/Nb(110) Ag – 7 × 10−11 ∼300 – 4.69 PE [2986]
Ag(111) – – <5 × 10−11 ∼300 – 4.69 PE [1124]
Ag(111)/Re(0001) Ag – 4 × 10−10 300, 740 – 4.7 CPD [836]
Ag(111)/Si(100) Ag – ? ∼300 – 4.7 PE [1199]
Ag(111)/Pt(111)200 Ag – ? ∼300 (600) – 4.7 PE [2182]
Ag(111) – – – – – 4.702 ± 0.017 TC [2352]
Ag(111)198 – – – – – 4.72 TC [3313]
Ag(111)/Ag201 Ag – ? 58 (330) – 4.72 PE [1422]
Ag(111)/mica202 Ag – <2 × 10−9 290 (525) – 4.72 ± 0.01 PE [626]
Ag(111) – – ∼10−10 ∼300 – 4.73 PE [4340]
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Ag(111)/Si(100) Ag – ? 110 (∼300) – 4.74 PE [3238]
Ag(111) – – – – – 4.74 TC [1159,3067]
Ag(111) – – – – – 4.74 TC [2551]
Ag(111) – – <2 × 10−10 27, 90 – 4.74 CPD [4107]
Ag(111)202 – – <2 × 10−9 ∼300 – 4.74 ± 0.02 PE [626,1134]
Ag(111) – – ? ∼300 – 4.75 PE [3779]
Ag(111) – – – – – 4.75 TC [1720]
Ag(111)/W(112) Ag – ≤7 × 10−11 ∼300 (800) – 4.75 CPD [2385]
Ag(111)194 – – ≤3 × 10−8 ∼300 – 4.75 ± 0.01 PE [1132,1881]
Ag(111)/Ag(111)194 Ag – ≤3 × 10−8 ∼300 – 4.75 ± 0.03* PE [1132]
Ag(111)/W(110) Ag – 3 × 10−10 330–390 – 4.75 ± 0.08* CPD [2373]
Ag(111)203 – – 2 × 10−11 50–60 – 4.76 ± 0.1 PE [2266]
Ag(111) – – – – – 4.80 TC [1720]
Ag(111) – – ∼10−10 100–670 – 4.84 ± 0.03 PE [3142]
Ag(111) – – – – – 4.85 TC [1684]
Ag(111) – – – – – 4.85 TC [233]
Ag(111)/Ru(001)203 Ag – 2 × 10−11 ∼60 (500) – 4.90 ± 0.1 PE [2266]
Ag(111) – – ? ∼300 – ≥4.9 ± 0.1* CPD [1879]
Ag(111) – – – – – 4.92 CT [4174,4284]
Ag(111) – – – – – 4.95 TC [1237]
Ag(111) – – – – – 4.98 TC [1264]
Ag(111) – – – – – 4.99 TC [1720]
Ag(111) – – – – – 5.01 TC [334,3179]
Ag(111) – – – – – 5.46 TC [321]
Recommended – – – – – 4.64 ± 0.06 – –

Ag – – ? ∼1230 (∼m.p.) – 3.09 TE [3385]
Ag – – – – – 3.19 TC [521]
Ag – – – – – 3.43 TC [2629]
Ag – – – – – 3.49 TC [475]
Ag – – ? ∼1230 (∼m.p.) – 3.56 TE [1362]
Ag – – – – – 3.6 TC [3590]
Ag – – 6 × 10−3 ∼300 – 3.64 ± 0.07 PE [2079,2080]
Ag – – ? ∼300 – 3.67 PE [2460]
Ag/W(100) Ag – ? 415, 550 – 3.7* FE [2263]
Ag – – – – – 3.72 TC [2523]
Ag/W(100) Ag – ? 370 – 3.8* FE [2263]
Ag/W Ag – <5 × 10−10 ∼300 – 3.8 FE [3116]
Ag – – ? ∼300 – 3.80 PE [3018]
Ag – – – – – 3.82 TC [1150]
Ag – – <10−6 ∼300 – 3.85 PE [2919]
Ag/W(100) Ag – ? 415, 550 – 3.9 FE [2263]
Ag/W(100) Ag – ? 650 – 3.9* FE [2263]
Ag – – ∼10−10 373, – 3.94 CPD [2118]
Ag/glass Ag – ∼10−6 373, 473 – 3.94 ± 0.01 PE [3507]
Ag – – ? ∼300 – 4.0 PE [3639]
Ag/silica Ag – ∼10−8 ∼300 – 4.0 PE [1989]
Ag/W(100) Ag – ? 370 – 4.0 FE [2263]
Ag/Mo(111) Ag – <1 × 10−10 ∼300 – 4.0 CPD [1842]
Ag – – – – – 4.0 ± 0.05 TC [1990]
Ag/quartz Ag – ∼10−10 ∼300 – 4.0 ± 0.15 PE [304]
Ag – – – – – 4.00 TC [1885]
Ag – – – – – 4.00 ± 0.05 TC [3358]
Ag/glass Ag – ∼10−6 373 – 4.01 ± 0.01 PE [3507]
Ag – – ∼10−6 296 – 4.01 ± 0.05 CPD [1487,1505]
Ag – – 5 × 10−8 296 – 4.03 ± 0.04 CPD [1487]
Ag – – 4 × 10−9 733 – 4.04 ± 0.07 PE [1116]
Ag – – 5 × 10−8 296 – 4.05 ± 0.05 CPD [1542]
Ag209 – – ? ∼300 – 4.06 ± 0.05 PE [2729]
Ag – – ? ∼1200 – 4.08 TE [1944]
Ag4(cluster) – – – – – 4.08 TC [2990]
Ag – – 4 × 10−9 533 – 4.08 ± 0.07 PE [1116]
Ag/W(100) Ag – ? 650 – 4.1 FE [2263]
Ag/Ta(111) Ag – <1 × 10−10 ∼300 – 4.1 CPD [2441]
Ag/W(111) Ag – 5 × 10−10 ∼300 – 4.1 CPD [2363]
Ag – – – – – 4.1 TC [944]
Ag – – – – – 4.1 TC [2456]
Ag/Si(111)n Ag – 3 × 10−11 60 (750) – 4.11 PE [2660]
Ag – – – – – 4.13 TC [2005]
Ag – – – – – 4.16 TC [3476]
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Ag – – – – – 4.18 TC [1066]
Ag/glass Ag – <1 × 10−10 78 – 4.18 PE [414,2723]
Ag/glass Ag – ∼10−6 373 – 4.18 ± 0.01 PE [3507]
Ag/W Ag – 8 × 10−11 300 (450) – 4.18 ± 0.02 FE [3430]
Agn(n → ∞) – – ? ∼300 – 4.19 IP, TC [4197]
Ag – – – – – 4.2 TC [1993]
Ag/H:Si(111)199 Ag – ∼10−10 ∼300{210} – 4.2 PE [1198]
Ag/W Ag – ∼10−10 78{920} – 4.2 FE [3089]
Ag/W Ag – <5 × 10−10 800 – 4.2 FE [3116]
Ag/Ir Ag – ? 78 (589) – 4.20 FE [2189]
Ag/glass Ag – ? 77–90 – 4.20 PE [2763,3046]
Ag – – ? ∼300 – 4.21 CPD [3405]
Ag/W Ag – 8 × 10−11 ∼300 (780) – 4.22 ± 0.02 FE [3430]
Ag/glass Ag – <10−9 77–90 – 4.23 PE [1389]
Ag/W Ag – <5 × 10−8 ∼300 – 4.23 ± 0.08* CPD [2570]
Ag – – – – – 4.24 TC [2629]
Ag/Ag201 Ag – ? 60 – 4.25 PE [1422]
Ag – – ? ∼300 – 4.25 PE [2992]
Ag431 – – <5 × 10−8 1150–1230 – 4.25* TE [1466]
Ag/W Ag – ? ∼300 – 4.25 FE [3108]
Ag(fp)204 – – ? (He) ? – 4.25 ± 0.1 PE [1562]
Ag205 – – – – – 4.26 TC [3280,3720]
Ag – – – – – 4.26 TC [3318]
Ag – – – – – 4.26 TC [339]
Ag/quartz Ag – <2 × 10−9 290 (473) – 4.26 ± 0.02 PE [626]
Ag447 – – 4 × 10−9 296 (≤773) – 4.26 ± 0.03 PE [1116,3788,4082,

4114,4132–4134]
Ag/KBr Ag – ? ∼300 – 4.28 PE [1952]
Ag/W Ag – (<1 × 10−11) 78 (490) – 4.28 ± 0.02 FE [1421]
Ag – – – – – 4.29 TC [3318]
Ag – – ? ∼300 – 4.29 ± 0.02 CPD [2810]
Ag – – <10−8 ∼300 – 4.29 ± 0.02 CPD [1163]
Ag/V(100) Ag – 2 × 10−11 250 – 4.3 PE [3368]
Ag/W(100) Ag – 5 × 10−10 ∼300 – 4.3 CPD [2363]
Ag/W Ag – <5 × 10−10 680, 930 – 4.3 FE [3116]
Ag/Fe(100) – – – – – 4.3 TC [2901]
Ag – – – – – 4.3 TC [706]
Ag – – 2 × 10−11 ∼300 – 4.3 ± 0.1 PE [1251]
Ag/glass Ag – ? ∼300 – 4.30 CPD [1157]
Ag – – – – – 4.30 TC [3264,3265,3267]
Ag – – <1 × 10−10 ∼300 – 4.30 CPD [2198]
Ag – – – – – 4.30 TC [298]
Ag/GaP – – – – – 4.30 TC [1653]
Ag/glass Ag – <10−8 ∼300 – 4.30 ± 0.02 CPD [349]
Ag – – ∼10−10 ∼300 – 4.30 ± 0.04 PE [2064]
Ag/glass Ag – 5 × 10−11 ∼300 – 4.30 ± 0.05 CPD [1071]
Ag/various404 – – – – – 4.30 ± 0.13* TC [3280]
Ag – – – – – 4.31 TC [3637]
Ag/graphite Ag – ? ∼1160–1200 – 4.31 ± 0.03 TE [2236]
Ag/Ta242 Ag – ? ∼300 – 4.31 ± 0.03 CPD [1050]
Ag/glass Ag – ∼10−8 ∼300 – 4.31 ± 0.03 CPD [133]
Ag – – – – – 4.32 TC [3476]
Ag/Ta – – <5 × 10−8 1234(m.p.) – 4.32 TE [1466]
Ag/Re Ag – (<1 × 10−11) 78 (490) – 4.32 ± 0.02 FE [1421]
Ag/V(100) – – – – – 4.32 ± 0.03 TC [2437]
Ag – – <10−10 ∼300 – 4.32 ± 0.03 PE [1192]
Ag/W Ag – ≤5 × 10−8 ∼300 – 4.32 ± 0.03 CPD [690]
Ag/Mo(100) Ag – <2 × 10−10 ∼300 – 4.32 ± 0.03* CPD [2252]
Ag/glass Ag – 5 × 10−11 ∼300 – 4.32 ± 0.07* CPD [1071]
Ag/NaCl Ag – ? 90 – 4.33 PE [1952]
Ag/glass Ag – <1 × 10−10 78 (293) – 4.33 PE [414,1509,2723]
Ag/W Ag – <5 × 10−9 298 – 4.33 FE [2245]
Ag/W Ag – ? ∼300 (550) – 4.33 FE [3345]
Ag – – – – – 4.33 TC [3931]
Ag/W Ag – ≤8 × 10−10 ∼300 (550) – 4.33 ± 0.03 FE [1689]
Ag/W Ag – ≤5 × 10−8 ∼300 – 4.33 ± 0.05 CPD [690]
Ag – – ? 90 – 4.33 ± 0.05 CPD [1366]
Ag/Si(111) Ag – ? ∼300 – 4.33 ± 0.07 PE [2776]
Ag(fp, 𝑟 → ∞)460 – – ? ∼300 – 4.34* IP [4198]
Ag(fp, 𝑟 → ∞)460 – – ? ∼300 – 4.35* IP [4198]
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Ag/glass Ag – <1 × 10−10 78 (378) – 4.35 PE [414,2723]
Ag/quartz198 Ag – ∼10−9 ∼300 – 4.35 PE [3313]
Ag – – ? ∼300 – 4.35 PE [4159]
Ag/W Ag – ≤5 × 10−8 ∼300 – 4.35 ± 0.05 CPD [690]
Ag/Ta Ag – ? ∼300 – 4.35 ± 0.05 CPD [1050]
Ag – – 6 × 10−9 ∼300 – 4.36 PE [1139]
Ag/Ta Ag – ∼10−8 ∼300 – 4.36 ± 0.05 CPD [1385]
Ag/VO2(100) – – – – – 4.365 TC [1934]
Ag/glass Ag – <1 × 10−10 78 (485) – 4.37 PE [414,2723]
Ag(fp, 𝑟 → ∞)206 – – – – – 4.37 TC [3442]
Ag/DiMe476 Ag – 2 × 10−10 ∼300 – 4.37 ± 0.05 PE [4341]
Ag/glass Ag – 5 × 10−11 ∼300 – 4.37 ± 0.06* CPD [1071]
Ag/glass Ag – ∼10−10 90 – 4.38 PE [3048]
Ag/Ir Ag – ? 78 (442) – 4.38 FE [2189]
Ag/glass Ag – <5 × 10−10 78 (573) – 4.38 PE [1509]
Ag/glass Ag – <10−8 78 – 4.38 ± 0.02 CPD [1646]
Ag/glass Ag – <10−9 90 (293) – 4.39 PE [2763,3046]
Ag/W Ag – 5 × 10−10 78 (740) – 4.39 ± 0.01 FE [1673]
Ag/quartz Ag – <1 × 10−9 323 – 4.39 ± 0.05 CPD [1536]
Ag/glass Ag – 5 × 10−11 ∼300 – 4.39 ± 0.07* CPD [1071]
Ag/Ag(100)191 Ag – ? ≤300 – 4.4* PE [2302]
Ag/Fe(100) Ag – ? ∼300 – 4.4 PE [2901]
Ag/Pd(100) – – – – – 4.4 TC [1692]
Ag/Mo(100) Ag – <2 × 10−10 ∼300 – 4.4* CPD [3121]
Ag – – <2 × 10−10 ∼300 – 4.4 CPD [4214]
Ag/glass367 Ag – <10−9 ∼300 (520) – 4.4 CPD [1893]
Ag/Pt(111) Ag – ? ∼300 – 4.4 CPD [2869]
Ag/Pt(111)200 Ag – ? ∼300 – 4.4 PE [2182]
Ag/Pd(100) – – – – – 4.4 TC [1692]
Ag – – ? ∼300 – 4.4 PE [1838]
Ag – – ∼10−9 ∼300 – 4.4 ± 0.1 PE [1267]
Ag – – ∼10−6 623 – 4.40 ± 0.02 PE [3098]
Ag/GaP – – – – – 4.41 TC [1653]
Ag/Mo207 Ag – <5 × 10−8 ∼300 – 4.41 PE [1051]
Ag/quartz Ag – <5 × 10−8 ∼300 – 4.41 PE [1051]
Ag/Si – – – – – 4.41 TC [1653]
Ag/Si(111) Ag – 5 × 10−11 ∼300 – 4.41 ± 0.05 CPD [613,636]
Ag – – – – – 4.42 TC [1976]
Ag – – – – – 4.43* TC [1955]
Ag/Si – – – – – 4.44 TC [1653]
Ag – – ? ∼300 – 4.44 CPD [2297]
Ag/Ta Ag – <10−8 ∼300 – 4.44 ± 0.01 CPD [349]
Ag – – ∼10−6 523 – 4.44 ± 0.03 PE [3098]
Ag – – – – – 4.46 TC [1645]
Ag/Mo Ag – ∼10−8 ∼300 – 4.46 CPD [299]
Ag – – 1 × 10−9 ∼300 – 4.46 CPD [1252]
Ag/glass Ag – ? ∼300 – 4.46 ± 0.01 CPD [1369]
Ag/Si Ag – <6 × 10−9 ∼300 – 4.46 ± 0.02 CPD [1540]
Ag/glass Ag – ? ∼300 – 4.47 CPD [1157]
Ag/W(110) Ag – ? 90 – 4.47 CPD [3565]
Ag/Re(1010)211 Ag – (<1 × 10−11) 78 (≤770) – 4.47 ± 0.05* FE [1421]
Ag/Pt(111) Ag – <8 × 10−11 ∼300(∼800) – 4.47 ± 0.06* CPD [4180]
Ag/W Ag – (<1 × 10−12) 800 – 4.48 FE [1676]
Ag/glass Ag – <10−9 77 (295) – 4.48 PE [1389]
Ag/Si(111) Ag – 4 × 10−10 ∼300 – 4.48 PE [3589]
Ag – – 4 × 10−10 ∼300 – 4.48 ± 0.02 PE [1552]
Ag/C Ag – <10−9 ∼300 – 4.49 CPD [2958]
Ag/Ta Ag – ∼10−8 ∼300 – 4.49 ± 0.02 CPD [1385]
Ag/Si(111) Ag – 4 × 10−10 ∼300 – 4.49 ± 0.02 PE [1552]
Ag – – – – – 4.5 TC [2583]
Ag/W(110) Ag – ≤1 × 10−10 90 – 4.5 CPD [3472]
Ag – – – – – 4.50 TC [1399]
Ag – – <2 × 10−9 ∼300 – 4.50 PE [1575]
Ag/Ag Ag – <5 × 10−8 ∼300 – 4.50 ± 0.02 PE [1051]
Ag/Re(1010) Ag – (<1 × 10−11) 78 (≤770) – 4.50 ± 0.05 FE [1421]
Ag(fp)149 – – <10−9 ∼300 – 4.50 ± 0.1 PE [3190]
Ag – – ? ∼300 – 4.51 ± 0.01 PE [3609]
Ag/Pd(111) – – – – – 4.54 TC [985]
Ag/W(111) – – – – – 4.54 TC [531]
Ag – – ≤1 × 10−9 ∼300 – 4.55 PE [3383]
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Ag/W(110) Ag – <7 × 10−11 78 (450) – 4.55 FE [2279]
Ag/quartz Ag – ? ∼300 – 4.55 PE [4202]
Ag/Pd(111) Ag – <2 × 10−10 ∼300 – 4.55 PE [985]
Ag/Mo207 Ag – <5 × 10−8 ∼300 (≤370) – 4.55 ± 0.05 PE [1051]
Ag/Ta(112) Ag – <1 × 10−10 ∼300 – 4.56 CPD [878]
Ag/W(110) Ag – ? ∼300 (700) – 4.56 CPD [3565]
Ag263 – – ≤3 × 10−8 873 – 4.56 ± 0.06 PE [3391]
Ag/Pd(111) – – – – – 4.57 TC [985]
Ag/Cu(111) Ag – ? ∼300 – 4.57 ± 0.05* CPD [2692]
Ag/glass Ag – ? ∼300 – 4.58 PE [3029]
Ag/Pt(111) Ag – 2 × 10−10 350 – 4.58 ± 0.05* CPD [4366]
Ag – – ? ∼300 – 4.59 PE [4278]
Ag(fp)208 – – ? ∼300 – 4.59 ± 0.05 PE [3127]
Ag – – – – – 4.594 TC [2649]
Ag209 – – ? ∼300 – 4.6 PE [2729]
Ag/W(110)210 Ag – <10−10 ∼300 – 4.6 FE [1828]
Ag/W(110)210 Ag – 5 × 10−10 ∼300 – 4.6 CPD [2363]
Ag/O/V(100) Ag – 4 × 10−11 220 (≤700) – 4.6 ± 0.1 PE [3375]
Ag/Pd(100)210 Ag – ? ∼300 – 4.6 ± 0.2 PE [1692]
Ag – – ∼10−5 <1200 – 4.60 TE [2216]
Ag/glass Ag – ∼10−10 77 (373) – 4.60 PE [2155]
Ag/Pd(111) – – – – – 4.60 TC [985]
Ag – – ? 296 – 4.61 PE [1455]
Ag/Ir(100) Ag – ? 78 (≤518) – 4.63 ± 0.02 FE [2189]
Ag/quartz198 Ag – ∼10−9 ∼300 (773) – 4.64 PE [3313]
Ag/Ta(112)210 Ag – <1 × 10−10 ∼300 – 4.65 CPD [878]
Ag/W(110)210 Ag – ≤1 × 10−10 90 (700) – 4.67 CPD [3472]
Ag – – ? ∼300 – 4.68 PE [3025]
Ag – – <5 × 10−8 ∼300 – 4.68 ± 0.01 PE [1051]
Ag/Nb(110)210 Ag – 7 × 10−11 ∼300 – 4.69 PE [2986]
Ag/W(110)210 Ag – ? ∼300 – 4.7 CPD [3565]
Ag/Re(0001) Ag – 4 × 10−10 ∼300, 740 – 4.7 CPD [836]
Ag – – ? ? – 4.7 TE [3402]
Ag/W(110) Ag – ≤7 × 10−11 ∼300 (∼950) – 4.7 CPD [2388]
Ag/Ru(001) Ag – <5 × 10−10 60 – 4.7 ± 0.05 PE [2651]
Ag – – – – – 4.70 TC [3476]
Ag – – 1 × 10−8 ∼300 – 4.7 ± 0.2 PE [3325]
Ag/Pt(100) Ag – 1 × 10−10 ∼300 – 4.71 ± 0.15 PE [174]
Ag – – – – – 4.72 TC [2990]
Ag/W(100) – – – – – 4.72 TC [531]
Ag – – 1 × 10−5 ∼300 – 4.73 CPD [1883]
Ag263 – – – 296 – 4.73 ± 0.02 TC [1135]
Ag263 – – ≤3 × 10−8 298 – 4.73 ± 0.07 PE [3391]
Ag263 – – – 873 – 4.75 ± 0.00 TC [1135]
Ag/cnt/Si(111)25 – – ∼10−10 ∼300 – 4.75 ± 0.06 PE [3246]
Ag/Ag(100) Ag – ? ∼300 – ≤4.76 PE [1158]
Ag/cnt/Si(111)25 – – ∼10−10 ∼300 – 4.76 ± 0.09 CPD [3246]
Ag/Pd(111) – – – – – 4.77 TC [985]
Ag/glass Ag – – ∼300 – 4.78 PE [3023]
Ag/Mo207 Ag – <5 × 10−8 ∼300 (red) – 4.78 PE [1051]
Ag/W(112) – – – – – 4.78 TC [531]
Ag/Si(111)n Ag – 3 × 10−11 ∼300 – 4.79 PE [2660]
Ag/Si(111) Ag – ? 770 – 4.80 ± 0.08 PE [2776]
Ag/Pt(997) Ag – 1 × 10−10 ∼300 – 4.82 ± 0.15 PE [174]
Ag/W(110) – – – – – 4.84 TC [531]
Ag/cnt/Si(111)25 – – ∼10−10 ∼300 – 4.84 ± 0.10 CPD [3246]
Ag/Pd(111) – – – – – 4.86 TC [1720]
Ag/Si(111)p Ag – 3 × 10−11 ∼300 – 4.87 PE [2660]
Ag – – ? ∼300 – 4.90 PE [3127]
Ag/Pd(111) – – – – – 4.91 TC [1720]
Ag/Pd(111) – – – – – 4.92 TC [1720]
Ag/Fe(100) – – – – – 4.92 TC [1105]
Ag/SiO2/Si Ag – ? ∼300 (570) – 4.97 PE [2355]
Ag/Rh(100) – – – – – 5.0 TC [1009]
Ag/Si(111)p Ag – 3 × 10−11 60 (750) – 5.02 PE [2660]
Ag/Ru(0001) – – – – – 5.03 TC [2554]
Ag/Fe(100) – – – – – 5.05 TC [1105]
Ag/Rh(111) – – – – – 5.2 TC [1009]
Ag/Ru(0001) Ag – 1 × 10−10 ∼300 – 5.26* CPD [2880]
Ag/Re(1010)211 Ag – <1 × 10−11 78 (≤770) – 5.30 ± 0.02 FE [1421]
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Ag – – – – – 5.41 TC [2551]
Recommended – – – – – 4.39 ± 0.02 – –

Liquid (𝑻 > 𝟏𝟐𝟑𝟒 𝐊)
Ag456 – – <5 × 10−8 1240 – 4.32* TE [1466]

48. Cadmium Cd

hcp
Cd(0001) – – – – – 4.17 TC [4005]
Cd(0001) – – – – – 4.3 TC [1711]
Cd(0001) – – – – – 4.6 TC [2375]
Cd(0001) – – – – – 6.52 TC [321]

Cd(1010) – – – – – 4.76 TC [4005]
Cd(1010) – – – – – 6.30 TC [321]

Cd(1124) – – – – – 5.52 TC [321]

Cd – – – – – 3.36 TC [521]
Cd – – – – – 3.36 TC [3211]
Cd – – – – – 3.4 TC [944]
Cd – – ∼10−8 ∼300 – 3.4 ± 0.6 PE [3433]
Cd/Pt(100) – – – – – 3.43 TC [3168]
Cd/Au(100) – – – – – 3.43 TC [3168]
Cdn(n → ∞) – – – – – 3.54 ± 0.27 TC [4261]
Cd – – – – – 3.6 TC [2583]
Cd – – ? ∼300 – 3.68 PE [3027]
Cd – – – – – 3.68 TC [3168]
Cd – – – – – 3.70 TC [2629]
Cd – – ? ∼300 – 3.73 PE [2460]
Cd – – ? (N2) ∼300 – 3.80 ± 0.02 CPD [4251]
Cd – – ? (Ar) ∼300 – 3.83 CPD [4253]
Cd/ins/Al47 Cd – ? ∼300 – 3.88 ± 0.08 CPD [2028]
Cd – – – – – 3.89 TC [1744]
Cd – – – – – 3.9* TC [1645]
Cd – – – – – 3.9 TC [3318]
Cd – – – – – 3.93 TC [3318]
Cd – – 6 × 10−3 ∼300 – 3.94 ± 0.06 PE [2079,2080]
Cd – – – – – 3.96 TC [1399]
Cd – – – – – 3.97 TC [3264,3265]
Cd – – – – – 4.0 TC [1993,2005]
Cd – – – – – 4.0 ± 0.05 TC [1990]
Cd – – ? ∼300 – 4.00 CPD [2297]
Cd – – – – – 4.01 TC [3352]
Cd – – ? (N2) ∼300 – 4.01 ± 0.02 CPD [2361,2626,4226]
Cd – – <1 × 10−5 ∼300 – 4.04 CPD [1883]
Cd212 – – ∼10−6 ∼300 – 4.05 ± 0.06* CPD [1953]
Cd/glass Cd – <10−6 ∼300 – 4.06 PE [1451]
Cd/brass Cd – ≤10−8 ∼300 – 4.07 ± 0.2 PE [2848]
Cd/Ta214 Cd – ? ∼300 – 4.08 ± 0.02 CPD [1380]
Cd/glass Cd – ? 90 – 4.099 PE [3031]
Cd/glass Cd – ? 90 (∼300) – 4.099 PE [3031]
Cd – – – – – 4.1 TC [706]
Cd/W Cd – ≤3 × 10−9 375 – 4.1 ± 0.1 FE [3047]
Cd – – – – – 4.10 TC [1885]
Cd – – – – – 4.10 TC [738]
Cd – – – – – 4.11 TC [298]
Cd213 – – ∼10−6 ∼300 – 4.11 ± 0.06* CPD [2087]
Cd – – – – – 4.12 TC [3267]
Cd – – – – – 4.14 TC [1901]
Cd/Ta214 Cd – ? ∼300 – 4.22 ± 0.01 CPD [1380]
Cd212 – – ∼10−6 – – 4.43 ± 0.01 CPD [1953]
Cd – – – – – 4.47 TC [1066]
Cd213 – – ? ∼300 – 4.49 ± 0.01 CPD [2087]
Cd – – – – – 4.57 TC [2629]
Recommended – – – – – 4.06 ± 0.05 – –
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49. Indium In

fcc
In(100) – – – – – 4.2 TC [2375]
In(100) – – – – – 4.6 TC [2375]
In(100) – – – – – 4.6 TC [1714]
In(110)/PTCDA477 In – 2 × 10−10 ∼300 – 4.44 ± 0.05 PE [4341]

In(111) – – 5 × 10−9 ∼300 – 4.14 ± 0.05 PE [2336]

In379 – – – – – 3.6 TC [1955]
In – – – – – 3.6 TC [3318]
In – – – – – 3.62 TC [1744]
In – – ∼10−7 ∼300 – 3.82 ± 0.05 PE [2814]
In – – ∼10−7 ∼300 – 3.825 ± 0.01 CPD [2814]
In – – – – – 3.84 TC [2629]
In/Au(111) In – <10−10 80 – 3.85 CPD [2661]
In/quartz215 In – ∼10−6 ∼300 – 3.85 ± 0.01 PE [1475]
In – – ? 293 – 3.90 PE [4139]
In – – ? ∼300 – 3.90 PE [4249]
In/quartz215 In – ∼10−6 ∼300 – 3.94 ± 0.01 PE [1475]
In – – ? 419 – 3.96 PE [4139]
In – – – – – 3.97 TC [1613]
In – – – – – 3.97 TC [2005]
In160 – – – – – 4.0 TC [1355]
In – – – – – 4.0 TC [944]
In – – – – – 4.0 TC [3928]
In – – <10−9 ∼300 – 4.0 PE [2321]
In – – – – – 4.0 TC [298]
In – – – – – 4.0 TC [706]
In – – ∼10−9 ∼430 – 4.00 PE [4241]
In – – ? (N2) ∼300 – 4.00 ± 0.02 CPD [4251]
Inn(n → ∞) – – – – – 4.04 TC [4244]
In – – – – – 4.05 TC [3352]
In – – ? (N2) ∼300 – 4.05 ± 0.02 CPD [2624,2626,4083]
In – – ? ∼430 – 4.07 PE [4328]
In – – – – – 4.08 TC [3264,3265,3267]
In/glass In – 5 × 10−11 77–90 – 4.08 ± 0.01 PE [3319]
In – – ? 403 – 4.09 ± 0.01 PE [2770,2771]
In – – – – – 4.1 TC [1993]
In/DiMe477 In – 2 × 10−10 ∼300 – 4.10 ± 0.05 PE [4341]
Inn(n → ∞) – – ? ∼300 – 4.12 IP, TC [4197]
In/quartz In – <3 × 10−9 ∼153 – 4.12 ± 0.02 PE [3672]
In – – – – – 4.13 TC [4418,4420]
In – – – – – 4.16 TC [3264]
In/W(110) In – 1 × 10−9 ∼300 – 4.25 ± 0.05 CPD [1986]
In – – – – – 4.30 TC [1901]
In/Au(111) In – <10−10 80 – 4.32 CPD [2661]
In/Si(111) In – 2 × 10−10 ∼300 – 4.34 ± 0.1 PE [2623]
In/Si(111) In – <4 × 10−10 ∼300 – 4.35 PE [1566]
In/W In – ? 78 (?) – 4.35 ± 0.1 FE [2725]
In/Si(111) In – <3 × 10−10 ∼300 – 4.39 PE [3285]
In/W In – <2 × 10−10 77 (≤500) – 4.63 FE [2727]
In – – – – – 4.74 TC [2629]
In – – – – – 4.88 TC [738]
Recommended – – – – – 4.05 ± 0.06 – –

Liquid (𝑻 > 𝟒𝟑𝟎 𝐊)
In438 – – ? 470 – 3.88 PE [2111]
In – – ? 439 – 3.93 PE [4139]
In – – 10−9 ∼430 – 3.93 PE [4241]
In – – ? ∼430 – 4.03 PE [4328]
In – – ? 447 – 4.06 ± 0.01 PE [2770,2771]
In – – ≤10−9 473 – 4.08 ± 0.04 PE [2345,2349,2353]
In – – ≤10−9 473 – 4.10 SP [2349]
Recommended – – – – – 4.00 ± 0.08 – –
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50. Tin Sn

bcc (𝜶, 𝑻 < 𝟐𝟗𝟏 𝐊)
Sn(100) – – – – – 3.47 TC [3211]
Sn(100) – – – – – 4.42 TC [2536]
Sn(100) – – – – – 4.43 TC [2536]
Sn(100) – – – – – 4.68 TC [2536]

Sn(110) – – – – – 4.77 TC [3211]

Sn(111) – – – – – 4.01 TC [3211]
Sn(111) – – ≤10−6 ? – 4.26 PE [3580]

Sn(112) – – – – – 4.46 TC [1627]

bcc (𝜶, 𝑻 < 291 K for bulk)
Sn – – – – – 3.45 TC [3211]
Sn – – – – – 3.57 TC [3211]
Sn/Au Sn – <5 × 10−10 173–203 – 4.13 CPD [3561]
Sn – – – – – 4.27 TC [3211]
Sn/quartz Sn – <10−6 20 (200) – 4.288 ± 0.005 PE [1467]
Sn/quartz Sn – <10−6 14 – 4.306 ± 0.006 PE [1467]
Sn/quartz Sn – <10−6 20 (90) – 4.309 ± 0.005 PE [1467]
Sn/quartz Sn – <10−6 90 – 4.309 ± 0.005 PE [1467]
Sn/W Sn – ? 78 (?) – 4.85 ± 0.1 FE [2725]
Sn/W Sn – <2 × 10−10 77 (≤500) – 5.10 FE [2725,2727]
Recommended – – – – – 4.27 ± 0.06 – –

Tetragonal (𝜷, 𝑻 = 291–473 K for bulk)
Sn – – ? ∼300 – 3.41 PE [3683]
Sn/SiO2/Si Sn – ? ∼300 (570) – 3.42 PE [2355]
Sn – – ? ∼300 – 3.62 PE [2460]
Sn – – – – – 3.8 TC [2456]
Sn – – – – – 3.8 TC [3727]
Sn – – – – – 3.85 TC [2629]
Sn – – 6 × 10−3 ∼300 – 3.87 ± 0.07 PE [2079,2080]
Sn/Mo(110) Sn – ≤5 × 10−11 350 – 4.0* CPD [3290]
Sn – – ? ∼300 – 4.06* CPD [3621]
Sn – – ? ∼300 – 4.09 CPD [2297]
Sn – – – – – 4.1 TC [298]
Sn – – – – – 4.1 TC [2583]
Sn – – – – – 4.1 TC [1993]
Sn/GaAs – – – – – 4.10 TC [3054]
Sn – – – – – 4.13 TC [2005]
Sn – – ? ∼300 – 4.14 PE [4159]
Sn – – ∼10−9 293 – 4.16 PE [2362]
Sn – – ? ∼300 – 4.17 PE [4249]
Sn – – – – – 4.17 TC [1613]
Sn – – – – – 4.17 TC [3352]
Sn – – ? (N2) ∼300 – 4.17 ± 0.02 CPD [2361,2624,2628]
Sn – – ? 293 – 4.18 PE [4139]
Sn – – ∼10−9 293 – 4.18 PE [1445]
Sn/steel Sn – 2 × 10−10 ∼300 – 4.2 ± 0.1 PE [1537]
Sn – – ? ∼300 – 4.2 ± 0.2 PE [2086]
Sn – – – – – 4.23 TC [1976]
Sn – – ∼10−9 504 – 4.23 PE [4241]
Sn – – 1 × 10−5 ∼300 – 4.25 CPD [1883]
Sn216 – – ∼10−6 ∼300 – 4.26 ± 0.06* CPD [2087]
Sn – – ? ∼300 – 4.27 ± 0.04* CPD [4159]
Sn/ins/Al47 Sn – ? ∼300 – 4.28 ± 0.06 CPD [2028]
Sn – – – – – 4.29 TC [1399]
Sn – – – – – 4.3 ± 0.05 TC [1990]
Sn/steel Sn – (<2 × 10−10) ∼300 – 4.3 ± 0.1 PE [2838]
Sn/Mo Sn – (<2 × 10−10) ∼300 – 4.3 ± 0.1 PE [2838]
Sn/Si(111) Sn – <3 × 10−10 ∼300 – 4.32 PE [3281]
Sn – – – – – 4.35 TC [3264,3265,3267]
Sn – – – – – 4.37 TC [1885]
Sn – – ? ∼300 – 4.38 CPD [3256]
Sn217 – – – 358 – 4.39 TC [1135]
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Sn/brass Sn – ≤10−8 ∼300 – 4.39 ± 0.13 PE [2848]
Sn/Al(111) Sn – <1 × 10−10 ∼300 – 4.4 PE [249]
Sn/Ni(111) Sn – <1 × 10−10 ∼300 – 4.4 PE [249]
Sn/steel Sn – (<2 × 10−10) ∼300 – 4.4 ± 0.1 PE [2838]
Sn/Mo Sn – (<2 × 10−10) ∼300 – 4.4 ± 0.1 PE [2838]
Sn/Al2O3/Al Sn – ? ∼300 – 4.42 CPD [3057]
Sn – – 4 × 10−9 299 – 4.42 ± 0.03 PE [1116]
Sn – – ? ∼300 – 4.47 CPD [4159]
Sn – – <1 × 10−10 ∼300 – 4.5 PE [249]
Sn – – – – – 4.5 TC [706]
Sn217 – – ? 358 – 4.51 ± 0.02 PE [1945–1947]
Sn/Si(111) Sn – ≤3 × 10−10 ∼300 – 4.55 PE [3285]
Sn/Al2O3/Al Sn – ? ∼300 – 4.57 ± 0.06* CPD [3057]
Sn – – – – – 4.63 TC [1901]
Sn216 – – ? ∼300 – 4.63 ± 0.01 CPD [2087]
Sn/W Sn – ? 400 – 4.67 ± 0.07* FE [3741]
Sn – – – – – 4.76 TC [2629]
Recommended – – – – – 4.34 ± 0.06 – –

Hexagonal (𝜸, 𝑻 = 473–505 K for bulk)
Sn – – ? 495 – 4.22 PE [4139]
Sn218 – – ? 483 – 4.28 PE [1135]
Sn218 – – ? 483 – 4.38 ± 0.02 PE [1945–1947]

Liquid (𝑻 > 𝟓𝟎𝟓 𝐊)
Sn218 – – – 673 – 4.17 TC [1135]
Sn – – ? 515 – 4.18 PE [4139]
Sn – – ∼10−9 506 – 4.19 PE [4241]
Sn – – ? >505 – 4.21* CPD [3575]
Sn218 – – ? 673 – 4.22 ± 0.01 PE [1945–1947]

51. Antimony Sb

Rhombohedral (arsenic structure)
Sb(100) – – ? ? – 4.69 ? [3141]
Sb(100)/W(110)219 Sb – ∼10−9 ∼300 (373) – 4.7 CPD [1272]

Sb(111) – – ≤10−6 ∼300 – 4.26 PE [3580]

Sb – – 1 × 10−5 ∼300 – 4.01 PE [2563]
Sb/Si(001) – – – – – 4.03 TC [2525]
Sb – – – – – 4.05 TC [1885]
Sb/W Sb – <10−8 ∼300 – 4.10 ± 0.03 CPD [1163]
Sb – – ? ∼300 – 4.14 CPD [2297]
Sb – – ? (N2) ∼300 – 4.18 ± 0.02 CPD [2624,2626,4226]
Sb – – – – – 4.19 TC [3352]
Sb – – – – – 4.2 TC [298]
Sb – – – – – 4.3 TC [1993]
Sb/Si – – – – – 4.35 TC [1653]
Sb – – – – – 4.38 TC [1653,1976]
Sb/Si(111) Sb – ≤8 × 10−11 ∼300 – 4.43 PE [1904]
Sb – – – – – 4.48 TC [2005]
Sb/quartz Sb – <5 × 10−8 ∼300 – 4.52 PE [3625]
Sb/W(100)219 Sb – ∼10−9 ∼300 – 4.55 CPD [1955]
Sb – – – – – 4.56 TC [3264,3265,3267]
Sb/Ni,Mo,etc. Sb – <5 × 10−8 ∼300 – 4.56 PE [1375]
Sb/? Sb – ? ∼300 (473) – 4.60 PE [3255]
Sb/Si(111) Sb – <3 × 10−10 ∼300 – 4.61 PE [3285]
Sb/Si(111) Sb – ? ∼300 – 4.65 PE [2849]
Sb/W Sb – ? 78 (>600) – 4.65 FE [3642]
Sb/Au(111) Sb – 3 × 10−10 ∼300 – 4.65 ± 0.04 CPD [2690]
Sb – – – – – 4.7 TC [1905,1906]
Sb – – – – – 4.79 TC [1901]
Sb – – – – – 4.8 TC [706]
Sb/W(100)219 Sb – ∼10−9 423 – 4.98 CPD [1995]
Recommended – – – – – 4.45 ± 0.09 – –
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Amorphous
Sb – – – – – 3.92 TC [1744]
Sb/? Sb – ? ∼300 – 4.49 PE [3255]
Sb/W(100)219 Sb – ∼10−9 ∼300 – 4.55 CPD [1995]
Sb/quartz Sb – <5 × 10−8 ∼300 – 4.7 ± 0.1 PE [3625]

52. Tellurium Te

Hexagonal
Te(1010) – – ∼10−11 ∼300 – 4.65 ± 0.05 PE [2482,4248]
Te(1010) – – ∼10−10 ∼300 – 4.95 PE [3429]

Te/ins/Al47 Te – ? ∼300 – 3.95 ± 0.08 CPD [2028]
Te – – ? ∼300 – 4.04 PE [3609]
Te/silica Te – <2 × 10−10 100 (∼300) – 4.1 PE [4248]
Te/W(110) Te – <5 × 10−11 ∼300 – 4.5 CPD [2855]
Te/W(100) Te – <2 × 10−10 ∼300 – 4.54 FE [1682]
Te/W Te – <2 × 10−10 ∼300 – 4.61 ± 0.03 FE [1680]
Te/glass220 Te – 0.1 (Ar) ∼300 (573) – 4.62 CPD [2246]
Te/Mo(100) Te – <2 × 10−10 ∼300 – 4.63 FE [1682]
Te/W Te – <2 × 10−10 ∼300 – 4.63 FE [1682]
Te – – – – – 4.7 TC [1993]
Te – – ? 300 – 4.70 CPD [2297]
Te/Mo Te – <2 × 10−10 ∼300 – 4.72 ± 0.01 FE [1680]
Te/W Te – <10−9 ∼300 (≤800) – 4.74 ± 0.03 FE [2333]
Te/glass220 Te – 0.1 (Ar) ∼300 (573) – 4.76 CPD [2246]
Te/glass Te – <3 × 10−8 ∼300 – 4.76 PE [1371]
Te – – – – – 4.78 TC [1644]
Te/W(100) Te – ∼10−11 ∼300 – 4.8 CPD [2853]
Te/Ni(100) Te – <5 × 10−10 ∼300 – 4.80 ± 0.10* CPD [1788,1790]
Te/Mo Te – <2 × 10−10 ∼300 – 4.81 FE [1682]
Te/W(112) Te – <2 × 10−10 ∼300 – 4.82 FE [1682]
Te/steel/ss Te – ∼10−10 ∼300 – 4.85 PE [3429]
Te – – – – – 4.88 TC [1901]
Te/Cu Te – 5 × 10−6 123, 300 – 4.89 PE [2589]
Te/W Te – <2 × 10−9 1200 – 4.9 FE [2367]
Te – – – – – 4.9 ± 0.3 TC [1905]
Te – – – 0 – 4.92 TC [4419]
Te/Ni(100) Te – <5 × 10−10 ∼300 – 4.94 ± 0.10* CPD [1790]
Te/Ni(100) Te – <4 × 10−10 ∼300 – 4.98 PE [2693]
Te/Fe(100) Te – <8 × 10−11 573 – 4.98* CPD [2730]
Te/Ni(100) Te – <5 × 10−10 ∼300 – 4.99 ± 0.10* CPD [1790]
Te – – – – – 5.0 TC [298]
Te/glass Te – ? ∼300 – 5.0 PE [3254]
Te/Fe(100) Te – <8 × 10−11 473 – 5.07* CPD [2730]
Te/Ni(100) Te – <5 × 10−10 ∼300 – 5.07 ± 0.10* CPD [1790]
Te/quartz Te – ? ∼300 – 5.1 PE [3321]
Te – – – – – 5.1* TC [1955]
Te/W Te – <2 × 10−9 900 – 5.1 FE [2367]
Te/Fe(100) Te – <8 × 10−11 ∼300 – 5.10* CPD [2730]
Recommended – – – – – 4.86 ± 0.06 – –

53. Iodine I

Rhombic
I2/Pt I2 – ? ∼90 – 2.78 ± 0.03 PE [3403]

Monoclinic
I2/Pt I2 – ? ∼90 – 5.41 ± 0.02 PE [3403]

Iodine Film
I/Mo(100) CsI Cs+ ? ∼1400–2000 4.65 ± 0.20 – PSI [584]
I/W(100) I2 – <10−6 (I2) ∼300 – 4.73 ± 0.04 CPD [581]
I/W(110) I2 – ? ∼300 – 4.9* CPD [2486]
I/W(100) I2 – ? ∼300 – 5.0* ? [3820]
I/Fe(110) I2 – 5 × 10−11 ∼300 – 5.00 ± 0.01 CPD [4399]
I/Fe(100) I2 – 5 × 10−11 ∼300 – 5.07 CPD [4399]
I/Au437 I2 – 0.20 (I2) ∼300 – 5.1 PE [2760]
I/Fe(100) I2 – <10−7 (I2) ∼300 – 5.1 ± 0.1* CPD [3760]
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I/Hg/Au437 I2 – 0.20 (I2) ∼300 – 5.25 PE [2760]
I/W KI K+ ? <1600 5.27 – PSI [46]
I/W KI – ? 1200 (2350) – 5.43 CPD [3748]
Recommended – – – – – 5.1 ± 0.1 – –

Amorphous
I2 – – – – – 5.88 TC [1901]
I2/Pt I2 – ? ∼90 – 6.75 ± 0.02 PE [3403]

55. Cesium Cs444

bcc
Cs(100) – – – – – 1.881 TC [2947]
Cs(100) – – – – – 1.90 TC [475]
Cs(100) – – – – – 1.90 TC [1254]
Cs(100) – – – – – 1.974 TC [4091]
Cs(100) – – – – – 2.01 TC [231]
Cs(100) – – – – – 2.03 TC [2427]
Cs(100) – – – – – 2.03 TC [334]
Cs(100) – – – – – 2.03 TC [3467]
Cs(100) – – – – – 2.04 TC [553]
Cs(100) – – – – – 2.14 TC [711]
Cs(100) – – – – – 2.14 TC [1159,3067]
Cs(100) – – – – – 2.23 TC [1030]
Cs(100) – – – – – 2.24 TC [1095]
Cs(100) – – – – – 2.24 TC [321]
Cs(100) – – – – – 2.28 TC [3814]
Cs(100) – – – – – 2.3 TC [763]
Cs(100) – – – – – 2.3 TC [1088]
Cs(100) – – – – – 2.30 TC [475]
Cs(100) – – – – – 2.31 TC [476,711]
Cs(100) – – – – – 2.36 TC [555]
Cs(100) – – – – – 2.39 TC [476]
Cs(100) – – – – – 2.40 TC [1030]
Recommended – – – – – 2.24 ± 0.06 – –

Cs(110) – – – – – 1.929 TC [2947]
Cs(110) – – – – – 2.0 TC [1723]
Cs(110) – – – – – 2.073 TC [4091]
Cs(110) – – – – – 2.09 TC [334,3179]
Cs(110) – – – – – 2.1 TC [3137]
Cs(110) – – – – – 2.1 TC [1086]
Cs(110) – – – – – 2.17 TC [231]
Cs(110) – – – – – 2.19 TC [553,2427]
Cs(110) – – – – – 2.21 TC [3467]
Cs(110) – – – – – 2.23 TC [1159,3067]
Cs(110) – – – – – 2.25 TC [475]
Cs(110) – – – – – 2.30 TC [593]
Cs(110) – – – – – 2.34 TC [711]
Cs(110) – – – – – 2.35 TC [1030]
Cs(110) – – – – – 2.37 TC [1086]
Cs(110) – – – – – 2.44 TC [2402]
Cs(110) – – – – – 2.44 TC [3814]
Cs(110) – – – – – 2.49 TC [1086]
Cs(110) – – – – – 2.5 TC [763]
Cs(110) – – – – – 2.5 TC [1088]
Cs(110) – – – – – 2.51 TC [476,711]
Cs(110) – – – – – 2.56 TC [1030,1089]
Cs(110) – – – – – 2.57 TC [476]
Cs(110) – – – – – 2.58 TC [2835]
Cs(110) – – – – – 2.59 TC [1095]
Cs(110) – – – – – 2.60 TC [321]
Cs(110) – – – – – 2.60 TC [475]
Cs(110) – – – – – 2.62 TC [555]
Cs(110) – – – – – 2.64 TC [2835]
Cs(110) – – – – – 2.66 TC [1089]
Cs(110) – – – – – 2.666 TC [4069]
Cs(110) – – – – – 2.68 TC [1089]
Cs(110) – – – – – 2.72 TC [1086]
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Cs(110) – – – – – 2.73 TC [1086]
Cs(110) – – – – – 2.74 TC [1086]
Cs(110) – – – – – 2.74 TC [1086]
Cs(110) – – – – – 2.74 TC [3693]
Cs(110) – – – – – 2.75 TC [3731]
Cs(110) – – – – – 2.78 TC [1086]
Cs(110) – – – – – 2.8 TC [1086,1088]
Cs(110) – – – – – 2.81 TC [3693]
Cs(110) – – – – – 2.82 TC [3712]
Cs(110) – – – – – 2.82 TC [3713]
Cs(110) – – – – – 2.87 TC [3692]
Cs(110) – – – – – 2.90 TC [3692]
Recommended – – – – – 2.54 ± 0.07 – –

Cs(111) – – – – – 1.80 TC [475]
Cs(111) – – – – – 1.85 TC [593]
Cs(111) – – – – – 1.93 TC [711]
Cs(111) – – – – – 1.97 TC [231]
Cs(111) – – – – – 1.971 TC [4091]
Cs(111) – – – – – 1.98 TC [3467]
Cs(111) – – – – – 2.01 TC [553]
Cs(111) – – – – – 2.10 TC [476,711]
Cs(111) – – – – – 2.14 TC [1159,3067]
Cs(111) – – – – – 2.14 TC [321]
Cs(111) – – – – – 2.14 TC [3814]
Cs(111) – – – – – 2.14 TC [1030]
Cs(111) – – – – – 2.14 TC [1095]
Cs(111) – – – – – 2.19 TC [476]
Cs(111) – – – – – 2.2 TC [1088]
Cs(111) – – – – – 2.20 TC [475]
Cs(111) – – – – – 2.24 TC [555]
Recommended – – – – – 2.09 ± 0.08 – –

Cs(112) – – – – – 2.39 TC [321]

Cs – – – – – 1.3 TC [3737]
Cs/GaP(111) Cs+ – ∼10−10 80 – 1.3 ± 0.2 CPD [1794]
Cs/GaP(111) Cs+ – ∼10−10 ∼300 – 1.3 ± 0.2 CPD [1794]
Cs/W Cs – ∼10−7 ∼300 – 1.43 FE [2335]
Cs/Os Cs – ? (Cs) ∼500–800 – 1.44 TE [650,3414]
Cs/Ti Cs – ? (Cs) ? – 1.44 TE [650,3413]
Cs/GaP Cs – ? ∼300 – 1.45 PE [3070]
Cs/Si(100) Cs – <6 × 10−11 ∼300 – 1.45* CPD [2433]
Cs/MO2C Cs – ? (Cs) ∼500–650 – 1.48 TE [650]
Cs/W(110) – – – – – 1.5* TC [514]
Cs/Si(111) Cs – <4 × 10−11 ∼300 – 1.5* PE [2659]
Cs/GaAs Cs – ? ∼300 – 1.52 PE [3070]
Cs/Si(100) – – – – – 1.53* TC [2399]
Cs/Ta Cs – ? (Cs) ∼500–650 – 1.55 TE [650]
Cs/Fe Cs – <10−9 ∼300 – 1.55 PE [307]
Cs/Ge(111) Cs – ∼10−10 ∼300 – 1.55 CPD [1396]
Cs/Cu Cs – ? ∼300 – 1.55 PE [1473]
Cs/W(110) Cs – (∼10−12) ∼300 – 1.55 ± 0.02 CPD [1795]
Cs/Re Cs – ? (Cs) ∼500–700 – 1.56 TE [650,3414]
Cs/Ge(100) Cs+ – 1 × 10−10 ∼300 – 1.6 CPD [3423]
Cs/Si(111)221 Cs – ∼10−9 ∼300 – 1.6* PE [1823]
Cs/W(111) – – – – – 1.6* TC [514]
Cs/Mo(110) Cs – 1 × 10−3 (Cs) ∼700–850 – 1.6 TE [976]
Cs/Si(111) Cs – ∼10−10 ∼300 – 1.6 CPD [3579]
Cs/W–Re(25%) Cs – ? (Cs) 690–740 – 1.60 TE [393]
Cs/steel Cs – ? (Cs) ∼450–700 – 1.60 TE [650,3410,3413]
Cs/Si(111) Cs – ∼10−10 ∼300 – 1.62 CPD [1396]
Cs/Nb Cs – ? (Cs) ∼500–700 – 1.63 TE [650,3414]
Cs/Cu Cs – ? (Cs) ∼450–650 – 1.64 TE [650,3413]
Cs/W Cs – ? (Cs) ∼500–750 – 1.64 TE [650,3414]
Cs/Re222 Cs – ? ? – 1.64 TE [3582]
Cs/Ag Cs – ? ∼300 – 1.65 PE [1473]
Cs/Pt(111) Cs – <2 × 10−10 ∼300 – 1.65* CPD [2434]
Cs/W(100) Cs – ≤10−10 77 – 1.65 ± 0.1 FE [1978]
Cs/W(110) Cs – 6 × 10−6 (Cs) 770 – 1.654 ± 0.055 TE [151]
(continued on next page)

122



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Cs/Pt(210) Cs – ? (Cs) ∼500–750 – 1.66 TE [650,3413,3414]
Cs/ZrC Cs – ? (Cs) ∼450 – 1.68 TE [650]
Cs/Re Cs – ≥10−4 (Cs) ∼800–850 – 1.7 TE [1774]
Cs/Cu(100) – – – – – 1.7 TC [389]
Cs/Ni(100) – – – – – 1.7 TC [389]
Cs/Ta(100) – – – – – 1.7 TC [389]
Cs/W Cs – ? (Cs) ∼800–1000 – 1.7 TE [3808]
Cs/Pt(100) – – – – – 1.7 TC [389]
Cs/MoS2(0001) Cs – <1 × 10−10 140 – 1.7 CPD [2390]
Cs/Si(100) Cs – 5 × 10−11 ∼300 (?) – 1.7 PE [1869]
Cs/Se/Si(100)226 Cs – ∼10−10 ∼300 – 1.7 CPD [3811]
Cs/W(111) Cs – ? 77 (≤325) – 1.7 FE [3079]
Cs/W(112) Cs – ? 77 (≤325) – ∼1.7 FE [3079]
Cs/W Cs+ – <3 × 10−10 ∼300 – 1.7 CPD [3289]
Cs/W(103) Cs – ? 77 – 1.7 FE [3079]
Cs/W(103) Cs – ? 77 (≤325) – 1.7 FE [3079]
Cs/W(115) Cs – ? 77 – 1.7 FE [3079]
Cs/W(115) Cs – ? 77 (≤325) – 1.7 FE [3079]
Cs/Mo Cs – 4 × 10−8 ∼300 (900) – 1.7 ± 0.2 CPD [3754]
Cs/Ni Cs – ? (Cs) ∼550–800 – 1.7–2.0 TE [650]
Cs/Ta Cs – ? (Cs) ∼500–650 – 1.70 TE [3414]
Cs/Mo Cs+ – <3 × 10−10 ∼300 – 1.71 ± 0.08 CPD [3289]
Cs/Li Cs – 1 × 10−8 ∼300 – 1.73 PE [1433]
Cs/W(110) Cs – ≤1 × 10−9 ∼550 – 1.73 TE [255]
Cs/W Cs – ? (Cs) 500 – 1.74* TE [3786]
Cs/W(100) Cs – ? ∼300 – 1.74 ± 0.06* CPD [3612]
Cs/W Cs – ? (Cs) ∼600–800 – 1.74 ± 0.26 TE [2462]
Cs/Re Cs – ∼10−10 ∼300 – 1.75 FE [2319,3864]
Cs/Mo(110) Cs – ≤10−10 ∼300 – 1.76* CPD [3805]
Cs/W(100) Cs – ? 77 (?) – 1.76 ± 0.05 FE [340]
Cs/W(112) Cs – 6 × 10−6 (Cs) 780 – 1.769 ± 0.063 TE [151]
Cs/Mo Cs – ? (Cs) ∼500–750 – 1.77 TE [650,3414]
Cs/W(100) Cs – <5 × 10−11 ∼300 – 1.77 CPD [1672]
Cs/Re Cs – ? 77 (?) – 1.77 ± 0.05 FE [340]
Cs/Mo Cs – ∼10−10 ∼300 – 1.78 FE [3864]
Cs/W(112) Cs – ≤1 × 10−9 ∼550 – 1.78 TE [255]
Cs/W(100)231 Cs – <5 × 10−11 ∼300 – 1.78 CPD [360,361,1667]
Cs/W Cs – ? 77 – 1.78 FE [396]
Cs/Mo(110) Cs – (∼10−12) ? – 1.78 ± 0.02 CPD [1795]
Cs/Nb(111) Cs – ? ? – 1.78 ± 0.03 TE [2329]
Cs/Ta(110) Cs – ∼10−11 ∼300 – 1.79 CPD [683,1886]
Cs/W Cs – 2 × 10−8 ∼300 – 1.79 FE [2335]
Cs/W(100) Cs – ≤1 × 10−9 ∼550 – 1.79 TE [255]
Cs/W(100) Cs – <5 × 10−11 ∼300 – 1.8 CPD [3510]
Cs/Si(111) Cs – 3 × 10−11 ∼300 – 1.8* CPD [3470]
Cs/Mo(111) Cs – 5 × 10−9 ∼300 – 1.8 CPD [2786]
Cs/TiO2(110) Cs – ? ∼300 – 1.8 PE [1610]
Cs/TiO2(110) Cs – 8 × 10−11 ∼300 – 1.8 PE [3188]
Cs/Pt(111) Cs – <4 × 10−11 295 – 1.8 PE [423]
Cs/Ir Cs – ? 20 – 1.8 FE [2320]
Cs/W – – – – – 1.8 TC [913]
Cs/Ag(110)224 Cs – ? ∼300 – 1.8 PE [2144]
Cs/Ta(110) – – – – – 1.8 TC [509]
Cs/Si(111) Cs – ? ∼300 – 1.8* CPD [1589]
Cs – – – – – 1.8 TC [3030]
Cs/W(100) Cs – 5 × 10−11 ∼300 – 1.8 CPD [3418]
Cs/W(112) Cs+ – <10−10 ∼300 – 1.8 CPD [2829]
Cs/W Cs – 8 × 10−9 ∼300 – 1.8 FE [2335]
Cs/Ni(110) Cs – ∼10−11 20 – 1.8 PE [2977]
Cs/NiO/Ni(100) Cs+ – <5 × 10−11 ∼300 – 1.8 CPD [1005]
Cs/Re(2111) Cs – ∼10−9 ∼300 – 1.8 FE [838]
Cs/W Cs – ∼10−9 77 – 1.8 FE [810]
Cs/W(111) Cs – ∼10−9 77 – 1.8 FE [810]
Cs/Si(111) Cs – ? 303 – 1.8* CPD [3230]
Cs/W(100) Cs – 7 × 10−10 77 (≤500) – 1.8 FE [3691]
Cs/Mo Cs – ? (Cs) ∼600–1000 – 1.8 TE [3798,3799]
Cs/W Cs – ? (Cs) ∼850–950 – 1.8 TE [3798,3799]
Cs/Mo Cs – ? (Cs) ∼600–800 – 1.8 TE [1390]
Cs/W Cs+ – ≤1 × 10−10 ∼300 – 1.8* CPD [3812]
Cs/W Cs – <2 × 10−9 ∼300 – 1.8 FE [2367]
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Cs/W Cs – ∼10−10 ∼300 – 1.8 FE [2319,3864,3865]
Cs/W(111) Cs – ? 77 – 1.8 FE [3079]
Cs/MoS2(0001) Cs – <1 × 10−10 175 – 1.8 CPD [2390]
Cs/W(100) – – – – – 1.8 TC [389]
Cs/Ir(100) – – – – – 1.8 TC [389]
Cs/W(100) Cs – ∼10−10 ∼300 – 1.8 FE [2324]
Cs/Al2O3/Al Cs – ? (Cs) 336 – 1.8 ± 0.1 CPD [1649]
Cs/W Cs – ? (Cs) 620–650 – 1.80 TE [393]
Cs(pool) – – ? 500 – 1.80* TE [3786]
Cs – – – – – 1.80 TC [1744]
Cs/W(100) Cs – ? ∼300 – 1.80 ± 0.02 CPD [1787,3600]
Cs/W228 Cs – ? 77 (?) – 1.80 ± 0.05 FE [340,3759]
Cs/Ni Cs – ? 77 (?) – 1.80 ± 0.05 FE [340]
Cs/W(100)225 Cs – ≤2 × 10−10 293 – 1.81 CPD [1480]
Cs/Ge(111) Cs+ – 1 × 10−10 ∼300 – 1.81 CPD [3418,3423]
Cs/Re Cs – ∼10−9 ∼300 – 1.81 FE [838]
Cs/W(100)225 Cs – <3 × 10−11 ∼300 – 1.81 PE [3435]
Cs/W – – – – – 1.81 TC [2465]
Cs/Mo – – – – – 1.81 TC [2465]
Cs – – – – – 1.81 TC [2949]
Cs – – – – – 1.81 TC [3728]
Cs/W(100)225 Cs – ? 98 – 1.81 FE [644]
Cs/Cr Cs – ? (Cs) ∼500–800 – 1.82 TE [650,3413]
Cs/W(100) Cs+ – ∼10−10 ∼300 – 1.82 CPD [506]
Cs/W(100) Cs – <5 × 10−10 ∼300 – 1.82 CPD [1887]
Cs/Ru(0001) Cs – 3 × 10−10 ∼300 – 1.82 CPD [1827]
Cs/W Cs – ≤3 × 10−10 ∼300 – 1.82 ± 0.01 CPD [362]
Cs/W(100) Cs – ≤3 × 10−10 ∼300 – 1.82 ± 0.01 CPD [362,1892,2481,

3830,3831]
Cs/Nb(112) Cs – ? ? – 1.82 ± 0.03 TE [2329]
Cs/W(100) Cs+ – ∼10−10 ∼300 – 1.82 ± 0.04 CPD [581]
Cs/W(100) Cs – ? ∼300 – 1.82 ± 0.05 CPD [3612]
Cs/Mo Cs – ? 77 (?) – 1.82 ± 0.05 FE [340]
Cs/Re(2112) Cs – ∼10−9 ∼300 – 1.83 FE [838]
Cs/W(111) Cs – ≤1 × 10−9 ∼550 – 1.83 TE [255]
Cs/Fe Cs – ? (Cs) ∼700–800 – 1.84 TE [650,3413]
Cs/Al2O3 Cs – ? (Cs) ? – 1.84 TE [650]
Cs/Mo2Si3 Cs – ? (Cs) ? – 1.84 TE [650]
Cs/W Cs – ? ∼300 – 1.84 ± 0.01 CPD [1163]
Cs/Pt(111) Cs – <2 × 10−10 ∼300 – 1.85* CPD [2434]
Cs/W(112) Cs – ∼10−9 77 – 1.85 FE [810]
Cs/Fe Cs – ? (Cs) ? – 1.85 TE [650]
Cs/Ir Cs – ? (Cs) ∼550–600 – 1.85 TE [650]
Cs/Re Cs – ∼10−10 290 – 1.85 FE [2324]
Cs/W Cs – <10−9 ∼300 (900) – 1.85 FE [2768]
Cs/Si(111) Cs – <6 × 10−11 ∼300 – 1.85* CPD [2433]
Cs/TaC Cs – 3 × 10−10 ∼300 – 1.85 ± 0.05 CPD [1504]
Cs/Ir Cs – ? (Cs) ∼500–800 – 1.86 TE [3414]
Cs/W Cs – 2 × 10−9 ∼300 – 1.86 FE [2335]
Cs/W232 Cs+ – <3 × 10−10 ∼300 – 1.86* CPD [3289,3815]
Cs/Cu Cs – ? (Cs) ? – 1.86 PE [3447]
Cs/? Cs – ? ? – 1.87 ? [3785]
Cs/Ta Cs – ? (Cs) ∼300 – 1.87 FE [1972]
Cs/Si(100)223 Cs – <1 × 10−10 ∼300 – 1.87* CPD [2883]
Cs/W(100) – – – – – 1.88 TC [1539]
Cs – – – – – 1.88 TC [3318]
Cs/Au Cs – ∼10−3 (Ar) ? – 1.89 PE [2789]
Cs/W(100) Cs – (<10−11) ∼300 – 1.9 CPD [776]
Cs/Mo(111) Cs – ? ∼300 – 1.9 PE [1527]
Cs/Si(100)226 Cs – ∼10−10 ∼300 – 1.9* CPD [3811]
Cs/Si(100) – – – – – 1.9 TC [1223]
Cs/Au(100) – – – – – 1.9 TC [389]
Cs/Ta Cs – ∼10−11 ∼300 – 1.9 CPD [683]
Cs/Si(100) Cs – 7 × 10−11 ∼300 – 1.9 CPD [2531]
Cs/Si(100) Cs+ – 1 × 10−10 ∼300 – 1.9 CPD [3423]
Cs – – – – – 1.9 TC [1993]
Cs/W Cs – ∼10−10 290 – 1.9 FE [2324,3816]
Cs/Cu(111) Cs – 1 × 10−10 ∼300 – 1.9* CPD [2491]
Cs/Ni(100) Cs – ≤6 × 10−10 ∼300 – 1.9 PE [2366]
Cs/Ag(110) Cs – ? 80 – 1.9 PE [2144]
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Cs/Ag(110) Cs – ? ∼300 – 1.9 PE [2144]
Cs/Mo(111) Cs – ? ∼300 – 1.9 PE [1527]
Cs/Be Cs – ≤8 × 10−10 ∼300 – 1.9 CPD [3286]
Cs/W Cs – ? (Cs) ∼700 – 1.9* TE [1858]
Cs/W(110) Cs – ? 77 – 1.9 FE [3079,3818]
Cs/W(110) Cs – ? 77 (≤325) – 1.9 FE [3079,3818]
Cs/W(100) Cs – (∼10−11) ∼300 – 1.9 CPD [3340]
Cs/Mo Cs, H H− ∼10−8 188–293 1.9N – NSI [3677]
Cs/Mo Cs – 7 × 10−9 ∼300 – 1.9 CPD [3756]
Cs/O/Ni(100) Cs – <5 × 10−11 ∼300 – 1.9 CPD [1005]
Cs/Cu(111)227 Cs – 1 × 10−10 ∼300 – 1.9* CPD [2496]
Cs/Ni Cs – <10−9 77 – 1.9 CPD [2139,3128,3698]
Cs/Si(nanowire) Cs – <5 × 10−9 ∼300 – 1.9 FE [2443]
Cs/GaAs(110) Cs – <10−10 ∼300 – 1.9 CPD [2793]
Cs/MoS2 Cs – ? 200 – 1.9 CPD [2843]
Cs/Mo232 Cs+ – <3 × 10−10 ∼300 – 1.9* CPD [3289,3815]
Cs/W232 Cs+ – <3 × 10−10 ∼300 – 1.9* CPD [3289,3815]
Cs/W Cs – 5 × 10−10 ∼77 – 1.9 ± 0.1 FE [2590]
Cs/Mo229 Cs+ – ≤1 × 10−10 ∼300 – 1.9 ± 0.1* CPD [3283]
Cs/Si Cs+ – – – – 1.90 ± 0.09* TC [4367]
Cs – – – – – 1.92 TC [3477]
Cs – – – – – 1.92 TC [339]
Cs – – ∼10−10 300 – 1.92 PE [4297]
Cs – – ∼10−9 298 – 1.93 ± 0.03 PE [2612,2613]
Cs – – – – – 1.94 TC [1066]
Cs/glass Cs – ∼10−9 82 – 1.94 PE [2576]
Cs/Re(2110) Cs – ∼10−9 ∼300 – 1.94 FE [838]
Cs – – ∼10−9 ∼300 – 1.94 PE [4241]
Cs/Be Cs – ? (Cs) ∼500–800 – 1.94 TE [650,3410,3413]
Cs/Mo(100) Cs – ∼10−11 ∼300 – 1.94 ± 0.05 CPD [3855]
Cs/quartz Cs – <4 × 10−10 100 – 1.95 PE [1862]
Cs/Cu(111) Cs – ∼1 × 10−11 ∼300 – 1.95 CPD [2532]
Cs/? Cs – ? ∼300 – 1.95 PE [3111]
Cs/surface230 – – – – – ≤1.95 TC [650,3412]
Cs/O/W(100)231 Cs – ? ∼300 – 1.95 CPD [1667]
Cs – – ∼10−9 298 – 1.95 ± <0.05 PE [2612,2613]
Cs/W(111) Cs – ≤10−10 77 – 1.95 ± 0.1 FE [1978]
Cs/Be232 Cs+ – <3 × 10−10 ∼300 – 1.96 PE [3289]
Cs/Be232 Cs+ – <3 × 10−10 ∼300 – 1.96 CPD [3289]
Cs/Ag/glass Cs – ∼10−8 ∼80 – 1.96 PE [1452]
Cs/W(110) Cs – 5 × 10−7 ∼300 – ≥1.96 PE [3765]
Cs/Al(111) Cs – 1 × 10−11 ∼300 – 1.98* CPD [2867]
Cs/Ag(100) Cs – <1 × 10−10 80 – 1.98 ± 0.06 CPD [3186]
Cs/Ru(0001) Cs – ∼10−10 220 – 2.0 PE [4092–4094]
Cs/W(110) Cs – ∼10−9 77 – 2.0 FE [810]
Cs/W(110) – – – – – 2.0 TC [4216]
Cs/Ag(111) – – – – – 2.0 TC [4216]
Cs/Pt(111) – – – – – 2.0 TC [4216]
Cs/Mo(110) Cs – 5 × 10−9 ∼300 – 2.0 CPD [2786]
Cs/Ag(111) Cs – <1 × 10−10 ∼300 – 2.0* CPD [1426]
Cs/Mo Cs – 1 × 10−8 ∼300 – 2.0 PE [1433]
Cs/Mo Cs – 7 × 10−9 ∼300 – 2.0 PE [3756]
Cs/Cu(100) Cs – <4 × 10−11 ∼300 – 2.0 PE [3809]
Cs/W(110) – – – – – 2.0 TC [3300]
Cs/Mo(110) Cs – ? ∼300 – 2.0 CPD [1420]
Cs/Au Cs – 1 × 10−8 ∼300 – 2.0 PE [1433]
Cs/quartz Cs – ∼10−10 90 – 2.0 PE [2605]
Cs/Si(100) Cs – ∼10−10 200 – 2.0 CPD [302]
Cs/W(112) Cs – (≤10−11) ∼300 – 2.0 CPD [977]
Cs/Si(111) Cs – ∼10−10 130 – 2.0 PE [1817]
Cs/Ru(001) Cs – ? ∼300 – 2.0* CPD [2984]
Cs – – – – – 2.0* TC [1955]
Cs/W Cs – ∼10−10 800 – 2.0 FE [2324,3816]
Cs/Re Cs – ∼10−10 850 – 2.0 FE [2324]
Cs/Ba/W(100) Cs – (<10−11) 210 – 2.0 CPD [776]
Cs/W(110) Cs – ∼10−8 ∼300 – 2.0 PE [3218]
Cs/HfN Cs – ? (Cs) ∼700 – 2.0* TE [1858]
Cs/Ag(110) Cs – ? ∼300 – 2.0* CPD [1816]
Cs/Se/Si(100)226 Cs – ∼10−10 ∼300 – 2.0* CPD [3811]
Cs/cnt Cs – 2 × 10−9 ∼300 – 2.0 PE [1165]
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Cs/TaC Cs+ – 3 × 10−10 ∼300 – 2.0 ± 0.02 CPD [1504]
Cs/Cu Cs – ? ∼300 – 2.0 ± 0.1 PE [3091]
Cs/Ag Cs – ? ∼300 – 2.0 ± 0.1 PE [3091]
Cs/W(112) Cs – ≤10−10 77 – 2.0 ± 0.1 FE [1978]
Cs/W(110) Cs – ≤10−10 77 – 2.0 ± 0.1* FE [1978]
Cs/Cu(110) Cs – 5 × 10−11 140 – 2.0 ± 0.1 PE [3453,3454]
Cs/Cu Cs – 3 × 10−9 100–140 – 2.0 ± 0.1 PE [2015]
Cs/Ni(100) Cs+ – <5 × 10−11 ∼300 – 2.00 CPD [1005,3674]
Cs/Ta(110) Cs+ – ∼10−10 ∼300 – 2.00 CPD [506]
Cs/Si(100)n Cs+ – 4 × 10−11 200 – 2.00 ± 0.05 CPD [880]
Cs/GaN(0001) – – – – – 2.02 − 2.34 TC [4187]
Cs – – – – – 2.03 TC [4150]
Cs – – ∼10−9 183 – 2.03 ± 0.02 PE [2612,2613]
Cs/ss Cs – (D2-plasma) ? – 2.03 ± 0.16 PE [4452]
Cs/O/W(100)231 Cs – ? ∼300 – 2.05 CPD [1667]
Cs – – – – – 2.05* TC [1955]
Cs – – – – – 2.05 TC [1951]
Cs/graphene – – – – – 2.05 TC [4075]
Cs/glass Cs – ≤3 × 10−11 195 – 2.05 ± 0.01 PE [2615]
Cs/W(100) Cs – ∼10−9 77 – 2.06 FE [810]
Cs – – – – – 2.06 TC [3477]
Cs(cluster) – – – – – 2.06 TC [3477,3479]
Cs/Mo(100) Cs – 7 × 10−10 77 – 2.06 FE [3691]
Cs/Mo(112) Cs – 7 × 10−10 77 – 2.06 FE [3691]
Cs/W(110) Cs – ≤3 × 10−10 ∼300 – 2.06 ± 0.01 CPD [362]
Cs/W Cs – ≤10−9 ∼300 – 2.07 CPD [3857]
Cs/Cu(100) Cs – <5 × 10−11 ∼300 – 2.07 CPD [2842,2850]
Cs/W(110) Cs – (≤10−11) 77 – 2.07* CPD [3341]
Cs – – – – – 2.07 TC [3467]
Cs/W(110) Cs – <2 × 10−10 ∼300 – 2.07 ± 0.01 CPD [2481]
Cs/Si(100) – – – – – 2.08 ± 0.10* TC [3498]
Cs/Ag(111) – – – – – 2.09 TC [3995]
Cs/glass Cs – ≤3 × 10−11 77 – 2.09 ± 0.01 PE [2615]
Cs/Ru(001) Cs – <5 × 10−10 80 (≫80) – 2.1* CPD [2152]
Cs/Ni(111) Cs – 8 × 10−11 100 – 2.1 PE [772]
Cs/Mo Cs – 2 × 10−8 ∼300 – 2.1 CPD [3770]
Cs/W(112) Cs – ∼10−10 ∼300 – 2.1 FE [2324]
Cs/Nb(110) Cs – ∼10−10 ∼300 – 2.1 CPD [2381]
Cs/HOPG Cs – ? 90 – 2.1 PE [1620]
Cs/W(100) Cs – (<10−11) 210 – 2.1 CPD [776]
Cs/Cu(110) Cs – ? 140 – 2.1 PE [3450]
Cs/Pt Cs – 4 × 10−10 20 – 2.1* AI38 [3496]
Cs/Ru(0001) Cs – <10−10 ∼300 – 2.1 PE [3782]
Cs/W(110) Cs – <2 × 10−11 ∼300 – 2.1 CPD [2685]
Cs/Ni(100) Cs – ∼10−10 ∼300 – 2.1* CPD [2895]
Cs/W(111) Cs – (≤10−11) 77 – 2.1 CPD [2619]
Cs/Cu(110) Cs – ? 100, 260 – 2.1 ? [3159,3172]
Cs/W(110) Cs – (<10−12) 77 – 2.1 CPD [1085]
Cs/W(110) Cs – (≤10−11) ∼300 – 2.1 CPD [977]
Cs/Ag(110)224 Cs – ? 80 – 2.1 PE [2144]
Cs/Mo(110) Cs – (≤10−11) ∼300 – 2.1 CPD [977]
Cs – – – – – 2.1 TC [706]
Cs/W(110) Cs – ≤10−10 77 – 2.1 ± 0.1 FE [1978]
Cs/Ba/Nb(100) Cs – (<10−11) 220 – 2.10 ± 0.05 CPD [776]
Cs/Ba/Nb(110) Cs – 4 × 10−10 ∼300 – 2.11 CPD [2672]
Cs/W(110) Cs – (<10−12) 77 – 2.11 CPD [1085]
Cs/glass Cs – ≤3 × 10−11 195 – 2.11 ± 0.01 PE [2615]
Cs – – – – – 2.14 TC [1711]
Cs – – – – – 2.14 TC [3637]
Cs/GaAs(110) Cs – ? 190 – 2.14 PE [2168]
Cs/glass Cs – ≤10−10 77 – 2.14 ± 0.02 PE [1489]
Cs/glass Cs – <2 × 10−10 77 – 2.14 ± 0.05 PE [1474]
Cs/Mo(100) Cs – ∼10−11 ∼300 – 2.14 ± 0.06* CPD [3855]
Cs/Si(100) Cs – ∼10−10 200 – 2.15 CPD [302]
Cs – – – – – 2.15 TC [1711]
Cs/W(110) Cs – <2 × 10−10 250 – 2.15 CPD [1807]
Cs – – – – – 2.15 TC [298]
Cs/W(110) Cs – 1 × 10−9 ∼300 – 2.15 CPD [3721–3723,3774]
Cs/Mo(110) Cs – 5 × 10−11 77 – 2.15 CPD [329]
Cs – – – – – 2.15 TC [3725]
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Cs/W(110) Cs – ? ∼300 – 2.15 CPD [2881]
Cs/W(110) Cs – (<10−11) 210 – 2.15 CPD [776]
Cs/Ba/W(110) Cs – (<10−11) 210 – 2.15 CPD [776]
Cs/W(110) Cs – <10−9 ∼300 – 2.15 CPD [3857]
Cs – – – – – 2.16 TC [1711]
Cs/Re(1011) Cs – ∼10−9 ∼300 – 2.16 FE [838]
Cs/Mo(100) Cs – <5 × 10−11 ∼300 – 2.16 ± 0.09* CPD [3736]
Cs/Ir – – – – – 2.18 TC [416]
Cs/W(110) Cs – ? 77 (?) – 2.18 ± 0.05 FE [340]
Cs – – – – – 2.19 TC [3352]
Cs/ss Cs – (H2-plasma) ? – 2.19 ± 0.08 PE [4452]
Cs/Cu(111)233 – – – – – 2.2 TC [3697]
Cs/Ru(001) Cs – <5 × 10−10 80 (≫80) – 2.2 CPD [2152]
Cs/Mo(110) Cs – ? ∼300 – 2.2 CPD [2676]
Cs/Ba/Mo(110) Cs – ? ∼300 – 2.2 CPD [2676]
Cs/cnt/Si Cs – ≤8 × 10−10 ∼300 – 2.2 PE [3225]
Cs/Cu(111)234 Cs – ∼10−10 200 – 2.2 PE [2512]
Cs/Ni/ss Cs – ∼10−10 4.2 – 2.2 ± 0.1 PE [1410]
Cs/W(110) – – – – – 2.20 TC [1539]
Cs/W(110) Cs – 7 × 10−10 77 (500) – 2.22 FE [3691]
Cs/Nb(100) Cs – (<10−11) 220 – 2.22 CPD [776]
Cs/W(100) – – – – – 2.22* TC [1705]
Cs – – – – – 2.23 TC [477]
Cs/Cu(100) – – – – – 2.23 ± 0.01 TC [4135]
Cs – – – – – 2.24 TC [231]
Cs – – – – – 2.24 TC [477,1924,4035]
Cs – – – 150.5 – 2.241 TC [2419]
Cs – – – – – 2.25 TC [3312]
Cs – – – – – 2.25 TC [2427]
Cs – – – – – 2.26 TC [3477]
Cs – – – – – 2.26 TC [553]
Cs/Ru(0001) Cs – ? ∼300 – 2.26 PE [4020]
Cs/C(0001) Cs – 5 × 10−10 80 – 2.26* CPD [2156]
Cs/C(0001)235 – – – – – 2.26* TC [2782]
Cs/C(0001)235 Cs – <2 × 10−10 ∼300 – 2.26* CPD [2782]
Cs – – – 0 – 2.264 TC [2419]
Cs/W(100) – – – – – 2.28 TC [385]
Cs – – – – – 2.28 TC [3467]
Cs/Cu(111)234 – – ∼10−10 200 – 2.3 PE [2512]
Cs/Mo(112) Cs – (<10−11) 77 (300) – 2.3 CPD [2032]
Cs/W(100) Cs – ∼10−10 ∼300 – 2.3 CPD [2477,2599,2600]
Cs/Si(111) Cs – <1 × 10−10 ∼300 – 2.3* PE [2663]
Cs/Ag(100) Cs – <2 × 10−10 80 – 2.3 ± 0.1* CPD [2179]
Cs/Si(100) Cs+ – ? ∼300 (≤833) – 2.3 ± 0.15 CPD [768]
Cs – – – – – 2.30 TC [477]
Cs – – – – – 2.31 TC [767]
Cs – – – – – 2.33 TC [231]
Cs/graphite – – – – – 2.33* TC [1843]
Cs/Al(111) – – – – – 2.34 TC [3158]
Cs – – – – – 2.35 TC [2427]
Cs – – – – – 2.35 TC [4101]
Cs – – – – – 2.35 TC [477,1924,4035,

4036]
Cs – – – – – 2.37 TC [1613]
Cs – – – – – 2.37 TC [383]
Cs/Mo(100) – – – – – 2.39* TC [1705]
Cs/Cu(111)233 – – – – – 2.4 TC [3697]
Cs/Nb(110) Cs – 4 × 10−10 ∼300 – 2.4 CPD [2672]
Cs/cnt/GaAs236 Cs – 2 × 10−9 ∼300 – 2.4 PE [291]
Cs/MoS2(0001) Cs – <1 × 10−10 ∼300 – 2.4 CPD [2390]
Cs/Nb(110) Cs – 4 × 10−10 ∼300 – 2.40 FE [2672]
Cs/graphite – – – – – 2.41* TC [1843]
Cs/Al(111) Cs – 8 × 10−11 140 – 2.44 CPD [734,2154,2162]
Cs/W(100) – – – – – 2.44 TC [387]
Cs/Ta Cs – ∼10−11 ∼300 – 2.47 CPD [683]
Cs – – – – – 2.47 TC [1711]
Cs – – – – – 2.49 TC3 [475,519,2474]
Cs – – – – – 2.5 TC [2845]
Cs/C(0001)235 – – – – – 2.5* TC [2782]
Cs/C(0001)235 Cs – <2 × 10−10 ∼300 – 2.5* CPD [2782]
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Cs – – – – – 2.51 TC [2629]
Cs – – – – – 2.54 TC [230]
Cs/W(100) – – – – – 2.55 TC [385]
Cs – – – – – 2.56 TC [2493]
Cs – – – – – 2.60 TC [2382]
Cs/Ru(001) Cs – <5 × 10−10 80 – 2.62 PE [3152]
Cs – – – – – 2.64 TC [521]
Cs – – – – – 2.64 TC [3628]
Cs – – – – – 2.67 TC [2493]
Cs – – – – – 2.74 TC [477]
Cs/W(100) – – – – – 2.77 TC [385]
Cs/Si(100) – – – – – 2.8 TC [3362]
Cs/MoS2 Cs – <1 × 10−10 ∼300 – 2.9 CPD [2843]
Cs/cnt Cs – 6 × 10−9 ∼300 – 3.0 ± 0.1 FE [2436]
Cs – – – – – 3.10 TC [2629]
Recommended – – – – – 2.05 ± 0.05 – –

Liquid (𝑻 > 𝟑𝟎𝟏 𝐊)
Cs – – ∼10−10 302 – 1.91* PE [4297]
Cs – – ∼10−9 302 – 1.94 PE [4241]
Cs – – ∼10−8 302 – 1.95 PE [4208]
Cs – – – 301 – 2.212 TC [2419]

56. Barium Ba

bcc
Ba(100)/BaO – – – – – 2.22 TC [357]
Ba(100) – – – – – 2.31 TC [4091]
Ba(100) – – – – – 2.48 TC [1254]
Ba(100) – – – – – 2.50 TC [1159,3067]
Ba(100) – – – – – 2.6 TC [1714]
Ba(100) – – – – – 2.62 TC [357]
Ba(100) – – – – – 2.67 TC [231]
Ba(100) – – – – – 2.68 TC [3467]
Ba(100) – – – – – 3.00 TC [321]
Ba(100) – – – – – 3.06 TC [1030]
Ba(100) – – – – – 3.15 TC [476]
Ba(100) – – – – – 3.26 TC [476]
Ba(100) – – – – – 3.42 TC [1030]
Recommended – – – – – 3.07 ± 0.06 – –

Ba(110) – – – – – 2.1 TC [1723]
Ba(110) – – – – – 2.19 TC [1434]
Ba(110) – – – – – 2.28 TC [334,3179]
Ba(110) – – – – – 2.384 TC [4091]
Ba(110) – – – – – 2.71 TC [1159,3067]
Ba(110) – – – – – 2.83 TC [231]
Ba(110) – – – – – 2.88 TC [3467]
Ba(110) – – – – – 2.95 TC [2427]
Ba(110) – – – – – 3.21 TC [476]
Ba(110) – – – – – 3.32 TC [476]
Ba(110) – – – – – 3.49 TC [321]
Ba(110) – – – – – 3.56 TC [1030]
Ba(110) – – – – – 3.58 TC [1030]
Ba(110) – – – – – 3.59 TC [1089]
Ba(110) – – – – – 3.70 TC [1089]
Ba(110) – – – – – 3.81 TC [1089]
Recommended – – – – – 3.46 ± 0.14 – –

Ba(111) – – – – – 2.293 TC [4091]
Ba(111) – – – – – 2.48 TC [1159,3067]
Ba(111) – – – – – 2.72 TC [3467]
Ba(111) – – – – – 2.73 TC [231]
Ba(111) – – – – – 2.85 TC [476]
Ba(111) – – – – – 2.85 TC [1030]
Ba(111) – – – – – 2.86 TC [1030]
Ba(111) – – – – – 2.87 TC [321]
Ba(111) – – – – – 2.96 TC [476]
Recommended – – – – – 2.81 ± 0.06 – –
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Ba(112) – – – – – 3.20 TC [321]

Ba – – ? ∼300 – 1.73 CPD [2297]
Ba/W Ba – (<10−14) 770–910 – 1.96 TE [2572]
Ba/W Ba – ∼10−11 1000 – 2.0 TE [3781]
Ba/W(221) Ba – (<10−11) 78 (≤800) – 2.0 FE [809]
Ba – – ? ∼300 – 2.02 PE [3694]
Ba/Nb(100) Ba – (<10−11) ∼300 (1000) – 2.04 CPD [776]
Ba/W(111) Ba – ∼10−8 ∼1000 – 2.1 TE [2351]
Ba/W Ba – ≤3 × 10−9 ∼300 – 2.1 FE [218,3739]
Ba/Re Ba – ∼10−9 ∼300 (800) – 2.1 FE [3535]
Ba/W Ba – ≤1 × 10−9 ∼300 (870) – 2.1 FE [2587]
Ba/W Ba – (<10−11) 78 (≤800) – 2.1 FE [809]
Ba/W Ba – ? 880–990 – 2.15 ± 0.05 TE [2928]
Ba/W(110) Ba – (<10−11) ∼300 (1000) – 2.18 CPD [776]
Ba/W(110) Ba – ∼10−8 ∼1000 – 2.2 TE [2351]
Ba/W(111) Ba – ≤1 × 10−10 77 – 2.2 FE [2372]
Ba/Rh Ba – ≤1 × 10−9 ∼300 (870) – 2.2 FE [2587]
Ba/W(111) Ba – (<10−11) 78 (≤800) – 2.2 FE [809]
Ba/W Ba – 3 × 10−9 ∼300 – 2.2 CPD [1064]
Ba/Nb(100) Ba – (<10−11) ∼300 (600) – 2.23 CPD [776]
Ba/W Ba – ≤5 × 10−9 ∼300–800 – 2.23 ± 0.04 CPD [3320]
Ba/W(100) Ba – (<10−11) ∼300 (700) – 2.25 CPD [776]
Ba/W2C Ba – ? ∼300 (800) – 2.25 FE [3531]
Ba/Ni(110) Ba – ≤10−10 ∼300 – 2.26* CPD [3376]
Ba/Re Ba – ∼10−9 ∼300 (600) – 2.3 FE [3535]
Ba/W(211) Ba – (<10−11) 78 (≤800) – 2.3 FE [809]
Ba/Si(001)237 Ba – <6 × 10−10 ∼300 – 2.3 PE [2170]
Ba/glass Ba – <3 × 10−8 ∼300 – 2.3 PE [3576]
Ba/quartz Ba – 5 × 10−10 ∼300 – 2.3 PE [2024]
Ba/Nb Ba – ≤5 × 10−9 ∼300 – 2.3* CPD [3261]
Ba/W(100) Ba – (<10−11) 210 (730) – 2.3 CPD [776]
Ba/Nb(100) Ba – (<10−11) 220 (850) – 2.3 CPD [776]
Ba/Ti/W(111) Ba – ≤1 × 10−10 77 – 2.3 FE [2372]
Ba/W(111) Ba – (<10−11) 77 – 2.3 CPD [2507]
Ba/Ta(112) Ba – (≤10−11) ∼300 (600) – 2.3 CPD [347]
Ba/Nb(110) Ba – ≤10−8 ∼1000–1150 – 2.3 ± 0.03 TE [2359]
Ba/Nb,Ta Ba – ≤10−8 ∼1000–1150 – 2.3 ± 0.03 TE [2359]
Ba/W Ba – ∼10−8 745–910 – 2.3 ± 0.1 TE [3064]
Ba/W(100) Ba – ∼10−9 ∼950–1100 – 2.3 ± 0.1 TE [143]
Ba/W(110) Ba – ∼10−9 ∼950–1100 – 2.3 ± 0.1 TE [143]
Ba/W(111) Ba – ∼10−9 ∼950–1100 – 2.3 ± 0.1 TE [143]
Ba/W(112) Ba – ∼10−9 ∼950–1100 – 2.3 ± 0.1 TE [143]
Ba/Ta(112) Ba – (≤10−11) 77 (600) – 2.30 CPD [347]
Ba – – – – – 2.30 TC [1066]
Ba/Ni(110) Ba – ≤10−10 ∼300 – 2.30 CPD [3376]
Ba/Mo(111) Ba – ≤10−9 860–980 – 2.30 ± 0.1 TE [323]
Ba/W(100) Ba – ≤10−10 500 – 2.34 CPD [1891]
Ba/W Ba – ≤1 × 10−9 ∼300 (?) – 2.35 FE [2037]
Ba/glass238 Ba – ? ∼300 – 2.35 ± 0.03 CPD [1157]
Ba/Ru,Os,Ir Ba – ≤10−8 ∼1000–1150 – 2.36 ± 0.03 TE [2359]
Ba/Nb(100) Ba – (≤10−11) ∼300 (700) – 2.38 CPD [776]
Ba/W238 Ba – ? 90 – 2.39 ± 0.05 CPD [1365]
Ba/Ta Ba – ∼10−8 ∼300 – 2.39 ± 0.06* CPD [1385]
Ba/Ir Ba – ≤1 × 10−9 300 (970) – 2.4 FE [2587]
Ba/W(100) – – – – – 2.4 TC [4258]
Ba/Pt Ba – ? ∼1200 – 2.4 TE [4266]
Ba/W(100) Ba – (<10−11) 78 (≤800) – 2.4 FE [809]
Ba/Ge Ba – ∼10−9 ∼300 – 2.4 CPD [1954]
Ba/Au Ba – ∼10−9 ∼300 – 2.4 CPD [1954]
Ba/W Ba – ? 77 (?) – 2.4 FE [3777]
Ba/W Ba – ? 600, 730 – 2.4 FE [3555]
Ba/Ge/W Ba – ? 600, 730 – 2.4 FE [3555]
Ba/Ir(111) Ba – ≤8 × 10−10 770–940 – 2.4 TE [3546,3547]
Ba/C/Ir(111) Ba – ∼10−10 850–980 – 2.4 TE [3986]
Ba/? Ba – ? ? – 2.4 TE [3402]
Ba – – – – – 2.4 TC [1993]
Ba/Nb(100) Ba – ≤10−8 ∼1000–1150 – 2.4 ± 0.03 TE [2359]
Ba/Zr,Hf Ba – ≤10−8 ∼1000–1150 – 2.4 ± 0.03 TE [2359]
Ba/Mo,W Ba – ≤10−8 ∼1000–1150 – 2.4 ± 0.03 TE [2359]
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Ba/W(100) Ba – (<10−11) ∼300 (500) – 2.40 CPD [776]
Ba/W(100) Ba – (<10−11) ∼300 (1000) – 2.40 CPD [776]
Ba/glass238 Ba – ? ∼300 – 2.41 ± 0.05* CPD [1157]
Ba/W(100) Ba – (<10−11) ∼300 – 2.42 CPD [776]
Ba/W Ba – <10−10 77 – 2.42 FE [2960]
Ba/W238 Ba – ? 90 – 2.42 ± 0.05 CPD [1365]
Ba/W(113) Ba – <5 × 10−9 ∼300 – 2.44 CPD [1138]
Ba/W Ba – <10−10 ∼300 – 2.44 FE [1464]
Ba – – – – – 2.45 TC [3476]
Ba/Si(100) Ba – <10−10 ∼300 – 2.45* CPD [3370]
Ba/W(113) Ba – ≤5 × 10−9 ∼300 – 2.45 CPD [1963]
Ba/Au Ba – 5 × 10−9 300 – 2.45 PE [2710]
Ba/W(110) Ba – ≤10−8 ∼1000–1150 – 2.45 ± 0.03 TE [2359]
Ba/quartz Ba – <5 × 10−9 ∼330 (∼470) – 2.45 ± 0.05 PE [3090]
Ba/W244 Ba – ≤2 × 10−9 ∼900 – 2.46 CPD [3530]
Ba – – – – – 2.47 TC [339]
Ba – – – – – 2.47 TC [3476]
Ba – – – – – 2.48 TC [3637]
Ba/glass Ba – ∼2 × 10−8 ∼300 – 2.48 PE [2564]
Ba – – – – – 2.48 TC [1254]
Ba/W Ba – ≤2 × 10−9 ∼300 – 2.48 CPD [3530]
Ba/Mo(110) Ba – (≤10−11) 77 – 2.48 CPD [1209,1895]
Ba/Ni Ba – ? ∼300 – 2.49 PE [1641]
Ba/Fe(110)/W(110) Ba – ? 77 – 2.5 CPD [4231]
Ba/Mo(110)/W(110) Ba – ? 77 – 2.5 CPD [4231]
Ba/Ag(111)/W(110) Ba – ? 77 – 2.5 CPD [4231]
Ba/W(112) Ba – ≤1 × 10−10 77 – 2.5 FE [2372]
Ba/Ti/W(112) Ba – ≤1 × 10−10 77 – 2.5 FE [2372]
Ba/Ta(112) Ba – (≤10−11) 77 – 2.5 CPD [347]
Ba – – – – – 2.5 TC [3030]
Ba/Ta(112) Ba – (≤10−11) ∼300 – 2.5 CPD [347]
Ba/W(111) Ba – (<10−11) ∼300 – 2.5 CPD [2507]
Ba/Si(100)239 Ba – <2 × 10−11 ∼300 – 2.5* PE [1732]
Ba/Nb Ba – ≤3 × 10−9 ∼300 – 2.5* CPD [3263]
Ba/Ag(111) Ba ∼1 × 10−10 ∼300 – 2.5 CPD [3303]
Ba/Cu/W(110) Ba – ≤1 × 10−10 ∼300 – 2.5 FE [2371]
Ba/Re(1010) Ba – (≤10−11) 77 – 2.5 CPD [2501]
Ba/Re(1010) Ba – (≤10−11) ∼300 – 2.5 CPD [599,2501]
Ba/W(110) Ba – ∼10−8 ∼300 – 2.5 PE [3218]
Ba/W Ba – ? ∼300 – 2.5 CPD [2577]
Ba/W Ba – ∼10−10 ∼300 – 2.5 CPD [3532]
Ba/W(100) Ba – ≤10−8 ∼1000–1150 – 2.5 ± 0.03 TE [2359]
Ba/Ir(111) Ba – ≤5 × 10−9 <800 – 2.50 TE [649]
Ba/Ag(111) Ba – <1 × 10−10 ∼300 (≤450) – 2.50 CPD [990]
Ba/Ta(112) Ba – (≤10−11) 77 – 2.50 CPD [347]
Ba/Ta(112) Ba – (≤10−11) ∼300 – 2.50 CPD [347]
Ba/W(100) Ba – ≤10−10 ∼300 – 2.50 FE [1891]
Ba/glass Ba – ? ∼300–400 – 2.511 ± 0.002 PE [1637,1638,2232]
Ba/Re222 Ba – ? ? – 2.52 TE [3582]
Ba/Ag/Ta242 Ba – ? ∼300 – 2.52 ± 0.03* CPD [1050]
Ba/glass373 Ba – ? ∼300 – 2.520 PE [2232]
Ba/W(112) Ba – (≤10−11) 77 – 2.53 CPD [379]
Ba/W(112) Ba – (≤10−11) ∼300 – 2.53 CPD [379]
Ba/Nb(100) Ba – (≤10−11) ∼300 – 2.53 CPD [776]
Ba/Ag/Ta242 Ba – ? ∼300 – 2.53 ± 0.03* CPD [1050]
Ba/W(110) Ba – (≤10−11) 77 – 2.54 CPD [1895]
Ba/Al(111) Ba – 3 × 10−11 20 (120) – 2.55 PE [1427]
Ba/Ag(111) Ba – ≤1 × 10−10 ∼300 – 2.56 CPD [990]
Ba/W(100)241 Ba – ≤6 × 10−10 ∼300 – 2.560 ± 0.005 CPD [2104,2108]
Ba/glass240 Ba – ? ∼300 – 2.57* CPD [1367]
Ba/W Ba – ≤2 × 10−9 760–775 – 2.57 ± 0.06* CPD [3528]
Ba/W(110) Ba – (<10−11) ∼300 (900) – 2.59 CPD [776]
Ba//W(110) Ba – ? 77 – 2.6 CPD [4231]
Ba/Cu(111)/W(110) Ba – ? 77 – 2.6 CPD [4231]
Ba/Ag(111)/W(110) Ba – ? ∼300 – 2.6 CPD [4231]
Ba/W(110) Ba – ? ∼300 – 2.6 CPD [2145]
Ba/W Ba – ? ∼300 – 2.6 CPD [3689]
Ba/Mo(110) Ba – ? ∼300 – 2.6 FE [2676]
Ba/W(110) Ba – ∼10−10 77 (∼300) – 2.6 CPD [2022]
Ba/Mo(112) Ba – (<10−11) ∼300 – 2.6 CPD [2637]
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Ba/W(110) Ba – ≤1 × 10−10 77 – 2.6* FE [2372]
Ba/Ti/W(110) Ba – ≤1 × 10−10 77 – 2.6* FE [2372]
Ba/Re(1010) Ba – (<10−11) ∼300 – 2.6 CPD [2637]
Ba/W(100) Ba – ? ∼300 – 2.6 CPD [2145]
Ba/W Ba – <10−9 ∼300 – 2.6 FE [3269]
Ba/Cu(111) Ba – ? ∼300 – 2.6* PE [2515]
Ba/W243 Ba – 2 × 10−9 ∼300 – 2.6 CPD [3259]
Ba – – – – – 2.6 TC [706]
Ba/Lu/W Ba – ≤1 × 10−9 ∼300 (?) – 2.60 FE [2037]
Ba/W(100) Ba – ≤10−10 ∼300 – 2.60 CPD [1891]
Ba/W(100) – – – – – 2.62 TC [357]
Ba/Mo(110) Ba – (≤10−11) ∼300 – 2.63 CPD [1209,1895]
Ba/Mo(110) Ba – (≤10−11) 77 (≤500) – 2.63 CPD [1209,1895]
Ba/Mo(110) Ba – ≤2 × 10−10 77 – 2.63 CPD [327]
Ba/W(110) Ba – 2 × 10−10 77 – 2.63 CPD [3985]
Ba/Re(0001) Ba – ≤2 × 10−9 77, ∼300 – 2.64* CPD [3750]
Ba/W244 Ba – ≤2 × 10−9 ∼300 – 2.65 CPD [3530]
Ba – – – – – 2.65 TC [298]
Ba/W(110) Ba – (<10−11) ∼300 (1200) – 2.65 CPD [776]
Ba/Ir(100) Ba – ? ∼300 – 2.65 ± 0.05 CPD [3135,3701]
Ba/W Ba – ≤2 × 10−9 ∼300 – 2.65 ± 0.06* CPD [3528]
Ba – – – – – 2.66 TC [3729]
Ba/Ag/Ta238 Ba – ? ∼300 – 2.66 ± 0.01 CPD [1050]
Ba/W(110) Ba – (<10−11) 210 – 2.67 CPD [776]
Ba/W(110) Ba – 2 × 10−10 77 – 2.67 CPD [3985]
Ba/W Ba – ≤6 × 10−10 ∼300 – 2.67 ± 0.02 CPD [2108]
Ba/W(100)241 Ba – ≤3 × 10−10 ∼300 – 2.69 ± 0.02 CPD [2104]
Ba/W243 Ba – 3 × 10−7 ∼300 – 2.7 CPD [3259]
Ba/Si(100)239 Ba – <2 × 10−11 ∼300 – 2.7 PE [1732]
Ba/Nb(110) Ba – 4 × 10−10 ∼300 – 2.7 CPD [2672]
Ba/Cu(111) Ba – ∼10−10 ∼300 – 2.7 PE [2509]
Ba/Mo(110) Ba – ≤3 × 10−10 ∼300 – 2.7 CPD [330]
Ba/Fe(110)/W(110) Ba – ? ∼300 – 2.7 CPD [4231]
Ba/Mo(110)/W(110) Ba – ? ∼300 – 2.7 CPD [4231]
Ba/Si(111) – – – – – 2.7* TC [4075]
Ba/W(100) Ba – <10−10 ∼300 – 2.7* CPD [2055]
Ba/O/W(100) Ba – <10−10 ∼300 – 2.7* CPD [2055]
Ba/W(100)245 Ba – ? ∼300 – 2.7 CPD [2149]
Ba/Ir(100)245 Ba – ? ∼300 – 2.7 CPD [2149]
Ba/Pt Ba – ≤2 × 10−9 ∼300 (1400) – 2.7 ± 0.1 FE [3543]
Ba/W(100) – – – – – 2.70 TC [386]
Ba/O/W(100) – – – – – 2.70 TC [386]
Ba/Ni Ba – ? 0E – 2.70 PE [3026]
Ba/W(110) Ba – (≤10−11) ∼300 – 2.70 CPD [1895,2738]
Ba/Mo(110) Ba – ≤2 × 10−10 ∼300 – 2.73 CPD [327]
Ba – – – – – 2.73 TC [550]
Ba/W(110) Ba – (≤10−11) ∼300 – 2.74 CPD [776]
Ba – – – – – 2.76 TC [3467]
Ba/W(110) Ba – ≤1 × 10−10 77 – 2.8 FE [2372]
Ba/W(110) Ba – ? ∼300 – 2.8 CPD [4231]
Ba/Cu(111)/W(110) Ba – ? ∼300 – 2.8 CPD [4231]
Ba/Ti/W(110) Ba – ≤1 × 10−10 77 – 2.8 FE [2372]
Ba/W Ba – 2 × 10−11 ∼300 – 2.8 CPD [1867]
Ba/Ni Ba – <1 × 10−9 ∼300 – 2.8 CPD [3463]
Ba – – – – – 2.80 TC [1744]
Ba/W(100) Ba – (≤10−11) ∼300 (1200) – 2.84 CPD [776]
Ba/W(110) Ba – 1 × 10−9 ∼300 – 2.9 CPD [2017]
Ba – – – – – 2.91 TC [231]
Ba/W(110)241 Ba – ≤6 × 10−10 ∼300 – 2.955 ± 0.005 CPD [2104,2108]
Ba – – – – – 2.96 TC [231]
Ba/W(110) Ba – (≤10−10) ∼300 – 2.97 ± 0.02 CPD [2595]
Ba/W(100) Ba – ∼10−11 ∼300 (1100) – 3.0 PE [2518]
Ba/Si(111) Ba – ? ∼300 – 3.0 ± 0.9 CPD [2160]
Ba – – – – – 3.01 TC [1924]
Ba – – – – – 3.02 TC [1924]
Ba – – – – – 3.02 TC [3467]
Ba/W(110) Ba – (<10−11) ∼300 (600) – 3.06 CPD [776]
Ba – – – – – 3.06 TC [1613]
Ba/Pt Ba – ≤2 × 10−9 ∼300 (1720) – 3.7 ± 0.1 FE [3543]
Ba/W(110)241 Ba – ≤3 × 10−10 ∼300 – 3.10 ± 0.02 CPD [2104]
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Ba/W Ba – 2 × 10−9 ∼300 (1000) – 3.3 FE [1966]
Ba – – – – – 3.61 TC [3476]
Recommended – – – – – 2.50 ± 0.02 – –

57. Lanthanum La399

hcp (𝜶, 𝑻 < 𝟓𝟖𝟑 𝐊)
La(0001)/Mo(110) La – ≤3 × 10−10 ∼300 – 3.0 CPD [640]
La(0001) – – – – – 3.06 TC [1434]
La(0001) – – – – – 3.21 TC [334]

fcc (𝜷, 𝑻 = 583–1141 K)
La(100) – – – – – 3.74 TC [321]
La(100) – – – – – 4.83 TC [485,1703]

La(110) – – – – – 3.53 TC [321]
La(110) – – – – – 4.84 TC [485,1703]

La(111) – – – – – 2.9 TC [1723]
La(111) – – – – – 3.30 TC [334,3179]
La(111) – – – – – 4.04 TC [321]

bcc (𝜸, 𝑻 > 𝟏𝟏𝟒𝟏 𝐊)
La(100) – – – – – 3.23 TC [321]
La(100) – – – – – 4.83 TC [1703]

La(110) – – – – – 3.76 TC [321]
La(110) – – – – – 5.93 TC [1703]

La(111) – – – – – 3.09 TC [321]

La(112) – – – – – 3.44 TC [321]

hcp (𝜶, 𝑻 < 583 K for bulk)
La/W(111) La – ∼10−9 ∼300 – 2.4 FE [2011]
La/W La – 4 × 10−10 ∼300 (1050) – 2.4 FE [1583]
La – – – – – 2.49 TC [3476]
La/W La – ∼10−10 ∼300 – 2.49 FE [378]
La/W(011) La – 4 × 10−10 ∼300 (1050) – 2.5 FE [1583]
La/? La – ? ∼300 – 2.50 CPD [2634]
La – – ? (N2) ∼300 – 2.50 ± 0.02 CPD [4066]
La – – – – – 2.57 TC [3476]
La/B/Mo(110)252 La – 2 × 10−10 ∼300 – 2.6 CPD [3963]
La/W(111) La – ∼10−10 ∼300 – 2.63 FE [378]
La/W La – ∼10−10 ∼300 – 2.7 FE [2827]
La/W(111) La – ? 77 – 2.7 CPD [2507]
La – – – – – 2.71 TC [1066]
La/W(111) La – ? ∼300 – 2.75 CPD [2507]
La/W(100) La – ∼10−10 ∼300 – 2.78 FE [378]
La – – – – – 2.8* TC [1955]
La/W La – ∼10−10 ∼300 – 2.8 FE [2827]
La/B/Mo(110)252 La – 2 × 10−10 ∼300 – 2.8 CPD [2700]
La – – – – – 2.84 TC [3476]
La/W La – ∼10−10 77 – 2.86 FE [2827]
La/Pt(111)246 La – ? 77 – 2.86 PE [3009]
La/W(112) La – ∼10−10 ∼300 – 2.90 FE [378]
La – – – – – 3.0 TC [1993]
La/Ta(112) La – ≤10−11 ∼300 (800) – 3.02 CPD [801]
La/W(100) La – ≤10−11 ∼300 – 3.04 CPD [2020]
La/W(100) La – ≤1 × 10−9 ∼300 – 3.05 CPD [1996]
La/Ta(112) La – ≤10−11 ∼300 (1000) – 3.09 CPD [801]
La/Ta(112) La – ≤10−11 ∼300 (400) – 3.11 CPD [801]
La/Mo(112) La – (≤10−11) 77 – 3.12 CPD [2502]
La/Ta(112) La – ≤10−11 ∼300 (600) – 3.13 CPD [801]
La/W(110) La – ≤1 × 10−9 ∼300 – 3.17 CPD [1996]
La/Mo(110) La – 2 × 10−10 ∼300 – 3.2 CPD [2700]
La – – – – – 3.21 TC [3318]
La – – – – – 3.25 TC [550]
La – – – 0 – 3.28 TC [4419]
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La – – – – – 3.28 TC [3318]
La – – – – – 3.3 TC [706]
La/W La – ? 0E – 3.3 TE [3022]
La/Re(1010) La – (<10−11) 77 – 3.3 CPD [2506]
La/Mo(110)252 La – 2 × 10−10 ∼300 – 3.3 CPD [3963,4276]
La/W(110) La – ∼10−10 ∼300 – 3.30 FE [378]
La – – – – – 3.30 TC [3352]
La – – – – – 3.30 TC [521]
La/Cr(110) La – ∼10−11 ∼300 – 3.31* CPD [4276]
La/Nb(110) La – ∼10−11 ∼300 – 3.34* CPD [4276]
La/W(110) La – (≤10−10) ∼300 – 3.4 CPD [3350,3351,3365]
La/Mo(110) La – (≤10−10) ∼300 – 3.4 CPD [3350]
La/Mo(110)252 La – 2 × 10−10 ∼300 – 3.4 CPD [2700]
La/quartz La – ∼10−10 ∼300 – 3.5 ± 0.2 PE [304]
La/W(110) La – ∼10−11 ∼300 – 3.52 CPD [4276]
La – – – – – 3.58 TC [298]
La – – – – – 3.62 TC [2629]
La – – – – – 3.85 TC [1744]
La/W La – 2 × 10−11 ∼300 – 4.33 FE [2397]
La – – – – – 4.47 TC [2629]
Recommended – – – – – 3.27 ± 0.04 – –

fcc (𝜷, 𝑻 = 583–1141 K for bulk)
La/Nb(110) La – ≤10−8 ∼1000–1150 – 2.6 ± 0.03 TE [2359]
La/Ta(110) La – ≤10−8 ∼1000–1150 – 2.6 ± 0.03 TE [2359]
La/W La – ? ? – 2.71 TE [1750]
La – – – – – 2.72 TC [1066]
La/W(116) La – 1 × 10−9 ? – 2.8 TE [1975]
La/Nb(100) La – ≤10−8 ∼1000–1150 – 2.8 ± 0.03 TE [2359]
La/W(111) La – 1 × 10−9 ? – 2.9 TE [1975]
La/W(100) La – ≤10−8 ∼1000–1150 – 2.9 ± 0.03 TE [2359]
La/Zr,Hf La – ≤10−8 ∼1000–1150 – 2.9 ± 0.03 TE [2359]
La/Nb,Ta La – ≤10−8 ∼1000–1150 – 2.9 ± 0.03 TE [2359]
La/Ru,Os,Ir La – ≤10−8 ∼1000–1150 – 2.9 ± 0.03 TE [2359]
La/Mo,W La – ≤10−8 ∼1000–1150 – 2.96 ± 0.03 TE [2359]
La/Re La – ≤10−8 ∼1000–1150 – 2.96 ± 0.03 TE [2359]
La/W(100) La – ≤10−11 650 – 2.97 TE [2020]
La/W(100) La – ≤10−11 900 – 3.00 TE [2020]
La/W(100) La – 1 × 10−9 ? – 3.1 TE [1975]
La/W(110) La – ≤10−8 ∼1000–1150 – 3.1 ± 0.03 TE [2359]
La/W(110) La – 1 × 10−9 ? – 3.2 TE [1975]
Recommended – – – – – 2.98 ± 0.10 – –

58. Cerium Ce399

fcc (𝜷, 𝑻 = 263–1003 K)
Ce(100) – – <5 × 10−11 ∼300 – 4.05 ± 0.1 PE [4147]
Ce(100) – – – – – 4.62 TC [321]

Ce(110) – – – – – 4.35 TC [321]

Ce(111) – – – – – 3.26 TC [1434]
Ce(111) – – – – – 4.98 TC [321]

bcc (𝜸, 𝑻 > 𝟏𝟎𝟎𝟑 𝐊)
Ce(100) – – – – – 3.98 TC [321]

Ce(110) – – – – – 4.63 TC [321]

Ce(111) – – – – – 3.81 TC [321]

Ce(112) – – – – – 4.24 TC [321]

fcc (𝜷, 𝑻 = 263–1003 K for bulk)
Ce/W(111) Ce – ∼10−9 ∼300 – 2.2 FE [2011]
Ce – – – – – 2.23 TC [1744]
Cen(n → ∞) – – ∼10−6 70 – 2.40 IP [4263]
Ce/W247 Ce – – ∼300E – 2.5* TE [3022]
Ce/W(111) Ce – 1 × 10−9 ? – 2.5 TE [1975]
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Ce/Pd/Ru(0001)248 Ce – ∼10−10 ∼300 – 2.5 ± 0.1* PE [3718]
Ce/Ir–Ce(9%) – – ∼10−8 1300 – 2.57 TE [4239]
Ce/W(116) Ce – 1 × 10−9 ? – 2.6 TE [1975]
Ce/Rh(110) Ce – 8 × 10−11 ∼300 – 2.6* PE [2287]
Ce/? Ce – ? ∼300 – 2.60 CPD [3596]
Ce/? Ce – ? ∼300 – 2.62 CPD [2634]
Ce – – ? (N2) ∼300 – 2.62 ± 0.02 CPD [2634,4066,4251]
Ce/quartz – – ∼10−6 (Ar) 293 – 2.65 ± 0.02 CPD [3977]
Ce – – – – – 2.66 TC [2750]
Ce/W Ce – ? ? – 2.71 TE [1750]
Ce/Rh(110) Ce – 8 × 10−11 ∼300 (770) – 2.8* PE [2287]
Ce/W Ce – ∼10−10 520 – 2.8 FE [2826]
Ce – – – – – 2.8 TC [1955]
Ce/Pd/Ru(0001)248 Ce – ∼10−10 ∼300 – 2.8 ± 0.1* PE [3718]
Ce/Ni Ce – ? ∼300 – 2.84 PE [2922]
Ce – – – – – 2.84 TC [3352]
Ce/W Ce – ∼10−10 ∼300 – 2.85 FE [2826]
Ce/W(110) Ce – 1 × 10−9 ? – 2.9 TE [1975]
Ce/Pt(111) Ce – <1 × 10−10 ∼300 – 2.9* CPD [1601]
Ce/? Ce – ? ∼300 – 2.9 PE [2115]
Ce/quartz Ce – ∼10−10 ∼300 – 2.9 ± 0.2 PE [304]
Ce/Ru(0001) Ce – ∼10−10 ∼300 – 2.90 PE [4199]
Ce – – – – – 2.98 TC [1066]
Ce/Ir-0.4%Ce – – ? ∼300 (2000) – 3.0 FE [3613]
Ce/Pd(110)249 Ce – ∼10−10 ∼300 – 3.02* PE [3306]
Ce174 – – – 0E – 3.07 TC [1747]
Ce/Pd(111)249 Ce – ∼10−10 ∼300 – 3.10* PE [3306]
Ce – – – – – 3.24 TC [550]
Cen(n → ∞) – – – – – 3.27 ± 0.35 TC [4261]
Ce/W(100) Ce – 1 × 10−9 ? – 3.3 TE [1975]
Ce/Pd(110)249 Ce – ∼10−10 ∼300 – 3.36 PE [3306]
Ce/Pd(110)249 Ce – ∼10−10 ∼300 – 3.55 PE [3306]
Recommended – – – – – 2.89 ± 0.07 – –

bcc (𝜸, 𝑻 = 1003–1068 K for bulk)
Ce/? Ce – ? 1050 – 2.67 TE [3022]
Ce/W Ce – ∼10−10 1060 – 2.96 FE [2826]
Ce/? Ce – ? ∼1000 – 3.18* TE [1747]
Ce/Re(0001) Ce – ≤5 × 10−8 ≥1000 – 3.20 TE [96]

59. Praseodymium Pr399

hcp (𝜶, 𝑻 < 𝟏𝟎𝟕𝟏 𝐊)
Pr(0001) – – – – – 3.11 TC [1434]

bcc (𝜷, 𝑻 > 𝟏𝟎𝟕𝟏 𝐊)
Pr(100) – – – – – 3.32 – [321]

Pr(110) – – – – – 3.86 – [321]

Pr(111) – – – – – 3.17 – [321]

Pr(112) – – – – – 3.54 – [321]

hcp (𝜶, 𝑻 < 𝟏𝟎𝟕𝟏 𝐊 for bulk)
Prn(n → ∞) – – ∼10−6 70 – 2.50 IP [4263]
Pr/W(111) Pr – ∼10−9 ∼300 – 2.6 FE [2011]
Pr – – ? (N2) ∼300 – 2.63 ± 0.02 CPD [4251]
Pr – – ? (N2) ∼300 – 2.67 CPD [2634,4066,4253]
Pr – – – – – 2.70 TC [3352]
Pr – – – – – 2.8 TC [1955]
Pr – – – – – 2.80 TC [2750]
Pr – – – – – 2.81 TC [1066]
Pr – – – – – 3.04 TC [550]
Pr – – – – – 3.25 TC [550]
Prn(n → ∞) – – – – – 3.54 ± 0.13 TC [4261]
Recommended – – – – – 2.83 ± 0.11 – –
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bcc (𝜷, 𝑻 = 1071–1208 K for bulk)
Pr/? Pr – ? 1120 – 2.74 TE [3022]

60. Neodymium Nd399

hcp (𝜶, 𝑻 < 𝟏𝟏𝟒𝟏 𝐊)
Nd(0001) – – – – – 3.09 TC [1434]
Nd(0001)/W(100) Nd – 1 × 10−9 ∼300 – 3.30 CPD [1543,4145]

bcc (𝜷, 𝑻 > 𝟏𝟏𝟒𝟏 𝐊)
Nd(100) – – – – – 3.63 TC [321]

Nd(110) – – – – – 4.23 TC [321]

Nd(111) – – – – – 3.48 TC [321]

Nd(112) – – – – – 3.87 TC [321]

hcp (𝜶, 𝑻 < 1141 K for bulk)
Nd/Cu(100) Nd – 1 × 10−10 ∼300 – 2.63 CPD [2734]
Nd – – – – – 2.7 TC [1744]
Nd/Cu(100) Nd – ? ∼300 – 2.7 CPD [2739]
Nd/W(111) Nd – ∼10−9 ∼300 – 2.8 FE [2011]
Nd – – ? (N2) ∼300 – 2.80 ± 0.02 CPD [4066]
Nd/Cu(100) Nd – 1 × 10−10 550 – 2.88* CPD [2734]
Nd – – – – – 2.92 TC [1066]
Nd – – – – – 2.94 TC [2750]
Nd/W(111) Nd – <10−10 170 – 2.95 FE [3793]
Nd/W Nd – <10−10 170 – 3.0 FE [3793]
Nd – – – – – 3.04 TC [550]
Nd – – – – – 3.1 TC [1955]
Nd/W Nd – ≤1 × 10−9 ∼300 – 3.1 ± 0.05 FE [2602]
Nd/Cu(100) Nd – 1 × 10−10 800 – 3.13 CPD [2734]
Nd/W(100) Nd – <10−10 170 – 3.2 FE [3793]
Nd/Cu(111) Nd – <1 × 10−10 ∼300 – 3.2* CPD [2735]
Nd/quartz Nd – ∼10−10 ∼300 – 3.2 ± 0.25 PE [304]
Nd – – – – – 3.25 TC [550]
Nd/Mo(112) Nd – ∼10−11 ∼300 – 3.36 CPD [2535]
Recommended – – – – – 3.14 ± 0.08 – –

bcc (𝜷, 𝑻 = 1141–1297 K for bulk)
Nd/? Nd – ? 1150–1450 – 2.95 TE [3022]

61. Prometium Pm

hcp (𝜶, 𝑻 < ?)
Pm(0001) – – – – – 3.09 TC [1434]

fcc (𝜷, 𝑻 > ?)
Pm(100) – – – – – 3.73 TC [321]

Pm(110) – – – – – 3.52 TC [321]

Pm(111) – – – – – 4.03 TC [321]

hcp (𝜶, 𝑻 < ?)
Pm379 – – – – – 3.0 TC [1955]
Pm – – – – – 3.07 TC [1956]
Pm – – – – – 3.08 TC [2750]
Pm – – – – – 3.21 TC [550]

62. Samarium Sm399

bcc (𝜷, 𝑻 > 𝟏𝟐𝟎𝟎 𝐊)
Sm(100) – – – – – 3.23 TC [321]

Sm(110) – – – – – 3.76 TC [321]
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Sm(111) – – – – – 3.09 TC [321]

Sm(112) – – – – – 3.44 TC [321]

Rhombohedral (𝜶, 𝑻 < 𝟏𝟐𝟎𝟎 𝐊 for bulk)
Sm – – – – – 1.8 TC [1744]
Sm – – ? (N2) ∼300 – 2.52 ± 0.02 CPD [4066]
Sm/Mo(110) Sm – <8 × 10−11 ∼300 – 2.56* CPD [3147]
Sm/? Sm – ∼10−10 ∼300 – 2.6 PE [1514]
Sm/Mo(110) Sm – <5 × 10−11 ∼300 – 2.64 CPD [3148]
Sm/W(111) Sm – ∼10−9 ∼300 – 2.7 FE [2011]
Sm/Mo(111) Sm – <1 × 10−10 300 – 2.7 CPD [2449]
Sm/Au/SiO2 Sm – 8 × 10−11 ∼300 – 2.7 PE [4204]
Sm/quartz Sm – ∼10−10 ∼300 – 2.7 ± 0.3 PE [304]
Sm/Mo(112) Sm – <5 × 10−11 ∼300 – 2.71 CPD [2450]
Sm/Si Sm – ? ∼300 – 2.75 PE [4217]
Sm/Ni(111)250 Sm – 1 × 10−10 293 – 2.8* PE [3000]
Sm/Ir(111) Sm – ≤1 × 10−8 ∼1100–1200 – 2.8 TE [3583]
Sm/Cu(111) Sm – ∼1 × 10−10 ∼300 – 2.84 CPD [2272]
Sm/W Sm – ? ? – 2.85 ? [1360]
Sm/Si(111) Sm – 6 × 10−11 ∼300 – 2.9 CPD [3758]
Sm/W Sm – ? 750 – 2.98 TE [2489]
Sm/Cu(111) Sm – ∼1 × 10−10 680–870 – 2.99 CPD [2272]
Sm – – – – – 3.06 TC [550]
Sm – – – – – 3.1 TC [1955]
Sm/W(112) Sm – ≤10−11 ∼300 – 3.10 CPD [4274]
Sm/Si(111) Sm – ? ∼300 – 3.11* CPD [3755,3758]
Sm/? Sm – ? ∼1150–1600 – 3.15 TE [3022]
Sm/W(112) Sm – (≤10−11) 77 – 3.16 CPD [2671]
Sm/Si(111) – – – – – 3.2* TC [4076]
Sm/? Sm – ? 0E (≤1600) – 3.2 TE [3022]
Sm/Si(100) Sm – <3 × 10−6 ∼300 – 3.20 PE [2435]
Sm – – – – – 3.22 TC [2750]
Sm – – – – – 3.27 TC [550]
Sm/Pd(100) Sm – ∼10−10 ∼300 – 3.3* CPD [1917]
Sm/W(110) Sm – ? ∼300 – 4.38 CPD [2542]
Recommended – – – – – 2.81 ± 0.10 – –

63. Europium Eu

bcc
Eu(100) – – – – – 3.26 TC [321]

Eu(110) – – – – – 2.35 TC [1434]
Eu(110) – – – – – 2.42 TC [334]
Eu(110) – – – – – 3.80 TC [321]

Eu(111) – – – – – 3.12 TC [321]

Eu(112) – – – – – 3.48 TC [321]

bcc
Eu/W Eu – 3 × 10−10 78 – 2.2 FE [2643]
Eu/W(112) Eu – 7 × 10−11 300 – 2.25 ± 0.20* CPD [2389]
Eu/W(112) Eu – 7 × 10−11 300 (<700) – 2.25 ± 0.20* CPD [2389]
Eu/W(111) Eu – ∼10−9 ∼300 – 2.4 FE [2011]
Eu/W(116) Eu – 1 × 10−9 ? – 2.5 TE [1975]
Eu/quartz Eu – ∼10−10 ∼300 – 2.5 ± 0.3 PE [304]
Eu – – – – – 2.54 TC [1956]
Eu – – – – – 2.54 TC [3352]
Eu – – – – – 2.56 TC [4432]
Eu/W(111) Eu – 1 × 10−9 ? – 2.6 TE [1975]
Eu/W Eu – ? ? – 2.7 TE [2494]
Eu – – 4 × 10−10 ∼300 – 2.7 ± 0.05 CPD [3120]
Eu – – ? (N2) ∼300 – 2.78 ± 0.02 CPD [4066]
Eu/W(110) Eu – 1 × 10−9 ? – 2.8 TE [1975]
Eu – – – – – 2.8 TC [1955]
Eu/W(110) Eu – <7 × 10−11 ∼300 – 2.8* CPD [2393]
Eu/Si(111) – – – – – 2.8* TC [4076]
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Eu/Si(111)445 Eu – ≤5 × 10−10 ∼300 – 2.8* CPD [3757,4111]
Eu – – – – – 2.87 TC [550]
Eu/Si(111)445 Eu – ≤5 × 10−10 ∼300 – 2.9* CPD [4112]
Eu/Si(111)445 Eu – ≤5 × 10−10 500 – 2.9* CPD [3757,4111]
Recommended – – – – – 2.74 ± 0.12 – –

64. Gadolinium Gd399

hcp (𝜶, 𝑻 < 1533 K)
Gd(0001) – – – – – 3.22 TC [1434]
Gd(0001)/W(110) Gd – <2 × 10−10 ∼300 – 3.25 PE [3567]
Gd(0001) – – ∼10−11 ∼300 – 3.3 ± 0.1 PE [2148,2498,2504]
Gd(0001)/W(110) Gd – ∼10−11 ∼300 – 3.3 ± 0.1 PE [2522]
Gd(0001)251 – – – – – 3.67 TC [3462]
Gd(0001)251 – – – – – 3.84 TC [3462]
Gd(0001) – – – – – 4.52 TC [321]
Recommended – – – – – 3.27 ± 0.03 – –

Gd(1010) – – – – – 4.31 TC [321]

Gd(1124) – – – – – 3.78 TC [321]

bcc (𝜷, 𝑻 > 𝟏𝟓𝟑𝟑 𝐊)
Gd(100) – – – – – 2.9 TC [4218]
Gd(100) – – – – – 3.55 TC [321]

Gd(110) – – – – – 4.13 TC [321]

Gd(111) – – – – – 3.40 TC [321]

Gd(112) – – – – – 3.78 TC [321]

hcp (𝜶, 𝑻 < 𝟏𝟓𝟑𝟑 𝐊)
Gd – – – – – 2.18 ± 0.05 TC [2358]
Gd/W Gd – ? ∼300 – 2.4 ± 0.3 FE [1856]
Gd – – – – – 2.41 TC [1744]
Gd – – – – – 2.45 ± 0.07 TC [2358]
Gd – – ? (N2) ∼300 – 2.57 ± 0.02 CPD [4251]
Gd/W(111) Gd – 1 × 10−9 ? – 2.6 TE [1975]
Gd/W(111) Gd – 1 × 10−9 ∼300 – 2.6 FE [2011]
Gd/W(111) Gd – ∼10−10 ∼300 – 2.6 FE [818]
Gd – – ? (N2) ∼300 – 2.65 ± 0.02 CPD [4066]
Gd/W(111) Gd – ≤10−9 ∼300 – 2.7 FE [1987]
Gd/W(111) Gd – ≤10−9 ∼300 (>400) – 2.7 FE [1987]
Gd/W(111) Gd – 1 × 10−9 ∼300 – 2.7 FE [1975]
Gd/W(116) Gd – 1 × 10−9 ? – 2.7 TE [1975]
Gd/W Gd – ? ∼300 – 2.7 ± 0.3 FE [1856]
Gd/W(116) Gd – ≤10−9 ∼300 – 2.8 FE [1987]
Gd/W(111) Gd – (≤10−11) ∼300 (≤1000) – 2.80 ± 0.01 CPD [2046]
Gd/W(111) Gd – ≤10−9 77 – 2.85 FE [3704]
Gd(slab) – – 5 × 10−9 ∼300 – 2.9 ± 0.1 PE [2716]
Gd/Re–Gd(4.4%) – – ∼10−8 1300 – 2.90 TE [4240]
Gd – – ? 295 – 2.90 ± 0.06 CPD [2943]
Gd/W(111) Gd – (≤10−11) ∼300 – 2.93 CPD [2046]
Gd/W(116) Gd – ≤10−9 ∼300 (>400) – 3.0 FE [1975,1987]
Gd/B/Mo(110)253 Gd – 2 × 10−10 ∼300 – 3.0 CPD [2700]
Gd – – – – – 3.05 TC [2750]
Gd – – – – – 3.07 TC [1956]
Gd – – – – – 3.07 TC [2943]
Gd(foil) – – <8 × 10−11 ∼300 – 3.075 ± 0.050 PE [342,3866,3868]
Gd/W(100) Gd – ≤10−9 ∼300 – 3.1 FE [1987]
Gd/W(112) Gd – ≤10−9 ∼300 – 3.1 FE [1987]
Gd – – ≤10−9 ∼300 – 3.1 PE [1483]
Gd/W(112) Gd – ≤10−9 ∼300 (>400) – 3.1 FE [1987]
Gd/W Gd – ≤10−9 ∼300 (>400) – 3.1 FE [1987]
Gd – – – – – 3.1 TC [1955]
Gd/Mo(111) Gd – <1 × 10−10 ∼300 – 3.1 CPD [2449]
Gd/quartz Gd – ∼10−10 ∼300 – 3.1 ± 0.15 PE [304]
Gd/W(110) Gd – ≤10−9 77 – 3.12* FE [3704]
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Gd/W Gd – ? ∼300 (1070) – 3.2 ± 0.3 FE [1856]
Gd/Mo(112) Gd – 1 × 10−10 ∼300 – 3.23 CPD [2452]
Gd – – – – – 3.27 TC [550]
Gd/W(110) Gd – ≤10−9 ∼300 – 3.3 FE [1987]
Gd/W(100) Gd – ≤10−9 ∼300 (>400) – 3.3 FE [1975,1987]
Gd/W(110) Gd – ≤10−9 77 – 3.31 FE [3704]
Gd/Mo(110) Gd – ≤3 × 10−10 ∼300 – 3.4 CPD [331]
Gd/Mo(110) Gd – ∼10−10 ∼300 – 3.4 CPD [4272]
Gd/Mo(112) Gd – ≤10−11 ∼300 (1100) – 3.40 CPD [2533]
Gd – – – – – 3.45 TC [2358]
Gd/W(100) Gd – (≤10−11) ∼300 (≤800) – 3.45 ± 0.02 CPD [2664]
Gd/W(100) Gd – (≤10−11) ∼300 (1200) – 3.48 CPD [2664]
Gd/Mo(110)253 Gd – 2 × 10−10 ∼300 – 3.5 CPD [2700]
Gd/W(100) Gd – 1 × 10−9 ? – 3.5 TE [1975]
Gd/W(110) Gd – 1 × 10−9 ? – 3.5 TE [1975]
Gd/W(110) Gd – <7 × 10−11 ∼300 (1200) – 3.51* CPD [2393]
Gd446 – – ? 290.85 – 3.55 ± 0.15 PE [3899]
Gd/W(110) Gd – ≤10−9 ∼300 (>400) – 3.6 FE [1975,1987]
Gd/W(112) Gd – (≤10−11) 77 – 3.6 CPD [2043]
Gd/W(100) Gd – (≤10−11) ∼300 (1000) – 3.60 CPD [2664]
Gd/W(112) Gd – ≤10−11 ∼300 – 3.62 CPD [2533]
Gd/W(100) Gd – (≤10−11) ∼300 – 3.68 CPD [2664]
Gd – – – – – 3.70 ± 0.06 TC [2358]
Gd/Mo(110) Gd – <5 × 10−10 ∼300 – 3.75 CPD [4238]
Gd254 – – – – – 3.76 TC [2358]
Gd254 – – – – – 3.77 TC [2358]
Recommended – – – – – 3.09 ± 0.04 – –

65. Terbium Tb399

hcp (𝜶, 𝑻 < 𝟏𝟓𝟎𝟎 𝐊)
Tb(0001) – – – – – 3.29 TC [1434]
Tb(0001)450 – – ? 300E – 4.8* TE [3920]
Tb(0001) – – – – – 4.95 TC [321]

Tb(1010) – – – – – 4.72 TC [321]

Tb(1124) – – – – – 4.13 TC [321]

bcc (𝜷, 𝑻 > 𝟏𝟓𝟎𝟎 𝐊)
Tb(100) – – – – – 3.88 TC [321]

Tb(110) – – – – – 4.52 TC [321]

Tb(111) – – – – – 3.72 TC [321]

Tb(112) – – – – – 4.13 TC [321]

hcp (𝜶, 𝑻 < 𝟏𝟓𝟎𝟎 𝐊 for bulk)
Tb/W(111) Tb – (≤10−11) ∼300 (1000) – 2.81 CPD [2046]
Tb/W(111) Tb – (≤10−11) ∼300 (800) – 2.83 CPD [2046]
Tb/W(111) Tb – (≤10−11) ∼300 – 2.92 CPD [2046]
Tb/W(023) Tb – (≤10−11) 77 – 2.92 FE [3157]
Tb/W(112) Tb – 7 × 10−11 ∼300 (1000) – 2.92* CPD [2389]
Tb/W(111) Tb – (≤10−11) 77 – 2.94 FE [3157]
Tb/W(112) Tb – (≤10−11) 77 – 2.94 FE [3157]
Tb/Re–Tb(5%) – – ∼10−8 1300 – 2.95 TE [4240]
Tb/W(113) Tb – (≤10−11) 77 – 2.97 FE [3157]
Tb/W(111) Tb – ≤10−9 77 – 2.97 FE [3704]
Tb(slab) – – 5 × 10−9 ∼300 – 3.0 ± 0.1 PE [2716]
Tb – – – – – 3.06 TC [2750]
Tb – – – – – 3.09 TC [1956]
Tb – – – – – 3.1 TC [1955]
Tb/W(110) Tb – ≤10−9 77 – 3.11* FE [3704]
Tb/W(111) Tb – (<10−11) ∼300 – 3.14* CPD [4235]
Tb – – ∼10−9 1490 – 3.19 TE [4356]
Tb – – – – – 3.2 TC [1744]
Tb/W(112) Tb – (≤10−11) 77 – 3.24 CPD [2671]
Tb – – – – – 3.29 TC [550]
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Tb/W(110) Tb – (≤10−11) 77 – 3.3 FE [3157]
Tb/W(110) Tb – ≤10−9 77 – 3.30 FE [3704]
Tb/W(110) Tb – <7 × 10−11 ∼300 – 3.36* CPD [2393]
Tb/W(100) Tb – (≤10−11) ∼300 (≤700) – 3.40 ± 0.01 CPD [2664]
Tb/W(100) Tb – (≤10−11) ∼300 (1200) – 3.44 CPD [2664]
Tb/Mo(110) Tb – 1 × 10−10 ∼300 – 3.46 CPD [3181,4273]
Tb/W(100) Tb – (≤10−11) ∼300 (≤1000) – 3.48 ± 0.01 CPD [2664]
Tb/W(100) Tb – (≤10−11) ∼300 – 3.60 CPD [2664,3201]
Tb/Mo(110) Tb – 1 × 10−10 ∼300 (800) – 3.63 CPD [3181,4273]
Recommended – – – – – 3.14 ± 0.09 – –

66. Dysprosium Dy399

hcp (𝜶, 𝑻 < 𝟏𝟔𝟓𝟕 𝐊)
Dy(0001) – – – – – 3.31 TC [1434]
Dy(0001) – – – – – 5.00 TC [321]

Dy(1010) – – – – – 4.77 TC [321]

Dy(1124) – – – – – 4.18 TC [321]

hcp (𝜶, 𝑻 < 1657 K for bulk)
Dy/W Dy – ≤3 × 10−9 300 (?) – 2.75 FE [2969]
Dy/W(111) Dy – ≤10−9 77 – 2.79 FE [3704]
Dy/W Dy – ? ∼300 (700) – 2.9 FE [532,1622]
Dy/W(111) Dy – ? ∼300 – 2.9 FE [532]
Dy/Re–Dy(4%) – – ∼10−8 1300 – 2.90 TE [4240]
Dy/W(100) Dy – ∼10−11 ∼300 – 3.0* PE [2900]
Dy/Ta(112) Dy – ≤10−11 ∼300 (600) – 3.06 CPD [801]
Dy – – – – – 3.08 TC [2750]
Dy – – – – – 3.09 TC [1956]
Dy – – – – – 3.1 TC [1955]
Dy/Ta(112) Dy – ≤10−11 ∼300 (500) – 3.11 CPD [801]
Dy/Mo(112) Dy – ≤1 × 10−11 100 (∼1000) – 3.15* CPD [1937]
Dy/Mo(112) Dy – (≤10−11) 77 – 3.15 CPD [2052]
Dy/Mo(112) Dy – ≤1 × 10−11 90 (≥600) – 3.16 ± 0.05* CPD [3616]
Dy/Ta(112) Dy – ≤10−11 ∼300 (400) – 3.25 CPD [801]
Dy/Mo(112) Dy – ≤1 × 10−11 100 (≤400) – 3.3* CPD [1937]
Dy/W(112) Dy – (≤10−11) 77 – 3.3 CPD [2043]
Dy – – – – – 3.30 TC [550]
Dy/Ta(112) Dy – ≤10−11 77 – 3.41 CPD [801]
Dy/Ta(112) Dy – ≤10−11 ∼300 – 3.41 CPD [801]
Dy/Mo(112) Dy – ∼10−11 ∼300 – 3.43 CPD [2535]
Dy/Mo(112) Dy – ≤1 × 10−11 90 (∼550) – 3.43 ± 0.05* CPD [3616]
Dy/Mo(110) Dy – 1 × 10−10 ∼300 – 3.58 CPD [3181]
Dy/Mo(110) Dy – ≤2 × 10−10 ∼300 – 3.60 CPD [2655,4272]
Dy/Al2O3/Mo(110) Dy – ≤2 × 10−10 ∼300 – 3.60 CPD [2655]
Recommended – – – – – 3.18 ± 0.08 – –

67. Holmium Ho399

hcp (𝜶, 𝑻 < 𝟏𝟕𝟎𝟏 𝐊)
Ho(0001) – – – – – 3.37 TC [1434]
Ho(0001) – – – – – 4.37 TC [321]

Ho(1010) – – – – – 4.23 TC [321]

Ho(1124) – – – – – 3.71 TC [321]

hcp (𝜶, 𝑻 < 1701 K for bulk)
Ho/W(111) Ho – ≤10−11 ∼300 (640) – 2.73 ± 0.03 FE [3162]
Ho/W(023) Ho – ≤10−11 77 – 2.84 FE [3162]
Ho/W(113) Ho – ≤10−11 ∼300{77} – 2.84 FE [3162]
Ho/W(113) Ho – ≤10−11 ∼300 – 2.93 ± 0.05 FE [3162]
Ho/Re–Ho(3%) – – ∼10−8 1300 – 2.95 TE [4240]
Ho/W Ho – ≤3 × 10−9 ∼300 (?) – 3.02 FE [2969]
Ho/W(111) Ho – ≤10−9 77 – 3.02 FE [3704]
Ho/W(111) Ho – ≤10−11 ∼300{77} – 3.03 ± 0.03 FE [3162]
Ho/W(113) Ho – ≤10−11 ∼300{77} – 3.03 ± 0.05 FE [3162]
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Ho/W(111) Ho – ≤10−11 77 – 3.06 FE [3162]
Ho/W(113) Ho – ≤10−11 77 – 3.06 FE [3162]
Ho/W Ho – ≤10−11 ∼300{77} – 3.06 ± 0.05 FE [3162]
Ho/W(113) Ho – ≤10−11 ∼300 (800) – 3.07 FE [3162]
Ho – – – – – 3.09 TC [1956]
Ho – – – – – 3.09 TC [2750]
Ho – – – – – 3.1 TC [1955]
Ho – – – – – 3.30 TC [550]
Ho/W(112) Ho – ≤10−11 77 – 3.31 FE [3162]
Ho/W(112) Ho – ≤10−11 77 – 3.55 CPD [2049]
Recommended – – – – – 3.05 ± 0.05 – –

68. Erbium Er

hcp
Er(0001) – – – – – 3.41 TC [1434]
Er(0001)/Mo(110) Er – ∼10−10 ∼300 – 3.53 CPD [3163]
Er(0001)/Mo(110) Er – ∼10−10 800 – 3.68 CPD [3163]
Er(0001) – – – – – 4.43 TC [321]

Er(1010) – – – – – 4.29 TC [321]

Er(1124) – – – – – 3.77 TC [321]

hcp
Er/6H-SiC(0001) Er – 4 × 10−10 ∼300 – 2.9 ± 0.1 CPD [1832,3644]
Er/W Er – <3 × 10−9 300 (?) – 2.95 FE [2969]
Er/Si(111) Er – 7 × 10−11 ∼300 – 3.00 PE [3461]
Er/Re–Er(2.5%) – – ∼10−8 1300 – 3.00 TE [4240]
Er(foil)255 – – ∼10−6 1300 – 3.06 TE [3071]
Er/W(111) Er – ≤10−9 77 – 3.07 FE [3704]
Er/6H-SiC(0001) Er – 4 × 10−10 ∼300 (1000) – 3.1 CPD [1832]
Er – – – – – 3.1 TC [1955]
Er – – – – – 3.11 TC [2750]
Er – – – – – 3.12 TC [1956]
Er – – – – – 3.31 TC [550]
Er/Si(100) Er – ≤4 × 10−10 230 – 3.5 CPD [3199]
Er/Si(100) Er – ≤4 × 10−10 370 – 3.5 CPD [3199]
Er/Mo(110) Er – 1 × 10−10 ∼300 – 3.53 CPD [3181]
Recommended – – – – – 3.14 ± 0.08 – –

69. Thulium Tm399

hcp (𝜶, 𝑻 < 𝟏𝟐𝟕𝟕 𝐊)
Tm(0001) – – – – – 3.46 TC [1434]
Tm(0001) – – – – – 4.48 TC [321]

Tm(1010) – – – – – 4.34 TC [321]

Tm(1124) – – – – – 3.81 TC [321]

hcp (𝜶, 𝑻 < 𝟏𝟐𝟕𝟕 𝐊 for bulk)
Tm/W(111) Tm – ≤10−9 77 – 2.94 FE [3704]
Tm/Mo(110) Tm – <4 × 10−11 ∼300 – 3.0* CPD [2744]
Tm – – – – – 3.1 TC [1955]
Tm – – – – – 3.11 TC [550]
Tm – – – – – 3.12 TC [2750]
Tm – – – – – 3.12 TC [1956]
Tm/Re(0001) Tm – ≤5 × 10−8 1060–1460 – 3.15 TE [96]
Tm/W(100) Tm – <1 × 10−9 950–1300 – 3.23 TE [1558]
Tm – – – – – 3.32 TC [550]
Recommended – – – – – 3.12 ± 0.07 – –

70. Ytterbium Yb399

fcc (𝜶, 𝑻 < 𝟏𝟎𝟕𝟏 𝐊)
Yb(100) – – – – – 4.15 TC [321]

Yb(110) – – – – – 3.90 TC [321]
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Yb(111) – – – – – 2.51 TC [334,1434]
Yb(111) – – – – – 4.47 TC [321]

bcc (𝜷, 𝑻 > 𝟏𝟎𝟕𝟏 𝐊)
Yb(100) – – – – – 3.57 TC [321]

Yb(110) – – – – – 2.45 TC [334]
Yb(110) – – – – – 4.16 TC [321]

Yb(111) – – – – – 3.42 TC [321]

Yb(112) – – – – – 3.81 TC [321]

fcc (𝜶, 𝑻 < 𝟏𝟎𝟕𝟏 𝐊 for bulk)
Yb – – – – – 2.59 TC [1956]
Yb – – – – – 2.59 TC [3352]
Yb/W2C(111) Yb – <10−10 170 – 2.6 FE [3792]
Yb/W(111) Yb – <10−10 170 – 2.6 FE [3793]
Yb/W Yb – ≤1 × 10−9 ? – 2.6 ± 0.05 FE [2602]
Yb – – ? (N2) ∼300 – 2.67 CPD [2634,4066]
Yb/W Yb – <10−10 170 – 2.7 FE [3793]
Yb – – ? (N2) ∼300 – 2.74 ± 0.02 CPD [4251]
Yb – – – – – 2.8 TC [1955]
Yb/W(111) Yb – ∼10−9 ∼300 – 2.8 FE [2011]
Yb/H-Si(111) Yb – 1 × 10−10 ∼300 – 2.80 ± 0.05 PE [1195,2545]
Yb/Sm/Si(111) Yb – ≤5 × 10−10 ∼300 – 2.9* CPD [4110]
Yb/Si(111)p Yb – <6 × 10−10 ∼300 – 2.92 ± 0.02* CPD [4013]
Yb – – – – – 2.95 TC [550]
Yb/W(100) Yb – <10−10 170 – 3.0 FE [3793]
Yb/Mo(110) Yb – 4 × 10−11 ∼300 – 3.0* CPD [3146,3148]
Yb/Ta(112) Yb – ∼10−11 ∼300 (600) – 3.0* CPD [3316]
Yb/Si(111) – – – – – 3.0* TC [4076]
Yb/Si(111)440 Yb – ≤5 × 10−10 ∼300 – 3.00 ± 0.03 CPD [4109]
Yb/Si(111)n Yb – <6 × 10−10 ∼300 – 3.05* CPD [4012]
Yb/Ta(112) Yb – ∼10−11 ∼300 – 3.1* CPD [3316]
Yb/Mo(112) Yb – ∼10−11 ∼300 (700) – 3.1* CPD [3316]
Yb/Mo(112) Yb – ∼10−11 ∼300 (900) – 3.1* CPD [3316]
Yb/Si(111)n Yb – <6 × 10−10 ∼300 – 3.1 ± 0.2* CPD [4013]
Yb/Si(111) Yb – ? ∼300 – 3.16* CPD [3755]
Yb/Ir(111) Yb – ≤5 × 10−8 1025–1085 – 3.2 TE [104]
Yb/Si(111)n Yb – <6 × 10−10 ∼300 – 3.27* CPD [4012]
Yb/Mo(112) Yb – ∼10−11 ∼300 – 3.3* CPD [3316]
Recommended – – – – – 2.91 ± 0.09 – –

71. Lutetium Lu

hcp (𝜶, 𝑻 < ?)
Lu(0001) – – – – – 3.53 TC [1434]
Lu(0001) – – – – – 3.57 TC [334]
Lu(0001) – – – – – 4.45 TC [321]

Lu(1010) – – – – – 4.30 TC [321]

Lu(1124) – – – – – 3.78 TC [321]

bcc (𝜷, 𝑻 > ?)
Lu(100) – – – – – 3.54 TC [321]

Lu(110) – – – – – 4.13 TC [321]

Lu(111) – – – – – 3.39 TC [321]

Lu(112) – – – – – 3.77 TC [321]

hcp (𝜶, 𝑻 < ?)
Lu – – – – – 2.8 TC [1744]
Lu/W(113) Lu – (≤10−11) 77 – 3.05 FE [3157]
Lu – – – – – 3.1 TC [1955]
Lu/W(111) Lu – ≤10−9 77 – 3.11 FE [3704]
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Lu/W(111) Lu – (≤10−11) 77 – 3.12 FE [3157]
Lu – – – – – 3.14 TC [1956]
Lu/W Lu – ≤1 × 10−9 ∼300 (?) – 3.14 FE [2037]
Lu/Re–Lu(4%) – – ∼10−8 1300 – 3.20 TE [4240]
Lu/W(112) Lu – (≤10−11) 77 – 3.28 FE [3157]
Lu/Mo(110) Lu – ≤5 × 10−9 ∼300 – 3.3 CPD [2603]
Lu – – – – – 3.33 TC [550]
Lu/Mo(110) Lu – ≤5 × 10−9 ∼300 (800) – 3.5 CPD [2603]
Recommended – – – – – 3.17 ± 0.09 – –

72. Hafnium Hf

hcp (𝜶, 𝑻 < 𝟐𝟎𝟓𝟎 𝐊)
Hf(0001) – – 5 × 10−8 ∼1800–2000 – 4.10 ± 0.05 TE [3921]
Hf(0001) – – ? ∼1700–1900 – 4.11 ± 0.05 TE [2967]
Hf(0001) – – – – – 4.26 TC [334]
Hf(0001) – – – – – 4.51 TC [4005]
Hf(0001) – – – – – 5.50 TC [321]

Hf(1010) – – – – – 3.63 TC [4005]
Hf(1010) – – – – – 5.25 TC [321]

Hf(1124) – – – – – 4.60 TC [321]

bcc (𝜷, 𝑻 > 𝟐𝟎𝟓𝟎 𝐊)
Hf(100) – – – – – 4.1 TC [3171]
Hf(100) – – – – – 4.2 TC [1714,3167,3171]
Hf(100) – – – – – 4.3 TC [321]

Hf(110) – – – – – 5.03 TC [321]

Hf(111) – – – – – 4.13 TC [321]

Hf(112) – – – – – 4.60 TC [321]

hcp (𝜶, 𝑻 < 2050 K for bulk)
Hf – – <2 × 10−7 ∼1700–1900 – 3.17 ± 0.02 TE [3066]
Hf256 – – ? <1700 – 3.20 TE [1756,3524,3527]
Hf/W257 Hf – ? 1100 – 3.20 TE [1479]
Hf/W(100) Hf – ∼10−10 965 – 3.27 FE [501]487

Hf/W(100) Hf – ∼10−10 852 – 3.33 FE [501]
Hf/W(100) Hf – ∼10−10 1100 – 3.36 FE [501]
Hf/W(100) Hf – ∼10−10 747 – 3.39 FE [501]
Hf/W(100) Hf – ∼10−10 642 – 3.46 FE [501]
Hf – – ? ? – 3.5 TE [3402]
Hf/W(100) Hf – 4 × 10−11 600 – 3.5* CPD [1737]
Hf/W(100) Hf – ∼10−10 551 – 3.51 FE [501]
Hf – – – – – 3.52 TC [3318]
Hf – – – – – 3.53 TC [2949]
Hf256 – – ? >1900 – 3.53 TE [3524,3527]
Hf – – – – – 3.54 TC [3318]
Hf – – – – – 3.56 TC [1744]
Hf/W Hf – <10−10 ∼300 (1300) – 3.56 ± 0.01 FE [3195]
Hf – – ∼6 × 10−10 ∼1300–1900 – 3.60 TE [2092]
Hf – – ∼3 × 10−9 ∼1000–1600 – 3.65 TE [159]
Hf/W Hf – <8 × 10−11 ∼300 (1355) – 3.65 FE [3222]
Hf/W(100) Hf – ∼10−10 ∼300 – 3.68 FE [501]
Hf – – – – – 3.7 TC [1993]
Hf/1%Hf–Nb – – ≤10−8 1550 (1800) – 3.72 TE [1778]
Hf – – ≤1 × 10−6 ∼1600–1800 – 3.75 ± 0.1 TE [216]
Hf – – ≤10−8 ∼1300 (1900) – 3.82 TE [1778]
Hf – – – – – 3.85 TC [3637]
Hf – – – – – 3.89 TC [298]
Hf/quartz Hf – ∼10−10 ∼300 – 3.9 ± 0.1 PE [304]
Hf – – ∼10−9 ∼1500 – 3.9 ± 0.1 CPD [1588]
Hf – – 2 × 10−10 ∼300 – 3.90 PE [1814]
Hf – – ≤10−8 ∼1500–2100 – 3.91 TE [1778]
Hf – – ∼6 × 10−10 ∼1400–2000 – 3.91 TE [2092]
Hf/W257 Hf – ? 2000 – 3.92 TE [1479]
Hf – – ? ? – 3.97 TE [2105]
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Hf/SiO2 Hf – ? ? – 4.0 CPD [2689]
Hf/W Hf – <8 × 10−11 ∼300 (≥730) – 4.0 FE [3222]
Hf/W257 HfI4 – ? 1900{500} – 4.00 ± 0.01 TE [1479]
Hf – – ∼10−6 ∼1600 – 4.06 ± 0.06 TE [1780]
Hf – – – – – 4.1 TC [706]
Hf – – – – – 4.20 TC [3476]
Hf – – – – – 4.31 TC [3476]
Hf – – – – – 4.66 TC [3476]
Recommended – – – – – 3.64 ± 0.06 – –

73. Tantalum Ta

bcc
Ta(100) – – – – – 3.8 ± 0.1 TC [470]
Ta(100) – – – – – 3.83 TC [1200]
Ta(100) – – – – – 3.96 TC [4316,4412]
Ta(100) – – – – – 4.0 ± 0.1 TC [470]
Ta(100) – – – – – 4.04 TC [1200]
Ta(100) – – – – – 4.07 TC [2548]
Ta(100) – – – – – 4.08 TC [1159,1980,3067]
Ta(100) – – – – – 4.096 TC [4091]
Ta(100) – – <10−10 ? – 4.1 TE [694]
Ta(100) – – – – – 4.1 ± 0.1 TC [470]
Ta(100) – – ? ? – 4.10 FE [796]
Ta(100) – – – – – 4.11 TC [1200]
Ta(100) – – 5 × 10−9 ∼1800–2100 – 4.12 ± 0.05 TE [739,798,1406]
Ta(100) – – – – – 4.14 TC [3224]
Ta(100) – – ≤2 × 10−9 ∼1700–2000 – 4.15 ± 0.02 TE [127,144]
Ta(100) – – <5 × 10−11 ∼1500–1700 – 4.16 ± 0.05 TE [1896]
Ta(100) – – ≤2 × 10−9 ? (4.20 ± 0.04) 4.17 ± 0.04 TE [797,799,2331]
Ta(100) Na Na+ ≤2 × 10−9 1050–1750 4.20 ± 0.04 (4.17 ± 0.04) PSI [797]
Ta(100) – – <5 × 10−11 ? – 4.2 TE [3776]
Ta(100) – – <5 × 10−11 ∼300 – 4.24 ± 0.05 CPD [1896]
Ta(100) – – <1 × 10−11 78 – 4.25 FE [648]
Ta(100) – – – – – 4.3 TC [469]
Ta(100) – – – – – 4.3 ± 0.1 TC [470]
Ta(100) – – – – – 4.44 TC [321]
Ta(100) – – – – – 4.5 TC [3171]
Ta(100) F+ F− 2 × 10−10 1965 4.51 ± 0.1N – NSI [604]
Ta(100) Cl+ Cl− 2 × 10−10 1985 4.55 ± 0.1N – NSI [604]
Ta(100) Br+ Br− 2 × 10−10 1938 4.55 ± 0.1N – NSI [604]
Ta(100) – – – – – 4.6 TC [389]
Ta(100) – – – – – 4.6 TC [3171]
Ta(100) – – – – – 4.87 TC [485,2791]
Recommended – – – – – 4.15 ± 0.05 – –

Ta(110) – – ≤2 × 10−9 ? – 4.43 ± 0.05 TE [1406]
Ta(110) – – ∼10−10 ∼300 – 4.47 ± 0.02 CPD [777]
Ta(110) – – – – – 4.6 TC [1723]
Ta(110) – – ? ? (2300) – 4.62 ± 0.04 TE [3347]
Ta(110) – – 4 × 10−9 ? – 4.63 ± 0.01 TE [1477]
Ta(110) – – ∼10−11 1560–2360 – 4.73 TE [683,1886,3846]
Ta(110) – – – – – 4.74 TC [2548]
Ta(110) – – ≤4 × 10−10 ∼300 – 4.74 ± 0.02 PE [680,1268]
Ta(110) – – – – – 4.75 TC [1159,1980,3067]
Ta(110) – – ? ∼1200–1600 – 4.75 ± 0.06 TE [681]
Ta(110) – – ? ? – 4.76 ± 0.04 TE [3347]
Ta(110) – – – – – 4.77 TC [1200]
Ta(110) – – – – – 4.78 TC [1200]
Ta(110) – – ? ? (2300) – 4.78 ± 0.04 TE [3347]
Ta(110) – – ? 80 – 4.79 FE [1052]
Ta(110) – – ? ∼300 – 4.8 PE [460]
Ta(110) – – ≤2 × 10−9 ∼1700–2000 – 4.80 ± 0.02 TE [127,144]
Ta(110) – – ∼10−9 ∼1200–1900 (4.8) 4.80 ± 0.03 TE [786]
Ta(110) Li Li+ ∼10−9 ? 4.8 (4.80 ± 0.03) PSI [786]
Ta(110) – – 1 × 10−9 ∼1000–1700 (4.85 ± 0.05) 4.81 TE [726]
Ta(110) – – ≤2 × 10−9 ? – 4.82 ± 0.04 TE [797,799,2331]
Ta(110) – – – – – 4.83 TC [3224]
Ta(110) – – 5 × 10−9 ∼1800–2100 – 4.83 ± 0.05 TE [739,798]
Ta(110) Na Na+ ≤2 × 10−9 ∼1000–1650 4.84 ± 0.04 (4.82 ± 0.04) PSI [797]
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Ta(110) Na Na+ 1 × 10−9 1010–1680 4.85 ± 0.05 (4.81) PSI [726]
Ta(110) – – <5 × 10−8 ∼1300–2000 (4.85 ± 0.06) 4.85 TE [279]
Ta(110) L466 L+ <5 × 10−8 ∼1300–2000 4.85 ± 0.06 (4.85) PSI [279]
Ta(110) – – – – – 4.86 TC [1200]
Ta(110) F+ F− 2 × 10−10 2186 4.86 ± 0.1N – NSI [604]
Ta(110) – – – – – 4.87 TC [1200]
Ta(110) – – ∼10−11 ∼300 – 4.9 CPD [1888]
Ta(110) – – ∼10−9 ? – 4.9 TE [3909]
Ta(110) – – – – – 4.9 ± 0.1 TC [470]
Ta(110) – – ? ? – 4.91 TE [3407]
Ta(110) Cl+ Cl− 2 × 10−10 2183 4.92 ± 0.1N – NSI [604]
Ta(110) – – ∼10−10 ∼300 – 4.94 ± 0.05 PE [506]
Ta(110) – – ? ? – 4.95 FE [796]
Ta(110) – – – – – 4.964 TC [4091]
Ta(110) – – – – – 5.03 TC [3474]
Ta(110) – – – – – 5.08 TC [334]
Ta(110) – – – – – 5.08 TC [3473]
Ta(110) – – – – – 5.15 TC [3179]
Ta(110) – – – – – 5.16 TC [321]
Ta(110) – – ∼10−7 (O2) 2200 – 5.2 TE [3909]
Ta(110) – – – – – 5.58 TC [485,2791]
Ta(110) – – – – – 6.06 TC [485,2791]
Recommended – – – – 4.84 ± 0.02 4.82 ± 0.06 – –

Ta(111) – – – – – 3.50 TC [1200]
Ta(111) – – – – – 3.51 TC [1200]
Ta(111) – – <1 × 10−11 78 – 3.55 FE [648]
Ta(111) – – – – – 3.93 TC [2548]
Ta(111) – – – – – 3.93 TC [1200]
Ta(111) – – – – – 3.94 TC [1159,1980,3067]
Ta(111) – – ? ? – 3.95 FE [796]
Ta(111) – – – – – 3.96 TC [1200]
Ta(111) – – 5 × 10−9 ∼1800–2100 (4.00 ± 0.05) 3.98 ± 0.05 TE [726,739,798,1406]
Ta(111) – – ? 80 – 3.99 FE [1052]
Ta(111) – – ∼10−7 2200 – 4.00 TE [3360]
Ta(111) – – ≤2 × 10−9 ∼1700–2000 – 4.00 ± 0.02 TE [127,144]
Ta(111) Na Na+ ≤2 × 10−9 ∼1600–1800 4.00 ± 0.04 (4.02 ± 0.04) PSI [797]
Ta(111) Na Na+ 1 × 10−9 ∼1700–2200 4.00 ± 0.05 (3.98 ± 0.05) PSI [726]
Ta(111) – – ∼10−9 ∼1500–1900 – 4.02 ± 0.02 TE [800]
Ta(111) – – ≤2 × 10−9 ? (4.00 ± 0.04) 4.02 ± 0.04 TE [797,799,2331]
Ta(111) – – <2 × 10−9 ∼1700–2300 – 4.04 TE [662]
Ta(111) – – – – – 4.08 TC [3224]
Ta(111)258 – – ? ? (2100) – 4.08 ± 0.03 TE [729]
Ta(111)258 – – ? ? (2100) – 4.14 ± 0.03 TE [729]
Ta(111) – – ∼10−9 2200 – 4.20 TE [3360]
Ta(111) – – – – – 4.201 TC [4091]
Ta(111) – – – – – 4.25 TC [321]
Ta(111)258 – – ? ? (2100) – 4.28 ± 0.03 TE [729]
Ta(111) – – ∼10−5 2200 – 4.40 TE [3360]
Ta(111)258 – – ? ? (2100) – 4.46 ± 0.03 TE [729]
Recommended – – – – – 4.01 ± 0.04 – –

Ta(112) – – – – – 3.77 TC [1200]
Ta(112) – – – – – 3.80 TC [1200]
Ta(112) – – – – – 4.03 TC [1200]
Ta(112) – – – – – 4.05 TC [1200]
Ta(112) – – <1 × 10−11 78 – 4.05 FE [648]
Ta(112) – – – – – 4.25 TC [3224]
Ta(112){70%}267 – – ≤10−9 ∼1100–2200 – 4.25 ± 0.05 TE [124,650]
Ta(112) – – ? ? – 4.30 FE [796]
Ta(112) – – – – – 4.31 TC [1159,1980,3067]
Ta(112){82%} – – – – (4.49 ± 0.04) 4.34 ± 0.03 TC [803]
Ta(112) – – ≤2 × 10−9 ∼1700–2000 – 4.35 ± 0.05 TE [127,144]
Ta(112) – – 1 × 10−10 ∼1300–1900 – 4.352 ± 0.01 TE [192]
Ta(112) – – ? 80 – 4.37 FE [1052]
Ta(112) – – (≤10−11) 77 – 4.40 CPD [347,2662]
Ta(112) – – (≤10−11) ∼300 – 4.40 CPD [347,801,2662]
Ta(112) – – 5 × 10−9 ∼1800–2100 – 4.40 ± 0.05 TE [798,1406]
Ta(112){82%} – – – – 4.49 ± 0.04 (4.34 ± 0.03) TC [803]
Ta(112) – – 1 × 10−10 ∼1300–1900 – 4.58 ± 0.02 TE [192]
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Ta(112) – – – – – 4.73 TC [321]
Ta(112) – – 1 × 10−10 ∼1300–1900 – 4.74 ± 0.02 TE [192]
Ta(112) – – <2 × 10−9 1250–1650 – 4.8 TE [802]
Ta(112) K K+ 2 × 10−9 ∼1000–1500 4.8* (4.8 ± 0.05) PSI [79]
Ta(112) – – 2 × 10−9 ∼1200–2300 (4.8) 4.8 ± 0.05 TE [79]
Recommended – – – – – 4.36 ± 0.04 – –

Ta(114) – – – – – 3.98 TC [3224]

Ta(116) – – ≤2 × 10−9 ∼1700–2000 – ∼3.90 TE [127,144]
Ta(116) – – – – – 3.92 TC [3224]
Ta(116) – – – – – 3.94 TC [1980,3067]

Ta(123) – – – – – 4.04 TC [3224]

Ta(130)259 – – ≤4 × 10−10 ∼300 – 3.96 ± 0.04 PE [680]
Ta(130) – – – – – 4.03 TC [3224]
Ta(130) – – ? 80 – 4.22 FE [1052]
Ta(130)259 – – ≤4 × 10−10 ∼300 (1670) – 4.57 ± 0.02 PE [680]

Ta(233) – – – – – 3.99 TC [3224]

Ta 91Rb 91Rb+ ∼10−6 ∼2100 >3* – PSI [3861]
Ta – – ? ? – 3.14 TE [3019]
Ta/quartz260 Ta – ≤10−8 35 – 3.5 ± 0.2 CPD [1686]
Ta261 – (Ta−) <2 × 10−8 ∼2000–2100 3.7 ± 0.4*N – NSI [804]
Ta/quartz260 Ta – ≤10−8 4.2 – 3.8 ± 0.2 CPD [1686]
Ta/quartz260 Ta – ≤10−8 293 – 3.8 ± 0.2 CPD [1686]
Ta – – – – – 3.80 TC [521]
Ta – – – – – 3.80 TC [1901]
Ta – – – – – 3.85 TC [1744]
Ta261 – (Ta−) <2 × 10−8 ∼2000–2100 3.9 ± 0.3N – NSI [804]
Ta – – ∼10−7 ∼1500–1950 – 3.90 ± 0.04 TE [2769]
Ta – – <10−6 ∼300 – 3.93 PE [2919]
Ta – – ? ∼300 – 3.96 CPD [2297]
Ta – – 2 × 10−8 1650–2100 – 3.96 TE [3643]
Ta I2 I− ≤10−2 (I2) ∼1900–2200 3.96 ± 0.03N (4.30 ± 0.02) NSI [81]
Ta – – – – – 4.0 TC [1993]
Ta – – 2 × 10−8 ∼1200–1500 – 4.03 ± 0.04 TE [2566]
Ta – – – – – 4.05 TC [2949]
Ta – – ? ∼300 – 4.05 ± 0.03 PE [1635]
Ta – – – – – 4.07 TC [2949]
Ta – – ? ∼1400–1600 – 4.07 TE [1949]
Ta – – ∼10−9 ∼1200–1800 – 4.08 ± 0.04 TE [975]
Ta266 – – – 293E – 4.09 TC [3586]
Ta – – ∼10−3 (Cs) ? – 4.09 CPD [1642]
Ta – – ? ? – 4.1 TE [3402]
Ta(porous) – – ? >1600 (4.2) 4.1 TE [3762]
Ta/W(100) Ta – 1 × 10−11 77 – 4.10 FE [2965]
Ta/W(100) Ta – 1 × 10−11 20–830 – 4.10 FE [2965]
Ta KCl K+ ? ? 4.10 ± 0.02 – PSI [2306]
Ta RbCl Rb+ ? ? 4.10 ± 0.02 – PSI [2306]
Ta265 – – ≤8 × 10−8 293 – 4.12 PE [1633]
Ta/quartz Ta – <10−8 77, ∼300 – 4.12 PE [3036]
Ta/Ni Ta – ? ∼300 – 4.12 PE [2922]
Ta265 – – – 293 – 4.12 ± 0.02 TC [1135]
Ta266 – – ? ∼1450–2050 – 4.12 ± 0.04 TE [792]
Ta – – ? ∼300 – 4.12 ± 0.07 PE [974]
Ta265 – – ≤8 × 10−8 293 – 4.13 PE [1633,1636]
Ta266 – – – 973E – 4.13 TC [3586]
Ta – – – – – 4.13 TC [3318]
Ta – – – – – 4.13 TC [3224]
Ta – – ≤8 × 10−8 293E – 4.13 TE [1636]
Ta – – <5 × 10−10 293 – 4.13 PE [348]
Ta – – ∼700 (Ar) ? – 4.13 ± 0.013 TE [2007]
Ta – – 4 × 10−11 ∼300 – 4.14 PE [1430,2733]
Ta – – ? 1370–1670 – 4.14 TE [2567]
Ta – – ∼10−8 ∼1600–2300 – 4.14 ± 0.02 TE [1164]
Ta/glass Ta – ∼10−11 77 – 4.14 ± 0.1 PE [1528]
Ta/glass Ta – ∼10−11 ∼300 – 4.14 ± 0.1 PE [1528]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Ta – – ∼10−11 1560–2360 – 4.15 TE [683]
Ta – – ∼10−9 ? – 4.15 TE [979]
Ta – – ? ∼300 – 4.15 PE [1371]
Ta – – ? ? – 4.15 TE [2455]
Ta/Si(111)166 Ta – 4 × 10−11 ∼300 – 4.15 PE [1430,2733]
Ta{70% (112)}267 – – – – – 4.15 TC [1254]
Ta – – ? ∼1500–2000 – 4.15 TE [1306]
Ta – – ≤5 × 10−9 ? – 4.15 ± 0.05 TE [806]
Ta260 – – ≤10−8 4.2–35 – 4.16 FE [1686]
Ta – – <5 × 10−10 293 – 4.16 PE [348]
Ta – – ? 90 – 4.16 CPD [2294]
Ta265 – – – 973 – 4.16 ± 0.02 TC [1135]
Ta – – 4 × 10−9 ∼300 – 4.17 PE [1269]
Ta/Nb Ta – ∼10−9 ∼1200–1800 – 4.17 TE [975]
Ta Sr Sr+ <1 × 10−7 2450–2800 4.17 (4.21) PSI [80]
Ta265 – – ≤8 × 10−8 973 – 4.18 PE [1633,1636]
Ta – – ∼10−6 ? – 4.18 TE [3272]
Ta265 – – ≤8 × 10−8 973 – 4.19 PE [1633]
Ta – – – – – 4.19 TC [2005]
Ta – – <3 × 10−8 1420–1700 (5.9 ± 0.3*) 4.19 ± 0.02 TE [137]
Ta(porous) Cs Cs+ ? ∼1100–1400 4.2 (4.1) PSI [3762]
Ta – – – – – 4.2 TC [3318]
Ta – – – – – 4.2 TC [2583]
Ta – – ? ∼1400–2000 – 4.2 TE [3020]
Ta – – ≤8 × 10−8 973E – 4.20 TE [1636]
Ta – – <1 × 10−7 ? (4.17, 4.23) 4.21 TE [80]
Ta – – ≤3 × 10−9 ∼300 – 4.21 ± 0.06 CPD [3106]
Ta – – 9 × 10−7 2138–2440 – 4.218 ± 0.016 TE [2296]
Ta – – ∼1 × 10−6 2088–2430 – 4.218 ± 0.028 TE [2296]
Ta – – – – – 4.22 TC [3264,3265,3267]
Ta269 Br+ Br− ? 2125 4.22*N (4.37 ± 0.1) NSI [600,641]
Ta – – <10−8 ∼300 – 4.22 ± 0.02 CPD [349]
Tan(n → ∞) – – – – – 4.22 ± 0.08 TC [4261]
Ta – – ∼1 × 10−6 2050–2580 – 4.229 ± 0.014 TE [2296]
Ta269 I+ I− ? 2125 4.23*N (4.37 ± 0.1) NSI [600,641]
Ta Ba Ba+ <1 × 10−7 ∼2500–2800 4.23 ± 0.03 (4.21) PSI [80]
Ta – – ≤10−9 ∼1800–2200 – 4.25 TE [66]
Ta – – ? ∼300 – 4.25 CPD [2084]
Ta{82% (112)}268 – – ? (Cs) ∼1100–1700 – 4.25 TE [650,3414]
Ta – – ≤10−8 ∼1400–2100 – 4.25 ± 0.05 TE [1775,1777,1778]
Ta{70% (112)}267 – – ≤10−9 ∼1100–2200 – 4.25 ± 0.05 TE [124,650]
Ta – – 2 × 10−7 ∼1800–2100 (5.10–5.19) 4.27 ± 0.04 TE [23,67]
Ta269 Cl+ Cl− ? 2125 4.28*N (4.37 ± 0.1) NSI [600,641]
Ta – – ? ? – 4.3 TE [2459]
Ta – – ? 1640–1890 – 4.3 TE [2078]
Ta – – ∼10−10 ∼300 – 4.3 ± 0.1 PE [350]
Ta – – <10−9 ∼1900–2200 (4.64 ± 0.03) 4.30 ± 0.02 TE [81]
Ta – – <10−9 ∼1900–2200 (3.96 ± 0.03N) 4.30 ± 0.02 TE [81]
Ta174 – – – OE – 4.31 TC [1747]
Ta – – 1 × 10−7 ∼1700–2200 (4.88 ± 0.05) 4.33 ± 0.03 TE [76,77]
Ta{82% (112)}268 – – – – (4.49 ± 0.04) 4.34 ± 0.03 TC [803]
Ta – – ∼10−5 ≤1200 – 4.35 TE [2216]
Ta – – – – – 4.35 TC [3476]
Ta – – ? ∼1900–2100 – 4.35 ± 0.05 TE [1779]
Ta – – – – – 4.37 TC [298]
Ta – – ? ∼1850–2300 (4.22–4.28)*N 4.37 ± 0.1 TE [600,641]
Ta – – ? (K) ∼1300–1700 – 4.38 TE [2559]
Ta – – ∼10−11 ∼300 – 4.38 CPD [3338]
Ta – – – – – 4.39 TC [3476]
Ta – – <10−7 2200 – 4.4 TE [2582]
Ta – – – 0 – 4.41 TC [4419]
Ta – – – – – 4.45 TC [2629]
Ta – – ∼700 (Ar) ∼3000 – 4.46 TE [2007]
Ta{82% (112)}268 – – – – 4.49 ± 0.04 (4.34 ± 0.03) TC [803]
Ta – – ∼700 (Ar) ∼3000 – 4.50 TE [2007]
Ta – – – – – 4.6 TC [706]
Ta270 Na Na+ ∼10−5 (Na) ∼1900–2200 4.64 ± 0.03 (4.30 ± 0.02) PSI [81]
Ta170,271 – (Ta+) <2 × 10−8 ∼2000–2550 4.64 ± 0.14 – PSI [804]
Ta{mainly (110)} – – 0.1–6 (Cs) ∼1700–1900 – 4.67 ± 0.07* TE [2609]
Ta – – ? ∼300 – 4.70 ± 0.05 CPD [3399]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Ta – – – – – 4.81 TC [3476]
Ta In In+ 1 × 10−7 ∼1700–2200 4.88 ± 0.05 (4.33 ± 0.03) PSI [76,77]
Ta 87Br 87Br− ∼10−6 ∼2100 <5*N – NSI [3861]
Ta170,271 – (Ta+) ∼10−7 ∼2400–2660 5.0 ± 0.5 (4.33 ± 0.03) PSI [77]
Ta271 – (Ta+) <7 × 10−7 2550–2770 5.02 ± 0.11 – PSI [805,3083]
Ta KCl K+ 2 × 10−7 ∼1800–2100 5.10 ± 0.01 (4.27 ± 0.04) PSI [23,2422]
Ta RbBr Rb+ 2 × 10−7 ∼1800–2100 5.13 ± 0.03 (4.27 ± 0.04) PSI [23,67,2422]
Ta RbCl Rb+ 2 × 10−7 ∼1800–2100 5.19 ± 0.03 (4.27 ± 0.04) PSI [23,67]
Ta – – – – – 5.50 TC [2629]
Ta272 – (Ta+) <3 × 10−8 ∼2700–2900 5.85 ± 0.3* (4.19 ± 0.02) PSI [137]
Recommended – – – – 4.95 ± 0.20 4.20 ± 0.03 – –
Recommended – – – – 417 ± 0.13N – – –

74. Tungsten W

bcc
W(100) – – – – – 3.7 TC [2979]
W(100) – – – – – 3.8 TC [351]
W(100) – – – – – 4.090 TC [4091]
W(100) – – – – – 4.10 TC [1270]
W(100)–Re(5%) – – ? ∼1900–2100 – 4.10 ± 0.05 TE [438]
W(100) – – – – – 4.13 TC [1270]
W(100) – – ? ∼2000–2400 – 4.15 ± 0.02 TE [2356]
W(100) – – (≤10−10) 77 – 4.2 FE [1974]
W(100) – – ? ∼300 (2200) – 4.2 FE [3952]
W(100) – – – – – 4.3 TC [2265]
W(100) – – ? ∼2200–2450 – 4.32 ± 0.01 TE [2340,2343]
W(100) – – – – – 4.34 TC [2691]
W(100) – – – – – 4.35 ± 0.01 TC [4188]
W(100) – – – – – 4.37 TC [4189]
W(100) – – – – – 4.4 TC [351]
W(100) – – – – – 4.4 TC [3615]
W(100) – – 2 × 10−9 ∼1700–2000 – 4.40 TE [141]
W(100) – – – – – 4.44 TC [1270]
W(100) – – 1 × 10−8 ∼1900–2100 – 4.45 ± 0.05 TE [2012]
W(100) – – – – – 4.46 TC [3224]
W(100) – – ∼10−10 ∼300 – 4.47 FE [378]
W(100) – – 5 × 10−9 ∼2000–2400 – 4.48 TE [352]
W(100) – – – – – 4.49 TC [4405]
W(100) – – (≤10−11) ∼300 – 4.5 CPD [259]
W(100){95%}302 – – ? (Cs) ∼1600–2400 – 4.5 TE [3414]
W(100) – – – – – 4.5 ± 0.2 TC [381]
W(100) – – ∼10−11 ∼300 – 4.50 CPD [3338]
W(100) – – – – – 4.50 TC [4117]
W(100) – – – – – 4.50 TC [4405]
W(100){almost}277 – – ≤10−9 ∼1300–2200 – 4.50 ± 0.07 TE [650]
W(100)/W(100)309 WF6, H2 – ∼10−7 ∼1850–2450 – 4.51 ± 0.01 TE [1053]
W(100) Sr Sr+ ∼10−9 ∼2500–2850 4.52 – PSI [138]
W(100) – – 2 × 10−9 ∼1400–2000 – 4.52 TE [150]
W(100) – – 2 × 10−10 90 – 4.52 FE [3101,3102]
W(100){95%}302 – – ∼10−9 ? – 4.52 TE [3414]
W(100)–Re(5%)274 – – ? ∼2200 – 4.52 ± 0.04 TE [438]
W(100){probably} – – 2 × 10−8 1920–2300 (4.55 ± 0.03) 4.52 ± 0.07 TE [92]
W(100){95%}300 – – ∼10−9 1150–2200 – 4.52 ± 0.07 TE [124]
W(100){96%}300 – – ∼10−9 1150–2200 – 4.52 ± 0.07 TE [124]
W(100) – – – – – 4.53 TC [3356,3452]
W(100)273 – – 3 × 10−8 –1900– – 4.53 TE [651]
W(100) – – ? ∼1400–2000 – 4.53 TE [149]
W(100) – – ≤8 × 10−9 ∼2200–2450 – 4.53 ± 0.05 TE [2340,2343]
W(100) – – ≤10−5 (I2) ∼1500–2300 (4.55 ± 0.05)N 4.53 ± 0.05 TE [571]
W(100) Br2 Br− ? (Br2) ∼1500–2300 4.53 ± 0.05N – NSI [1658]
W(100) – – ∼10−10 77 – 4.54 FE [2714]
W(100) – – ∼2 × 10−9 ∼2000–2400 – 4.54 TE [4343]
W(100) – – – – – 4.54 TC [2701]
W(100) – – – – – 4.54 TC [3224]
W(100)–Re(1%)274 – – ? 1850–2270 – 4.54 TE [3086]
W(100)–Ir(2%)275 – – ? ∼1800–2030 – 4.54 TE [3086]
W(100)310 – – ∼10−7 ∼1850–2450 – 4.54 ± 0.01 TE [1053]
W(100) – – ? 2100–2200 – 4.54 ± 0.01 TE [3349]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

W(100) K K+ ≤3 × 10−10 1574 4.54 ± 0.02 (4.59 ± 0.03) PSI [82,261]
W(100) – – ≤2 × 10−8 1670–2040 (4.60) 4.55 TE [83]
W(100) – – ≤3 × 10−11 1670–1820 – 4.55 TE [353]
W(100) – – – – – 4.55 TC [1136]
W(100) – – 2 × 10−10 ∼300 – 4.55 PE [1859]
W(100) – – <3 × 10−11 ∼300 – 4.55 PE [3435]
W(100){probably} Ba Ba+ 2 × 10−8 2050–2550 4.55 ± 0.03 (4.52 ± 0.07) PSI [92]
W(100) I2 I− ≤10−5 (I2) ∼1500–2300 4.55 ± 0.05N (4.53 ± 0.05) NSI [571]
W(100) – – ∼10−9 ∼1940–2340 – 4.55 ± 0.05 TE [143]
W(100) – – 1 × 10−8 ∼1900–2100 – 4.55 ± 0.05 TE [1663,2012]
W(100) – – ∼10−8 1170 – 4.56 TE [3015]
W(100) – – – – – 4.56 TC [1271]
W(100) – – – – – 4.56 TC [3224]
W(100)–Re(2%)274 – – ? 1640–1840 – 4.56 TE [353]
W(100) – – ? ∼1400–2000 – 4.56 ± 0.02 TE [149]
W(100) Sr Sr+ ∼10−9 ∼2500–2850 4.56 ± 0.04 – PSI [138]
W(100)–Os(1%)276 – – ? ∼1700–2030 – 4.57 ± 0.04 TE [3086]
W(100) – – ∼10−10 77 – 4.57 FE [340]
W(100){95%}301 – – – – (4.69 ± 0.05) 4.57 ± 0.00 TC [803]
W(100) – – 3 × 10−11 78, 295 – 4.57 ± 0.14 FE [354]
W(100) – – – – – 4.58 TC [531]
W(100)–Re(6%)274 – – ? 1630–1770 – 4.59 TE [353]
W(100) – – ∼10−10 77 – 4.59 ± 0.02 FE [502]
W(100) – – ≤4 × 10−8 ∼1650–2050 – 4.59 ± 0.02 TE [140]
W(100) – – ≤3 × 10−10 ∼1150–1650 (4.54 ± 0.02) 4.59 ± 0.03 TE [82]
W(100){96%}300 – – – – (4.60 ± 0.04) 4.59 ± 0.04 TC [630,2453]
W(100) – – 1 × 10−9 ? (4.62 ± 0.06) 4.59 ± 0.05 TE [84]
W(100) – – ? ∼300 – 4.6 PE [1603]
W(100) – – ≤5 × 10−8 ∼1600–2100 (4.6) 4.6 TE [271]
W(100) Sm Sm+ ≤5 × 10−8 ∼1650–2000 4.6 (4.6) PSI [271]
W(100) – – <10−10 170 – 4.6 FE [3793]
W(100) Li Li+ <10−9 ∼1000–1300 4.6 – PSI [318]
W(100) – – – – – 4.6 TC [382,1908]
W(100) – – ? ? – 4.6 FE [1463]
W(100) – – 1 × 10−8 ∼300 – 4.6 CPD [1511]
W(100) – – – – – 4.6 TC [3615]
W(100) – – ? ∼1800–2300 – 4.6 TE [1958]
W(100) – – ? ? – 4.6 FE [1964]
W(100) – – ≤7 × 10−11 ∼300 – 4.6 CPD [2385]
W(100) – – ? 77 – 4.6 FE [3079]
W(100) – – ? 20, 100 – 4.6 FE [3508]
W(100) – – ? ? (4.6 ± 0.1) 4.6 ± 0.1 TE [15,649]
W(100) Ba Ba+ ? ? 4.6 ± 0.1 (4.6 ± 0.1) PSI [15,649]
W(100) – – ∼10−10 –1600– – 4.6 ± 0.1 TE [335,1650,1651,

1967]
W(100) La La+ 3 × 10−8 ∼2000–2750 4.6 ± 0.1 – PSI [153]
W(100) Nd Nd+ <10−8 ∼1900–2550 4.6 ± 0.1 – PSI [153]
W(100) K K+ ≤1 × 10−6 ? 4.6 ± 0.1 – PSI [216]
W(100) – – ? ? (4.6 ± 0.1) 4.6 ± 0.1 TE [1659]
W(100) K K+ ? ? 4.6 ± 0.1 (4.6 ± 0.1) PSI [1659]
W(100) – – ? ? – 4.6 ± 0.1 FE [3033]
W(100) In In+ ≤2 × 10−8 1630–2040 4.60 (4.55) PSI [83]
W(100) – – ≤5 × 10−10 298, 613 – 4.60 CPD [355]
W(100) – – ? ∼1700–2200 – 4.60 TE [2187,3664]
W(100) – – ∼10−9 ? – 4.60 TE [3096]
W(100) La La+ ∼10−9 ∼2500–2850 4.60 ± 0.03 – PSI [138]
W(100) – – ∼10−9 ? (4.66 ± 0.03) 4.60 ± 0.03 TE [3103]
W(100){96%}300 – – – – 4.60 ± 0.04 (4.59 ± 0.04) TC [630,2453]
W(100) – – <2 × 10−10 ? – 4.60 ± 0.05 TE [142]
W(100) – – ≤2 × 10−9 ∼1700–2000 – 4.60 ± 0.05 TE [127,144]
W(100) – – – – – 4.60 ± 0.05 TC [384]
W(100) – – ∼10−10 ∼300 – 4.60 ± 0.05 CPD [820]
W(100)278 – – 8 × 10−9 ? (4.66 ± 0.11*) 4.60 ± 0.06 TE [280]
W(100) – – ≤3 × 10−10 ∼1150–1650 – 4.61 ± 0.03 TE [652]
W(100){95%}301 – – – – (4.70 ± 0.04) 4.61 ± 0.04 TC [2453]
W(100)273 – – 3 × 10−8 –1900– – 4.61 ± 0.05 TE [651]
W(100) – – 3 × 10−9 ∼1500–2000 – 4.61 ± 0.05 TE [2214,2217]
W(100)170,278 Cs Cs+ 2 × 10−9 ∼1000–1500 4.61 ± 0.07 (4.65 ± 0.02) PSI [266,2314–2316]
W(100){probably} – – ∼10−10 ∼300 – 4.62 CPD [1516]
W(100) – – <10−8(Sr) ∼2000 – 4.62 TE [1792]
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W(100) – – ? ∼300 – 4.62 CPD [3600]
W(100) – – ≤10−8 ∼1700–2300 – 4.62 ± 0.03 TE [1793]
W(100) – – <1 × 10−10 ∼300 – 4.62 ± 0.05 PE [2669]
W(100) Bi Bi+ 1 × 10−9 ? 4.62 ± 0.06 (4.59 ± 0.05) PSI [84]
W(100) – – <5 × 10−11 ∼300 – 4.63 CPD [1672]
W(100) – – ≤10−10 78 – 4.63 FE [356]
W(100) – – – – – 4.63 TC [357]
W(100) – – – – – 4.63 TC [383,385]
W(100)/Mo WX6 – 6 × 10−7 ? – 4.63 TE [1521]
W(100) – – ∼10−10 ∼300 – 4.63 CPD [2110]
W(100) – – – – – 4.63 TC [3452]
W(100) – – ∼10−10 77, 300 – 4.63 ± 0.02 FE [358,3092]
W(100) – – ∼10−8 (O2) 2200 – 4.64 TE [212]
W(100) – – ≤6 × 10−11 78 – 4.64 FE [807]
W(100) – – 1 × 10−9 ∼300 – 4.64 FE [2220]
W(100) – – 2 × 10−10 ∼300 – 4.64 PE [3436]
W(100) – – <5 × 10−10 ∼300 – 4.64 ± 0.01 CPD [2471]
W(100) – – ≤3 × 10−10 ∼300 – 4.64 ± 0.02 CPD [1054]
W(100) – – ? ∼300 – 4.645 ± 0.005 CPD [1490]
W(100) – – ≤6 × 10−10 120, 300 – 4.65 CPD [359,2124,2721]
W(100) – – <5 × 10−11 ∼300 – 4.65 CPD [360,361]
W(100) – – – – – 4.65 TC [386]
W(100) – – <2 × 10−10 ∼300 – 4.65 FE [489]
W(100) – – <10−10 295 – 4.65 FE [1276]
W(100){99.5%} – – <10−10 ∼300 – 4.65 CPD [2058]
W(100) – – – – – 4.65 TC [2548]
W(100) – – ∼10−10 ∼300 – 4.65 CPD [3076]
W(100) – – ≤3 × 10−10 ∼300 – 4.65 ± 0.01 CPD [194]
W(100) – – ≤3 × 10−10 ∼300 – 4.65 ± 0.01 CPD [362,2481]
W(100)278 – – 2 × 10−9 ∼1400–2200 (4.61 ± 0.07) 4.65 ± 0.02 TE [266,2314–2316]
W(100) – – ? ∼2000–2400 – 4.65 ± 0.02 TE [2356]
W(100) – – ≤4 × 10−10 ∼300 – 4.65 ± 0.02 CPD [582,2102,3088]
W(100) – – ≤10−10 ∼300 – 4.65 ± 0.03 PE [3432]
W(100) – – <5 × 10−10 ∼300 – 4.65 ± 0.04 CPD [1055,1056]
W(100) – – ≤3 × 10−10 ∼300 – 4.655 ± 0.005 CPD [2104]
W(100) – – – – – 4.66 TC [1159,1980,2129,

3067]
W(100) Na Na+ ∼10−9 ? 4.66 ± 0.03 (4.60 ± 0.03) PSI [3103]
W(100) – – <10−8 ∼1900–2400 – 4.66 ± 0.06 TE [87]
W(100)170,278 Cs Cs+ 8 × 10−9 ? 4.66 ± 0.11* (4.60 ± 0.06) PSI [280]
W(100) – – ? ∼2100–2200 – 4.66 ± 0.13 TE [3349]
W(100) – – ≤4 × 10−10 ∼300 – 4.660 ± 0.005 CPD [2108]
W(100) – – – – – 4.67 TC [3224]
W(100) – – 2 × 10−10 90 – 4.68 FE [3102]
W(100) La La+ ∼10−9 ∼2500–2900 4.69 – PSI [138]
W(100) – – ? 1920 – 4.69 TE [2187,3664]
W(100){95%}301 – – – – 4.69 ± 0.05 (4.57 ± 0.00) TC [803]
W(100) – – ? ∼300 (2200) – 4.7 FE [3847,3952,3953]
W(100) – – <10−10 ∼300 – 4.7 CPD [808]
W(100) – – 7 × 10−10 77 – 4.7 FE [3691]
W(100) – – ≤1 × 10−9 300, 1000 – 4.7 FE [1965]
W(100) – – (<10−11) 78 – 4.70 FE [809]
W(100) – – ? 20, 100 – 4.70 FE [812]
W(100){95%}301 – – – – 4.70 ± 0.04 (4.61 ± 0.04) TC [2453]
W(100) – – ∼10−10 77–600 – 4.70 ± 0.05* FE [502]
W(100) – – ? ? – 4.71 FE [1284]
W(100)170,278 Cs Cs+ ∼10−10 ∼800–1050 4.72* – PSI [265]
W(100) – – ≤3 × 10−10 1000 – 4.72 ± 0.02 CPD [194]
W(100) – – <2 × 10−10 78 – 4.72 ± 0.04 FE [1674,2254–2256]
W(100) – – ∼10−10 77 – 4.75 FE [340]
W(100) – – ∼10−8 ∼2050–2350 – 4.76 ± 0.05 TE [3064]
W(100) – – ∼10−9 77 – 4.77 FE [363,810,811,2766]
W(100) – – – – – 4.77 TC [383,385]
W(100) – – <1 × 10−11 78 – 4.78 FE [373]
W(100){95%}277 – – – – – 4.78 TC [1254]
W(100) – – <5 × 10−10 77 – 4.8 FE [3114]
W(100) – – <1 × 10−11 77 – 4.80 FE [1549]
W(100) La La+ ∼10−9 ∼2500–2850 4.80 ± 0.03 – PSI [138]
W(100) – – <8 × 10−11 ∼300 – 4.80 ± <0.05 FE [364,530]
W(100) – – 3 × 10−9 ∼1500–2000 – 4.80 ± 0.05 TE [2214,2217]
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W(100) – – ∼10−10 ∼300 – 4.82 FE [2324]
W(100) – – <10−11 77 – 4.82 FE [267]
W(100) – – – – – 4.82 TC [384]
W(100) – – 2 × 10−10 ∼300 – 4.83 ± 0.02 FE [999]
W(100) – – (∼10−11) ∼300 – 4.86 FE [3237]
W(100) – – – – – 4.88 TC [387]
W(100) – – <1 × 10−10 ∼300 – 4.88 ± 0.02 FE [2616]
W(100) – – – – – 4.89 TC [387]
W(100) – – ? 15 – 4.89 FE [653]
W(100) – – <5 × 10−10 77 – 4.9 FE [3114]
W(100) – – ∼1 × 10−10 ∼300 – 4.9 FE [3438]
W(100) – – ∼10−10 79 – 4.90 FE [1275]
W(100) – – <10−8 20 – 4.90 ± 0.03 FE [813]
W(100) – – ∼10−10 78 – 4.93 ± 0.06 FE [819]
W(100) – – – – – 4.963 TC [365]
W(100) – – ? ∼300 – 4.97 FE [1730]
W(100) – – – – – 4.979 TC [365]
W(100) – – ? 80 – 4.98 FE [1057]
W(100) – – – – – 5.00 TC [2701]
W(100) – – – – – 5.009 TC [365]
W(100) – – – – – 5.03 TC [387]
W(100) Sr Sr+ ∼10−9 ∼1700–2200 5.07 – PSI [138]
W(100) – – – – – 5.08 TC [387]
W(100) – – – – – 5.10 TC [387]
W(100)–Os(1%)276 – – ? 2080–2300 – 5.12 ± 0.06 TE [3086]
W(100) – – – – – 5.16 TC [387]
W(100) – – 5 × 10−10 ∼300 – 5.2 FE [376]
W(100)–Ir(2%)275 – – ? 2030–2200 – 5.28 ± 0.06 TE [3086]
W(100)–Ir(2%)275 – – ? 2030–2200 – 5.30 ± 0.06 TE [3086]
W(100) – – – – – 5.4 TC [388,389,511]
W(100) – – – – – 5.47 TC [384]
W(100) – – – – – 7.8 TC [2528]
Recommended – – – – 4.62 ± 0.05 4.65 ± 0.02 – –

W(110)289 – – 1 × 10−9 ∼1400–2000 – 4.58 TE [150]
W(110) – – ∼10−10 77 – 4.6 FE [2714]
W(110) – – ? ? – 4.60 ± 0.08 FE [1377,1378]
W(110)279 NaCl Na+, Cl− <10−10 1845–2136 4.609 ± 0.014 (5.18 ± 0.08) PSI, NSI [89]
W(110)279 NaCl Cl−, Na+ <10−10 1845–2136 4.609 ± 0.014N (5.18 ± 0.08) NSI, PSI [89]
W(110) – – <10−8 ∼1900–2250 – 4.61 TE [85]
W(110) – – 1 × 10−8 ∼1900–2100 – 4.63 ± 0.05 TE [1663,2012]
W(110) – – ? ∼1400–2000 – 4.65 ± 0.02 TE [149,2706]
W(110)289 – – 1 × 10−9 ∼1400–2000 – 4.66 TE [150]
W(110)279 NaCl Na+, Cl− <10−10 1800–2200 4.66 ± 0.09 – PSI, NSI [3690]
W(110)279 NaCl Cl−, Na+ <10−10 1800–2200 4.66 ± 0.09N – NSI, PSI [3690]
W(110) – – 1 × 10−8 ∼1900–2100 – 4.67 ± 0.05 TE [1663,2012]
W(110) – – ∼10−12 ∼300 – 4.68 FE [3406]
W(110) – – – – – 4.7 TC [1723]
W(110) – – ? ? – 4.7 ± 0.1 TE [3578]
W(110) – – – – – 4.758 TC [4091]
W(110) – – – – – 4.79 TC [1270]
W(110) – – – – – 4.8 TC [1723]
W(110) – – <10−8 ∼1800–2200 (5.14) 4.8 ± 0.1 TE [85]
W(110) – – ? ? – 4.8 ± 0.1 TE [3578]
W(110) Gd Gd+ ∼10−10 ∼2000–2700 4.80 ± 0.09* – PSI [416]
W(110) – – ∼10−10 79 – 4.82 FE [1275]
W(110){80%}311 – – <10−9 ∼1700–2600 – 4.82 ± 0.02 TE [162]
W(110)280 Ba Ba+ <10−8 ∼1800–2140 4.82 ± 0.06 (5.04, 5.30) PSI [87]
W(110) – – – – – 4.84 TC [1270]
W(110) – – – – – 4.84 TC [4309]
W(110) – – <8 × 10−9 ∼2200–2450 – 4.87 ± 0.04 TE [2340]
W(110){80%}311 – – – – (5.26 ± 0.00) 4.87 ± 0.06 TC [2453]
W(110)/Nb(110) – – – – – 4.9 TC [2073]
W(110) – – 1 × 10−8 ∼1500–1850 – 4.9 TE [1499]
W(110) – – ? ? – >4.9 FE [1463]
W(110) – – ≤2 × 10−9 ∼1600–2200 (5.28 ± 0.03) 4.90 ± 0.02 TE [88,814]
W(110){80%}311 – – – – (5.25 ± 0.02) 4.90 ± 0.02 TC [630]
W(110) – – 5 × 10−9 ∼2000–2400 – 4.92 TE [352]
W(110)/? WCl6 – ? ? – 5.0 FE [3735]
W(110) – – ≤6 × 10−8 ∼1800–2150 – 5.0 TE [2247]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

W(110){80%}311 – – <10−9 ∼700–2600 – 5.0 ± 0.2 TE [162]
W(110) – – ∼10−10 –1600– – 5.0 ± 0.2 TE [335,1650,1651,

1967]
W(110) – – ∼10−8 ? – 5.00 TE [3353]
W(110) – – ∼10−10 77–700 – 5.02 ± 0.03 FE [502]
W(110) – – – – – 5.025 TC [4189]
W(110) – – – – – 5.03 TC [471]
W(110) – – ≤2 × 10−9 ∼1600–2200 (5.30 ± 0.03) 5.03 ± 0.02 TE [3542]
W(110)280 – – <10−8 ∼1900–2300 (4.82, 5.14) 5.04 ± 0.06 TE [87]
W(110) – – – – – 5.05 TC [367]
W(110) – – – – – 5.05 TC [151,2936]
W(110)281 – – <2 × 10−10 ∼300 – 5.05 ± 0.02 CPD [815]
W(110)/W(110)310 W – ∼10−7 ∼1850–2450 – 5.06 ± 0.01 TE [1053]
W(110) – – 7 × 10−11 200 – 5.06 ± 0.05 PE [3566]
W(110) – – – – – 5.07 TC [1270]
W(110) – – <8 × 10−11 ∼300 – 5.07 ± <0.05 FE [364,530,3213]
W(110) – – – – – 5.08 TC [3115]
W(110) – – ≤3 × 10−9 ∼1200 – 5.08 FE [2072]
W(110) – – 2 × 10−9 ∼2000 – 5.09 TE [141]
W(110) Li Li+ <10−9 ∼1000–1200 5.1 – PSI [318,319,366]
W(110) – – 2 × 10−11 ∼300 – 5.1 PE [1940]
W(110)283 – – ∼10−10 ∼300 (5.2) 5.1 PE [2774,3768]
W(110) – – ≤1 × 10−10 ∼300 – 5.1 PE [3177,3191]
W(110)282 – – – – – 5.10 TC [2073,2074]
W(110) – – ? ? – 5.10 FE [3618]
W(110)/Mo(110)282 – – – – – 5.10+0.01 TC [2074]
W(110) – – ∼10−10 ∼300 – 5.10 ± 0.01 CPD [2106,2110]
W(110) – – – – – 5.11 TC [3224]
W(110)284 Cs Cs+ 2 × 10−9 ∼1000–1500 5.11 (5.33 ± 0.04) PSI [2314]
W(110) – – <5 × 10−10 ∼300 – 5.11 ± 0.01 CPD [2471]
W(110) – – <5 × 10−10 ∼300 – 5.11 ± 0.02 CPD [1055,1056,2102]
W(110) – – ≤3 × 10−10 ∼300 – 5.120 ± 0.005 CPD [2104]
W(110) – – ≤4 × 10−10 ∼300 – 5.125 ± 0.005 CPD [2108]
W(110) – – – – – 5.13 TC [4405]
W(110)310 – – ∼10−7 ∼1850–2450 – 5.13 ± 0.01 TE [1053]
W(110) – – ≤4 × 10−10 ∼300 – 5.13 ± 0.02 CPD [582]
W(110)280 Na270 Na+ ? (Na) ∼1900–2000 5.14 (5.04, 5.30) PSI [87]
W(110)270 Na Na+ ? (Na) ∼1500–2000 5.14 (4.8 ± 0.1) PSI [85,3037]
W(110) – – ≤3 × 10−10 ∼300 – 5.14 ± 0.01 CPD [362,2481]
W(110) Na Na+ ∼10−9 ∼1450–2000 5.14 ± 0.03 (5.30 ± 0.03) PSI [3103]
W(110) – – ? ∼300 – 5.141 ± 0.007 CPD [1490]
W(110)281 – – <2 × 10−10 ∼300 (2500) – 5.15 CPD [815]
W(110) – – – – – 5.15 TC [3224]
W(110) KCl K+ 1 × 10−10 ∼1000–1500 5.15 – PSI [1548]
W(110) – – ? 80, 300 – 5.15 CPD [2112]
W(110) – – <3 × 10−10 ∼300 – 5.15 ± 0.01 CPD [194]
W(110)310 – – ∼10−7 ∼1850–2450 – 5.15 ± 0.01 TE [1053]
W(110) – – ? ∼300 – 5.15 ± 0.01 CPD [3420]
W(110) – – ∼10−10 ∼300 – 5.15 ± 0.02 CPD [3076,3088]
W(110) – – ? 77 – 5.15 ± 0.05 FE [502]
W(110)/W(100)309 WF6, H2 – ∼10−7 1850–2450 – 5.16 ± 0.01 TE [1053]
W(110)/W(110)309 WCl6, H2 – ∼10−7 1850–2450 – 5.16 ± 0.01 TE [1053]
W(110) – – ? 77 – 5.16 ± 0.02 FE [502]
W(110)285 Na Na+ ∼10−10 1180 5.17 ± 0.01 – PSI [154,260]
W(110) – – ? 2100–2200 – 5.17 ± 0.02 TE [3349]
W(110) – – 5 × 10−9 (O2) 2050 – 5.18 TE [212]
W(110) – – – – – 5.18 TC [531]
W(110)279 – – <10−10 ∼1850–2250 (4.609 ± 0.014) 5.18 ± 0.08 TE [89]
W(110)279 – – <10−10 ∼1850–2250 (4.609 ± 0.014)N 5.18 ± 0.08 TE [89]
W(110)285 Na Na+ ∼10−10 1180 5.19 ± 0.01 – PSI [3768]
W(110) – – ≤3 × 10−10 1000 – 5.19 ± 0.01 CPD [194]
W(110) Tb Tb+ ∼10−10 ∼2200–2500 5.19 ± 0.07* – PSI [416]
W(110) – – ? ∼300 – 5.2 FE [1767]
W(110) – – ∼10−9 (O2) 2050 – 5.2 TE [212]
W(110) – – (≤10−10) 77 – 5.2 FE [1974]
W(110) – – ? ∼300 (2200) – 5.2 FE [3952]
W(110) – – ∼10−11 20–200 – 5.2 FE [2218]
W(110) – – 7 × 10−10 77 – 5.2 FE [3691]
W(110) – – ? ∼1800–2300 – 5.2 TE [1958]
W(110)283 Na Na+ ∼10−10 ∼300 5.2 (5.1) PSI [2773,2774]
(continued on next page)

151



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

W(110) – – <10−9 ∼300 – 5.20 PE [3857]
W(110) – – – – – 5.20 TC [365]
W(110) – – – – – 5.20 TC [3224]
W(110) Ho Ho+ ∼10−10 ∼1900–2500 5.20 ± 0.05* – PSI [416]
W(110) – – <10−10 ∼300 – 5.20 ± 0.05 FE [2262]
W(110) – – – – – 5.21 TC [3473]
W(110) – – 3 × 10−7 –2300– – 5.21 ± 0.04 TE [1402]
W(110)310 – – ∼10−7 ∼1850–2450 – 5.22 ± 0.01 TE [1053]
W(110) – – ≤8 × 10−9 ∼1700–2160 – 5.22 ± 0.01 TE [1183]
W(110) – – <8 × 10−9 2300 – 5.22 ± 0.02 TE [147,1037,2357,

3802]
W(110) – – ? ? – 5.22 ± 0.05 FE [816]
W(110) Dy Dy+ ∼10−10 ∼1850–2500 5.22 ± 0.07* – PSI [416]
W(110) – – ≤10−8 ∼1800–2250 – 5.24 ± 0.03 TE [1793]
W(110){>90%} Na270 Na+ 1 × 10−8 (Na) ∼1200–2000 5.25 (5.27) PSI [90]
W(110) – – ? ? – 5.25 TE [368]
W(110) – – <2 × 10−10 ∼300 – 5.25 FE [489]
W(110) – – ∼10−9 ∼300 – 5.25 CPD [1272]
W(110) – – 2 × 10−10 ∼300 – 5.25 CPD [2592]
W(110) – – ? ∼300 – 5.25 PE [3443]
W(110) – – ∼10−10 77, 300 – 5.25 ± 0.02 FE [358,3092]
W(110){80%}311 – – – – 5.25 ± 0.02 (4.90 ± 0.05) TC [630,2453]
W(110) – – ? 100 – 5.25 ± 0.02 PE [1273]
W(110){>90%} – – 5 × 10−9 ∼1500–1900 (5.25 ± 0.05) 5.25 ± 0.05 TE [86,90,2094]
W(110){>90%} Na Na+ 5 × 10−9 ∼1200–2000 5.25 ± 0.05 (5.25 ± 0.05) PSI [86,90,2094]
W(110) – – ? ∼300 – 5.25 ± 0.25 FE [1767]
W(110) – – – – – 5.26 TC [1271]
W(110)289 – – – – – 5.26 TC [150]
W(110) – – ? 1920 – 5.26 TE [2187,3664]
W(110) – – ? ∼300 – 5.26 PE [3448]
W(110){80%}311 – – – – 5.26 ± 0.02 (4.87 ± 0.06) TC [2453]
W(110) – – – – – 5.269 TC [365]
W(110) – – 5 × 10−10 ∼1500–1900 (5.25) 5.27 TE [90]
W(110)142 – – ≤2 × 10−10 ∼300 – 5.28* CPD [2598]
W(110) – – ∼10−8 ? – 5.29 TE [3353]
W(110) Li Li+ ≤2 × 10−9 ∼1250–1800 5.28 ± 0.03 (4.90, 5.30) PSI [88,814]
W(110) – – ? ∼300 (2200) – 5.3 FE [3847,3952]
W(110) – – (≤10−11) ∼300 – 5.3 CPD [259]
W(110) Tm Tm+ ? ∼2000 5.3 – PSI [3559]
W(110) – – 1 × 10−11 300, 700 – 5.3 CPD [370]
W(110) – – – – – 5.3 TC [1723]
W(110) – – (≤10−11) ∼300 – 5.3 CPD [2380]
W(110) – – <2 × 10−10 90 – 5.3 PE [2778]
W(110) – – 2 × 10−10 ∼300 – 5.3 PE [2834]
W(110) – – ∼10−9 ? – 5.3 TE [3096]
W(110) – – (∼10−12) ∼300 – 5.3 ± 0.02 CPD [1795]
W(110) – – ∼10−9 ∼1700–2000 – 5.3 ± 0.07 TE [1277]
W(110) – – (<1 × 10−11) ∼300 – 5.30 FE [2251]
W(110) – – <2 × 10−10 27, 90 – 5.30 CPD [4107]
W(110) – – ? 20 – 5.30 FE [2956,3472,3508,

3563]
W(110) – – <2 × 10−10 78 – 5.30 FE [1674,2251,2253,

2254]
W(110) – – <1 × 10−10 ∼300 – 5.30 ± 0.02 FE [2054]
W(110) – – ≤2 × 10−9 ∼1600–2000 (5.30 ± 0.03) 5.30 ± 0.03 TE [88,814,3541]
W(110) Li Li+ ≤2 × 10−9 1250–1800 5.30 ± 0.03 (5.30, 5.03) PSI [814,3542]
W(110) – – ∼10−9 ∼1600–2000 (5.14 ± 0.03) 5.30 ± 0.03 TE [3103]
W(110) – – 3 × 10−9 ∼1500–2000 – 5.30 ± 0.05 TE [2214,2217]
W(110)280 – – <10−8 ∼1900–2300 (4.82, 5.14) 5.30 ± 0.06 TE [87]
W(110) – – <10−8 ∼1900–2400 – 5.30 ± 0.06 TE [148]
W(110) – – <5 × 10−11 ∼300 – 5.32 CPD [1274]
W(110) – – ∼10−10 78 – 5.32 ± 0.10 FE [819]
W(110) – – 2 × 10−9 1450–2000 – 5.33 ± 0.03 TE [817]
W(110) – – ∼10−8 ∼2050–2350 – 5.33 ± 0.03 TE [372,3064]
W(110)284 – – 2 × 10−9 ∼1400–2200 (5.11) 5.33 ± 0.04 TE [266,2314–2316]
W(110) – – ∼10−11 ∼300 – 5.34 ± 0.03* CPD [2647]
W(110) – – <10−10 ∼300 – 5.34 ± 0.05 FE [2044]
W(110) – – – – – 5.345 TC [365]
W(110) – – <2 × 10−11 78 – 5.35 FE [262]
W(110) – – ∼10−9 77 – 5.35 FE [1137]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

W(110) – – 2 × 10−11 >1200 – 5.35 TE [1940]
W(110) – – ≤7 × 10−11 ∼300 – 5.35 CPD [2385]
W(110) – – ≤2 × 10−9 ∼1700–2000 – 5.35 ± 0.05 TE [127,144]
W(110) – – ≤8 × 10−10 ∼300 – 5.35 ± 0.05 FE [1689]
W(110) – – ∼10−10 ∼300 – 5.35 ± 0.05 CPD [2381]
W(110) – – ∼10−11 78 – 5.35 ± 0.09 FE [654]
W(110) – – 6 × 10−6 (Cs) 1950–2150 – 5.37 TE [151]
W(110) – – ≤3 × 10−9 ∼1200 – 5.37 FE [2072]
W(110) Sr Sr+ 8 × 10−9 ∼2300–2800 5.38 ± 0.03 – PSI [145]
W(110) Ca Ca+ 8 × 10−9 ∼2300–2800 5.39 ± 0.04 – PSI [145]
W(110) – – ∼10−10 80–550 – 5.40 FE [2499]
W(110) – – ∼10−9 ∼2050–2350 – 5.40 ± 0.05 TE [143]
W(110) – – <10−10 38, 80 – 5.42 ± 0.02 FE [1010]
W(110) – – ≤3 × 10−9 ∼1200 – 5.43 FE [2072]
W(110) – – ? 40–298 – 5.43 ± 0.03 CPD [2832]
W(110) – – – – – 5.44 TC [357]
W(110) – – ≤3 × 10−9 ∼1200 – 5.44 FE [2072]
W(110) La La+ ∼10−9 ∼1700–2700 5.44 ± 0.05 – PSI [138]
W(110) Sr Sr+ 8 × 10−9 ∼2300–2800 5.44 ± 0.05 – PSI [145]
W(110) Ca Ca+ 8 × 10−9 ∼2300–2800 5.45 ± 0.05 – PSI [145]
W(110)170,286 – (W+) <5 × 10−8 ∼2500 5.46 ± 0.11 – PSI [146]
W(110) – – ? 80 – 5.47 FE [1058]
W(110) Sr Sr+ 8 × 10−9 ∼2300–2800 5.47 ± 0.10 – PSI [145]
W(110) – – <10−9 ∼300 – 5.5 FE [2354]
W(110) – – ? ? – 5.5 ± 0.2 FE [3033]
W(110) – – – – – 5.50 TC [2548]
W(110) – – – – – 5.50 TC [1159,1980,2129,

3067]
W(110) Sr Sr+ ∼10−9 ∼1700–2700 5.52 ± 0.05 – PSI [138]
W(110) – – ? ∼1700–2200 – 5.54 TE [2187,3664]
W(110) – – – – – 5.54 TC [4117]
W(110) – – (1 × 10−10) ∼300 – 5.54 ± <0.06 FE [1529]
W(110) – – – – – 5.55 TC [3179]
W(110) – – ? ? – 5.6 FE [1964]
W(110) – – ≤5 × 10−10 ∼300 – 5.6 ± 0.1 FE [2013]
W(110) – – – – – 5.62 TC [334]
W(110) – – 2 × 10−10 ∼300 – 5.66 ± 0.03 FE [999]
W(110) – – ? ∼300 – 5.69 FE [3581]
W(110) – – <10−7 2100 – 5.7 TE [371]
W(110) – – ∼10−10 77 – 5.70 FE [340]
W(110) – – ? 20, 100 – 5.70 FE [812]
W(110) – – (<10−12) ∼300 (∼2500) (6.0) 5.70 FE [152]
W(110) – – ? ∼300 – 5.70 ± 0.15 FE [1766]
W(110) – – – – – 5.73 TC [3224]
W(110) – – ∼10−10 79 – 5.74 FE [1275]
W(110) – – – – – 5.75 TC [4405]
W(110) – – 2 × 10−10 ∼300 – 5.75 ± 0.03 FE [999]
W(110) – – ? 77 – 5.75 ± 0.15 FE [3079]
W(110) – – ? 15 – 5.76 FE [653]
W(110) – – <1 × 10−11 78 – 5.79 FE [373]
W(110) – – ∼10−10 ∼300 – 5.79 FE [378]
W(110) – – ∼10−10 77 – 5.79 ± 0.04 FE [502]
W(110) – – ∼1 × 10−10 ∼300 – 5.8 FE [3438]
W(110) – – ∼10−10 78 – 5.8 ± 0.5 FE [819]
W(110) – – <10−10 90 – 5.80 FE [656,926]
W(110) – – <10−8 20 – 5.80 ± 0.05 FE [813]
W(110) – – ? 15 – 5.83 FE [653]
W(110) – – (<10−11) 78 – 5.85 FE [267]
W(110) – – <10−10 ∼300 – 5.9 CPD [808]
W(110) – – ∼10−10 ∼300 – 5.9 FE [2324]
W(110) – – ∼2 × 10−9 ∼300 – 5.93 FE [2766]
W(110) – – ≤10−12 77 – 5.96 FE [657]
W(110) – – ∼10−10 79 – 5.98 FE [1275]
W(110) – – (<10−12) ∼300 (∼1800) (6.0) 5.99 FE [152]
W(110) – – <10−10 298 – 5.99 FE [1010]
W(110) – – ? ? – 6.0 FE [2565,2574]
W(110) – – (<10−11) 78 – 6.0 FE [809]
W(110) – – <10−10 79 – 6.00 FE [1276]
W(110) – – ? 77 – 6.02 ± 0.06 FE [502]
W(110) – – <10−10 144 – 6.03 ± 0.02 FE [1010]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

W(110) – – (<10−12) ∼300 (∼1500) – 6.10 FE [152]
W(110) – – ∼10−10 79 – 6.10 FE [1275]
W(110) – – ∼10−10 77 – 6.20 ± 0.06 FE [502]
W(110) – – ∼10−10 78 – 6.28 ± 0.08 FE [819]
W(110) – – ∼10−10 77 – 6.30 FE [340]
W(110) – – ∼10−10 79 – 6.30 FE [1275]
W(110) – – ? 80 – 6.35 FE [1057]
W(110) – – ? 77 – 6.40 ± 0.09 FE [502]
W(110) – – ∼10−10 77 – 6.5 FE [2714]
W(110) – – – – – 6.70 TC [1059]
W(110) – – ∼10−12 77 – 7.1 FE [1281]
W(110) – – – – – 7.15 TC [1059]
W(110) – – ∼10−12 77 – 7.2 FE [1281]
W(110) – – ∼10−12 77 (∼1000) – 8.78 FE [1281]
Recommended – – – – 5.28 ± 0.11 5.32 ± 0.02 – –

W(111) – – ? ∼1400 – 3.25 ± 0.02 TE [2356]
W(111) – – ? ? – 3.9 FE [1964]
W(111) – – – ∼2300 – 4.07 ± 0.02 TE [2356]
W(111) – – ? ∼1800–2300 – 4.2 TE [1958]
W(111) – – ? ? – 4.2 ± 0.1 FE [3033]
W(111) – – – – – 4.20 TC [1270]
W(111) – – ? ∼300 – 4.21 FE [1730]
W(111) – – ≤3 × 10−9 ∼1200 – 4.24 FE [2072]
W(111) – – 1 × 10−8 ∼1900–2100 – 4.24 ± 0.05 TE [2012]
W(111) – – – – – 4.240 TC [4091]
W(111) – – ? ? – 4.25 TE [368]
W(111) – – – – – 4.25 TC [1270]
W(111) – – 1 × 10−8 ∼1900–2100 – 4.26 ± 0.05 TE [1663,2012]
W(111)/W WF6 – ∼10−8 ∼1800 – 4.3 TE [2050]
W(111) – – ∼10−10 ∼300 – 4.3 FE [374,818]
W(111) – – ? ? – 4.3 ± 0.1 FE [1377,1378]
W(111) – – <10−9 ∼300 – 4.32 PE [375]
W(111) – – ? ∼300 – 4.33 FE [3581]
W(111) – – <1 × 10−11 78 – 4.35 FE [373]
W(111) – – ? ∼2000–2400 – 4.35 ± 0.02 TE [2356]
W(111) – – ? ∼1400–2000 – 4.35 ± 0.02 TE [149]
W(111) – – <8 × 10−11 ∼300 – 4.35 ± <0.05 FE [364,530,3213]
W(111) – – 2 × 10−9 ∼1700–2000 – 4.36 TE [141]
W(111) – – <2 × 10−10 78 – 4.37 FE [1674,2253]
W(111) KCl K+ 1 × 10−10 ∼1000–1300 4.37 – PSI [1548]
W(111) – – ? ∼1400–2000 – 4.37 ± 0.02 TE [149,2706]
W(111)287 – – <1 × 10−10 ∼800–1300 – 4.38 FE [3440]
W(111) – – – – – 4.38 TC [4405]
W(111) – – ≤2 × 10−9 ∼1600–2200 (4.50 ± 0.03) 4.38 ± 0.02 TE [88]
W(111) – – 1 × 10−9 ∼1400–2000 – 4.38 ± 0.02 TE [150]
W(111) – – – – – 4.381 TC [4189]
W(111) – – (<10−12) ∼300 – 4.39 FE [152]
W(111) – – ∼10−8 ? – 4.39 TE [3353]
W(111) – – ? ∼1900 – 4.39 TE [1581]
W(111) – – <10−10 170 – 4.4 FE [3793]
W(111) – – ? ∼300 (2200) – 4.4 FE [3847,3952,3953]
W(111) – – (≤10−11) ∼300 – 4.4 CPD [259]
W(111) – – <10−10 ∼300 – 4.4 CPD [808]
W(111) – – ∼10−9 77 – 4.4 FE [363,810,811,2766]
W(111) – – ∼10−9 ? – 4.4 TE [3686]
W(111) – – ∼10−10 –1600– – 4.4 ± 0.1 TE [335,1650,1651,

1967]
W(111) – – 5 × 10−10 ∼300 – 4.40 FE [376]
W(111) – – <10−10 78, 295 – 4.40 FE [679,1276]
W(111) – – ? ? – 4.40 FE [1463]
W(111) – – ∼10−10 300–1500 – 4.40 FE [1783]
W(111) – – ∼10−9 ? – 4.40 TE [3096]
W(111) – – ≤2 × 10−9 ∼1600–2200 (4.50 ± 0.03) 4.40 ± 0.02 TE [88,814,3541,3542]
W(111) – – <10−8 ∼1900–2400 – 4.40 ± 0.02 TE [127,144,148]
W(111) – – ∼10−8 ∼2050–2350 – 4.40 ± 0.03 TE [372,3064]
W(111) – – 2 × 10−9 1450–1750 (4.42, 4.44) 4.40 ± 0.03 TE [817,3103]
W(111) – – 3 × 10−9 ∼1500–2000 – 4.40 ± 0.05 TE [2214,2217]
W(111) – – (1 × 10−10) ∼300 – 4.40 ± <0.06 FE [1529]
W(111) – – – 695 – 4.404 TC [377]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

W(111) – – (<10−11) 78 – 4.41 FE [267]
W(111) – – ∼10−10 ∼300 – 4.41 FE [4237]
W(111) – – – – – 4.41 TC [3224]
W(111) – – <10−10 90 – 4.41 FE [656,926]
W(111) – – ? ∼1500–2000 – 4.41 TE [1581]
W(111) – – ∼10−10 ∼300 – 4.41 FE [2324]
W(111) – – ? ∼300–1100 – 4.41 FE [3426]
W(111) – – – 418 – 4.415 TC [377]
W(111) – – ? ? – 4.42 FE [1283]
W(111) – – ∼10−9 ∼1900–2300 – 4.42 ± 0.03 TE [143]
W(111) Na Na+ ? 1450–1750 4.42 ± 0.03 (4.40 ± 0.03) PSI [3103]
W(111) – – (<10−11) 78 – 4.43 FE [809]
W(111) – – ? 1920 – 4.43 TE [2187,3664]
W(111)287 – – <1 × 10−10 80–500 – 4.43 FE [3440]
W(111) – – 5 × 10−10 ∼1400–2150 – 4.43 ± 0.05 TE [151]
W(111) – – – – – 4.44 TC [1271]
W(111) – – – – – 4.44 TC [4405]
W(111) – – ≤3 × 10−9 ∼1200 – 4.44 FE [2072]
W(111) – – ? 2100–2200 – 4.44 ± 0.02 TE [3349]
W(111) Na Na+ 2 × 10−9 1360–1630 4.44 ± 0.03 (4.40 ± 0.03) PSI [817]
W(111) Li Li+ ∼10−9 ∼1400–1700 4.44 ± 0.03 (4.40 ± 0.03) PSI [3103]
W(111) – – 5 × 10−9 ∼2000–2400 – 4.45 TE [352]
W(111) – – ≤2 × 10−10 ∼300 – 4.45 CPD [1056]
W(111) – – ∼10−10 77 – 4.45 FE [3092]
W(111) – – <8 × 10−10 78 – 4.45 FE [1731]
W(111) – – ? 20, 100 – 4.45 FE [3508]
W(111) – – ∼10−10 ∼300 – 4.45 ± 0.02 CPD [1056,3088]
W(111) – – ∼10−10 77 – 4.45 ± 0.03 FE [358,502]
W(111) – – ∼10−10 78 – 4.45 ± 0.05 FE [819]
W(111) – – 5 × 10−10 ∼300 – 4.46 FE [3670]
W(111) – – – – – 4.46 TC [2548]
W(111) – – <2 × 10−10 ∼300 – 4.47 FE [489]
W(111) – – – – – 4.47 TC [1159,1980,2129,

3067]
W(111) – – ∼10−10 77, 300 – 4.47 ± 0.02 FE [358]
W(111) – – 2 × 10−10 ∼300 – 4.47 ± 0.03 FE [999]
W(111) – – – – – 4.48 TC [1270]
W(111) – – 2 × 10−9 ∼1900–2400 – 4.48 TE [4343]
W(111) – – – – – 4.49 TC [3224]
W(111) – – ∼10−10 ∼300 – 4.49 FE [378]
W(111) – – ∼10−10 77 – 4.49 ± 0.02 FE [502]
W(111) – – ∼10−11 78 – 4.49 ± 0.03 FE [654]
W(111) Ca Ca+ 8 × 10−9 ∼2300–2800 4.49 ± 0.04 – PSI [145]
W(111) Sr Sr+ 8 × 10−9 ∼2300–2800 4.49 ± 0.04 – PSI [145]
W(111) – – ∼10−10 79 – 4.5 FE [1275]
W(111) – – 1 × 10−8 ∼1500–1850 – 4.5 TE [1499]
W(111) – – 3 × 10−9 ∼300 – 4.5 ± 0.1 FE [2215]
W(111) – – ? 77 – 4.50 FE [2956,3079,3509]
W(111) – – ≤2 × 10−11 78 – 4.50 FE [262]
W(111) – – – – – 4.50 TC [3224]
W(111) Li Li+ ≤2 × 10−9 ∼1400–1800 4.50 ± 0.03 (4.40 ± 0.02) PSI [88,3542]
W(111) – – – – – 4.500 TC [365]
W(111) – – <5 × 10−11 ∼300 – 4.51 CPD [1274]
W(111) – – ? ∼300–1100 – 4.51 FE [3427]
W(111) – – ∼10−11 ∼300 – 4.53 ± 0.03* CPD [2647]
W(111) – – ? 20, 100 – 4.54 FE [812]
W(111) – – ? ∼1700–2200 – 4.54 TE [2187,3664]
W(111)310 – – ∼10−7 ∼1850–2450 – 4.54 ± 0.01 TE [1053]
W(111) – – – – – 4.55 TC [357]
W(111) – – <10−10 ∼300 – 4.55 ± 0.01 FE [2044]
W(111) – – ≤8 × 10−10 ∼300 – 4.55 ± 0.05 FE [1689]
W(111) – – ∼10−10 79 – 4.56 FE [1275]
W(111) – – ≤3 × 10−9 ∼1200 – 4.56 FE [2072]
W(111) – – – – – 4.562 TC [365]
W(111) – – ? 80 – 4.57 FE [1057]
W(111) – – <10−10 ∼300 – 4.57 ± 0.09 FE [2044]
W(111) – – <5 × 10−11 ∼300 – 4.58 CPD [3309]
W(111) – – – – – 4.59 TC [3224]
W(111) – – ≤10−8 ∼1700–2300 – 4.59 ± 0.03 TE [1793]
W(111) – – 3 × 10−9 (O2) 2050 – 4.6 TE [212]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

W(111) – – ∼1 × 10−10 ∼300 – 4.6 FE [3438]
W(111) – – – – – 4.60 TC [531]
W(111) – – ≤4 × 10−10 ∼300 – 4.60 ± 0.02 CPD [582]
W(111) – – <10−8 20 – 4.60 ± 0.05 FE [813]
W(111) – – 5 × 10−10 (O2) 1900 – 4.61 TE [212]
W(111) – – ? ∼2100–2200 – 4.61 ± 0.17 TE [3349]
W(111) – – <1 × 10−10 ∼300 – 4.62 ± 0.02 FE [2616]
W(111) – – ∼10−12 ∼300 – 4.64 FE [3406]
W(111) – – 5 × 10−8 (O2) 2200 – 4.67 TE [212]
W(111) – – ? 15 – 4.68 FE [653]
W(111) – – ∼10−8 ? – 4.73 TE [3353]
W(111) – – ≤8 × 10−9 ∼2000–2200 – 4.74 ± 0.15 TE [1183]
W(111) – – ? 15 – 4.78 FE [653]
W(111) – – ∼10−10 79 – 4.8 FE [1275]
W(111) – – ∼10−11 78 – 4.8 FE [2823]
W(111) – – ? 77 – 4.80 ± 0.03 FE [502]
W(111) – – 3 × 10−11 78, 295 – 4.83 ± 0.38 FE [354]
W(111) – – ∼10−11 20–200 – 4.9 FE [2218]
W(111) – – ≤3 × 10−9 ∼1200 – 5.27 FE [2072]
W(111) – – ∼10−10 77 – 5.3 FE [2714]
W(111) – – – – – 5.60 TC [4117]
Recommended – – – – 4.45 ± 0.04 4.45 ± 0.03 – –

W(112) Gd Gd+ ∼10−9 ∼2100–3000 4.28 ± 0.02* (4.85 ± 0.07) PSI [91]
W(112) – – ≤3 × 10−9 ∼1200 – 4.36 FE [2072]
W(112) Yb Yb+ ∼10−9 ∼1550–2900 4.38 ± 0.01* (4.85 ± 0.07) PSI [91]
W(112) – – 2 × 10−9 ∼1700–2000 – 4.48 TE [141]
W(112) – – 1 × 10−8 ∼1900–2100 – 4.5 ± 0.05 TE [1663,2012]
W(112) – – 2 × 10−8 ∼300 – 4.50 PE [821]
W(112) – – 2 × 10−9 ∼1700–2000 – 4.51 TE [141]
W(112) – – ∼10−8 ∼2050–2350 – 4.53 ± 0.05 TE [3064]
W(112) – – – – – 4.57 TC [3224]
W(112) – – ≤10−10 77 – 4.6 FE [1974]
W(112) – – ∼10−11 78 – 4.6 ± 0.4 FE [2823]
W(112) – – – – – 4.60 TC [4405]
W(112) – – <5 × 10−11 ∼300 – 4.61 CPD [1672]
W(112) – – – – – 4.64 TC [3224]
W(112) – – (<10−12) ∼300 (∼2500) – 4.65 FE [152]
W(112) – – – – – 4.66 TC [3224]
W(112) – – ? ∼1400–2000 – 4.66 ± 0.02 TE [149,2706]
W(112) – – 1 × 10−9 ∼1400–2000 – 4.66 ± 0.02 TE [150]
W(112) – – <10−8 ∼1800–2200 – 4.67 ± 0.02 TE [85]
W(112) – – ∼10−10 ∼300 – 4.68 CPD [2110]
W(112) – – – – – 4.69 TC [4405]
W(112) – – ∼10−11 ∼300 – 4.69 ± 0.03* CPD [2647]
W(112) – – 3 × 10−8 (O2) 2200 – 4.7 TE [212]
W(112) – – ∼10−11 78 – 4.7 FE [2823]
W(112) – – ∼10−10 –1600– – 4.7 ± 0.1 TE [335,1650,1651,

1967]
W(112) Gd Gd+ ∼10−9 ∼2100–2900 4.70 ± 0.02* (4.85 ± 0.07) PSI [91]
W(112) Er Er+ ∼10−9 ∼1900–2900 4.70 ± 0.02* (4.85 ± 0.07) PSI [91]
W(112) – – ? 2100 – 4.70 ± 0.02 TE [3349]
W(112) – – 6 × 10−6 (Cs) ∼1800–2200 – 4.71 TE [151]
W(112) – – ∼10−10 ∼300 – 4.71 ± 0.05 CPD [820]
W(112) – – – – – 4.72 TC [1271]
W(112) – – <5 × 10−11 ∼300 – 4.72 CPD [1274]
W(112) Er Er+ ∼10−9 ∼1800–3300 4.72 ± 0.06* (4.85 ± 0.07) PSI [91]
W(112) – – ≤3 × 10−10 ∼300 – 4.73 ± 0.02 CPD [1054]
W(112) – – ≤8 × 10−10 ∼300 – 4.74 ± 0.05 FE [1689]
W(112) – – – – – 4.75 TC [531]
W(112) – – ≤7 × 10−11 ∼300 – 4.75 CPD [2385]
W(112) – – <10−7 ∼1800–2300 – 4.75 ± 0.03 TE [371]
W(112) – – ≤3 × 10−10 ∼300 – 4.75 ± 0.05 FE [530,3213]
W(112) – – <2 × 10−10 ∼300 – 4.76 FE [489]
W(112) – – ∼10−10 ∼300 – 4.77 ± 0.02 CPD [2106,3088]
W(112) – – (<10−11) ∼300 – 4.79 ± 0.05* CPD [2637]
W(112) – – ? ? – 4.8 FE [1463]
W(112) – – ∼10−11 20–200 – 4.8 FE [2218]
W(112) – – (≤10−11) 77 – 4.8 CPD [2671]
W(112) – – (≤10−11) ∼300 – 4.80 CPD [259,379,380,658]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

W(112) – – ≤2 × 10−11 78 – 4.80 FE [262]
W(112) – – <10−10 90 – 4.80 FE [656,926]
W(112) – – ≤2 × 10−9 ∼1700–2000 – 4.80 ± 0.05 TE [127,143,144]
W(112) – – ∼10−11 78 – 4.80 ± 0.05 FE [654]
W(112) – – – – – 4.800 TC [365]
W(112) – – – – – 4.811 TC [365]
W(112) – – ≤3 × 10−9 ∼1200 – 4.82 FE [2072]
W(112) – – (1 × 10−10) ∼300 – 4.82 ± <0.06 FE [1529,4237]
W(112) – – ∼10−10 77 – 4.84 ± 0.06 FE [502]
W(112) – – (<10−11) 78 – 4.85 FE [267]
W(112) – – – – – 4.85 TC [3224]
W(112) – – 3 × 10−11 78 – 4.85 FE [822]
W(112) – – ∼10−10 ∼300 – 4.85 FE [2324]
W(112) – – ∼10−9 ∼1700–2450 (4.28–4.72) 4.85 ± 0.07 TE [91]
W(112) – – (<10−11) 78 – 4.87 FE [809]
W(112) – – (<10−12) ∼300 (∼1700) – 4.88 FE [152]
W(112) – – <1 × 10−11 78 – 4.88 FE [373]
W(112) – – 3 × 10−11 78, 295 – 4.89 ± 0.15 FE [354]
W(112) – – ? ? – 4.9 ± 0.2 FE [3033]
W(112) – – ∼10−10 77 – 4.90 FE [3092]
W(112) – – (<1 × 10−11) ∼300 – 4.90 ± 0.02 FE [2254]
W(112) – – ≤3 × 10−9 ∼1200 – 4.91 FE [2072]
W(112) – – ? 77 – 4.91 FE [2956,3079]
W(112) – – ≤3 × 10−9 ∼1200 – 4.93 FE [2072]
W(112) – – ∼10−10 77 – 4.93 ± 0.01 FE [502]
W(112) – – – – – 4.94 TC [1159,1980,2129,

3067]
W(112) – – ∼10−9 77 – 4.95 FE [363,810,811,2766]
W(112) – – ∼10−10 ∼300 – 4.95 FE [378]
W(112) – – 3 × 10−10 ∼300 – 4.97 ± 0.05 FE [999]
W(112) – – ? 20, 100 – 4.98 FE [812]
W(112) – – <2 × 10−10 78 – 5.0 ± 0.1 FE [1674,2253]
W(112) – – ∼10−10 77 – 5.00 FE [502]
W(112) – – ? ∼300–1100 – 5.01 FE [3426]
W(112) – – ? 15 – 5.02 FE [653]
W(112) – – 3 × 10−10 ∼300 – 5.03 ± 0.02 FE [999]
W(112) – – ? 15 – 5.04 FE [653]
W(112) – – ∼10−10 77 – 5.05 ± 0.05 FE [502]
W(112) – – <10−8 20 – 5.05 ± 0.05 FE [813]
W(112) – – ? 80 – 5.08 FE [1057]
W(112) – – ∼10−10 77 – 5.1 FE [2714]
W(112) – – ∼10−10 78 – 5.12 ± 0.07 FE [819]
W(112) – – 3 × 10−10 ∼300 – 5.14 ± 0.05 FE [999]
W(112) – – ∼10−10 79 – 5.18 FE [1275]
W(112) – – 5 × 10−10 ∼1500–1900 – 5.20 TE [90]
W(112) – – ? ∼1800–2300 – 5.3 TE [1958]
Recommended – – – – 4.70 ± 0.01 4.78 ± 0.03 – –

W(113) – – 2 × 10−9 ∼1500–2000 – 4.15 ± 0.07 TE [2468]
W(113) – – ≤4 × 10−10 ∼1450–2000 – 4.18 ± 0.04 CPD [195]
W(113) – – ≤4 × 10−10 ∼1450–2000 – 4.235 ± 0.04 TE [195]
W(113) – – – – – 4.27 TC [3224]
W(113) – – – – – 4.35 TC [3224]
W(113) – – – – – 4.36 TC [3224]
W(113) – – – – – 4.37 TC [3224]
W(113) – – ∼10−10 78 – 4.46 ± 0.05 FE [819]
W(113) – – 5 × 10−10 ∼300 – 4.50 TE [376]
W(113){nearly} Sr Sr+ ∼10−9 ∼2400–2800 4.52 ± 0.03 – PSI [138]
W(113) – – ∼10−10 ∼300 – 4.54 PE [1060,1848,1849]
W(113) – – ∼10−10 ∼300 – 4.55 ± 0.05 CPD [820]
W(113) – – <5 × 10−9 ∼300 – 4.57 CPD [1138]
W(113) – – ≤10−9 ∼1600–2400 – 4.58 TE [1225,1282]
W(113) – – <5 × 10−10 ∼300 – 4.59 ± 0.01 CPD [2471]
W(113) – – <2 × 10−10 ∼300 – 4.65 CPD [1056]
W(113) La La+ ∼10−9 ∼2400–2800 4.79 ± 0.05 – PSI [138]
W(113) – – 1 × 10−10 ∼300 – 4.82 PE [1226]
Recommended – – – – – 4.43 ± 0.09 – –

W(114) – – ? ? – 4.31 FE [1283]
W(114) – – – – – 4.32 TC [3224]
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W(114) – – ∼10−10 79 – 4.40 FE [1275]
W(114) – – – – – 4.40 TC [3224]
W(114) – – ∼10−10 ∼1800–2200 – 4.40 ± 0.05 TE [820,2134]
W(114) – – – – – 4.42 TC [3224]
W(114) – – ∼10−10 ∼1100–1360 – 4.42 ± 0.02 TE [1394,1854]
W(114) – – ∼10−10 78 – 4.42 ± 0.05 FE [819]
W(114)288 – – <5 × 10−10 77 – 4.42 ± 0.05 CPD [920]
W(114) – – – – – 4.44 TC [3224]
W(114) – – ∼10−10 79 – 4.48 FE [1275]
W(114) – – ∼10−11 20–200 – 4.8 FE [2218]
Recommended – – – – – 4.40 ± 0.03 – –

W(115) – – ? 77 – 4.3 FE [3079]
W(115) – – ∼10−10 ∼300 – 4.35 ± 0.05 CPD [820]
W(115) – – <5 × 10−11 ∼300 – 4.43 CPD [1274]
W(115) – – ∼10−11 ∼300 – 4.46 ± 0.03* CPD [2647]

W(116) – – – – – 4.10 TC [4405]
W(116) – – – – – 4.121 TC [365]
W(116) – – – – – 4.152 TC [365]
W(116) – – ? ? – 4.2 FE [1463]
W(116) – – ? 78 – 4.20 FE [679]
W(116) – – 3 × 10−10 ∼300 – 4.21 ± 0.05 FE [530]
W(116) – – – – – 4.250 TC [365]
W(116) – – 2 × 10−9 ∼1700–2000 – 4.26 TE [141]
W(116) – – ∼10−10 79 – 4.26 FE [1275]
W(116) – – ? ? – 4.26 FE [1284]
W(116) – – – – – 4.27 TC [3224]
W(116) – – ? ? – 4.3 FE [1964]
W(116) – – ∼10−10 77 – 4.3 FE [2714]
W(116) – – 1 × 10−8 ∼1900–2100 – 4.3 ± 0.05 TE [1663,2012]
W(116) – – ∼10−10 –1600– – 4.3 ± 0.1 TE [335,1650,1651,

1967]
W(116) – – 5 × 10−10 ∼300 – 4.30 FE [376]
W(116) – – – – – 4.30 TC [4405]
W(116) – – (<10−12) ∼300 – 4.30 FE [152]
W(116) – – ∼1 × 10−9 ∼1350–2050 – 4.30 ± 0.01 TE [150]
W(116) – – ∼10−8 ∼2050–2350 – 4.30 ± 0.03 TE [372,3064]
W(116) – – ≤2 × 10−9 ∼1700–2000 – 4.32 ± 0.02 TE [127,144]
W(116) – – ∼10−10 77 – 4.32 ± 0.04 FE [502]
W(116) – – 1 × 10−8 ∼1900–2100 – 4.32 ± 0.05 TE [1663,2012]
W(116) – – ∼10−10 78 – 4.32 ± 0.06 FE [819]
W(116) – – ∼10−10 ∼300 – 4.34 FE [4237]
W(116) – – – – – 4.35 TC [3224]
W(116) – – ? ∼1400–2000 – 4.35 ± 0.02 TE [149,2706]
W(116) – – – – – 4.36 TC [3224]
W(116) – – ∼10−10 ∼300 – 4.36 ± 0.05 CPD [820]
W(116) – – 2 × 10−9 ∼1700–2000 – 4.37 TE [141]
W(116) – – ? 77 – 4.41 ± 0.04 FE [502]
W(116) – – – – – 4.47 TC [1159,1980,2129,

3067]
Recommended – – – – – 4.30 ± 0.04 – –

W(119) – – ∼10−10 ∼300 – 4.56 ± 0.05 CPD [820]

W(120) – – – – – 4.308 TC [365]
W(120) – – – – – 4.31 TC [3224]
W(120) – – ≤1 × 10−10 78 – 4.32 FE [1278]
W(120) – – – – – 4.320 TC [365]
W(120) – – ? ? – 4.33 FE [1283]
W(120) – – ? ∼300 – 4.33 FE [3581]
W(120) – – (<10−12) ∼300 – 4.34 FE [152]
W(120) – – (1 × 10−10) ∼300 – 4.35 ± <0.06 FE [1529]
W(120) – – ≤1 × 10−10 ∼300 – 4.36 ± 0.01 FE [1278]
W(120) – – ∼10−10 78 – 4.36 ± 0.04 FE [819]
W(120) – – ? ∼300 – <4.39 FE [1766]
W(120) – – – – – 4.39 TC [3224]
W(120) – – ? 20, 100 – 4.40 FE [812]
W(120) – – – – – 4.40 TC [3224]
W(120) – – – – – 4.404 TC [365]
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W(120) – – – – – 4.42 TC [3224]
W(120) – – ? 20, 100 – 4.45 FE [3508]
W(120) – – ? ∼300–1100 – 4.46 FE [3426]
W(120) – – <10−8 20 – 4.46 ± 0.05 FE [813]
W(120) – – ≤8 × 10−9 ∼2200–2450 – 4.47 ± 0.01 TE [2340]
W(120) – – ≤8 × 10−9 ∼2200–2450 – 4.54 ± 0.05 TE [2340]
W(120) – – ? ? – 5.76 FE [1964]
Recommended – – – – – 4.38 ± 0.05 – –

W(122) – – – – – 4.133 TC [365]
W(122) – – – – – 4.162 TC [365]
W(122) – – – – – 4.259 TC [365]
W(122) – – – – – 4.29 TC [3224]
W(122) – – ∼10−10 78 – 4.30 ± 0.04 FE [819]
W(122) – – (<10−12) ∼300 – 4.35 FE [152]
W(122) – – – – – 4.37 TC [3224]
W(122) – – (<10−11) 78 – 4.37 FE [809]
W(122) – – – – – 4.38 TC [3224]
W(122) – – – – – 4.39 TC [3224]
W(122) – – ? ∼300–1100 – 4.40 FE [3427]
W(122) – – ? ∼300–1100 – 4.47 FE [3426]
W(122) – – <10−9 ∼300 – 4.5 FE [2354]
Recommended – – – – – 4.34 ± 0.05 – –

W(123) – – – – – 4.31 TC [4405]
W(123) – – – – – 4.37 TC [3224]
W(123) – – – – – 4.41 TC [4405]
W(123) – – – – – 4.433 TC [365]
W(123) – – – – – 4.442 TC [365]
W(123) – – – – – 4.45 TC [3224]
W(123) – – – – – 4.47 TC [3224]
W(123)290 – – ≤4 × 10−11 ∼1200 – 4.50 FE [2045]
W(123) – – ∼10−10 78 – 4.50 ± 0.06 FE [819]
W(123) – – – – – 4.511 TC [365]
W(123) – – (<10−12) ∼300 – 4.52 FE [152]
W(123) – – – – – 4.53 TC [3224]
W(123) – – ∼10−10 79 – 4.56 FE [1275]
W(123) – – ? ∼300–1100 – 4.58 FE [3426]
W(123) – – ∼10−10 79 – 4.61 FE [1275]
W(123) – – – – – 4.77 TC [1271]
W(123)290 – – ≤4 × 10−11 80–400 – 4.90 ± 0.03 FE [2045]
Recommended – – – – – 4.50 ± 0.05 – –

W(124) – – – – – 4.25 TC [3224]
W(124) – – – – – 4.33 TC [3224]
W(124) – – ? ∼300–1100 – 4.33 FE [3426]
W(124) – – – – – 4.34 TC [3224]
W(124) – – ∼10−10 78 – 4.35 ± 0.05 FE [819]
W(124) – – – – – 4.35 TC [3224]
Recommended – – – – – 4.33 ± 0.03 – –

W(130) – – ∼10−10 77 – 4.16 ± 0.03 FE [502]
W(130) – – ∼10−10 77 – 4.21 ± 0.01 FE [502]
W(130) – – ≤8 × 10−9 ∼2200–2450 – 4.24 ± 0.05 TE [2340]
W(130) – – 3 × 10−11 78, 295 – 4.25 FE [354]
W(130) – – <2 × 10−10 ∼300 – 4.25 FE [489]
W(130) – – ? ? – 4.27 FE [1283]
W(130) – – ≤8 × 10−9 ∼2200–2450 – 4.28 ± 0.01 TE [2340]
W(130) – – ∼10−10 77 – 4.28 ± 0.01 FE [502]
W(130) – – ∼1 × 10−10 ∼300 – 4.3 FE [3438]
W(130) – – ∼10−10 ∼300–1500 – 4.30 FE [1783]
W(130) – – – – – 4.30 TC [4405]
W(130) – – <10−10 90 – 4.30 FE [656,926]
W(130) – – (<10−12) ∼300 – 4.31 FE [152]
W(130) – – 2 × 10−9 ∼300 – 4.31 ± 0.07 CPD [2468]
W(130) – – ∼10−10 77 – 4.32 ± 0.05 FE [502]
W(130) – – ∼10−10 77 – 4.34 ± 0.02 FE [502]
W(130) – – ∼10−10 78 – 4.34 ± 0.04 FE [819]
W(130) – – 5 × 10−10 ∼300 – 4.35 FE [376]
W(130) – – 2 × 10−10 ∼300 – 4.35 FE [3992]
(continued on next page)

159



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

W(130) – – 2 × 10−8 ∼300 – 4.35 PE [821]
W(130) – – ? ? – 4.35 FE [1284]
W(130) – – ∼10−11 78 – 4.35 FE [2823]
W(130) – – ? ∼300 – 4.35 ± 0.05 FE [2484]
W(130) – – – – – 4.37 TC [3224]
W(130) – – <5 × 10−10 77 – 4.4 FE [3114]
W(130) – – ∼10−10 77 – 4.40 ± 0.13 FE [502]
W(130) – – 2 × 10−10 ∼300 – 4.45 FE [4296]
W(130) – – – – – 4.45 TC [3224]
W(130) – – – – – 4.46 TC [1271]
W(130) – – – – – 4.46 TC [3224]
W(130) – – <2 × 10−10 78 – 4.48 FE [1674,2253]
W(130) – – ? 77 – 4.5 FE [3079]
W(130) – – – – – 4.52 TC [3224]
W(130) – – 3 × 10−11 78, 295 – 5.19 ± 0.16 FE [354]
Recommended – – – – – 4.32 ± 0.04 – –

W(133) – – ∼10−10 78 – 4.68 ± 0.07 FE [819]

W(134) – – ∼10−10 78 – 4.74 ± 0.07 FE [819]

W(144) – – <10−10 295 – 5.15 FE [1276]
W(144) – – <10−10 79 – 5.25 FE [1276]

W(150) – – <10−10 ∼300 – 4.43 ± 0.01 FE [2044]

W(160) – – 5 × 10−10 ∼300 – 4.31 FE [3670]
W(160) – – ∼10−10 78 – 4.43 ± 0.04 FE [819]
W(160) – – <8 × 10−10 78 – 4.45 FE [1731]

W(223) – – ∼10−10 78 – 4.70 ± 0.05 FE [819]

W(227) – – ∼10−10 ∼300 – 4.43 ± 0.05 CPD [820]

W(229) – – ∼10−10 ∼300 – 4.34 ± 0.05 CPD [820]

W(230) – – – – – 4.26 TC [3224]
W(230) – – (1 × 10−10) ∼300 – 4.29 ± <0.06 FE [1529]
W(230) – – ∼10−10 ∼300 – 4.31 FE [4237]
W(230) – – – – – 4.34 TC [3224]
W(230) – – – – – 4.35 TC [3224]
W(230) – – – – – 4.36 TC [3224]
W(230) – – ∼10−10 77 – 4.4 FE [2714]
W(230) – – ∼10−10 78 – 4.58 ± 0.06 FE [819]
Recommended – – – – – 4.33 ± 0.05 – –

W(233) – – – – – 4.277 TC [365]
W(233) – – – – – 4.291 TC [365]
W(233) – – – – – 4.33 TC [3224]
W(233) – – – – – 4.36 TC [4405]
W(233) – – – – – 4.378 TC [365]
W(233) – – – – – 4.41 TC [3224]
W(233) – – ∼10−10 78 – 4.41 ± 0.05 FE [819]
W(233) – – – – – 4.42 TC [3224]
W(233) – – – – – 4.45 TC [3224]
W(233) – – (<10−12) ∼300 – 4.46 FE [152]
Recommended – – – – – 4.38 ± 0.06 – –

W(235)290 – – ≤4 × 10−11 ∼1200 – 4.30 FE [2045]
W(235)290 – – ≤4 × 10−11 ∼80–400 – 4.72 ± 0.05 FE [2045]

W(250) – – ∼10−10 ∼300 – 4.55 ± 0.05 CPD [820]

W(257)290 – – ≤4 × 10−11 ∼1200 – 4.80 FE [2045]
W(257)290 – – ≤4 × 10−11 ∼80–900 – 5.00 ± 0.01 FE [2045]

W(334) – – <10−10 295 – 4.20 FE [1276]
W(334) – – ∼10−10 78 – 4.62 ± 0.04 FE [819]

W(650) – – – – – 4.24 TC [3224]
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W(650) – – – – – 4.30 TC [3224]
W(650) – – – – – 4.32 TC [3224]
W(650) – – – – – 4.33 TC [3224]
W(650) – – <8 × 10−9 ∼2200–2450 – 4.67 ± 0.03 TE [2340]

W – (W+) 6 × 10−9 ∼2900–3000 2.6 ± 0.2 – PSI [924]
W – – – – – 2.80 TC [2493]
W – – – – – 2.85 TC [2493]
W(fp)291 – – – – – 3.65 TC [2973]
W – – <10−10 78 – 3.8* FE [2695]
W(fp)291 – – – – – 3.80 TC [2973]
W – – – – – 3.91 TC [521]
W – – <4 × 10−11 ∼300 – 4.0 FE [3809]
W – – <10−8 ∼2200–2400 – 4.10 ± 0.20 TE [1062]
W(porous) Cs Cs+ ? ∼1150–1250 4.2 – PSI [3764]
W – – – – – 4.2 TC [1993]
W292 – – ∼10−9 ∼300 – 4.2 FE [1493]
W292 – – ∼10−9 ∼300 – 4.25 FE [1493]
W – – ? ? – 4.31 TE [2455]
W/glass293 W – ∼10−10 77–90 – 4.33 PE [3049]
W{46.3%(310)}411 – – – – (4.96 ± 0.03) 4.34 ± 0.05 TC [630]
W292 – – ∼10−9 ∼300 – 4.35 FE [1493]
W – – ≤10−6 ∼1600–1800 – 4.35 TE [2301]
W/glass W – ∼10−10 77–90 – 4.35 PE [3052]
W – – – – – 4.36 TC [2005]
W/glass293 W – <10−9 77–90 – 4.36 PE [2095]
W – – ? ∼300 – 4.38 CPD [2297]
W{46.3%(310)}411 – – – – (4.99 ± 0.06) 4.38 ± 0.05 TC [2453]
W – – (<10−13) 21 – 4.4 CPD [3504]
W – – ? ∼300 – 4.4 FE [3987]
W – – – – – 4.40 TC [3637]
W – – – – – 4.40 TC [2707]
W – – – – – 4.40 TC [2949]
W(fp)291 – – – – – 4.40 TC [2973]
W – – – – – 4.40 TC [4441]
W – – ? ∼1400–2000 – 4.40 TE [3020]
W – – <10−8 ∼1900–2400 – 4.40 ± 0.05 TE [1858]
W – – ∼10−8 ∼300 – 4.41 PE [4340]
W – – – – – 4.41 TC [298]
W U U+ <1 × 10−7 ∼2800–2950 4.41 ± 0.08 – PSI [80]
W – – – – – 4.42 TC [1066]
W294 – – 12 (Ar) ∼300 – 4.42 ± 0.02 PE [621]
W – – 2 × 10−7 ∼2000–2200 (5.09, 5.23) 4.42 ± 0.02 TE [36]
W – – ≤10−10 ∼300 – 4.44 FE [392]
W – – <5 × 10−10 77, ∼300 – 4.45 FE [3822]
W – – ∼10−9 ? – 4.45 ± 0.05 TE [1775]
W(1% oxides) – – ? ∼1350–2200 – 4.456 ± 0.006 TE [660]
W – – – – – 4.46 TC [3224]
W{25%(110)}295 – – – 2000 (5.12*) 4.46* TC [3844]
W – – ∼6 × 10−10 ∼1400–1700 – 4.46 TE [2089,2092]
W CsCl Cl− ? ∼2300–2600 4.46*N – NSI [574]
W – – ∼10−8 ∼1600–2100 – 4.46 ± 0.09 TE [1880,1882]
W – – ∼10−10 –1600– – 4.47 TE [335,1650,1651,

1967]
W – – ? (Cs) ∼1200–2000 – 4.47 TE [650]
W – – <6 × 10−10 1080–1400 – 4.47 ± 0.01 TE [161]
W/W(110)309 WCl6, H2 – ∼10−7 ∼1850–2450 – 4.47 ± 0.01 TE [1053]
W – – 2 × 10−7 ∼2000–2200 (5.23 ± 0.03) 4.47 ± 0.04 TE [37]
W – – ? ∼1400–1900 – 4.48 TE [393]
W – – 5 × 10−7 2270 – 4.48 TE [1746]
W – – 2 × 10−7 ∼2000–2100 (5.20 ± 0.05) 4.48 ± 0.06 TE [23]
W/glass W – ? 293 (351) – 4.49 ± 0.03 CPD [2573]
W/glass W – ? 351 (428) – 4.49 ± 0.03 CPD [2573]
W KCl Cl− ? ∼2300–2600 4.49*N – NSI [574]
W KI I− ? ∼2300–2550 4.49*N – NSI [574]
W299 I I− ∼10−7 1980 4.49*N (4.51) NSI [827]
W – – 2 × 10−8 ∼300–1040 – 4.49 ± 0.02 PE [826]
W170,296 – (W+) <10−6 ∼2800–3000 4.49 ± 0.14 (4.59 ± 0.04) PSI [823]
W – – ∼10−9 ∼1800–2600 – 4.5 TE [394]
W297 – (W−) ? ∼2200–2300 4.5*N – NSI [966]
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W – – – – – 4.5 TC [1561]
W{95%(100)}302 – – ? (Cs) ∼1600–2400 – 4.5 TE [3414]
W – – – – – 4.5 TC [1645]
W – – ∼700 (Ar) ∼3500 – 4.5 TE [2007]
W – – ∼10−10 ∼2000–2800 – 4.5 TE [2098]
W – – ? ∼1400–2000 – 4.5 TE [3020]
W – – ? (Cs) ∼1200–1800 – 4.5 TE [3414]
W298 – – ≤2 × 10−9 ∼1500–2500 – 4.5 ± 0.07 TE [3533]
W – – ∼10−6 ∼1800 – 4.5 ± 0.1 TE [1779]
W – – 5 × 10−10 ∼300 – 4.50 FE [3670]
W – – <10−11 78 – 4.50 FE [267]
W/Mo WF6 – 5 × 10−9 ∼2000–2200 – 4.50 TE [352,4343]
W – – – – – 4.50 TC [3224]
W – – – – – 4.50 TC [2583]
W – – ∼10−9 ? – 4.50 TE [3096]
W – – ? ? – 4.50 TE [3402]
W – – ∼10−7 ? – 4.50 TE [3523]
W – – ≤5 × 10−10 20 – 4.50 ± <0.02 FE [3862]
W/glass W – ? 77 (293) – 4.50 ± 0.04 CPD [2573]
W – – ≤10−9 1150–2200 – 4.50 ± 0.05 TE [650]
W – – 5 × 10−8 ∼1000–1500 – 4.51 TE [395]
W{25%(110)}295 Cs Cs+ – 2000 4.51 – TC [3843]
W RbCl Cl− ? ∼2300–2600 4.51*N – NSI [574]
W299 – – ∼10−7 ∼1300–2000 (4.51*N) 4.51 TE [827]
W299 I2 I− ∼10−7 1940 4.51*N (4.51) NSI [827]
W/W(100)309 WF6, H2 – ∼10−7 1850–2450 – 4.51 ± 0.01 TE [1053]
W K K+ ? 1350–2170 4.514 ± 0.002 – PSI [158]
W – – ? ∼1200–2000 – 4.515 TE [2705]
W – – ? 1350–2200 – 4.519 TE [660]
W – – – – – 4.52 TC [3224]
W – – ∼10−9 ∼300 – 4.52 PE [1609]
W – – ? ∼1500–1900 – 4.52 TE [1372]
W – – ? ? – 4.52 TE [1450]
W – – 5 × 10−7 2270 – 4.52 TE [1746]
W – – 3 × 10−9 ? – 4.52 TE [159]
W – – 5 × 10−10 ∼300 – 4.52 FE [1853]
W – – – – – 4.52 TC [2456]
W – – <10−6 ∼300 – 4.52 PE [2919]
W – – ? (Cs) ∼1200–1400 – 4.52 TE [3752]
W – – ? ∼1600–2000 – 4.52 TE [2925,2926]
W{95%(100)}302 – – ∼10−9 ? – 4.52 TE [3414]
W – – <10−6 ? – 4.52 ± 0.01 TE [2919]
W – – <8 × 10−10 77 – 4.52 ± 0.04 CPD [920]
W Rb Rb+ ? 1150–1450 4.52 ± 0.05 – PSI [2107]
W{95%(100)}300 – – ∼10−9 1150–2200 – 4.52 ± 0.07 TE [124]
W{96%(100)}300 – – ∼10−9 1150–2200 – 4.52 ± 0.07 TE [124]
W – – <2 × 10−9 ∼1050–1250 – 4.52 ± 0.09 TE [2241]
W{<35%(110)} – – – – (5.09 ± 0.10) 4.52 ± 0.12 TC [283,630]
W – – ? ∼1350–2200 – 4.529 TE [660]
W – – 6 × 10−9 ∼300 – 4.53 PE [1139]
W – – ? ? – 4.53 TE [1486]
W – – ≤10−7 OE (∼1850) – 4.53 TE [1878]
W174 – – – OE – 4.53 TC [1747]
W – – ≤10−6 ∼1600–1800 – 4.53 TE [2305]
W – – ? (Cs) 2300 – 4.53 TE [2341]
W/glass – – ∼10−10 90 (403) – 4.53 PE [3049]
W – – ? ∼2400–2500 – 4.53 ± 0.01 TE [2204]
W – – ? ∼1500–2200 – 4.53 ± 0.02 TE [792]
W – – ? ? – 4.53 ± 0.05 TE [2209]
W – – ∼10−7 OE (∼1700) – 4.53 ± 0.07 TE [3326]
W – – ? 1577 – 4.539 TE [661]
W – – – – – 4.54 TC [3224]
W – – ∼10−9 ? – 4.54 TE [979]
W SF6 SF6

− 2 × 10−6 ∼1400–1700 4.54N – NSI [586]
W – – ∼10−9 >1200 – 4.54 TE [1203]
W – – ? ∼1100–1700 – 4.54 TE [1949]
W Cs Cs+ ? ∼1400–1800 4.54 – PSI [2109]
W – – ? 1970 – 4.54 TE [2121]
W/glass – – ? OE (295) – 4.54 PE [3392]
W – – ? 2300–2450 – 4.54 TE [3842]
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W303 – – – ∼300 – 4.545 TC [828]
W – – 5 × 10−9 ∼2000–2400 – 4.55 TE [352]
W – – – 1800 – 4.55 TC [471]
W – – ? (Cs, Ba) ∼1600–2000 – 4.55 TE [1485]
W – – ∼10−8 ∼1600–2300 – 4.55 TE [1776]
W(foil) – – ≤2 × 10−10 ∼300 – 4.55 CPD [1781]
W/glass W – ≤2 × 10−10 ∼300 – 4.55 CPD [1781]
W – – ? ? – 4.55 TE [2233]
W RbCl Rb+ ? ? 4.55 – PSI [2306]
W – – ? ∼1200–1500 – 4.55 TE [2928]
W/glass293 W – ∼10−10 293 (403) – 4.55 PE [3049]
W – – – – – 4.55 TC [3264,3265,3267]
W – – <6 × 10−10 ∼1100–1400 – 4.55 ± 0.01 TE [161]
W – – ≤3 × 10−10 ∼300 – 4.55 ± 0.01 CPD [194]
W – – <5 × 10−10 ∼1800–2500 – 4.55 ± 0.01 TE [232]
W/glass W – ∼10−8 ∼300 – 4.55 ± 0.02 CPD [133,349]
W Ag Ag+ 3 × 10−6(O2) ∼2500–2800 4.55 ± 0.1 – PSI [3408,3409]
W Ag Ag+ <10−7(O2) ∼2300–2600 4.55 ± 0.1 – PSI [3408,3409]
W Cu Cu+ 3 × 10−6(O2) ∼2500–2800 4.55 ± 0.1 – PSI [3408,3409]
W Cu Cu+ <10−7(O2) ∼2300–2600 4.55 ± 0.1 – PSI [3408,3409]
W – – ? 1577 – 4.556 TE [661]
W – – ? ∼1350–2200 – 4.557 TE [660]
W – – ? ∼1700–2200 – 4.56 TE [2187,3664]
W – – – – – 4.56 TC [3318]
W – – – – – 4.56 TC [3224]
W – – <2 × 10−9 ∼1700–2300 – 4.56 TE [662]
W – – <10−8 ∼300 – 4.56 CPD [829]
W – – ≤10−7 ∼1500–1600 – 4.56 TE [1777]
W – – 1 × 10−9 ∼300 (∼2100) – 4.56 CPD [3617]
W{46%(100)} – – – – (4.98 ± 0.05) 4.56 ± 0.01 TC [803]
W{46%(100)} – – – – (5.00 ± 0.05) 4.56 ± 0.01 TC [2453]
W – – ? ∼2100–2200 – 4.56 ± 0.01 TE [3349]
W – – <10−9 ∼1700–2300 – 4.56 ± 0.02 TE [162]
W – – ≤5 × 10−7 ? – 4.56 ± 0.03 TE [160]
W – – 5 × 10−10 ∼300 – 4.56 ± 0.03 FE [2492]
W – – ≤10−4 (Na) ∼1450–2450 – 4.56 ± 0.04 TE [1063]
W – – ? ? (4.65*) 4.56 ± 0.06 TE [3834]
W – – ? 1577 – 4.567 TE [661]
W K K+ 4 × 10−9 ∼1000–1600 4.57 – PSI [188]
W – – 2 × 10−9 ∼1900–2400 – 4.57 TE [4343]
W{95%(100)}301 – – – – (4.69 ± 0.05) 4.57 ± 0.00 TC [803]
W – – ≤9 × 10−7 2160–2520 – 4.57 ± 0.01 TE [2296]
W – – 1 × 10−7 ∼1900–2200 (5.18 ± 0.03) 4.57 ± 0.04 TE [281]
W – – 1 × 10−10 ∼300 (4.67 ± 0.09) 4.57 ± 0.1 PE [3055]
W – – <10−8 ∼2200–2400 – 4.57 ± 0.21 TE [1062]
W – – ≤2 × 10−6 ∼2100–2700 – 4.575 ± 0.015 TE [2296]
W – – ≤10−9 ∼1900–2200 – 4.58 TE [66]
W – – ≤2 × 10−8 ∼1350–2050 – 4.58 TE [130,1363]
W KBr Br− ? ∼2300–2600 4.58N – NSI [574]
W – – ? (Ba) ∼1600–2000 – 4.58 TE [1485]
W – – ? ? – 4.58 TE [3524,3525]
W Ba Ba+ <1 × 10−7 ∼2400–2800 4.58 ± 0.01 – PSI [80]
W – – 1 × 10−7 ∼2100–2600 (5.14 ± 0.03) 4.58 ± 0.03 TE [76,77]
W304 – – 5 × 10−7 2300 (5.05, 5.10) 4.58 ± 0.05 TE [94]
W – – ≤1 × 10−6 ∼2100–2700 – 4.588 ± 0.011 TE [2296]
W – – – – – 4.59 TC [1744]
W/W(100)309 WF6, H2 – ∼10−7 ∼1850–2450 – 4.59 ± 0.01 TE [1053]
W{96%(100)}300 – – – – (4.60 ± 0.04) 4.59 ± 0.01 TC [630,2453]
W296 – – <10−6 ? (4.49 ± 0.14) 4.59 ± 0.04 TE [823]
W – – ∼10−7 ∼1700–2050 – 4.59 ± 0.04 TE [2820]
W292 – – ∼10−9 ∼300 – 4.6 FE [1493]
W – – <10−4 (Cs) ∼2500–3000 – 4.6 TE [111]
W294 – – 2 × 10−7 ∼300 (2300) – 4.6 PE [621]
W – – ? ∼300 – 4.6 PE [1243]
W – – ? ? – 4.6 TE [1792]
W KCl K+ ? ? 4.6 – PSI [2306]
W/Mo(100)305 W – 1 × 10−11 77 – 4.6 FE [2965]
W – – – – – 4.6 TC [3318]
W{46.3%(310)}411 – – – – – 4.6 TC [489]
W – – ? (Cs) ∼2000–2500 – 4.6 TE [3798,3799]
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W – – ≤1 × 10−6 ? (4.75 ± 0.02) 4.6 ± 0.1 TE [216]
W306 NaCl Na+ ≤5 × 10−8 ∼1550–1770 4.6 ± 0.1 – PSI [3113]
W{46%(100)} Li Li+ ∼10−9 ∼1800–2800 4.60 – PSI [534]
W/Ni W – ? ∼300 – 4.60 PE [2922]
W – – ∼10−10 ∼300 – 4.60 CPD [3532]
W – – ? (CsI) ∼2100–2400 – 4.60 ± 0.01 TE [1321]
W Sr Sr+ ∼10−9 ∼2400–2800 4.60 ± 0.02 – PSI [138]
W La La+ ∼10−9 ∼2400–2800 4.60 ± 0.02 – PSI [138]
W – – ≤5 × 10−8 ? (5.14 ± 0.05) 4.60 ± 0.04 TE [84,93,824]
W{96%(100)}300 – – – – 4.60 ± 0.04 (4.59 ± 0.01) TC [630,2453]
W – – ≤10−4 (Na) ∼1450–2450 – 4.60 ± 0.04 TE [1063]
W – – ≤8 × 10−8 ∼1600–2500 (4.75 ± 0.05) 4.60 ± 0.05 TE [95]
W In In+ 4 × 10−10 (O2) ∼2100–2850 4.60 ± 0.05 – PSI [139]
W In In+ 1 × 10−6 (O2) ∼2500–2850 4.60 ± 0.05 – PSI [139]
W – – 1 × 10−7 ∼1900–2200 (5.19, 5.20) 4.60 ± 0.05 TE [281]
W – – <10−8 ∼1900–2250 (4.95 ± 0.05) 4.61 TE [85]
W – – ? (NaI) ∼2500–3000 – 4.61 ± 0.01 TE [1321]
W – – 5 × 10−10 ∼300 – 4.61 ± 0.01 PE [2492]
W Sr Sr+ 8 × 10−9 ∼2300–2800 4.61 ± 0.03 – PSI [145]
W{35%(110)} – – – – (5.18 ± 0.03) 4.61 ± 0.03 TC [630,2453]
W – – 1 × 10−7 ∼2000–2200 (5.16 ± 0.05) 4.61 ± 0.03 TE [281]
W{95%(100)}301 – – – – (4.70 ± 0.04) 4.61 ± 0.04 TC [2453]
W{46%(100)}475 Eu Eu+ ∼10−9 ∼1800–2800 4.61 ± 0.05 – PSI [390,825]
W{46%(100)} Ce Ce+ ∼10−9 ∼1800–2800 4.61 ± 0.05 – PSI [390]
W{46%(100)} Li Li+ ∼10−9 ∼1800–2300 4.61 ± 0.05 – PSI [391,535,825]
W{46%(100)} Na Na+ ∼10−9 ∼1700–1950 4.61 ± 0.05 – PSI [535,659,825]
W{46%(100)} K K+ ∼10−9 ∼1250–1650 4.61 ± 0.05 – PSI [535,825]
W{46%(100)} Rb Rb+ ∼10−9 ∼1300–1650 4.61 ± 0.05 – PSI [535,825]
W{46%(100)} Cs Cs+ ∼10−9 ∼1150–1500 4.61 ± 0.05 – PSI [535,825]
W294 – – 12 (Ar) ∼300 – 4.62 PE [621]
W – – ? (Cs) ∼2000–2400 – 4.62 TE [3808]
W – – ? ∼1200–1500 – 4.62 TE [3248]
W – – ∼10−7 ∼1450–2250 – 4.62 TE [1878]
W – – ≤3 × 10−10 1000 – 4.62 ± 0.01 CPD [194]
W{33.6%(112)} – – – – (5.13 ± 0.04) 4.62 ± 0.02 TC [630,2453]
W{46%(100)} Eu Eu+ ∼10−9 ∼1800–2800 4.62 ± 0.05 – PSI [533,534]
W/glass293 W – ∼10−10 77 (438) – 4.63 PE [2095]
W{35.2%(110)} – – – – (5.15 ± 0.03) 4.63 ± 0.01 TC [281]
W – – <10−8 ∼1900–2400 – 4.63 ± 0.05 TE [1858]
W – – ≤10−7 ∼1450–2250 – 4.64 TE [1878]
W K K+ ? ∼1300–1400 4.64 ± 0.03* – PSI [1373]
W Ag Ag+ ≤10−5 (O2) ∼2500–2800 4.65 – PSI [55]
W Ba Ba+ ≤10−4 (Ba) ∼2600–2900 4.65* (4.56 ± 0.06) PSI [3834]
W – – ? 1500 – 4.65 TE [3534]
W – – 6 × 10−9 1800 – 4.65 TE [4060]
W312 KCl K+ ? ∼1700–2400 4.65 ± 0.05 – PSI [46]
W312 KBr K+ ? ∼1700–2400 4.65 ± 0.05 – PSI [46]
W312 KI K+ ? ∼1700–2400 4.65 ± 0.05 – PSI [46]
W/SiO2 W – ? ? – 4.65 ± 0.05 FE [1605]
W – – ∼10−7 ∼2000 – 4.65 ± 0.05 TE [1649]
W Ti Ti+ ≤10−6 (O2) ∼2300–2900 4.65 ± 0.1 – PSI [3408]
W307 – (W+, W−) ? ∼2262–2353 4.65 ± 0.4* – PSI, NSI [965]
W – – <8 × 10−11 ∼300 – 4.650 ± 0.100 CPD [342,3868]
W Cu Cu+ ≤10−5 (O2) ∼2500–2800 4.66 – PSI [55]
W/Mo308 WF6, H2 – ∼10−7 –2000– – 4.66 TE [1398]
W/W(110)309 WCl6, H2 – ∼10−7 ∼1850–2450 – 4.66 ± 0.01 TE [1053]
W Na Na+ ≤5 × 10−9 ∼1500–1700 4.66 ± 0.01* – PSI [2594]
W/Mo308 WCl6, H2 – ∼10−7 –2000– – 4.67 TE [1398]
W – – ? 1900 – 4.67 TE [2762]
W – – – – – 4.67 TC [3224]
W K K+ ≤3 × 10−9 1150–2000 4.67 ± 0.09 (4.57 ± 0.1) PSI [3055]
W – – 6 × 10−7 (O2) ∼2100–2500 – 4.68 CPD [200]
W308 – – ∼10−7 –2000– – 4.68 TE [1398]
W – – – – – 4.68 TC [2629]
W K K+ 2 × 10−7 ∼1400–2200 4.68 ± 0.01* – PSI [50]
W – – ? ∼2100–2700 – 4.68 ± 0.07 TE [228]
W – – ≤10−7 1450–2150 – 4.69 TE [1878]
W – – ? ? – 4.69 TE [2105]
W/W(100)309 WF6, H2 – ∼10−7 ∼1850–2450 – 4.69 ± 0.01 TE [1053]
W KI K+ 2 × 10−7 ∼1500–2200 4.69 ± 0.02* – PSI [51]
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W – – ? 0E (≤1100) – 4.69 ± 0.03 PE [3392]
W{95%(100)}301 – – – – 4.69 ± 0.05 (4.57 ± 0.00) TC [803]
W(porous) – – ? >1600 – 4.7 TE [3762]
W(porous) K K+ <10−7 ∼1400–1600 4.7 – PSI [3763]
W Na Na+ ∼10−4 (Na) 2000 4.7* – PSI [3839]
W – – <10−7 2200 – 4.7 TE [2582]
W/Mo(100)305 W – 1 × 10−11 77 (1300) – 4.7 FE [2965]
W/W(110) – – – – – 4.7 TC [2975]
W – – 5 × 10−8 ∼300 – 4.7 PE [3301]
W Na Na+ ? ∼1600–2200 4.7 ± 0.1 – PSI [1061]
W Mg Mg+ ? ∼1600–2200 4.7 ± 0.1 – PSI [1061]
W Ca Ca+ ? ∼1600–2200 4.7 ± 0.1 – PSI [1061]
W Sr Sr+ ? ∼1600–2200 4.7 ± 0.1 – PSI [1061]
W Ba Ba+ ? ∼1600–2200 4.7 ± 0.1 – PSI [1061]
W – – 0.08 (Cs) ∼2000–2350 – 4.70 TE [2937]
W Li Li+ 2 × 10−7 ∼2100–2800 4.70 – PSI [50]
W Na Na+ 2 × 10−7 ∼2100–2800 4.70 – PSI [50]
W Rb Rb+ 2 × 10−7 ∼1600–2600 4.70 ± 0.02* – PSI [50]
W KCl K+ 2 × 10−7 ∼1600–2300 4.70 ± 0.03* – PSI [51]
W KBr K+ 2 × 10−7 ∼1600–2300 4.70 ± 0.03* – PSI [51]
W{95%(100)}301 – – – – 4.70 ± 0.04 (4.61 ± 0.04) TC [2453]
W – – <2 × 10−7 ∼2000–2200 – 4.70 ± 0.40 TE [3066]
W Na Na+ ≤3 × 10−7 ∼1500–2900 4.71 – PSI [136]
W NaI Na+ ≤3 × 10−7 ∼1500–2900 4.71 – PSI [136]
W K K+ ? ∼1000 4.71* – PSI [3794]
W – – ∼10−9 ∼300 – 4.71 CPD [2473]
W – – ? ? – 4.71 TE [3386]
W – – ? 1100 – 4.71 TE [3392]
W/W(100)309 WF6, H2 – ∼10−7 1850–2450 – 4.71 ± 0.01 TE [1053]
W/Mo308 WF6, H2 – ∼10−7 –2000– – 4.72 TE [1398]
W Li Li+ 2 × 10−7 ∼2100–2800 4.72 ± 0.01* – PSI [50]
W Na Na+ 2 × 10−7 ∼2200–2900 4.72 ± 0.01* – PSI [50]
W KF K+ 2 × 10−7 ∼1400–2200 4.72 ± 0.02* – PSI [51]
W KBr K+ 2 × 10−7 ∼1600–2400 4.72 ± 0.03* – PSI [1285]
W K K+ 2 × 10−7 ∼1300–2200 4.72 ± 0.04* – PSI [1285]
W – – 6 × 10−3 ∼300 – 4.72 ± 0.05 PE [2079,2080]
W – – – – – 4.73 TC [3476]
W – – – 1500–1900 – 4.73 ± 0.01 TC [1372]
W – – ? (Cs) ∼2000–2350 – 4.74 TE [2937]
W LiI Li+ ≤3 × 10−7 ∼1500–1900 4.74 – PSI [136]
W KBr K+ ? ∼1900–2100 4.74* – PSI [2208]
W KI K+ ? ∼1900–2100 4.74* – PSI [2208]
W – – ? ∼2100–2200 – 4.74 ± 0.01 TE [3349]
W(fp)291 – – – – – 4.75 TC [2973]
W – – ∼10−8 ? – 4.75 TE [196]
W308 – – ∼10−7 –2000– – 4.75 TE [1398]
W K K+ ≤1 × 10−6 ∼1300–1800 4.75 ± 0.02 (4.6 ± 0.1) PSI [216]
W Li Li+ ≤8 × 10−8 ∼1800–2500 4.75 ± 0.05 (4.60 ± 0.05) PSI [95]
W – – – – – 4.77 TC [3476]
W – – – 0 – 4.77 TC [4419]
W{95%(100)}277 – – – – – 4.78 TC [1254]
W K K+ ? ∼1200–2100 4.78* – PSI [2208]
W – – ? ? – 4.79 TE [3386]
W – – 7 × 10−5 ∼2000–2150 – 4.79 ± 0.01 TE [2454]
W{46.3%(310)}411 – – <2 × 10−10 ∼300 – 4.8 FE [489]
W/Sin482 W – ? ∼300 – 4.8 CPD [4375]
W K K+ <10−9 ∼1100–1200 4.8 ± 0.1* – PSI [2579,3055]
W170,297 – (W+) ? ∼2200–2600 4.8 ± 0.2* – PSI [966]
W170 – (W+) ∼10−7 ∼2600–2900 4.8 ± 0.6 (4.58 ± 0.03) PSI [77]
W Na Na+ ≤10−4 (Na) 2300 4.80 ± 0.03* – PSI [1364]
W – – ? ∼300–1100 – 4.80 ± 0.09 PE [3390]
W313 NaCl Na+ ? ∼1800–2600 4.82 – PSI [47]
W315 Li Li+ ≤3 × 10−7 ∼1800–2000 4.82 ± 0.02 – PSI [155]
W315 NaCl Na+ ≤3 × 10−7 ∼1550–2450 4.83 ± 0.05 – PSI [156]
W NaBr Na+ ? ∼1700–2600 4.84 – PSI [47]
W/Si(111)166 W – 4 × 10−11 ∼300 – 4.87 PE [1429,1430]
W{80%(110)}311 – – – – (5.26 ± 0.02) 4.87 ± 0.06 TC [2453]
W/W(110)309 WCl6, H2 – ∼10−7 ∼1850–2450 – 4.88 ± 0.01 TE [1053]
W – – – – – 4.9 TC [706]
W – – ? ∼1400–2500 – 4.90 TE [3856]
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W – – – – – 4.90 TC [339]
W – – 1 × 10−10 ∼300 – 4.90 CPD [2632]
W{80%(110)}311 – – – – (5.25 ± 0.02) 4.90 ± 0.05 TC [630]
W – – ? ? – 4.90 ± 0.05 TE [2209]
W – – ? (K) ∼1400–1800 – 4.95 TE [2559]
W312 KCl K+ ? 1450 4.95 – TC [3747]
W270 Na Na+ ? (Na) ∼1500–2000 4.95 ± 0.05 (4.61) PSI [85]
W314 KI I− <1 × 10−6 ∼1800–2300 4.95 ± 0.05N – NSI [183]
W{46.3%(310)} – – – – 4.96 ± 0.03 (4.34 ± 0.05) TC [630]
W/W(100)309 WF6, H2 – ∼10−7 ∼1850–2450 – 4.98 ± 0.01 TE [1053]
W{46%(100)} – – – – 4.98 ± 0.05 (4.56 ± 0.01) TC [803]
W{46.3%(310)} – – – – 4.99 ± 0.06 (4.38 ± 0.05) TC [2453]
W – – <10−9 ∼1700–2300 – 5.0 TE [162]
W – – ? ∼1400–1750 – 5.0 TE [2078]
W Nd Nd+ <1 × 10−7 ∼2700–2900 5.00 ± 0.04* – PSI [80]
W{46%(100)} – – – – 5.00 ± 0.05 (4.56 ± 0.01) TC [2453]
W/W(110)309 WCl6, H2 – ∼10−7 ∼1850–2450 – 5.03 ± 0.01 TE [1053]
W – (W+) <7 × 10−7 ∼2850–3000 5.04 ± 0.29 – PSI [805,3083]
W313 NaCl Na+ ? 1450 5.05 – TC [3747]
W304 In In+ 5 × 10−7 ∼2300–2700 5.05 ± 0.05 (4.58 ± 0.05) PSI [94]
W KCl K+ 2 × 10−7 ∼2000–2300 5.09 ± 0.02 (4.42 ± 0.02) PSI [36]
W KCl K+ 2 × 10−7 ∼2000–2200 5.09 ± 0.06 (4.48 ± 0.06) PSI [23]
W{<35%(110)} – – – – 5.09 ± 0.10 (4.52 ± 0.12) TC [283,630]
W Na Na+ ≤10−7 (Na) 2400 5.1* – PSI [3839]
W304 In In+ 5 × 10−7 2350 5.10 (4.58 ± 0.05) PSI [94]
W315 LiCl Li+ ≤3 × 10−7 ∼2250–2700 5.11 ± 0.02 – PSI [156]
W{25%(110)}295 – – – 2000 5.12* (4.46*) TC [3844]
W KF K+ 2 × 10−7 ∼2000–2200 5.12 ± 0.02 (4.48 ± 0.06) PSI [23]
W315 Li Li+ ≤3 × 10−7 ∼2200–2500 5.12 ± 0.02 – PSI [155]
W315 Tl Tl+ ≤3 × 10−7 ∼1900–2500 5.12 ± 0.03 – PSI [157]
W{33.6%(112)} – – – – 5.13 ± 0.04 (4.62 ± 0.02) TC [630,2453]
W In In+ 1 × 10−7 ∼2100–2600 5.14 ± 0.03 (4.58 ± 0.03) PSI [76,77]
W Bi Bi+ ≤5 × 10−8 ∼2050–2300 5.14 ± 0.05 (4.60 ± 0.04) PSI [84,93,824]
W315 In In+ ≤3 × 10−7 ∼1900–2500 5.15 ± 0.01 – PSI [157,3538]
W{35.2%(110)} – – – – 5.15 ± 0.03 (4.63 ± 0.01) TC [281]
W/W(100)309 W – ∼10−7 ∼1850–2450 – 5.16 ± 0.01 TE [1053]
W/W(110)309 W – ∼10−7 ∼1850–2450 – 5.16 ± 0.01 TE [1053]
W LiI Li+ 2 × 10−7 ∼2000–2200 5.16 ± 0.05 (4.61 ± 0.03) PSI [281]
W306 Ag Ag+ ≤5 × 10−8 ? 5.16 ± 0.1 – PSI [3113]
W LiCl Li+ 2 × 10−7 ∼2000–2200 5.18 ± 0.03 (4.57 ± 0.04) PSI [281]
W{35%(110)} – – – – 5.18 ± 0.03 (4.61 ± 0.03) TC [630,2453]
W NaCl Na+ 2 × 10−7 ∼1900–2200 5.19 ± 0.01 – PSI [208]
W LiCl Li+ 2 × 10−7 ∼2000–2200 5.19 ± 0.03 (4.48 ± 0.06) PSI [23]
W LiF Li+ 2 × 10−7 ∼2000–2200 5.19 ± 0.05 (4.60 ± 0.05) PSI [281]
W{mainly(110)} – – 0.1–6 (Cs) ∼1700–1900 – 5.2 ± 0.1* TE [2609]
W NaBr Na+ 2 × 10−7 ∼2000–2200 5.20 ± 0.02 (4.48 ± 0.06) PSI [23,2422]
W LiCl Li+ 2 × 10−7 ∼2000–2200 5.20 ± 0.02 (4.47 ± 0.04) PSI [37]
W LiBr Li+ 2 × 10−7 ∼2000–2200 5.20 ± 0.04 (4.60 ± 0.05) PSI [281,2411]
W LiBr Li+ 2 × 10−6 ∼2100–2200 5.20 ± 0.05 – PSI [2411]
W – – – – – 5.21 TC [3476]
W NaCl Na+ 2 × 10−7 ∼2000–2200 5.21 ± 0.02 (4.48 ± 0.06) PSI [23,2411]
W RbCl Rb+ 2 × 10−7 ∼2000–2200 5.21 ± 0.06 (4.48 ± 0.06) PSI [23]
W NaCl Na+ 2 × 10−7 ∼2000–2200 5.22 ± 0.02 (4.47 ± 0.04) PSI [37,2422]
W LiF Li+ 2 × 10−7 ∼2000–2200 5.22 ± 0.07 (4.48 ± 0.06) PSI [23]
W NaCl Na+ 2 × 10−7 ∼2000–2300 5.23 ± 0.01 (4.42 ± 0.02) PSI [36]
W NaI Na+ 2 × 10−7 ∼2000–2200 5.23 ± 0.02 (4.48 ± 0.06) PSI [23,2422]
W LiBr Li+ 2 × 10−7 ∼2000–2200 5.23 ± 0.02 (4.48 ± 0.06) PSI [23,37,57,2422]
W NaCl Na+ 2 × 10−7 ∼2000–2200 5.24 ± 0.05 – PSI [57]
W{80%(110)}311 – – – – 5.25 ± 0.02 (4.90 ± 0.05) TC [630]
W314 Cu Cu+ <1 × 10−6 ∼1800–2300 5.25 ± 0.05 (4.95 ± 0.05N) PSI [183]
W314 Ag Ag+ <1 × 10−6 ∼1800–2300 5.25 ± 0.05 (4.95 ± 0.05N) PSI [183]
W{80%(110)}311 – – – – 5.26 ± 0.02 (4.87 ± 0.06) TC [2453]
W LiI Li+ 2 × 10−7 ∼2000–2200 5.26 ± 0.02 (4.48 ± 0.06) PSI [23]
W170 LiI Li+ 2 × 10−7 ∼2000–2200 5.27 ± 0.01 (4.47 ± 0.04) PSI [37]
W170 Cs Cs+ <5 × 10−8 770–800 5.3 ± 0.1 – PSI [263]
W K K+ <5 × 10−8 780–820 5.3 ± 0.2 – PSI [263,269]
W – – – – – 5.67 TC [3931]
W – – – – – 5.78 TC [2629]
W Na Na+ ? 1370 5.45 ± 0.06* – PSI [3766]
Recommended – – – – 5.17 ± 0.05 4.56 ± 0.03 – –
Recommended – – – – 4.51 ± 0.03N – – –
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75. Rhenium Re416

hcp
Re(0001) – – – – – 4.88 TC [4004]
Re(0001)/Mo Re – ? –1800– – 4.9 TE [2416]
Re(0001)/Mo ReCl3 – ∼10−9 ∼1800–2000 – 5.01 ± 0.05 TE [398]
Re(0001)/Mo ReCl3 – ∼10−7 ∼2300–2500 – 5.02 ± 0.02 TE [398]
Re(0001)/Mo ReCl3 – ∼10−8 ∼2100–2200 – 5.02 ± 0.04 TE [398]
Re(0001) – – – – – 5.09 TC [3473]
Re(0001) – – ≤5 × 10−8 ? (5.15 ± 0.26) 5.15 ± 0.10 TE [96]
Re(0001) La La+ ≤5 × 10−8 ∼2000–2100 5.15 ± 0.21 (5.15 ± 0.10) PSI [96]
Re(0001) Ce Ce+ ≤5 × 10−8 ∼2300–2400 5.15 ± 0.21 (5.15 ± 0.10) PSI [96]
Re(0001) Er Er+ ≤5 × 10−8 ∼1900–2000 5.15 ± 0.21 (5.15 ± 0.10) PSI [96]
Re(0001) Gd Gd+ ≤5 × 10−8 ∼2100–2200 5.15 ± 0.34 (5.15 ± 0.10) PSI [96]
Re(0001) Tm Tm+ ≤5 × 10−8 ∼1600–1750 5.15 ± 0.34 (5.15 ± 0.10) PSI [96]
Re(0001) – – – – – 5.17 TC [4004]
Re(0001){80%} – – ? ∼300 – 5.20 ± 0.1 PE [401]
Re(0001) – – ∼10−10 120 – 5.24 PE [399]
Re(0001) – – 2 × 10−10 100 – 5.26 ± 0.05 CPD [3378]
Re(0001) – – – – – 5.35 TC [4005]
Re(0001){mainly} – – ∼10−5 (air) ∼2400–2600 – 5.4 TE [56,206]
Re(0001) – – ∼10−10 ∼300 – 5.4 PE [400]
Re(0001) – – 6 × 10−11 ∼300 – 5.4 CPD [836]
Re(0001) – – – – – 5.46 TC [3224]
Re(0001) – – ∼10−10 80 – 5.5 PE [664]
Re(0001) – – ≤6 × 10−8 ∼1800–2150 – 5.51 TE [2247]
Re(0001) – – – – – 5.53 TC [1159,1980,3067]
Re(0001) – – ∼10−9 ? – 5.53 ± 0.03 TE [1065,2593]
Re(0001) – – – – – 5.57 TC [3224]
Re(0001) – – ≤7 × 10−9 ∼1700–2300 – 5.59 ± 0.05 TE [402,3415,3416]
Re(0001) – – – – – 5.71 TC [334]
Re(0001) – – – – – 5.77 TC [321]
Re(0001) – – ≤10−10 50–300 – 6.40 ± 0.02 FE [2488,2499]
Recommended – – – – 5.15 ± <0.34 5.30 ± 0.21 – –

Re(1010) – – – – – 4.62 TC [4004]
Re(1010) – – – – – 4.93 TC [4004]
Re(1010) – – (<8 × 10−12) ∼300 – 5.05 CPD [599,2490]
Re(1010) – – ≤1 × 10−8 ∼1900–2250 – 5.05 ± 0.04 TE [837,2325,2326]
Re(1010) – – <10−11 77 – 5.1 CPD [2506]
Re(1010) – – ≤7 × 10−9 ∼1700–2300 – 5.15 ± 0.02 TE [402,3415,3416]
Re(1010) – – ∼10−9 ? – 5.15 ± 0.03 TE [1065,2593]
Re(1010) – – ≤5 × 10−10 –1800– – 5.15 ± 0.05 TE [286,412,537,665,

839,2051,4458]
Re(1010) – – – – – 5.20 TC [1159,1980,3067]
Re(1010) – – – – – 5.51 TC [321]
Re(1010) – – ∼10−10 ∼300 – 5.52 ± 0.03 PE [403]
Re(1010) – – – – – 5.67 TC [4005]
Re(1010)211 – – <5 × 10−9 ∼300 – 5.95 ± 0.15 FE [730]
Recommended – – – – – 5.12 ± 0.05 – –

Re(1011) – – – – – 4.94 TC [4004]
Re(1011) – – ≤1 × 10−8 ∼1900–2250 – 5.04 ± 0.04 TE [837,2325,2326]
Re(1011) – – – – – 5.25 TC [4004]
Re(1011) – – <5 × 10−9 ∼300 (<800) – 5.25 ± 0.04 FE [730]
Re(1011) – – <5 × 10−9 ∼300 (<800) – 5.36 ± 0.04 FE [730]
Re(1011) – – ≤7 × 10−9 ∼1700–2300 – 5.37 ± 0.03 TE [402,3415,3416]
Re(1011) – – <5 × 10−9 ∼300 (>800) – 5.55 ± 0.03 FE [730]
Re(1011) – – ∼10−10 ∼300 – 5.69 ± 0.06 PE [403]
Re(1011) – – ∼10−9 77 – 5.75 FE [363,811,838]
Re(1011) – – ∼10−10 ∼300 – 5.82 ± 0.07 PE [403]
Re(1011) – – ∼10−10 ∼300 – 5.88 ± 0.10 PE [403]
Recommended – – – – – 5.26 ± 0.13 – –

Re(1120) – – – – – 4.55 TC [4004]
Re(1120) – – ≤1 × 10−8 ∼1900–2250 – 4.80 ± 0.04 TE [837,2325,2326]
Re(1120) – – – – – 4.86 TC [4004]
Re(1120) – – ∼10−10 ∼300 – 4.94 ± 0.06 PE [403]
Re(1120) – – ∼10−9 77 – 5.07 FE [363,811,838]
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Re(1120) – – <5 × 10−9 ∼300 – 5.08 ± 0.02 FE [730]
Recommended – – – – – 4.95 ± 0.11 – –

Re(1121) – – – – – 4.33 TC [4004]
Re(1121) – – – – – 4.62 TC [4004]
Re(1121) – – ≤1 × 10−8 ∼1900–2250 – 4.70 ± 0.04 TE [837,2325,2326]
Re(1121) – – ∼10−9 77 – 4.82 FE [363,811,838]
Re(1121) – – ∼10−10 ∼300 – 4.93 ± 0.09 PE [403]
Re(1121) – – ∼10−10 ∼300 – 5.02 ± 0.05 PE [403]
Recommended – – – – – 4.82 ± 0.14 – –

Re(1122) – – – – – 4.48 TC [4004]
Re(1122) – – – – – 4.79 TC [4004]
Re(1122) – – <5 × 10−9 ∼300 – 4.95 ± 0.02 FE [730]
Re(1122) – – ∼10−10 ∼300 – 5.10 ± 0.02 PE [403]
Re(1122) – – ∼10−9 77 – 5.27 FE [363,811,838]
Re(1122) – – ∼10−10 ∼300 – 5.36 ± 0.05 PE [403]
Recommended – – – – – 5.03 ± 0.18 – –

Re(1123) – – – – – 4.41 TC [4004]
Re(1123) – – – – – 4.72 TC [4004]
Re(1123) – – ∼10−9 ? – 4.84 ± 0.03 TE [1065,2593]

Re(1124) – – ≤1 × 10−8 ∼1900–2250 – 4.72 ± 0.04 TE [837,2325,2326]
Re(1124) – – – – – 4.83 TC [321]

Re(1130) – – – – – 4.44 TC [4004]
Re(1130) – – – – – 4.73 TC [4004]

Re(2130) – – – – – 4.49 TC [4004]
Re(2130) – – – – – 4.77 TC [4004]

Re(3140) – – – – – 4.55 TC [4004]
Re(3140) – – – – – 4.80 TC [4004]

Re – – – – – 3.98 TC [521]
Re – – ∼10−6 1620 – 4.15 TE [1780]
Re KI I− ≤1 × 10−6 1600 >4.30N (5.0 ± 0.1) NSI [216]
Re – – ∼10−6 ∼1600 – 4.35 TE [1780]
Re – – ∼10−6 ∼1900–2100 – 4.45–5.2 TE [1779]
Re KI I− ≤1 × 10−6 1800 >4.46N (5.0 ± 0.1) NSI [216]
Re – – – – – 4.53 TC [2949]
Re KBr Br− ≤1 × 10−6 1600 >4.60N (5.0 ± 0.1) NSI [216]
Re – – – – – 4.62 TC [298]
Re – – – – – 4.67 TC [3476]
Re – – ? ? – 4.7 TE [3402]
Re – – – – – 4.7 TC [706]
Re – – – – – 4.72 TC [3318]
Re – – 2 × 10−8 ∼1700–2150 – 4.72 TE [832]
Re K K+ ? 1660 4.73 ± 0.10* – PSI [737]
Re/W316 – – 5 × 10−7 ∼1950–2700 – 4.74 ± 0.02486 TE [666]
Re – – ∼10−9 ∼1300–2200 – 4.75 TE [1775]
Re/W Re – ? ? – 4.75 TE [2575]
Re Rb Rb+ ? 1660 4.75 ± 0.10* – PSI [737]
Re KBr Br− ≤1 × 10−6 1800 >4.76N (5.0 ± 0.1) NSI [216]
Re/Cr/W – – <10−5 ? – 4.77 TE [3041]
Re – – – – – 4.78 TC [3476]
Re Sm Sm+ <10−7 2100 4.78 – PSI [2970]
Re – – ∼10−9 77 – 4.8 FE [363,811,838]
Re – – ∼10−6 (Cs) ∼2000–2200 – 4.8 TE [1774]
Re320 – – ? (Cs) ∼1300–2000 – 4.8 TE [3414]
Re/SiC323 – – 4 × 10−10 ∼300 (700) – 4.8 ± 0.1 CPD [3646]
Re – – – – – 4.81 TC [3318]
Re/Mo319 ReCl3, H2 – ∼10−7 ∼2000 – 4.82 TE [1398]
Re K K+ ≤1 × 10−6 1800 4.85 (5.0 ± 0.1) PSI [216]
Re – – ≤10−8 ∼1500 – 4.85 TE [1778]
Re – – 5 × 10−8 ∼1700–2500 (5.35 ± 0.05) 4.85 ± 0.05 TE [100]
Re – – ∼10−10 ∼1500–2100 – 4.85 ± 0.05 TE [165]
Re – – ∼10−9 ∼1200–1800 – 4.86 TE [975]
Re K K+ ≤1 × 10−6 1600 4.87 (5.0 ± 0.1) PSI [216]
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Re – – – – – 4.87 TC [2629]
Re – – ? (Cs) 2300 – 4.87 TE [2341]
Re – – ∼10−9 >1200 – 4.88 TE [1203]
Re/W Re – ? ? – 4.89 TE [3257]
Re – – ? 1900 – 4.9 TE [3093]
Re(porous) – – ? >1600 – 4.9 TE [3762]
Re K K+ ≤2 × 10−7 ∼1050–1950 4.9 (4.93 ± 0.04) PSI [53]
Re KCl K+ ≤2 × 10−7 ∼1150–1950 4.9 (4.93 ± 0.04) PSI [53]
Re317 Li Li+ <10−7 ? 4.9 – PSI [2944]
Re – – ∼10−9 ? – 4.9 TE [979]
Re – – 4 × 10−9 ∼1600–1950 – 4.9 ± 0.05 TE [341]
Re318 – (Re−) ? ∼2250–2500 4.9 ± 0.2*N – NSI [966]
Re – – – – – 4.90 TC [3224]
Re LiCl Li+ 5 × 10−7 2600 4.90 (5.0 ± 0.1) PSI [99]
Re KBr K+ ≤1 × 10−6 1800 4.90 (5.0 ± 0.1) PSI [216]
Re KI K+ ≤1 × 10−6 1800 4.90 (5.0 ± 0.1) PSI [216]
Re – – ≤7 × 10−9 ∼1700–2300 – 4.93 ± 0.02 TE [402,3415,3416]
Re – – 1 × 10−7 ∼1750–2400 (5.43 ± 0.03) 4.93 ± 0.04 TE [76,77,97,190]
Re – – ≤2 × 10−7 ∼1800–2300 (5.34) 4.93 ± 0.04 TE [53]
Re – – ∼10−7–10−5

(air)
2010, 2080 (5.42 ± 0.02) 4.93 ± 0.05 TE [23]

Re – – ∼10−7–10−5
(air)

1830 (5.42–5.58) 4.93–5.18 TE [23]

Re KCl K+ ≤1 × 10−6 1800 4.94 (5.0 ± 0.1) PSI [216]
Re – – 3 × 10−9 ∼1250–2250 – 4.94 TE [159]
Re/Mo319 ReCl3, H2 – ∼10−7 ∼2000 – 4.94 TE [1398]
Re – – ∼10−7–10−5

(O2)
1715 (5.45–5.81) 4.94–5.41 TE [23]

Re/W ReCl3, H2 – ∼10−7 ∼2000 – 4.95 TE [1398]
Re – – – – – 4.95 TC [3264,3265,3267]
Re – – ? ? – 4.95 TE [1772]
Re – – ∼10−7–10−5

(O2)
2080 (5.43 ± 0.01) 4.95 ± 0.01 TE [23]

Re – – 2 × 10−7 ∼1800–2000 (5.48 ± 0.02) 4.95 ± 0.05 TE [23]
Re – – 5 × 10−10 ∼1300–2500 – 4.95 ± 0.10 TE [404,840]
Re – – ∼10−7–10−5

(air)
1930 (5.43 ± 0.04) 4.96 ± 0.05 TE [23]

Re320 – – ∼10−9 1325–2250 – 4.96 ± 0.05 TE [124,650,3414]
Re – – ≤10−9 ∼1800–2200 – 4.97 TE [66]
Re KCl K+ ≤1 × 10−6 1600 4.97 (5.0 ± 0.1) PSI [216]
Re KBr K+ ≤1 × 10−6 1600 4.97 (5.0 ± 0.1) PSI [216]
Re KI K+ ≤1 × 10−6 1600 4.97 (5.0 ± 0.1) PSI [216]
Re La La+ ≤10−7 ∼2100 4.97 – PSI [2970]
Re – – ? ∼300 – 4.97 PE [1846]
Re – – ≤5 × 10−7 ? – 4.97 ± 0.03 TE [160]
Re – – ∼10−7–10−5

(air)
1710 (5.42–5.70) 4.97–5.36 TE [23]

Re – – <1 × 10−8 ∼1650–2400 (5.21 ± 0.01) 4.98 ± 0.03 TE [54,3078]
Re In In+ <10−7 ∼2100 4.99 – PSI [2970]
Re KCl Cl− ≤1 × 10−6 2000 4.99N (5.0 ± 0.1) NSI [216]
Re – – 5 × 10−7 2300 (5.39 ± 0.05) 4.99 ± 0.05 TE [94]
Re Nd Nd+ <10−7 ∼2100 5 – PSI [2970]
Re317 Li Li+ <10−7 ? 5 – PSI [2944]
Re/W321 – – ? ? – 5.0 FE [1850]
Re322 – – 5 × 10−7 ∼1900–2500 (5.03 ± 0.07) 5.0 ± 0.1 TE [99,216]
Re318 – (Re+) ? ∼1900–2350 5.0 ± 0.1* – PSI [966]
Re – – 2 × 10−7 ∼1700–2200 (5.53 ± 0.02) 5.00 ± 0.01 TE [101]
Re Na Na+ ≤10−3 (Na) 2300 5.00 ± 0.03* – PSI [1364]
Re NaI Na+ 5 × 10−7 ∼1900–2500 5.01 (5.0 ± 0.1) PSI [99]
Re – – – 0 – 5.03 TC [4419]
Re322 KCl Cl− ≤1 × 10−6 1800 5.03 ± 0.1N (5.0 ± 0.1) NSI [216]
Re – – <2 × 10−7 1870 – 5.05 TE [1970]
Re Li Li+ <10−7 ∼2000 5.05 – PSI [2953,2970]
Re Tl Tl+ 5 × 10−9 1700 5.05* – PSI [1393]
Re Na Na+ 5 × 10−7 1370 5.06 (5.0 ± 0.1) PSI [99]
Re NaCl Na+ 5 × 10−7 1370 5.06 (5.0 ± 0.1) PSI [99]
Re322 C2(CN)4 CN− ≤1 × 10−6 2440 5.06 ± 0.2N (5.0 ± 0.1) NSI [216]
Re – – 700 (Ar) ∼3000 – 5.1 TE [2007]
Re – – <8 × 10−11 ∼300 – 5.1 ± 0.1 CPD [405]
Re Ce Ce+ ∼10−9 ∼1400–2400 5.10 – PSI [536]
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Re170 Na Na+ 5 × 10−7 ∼1300–1500 5.10 ± 0.07 – PSI [166]
Re – – <8 × 10−11 ∼300 – 5.100 ± 0.100 CPD [342,405,3868]
Re Eu Eu+ ∼10−9 ∼1400–2400 5.11 – PSI [536]
Re NaBr Na+ 5 × 10−7 1370 5.11 (5.0 ± 0.1) PSI [99]
Re/W ReCl3 – ? ∼1900–2700 – 5.13 TE [841,1361]
Re Na Na+ ≤2 × 10−7 ∼1500–2300 5.14 (4.93 ± 0.04) PSI [53]
Re NaCl Na+ ≤2 × 10−7 ∼1700–2300 5.14 (4.93 ± 0.04) PSI [53]
Re/Si(111) Re – <4 × 10−10 400 (≤1100) – 5.14 PE [3708]
Re Pr Pr+ <10−7 ∼2100 5.16 – PSI [2970]
Re Na Na+ ≤3 × 10−7 ∼1300–2600 5.17 – PSI [136]
Re Sr Sr+ <1 × 10−7 ∼2100–2700 5.17 ± 0.02 – PSI [80]
Re170 Na Na+ ? ∼1250–1450 5.17 ± 0.09 – PSI [684]
Re – – <8 × 10−11 ∼300 – 5.171 ± 0.050 PE [3866]
Re – – – – – 5.18 TC [3476]
Re/W Re – ≤7 × 10−8 ∼300 – 5.2 FE [1804]
Re/6H-SiC323 Re – 4 × 10−10 ∼300 (500) – 5.2 ± 0.1 CPD [3646]
Re – – <1 × 10−8 ? – 5.2 ± 0.1 TE [3753]
Re Ag Ag+ 6 × 10−8 (O2) ∼2000–2500 5.2 ± 0.1 – PSI [3408,3409]
Re Ag Ag+ ∼10−7 ∼1850–2200 5.20 ± 0.1 – PSI [163]
Re{80%(0001)} – – ? ∼300 – 5.20 ± 0.1 PE [401]
Re – – ? 1900 – 5.21 TE [1287]
Re Li Li+ <10−7 ∼1900 5.21 – PSI [2970]
Re Li Li+ <1 × 10−8 ∼1000–2600 5.21 ± 0.01 (4.98 ± 0.03) PSI [54,3078]
Re Ba Ba+ <1 × 10−7 ∼2000–2600 5.21 ± 0.02 – PSI [80]
Re – – ? 1650 – 5.22 TE [1287]
Re Na Na+ ≤2 × 10−7 ∼1550–2350 5.25 – PSI [53]
Re NaCl Na+ ≤2 × 10−7 ∼1800–2350 5.25 – PSI [53]
Re/Mo ReCl5 – ? 1800 – 5.25 ± 0.02 TE [1287]
Re In In+ ≤1 × 10−7 ∼1900–2400 5.31 ± 0.03 (4.93 ± 0.04) PSI [97]
Re170 UF4 U+ <1 × 10−8 ∼2400–2700 5.33 ± 0.13* – PSI [276]
Re Li Li+ ≤2 × 10−7 ∼1700–2350 5.34 (4.93 ± 0.04) PSI [53]
Re LiCl Li+ ≤2 × 10−7 ∼1800–2350 5.34 (4.93 ± 0.04) PSI [53]
Re Bi Bi+ 5 × 10−8 ∼1700–2500 5.35 ± 0.05 (4.85 ± 0.05) PSI [100]
Re324 – – 1 × 10−7 ? – 5.35 ± 0.05 TE [166,3730]
Re In In+ ≤1 × 10−7 ∼1900–2400 5.38 ± 0.03 (4.93 ± 0.04) PSI [97]
Re Ca Ca+ ≤1 × 10−7 ∼1900–2400 5.38 ± 0.03 (4.93 ± 0.04) PSI [97]
Re In In+ 5 × 10−7 ∼2300–2700 5.39 ± 0.05 (4.99 ± 0.05) PSI [94]
Re Li Li+ 4 × 10−9 ∼1300–1600 5.4 – PSI [164]
Re170 – (Re+) ∼10−7 ∼2400–2750 5.4 ± 0.6 (4.93 ± 0.04) PSI [77]
Re In In+ 5 × 10−7 2350 5.40 (4.99 ± 0.05) PSI [94]
Re NaCl Na+ 2 × 10−7 ∼1700–2200 5.40 ± 0.05 – PSI [57]
Re Mg Mg+ ≤1 × 10−7 ∼1900–2400 5.40 ± 0.05 (4.93 ± 0.04) PSI [97]
Re NaI Na+ 2 × 10−7 ∼1800–2000 5.41 ± 0.05 (4.95 ± 0.05) PSI [23]
Re NaCl Na+ 2 × 10−7 ∼1800–2000 5.42 ± 0.02 (4.95 ± 0.05) PSI [23]
Re NaCl Na+ ∼10−7–10−5

(air)
2010 5.42 ± 0.02 (4.95 ± 0.05) PSI [23]

Re NaCl Na+ ∼10−7–10−5

(air)
1830 5.42–5.58 (4.93–5.18) PSI [23]

Re NaCl Na+ ∼10−7–10−5

(air)
1710 5.42–5.70 (4.97–5.36) PSI [23]

Re NaI Na+ ∼10−7–10−5

(air)
2080 5.43 ± 0.01 (4.93 ± 0.02) PSI [23]

Re NaI Na+ ∼10−7–10−5

(O2)
2080 5.43 ± 0.01 (4.95 ± 0.01) PSI [23]

Re Ag Ag+ ≤1 × 10−7 ∼1900–2400 5.43 ± 0.02 (4.93 ± 0.04) PSI [97]
Re NaCl Na+ 2 × 10−7 ∼1700–2000 5.43 ± 0.02 – PSI [208]
Re Ca Ca+ 1 × 10−7 ∼1750–2400 5.43 ± 0.02 (4.93 ± 0.04) PSI [76,77]
Re NaCl Na+ ∼10−7–10−5

(air)
1930 5.43 ± 0.04 (4.96 ± 0.05) PSI [23]

Re NaI Na+ 2 × 10−6 (air) ∼1900–2100 5.44 ± 0.02 – PSI [23]
Re Ca Ca+ ≤1 × 10−7 ∼1900–2400 5.44 ± 0.03 (4.93 ± 0.04) PSI [97]
Re NaI Na+ 2 × 10−5 (air) ∼2000–2100 5.45 ± 0.02 – PSI [23]
Re NaI Na+ ∼10−7–10−5

(air)
1715 5.45–5.76 (4.97–5.37) PSI [23]

Re NaI Na+ ∼10−7–10−5

(O2)
1715 5.45–5.81 (4.94–5.41) PSI [23]

Re Ca Ca+ ≤1 × 10−7 ∼1900–2400 5.46 ± 0.02 (4.93 ± 0.04) PSI [97]
Re LiBr Li+ 2 × 10−7 ∼1800–2000 5.48 ± 0.02 (4.95 ± 0.05) PSI [23,2422]
Re NaBr Na+ 2 × 10−7 ∼1700–2150 5.48 ± 0.03 – PSI [24,35]
Re LiI Li+ 2 × 10−7 ∼1800–2000 5.49 ± 0.02 (4.95 ± 0.05) PSI [23,38]
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Re C2(CN)4 CN− ≤1 × 10−6 1800 >5.49 ± 0.2N (5.0 ± 0.1) NSI [216]
Re/HfO2/SiOx/Si Re – <5 × 10−10 ∼300 – 5.5 PE [1296]
Re LiI Li+ 2 × 10−6 (air) 2000 5.53 – PSI [38]
Re LiCl Li+ 2 × 10−7 ∼1800–2000 5.53 ± 0.02 (4.95 ± 0.05) PSI [23]
Re LiI Li+ 2 × 10−7 ∼1750–2150 5.53 ± 0.02 (5.00 ± 0.01) PSI [101]
Re – (Re+) <7 × 10−7 2590–2780 5.62 ± 0.08 – PSI [805,3083]
Re – – – – – 6.01 TC [2629]
Recommended – – – – 5.41 ± 0.04 4.96 ± 0.05 – –

76. Osmium Os

hcp
Os(0001) – – – – – 5.32 TC [4004]
Os(0001) – – – – – 5.59 TC [1980]
Os(0001) – – – – – 5.62 TC [4005]
Os(0001) – – – – – 5.64 TC [4004]
Os(0001) – – – – – 6.05 TC [321]
Os(0001) – – – – – 6.42 TC [334]

Os(1010) – – – – – 4.94 TC [4005]
Os(1010) – – – – – 5.17 TC [4004]
Os(1010) – – – – – 5.34 TC [1980]
Os(1010) – – – – – 5.45 TC [4004]
Os(1010) – – – – – 5.78 TC [321]

Os(0111) – – – – – 5.23 TC [4004]
Os(0111) – – – – – 5.53 TC [4004]

Os(0112) – – – – – 4.85 TC [4004]
Os(0112) – – – – – 5.15 TC [4004]

Os(0113) – – – – – 4.67 TC [4004]
Os(0113) – – – – – 4.98 TC [4004]

Os(1121) – – – – – 4.67 TC [4004]
Os(1121) – – – – – 4.98 TC [4004]

Os(1122) – – – – – 4.90 TC [4004]
Os(1122) – – – – – 5.22 TC [4004]

Os(1123) – – – – – 4.77 TC [4004]
Os(1123) – – – – – 5.09 TC [4004]

Os(1124) – – – – – 5.06 TC [321]

Os(2130) – – – – – 4.87 TC [4004]
Os(2130) – – – – – 5.20 TC [4004]

Os(3140) – – – – – 4.77 TC [4004]
Os(3140) – – – – – 5.09 TC [4004]

Os – – ? ∼300 – 4.55 CPD [2297]
Os – – ? (Cs) ∼1500–2000 – 4.6–5.0 TE [3414]
Os – – – – – 4.65 TC [2005]
Os – – – – – 4.66 TC [2949]
Os – – 6 × 10−9 1800 – 4.68 ± 0.04 TE [978]
Os – – <10−9 1900 – 4.69 TE [650]
Os – – ? ? – 4.7 TE [3402]
Os – – ? 2000 – 4.71 ± 0.01 TE [1628,1629]
Os – – – – – 4.73 TC [298]
Os – – ? (Cs) ∼1600–2000 – 4.8 TE [650]
Os – – – – – 4.83 TC [3264,3265,3267]
Os – – ≤3 × 10−9 1480–1640 – 4.83 ± 0.01 TE [171]
Os – – 7 × 10−9 2200 – 4.83 ± 0.04 TE [978]
Os – – ∼10−9 ∼1400–1640 – 4.83 ± 0.05 TE [124,3414]
Os – – – – – 4.84 TC [3476]
Os – – <10−9 1500 – 4.84 TE [650]
Os – – ≤3 × 10−9 ∼600–700 – 4.84 ± 0.04 CPD [171]
Os – – – – – 4.9 TC [3318]
Os – – – – – 4.9* TC [1955]
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Os – – – – – 4.91 TC [1066]
Os – – – – – 4.95 TC [3476]
Os – – – – – 4.95 ± 0.05 TC [1256]
Os – – <10−9 1200 – 4.96 TE [650]
Os – – – – – 4.99 TC [3318]
Os – – – 0 – 5.10 TC [4419]
Os/W(100)–Os(1%)276 – – <10−8 2080–2300 – 5.12 ± 0.06 TE [2811,3086]
Os – – ? ? – 5.16 TE [2105]
Os/W Os – ? ∼1500 – 5.17 TE [2101]
Os – – 2 × 10−7 2600 – 5.21 ± 0.04 TE [978]
Os – – – – – 5.3 TC [706]
Os – – – – – 5.37 TC [3476]
Os/W325 Os – ? ∼300 – 5.93 ± 0.05 PE [3322]
Os – – – – – 6.06 TC [1744]
Recommended – – – – – 4.97 ± 0.17 – –

77. Iridium Ir

fcc
Ir(100) – – ? 4 – 4.65 ± 0.05 FE [1391]
Ir(100) – – – – – 4.92 TC [1928]
Ir(100)326 – – 3 × 10−11 77 – 5.2 FE [1810]
Ir(100) – – ? ∼300 – 5.2 PE [1532]
Ir(100) – – – – – 5.20 TC [2548]
Ir(100) – – – – – 5.20 TC [1980,3067]
Ir(100) – – ∼10−9 1900 – 5.3 TE [1288]
Ir(100) – – ∼10−9 ? – 5.37 TE [3096]
Ir(100)326 – – 3 × 10−11 77 – 5.4 FE [1810]
Ir(100)327 – – 2 × 10−10 ∼300 (>1200) – 5.4 PE [2961]
Ir(100)327 – – 2 × 10−10 135–300 – 5.5 PE [1533,1534,2961]
Ir(100) – – – – – 5.52 TC [3224]
Ir(100) – – – – – 5.55 TC [4091]
Ir(100) – – – – – 5.55 TC [4421]
Ir(100) – – ∼10−10 ∼300 – 5.6 CPD [669,2126]
Ir(100) – – ? 275 – 5.6 PE [1534]
Ir(100) – – – – – 5.60 TC [3243]
Ir(100) – – – – – 5.60 TC [4258]
Ir(100) – – – – – 5.61 TC [2203]
Ir(100) – – – – – 5.62 TC [2696,4444]
Ir(100) – – <1 × 10−10 78 – 5.67 ± 0.05 FE [414,843,1140]
Ir(100)326 – – <3 × 10−11 77 – 5.70 ± 0.05 FE [1797,1802,1810]
Ir(100) – – ? 78 – 5.80 ± 0.02 FE [2189]
Ir(100) – – – – – 5.84 TC [1718,1721]
Ir(100) – – – – – 5.89 TC [3243]
Ir(100) – – – – – 5.92 TC [1933]
Ir(100) – – ? 78 – 6.00 ± 0.02 FE [2189]
Ir(100) – – <1 × 10−10 100 – 6.00 ± <0.1 PE [672,914,1289]
Ir(100) – – – – – 6.03 TC [321]
Ir(100) – – ? ∼300 – 6.1 ± 0.1 CPD [1067]
Ir(100) – – 1 × 10−10 100 – 6.15 ± <0.1 PE [672,1289]
Recommended – – – – – 5.60 ± 0.06 – –

Ir(110) – – ∼10−9 1900 – 4.83 TE [1288]
Ir(110) – – – – – 4.83 TC [2548]
Ir(110) – – – – – 4.84 TC [1980,3067]
Ir(110) – – ∼10−9 ? – 4.85 TE [3096]
Ir(110) – – – – – 4.958 TC [4091]
Ir(110) – – <10−10 80 – 5.0 FE [414,843]
Ir(110) – – <3 × 10−11 77 – 5.0 FE [1802]
Ir(110) – – – – – 5.07 TC [3243]
Ir(110) – – – – – 5.36 TC [3243]
Ir(110) – – – – – 5.37 TC [3224]
Ir(110) – – ∼10−10 77, 300 – 5.42 ± 0.02 FE [358]
Ir(110) – – – – – 5.45 TC [1933]
Ir(110) – – – – – 5.67 TC [321]
Recommended – – – – – 5.23 ± 0.19 – –

Ir(111){80%}329 – – – – – 4.68 TC [1254]
Ir(111){81%}330 – – ? (Cs) ∼1500–2000 – 5.2 TE [3414]
Ir(111){80%}329 – – ∼10−9 ∼1300–2100 – 5.27 ± 0.05 TE [124]
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Ir(111){81%}328 – – ∼10−9 ∼1300–2100 – 5.27 ± 0.05 TE [650,3414]
Ir(111){81%}330 – – ≤10−4(Li) ∼1400–2200 (5.4*) 5.35 ± 0.05 TE [169]
Ir(111){81%}328 – – – – (5.73 ± 0.01) 5.36 ± 0.07 TC [803]
Ir(111){81%}330 Li Li+ ≤10−4(Li) ∼1100 5.4* (5.35 ± 0.05) PSI [169]
Ir(111) – – – – – 5.42 TC [3243]
Ir(111) – – – – – 5.497 TC [4091]
Ir(111) – – – – – 5.55 TC [2548]
Ir(111) – – – – – 5.56 TC [1980,3067]
Ir(111) – – – – – 5.58 TC [2068]
Ir(111) – – – – – 5.6 TC [1723]
Ir(111) – – – – – 5.60 TC [4258]
Ir(111) – – ∼10−10 80 – 5.65 ± 0.02 FE [2499]
Ir(111)334 Li Li+ 2 × 10−10 ∼1100–1300 5.68 ± 0.01 – PSI [167]
Ir(111)334 Li Li+ 2 × 10−10 ∼1150–1400 5.69 ± 0.03 – PSI [167]
Ir(111)334 Li Li+ 2 × 10−10 ∼1100–1400 5.70 ± 0.02 – PSI [167,319]
Ir(111) – – – – – 5.72 TC [3243]
Ir(111)170,334 Li Li+ 2 × 10−10 1160–1375 5.72 ± 0.03 – PSI [167]
Ir(111){81%}328 – – – – 5.73 ± 0.01 (5.36 ± 0.07) TC [803]
Ir(111) – – 1 × 10−8 1760–2150 (5.79 ± 0.03) 5.74 ± 0.06 TE [102,410]
Ir(111) Bi Bi+ ≤8 × 10−10 ? 5.75 ± 0.05 (5.75 ± 0.05) PSI [105,409]
Ir(111) – – ≤8 × 10−10 ? (5.75, 5.8) 5.75 ± 0.05 TE [105,252]
Ir(111) Yb Yb+ ≤5 × 10−8 ∼1800–2000 5.75 ± 0.10 (5.75 ± 0.10) PSI [104]
Ir(111) – – ≤5 × 10−8 ∼1800–2000 (5.75 ± 0.10) 5.75 ± 0.10 TE [104]
Ir(111) – – ∼10−10 77, 300 – 5.76 ± 0.04 FE [358]
Ir(111) – – 3 × 10−9 ∼1700–2000 – 5.78 ± 0.05 TE [273]
Ir(111) Bi Bi+ 1 × 10−8 1770–2150 5.79 ± 0.03 (5.74 ± 0.06) PSI [102,410]
Ir(111) Tl Tl+ 1 × 10−8 1250–2200 5.79 ± 0.03 (5.74 ± 0.06) PSI [102,410]
Ir(111) – – <10−10 78 – 5.79 ± 0.05 FE [414,843,1140]
Ir(111) Al Al+ ≤10−8 ∼1700–2500 5.8 – PSI [3428]
Ir(111) In In+ ≤10−8 ∼1400–1900 5.8 – PSI [3428]
Ir(111) K K+ <1 × 10−9 ∼800–2000 5.8 (5.75 ± 0.05) PSI [252,411]
Ir(111) Ba Ba+ ≤5 × 10−9 ? 5.8 (5.80 ± 0.05) PSI [649]
Ir(111) Ba Ba+ <5 × 10−10 ? 5.8 – PSI [3778]
Ir(111) Tm Tm+ ? 2000 5.8 – PSI [3559]
Ir(111) In In+ ∼10−8 ? 5.8 ± 0.05 – PSI [186]
Ir(111) – – ? ∼300 – 5.8 CPD [3858]
Ir(111) – – ∼10−10 ∼300 – ∼5.8 FE [4268]
Ir(111) – – <1 × 10−10 ? – 5.80 TE [168,410–413,537]
Ir(111) – – ∼10−9 ? – 5.80 TE [3096]
Ir(111) In In+ 7 × 10−9 –1700– 5.80 ± 0.03 (5.80 ± 0.03) PSI [103]
Ir(111) – – 7 × 10−9 –1700– (5.80 ± 0.03) 5.80 ± 0.03 TE [103]
Ir(111) – – <3 × 10−11 77 – 5.80 ± 0.05 FE [1797,1802]
Ir(111) – – ≤5 × 10−9 ? (5.8) 5.80 ± 0.05 TE [649]
Ir(111) – – ∼10−10 ∼300 – 5.85 ± 0.04 CPD [415,3266,3275]
Ir(111) – – – – – 5.86 TC [3224]
Ir(111) – – – – – 5.87 TC [3291]
Ir(111) – – – – – 5.92 TC [1933]
Ir(111) – – – – – 6.1 TC [1723]
Ir(111) – – – – – 6.51 TC [321]
Ir(111) – – – – – 6.63 TC [334]
Ir(111) – – – – – 6.65 TC [3179]
Recommended – – – – 5.76 ± 0.04 5.75 ± 0.06 – –

Ir(210) – – <1 × 10−10 78 – 5.0 ± 0.05 FE [414,843]
Ir(210) – – – – – 5.10 TC [3224]

Ir(211) – – – – – 5.07 TC [3224]
Ir(211) – – – – – 5.284 TC [4091]

Ir(311) – – <3 × 10−11 77 – 5.2 FE [1802]
Ir(311) – – – – – 5.20 TC [3224]

Ir(321) – – – – – 5.072 TC [4091]
Ir(321) – – <1 × 10−10 78 – 5.4 FE [414]

Ir(331) – – – – – 5.12 TC [3224]
Ir(331) – – <1 × 10−10 78 – 5.4 FE [414]

Ir(731) – – <10−10 78 – 4.9 FE [843]
(continued on next page)

173



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Ir – – – – – 2.20 TC [2493]
Ir – – – – – 2.42 TC [2493]
Ir – – – – – 4.02 TC [521]
Ir – – ? ∼300 – 4.57 CPD [2297]
Ir – – 3 × 10−9 ∼1150–1900 – 4.57 TE [159]
Ir – – – – – 4.57 TC [1399]
Ir – – ∼10−6 ≤1700 – ∼4.6 TE [3537]
Ir – – ? 4 – 4.6 ± 0.6 FE [1391]
Ir{80%(111)}329 – – – – – 4.68 TC [1254]
Ir – – – – – 4.78 TC [2005]
Ir – – – – – 4.86 TC [3318]
Ir – – – – – 4.91 TC [3318]
Ir – – – – – 4.97 TC [3264]
Ir – – – – – 5.00 TC [3476]
Ir – – – – – 5.02 TC [2629]
Ir – – 1 × 10−9 ∼300 – 5.14 ± 0.04 CPD [845]
Ir – – 2 × 10−7 ∼1450–1800 (5.72 ± 0.03) 5.15 ± 0.03 TE [68]
Ir/glass Ir – <1 × 10−10 78 – 5.17 PE [414]
Ir – – – – – 5.17 TC [3476]
Ir{81%(111)}330 – – ? (Cs) ∼1500–2000 – 5.2 TE [3414]
Ir – – 1 × 10−7 ∼1500–2400 – 5.2 TE [2320]
Ir – – 3 × 10−7 ∼1400–1700 – 5.2 ± 0.2 TE [1290]
Ir – – ≤3 × 10−9 ∼1600–1800 – 5.24 ± 0.03 TE [171]
Ir/W(porous) – – ≤10−9 ∼1500 – 5.25 TE [650]
Ir – – – – – 5.25 TC [3224]
Ir – – ∼10−7 ∼1300–2100 (5.25–5.34) 5.25 ± 0.05 TE [107]
Ir K K+ ∼10−7 ∼1200–2000 >5.25 (5.25 ± 0.05) PSI [107]
Ir – – ? 2670–2730 – 5.26 ± 0.01 TE [495,2205]
Ir{81%(111)}330 – – ∼10−9 ? – 5.27 TE [3414]
Ir{80%(111)}329 – – ∼10−9 ∼1300–2100 – 5.27 ± 0.05 TE [124,650]
Ir/W(100)–Ir(2%)275 – – ? 2030–2200 – 5.28 ± 0.06 TE [3086]
Ir – – ? ? – 5.29 ? [416]
Ir Li Li+ <10−9 ∼1000–1200 5.3 – PSI [318,319,366]
Ir – – – – – 5.3 TC [2583]
Ir – – ? ∼1700–2200 – 5.3 TE [668]
Ir – – ∼10−9 ∼300 – 5.3 CPD [417]
Ir/Pd Ir – ∼10−9 ∼300 – 5.3 CPD [417]
Ir Na Na+ ∼10−10 ∼1300 5.3 – PSI [844]
Ir – – 2 × 10−10 ? – 5.3 TE [669]
Ir – – ≤5 × 10−8 ∼1900–2400 – 5.30 ± 0.01 TE [978]
Ir – – ? ∼2500–2600 – 5.30 ± 0.01 TE [495,2205]
Ir – – ≤5 × 10−7 ? – 5.30 ± 0.04 TE [160]
Ir – – – – – 5.31 TC [298]
Ir – – ? ? – 5.31 TE [2105]
Ir – – – – – 5.33 TC [4441]
Ir/glass Ir – <1 × 10−10 78 (293) – 5.33 PE [414]
Ir – – ≤3 × 10−9 ∼600–700 – 5.33 CPD [171]
Ir Na Na+ ∼10−7 ∼1350–2000 5.34 ± 0.07 (5.25 ± 0.05) PSI [107]
Ir/glass – – <5 × 10−10 77 (373) – 5.35 PE [1256]
Ir{81%(111)}330 – – ≤10−4 (Li) ∼1400–2200 (5.4*) 5.35 ± 0.05 TE [169]
Ir – – 3 × 10−7 ∼1400–1600 – 5.36 TE [1290]
Ir{81%(111)}328 – – – – (5.73 ± 0.01) 5.36 ± 0.07 TC [803]
Ir/glass Ir – <1 × 10−10 78 (473) – 5.38 PE [414]
Ir{81%(111)}330 Li Li+ ≤10−4 (Li) ∼1100 5.4* (5.35 ± 0.05) PSI [169]
Ir Na Na+ ∼10−10 ∼1300 5.4* – PSI [844]
Ir – – ∼10−9 >1200 – 5.4 TE [1203]
Ir – – ? ∼1600–2300 – 5.40 TE [170]
Ir – – ∼10−9 ? – 5.40 TE [3096]
Ir – – 5 × 10−8 ∼1550–2250 (5.80 ± 0.05) 5.40 ± 0.05 TE [106,667]
Ir325 – – ? ∼300 – 5.50 ± 0.05 PE [3322]
Ir – – – – – 5.59 TC [3476]
Ir/W(100) Ir – ∼1 × 10−11 77 – 5.60 FE [2965]
Ir NaBr Na+ 2 × 10−7 ∼1600–1900 5.72 ± 0.03 (5.15 ± 0.03) PSI [68]
Ir{81%(111)}328 – – – – 5.73 ± 0.01 (5.36 ± 0.07) TC [803]
Ir NaCl Na+ 2 × 10−7 ∼1600–1850 5.73 ± 0.02 (5.15 ± 0.03) PSI [68]
Ir Bi Bi+ 5 × 10−8 ∼1700–2250 5.80 ± 0.05 (5.40 ± 0.05) PSI [106,667]
Recommended – – – – 5.75 ± 0.04 5.28 ± 0.04 – –
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78. Platinum Pt

fcc
Pt(100)/MgO Pt – ? ∼300 – 4.78 PE [2448]
Pt(100) – – – – – 5.20 TC [1980]
Pt(100) – – – – – 5.20 ± 0.02 TC [3244]
Pt(100) – – – – – 5.32 TC [3244]
Pt(100) – – ? ∼300 – 5.5 ± 0.2 CPD [1067]
Pt(100) – – – – – 5.625 TC [4091]
Pt(100) – – – – – 5.63 TC [4416]
Pt(100) – – – – – 5.64 TC [3244]
Pt(100) – – – – – 5.66 TC [4087]
Pt(100) – – – – – 5.67 TC [3224]
Pt(100) – – – – – 5.7 TC [1938]
Pt(100) – – 3 × 10−10 ∼300 – 5.7 ± 0.1 PE [846]
Pt(100) – – – – – 5.71 TC [4434]
Pt(100) – – – – – 5.711 TC [3245]
Pt(100) – – 4 × 10−11 100 – 5.75 ± 0.05 PE [847]
Pt(100) – – – – – 5.78 TC [705]
Pt(100) – – 1 × 10−10 80 – 5.8 FE [2163]
Pt(100) – – <1 × 10−10 78 – 5.8 FE [414,848]
Pt(100) – – 1 × 10−10 ∼300 – 5.8 PE [3587]
Pt(100) – – <1 × 10−10 78 – 5.81 FE [849]
Pt(100) – – 1 × 10−10 ∼300 – 5.82 ± 0.15 PE [174,3136]
Pt(100) – – <10−10 80 – 5.84 FE [428]
Pt(100) – – 2 × 10−11 ∼300 – 5.84 PE [429]
Pt(100) – – – – – 5.840 TC [2229]
Pt(100) – – – – – 5.85 TC [4229]
Pt(100) – – 2 × 10−11 ∼300 – 5.86 PE [429,2987,2996]
Pt(100) – – ? ∼300 – 5.9 ± 0.1 PE [850]
Pt(100) – – – – – 5.92 ± 0.09 TC [851,852]
Pt(100)331 – – – – – 5.93 TC [795]
Pt(100) – – – – – 5.94 TC [2530]
Pt(100) – – – – – 5.96 TC [3356]
Pt(100) – – – – – 5.99 TC [321]
Pt(100) – – ∼10−11 ∼300 – 6.00 ± 0.06 FE [853]
Pt(100)331 – – – – – 6.07 TC [795]
Pt(100) – – – – – 6.07 TC [1237]
Pt(100) – – – – – 6.08 TC [2701]
Pt(100) – – – – – 6.09 TC [2701]
Pt(100) – – – – – 6.1 TC [1938]
Pt(100) – – – – – 6.1 TC [2905]
Pt(100) – – – – – 6.11 TC [1928]
Pt(100) – – – – – 6.12 TC [2846]
Pt(100) – – – – – 6.2 TC [854]
Pt(100) – – – – – 6.2 TC [3733]
Pt(100) – – – – – 6.21 TC [3635]
Pt(100) – – – – – 6.23 TC [3382]
Pt(100) – – – – – 6.52 TC [1201]
Pt(100) – – – – – 6.57 TC [3339]
Pt(100) – – – – – 6.60 TC [855]
Pt(100) – – – – – 6.7 TC [389]
Pt(100) – – – – – 6.86 TC [3194]
Pt(100) – – – – – 6.93 TC [3194]
Pt(100) – – – – – 6.97 TC [334]
Recommended – – – – – 5.75 ± 0.06 – –

Pt(110) – – – – – 4.84 TC [1980]
Pt(110) – – – – – 4.93 TC [3791]
Pt(110) – – – – – 5.223 TC [4091]
Pt(110)332 – – ∼10−11 ∼300 – 5.24 ± 0.05 FE [853]
Pt(110) – – – – – 5.26 TC [4087,4410]
Pt(110) – – – – – 5.297 TC [3245]
Pt(110)332 – – ∼10−11 ∼300 – 5.35 ± 0.05 FE [853]
Pt(110) – – <1 × 10−10 78 – 5.4 FE [849,2728]
Pt(110) – – 1 × 10−10 80 – 5.4 FE [2163]
Pt(110) – – 7 × 10−11 100 – 5.4 PE [1923]
Pt(110) – – – – – 5.441 TC [2229]
Pt(110) – – ? 77 – 5.49 FE [1294]
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Pt(110) – – ? ? – 5.5 ? [2042]
Pt(110)333 – – – – – 5.52 TC [2543]
Pt(110) – – – – – 5.52 TC [3224]
Pt(110) – – – – – 5.54 TC [1931]
Pt(110) – – – – – 5.63 TC [321]
Pt(110) – – ∼10−11 ∼300 – 5.67 PE [1291]
Pt(110) – – – – – 5.69 TC [4416]
Pt(110) – – – – – 5.7 TC [2905]
Pt(110) – – 7 × 10−11 150 – 5.7 ± 0.1 PE [856]
Pt(110)333 – – – – – 5.71 TC [2543]
Pt(110) – – 2 × 10−11 ∼300 – 5.72 PE [429]
Pt(110) – – – – – 5.74 TC [1237]
Pt(110) – – – – – 6.10 TC [3194]
Pt(110) – – – – – 6.15 TC [3194]
Pt(110) – – – – – 6.19 TC [1201]
Recommended – – – – – 5.54 ± 0.07 – –

Pt(111) – – – – – 4.54 TC [1254]
Pt(111) Ca Ca+ ? (Ca) ? 4.7 ± 0.2 – PSI [126]
Pt(111) Na Na+ ≤6 × 10−3 (Na) ∼1450–1700 4.77 ± 0.07 – PSI [126,173]
Pt(111) K K+ ≤2 × 10−2 (K) 1600 4.8 ± 0.2 – PSI [172]
Pt(111) Ca Ca+ ? (Ca) 1580 4.82 ± 0.05 – PSI [126]
Pt(111)/quartz Pt – ? ∼300 – 4.93 PE [2448]
Pt(111)/garnet Pt – ? ∼300 – 4.93 PE [2448]
Pt(111)/sapphire Pt – ? ∼300 – 4.93 PE [2448]
Pt(111) – – ? ? – 4.95 ± 0.05 TE [857]
Pt(111) – – 1 × 10−10 77 – 5.40 CPD [2993]
Pt(111) – – ∼10−10 ∼300 – 5.5 ± 0.1 PE [418,3138]
Pt(111)178 – – ∼10−11 ∼300 – 5.53 ± 0.06 FE [853]
Pt(111){mainly}344 – – <1 × 10−9 ∼1300–1800 – 5.55 ± 0.1 TE [434]
Pt(111) – – – – – 5.56 TC [1980]
Pt(111) – – ∼10−10 ∼300 – 5.6 ± 0.1 PE [858]
Pt(111) – – – – – 5.67 ± 0.06 TC [3244]
Pt(111) – – – – – 5.67 ± 0.07 TC [3244]
Pt(111) – – – – – 5.69 TC [1028,1179]
Pt(111) – – – – – 5.69 TC [4087,4410]
Pt(111) – – 1 × 10−10 80–340 – 5.7 PE [616,1805]
Pt(111) – – 2 × 10−10 ∼300 – 5.7 PE [3455]
Pt(111) – – <10−10 ∼300 – 5.7 PE [3715]
Pt(111) – – ∼10−10 100 – 5.7 ± 0.2 PE [671]
Pt(111) – – – – – 5.70 TC [419]
Pt(111) – – – – – 5.702 TC [4091]
Pt(111) – – – – – 5.72 TC [420]
Pt(111) – – – – – 5.73 TC [1179]
Pt(111) – – – – – 5.74 TC [4258]
Pt(111) – – – – – 5.747 TC [3245]
Pt(111)170,334 Li Li+ 2 × 10−10 1320–1475 5.75 ± 0.02 – PSI [167]
Pt(111) – – – – – 5.76 TC [3244]
Pt(111) – – – – – 5.76 TC [343]
Pt(111)334 Li Li+ 2 × 10−10 1300–1340 5.76 ± 0.02 – PSI [167]
Pt(111)334 Li Li+ 2 × 10−10 1240–1475 5.77 ± 0.02 – PSI [167,319]
Pt(111) – – ? ? – 5.79 TE [1852]
Pt(111) – – 1 × 10−10 ∼300 – 5.8 PE [3989]
Pt(111){rich} – – ∼10−10 ∼300 – 5.8 CPD [437]
Pt(111)/Ni(111) Pt – ∼10−10 <85 (≤500) – 5.8 PE [773]
Pt(111) – – ? ∼300 – 5.8 CPD [3518]
Pt(111) – – 2 × 10−10 50 – 5.8 PE [1437,2273,2275]
Pt(111) – – – – – 5.8 TC [1723]
Pt(111)334 Li Li+ 2 × 10−10 1240–1440 5.80 ± 0.02 – PSI [167]
Pt(111) – – – – – 5.817 TC [2229]
Pt(111) – – – – – 5.84 TC [1197]
Pt(111)335 – – <10−10 85–400 – 5.84 ± 0.05 PE [421–423,773]
Pt(111)/Pt(111)335 Pt – <10−10 400 – 5.84 ± 0.05 PE [421]
Pt(111)/Nb(110) Pt – 7 × 10−11 ∼300 – 5.85 PE [2874]
Pt(111) – – 2 × 10−10 ∼300 – 5.85 PE [424]
Pt(111) – – 4 × 10−11 135–370 – 5.85 ± 0.05 PE [425]
Pt(111) – – ? 95 – 5.85 ± 0.1 PE [426,859]
Pt(111) – – – – – 5.89 TC [2068]
Pt(111) – – 8 × 10−11 ∼300 – 5.9 PE [427,1565]
Pt(111) – – – – – 5.9 TC [1723]
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Pt(111) – – <1 × 10−10 78 – 5.9 FE [848]
Pt(111)/Ni(111) Pt – ∼10−10 ≤85 (573) – 5.9 PE [773]
Pt(111)/Re(0001) Pt – ∼10−10 ∼300 – 5.9 PE [400]
Pt(111) Li Li+ 2 × 10−10 400 5.91 ± 0.07 – PSI [167]
Pt(111) – – <10−10 80 – 5.93 FE [428]
Pt(111) – – 2 × 10−11 ∼300 – 5.94 PE [429]
Pt(111) – – ? 77 – 5.95 FE [1294]
Pt(111) – – 8 × 10−11 50 – 5.95 PE [898,3197]
Pt(111) – – ? <85 – 5.95 ± 0.1 PE [1033]
Pt(111) – – – – – 5.97 TC [430]
Pt(111) – – ∼10−10 ∼300 – 5.97 PE [2529]
Pt(111) – – <1 × 10−10 78 – 5.99 FE [849]
Pt(111) – – 1 × 10−10 80 – 6.0 FE [2163]
Pt(111) – – – – – 6.01 TC [795]
Pt(111) – – – – – 6.01 TC [3224]
Pt(111) – – – – – 6.02 TC [4024]
Pt(111) – – – – – 6.04 TC [3291]
Pt(111) – – – – – 6.04 TC [1179]
Pt(111) – – – – – 6.06 TC [1028,1179,1834]
Pt(111) – – – – – 6.07 TC [419]
Pt(111) – – 1 × 10−10 ∼300 – 6.08 ± 0.15 PE [174]
Pt(111) – – – – – 6.1 TC [1292]
Pt(111) – – – – – 6.1 TC [2905]
Pt(111) – – – – – 6.10 TC [431,1931]
Pt(111) – – 2 × 10−10 ∼300 – 6.10 ± 0.06 PE [175]
Pt(111) – – – – – 6.11 TC [1293]
Pt(111) – – – – – 6.12 TC [432]
Pt(111) – – – – – 6.12 TC [1237]
Pt(111) – – – – – 6.13 TC [4174,4284]
Pt(111) – – – – – 6.14 TC [1197]
Pt(111) – – – – – 6.16 TC [1593]
Pt(111) – – ≤1 × 10−10 ∼300 – 6.2 PE [3177,3191]
Pt(111) – – – – – 6.3 TC [1723]
Pt(111) – – 1 × 10−10 100 – 6.40 ± <0.1 PE [672]
Pt(111) – – – – – 6.47 TC [321]
Pt(111) – – – – – 6.53 TC [1201]
Pt(111) – – ? 37, 95 – 6.6* PE [3630]
Pt(111) – – – – – 6.60 TC [3194]
Pt(111) – – – – – 6.67 TC [3194]
Pt(111) – – – – – 6.73 TC [3179]
Pt(111) – – – – – 6.74 TC [334]
Recommended – – – – 5.80 ± 0.06 5.84 ± 0.05 – –

Pt(210){∼80%}336 – – ? (Cs) ∼1500–1900 – 5.0 TE [650]
Pt(210){∼80%}336 – – ? (Cs) ∼1500–1900 – 5.1 TE [3413,3414]
Pt(210) – – <1 × 10−10 78 – 5.17 FE [849]
Pt(210) – – 10−11 ∼300 – 5.18 FE [2511]
Pt(210) – – ? 77 – 5.18 FE [1294]
Pt(210) – – <1 × 10−10 78 – 5.2 FE [414,848]
Pt(210) – – – – – 5.25 TC [3224]
Pt(210){∼80%}336 – – <1 × 10−9 ∼1600–1950 – 5.79 ± 0.09 TE [179,650]
Recommended – – – – – 5.18 ± 0.04 – –

Pt(211) – – – – – 5.22 TC [3224]
Pt(211) – – – – – 5.555 TC [4091]
Pt(211) – – – – – 5.84 TC [1293]
Pt(211) – – – – – 5.88 TC [1293]

Pt(221)337 – – – – – 5.74 TC [1293]
Pt(221)337 – – – – – 5.76 TC [1293]
Pt(221?)337 – – 2 × 10−11 ∼300 – 5.77 PE [429]

Pt(310) – – ∼10−11 ∼300 – 5.36 ± 0.05 FE [853,2511]
Pt(310) – – – – – 5.419 TC [4091]

Pt(311) – – – – – 5.35 TC [3224]
Pt(311) – – <1 × 10−10 78 – 5.5 FE [414,848,2728]

Pt(320) – – – – – 5.16 TC [3224]
Pt(320) – – ∼10−11 ∼300 – 5.19 ± 0.05 FE [853,2511]
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Pt(320) – – <10−10 80 – 5.22 FE [428]

Pt(321) – – ∼10−11 ∼300 – 5.24 ± 0.05 FE [853,2511]
Pt(321) – – <1 × 10−10 78 – 5.4 FE [414,848,2728]

Pt(331) – – <10−10 80 – 5.12 FE [428]
Pt(331) – – – – – 5.27 TC [3224]
Pt(331) – – – – – 5.62 TC [1293]
Pt(331) – – – – – 5.69 TC [1293]

Pt(410) – – ∼10−11 ∼300 – 5.50 ± 0.05 FE [853,2511]

Pt(430) – – ∼10−11 ∼300 – 5.21 ± 0.05 FE [853,2511]

Pt(520) – – ∼10−11 ∼300 – 5.30 ± 0.05 FE [853,2511]

Pt(533) – – – – – 5.90 TC [1293]
Pt(533) – – – – – 5.93 TC [1293]

Pt(533)–(755) – – <1 × 10−10 78 – 5.7 FE [849]

Pt(741) – – ∼10−11 ∼300 – 5.19 ± 0.05 FE [853,2511]

Pt(997) – – 1 × 10−10 ∼300 – 5.78 ± 0.15 PE [174]

Pt – – ? ∼300 – 3.94 PE [2460]
Pt – – ? ? – 4.18 TE [3019]
Pt – – 3 × 10−8 ∼300 – 4.3 FE [2082]
Pt – – ? ∼300 – 4.34 PE [3018]
Pt – – <10−6 ∼300 – 4.4 PE [2919]
Pt338 Cs Cs+ 2 × 10−7 ∼1400–2000 4.40 ± 0.03* – PSI [50]
Pt – – ? ? – 4.43 TE [2567]
Pt – – 6 × 10−3 ∼300 – 4.43 ± 0.06 PE [2079,2080]
Pt – – 1 × 10−5 ∼1700–1900 – 4.46 TE [2458]
Pt338 K K+ 2 × 10−7 ∼1300–2000 4.48 ± 0.01* – PSI [50]
Pt338 Rb Rb+ 2 × 10−7 ∼1200–2000 4.49 ± 0.01* – PSI [50]
Pt K K+ 2 × 10−7 ∼1300–2000 4.49 ± 0.01 – PSI [1285]
Pt – – ? ∼300 – 4.52 CPD [2297]
Pt/glass – – ∼10−6 ∼300–720 – 4.54 PE [3585]
Pt/GaP – – – – – 4.55 TC [1653]
Pt – – ? ? – 4.57 TE [3019]
Pt/Si – – – – – 4.57 TC [1653]
Pt – – ? ∼1600–1700 – 4.6 TE [2312]
Pt/Si – – – – – 4.60 TC [1653]
Pt – – – – – 4.65 TC [3318]
Pt – – ∼10−7 ∼300 – 4.65 ± 0.05 CPD [1890]
Pt/GaP – – – – – 4.66 TC [1653]
Pt – – 7 × 10−9 ? (5.45–5.78) 4.66 ± 0.2 TE [74]
Pt – – – – – 4.67 TC [2005]
Pt – – ? ∼1350–1600 – 4.7 TE [1753]
Pt – – – – – 4.71 TC [1796]
Pt339 – – ? ? – 4.72 TE [2299,2300]
Pt – – ? ∼300 – 4.76 PE [1371]
Pt – – ? ∼300 – 4.79 CPD [2761]
Pt – – ≤1 × 10−6 293 – 4.80 PE [2289]
Pt – – – – – 4.86 TC [3476]
Pt – – ? ∼300 – 4.87 ± 0.06* CPD [1953]
Pt – – – – – 4.89 TC [1066]
Pt – – – – – 4.9 TC [3318]
Pt K K+ <10−9 ∼1100–1200 4.9 ± 0.1* – PSI [2579]
Pt – – – – – 4.90 TC [4420]
Pt – – ∼10−8 ∼300 – 4.93 ± 0.03 PE [1751]
Pt340 K K+ ≤3 × 10−9 ∼1200–1700 4.94 ± 0.23 (5.27 ± 0.1) PSI [3055]
Pt – – ? ? – 4.99 TE [3019]
Pt/W Pt – ≤10−6 ∼1600–1800 – 5.0 TE [2301]
Pt – – ? ∼300 – 5.0 CPD [1597,1600]
Pt – – 6 × 10−9 ∼1350–1950 – 5.00 ± 0.05 TE [2125]
Pt – – – – – 5.03 TC [3264,3267]
Pt – – – – – 5.03 TC [3476]
Pt Li Li+ 5 × 10−9 1150 5.03* – PSI [1393]
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Pt/ZrO2 – – ? ∼300 – 5.05 CPD [3681]
Pt{∼80%(210)}336 – – ? (Cs) ∼1800–2000 – 5.1 TE [3413,3414]
Pt/Ru(0001) – – – – – 5.10 TC [2554]
Pt K K+ 7 × 10−9 ∼800–1800 ≥5.1 (4.66 ± 0.2) PSI [74]
Pt – – ∼10−9 ∼300 – 5.12 PE [3212]
Pt/cnt/Si(111)25 – – ∼10−10 ∼300 – 5.12 ± 0.06 PE [3246]
Pt – – 3 × 10−11 ∼300 – 5.13 FE [2227]
Pt Na Na+ ≤5 × 10−9 ∼1250–1700 5.13 ± 0.01 – PSI [2594]
Pt – – 5 × 10−8 1560–1920 (5.77 ± 0.05) 5.13 ± 0.05 TE [106,667]
Pt/W346 Pt – ∼10−9 77 – 5.2 CPD [1137]
Pt – – – – – 5.2 TC [2583]
Pt/Nb Pt – ≤3 × 10−9 ∼300 – 5.2* CPD [3263]
Pt – – ? ∼300 – 5.2 PE [3505]
Pt/W Pt – ? ∼300 – 5.2 CPD [2577]
Pt/W Pt – ? 1000 – 5.2 FE [4115]
Pt – – – – – 5.2 TC [1645]
Pt – – ? OE – 5.22 TE [3020]
Pt/HfO2 Pt – ? ∼300 – 5.23 CPD [3651]
Pt – – ? ∼300 – 5.25 ± 0.01 CPD [1953]
Pt – – ? ∼300 – 5.25 ± 0.07* CPD [3994]
Pt – – ? >1900 – 5.27 TE [674,1847]
Pt/W(110) Pt – 5 × 10−11 ∼300 (880) – 5.27* CPD [2420]
Pt – – 1 × 10−10 ∼300 (4.94 ± 0.23) 5.27 ± 0.1 PE [3055]
Pt – – <3 × 10−8 ∼1700–2000 – 5.28 TE [177]
Pt – – ∼10−7 1560–1800 – 5.29* TE [176]
Pt/W(110) Pt – 5 × 10−11 ∼300 (1200) – 5.29* CPD [2420]
Pt – – ? ? – 5.3 TE [3402]
Pt – – – – – 5.3 TC [3030]
Pt – – 4 × 10−10 ∼300 – 5.3 PE [3124]
Pt/Ir Pt – ? ∼300 – 5.3 ± 0.1 CPD [1600]
Pt – – 4 × 10−10 ∼300 – 5.3 ± 0.1 PE [3132]
Pt – – <5 × 10−11 ∼300 – 5.3 ± 0.15 PE [2724]
Pt – – – – – 5.30 TC [1885]
Pt/quartz Pt – ≤5 × 10−10 78 – 5.30 ± 0.01 PE [435]
Pt/Si(111) Pt – <1 × 10−10 ∼300 (≤320) – 5.30 ± 0.05 CPD [3270]
Pt – – <3 × 10−8 ∼1700–1900 – 5.31 TE [177]
Pt – – ? ∼1500–1850 – 5.31 ± 0.01 TE [1306]
Pt – – <3 × 10−8 ∼1700–2000 – 5.32 TE [177]
Pt – – – – – 5.32 TC [1399]
Pt Li Li+ 2 × 10−7 ∼1800–1950 5.32 ± 0.05* – PSI [50]
Pt – – – – – 5.34 TC [3931]
Pt Tl Tl+ 5 × 10−9 ∼1250–1370 5.34 – PSI [1393]
Pt – – 3 × 10−9 ∼1000–1600 – 5.36 TE [159]
Pt – – ? ∼300 – 5.36 CPD [3256]
Pt341 Cs Cs+ ≤6 × 10−9 ∼1600–1900 5.36 ± 0.06 (5.41 ± 0.05) PSI [282]
Pt – – ? ∼300 – 5.36 ± 0.06 CPD [2762]
Pt/cnt/Si(111)25 – – ∼10−10 ∼300 – 5.39 ± 0.08 CPD [3246]
Pt – – – – – 5.4 TC [3161]
Pt/W Pt – ≤10−6 ∼1600–1800 – 5.4 TE [2301]
Pt – – 1 × 10−6 ∼1600–1750 – 5.4 TE [675]
Pt/Mo(112) Pt – <1 × 10−10 ∼300 (∼1300) – 5.4 CPD [3210]
Pt/Pt(110) Pt – 7 × 10−11 90, 150 – 5.4 ± 0.1 PE [856]
Pt – – ? ∼300 – 5.4 ± 0.1 CPD [1600]
Pt – – – – – 5.40 TC [3264,3265,3267]
Pt – – – – – 5.40 TC [3224]
Pt – – ∼10−7 ∼1550–1800 – 5.40 ± 0.03 TE [176]
Pt – – ? >1900 – 5.40 ± 0.08 TE [674,1847]
Pt/SiO2/Si Pt – ? ∼300 – 5.41 CPD [4330]
Pt341 – – ≤6 × 10−9 ∼1600–1900 (5.36,5.52) 5.41 ± 0.05 TE [282]
Pt – – ∼10−6 ∼1450–1550 – 5.42 TE [3384]
Pt – – <3 × 10−8 ∼1700–2000 – 5.43 TE [177]
Pt341 K K+ ≤6 × 10−9 ∼1600–1900 5.43 (5.41 ± 0.05) PSI [282]
Pt341 Cs Cs+ ≤6 × 10−9 ∼1600–1900 5.43 (5.41 ± 0.05) PSI [282]
Pt Na Na+ 4 × 10−10 ∼1500–1660 5.44* – PSI [3336]
Pt – – – – – 5.45 TC [3476]
Pt – – ∼10−5 ≤1200 – 5.45 TE [2216]
Pt/W Pt – ≤10−6 ∼1600–1800 – 5.45 TE [2305]
Pt/glass342 Pt – ∼10−10 78 – 5.45 PE [428,1497,2719]
Pt457 Li Li+ 7 × 10−9 ∼1300–1800 5.45 ± 0.02 (4.66 ± 0.2) PSI [74]
Pt – – ≤3 × 10−9 1570–1720 – 5.45 ± 0.02 TE [171]
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Pt343 – – ≤6 × 10−9 ∼1000–1700 (5.5) 5.45 ± 0.05 TE [98]
Pt – – ? ∼90 – 5.45 ± 0.2 PE [3403]
Pt/glass363 Pt – ∼10−10 ∼78 – 5.46 PE [436]
Pt/cnt/Si(111)25 – – ∼10−10 ∼300 – 5.46 ± 0.07 CPD [3246]
Pt/glass Pt – <10−9 77 – 5.48 PE [2931]
Pt Na Na+ 2 × 10−7 ∼1700–2050 5.49 ± 0.01* – PSI [50]
Pt457 Na Na+ 7 × 10−9 ∼1050–1800 5.49 ± 0.05 (4.66 ± 0.2) PSI [74]
Pt343 Cs Cs+ ≤6 × 10−9 ∼1400–1800 5.5 (5.45 ± 0.05) PSI [98]
Pt//Sin482 Pt – ? ∼300 – 5.5 CPD [4375]
Pt – – ∼10−10 ∼300 – 5.5 ± 0.1 PE [858]
Pt/glass369 Pt – ∼10−10 77 – 5.50 PE [2133]
Pt – – ? ? – 5.50 TE [2105]
Pt458 Na Na+ 7 × 10−9 ∼1050–1800 5.51 ± 0.1 (4.66 ± 0.2) PSI [74]
Pt170,341 K K+ ≤6 × 10−9 ∼1600–1900 5.52 ± 0.05 (5.41 ± 0.05) PSI [282]
Pt – – ? ∼300 – 5.53 ± 0.1 PE [3711]
Pt458 Li Li+ 7 × 10−9 ∼1300–1800 5.54 ± 0.07 (4.66 ± 0.2) PSI [74]
Pt170,345 NaNO3 Na+ 5 × 10−7 ∼1250–1350 5.54 ± 0.07 – PSI [178]
Pt – – – – – 5.55 TC [298]
Pt – – 4 × 10−9 ∼1500–1800 – 5.55 TE [1295]
Pt – – ∼10−10 ∼300 – 5.55 ± 0.02 PE [2487]
Pt{mainly(111)}344 – – <1 × 10−9 ∼1300–1800 – 5.55 ± 0.1 TE [434]
Pt345 NaNO3 Na+ 5 × 10−7 ∼1250–1350 5.56 – PSI [178]
Pt/quartz Pt – ≤5 × 10−10 293 – 5.58 ± 0.04 PE [435]
Pt/SiO2 Pt – ? ? – 5.59 CPD [3519,3520]
Pt – – <3 × 10−8 ∼1700–2000 – 5.6 TE [177]
Pt – – ? ∼300 – 5.6 PE [3235]
Pt Na Na+ 2 × 10−10 1000 5.6 ± 0.1 – PSI [75]
Pt – – ? ∼300 – 5.6 ± 0.2 CPD [3867]
Pt – – ? ∼1500–1800 – 5.60 TE [1753]
Pt/glass Pt – <3 × 10−10 78 (∼300) – 5.62 PE [2722]
Pt/glass342 Pt – ∼10−10 78 (293) – 5.63 PE [428,1497,2719]
Pt/glass Pt – <10−9 77 (293) – 5.63 PE [2931]
Pt/Pt(111)335 Pt – <10−10 130 – 5.64 PE [421,773]
Pt/quartz Pt – ≤5 × 10−10 293 (∼550) – 5.64 PE [435]
Pt – – 6 × 10−9 ∼300 – 5.65 PE [1139]
Pt – – ? ? – 5.65 TE [1]
Pt/quartz Pt – ∼10−10 ∼300 – 5.65 ± 0.1 PE [304]
Pt NaBr Na+ 2 × 10−7 1450 5.66 – PSI [58]
Pt – – ≤10−9 1500 – 5.66 TE [650]
Pt – – ∼10−7 ∼1550–1800 – 5.66 ± 0.07 TE [176]
Pt/glass Pt – ∼10−10 ∼300 – 5.68 ± 0.03 PE [1141]
Pt/glass Pt – <1 × 10−10 78 (373) – 5.69 PE [414]
Pt – – <5 × 10−10 ∼300 – 5.7 PE [1296]
Pt/Pt(111)335 Pt – <10−10 250 – 5.7 PE [421]
Pt/TiO2(001) Pt – ∼10−10 ∼300 – 5.7 CPD [1567]
Pt – – 2 × 10−10 293 – 5.7 ± 0.05 PE [1542]
Pt/glass Pt – <1 × 10−10 78 (473) – 5.70 PE [414]
Pt – – ≤5 × 10−10 ∼300 – 5.70 ± 0.07 PE [3354]
Pt – – <8 × 10−11 ∼300 – 5.700 ± 0.100 CPD [342,3868]
Pt/glass369 Pt – ∼10−10 77 (323) – 5.71 PE [2133]
Pt458 Tl Tl+ 7 × 10−9 ∼1300–1800 5.71 ± 0.03 (4.66 ± 0.2) PSI [74]
Pt/glass363 Pt – <1 × 10−10 78 (≥500) – 5.72 PE [414,436]
Pt/glass342 Pt – <10−10 78 (593) – 5.72 PE [428,1497]
Pt/glass Pt – ∼10−10 ∼300 (473) – 5.72 ± 0.01 PE [1141]
Pt – – – – – 5.73 TC [3016]
Pt – – 5 × 10−10 ∼300 – 5.73 AI38 [4027]
Pt – – <3 × 10−8 ∼1700–2000 – 5.75 TE [177]
Pt337 – – 2 × 10−11 ∼300 – 5.77 PE [429]
Pt Bi Bi+ 5 × 10−8 1560–1920 5.77 ± 0.05 (5.13 ± 0.05) PSI [106,667]
Pt457 Tl Tl+ 7 × 10−9 ∼1300–1800 5.78 ± 0.02 (4.66 ± 0.2) PSI [74]
Pt{80%(210)}336 – – 1 × 10−9 1620–1950 – 5.79 ± 0.09 TE [179,650,3413]
Pt{(111)rich} – – ∼10−10 ∼300 – 5.8 CPD [437]
Pt – – ∼10−10 ∼300 – 5.8 ± 0.1 PE [858]
Pt – – ≤10−9 1900 – 5.83 TE [650]
Pt/Nb(110) Pt – 7 × 10−11 ∼300 – 5.85 PE [2874]
Pt/W(110) Pt – 4 × 10−11 400 – 5.85 CPD [2408]
Pt/W Pt – ≤10−6 ∼1600–1800 – 6 TE [2301]
Pt – – – – – 6.0 TC [706]
Pt – – ? ∼1600–2000 – 6.0 TE [3020]
Pt – – ∼10−5 (O2) ∼300 – 6.0 PE [2487]
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Pt/W(110)346 Pt – (≤10−10) ∼300 – 6.05 CPD [1137]
Pt/W(110)346 Pt – (≤10−10) ∼300{800} – 6.05 CPD [1137]
Pt – – ? ∼1500–1800 – 6.05 TE [1753]
Pt – – <10−7 ∼1100–1200 – 6.1 TE [3384]
Pt/Re Pt – ? ∼300 – 6.1 ± 0.1 PE [401]
Pt – – ? 1540–1780 – 6.16 TE [1753]
Pt – – 1 × 10−9 ∼600–700 – 6.17 CPD [171]
Pt – – ? ∼300 – 6.17 PE [2924]
Pt – – ∼10−8 1370–1750 – 6.27 ± 0.07 TE [860]
Pt – – ∼10−8 ∼300 – 6.30 ± 0.05 PE [1751,1753]
Pt – – ? ? – 6.33 TE [1754]
Pt – – – – – 6.35 TC [1744]
Pt – – ? 1540–1780 – 6.35 TE [1753]
Recommended – – – – 5.58 ± 0.11 5.30 ± 0.07 – –

79. Gold Au

fcc
Au(100) – – – – – 3.318 TC [2914]
Au(100) – – – – – 3.65 TC [475]
Au(100) – – – – – 3.816 TC [2914]
Au(100)/NaCl137 Au – ? ∼300 (473) – 4.02 ± 0.02 PE [3324,3328,3330]
Au(100) – – – – – 4.99 TC [1159,1980,3067]
Au(100) – – – – – 5.02 TC [705]
Au(100) – – – – – 5.022 TC [4414]
Au(100) – – – – – 5.04 TC [4233]
Au(100) – – – – – 5.05 TC [4233]
Au(100) – – – – – 5.071 TC [4091]
Au(100) – – – – – 5.08 TC [1939]
Au(100) – – – – – 5.10 TC [4087,4410]
Au(100) – – – – – 5.10 TC [4326]
Au(100) – – – – – 5.11 TC [1939]
Au(100) – – – – – 5.14 TC [2702]
Au(100) – – 1 × 10−10 ∼300 – 5.22 ± 0.04 PE [1068]
Au(100) – – ? ∼300 – 5.35 ± 0.05 PE [2995]
Au(100) – – – – – 5.39 TC [1873]
Au(100) – – – – – 5.41 TC [1011]
Au(100)/Cr(100) – – – – – 5.42 TC [1011]
Au(100) – – – – – 5.43 TC [1011]
Au(100) – – – – – 5.44 TC [1719]
Au(100)/Cr(100) – – – – – 5.44 TC [1011]
Au(100) – – – – – 5.45 TC [1939]
Au(100) – – ? ∼300 – 5.47 CPD [959]
Au(100) – – – – – 5.48 TC [3217]
Au(100) – – – – – 5.53 TC [480,4398]
Au(100) – – – – – 5.53 ± 0.10 TC [3217]
Au(100) – – – – – 5.56 TC [3317]
Au(100) – – – – – 5.61 TC [1928]
Au(100) – – – – – 5.66 TC [1011]
Au(100) – – – – – 5.67 TC [2803]
Au(100) – – – – – 5.92 TC [1011]
Au(100) – – – – – 5.96 TC [1011]
Au(100) – – – – – 6.13 TC [1011]
Au(100) – – – – – 6.16 TC [334]
Au(100) – – – – – 6.16 TC [321]
Au(100) – – – – – 6.23 TC [3194]
Au(100) – – – – – 6.26 TC [3194]
Au(100) – – – – – 6.4 TC [389]
Recommended – – – – – 5.39 ± 0.07 – –

Au(110) – – – – – 3.148 TC [2914]
Au(110) – – – – – 3.50 TC [475]
Au(110) – – – – – 3.629 TC [2914]
Au(110) – – – – – 4.65 TC [1159,3067]
Au(110) – – – – – 4.91 TC [4091]
Au(110) – – – – – 4.93 TC [4233]
Au(110) – – – – – 4.98 TC [4233]
Au(110) – – – – – 5.04 TC [4087,4410]
Au(110) – – 5 × 10−10 298 – 5.12 ± 0.07 CPD [1069]
Au(110) – – 1 × 10−10 ∼300 – 5.20 ± 0.04 PE [1068]
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Au(110)347 – – – – – 5.32 TC [2543]
Au(110) – – – – – 5.36 TC [4404]
Au(110) – – ? ∼300 – 5.37 CPD [959]
Au(110)347 – – – – – 5.38 TC [2543]
Au(110) – – – – – 5.38 TC [480]
Au(110)347 – – – – – 5.39 TC [2543]
Au(110) – – ? ∼300 – 5.39 ± 0.06 CPD [4404]
Au(110) – – – – – 5.40 TC [334]
Au(110) – – – – – 5.41 TC [480,4398]
Au(110) – – – – – 5.42 TC [3317]
Au(110)/W(112)348 Au – <2 × 10−10 78{540} – 5.45 ± 0.03 FE [2256]
Au(110) – – – – – 5.5 TC [2167]
Au(110) – – – – – 5.80 TC [321]
Au(110) – – – – – 5.85 TC [3194]
Au(110) – – – – – 5.86 TC [3194]
Recommended – – – – – 5.33 ± 0.09 – –

Au(111) – – – – – 3.478 TC [2914]
Au(111) – – – – – 3.80 TC [475]
Au(111)/NaCl137 Au – ? ∼300 (423) – 4.12 ± 0.02 PE [3324,3328,3330]
Au(111) – – – – – 4.165 TC [2914]
Au(111) – – <1 × 10−10 ∼300 – 4.6 PE [3140]
Au(111) – – – – – 4.83 TC [2077]
Au(111) – – – – – 4.94 ± 0.11 TC [2902]
Au(111) – – – – – 4.95 TC [2077]
Au(111) – – – – – 5.1 TC [4233]
Au(111) – – – – – 5.11 TC [2702]
Au(111) – – – – – 5.110 TC [4091]
Au(111) – – – – – 5.13 TC [4233]
Au(111) – – – – – 5.14 TC [1939]
Au(111) – – – – – 5.15 TC [2068]
Au(111) – – – – – 5.15 TC [343]
Au(111) – – – – – 5.15 TC [4087,4410]
Au(111) – – ? 70 – 5.15 ± 0.1 PE [1297]
Au(111) – – – – – 5.17 TC [4140]
Au(111) – – – – – 5.18 TC [1939]
Au(111)/Si(111)419 Au – ∼10−10 ∼300 – 5.2 PE [3999,4000]
Au(111)/Cu(111) Au – <1 × 10−10 ∼300 – 5.2 ± 0.3 CPD [1186,3417]
Au(111) – – – – – 5.20 CT [4151,4408]
Au(111) – – – – – 5.21 TC [4155]
Au(111) – – – – – 5.23 CT [4181]
Au(111) – – – – – 5.25 TC [4152]
Au(111) – – – – – 5.25 TC [4154]
Au(111) – – – – – 5.25 TC [1197,4157,4215,

4413]
Au(111) – – – – – 5.26 TC [4153]
Au(111)/W(110) Au – ? ∼300 (<934) – 5.25 ± 0.03 CPD [3076]
Au(111) – – 1 × 10−10 ∼300 – 5.26 ± 0.04 PE [1068]
Au(111) – – – – – 5.27 TC [2902]
Au(111) – – 1 × 10−10 ∼300 – 5.3 PE [1070]
Au(111) – – 5 × 10−10 ∼300 – 5.3 PE [1142]
Au(111)/mica Au – ? ∼300 – 5.3 CPD [1600]
Au(111) – – – – – 5.3 ± 0.1 TC [3494]
Au(111) – – 5 × 10−10 298 – 5.30 ± 0.05 PE [1069]
Au(111) – – – – – 5.31 TC [2551]
Au(111) – – ? ∼300 – 5.31 CPD [959]
Au(111) – – – – – 5.31 TC [3497]
Au(111) – – – – – 5.32 TC [1159,1980,3067]
Au(111)/W(110)349 Au – <2 × 10−10 78{420} – 5.32 ± 0.03 FE [2256]
Au(111) – – 5 × 10−11 100 (730) – 5.35 PE [4156]
Au(111) – – ? 5 (900) – 5.36 PE [4257]
Au(111)/quartz350 Au – ∼10−9 ∼300 – 5.38 PE [3313]
Au(111)/mica420 Au – 4 × 10−10 ∼300{570} – 5.4 PE [4001]
Au(111) – – ? ∼300 – 5.40 ± 0.05 PE [2995]
Au(111)/quartz350 Au – ∼10−9 ∼300 (623) – 5.42 PE [3313]
Au(111) – – ? 30 – 5.44 PE [2228]
Au(111) – – – – – 5.45 TC [4426]
Au(111)/mica Au – 4 × 10−11 ∼300 (623) – 5.47 PE [1202]
Au(111)/mica(111) Au – <5 × 10−11 ∼300 (∼700) – 5.47 ± 0.15* CPD [1897]
Au(111) – – – – – 5.5 TC [1723]
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Au(111) – – ? ∼300 – 5.5 ± 0.1 PE [1297]
Au(111)/W(110) Au – ≤2 × 10−10 ∼300 – 5.50* CPD [1538]
Au(111) – – 8 × 10−11 ∼300 – 5.50 PE [4080]
Au(111)/W(112)351 Au – ≤7 × 10−11 ∼300 – 5.51 CPD [2385]
Au(111) – – – – – 5.52 TC [1939]
Au(111) – – – – – 5.54 TC [233]
Au(111) – – – – – 5.54 TC [4174,4284]
Au(111)351 – – ≤7 × 10−11 ∼300 – 5.55 CPD [2385,2871]
Au(111) – – ? ∼300 – 5.55 PE [2999]
Au(111) – – ? ∼300 – 5.55 ± 0.03 PE [4213]
Au(111) – – – – – 5.56 TC [3217]
Au(111)/Ir(111) Au – ≤5 × 10−10 ∼300 (>673) – 5.60 ± 0.04 CPD [415,3266]
Au(111) – – – – – 5.60 ± 0.10 TC [3217]
Au(111) – – – – – 5.63 TC [480,4398]
Au(111) – – – – – 5.65 TC [3317]
Au(111) – – – – – 5.7 TC [1723]
Au(111) – – – – – 5.71 TC [2803]
Au(111) – – – – – 6.01 TC [334]
Au(111) – – – – – 6.05 TC [3179]
Au(111) – – – – – 6.08 TC [3194]
Au(111) – – – – – 6.65 TC [321]
Recommended – – – – – 5.46 ± 0.07 – –

Au(112) – – – – – 5.09 TC [2702]

Au(113) – – 5 × 10−10 298 – 5.16 ± 0.07 CPD [1069]

Au(210) – – 5 × 10−10 298 – 4.96 ± 0.07 CPD [1069]

Au(532) – – – – – 5.03 TC [2702]

Au – – – – – 3.07 TC [2493]
Au – – – – – 3.16 TC [2493]
Au – – – – – 3.19 TC [521]
Au – – – – – 3.44 TC [2629]
Au – – – – – 3.49 TC [475]
Au/Si(100)n478 Au – ? ∼300 – ∼3.5–3.8 CPD [4368]
Au – – – – – 3.52 TC [2474]
Au/quartz Au – ∼10−6 ∼300 – 4 PE [2941]
Au – – ∼10−6 ∼300 – 4 ± 0.5 FE [2675]
Au/quartz51 Au – ∼10−5 ∼300 – 4.0 PE [1973]
Au – – ? ? – 4.00–4.58 TE [1362]
Au/Ag Au – ∼10−6 ∼300 – 4.03 PE [2941]
Au/? Au – ∼10−6 ∼300 – 4.1 PE [3332]
Au(fp)352 – – – – – 4.1 TC [2973]
Au/glass Au – ∼10−6 373 – 4.17 ± 0.01 PE [3507]
Au/glass Au – ∼10−6–10−8 ∼300 – 4.2 PE [1894]
Au437 – – ? ∼300 – 4.20 PE [2760]
Au/glass Au – ∼10−6 463 – 4.21 PE [3507]
Au – – ≤4 × 10−10 ∼300 – 4.24 CPD [2118]
Au – – – – – 4.25 TC [2629]
Au/glass Au – ∼10−6 613 – 4.26 PE [3507]
Au/glass Au – ∼10−6 523 – 4.27 PE [3507]
Au/graphite Au – ? 1170–1280 – 4.27 ± 0.03 TE [2236]
Au – – – – – 4.28 TC [1626,2914]
Au – – – – – 4.33 TC [3318]
Au – – ? ∼300 – 4.36 ± 0.06* CPD [1953]
Au/GaP – – – – – 4.38 TC [1653]
Au – – 2 × 10−5 ∼300 – 4.4–4.6 ? [2836]
Au(fp)352 – – – – – 4.4 TC [2973]
Au – – ? 1323 – 4.41 TE [1944]
Au – – ≤4 × 10−10 ∼300 – 4.42 CPD [2118]
Au – – – – – 4.45 TC [1645]
Au – – ? ∼300 – 4.46 CPD [2297]
Au/? Au – ? ∼300 – 4.48 CPD [2708]
Au/GaP – – – – – 4.49 TC [1653]
Au/W(100) Au – ? 825 – 4.5* FE [2263]
Au – – – – – 4.50 TC [3352]
Au/Si – – – – – 4.53 TC [1653]
Au/Cu Au – ∼10−10 ∼300 – 4.54 ± 0.02 PE [2765]
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Au – – ∼10−7 ∼300 – 4.55 PE [1890]
Au – – – – – 4.56 TC [1976]
Au/Si – – – – – 4.56 TC [1653]
Au – – – – – 4.6 TC [1993]
Au(fp)352 – – – – – 4.6 TC [2973]
Au/W(100) Au – ? 900 – 4.6* FE [2263]
Au353 – – <10−9 ∼300 – 4.64 CPD [1072]
Au/glass368 Au – <10−8 ∼300 – 4.68 ± 0.03 CPD [133]
Au/Si(111) – – – – – 4.69 TC [2688]
Au/Al2O3/Al Au – ? ∼300 – 4.69 CPD [3057]
Au – – – – – 4.69 TC [2005]
Au/glass367 Au – <10−9 ∼300 – 4.7 CPD [1893]
Au/W(100) Au – ? 825 – 4.7 FE [2263]
Au/W(110) Au – ? 20 – 4.7 FE [2956]
Au – – – – – 4.7 TC [2583]
Au/TiO2(110) – – – – – ∼4.7–5.2 TC [4182]
Au – – <3 × 10−9 ∼300 – 4.70 ± 0.01 CPD [486,904]
Au/glass365 Au – ∼10−8 ∼300 – 4.70 ± 0.03 CPD [133]
Au/W Au – <10−10 ∼300 – 4.705 ± 0.010 CPD [2940]
Au/W Au – ∼10−10 ∼300 – 4.709 ± 0.006 CPD [2938]
Au – – <10−6 ∼300 – 4.71 PE [2919]
Au – – – – – 4.71 TC [1399]
Au/glass365 Au – <10−9 ∼300 (523) – 4.71 ± 0.02 CPD [349,1160,1163]
Au/W365 Au – ∼10−10 ∼300 – 4.714 ± 0.004 CPD [349,1161,2935]
Au – – ? ∼300 – 4.72 PE [3021]
Au/cnt/Si(111)25 – – ∼10−10 ∼300 – 4.72 ± 0.06 PE [3246]
Au354 – – 1 × 10−8 1013 – 4.73 PE [2560]
Au – – – – – 4.74 TC [1066]
Au – – ? ∼300 – 4.74 ± 0.01 CPD [1953]
Au – – ? ∼300 – 4.76 PE [3023]
Au/Ta(112)358 – – <1 × 10−10 ∼300{1000} – 4.76 CPD [878]
Au – – – – – 4.77 TC [3476]
Au/glass365 Au (Hg) – 5 × 10−11 ∼300 – 4.77 CPD [1071]
Au – – – – – 4.78 TC [3264,3265]
Au – – <10−7 ∼300 – 4.79–4.97 PE [3393]
Au/steel Au – ? ∼300 – 4.8 PE [2466,2475]
Au – – – – – 4.8 TC [3268]
Au/Ta(111) Au – <1 × 10−10 ∼300 – 4.8 CPD [2440]
Au/W(100) Au – ? 900 – 4.8 FE [2263]
Au/Nb Au – ≤5 × 10−9 ∼300 – 4.8* CPD [3261]
Au/Mo Au – 7 × 10−11 ∼300 – 4.8 PE [2226]
Au/glass Au – <10−8 78 – 4.8 ± 0.02 CPD [1646]
Au354 – – – 293–1013 – 4.81 ± 0.02 TC [1760]
Au – – – – – 4.82 TC [1885]
Au354 – – 1 × 10−8 293 – 4.82 PE [2560]
Au/Ta356 Au – ? ∼300 – 4.83 ± 0.02 CPD [1162]
Au – – ? ∼300 – 4.84 ± 0.02 PE [4155]
Au/Al2O3/Al Au – ? ∼300 – 4.84 ± 0.06* CPD [3057]
Au/Cu Au – ? ∼300 – 4.85 ± 0.05 PE [3178]
Au/cnt/Si(111)25 – – ∼10−10 ∼300 – 4.85 ± 0.11 CPD [3246]
Au – – – – – 4.88 TC [298]
Au – – – – – 4.88 ± 0.05 TC [3358]
Au355 – – – 733 – 4.89 TC [3586]
Au/W(110)366 – – 5 × 10−10 78 (300) – 4.89 ± 0.01 FE [1673]
Au353 – – <10−9 ∼300 – 4.89 ± 0.06 CPD [1072]
Au – – ? ∼300 – 4.9 PE [3639]
Au/quartz Au – 5 × 10−9 ∼300 – 4.9 CPD [2606]
Au – – ? ? – 4.9 ? [1838]
Au2/TiO2(110) – – – – – ∼4.9–5.2 TC [4182]
Au – – ? ∼300 – 4.9 ± 0.1 PE [3014]
Au354 – – – 296–1013 – 4.90 ± 0.03 TC [1135]
Au – – 1 × 10−9 ∼300 – 4.91 CPD [1252]
Au – – – – – 4.91 TC [339]
Au355 – – – 1013 – 4.92 TC [3586]
Au355 – – – 733, 1013 – 4.92 TC [1135]
Au/W Au – <5 × 10−9 78 – 4.92 FE [2240]
Au/cnt/Si(111)25 – – ∼10−10 ∼300 – 4.92 ± 0.10 CPD [3246]
Au – – – – – 4.93 TC [3476]
Au354 – – – 296–1013 – 4.93 ± 0.03 TC [1135]
Au – – ? ∼300 – 4.95 PE [2752]
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Au/W(111)361 Au – ∼10−11 ∼300 (∼1000) – 4.96* CPD [2647]
Au/glass369 Au – ∼10−10 77 – 4.96 PE [2133]
Au/Ta356 Au – ? ∼300 – 4.97 ± 0.02 CPD [1162]
Au – – 1 × 10−10 ∼300 – 5.0 PE [1678]
Au/glass – – <10−9 ∼300 – 5.0 PE [2717]
Au/? Au – ∼10−5 ∼300 – 5.0 CPD [1376]
Au(fp)352 – – – – – 5.0 TC [2973]
Au/W(100) Au – ? 750 – 5.0* FE [2263]
Au/W Au – ? ∼300 – 5.0 FE [2225]
Au/Si Au – 1 × 10−9 ∼300 – 5.0 PE [3221]
Au – – 4 × 10−10 ∼300 – 5.0 ± 0.1 PE [3132]
Au – – ? ∼300 – 5.00 PE [4159]
Au357 – – ∼10−9 ∼300 – 5.01 CPD [2473]
Au – – ? ∼300 – 5.03 ± 0.05 PE [4003]
Au/Ta(112)358 Au – <1 × 10−10 ∼300 – 5.04 CPD [878]
Au/W(100) Au – ≤2 × 10−10 ∼300{900} – 5.05* CPD [1538]
Au/ZrO2/Si(100) Au – ? ∼300 – 5.0548 PE [1442]
Au/SiO2/Si Au – ? ∼300 (570) – 5.06 PE [2355]
Au/glass Au – <1 × 10−10 78 – 5.06 PE [414]
Au/W(111) – – – – – 5.07 TC [531]
Au/W(100) Au – ? 20 (330) – 5.07* FE [2959]
Au357 – – ∼10−9 ∼300 – 5.08 CPD [2473]
Au/Mo(111)364 Au – <1 × 10−10 ∼300 – 5.08 CPD [1842]
Au/Ta(112)358 Au – <1 × 10−10 ∼300 – 5.08 CPD [878]
Au/W(112)361 Au – ∼10−11 ∼300 (∼1000) – 5.08* CPD [2647]
Au/CdTe(110) Au – ≤2 × 10−11 ∼300 – 5.08 ± 0.02 CPD [3068]
Au/quartz Au – ≤5 × 10−10 78 – 5.08 ± 0.04 PE [435]
Au/Al2O3/Si(100) Au – ? ∼300 – 5.148 PE [1442]
Au – – 4 × 10−10 ∼300 – 5.1 PE [3120]
Au/quartz Au – ≤5 × 10−9 ∼300 – 5.1 PE [2309]
Au/W(111) Au – ? 20 – 5.1 FE [2956]
Au – – ? ∼300 – 5.1 PE [1449]
Au/ITO Au – 5 × 10−10 ∼300 – 5.1* PE [4183]
Au – – ∼10−9 ∼300 – 5.1 ± 0.1 PE [1267]
Au/quartz Au – ∼10−10 ∼300 – 5.1 ± 0.1 PE [304]
Au–Cu(2.4%)/Si Au, Cu – ? 293 – 5.1 ± 0.1 PE [3998]
Au – – ? ∼300 – 5.1 ± 0.15 CPD [1600]
Au – – – – – 5.10 TC [3637]
Au/Ir359 Au – ? 78 (520) – 5.10 FE [2189]
Au/Si(111) Au – 5 × 10−11 ∼300 – 5.10 ± 0.05 CPD [613,636]
Au/Si(111) Au – <4 × 10−10 ∼300 – 5.11 ± 0.04 PE [3279]
Au/W Au – <5 × 10−9 78 – 5.12 FE [2240]
Au/Au360 Au – <5 × 10−8 ∼300 – 5.12* PE [3502]
Au357 – – ∼10−9 ∼300 (∼1200) – 5.13 CPD [2473]
Au/W(100)361 Au – ∼10−11 ∼300 (∼1000) – 5.14* CPD [2647]
Au/W(100) Au – ? 20 – 5.14* FE [2959]
Au/W(110) Au – (<1 × 10−11) ∼300 – 5.15 ± 0.02 FE [2251]
Au – – – – – 5.16 TC [3016]
Au – – ∼10−5 ≤1200 – 5.16 TE [2216]
Au/W(111)361 Au – ∼10−11 ∼300 – 5.17* CPD [2647]
Au357 – – ∼10−9 ∼300 (∼1200) – 5.18 CPD [2473]
Au/W(112) – – – – – 5.18 TC [531]
Au/Si(111)419 Au – ∼10−10 ∼300 – 5.2 PE [3999,4000]
Au/W(100) Au – ? 750 – 5.2 FE [2263]
Au – – ∼10−10 100 – 5.2 PE [2720]
Au – – – – – 5.2 TC [1561]
Au/Re Au – <4 × 10−10 ∼300 – 5.2* CPD [515]
Au – – ∼4 × 10−10 ∼300 – 5.2 ± 0.05 PE [1298]
Au – – 2 × 10−11 ∼300 – 5.2 ± 0.1 PE [1251]
Au/W(111) Au – ? 20 – 5.2 ± 0.1 FE [3509]
Au – – ≤1 × 10−10 ∼300 – 5.2 ± 0.3 PE [1695]
Au/W362 Aun – ∼10−5 (He, Ar) 77 – 5.2 ± 0.4 FE [1713]
Au/W(112)361 Au – ∼10−11 ∼300 – 5.20* CPD [2647]
Au/W(115) Au – ∼10−11 ∼300 – 5.20* CPD [2647]
Au/W(100) Au – <2 × 10−10 78 – 5.20 FE [2256]
Au – – ? ∼300 – 5.20 PE [4242]
Au/W Au – (<1 × 10−11) ∼300 – 5.20 ± 0.02 FE [2251]
Au353 – – <10−9 ∼300 (1170) – 5.20 ± 0.05 CPD [1072]
Au – – 4 × 10−10 ∼300 – 5.20 ± 0.05 PE [1181]
Au/glass Au – 5 × 10−11 ∼300 – 5.20 ± 0.07* CPD [1071]
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Au(f.p.)149 – – <10−9 ∼300 – 5.20 ± 0.1 PE [1562,3190]
Au/Mo(111)364 Au – <1 × 10−10 ∼300{1000} – 5.22 CPD [1842]
Au/glass363 Au – ∼10−10 ∼78 – 5.22 PE [436]
Au/glass365 Au – 5 × 10−11 ∼300 – 5.22 ± 0.05 CPD [1071,2100]
Au – – <1 × 10−9 ∼300 – 5.22 ± 0.05 CPD [1072]
Au – – <5 × 10−9 78 – 5.23 FE [2240]
Au – – ∼10−9 ∼300 (∼1100) – 5.24 CPD [2473]
Au/W(110)366 Au – 2 × 10−10 ∼300 (750) – 5.25 ± 0.01 FE [1670,1673]
Au/glass Au – 5 × 10−11 ∼300 – 5.25 ± 0.08* CPD [1071]
Au/Cu Au – ? ∼300 – 5.26 CPD [3716]
Au/glass Au – 2 × 10−10 ∼300 – 5.26 PE [1621]
Au/W Au – (<1 × 10−11) ∼300 (600) – 5.26 FE [730]
Au357 – – ∼10−9 ∼300 – 5.27 CPD [2473]
Au357 – – ∼10−9 ∼300 (∼1100) – 5.27 CPD [2473]
Au/glass Au – <1 × 10−10 78 (293) – 5.28 PE [414,2722]
Au/quartz Au – ≤5 × 10−10 293 – 5.28 ± 0.01 PE [435]
Au/Ru368 Au – ∼10−10 ∼300 – 5.28 ± 0.02 CPD [1073]
Au/glass Au – 5 × 10−11 ∼300 – 5.28 ± 0.06* CPD [1071]
Au/Ir359 Au – ? 78 (501) – 5.29 FE [2189]
Au – – ≤1 × 10−10 ∼300 – 5.29 CPD [2198]
Au/Si(111) Au – <5 × 10−11 60 (770) – 5.3 PE [2893]
Au/Ta Au – ∼10−10 ∼300 – 5.3 PE [2985]
Au/Nb(110) Au – 7 × 10−11 ∼300 – 5.3 PE [2986]
Au/W Au – ? ∼300 – 5.3 FE [3095]
Au/W Au – ? ? – 5.3 FE [1501]
Au/W(100) Au – ? ∼300 – 5.3* FE [2263]
Au/W(110)349 Au – <2 × 10−10 78 – 5.3 FE [2256]
Au/W(112)348 Au – <2 × 10−10 78 – 5.3 FE [2256]
Au/W(112) Au – ? 20 – 5.3 FE [2956]
Au/glass367 Au – <10−9 ∼300 (520) – 5.3 CPD [1893]
Au – – <5 × 10−10 ∼300 – 5.3 PE [1296]
Au – – <2 × 10−10 ∼300 – 5.3 CPD [4214]
Au/glass Au – ∼10−10 323 – 5.30 PE [1074]
Au/W(100) Au – 1 × 10−11 330 – 5.30 FE [2965]
Au/Co/Pt Au – ? ∼300 – 5.30 ± 0.06 PE [4423]
Au357 – – ∼10−9 ∼300 – 5.31 CPD [2473]
Au/Au360 Au – <5 × 10−8 ∼300 (≤723) – 5.31* PE [3502]
Au/Ru(0001) Au – 1 × 10−10 ∼300 – 5.31* CPD [2880]
Au357 – – ∼10−9 ∼300 – 5.32 CPD [2473]
Au/W(100) Au – <2 × 10−10 78{200} – 5.32 FE [2256]
Au/glass Au – <1 × 10−10 78 (≤573) – 5.32 ± 0.01 PE [414]
Au/W Au – (<1 × 10−11) ∼300 – 5.32 ± 0.02 FE [2251]
Au – – – – – 5.33 TC [3476]
Au/W(100) Au – ∼10−10 ∼300{≤900} – 5.33 CPD [2858]
Au357 – – ∼10−9 ∼300 – 5.33 CPD [2473]
Au/W(100) Au – ≤10−10 78 – 5.33 ± 0.02 FE [356]
Au/O=Si(100) Au – ∼10−10 ∼300 – 5.33 ± 0.05 PE [2281]
Au/W(110) – – – – – 5.34 TC [531]
Au/W(110) Au – ∼10−11 ∼300 – 5.34* CPD [2647]
Au/W(100) – – – – – 5.35 TC [531]
Au/W(100)361 Au – ∼10−11 ∼300 – 5.36* CPD [2647]
Au/quartz Au – ≤5 × 10−10 293 (∼550) – 5.36 ± 0.01 PE [435]
Au/Re Au – (<1 × 10−11) ∼300 (600) – 5.37 FE [730]
Au/W(100) Au – ∼1 × 10−11 20 – 5.37 FE [2965]
Au/steel Au – <6 × 10−9 ∼300 – 5.37 ± 0.02 FE [1540]
Au/glass363 Au – ∼10−10 ∼300 (≥400) – 5.38 PE [436,1074]
Au – – – – – 5.38 TC [3016]
Au/glass Au – ∼10−10 ∼300 – 5.38 ± 0.02 PE [1141]
Au/quartz350 Au – ∼10−9 ∼300 – 5.38 ± 0.02 PE [3313]
Au/glass Au – ∼10−10 ∼300 (473) – 5.39 ± 0.01 PE [1141]
Au/W(100) Au – ? 78 – 5.4* FE [2263]
Au – – 2 × 10−10 130 – 5.4 PE [4212]
Au/W(112) Au – ∼10−10 ∼300{≤1000} – 5.4 CPD [2858]
Au/W(110)349 Au – <2 × 10−10 78{160} – 5.4 FE [2256]
Au/Pt(100) Au – 1 × 10−10 ∼300 – 5.4 ± 0.15 PE [174]
Au/glass369 Au – ∼10−10 77 (373) – 5.40 PE [2133]
Au – – ? ? – 5.40 ? [2610]
Au/Mo(110) Au – <1 × 10−10 ∼300{900} – 5.40* CPD [2864]
Au – – – – – 5.400 TC [2649]
Au/steel Au – ≤2 × 10−11 ∼300 – 5.40 ± 0.05 CPD [3068]
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Au/glass Au – ∼10−10 ∼300 – 5.41 PE [1141]
Au/quartz Au – ∼10−9 ∼300 (673) – 5.41 PE [3313]
Au/quartz350 Au – ∼10−9 ∼300 (623) – 5.42 PE [3313]
Au/W(110) Au – ≤7 × 10−11 ∼300 (≤1200) – 5.42 CPD [2388]
Au/Pt(100) Au – ∼10−10 ∼300 – 5.42 ± 0.02 PE [3136]
Au/Mo(110) Au – <1 × 10−10 ∼300 – 5.43* CPD [2864]
Au/glass368 Au – 2 × 10−10 77 – 5.43 ± 0.01 CPD [945]
Au/glass Au – 10−9 ∼300 (>573) – 5.45 CPD [1074]
Au/W(110) Au – <7 × 10−11 78 (750) – 5.45 FE [2279]
Au/glass368 Au – 2 × 10−10 77 – 5.45 ± 0.01 CPD [945]
Au/W(100) Au – ? ∼300 – 5.5 FE [2263]
Au/W(110) Au – ∼10−10 ∼400 – 5.5 ± 0.05* CPD [3676]
Au/W (110) Au – 5 × 10−11 ∼300 – 5.51 CPD [2384]
Au/Pt (997) Au – 1 × 10−10 ∼300 – 5.52 ± 0.15 PE [174]
Au/W(110) Au – ∼10−10 ∼300{≤900} – 5.55 CPD [2858]
Au/W(100) Au – <2 × 10−10 78{500} – 5.55 FE [2256]
Au/Cr/Au(100) – – – – – 5.57 TC [1911]
Au/ZnO(1120) Au – ≤2 × 10−11 ∼300 – 5.59 ± 0.03 CPD [3068]
Au/CdS(1120) Au – ≤2 × 10−11 ∼300 – 5.59 ± 0.03 CPD [3068]
Au – – – – – 5.6 TC [706]
Au/W(100) Au – ? 78 – 5.6 FE [2263]
Au/W(100) Au – ? 78 (330) – 5.6* FE [2263]
Au/Cr Au – 4 × 10−11 ∼300 – 5.6 CPD [2123]
Au/V(100) Au – <8 × 10−11 120 – 5.6 ± 0.1 PE [3372]
Au/Ru(001) Au – <5 × 10−10 60 – 5.60 ± 0.05 PE [2651]
Au/Cr/Au(100) – – – – – 5.65 TC [1911]
Au/W(110) Au – ∼10−10 900 – 5.65 ± 0.05* CPD [3676]
Au/Si(111) Cs, Li Cs+ ? ∼300 5.7* – CPD [1342]
Au/W362 Aun – ∼10−5 (He, Ar) 77 – 5.7 ± 0.5 FE [1713]
Au/W(110) Au – ∼10−10 600 – 5.70 ± 0.05* CPD [3676]
Au/W(100) Au – ? 78 (330) – 5.8 FE [2263]
Au/Pt(111) Au – 1 × 10−10 ∼300 – 5.8 ± 0.15 PE [174]
Au/Ir(100)359 Au – ? 78 (520) – 5.80 FE [2189]
Au/Ir(100)359 Au – ? 78 (482) – 5.86 ± 0.02 FE [2189]
Au/W362 Aun – ∼10−5 (He, Ar) 77 – 5.9 ± 0.6 FE [1713]
Au/Pt(100) – – – – – 6.17 TC [855]
Au – – – – – 6.79 TC [2551]
Recommended – – – – – 5.30 ± 0.04 – –

80. Mercury Hg

Liquid (𝑻 > 234 K)
Hg – – – – – 3.33 TC [3211]
Hg – – ? ∼300 – 3.9–4.9 PE [1745]
Hg – – – – – 3.9–5.0 TC [2261]
Hg – – ? ∼300 – 4.054 ± 0.027 PE [3247]
Hg/Ag Hg – ∼10−9 ∼300 – 4.16 ± 0.07* CPD [1530]
Hg/Ag/Al Hg – ∼10−6 ∼300 – 4.3 ± 0.1 CPD [2250]
Hg – – ? ∼300 – 4.33 PE [2081]
Hg/Mo Hg – ? ∼240 – ∼4.4 FE [3074]
Hgn(n → ∞) – – – – – 4.42 ± 0.58 TC [4261]
Hg – – – – – 4.43* TC [1955]
Hg/W(110) Hg – 7 × 10−11 ∼240 – 4.46 PE [3566]
Hg – – ? 243 – 4.475 ± 0.01 PE [2770,2771]
Hg – – ? ∼300 – 4.48 ± 0.02 CPD [2334,2597]
Hg – – – – – 4.49 TC [2005]
Hg370 – – <2 × 10−10 273 – 4.49 ± 0.01 PE [1669]
Hg156 – – <10−8 298 – 4.49 ± 0.05 PE [2470,4207,4209,

4223–4225]
Hg – – – – – 4.5 TC [1645]
Hg – – – – – 4.5 TC [2583]
Hg/Cu/Al Hg – ∼10−6 ∼300 – 4.5 ± 0.1 CPD [2250]
Hg – – – – – 4.50 TC [3264,3265,3267]
Hg – – ? ∼300 – 4.50 PE [1634]
Hg – – – – – 4.50 TC [3352]
Hg – – ∼10−6 ∼300 – 4.50 CPD [2942]
Hg – – ∼10−6 ∼300 – 4.50 ± 0.01 PE [1752]
Hg – – ∼10−7 ∼300 – 4.50 ± 0.03 CPD [1542,2767]
Hg – – ? (N2) ∼300 – 4.51 CPD [2186]
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Hg – – ? ∼300 – 4.51 PE [2290]
Hg – – – – – 4.51 TC [1399]
Hg – – ? ∼300 – 4.51 ± 0.02 PE [2920]
Hg – – – – – 4.510 TC [2649]
Hg – – – – – 4.52 TC [1990]
Hg – – <10−5 ∼300 – 4.52 PE [2291]
Hg – – ? ∼300 – 4.52 ± 0.02 PE [2081]
Hg/O=Fe Hg – ? >234 – 4.52 ± 0.02 PE [2921]
Hg – – – – – 4.53 TC [1885]
Hg/W(100) Hg – 2 × 10−10 ∼300 – 4.55 PE [1859]
Hg – – ∼10−9 298 – 4.55 ± 0.05* PE [2613]
Hg – – – – – 4.59 TC [298]
Hg/W Hg – ? 293 – 4.59 ± 0.04* CPD [2573]
Hg/W371 Hg – ? ∼240 – ∼4.6 FE [3074]
Hg – – ? ∼300 – 4.60 PE [2614]
Hg – – ? ∼300 – 4.60 PE [2081]
Hg/W Hg – ∼10−9 (Hg) 295 – 4.616 ± 0.046* FE [3143]
Hg/Mo Hg – ∼10−9 ∼300 – 4.62 ± 0.07* CPD [1530]
Hg/Au Hg – <10−9 (Hg) ∼300 – 4.64 CPD [1072]
Hg/W Hg – ∼10−9 (Hg) 900–980 – 4.647 ± 0.007* FE [3143]
Hg/W Hg – ∼10−9 (Hg) 750,780 – 4.680 ± 0.004* FE [3143]
Hg – – – – – 4.7 TC [706]
Hg/Au/Al Hg – ∼10−6 ∼300 – 4.7 ± 0.1 CPD [2250]
Hg/W Hg – ∼10−9 (Hg) 295 – 4.73 ± 0.04* FE [3143]
Hg – – ? ∼300 – 4.744 PE [2806]
Hg/Au/glass Hg – 5 × 10−11 ∼300 – 4.77 CPD [1071]
Hg – – – – – 4.79 TC [1744]
Hg – – ? (O2, air) ∼300 – 4.83 PE [2081]
Hg/Au Hg – 2 × 10−9 (Hg) ∼300 – 4.89 ± 0.06 CPD [1072]
Hg/W371 Hg – 1 × 10−10 ∼300 – 4.9 FE [3726]
Hg/Ni(111)372 Hg – <10−10 240–310 – 4.90 ± 0.08 PE [3165,3166]
Hg/Re Hg – ∼10−9 ∼300 – 5.08 ± 0.03* CPD [1530]
Hg/Au Hg – ∼10−9 ∼300 – 5.15 ± 0.08* CPD [1530]
Recommended – – – – – 4.50 ± 0.02 – –

Rhombohedral (𝜶, 𝑻 < 𝟐𝟑𝟒 𝐊 for bulk)
Hg/W(110) Hg – 7 × 10−11 200 – 4.46 PE [3566]
Hg – – ? 173 – 4.47 ± 0.03 PE [2770]
Hg370 – – <2 × 10−10 <234 – 4.49 ± 0.01 PE [1669]
Hg156 – – <10−8 <234 – 4.49 ± 0.05 PE [2470]
Hg – – ? 83–230 – 4.49 ± 0.04 PE [2920]
Hg/O=Fe – – ? 83 – 4.52 ± 0.02 PE [2921]
Hg/W(110) Hg – ? 90 – 4.59 CPD [3562]
Hg/W Hg – ? ∼200 – ∼4.6 FE [3074]
Recommended – – – – – 4.52 ± 0.05 – –

81. Thallium Tl

hcp (𝜶, 𝑻 < 𝟓𝟎𝟑 𝐊)
Tl(0001) – – – – – 3.90 TC [4005]
Tl(0001) – – – – – 4.48 TC [321]

Tl(1010) – – – – – 3.93 TC [4005]
Tl(1010) – – – – – 4.27 TC [321]

Tl(1124) – – – – – 3.75 TC [321]

bcc (𝜷, 𝑻 > 𝟓𝟎𝟑 𝐊)
Tl(100) – – – – – 3.52 TC [321]

Tl(110) – – – – – 4.10 TC [321]

Tl(111) – – – – – 3.36 TC [321]

Tl(112) – – – – – 3.75 TC [321]

hcp (𝜶, 𝑻 < 𝟓𝟎𝟑 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)
Tl – – – – – 3.03 TC [1066]
Tl – – – – – 3.23 TC [1744]
Tln(n → ∞) – – – – – 3.23 ± 0.11 TC [4261]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Tl – – – – – 3.40 TC [521]
Tl/? Tl – ? ? – 3.68 PE [3029]
Tl – – ? 293 – 3.69 PE [4139]
Tl – – – – – 3.7 TC [1993]
Tl – – – – – 3.7 TC [2583]
Tl – – – – – 3.70 TC [1885]
Tl – – ? ∼300 – 3.70 PE [2614]
Tl/Au(100) – – – – – 3.71 TC [3168]
Tl – – ? 567 – 3.72 PE [4139]
Tl – – – – – 3.73 TC [3168]
Tl – – – – – 3.75* TC [1955]
Tl – – – – – 3.76 TC [1399]
Tl – – – – – 3.78 TC [2629]
Tl – – – – – 3.83 TC [4418,4420]
Tl – – ? ∼300 – 3.84 CPD [2297]
Tl – – – – – 3.84 TC [3264,3265]
Tl – – 9 × 10−10 ∼300 – 3.84 ± 0.05 PE [3437]
Tl – – – – – 3.88 TC [298]
Tln(n → ∞) – – ? ∼300 – 3.89 IP, TC [4197]
Tl – – – – – 3.90 TC [1613]
Tl – – – – – 4.0 ± 0.05 TC [1990]
Tl – – – – – 4.02 TC [3264,3265,3267]
Tl/Cu(100) Tl – <5 × 10−10 ∼300 – 4.04 PE [1555]
Tl – – – – – 4.07 TC [2005]
Tl – – – – – 4.08 TC [3264]
Tl/Si(111) Tl – 2 × 10−10 ∼300 – 4.1* PE [3634]
Tl – – – – – 4.2 TC [706]
Recommended – – – – – 3.82 ± 0.05 – –

Liquid (𝑻 > 𝟓𝟕𝟕 𝐊)
Tl – – ? 587 – 3.64 PE [4139]
Tl – – 9 × 10−10 ∼680 – 3.84 ± 0.05 PE [3437]

82. Lead Pb

fcc
Pb(100) – – – – – 3.04 TC [1159,3067]
Pb(100) – – – – – 3.45 TC [476]
Pb(100) – – – – – 3.48 TC [3211]
Pb(100) – – – – – 3.50 TC [231]
Pb(100) – – – – – 3.57 TC [553]
Pb(100) – – – – – 3.67 TC [476]
Pb(100) – – – – – 3.76 TC [3467]
Pb(100) – – – – – 3.79 TC [3004]
Pb(100) – – – – – 3.79 ± 0.02* TC [3521]
Pb(100) – – – – – 3.8 TC [1088]
Pb(100) – – – – – 3.81 TC [1030]
Pb(100) – – – – – 3.84 TC [3492]
Pb(100) – – – – – 3.88 TC [1030]
Pb(100) – – – – – 3.95 TC [475]
Pb(100) – – – – – 4.0 TC [1088]
Pb(100) – – – – – 4.07 TC [3004]
Pb(100) – – – – – 4.07 ± 0.01* TC [3521]
Pb(100) – – – – – 4.10 TC [556,1030]
Pb(100) – – – – – 4.12 TC [2516]
Pb(100) – – – – – 4.31 TC [555]
Pb(100) – – – – – 4.4 TC [1712,1714]
Pb(100) – – – – – 4.5 TC [1711]
Pb(100) – – – – – 4.50 TC [475]
Pb(100) – – – – – 4.65 TC [1095]
Pb(100) – – – – – 4.95 TC [321]
Recommended – – – – – 3.96 ± 0.11 – –

Pb(110) – – – – – 2.99 TC [1159,3067]
Pb(110) – – – – – 3.26 TC [1684]
Pb(110) – – – – – 3.46 TC [553]
Pb(110) – – – – – 3.51 TC [3467]
Pb(110) – – – – – 3.64 ± 0.01* TC [3521]
Pb(110) – – – – – 3.73 TC [2516]
Pb(110) – – – – – 3.77 TC [231]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Pb(110) – – – – – 3.8 TC [1088]
Pb(110) – – – – – 3.80 TC [3004]
Pb(110) – – – – – 3.80 TC [475]
Pb(110) – – – – – 3.82 TC [476]
Pb(110) – – – – – 3.84 TC [3004]
Pb(110) – – – – – 3.84 TC [1030]
Pb(110) – – – – – 3.89 TC [3211]
Pb(110) – – – – – 3.90 TC [556,1030]
Pb(110) – – – – – 3.92 ± 0.01* TC [3521]
Pb(110) – – – – – 3.98 TC [555]
Pb(110) – – – – – 4.01 TC [476]
Pb(110) – – – – – 4.08 TC [1030]
Pb(110) – – – – – 4.4 TC [1088]
Pb(110) – – – – – 4.50 TC [1095]
Pb(110) – – – – – 4.66 TC [321]
Recommended – – – – – 3.84 ± 0.09 – –

Pb(111) – – – – – 3.16 TC [1159,3067]
Pb(111) – – – – – 3.31 TC [476]
Pb(111) – – – – – 3.39 TC [1684]
Pb(111) – – – – – 3.51 TC [476]
Pb(111) – – – – – 3.59 TC [231]
Pb(111) – – – – – 3.65 TC [1030]
Pb(111) – – – – – 3.7 TC [1086,1088]
Pb(111) – – – – – 3.71 TC [1086]
Pb(111) – – – – – 3.78 ± 0.01 TC [3521]
Pb(111) – – – – – 3.79 TC [3004]
Pb(111) – – – – – 3.80 TC [1086]
Pb(111) – – – – – 3.82 ± 0.02 TC [3483]
Pb(111) – – – – – 3.85 TC [475]
Pb(111) – – – – – 3.9 TC [1088]
Pb(111) – – – – – 3.90 TC [553]
Pb(111) – – – – – 4.05 TC [1086]
Pb(111) – – 2 × 10−11 20 ± 5 – 4.05 PE [2268]
Pb(111) – – ? 30 – 4.05 PE [2228]
Pb(111) – – – – – 4.06 TC [1086]
Pb(111) – – – – – 4.08 ± 0.01 TC [3521]
Pb(111) – – – – – 4.11 TC [3004]
Pb(111) – – – – – 4.12 TC [1086]
Pb(111) – – – – – 4.14 TC [1086]
Pb(111) – – – – – 4.14 TC [2516]
Pb(111) – – – – – 4.15 TC [475]
Pb(111)/W(100) Pb – ∼10−9 ∼300 – 4.28 CPD [2002]
Pb(111) – – – – – 4.30 TC [555]
Pb(111) – – – – – 4.34 TC [3467]
Pb(111) – – – – – 4.55 TC [1095]
Pb(111)/W(110) Pb – 5 × 10−11 548 – 4.70 CPD [1525]
Pb(111) – – – – – 4.79 TC [3211]
Pb(111) – – – – – 5.21 TC [1089]
Pb(111) – – – – – 5.23 TC [1030]
Pb(111) – – – – – 5.24 TC [1089]
Pb(111) – – – – – 5.35 TC [321]
Pb(111) – – – – – 5.47 TC [1089]
Pb(111) – – – – – 5.9 TC [1086]
Pb(111) – – – – – 5.9 TC [3137]
Recommended – – – – – 4.14 ± 0.09 – –

Pb – – – – – 3.0–4.6 TC [2704]
Pb – – – – – 3.31 TC [1066]
Pb – – – – – 3.50 TC [521]
Pb – – – – – 3.50 TC [3211]
Pb – – – – – 3.51 TC [231]
Pb – – – – – 3.55 TC [3211]
Pb – – ∼10−8 298 – 3.58 PE [4206]
Pb/Si(111) Pb – 8 × 10−11 77{∼300} – 3.6 ± 0.1 CPD [4400]
Pb – – – – – 3.73 TC [231]
Pb – – – – – 3.79 TC [2005]
Pb – – – – – 3.80 TC3 [475]
Pb/Ge(111) – – – – – 3.81 ± 0.01 TC [2286]
Pb – – – – – 3.82 TC [2286]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Pb/glass373 – – ? ∼300 – 3.83 ± 0.02 CPD [1381]
Pb – – – – – 3.84 TC [230]
Pb – – – – – 3.87 TC [3467]
Pb/ins/Al47 Pb – ? ∼300 – 3.89 ± 0.06 CPD [2028]
Pb/Cu(111) – – – – – 3.91 TC [2286]
Pb – – 1 × 10−5 ∼300 – 3.92 CPD [1883]
Pb/Si(111) Pb – 1 × 10−10 78 – 3.92 CPD [4311]
Pb – – – – – 3.92 TC [2629]
Pb – – ? ∼300 – 3.92 ± 0.02 TC [4265]
Pb – – ? ∼300 – 3.94 CPD [2297]
Pb/quartz Pb – ∼10−10 ∼300 – 3.95 PE [2718]
Pb/Cu Pb – ∼10−10 ∼300 – 3.95 PE [2718]
Pb374 – – 5 × 10−10 ∼300 – 3.95 ± 0.05 PE [3437]
Pb/steel Pb – 2 × 10−10 ∼300 – 3.95 ± 0.05 PE [1537]
Pb – – ? ∼300 – 3.97 PE [2460]
Pb – – – – – 3.98 TC [1399]
Pb – – ∼10−9 293 – 3.98 PE [2362]
Pb/quartz Pb – <10−6 20 – 3.983 ± 0.004 PE [1467]
Pb/quartz Pb – <10−6 20 (90) – 3.995 ± 0.004 PE [1467]
Pb – – – – – 4.0 TC [298]
Pb – – – – – 4.00 TC [3352]
Pb/glass373 Pb – ? ∼300 – 4.00 ± 0.02 CPD [1381]
Pb – – ? (N2) ∼300 – 4.00 ± 0.02 CPD [2361,4083]
Pb – – – – – 4.01 TC [3264,3265]
Pb/quartz Pb – <10−6 20 (250) – 4.013 ± 0.004 PE [1467]
Pb – – ? ∼300 – 4.05 ± 0.05 CPD [1542,2334]
Pb – – ? 293 – 4.06 PE [4139]
Pb – – ? ∼300 – 4.06 PE [4249]
Pb – – – – – 4.09 TC [553]
Pb – – – – – 4.09 TC [3477]
Pb – – – – – 4.1 TC [1993]
Pb/Ag(111)/mica Pb – 2 × 10−10 ∼300 – 4.1* CPD [3276]
Pb – – – – – 4.10 TC [3211]
Pb – – – – – 4.10 TC [1613]
Pb – – ? 597 – 4.11 PE [4139]
Pb/Cu(100) Pb – ? ∼300 – 4.11 ± 0.01* CPD [1423]
Pb – – – – – 4.12 TC [1885]
Pb – – ? 298 – 4.13 PE [4305]
Pb – – 6 × 10−3 ∼300 – 4.14 ± 0.07 PE [2079,2080]
Pb/brass Pb – ≤10−8 ∼300 – 4.14 ± 0.1 PE [2848]
Pb – – – – – 4.18 TC [3264,3265,3267]
Pb/Al(111) Pb – <1 × 10−10 ∼300 – 4.2 PE [249]
Pb/Ni(111) Pb – <1 × 10−10 ∼300 – 4.2 PE [249]
Pb – – – – – 4.2 ± 0.05 TC [1990]
Pb/Si(111) Pb – 5 × 10−11 ∼300 – 4.25 ± 0.05 CPD [613,636]
Pb/Ni(111) Pb – 2 × 10−11 ∼300 – 4.3 PE [2269]
Pb/Cu(111) Pb – ? ∼300 – 4.34* CPD [1423]
Pb – – ∼6 × 10−9 ∼300 – 4.36 PE [1139]
Pb/Pt(111) Pb – <3 × 10−10 ∼300 – 4.39 ± 0.07* CPD [2670]
Pb/W(110) Pb – ? ∼300 – 4.4 CPD [1984]
Pb/Pt(111) Pb – <3 × 10−10 ∼300 – 4.4 ± 0.1 CPD [2670]
Pb/Ni(100) Pb – 3 × 10−10 ∼300 – 4.4 ± 0.1 CPD [1439]
Pb/W Pb – (<1 × 10−11) ∼300 (526) – 4.40 ± 0.02 FE [2254]
Pb/Mo(110) Pb – ≤5 × 10−11 550 – 4.45* CPD [3290]
Pb/W(110) Pb – 5 × 10−11 ∼300 – 4.45 CPD [1525,3588]
Pb/Mo(110) Pb – ≤5 × 10−11 680 – 4.48* CPD [3290]
Pb – – – – – 4.5 TC [706]
Pb/W Pb – (<1 × 10−11) ∼300 (730) – 4.50 ± 0.02 FE [2254]
Pb/Mo(110) Pb – ≤5 × 10−11 350 (550) – 4.50* CPD [3290]
Pb/Mo(110) Pb – ≤5 × 10−11 350 (680) – 4.56* CPD [3290]
Pb/W(100) Pb – ? 300–800 – 4.56 FE [2257]
Pb/W(100) Pb – ? 77 (415) – 4.58 ± 0.03* FE [2260]
Pb/W(112) Pb – (<1 × 10−11) ∼300 (526) – 4.59 ± 0.02 FE [2254]
Pb/W(100) Pb – (<1 × 10−11) ∼300 (843) – 4.59 ± 0.02 FE [2254]
Pb – – – – – 4.64 TC [3467]
Pb/Si(111) Pb – <8 × 10−11 100 (600) – 4.68* PE [2445]
Pb/W(100) Pb – (<1 × 10−11) ∼300 (463) – 4.68 ± 0.02 FE [2254]
Pb/W Pb – ≤5 × 10−10 300 (520) – 4.70 ± 0.05 FE [3548]
Pb/W(100) Pb – ? 77 (415) – 4.71 ± 0.01 FE [2260]
Pb/W(112) Pb – <8 × 10−11 80 – 4.72 ± 0.01 FE [3959]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Pb/W(112) Pb – (<1 × 10−11) ∼300 (730) – 4.74 ± 0.02 FE [2254]
Pb – – – – – 4.76 TC [3477]
Pb – – – – – 4.84 TC [2629]
Pb/W(110) Pb – (<1 × 10−11) ∼300 (≤658) – 4.94 ± 0.02 FE [2254]
Recommended – – – – – 4.07 ± 0.05 – –

Liquid (𝑻 > 𝟔𝟎𝟏 𝐊)
Pb374 – – 8 × 10−10 ∼700 – 3.95 ± 0.05 PE [3437]
Pb – – ? 617 – 4.04 PE [4139]

83. Bismuth Bi

Rhombohedral (arsenic structure)
Bi(0001) – – ∼10−7 ∼300 – 4.35 ± 0.02 PE [2807]
Bi(0001) – – 5 × 10−10 100, ∼300 – 4.5* PE [2480]
Bi(0001) – – ∼10−6 ∼300 – 4.81 ± 0.02 PE [2807]

Bi(1011) – – 5 × 10−10 100, ∼300 – 4.3* PE [2480]

Bi – – – – – 3.77 TC [1744]
Bi/Pt(111) Bi – ? 110–625 – 3.8 ± 0.1* CPD [2868]
Bi/ins/Al47 Bi – ? ∼300 – 3.85 ± 0.07 CPD [2028]
Bi – – – – – 3.92 TC [2005]
Bi/Au(111)375 Bi – <5 × 10−10 298 – 3.94* CPD [3678]
Bi – – – – – 4.1 TC [298]
Bi – – – – – 4.1 TC [706]
Bi – – – – – 4.12 TC [1885]
Bi – – ? ∼300 – 4.14 PE [2080]
Bi – – ? ∼300 – 4.17 CPD [2297]
Bi – – ? ∼300 – 4.17 PE [4249]
Bi/quartz Bi – <10−6 6.5–12.5 – 4.1746 PE [1467]
Bi/quartz Bi – <10−6 20 – 4.2160 PE [1467]
Bi/glass Bi – <10−9 90 – 4.22 PE [1383,1389,3038,

3052]
Bi/Au(111) Bi – 2 × 10−10 ∼300 – 4.22 PE [4448]
Bi – – – – – 4.22 TC [4418,4420]
Bi/glass Bi – <10−9 90 – 4.223 PE [3038]
Bi/glass Bi – 2 × 10−8 297–299 – 4.23 ± 0.01 PE [2234]
Bi/quartz Bi – <10−6 20 (270) – 4.2348 PE [1467]
Bi/glass Bi – ≤10−7 90 – 4.243 PE [3040]
Bi/glass376 Bi – <10−9 90 (293) – 4.245 PE [3038]
Bi/glass376 – – – – – 4.25 TC [1403]
Bi/glass Bi – <10−9 90 (363) – 4.25 PE [1383]
Bi377 – – 5 × 10−10 ∼300 – 4.25 ± 0.05 PE [3437]
Bi/glass Bi – ≤10−7 90 – 4.251 PE [3040]
Bi/glass Bi – <10−9 90 (363) – 4.26 PE [1389]
Bi/Ni, etc. Bi – <5 × 10−8 ∼300 – 4.26 PE [1375]
Bi/InAs(111)n Bi – ? ∼300 (503) – 4.28 PE [4090]
Bi/glass Bi – <10−9 293{90} – 4.288 PE [3038]
Bi – – – – – 4.29 TC [3264,3265]
Bi – – – – – 4.29 TC [1399]
Bi – – – – – 4.3 TC [1993]
Bi – – – – – 4.3 TC [1955]
Bi – – – – – 4.3 ± 0.05 TC [1990]
Bi/glass Bi – ≤10−7 293 – 4.307 PE [3040]
Bi – – – – – 4.32 TC [3352]
Bi – – ? (N2) ∼300 – 4.32 ± 0.02 CPD [2361,4083]
Bi/Mo, etc. Bi – <5 × 10−8 ∼300 – 4.34 PE [1375]
Bi – – ? 293 – 4.35 PE [4139]
Bi – – – – – 4.36 TC [3264,3267]
Bi/glass376 Bi – <10−9 90 (293) – 4.370 PE [3038]
Bi – – ? 534 – 4.39 PE [4139]
Bi/W Bi – 5 × 10−10 ∼300 – 4.40 FE [2018]
Bi/glass Bi – ? ∼300 – 4.43 PE [3397]
Bi/glass Bi – ? 20, 77 – 4.44 PE [3028]
Bi/W(100) Bi – ? 77 (415) – 4.45 ± 0.04* FE [2260]
Bi/W Bi – ≤10−10 ∼300{700} – 4.5 FE [2966]
Bi/glass Bi – <10−9 90 (363) – 4.54 PE [1389]
Bi/W(100) Bi – ? 77 (415) – 4.58 ± 0.03 FE [2260]
Bi/glass376 – – – – – 4.6 TC [1403]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Bi/glass Bi – ? 220–298 – 4.76–5.06 PE [3395]
Bi/glass Bi – ? 220–298 – 4.82–5.03 PE [3395]
Bi378 – – ? <544 – 4.86* CPD [1755]
Bi/glass Bi – ? 195–295 – 4.969 ± 0.011 PE [3398]
Recommended – – – – – 4.28 ± 0.05 – –

Liquid (𝑻 > 𝟓𝟒𝟒 𝐊)
Bi377 – – 8 × 10−10 ∼640 – 4.25 ± 0.05 PE [3437]
Bi – – ≤10−9 573 – 4.34 ± 0.05 PE [2349,2353]
Bi – – ? 554 – 4.42 PE [4139]
Bi378 – – ? >544 – 4.88* CPD [1755]

84. Polonium Po

Cubic (𝜶, 𝑻 < 𝟑𝟒𝟖 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)
Po160 – – – – – 4.6 TC [1355]
Po379 – – – – – 4.8 TC [1955]
Po – – – – – 5.0 TC [298]

85. Astatine At

At – – – – – 5.3 [1955]

87. Francium Fr

bcc
Fr(111) – – – – – 2.13 TC [2410]

Fr160 – – – – – 1.5 TC [1355]
Fr379 – – – – – 1.8 TC [1955]
Fr – – – – – 2.0 TC [298]
Fr – – – – – 2.01 TC [550]
Fr – – – – – 2.02 TC [550]
Fr – – – – – 2.14 TC [550]

88. Radium Ra

bcc
Ra(110) – – – – – 2.25 TC [334]

Ra(111) – – – – – 2.03 TC [2410]

Ra – – – – – 2.0 TC [3928]
Ra379 – – – – – 2.2* TC [1955]
Ra379 – – – – – 2.4 TC [1955]
Ra – – – – – 2.78 TC [550]
Ra – – – – – 2.8 TC [298]
Ra – – – – – 3.23 TC [550]

89. Actinium Ac

fcc
Ac(111) – – – – – 3.44 TC [2410]

Ac379 – – – – – 2.7 TC [1955]
Ac – – – – – 3.0 TC [3928]
Ac – – – – – 3.20 TC [550]
Ac – – – – – 3.38 TC [550]
Ac – – – – – 3.58 TC [298]

90. Thorium Th

fcc (𝜶, 𝑻 < 𝟏𝟔𝟐𝟑 𝐊)
Th(100) – – – – – 3.52 TC [1254]
Th(100) – – – – – 3.57 TC [1980]

Th(110) – – – – – 3.38 TC [1980]

Th(111) – – – – – 3.44 TC [2410]
Th(111) – – – – – 3.75 TC [1980]
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Th/Pt Th – ? ∼1500 – 2.40 TE [1306]
Th/Ta Th – ? ∼1500 – 2.54 TE [1306]
Th/ThO2-W380 – – ? ∼1300 (2200) – 2.63 TE [1749,1750]
Th/ThO2-W380 – – ? 1230 (1920) – 2.64 TE [3667,3668]
Th/ThO2-W – – ? ∼1300–2500 – 2.7 TE [3652]
Th/Ta Th – 2 × 10−8 1468 – 2.73 TE [2566]
Th/ThO2-W – – 1 × 10−9 ∼1800 (∼2800) – 2.75 ± 0.15 FE [3050]
Th/ThO2-W – – ∼10−8 ∼900–1200 – 2.77 TE [196]
Th/ThO2-W – – ? 1160–1600 – 2.77 TE [2925]
Th/ThO2-W – – ∼10−7 ? (3.3*) 2.8 ± 0.1 TE [216]
Th/ThO2-W – – ∼10−8 ∼900–1200 – 2.82 TE [196]
Th/ThO2-W – – <10−7 ∼1300 (2040) – 2.91 TE [3800]
Th – <10−6 ? – 2.94 TE [2919]
Th174 – – – 0E – 2.94 TC [1747]
Th(foil)381 – – <10−10 ∼300 – 2.988 ± 0.008 CPD [2932]
Th/W – – ? ? – 3.0 TE [2459]
Th/ThO2-W – – <10−7 ∼1300 (2040) – 3.0 TE [3800]
Th/W(111) Th – ? ∼300 – 3.0 FE [2574]
Th/W Th – ≤3 × 10−9 ∼300 – 3.0 FE [218]
Th/Re–Th(2%) – – 10−8 1600 – 3.09 TE [4252]
Th/ThO2-W – – ? ∼1250–1600 – 3.1 TE [3801]
Th – – – – – 3.1 TC [1744]
Th/W – – – 1400 – 3.1 TC [3271]
Th/W Th – ≤7 × 10−8 ∼300 – 3.1 FE [1804]
Th/ThO2-W – – ? 0E – 3.18–3.60 CPD [3972]
Th/ThO2-W – – <10−9 ∼1300 (2040) – 3.26 TE [3800]
Th – – – – – 3.28 TC [550]
Th/W(foil) Cl Cl− 2 × 10−7 1721–1831 3.29 ± 0.16N – NSI [597]
Th/ThO2-W KCl K+ ≤1 × 10−6 1800 3.3* (2.8 ± 0.1) PSI [216]
Th – – 4 × 10−10 ∼300 – 3.3 ± 0.2 PE [3132]
Th/ThO2-W – – ? 1230 (1920) – 3.3 ± 0.2 TE [3668]
Th/Re Th – ∼10−10 1354 – 3.31 TE [165]
Th/W Th – ≤3 × 10−9 ∼1500–1800 – 3.31 ± 0.02 TE [218]
Th/Re(0001) – – – – – 3.33 TC [3848]
Th/W Th – 5 × 10−9 1150–1540 – 3.34 TE [1453]
Th382 – – – – – 3.35 TC [1759]
Th/ThO2-Mo,Pt – – <1 × 10−6 ∼1100–1700 – 3.35 TE [3035]
Th – – ? ? – 3.36 ? [1761]
Th/W(114) Th – ∼10−10 1360 – 3.36 ± 0.02 TE [1394,1854]
Th/Ni Th – ? ∼300 – 3.38 PE [2922]
Th – – ? ? – 3.39 TE [1844]
Th/W ThI4 – ? ∼300 (?) – 3.39 PE [2927]
Th/W(114) Th – ∼10−10 1118 – 3.39 ± 0.02 TE [1394,1854]
Th – – – – – 3.4 TC [2456]
Th/ThO2-W K K+ ≤1 × 10−6 1800 3.4* (2.8 ± 0.1) PSI [216]
Th – – ? ? – 3.4 TE [3402]
Th/W – – – – – 3.4 TC [509]
Th/W(110) Th – <10−8 ∼1300–1500 – 3.4 TE [148]
Th/W(111) Th – <10−8 ∼1350–1500 – 3.4 TE [148]
Th/ThO2-W – – <10−7 ∼1300 (2040) – 3.40 TE [3800]
Th382 – – – – – 3.41 TC [2932]
Th/W Th – <10−9 ∼300 – 3.42 FE [3529]
Th382 – – – – – 3.44 TC [2932]
Th/Mo, Pt383 – – – – – 3.44 TC [2932]
Th – – ? ∼300 – 3.44 PE [2924]
Th/W Th – <10−10 ∼300 – 3.44 ± 0.01 CPD [13,349]
Th/W(100) Th – ≤3 × 10−9 ∼1200 – 3.45 TE [1854]
Th382 – – ? 1250–1800 – 3.45 ± 0.01 TE [3524,3525]
Th/ThO2W381 Th – <10−10 ∼300 – 3.455 ± 0.012 CPD [2932]
Th – – ? ∼300 – 3.46 CPD [2297]
Th/ThO2-W – – ∼10−7 ∼1300–2000 (3.60*N) 3.46 TE [827]
Th/W Th – <10−10 ∼300 – 3.460 ± 0.010 CPD [2938]
Th/Ni Th – ? ∼300 – 3.47 PE [2927]
Th/W(100) – – – – – 3.5 TC [913,4344]
Th/ThO2-W – – ? ∼1000 (?) – 3.5 ± 0.5 TE [3973]
Th – – – – – 3.52 TC [1254]
Th/ThO2-W383 – – ? 1260 (≥1300) – 3.55 TE [872]
Th/ThO2-Pt383 – – ? 1260 (≤1650) – 3.55 TE [872]
Th – – ? ∼300 – 3.57 PE [2080]
(continued on next page)
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Table 1 (continued)

Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Th/ThO2-W I I− ∼10−7 1422 3.58*N (3.46) NSI [827]
Th/W(100) Th – 6 × 10−11 ∼300 – 3.6* CPD [2825]
Th/ThO2-W – – ≤3 × 10−9 2000 (2700) – 3.6 TE [3960]
Th/ThO2-W I2 I− ∼10−7 1405 3.60*N (3.46) NSI [827]
Th/W383 – – – – – 3.61 TC [2932]
Th – – ? ∼300 – 3.66 PE [3027]
Th – – <10−10 ∼300 – 3.71 ± 0.01 CPD [13,349]
Th(foil)381 – – <10−10 ∼300 (1900) – 3.728 ± 0.010 CPD [2932]
Th/Ta Th – 2 × 10−8 1214 – 3.83 TE [2566]
Recommended – – – – – 3.37 ± 0.04 – –

91. Protactinium Pa

Pa(111) – – – – – 3.76 TC [2410]

Pa160 – – – – – 3.3 TC [1355]
Pa – – – – – 3.3 TC [1955]
Pa – – – – – 3.5 TC [1955]
Pa – – – – – 3.73 TC [550]

92. Uranium U400

bcc (𝜸, 𝑻 > 𝟏𝟎𝟓𝟎 𝐊)
U(100) – – – – – 3.49 TC [321]
U(100) – – – – – 3.60 TC [2180]
U(100) – – – – – 3.82 TC [2180]

U(110) – – – – – 4.07 TC [321]

U(111) – – – – – 3.33 TC [321]

U(112) – – – – – 3.72 TC [321]

Rhombic (𝜶, 𝑻 < 𝟗𝟒𝟎 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)
U – – – – – 2.94 TC [1744]
U (foil) – – <5 × 10−11 ∼300 – 3.080 ± 0.005 CPD [2933]
U/W U – <8 × 10−12 ∼300 – 3.181 ± 0.013 CPD [1161]
U/W U – <5 × 10−11 ∼300 – 3.19 ± 0.01 CPD [13,349,2939]
U/W U – <5 × 10−11 ∼300 – 3.203 ± 0.013 CPD [2933]
U (foil) – – ≤10−10 ∼300–938 – 3.47 ± 0.01 PE [1884]
U – – 4 × 10−10 ∼300 – 3.5 PE [3124]
U – – 5 × 10−9 ∼300 – 3.5 ± 0.03 FE [3110]
U – – 4 × 10−10 ∼300 – 3.5 ± 0.1 PE [3132]
U/W U – <2 × 10−10 295 – 3.56 ± 0.05 FE [1657]
U/W(116) U – <1 × 10−10 295 – 3.57 ± 0.03 FE [1664]
U/W(113) U – <1 × 10−10 295 – 3.60 ± 0.03 FE [1664]
U/W U – <2 × 10−10 295 – 3.60 ± 0.03 FE [1654,1655,1657]
U/Ni U – ? ∼300 – 3.63 PE [2922]
U/W U – <2 × 10−10 ∼300–940 – 3.63 ± 0.01 CPD [1476,1484,2103]
U/W(111) U – <1 × 10−10 295 – 3.64 ± 0.03 FE [1664]
U/W U – <2 × 10−10 295–900 – 3.65 ± 0.01 PE [2467]
U/W(113)408 U – <5 × 10−10 ∼300 – 3.66 ± 0.03 PE [2471]
U/W(113)408 U – <5 × 10−10 ∼300 – 3.67 ± 0.03 CPD [2471]
U/W – – – – – 3.68 TC [2478]
U/W(112) U – <1 × 10−10 295 – 3.70 ± 0.03 FE [1664]
U/W(100)408 U – <5 × 10−10 ∼300 – 3.73 ± 0.02 CPD [2471]
U/W(100)408 U – <5 × 10−10 ∼300 – 3.73 ± 0.02 PE [2471]
U/W(113)408 U – <5 × 10−10 ∼300 – 3.73 ± 0.04 CPD [2471]
U/W(100)408 U – <5 × 10−10 ∼300 – 3.78 ± 0.03 CPD [2471]
U/W(100) U – ? ∼300 – 3.80 ± 0.03 CPD [3076]
U/W(100) U – <1 × 10−10 295 – 3.88 ± 0.03 FE [1664]
U/W(110) U – ? ∼300 – 3.90 ± 0.03 CPD [3076]
U/W(110)408 U – <5 × 10−10 ∼300 – 3.90 ± 0.03 CPD [2471]
U/W(110)408 U – <5 × 10−10 ∼300 – 3.90 ± 0.03 PE [2471]
U – – – – – 3.97 TC [550]
U/W(110)408 U – <5 × 10−10 ∼300 – 4.00 ± 0.04 CPD [2471]
U/W(110) U – <1 × 10−10 295 – 4.04 ± 0.03 FE [1664]
U – – ? ∼300 – 4.32 ± 0.05 CPD [2297]
Recommended – – – – – 3.64 ± 0.04 – –

(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Tetragonal (𝜷, 𝑻 ≃ 940–1050 K for bulk)
U/W U – <2 × 10−10 1040 – 3.05 ± 0.03 FE [1657]
U/W(111) U – <1 × 10−10 950 – 3.36 ± 0.03 FE [1664]
U(foil) – – ≤10−10 940–1040 – 3.52 ± 0.01 PE [1884]
U/W U – <1 × 10−10 ∼1000 – 3.53 ± 0.03 FE [1654,1655,1657]
U/W U – <2 × 10−10 950–1050 – 3.58 ± 0.01 CPD [1484]
U/W U – <2 × 10−10 940–1030 – 3.59 ± 0.01 PE [2467]
U/W(100) U – <1 × 10−10 950 – 3.61 ± 0.03 FE [1664]
U/W(112) U – <1 × 10−10 960 – 3.64 ± 0.03 FE [1664]
U/W(110) U – <1 × 10−10 950 – 3.99 ± 0.03 FE [1664]
Recommended – – – – – 3.58 ± 0.04 – –

bcc (𝜸, 𝑻 > 1050 K for bulk)
U/W U – ? ? – 2.84 TE [1750]
U/W384 U – <6 × 10−10 1250–1400 – 3.0 TE [232]
U/W386 U – <2 × 10−10 ∼1000–1300 – 3.14 ± 0.02 TE [1484]
U/W385 U – ∼10−10 1250 – 3.2* TE [2098]
U(wire)388 – – ∼10−8 ∼950–1300 – 3.27 ± 0.05 TE [2085,3961]
U174,387 – – – 0E – 3.28 TC [1747]
U/W(112) U – <1 × 10−10 1120 – 3.29 ± 0.03 FE [1664]
U/W(111) U – <1 × 10−10 1120 – 3.31 ± 0.03 FE [1664]
U/W386 – – – 1400 – 3.36 ± 0.04 TC [1484]
U/W384 – – – 1400 – 3.38 TC [1484]
U(foil) – – ≤10−10 1040–1060 – 3.39 ± 0.01 PE [1884]
U/W U – <2 × 10−10 ∼1200–1400 – 3.4 ± 0.2 FE [1657]
U387 – – – 1100 – 3.42* TC [1747]
U/W386 U – <2 × 10−10 ∼1000–1400 – 3.42 ± 0.04 TE [1484]
U/W U – <1 × 10−10 1200 – 3.43 ± 0.03 FE [1654]
U/W(116) U – <1 × 10−10 1120 – 3.43 ± 0.03 FE [1664]
U/W386 – – – 1400 – 3.44 ± 0.03 TC [Here]
U/W388 – – – – – 3.45 TC [2467]
U/W U – <2 × 10−10 1060–1200 – 3.45 ± 0.01 PE [2467]
U/W386 – – – 1400 – 3.45 ± 0.1 TC [1484]
U/W386 U – ≤10−5 (H2) ∼1000–1400 – 3.46 ± 0.02 TE [1484]
U/W384 U – <5 × 10−10 ∼1250–1400 – 3.47 ± 0.03 TE [232,2930]
U/W384 – – – 1400 – 3.48 ± 0.03 TC [1484]
U/W385 – – – 1250 – 3.5* TC [Here]
U/W U – <2 × 10−10 ∼1050–1500 – 3.53 ± 0.01 CPD [1484]
U/Mo U – 5 × 10−11 1275 – 3.53 ± 0.01 TE [2644]
U/W(113) U – <1 × 10−10 1120 – 3.53 ± 0.03 FE [1664]
U/Mo U – 5 × 10−11 ∼1100–1300 – 3.54 TE [2644]
U(wire)388 – – – – – 3.56 ± 0.05 TC [2467]
U/W(100) U – <1 × 10−10 1120 – 3.82 ± 0.03 FE [1664]
U/W(110) U – <1 × 10−10 1120 – 4.00 ± 0.03 FE [1664]
U(wire) F2 UF6

− 5 × 10−5(F2) 1140–1290 4.20 ± 0.14N – NSI [2630]
Recommended – – – – – 3.42 ± 0.05 – –

93. Neptunium Np

Np(111) – – – – – 4.00 TC [2410]

Np – – – – – 2.8 TC [1955]
Np – – – – – 3.90 TC [550]

94. Plutonium Pu

Monoclinic (𝜶, 𝑻 < 𝟑𝟗𝟖 𝐊)
Pu(020) – – – – – 3.51 TC [1448]
Pu(020) – – – – – 3.62 TC [1448]

fcc (𝜹, 𝑻 = 593–736 K)
Pu(100) – – – – – 2.97 ± 0.05 TC [3488]
Pu(100) – – – – – 3.01 ± 0.06j TC [3488]
Pu(100) – – – – – 3.05 ± 0.03 TC [3488]
Pu(100) – – – – – 3.11 TC [2069]
Pu(100) – – – – – 3.14 ± 0.01 TC [2549]
Pu(100) – – – – – 3.43 ± 0.06 TC [3488]
Pu(100) – – – – – 3.44 ± 0.06 TC [3488]

(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

Pu(100) – – – – – 3.5 TC [2172]
Pu(100) – – – – – 3.68 TC [2172]
Pu(100) – – – – – 3.7 TC [1870]
Recommended – – – – – 3.3 ± 0.2 – –

Pu(110) – – – – – 2.99 TC [2069]

Pu(111) – – – – – 2.85 ± 0.20 TC [3012,3013]
Pu(111) – – – – – 3.260 TC [1446–1448]
Pu(111) – – – – – 3.32 TC [1447]
Pu(111) – – – – – 3.41 TC [2069,2070]
Pu(111) – – – – – 3.488 TC [1446]
Pu(111) – – – – – 3.49 TC [1448]
Pu(111) – – – – – 3.98 TC [2410]
Pu(111) – – – – – 4.14 TC [2172]
Pu(111) – – – – – 4.3 TC [2165]
Pu(111) – – – – – 8.4 TC [2165]
Recommended – – – – – 3.8 ± 0.3 – –

Monoclinic (𝜶, 𝑻 < 398 K for bulk)
Pu – – – – – 3.3 TC [1955]

fcc (𝜹, 𝑻 = 593–736 K for bulk)
Pu – – – – – 3.1–3.3 TC [1833,1841]
Pu – – – – – 3.72 TC [550]
Pu – – – – – 3.89 TC [550]

95. Americium Am

dhcp (𝜶, 𝑻 < ? 𝐊)
Am(0001) – – – – – 2.90 TC [2075]
Am(0001) – – – – – 4.35 TC [321]

Am(1010) – – – – – 4.21 TC [321]

Am(1124) – – – – – 3.70 TC [321]

fcc (𝜷, 𝑻 = ?–? K)
Am(100) – – – – – 2.93 TC [2071,2076]

Am(110) – – – – – 2.86 TC [2071,2076]

Am(111) – – – – – 3.06 TC [2071,2076]

hcp (𝜶, 𝑻 < ? K for bulk)
Am – – – – – 3.3 TC [1955]
Am – – – – – 3.33 TC [550]
Am – – – – – 3.7 TC [550]

96. Curium Cm

hcp
Cm – – – – – 3.3 TC [1955]
Cm – – – – – 3.32 TC [550]
Cm – – – – – 3.9 TC [550]

97. Berkelium Bk

hcp
Bk – – – – – 3.3 TC [1955]
Bk – – – – – 3.37 TC [550]
Bk – – – – – 3.8 TC [550]

98. Californium Cf

hcp
Cf – – – – – 3.3 TC [1955]
Cf – – – – – 3.38 TC [550]
Cf – – – – – 4.0 TC [550]
(continued on next page)
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Surface Beam Ion 𝑃r (Torr) 𝑇 (K) 𝜙+ (eV) 𝜙e (eV) Meth. Refs.

99. Einsteinium Es

fcc
Es – – – – – 2.88 TC [550]
Es – – – – – 3.3 TC [550]

1The Li films at 3–5 or 4–6 monolayers on W(110) and Mo(110) are suggested to have the (110) bcc orientation at 300 K, in contrast to the (0001) rhombohedral
one at 77 K [3361].
2The value of 2.32 ± 003 eV for Li/glass [349] is based on the correction [349] of 2.49 ± 0.02 eV [1374] by taking 𝜙e = 2.35 ± 0.03 eV [349] instead of
2.52 eV [1374] as the reference work function of Ba.
3For further information about the theoretical calculation [475] and comparison between the calculated values [475] and the recommended ones for Li, Na,
Mg, Al, K, Zn, Rb, Cs and Pb in Table 2 [Here], see Section 6.
4The Be-films on mica (𝜙e = 4.98 eV) [2009] and on glass (5.08 eV) [1782] presumably consist, to a considerable extent, of the (0001) surface [2025], which
is generally expected to have 5.27 ± 011 eV (see Table 2).
5The values of 𝜙e = 2.9 and 3.6 eV for C(100)B correspond to the diamond cone-height to -radius ratios of 𝛽 = ℎ∕𝑟 = 700 and 1000, respectively [2751].
6The work function of C(100)B [1830] changes from 5.3 to 5.7 eV as the boron content increases from 1016 to 1020 atoms/cm3.
7As the mean grain size (𝑆d) of diamond prepared by electrophoresis onto a Mo-sheet [544,4059] increases from 0.32 to 3.9 and to 108.0 μm, the surface area
(𝐴d) of the (111) plane on the film increases from 76 to 92 and to 99%, thereby changing in 𝜙e from 5.1 to 3.2 and to 4.8 eV, respectively, determined by
PE [544,4059]. Similarly, other films with (𝑆d, 𝐴d) = (0.25, ∼76), (3, ∼88) and (6, ∼96) on another Mo-sheet are found to have 𝜙e = 3.8, 3.3 and 3.2 eV,
respectively, done by PE [1205].
8By the same way as above (Footnote 7), the diamond films on Mo-tips [1205] having (𝑆d μm, 𝐴d%) = (0.25, 76), (3, ∼88) and (6, ∼96) are observed to
have 𝜙e = 3.8, 3.5 and 3.4 eV, respectively, determined by FE [1205]. The first value of 3.8 eV on the tip is equal to that for the film of (0.25, ∼76) on a
Mo-sheet [1205] (see Footnote 7).
9For both systems of C/Si and C/Mo prepared by dielectrophoresis [3568], 𝜙e is found to have 3.7 and 7.1 eV for thin and thick diamond films, respectively.
10This diamond-like-carbon having 4.1 eV [2230] is formed on a tungsten tip by electro-deposition in methanol. For further information, see Ref. [3938].
11This is the mean value calculated for C(0001), whose 𝜙e ranges from 4.44 to 5.23 eV depending complicatedly upon the slab thickness of 1–14 [1174].
12The value of 3.93 eV for a freshly prepared monocrystalline graphite decreases to 3.25 eV after exposing to air [2581].
13The specimens of C(HOPG) cleaved in air and vacuum [3215] have different values of 𝜙e = 4.7 and 5.0 eV, respectively.
14The sample of C/Si having 𝜙e = 4.2 or 4.3 eV [1611] is used as received from other workers, but 𝜙e is decreased from 4.2 to 4.0 eV by annealing in vacuum
at ∼770 K [1611].
15By incidence of C6H6 upon a heated Re foil, graphitic layers (𝜙e = 4.4 ± 0.3 eV) are formed at T < 1900 K, above which carbidic ones (5.25 eV) are done
[407,408].
16The surface of C/Pt–W(8%) (𝜙+ = 4.42 eV) at 1290 K has the ionization efficiency (𝛽+) of 50% for the incident K atoms, but only 𝛽+ = 1% for KI molecules
[1299], thereby suggesting that the degree of dissociation (𝛾) of KI is greatly decreased on the graphitic carbon surfaces, in contrast to carbidic or carbon-free
metal surfaces (see Section 4.2.4 [1351]).
17The surface of C/Mo [791] having 𝜙e = 4.71 or 4.73 eV is due to carbon contamination, and its 𝜙e is reduced to 4.28 or 4.33 eV corresponding to an
essentially clean Mo surface after it is heated in O2 [791].
18The surface consisting of carbon layers sputtered onto an Al–Mg alloy disk [2743] changes in 𝜙e from 4.79 eV (unlubricated) to 5.32 eV (lubricated) as
proceeding to saturation.
19The values of 4.81 and 5.23 eV are calculated for mono- and dilayers of graphite, respectively [296].
20The values of 5.8 and 5.85 eV for graphite are estimated from Fig. 2 [1735] by other workers [291,3223].
21The value of 4.73 eV corresponding to graphene [767] is determined from the linear relationship between the work function of semiconducting single-walled
carbon nanotubes and their inverse diameter (1/d) after extrapolation of d → ∞, whilst 4.84 eV [767] is done similarly from metallic tubes.
22On the basis of the calculated data on 𝜙e = 4.85 and 5.54 eV for Ag(111) and Au(111) [233], the systems of C60-monolayer adsorbed on Ag(111) and
Au(111) are determined, respectively, to have 4.96 and 4.94 eV evaluated from the work function changes (𝛥𝜙𝜇 = +0.11 and −0.60 eV) calculated from the
changes in the surface dipole moment (𝛥𝜇 = +0.24 and −1.37 debye) induced by adsorption of C60 [233]. Direct calculation made for the respective systems
yields 𝜙e = 4.99 and 4.96 eV [233]. The four values agree excellently with each other irrespective of the differences in both calculation method and substrate
species, and also do well with 4.87 ± 0.06 eV recommended for C60 in Table 2 [Here]. In addition by taking 𝛥𝜙𝜇 = −0.09 eV due to 𝛥𝜇 = −0.21 debye [233]
and 𝜙e = 4.94 eV determined for Cu(111) [316], C60/Cu(111) is calculated to have 𝜙e = 4.85 eV, which agrees exactly with 4.86 eV determined by PE [316].
23The monolayer of C60 on Ru(111) is stable (𝜙e = 5.05 eV) until ∼750 K, above which C60 is decomposed to graphitic carbon remaining on Rh(111) at
∼1000–1300 K [1007].
24By doping N and B (1–2% in concentration), the pristine tube is calculated to change in 𝜙e from ∼4.5 to ∼3.9 and ∼5.2 eV, respectively, each value of
which fluctuates dependently upon the tube diameter (∼0.5–1 nm), in a narrow range of about ±0.1 eV [1168].
25The value of 𝜙e

PE = 4.62±0.06 eV determined for the single-walled cnt/Si(111) system by PE is smaller than 𝜙e
CPD = 4.97±0.07 and 4.86 ± 0.10 eV done by CPD-

measurements before and after the PE-measurement, respectively [3246]. The same tendency that 𝜙e
PE is always smaller than 𝜙e

CPD even after PE-measurement
is found also for several metal/cnt/Si(111) systems having Pd, Ag, Pt and Au [3246]. Typically for Pt/sw-cnt/Si(111), the successive measurements by CPD,
PE and CPD yield 𝜙e

CPD = 5.46 eV, 𝜙e
PE = 5.12 eV and 𝜙e

CPD = 5.39 eV, showing that 𝜙e
CPD decreases after PE-measurement and also 𝜙e

PE is smaller than both of
𝜙e
CPD. For further information, see Section 2.8.2.

26For the system of cnt/Si(111) treated with HNO3 acid, 𝜙e
CPD by CPD-measurement is decreased from 5.01 to 4.94 eV by exposure of UV during PE-measurement

[3246], quite similarly to the normal system free from the acid treatment (see Footnote 25 just above).
27The open-ended tubes at mouth before and after relaxation are calculated to have slightly different values of 4.86 and 4.95 eV, respectively, whilst those at
the first neighbor to the mouth are done similarly to have different ones (5.25 and 5.20 eV) according to the relaxation [3570].
28The value of 5.08 eV calculated for a perfect tip of chirality (5, 5) is considered [3570] to be close to experimental data of ∼5 eV [291,1171]. About the
structure and property of single-walled carbon nanotubes with several types of chirality, see excellent review papers [3969,4030].
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29The polycrystalline diamond films prepared by chemical vapor deposition onto p-type Si(100) are decreased in 𝜙e from 5.6 to 5.2 eV by arc discharge
activation [698].
30Oxygen contamination of C(pentagon)/Ta decreases 𝜙e from ∼4.8 to 4.2–4.3 eV [3942].
31The vertically aligned type of C/Si having 𝜙e = 4.4 eV is smaller by 0.2 eV compared with the random one [3223].
32The conductive (metallic) and semiconductive types of multi-walled carbon nanotube are found to have 𝜙e = 4.7 and 5.6 eV, respectively, depending upon
their helical angles [545].
33The values of 5.7 and 5.75 eV for the random multi-walled carbon nanotubes are estimated from the spectral data [1735] by other workers [291,3223],
together with such a comment that both values seem too large.
34Individual tubes are stacked onto a W-tip by the van der Waals-forces alone or by a conductive carbon glue, and they are heated in vacuum at ∼1000 K for
30 s to remove contaminants [1170].
35The clean Na(110) layers [1417] are prepared on the clean Ni(100) surface (𝜙e = 5.20±0.11 eV, essentially equal to 5.19 ± 0.05 eV in Table 2) at 173 K and
∼10−11 Torr, and the layers (2.90 eV) are checked to have the bcc structure exposing the (110) surface parallel to the Ni(100) surface. For further information,
see Refs. [3944,3945].
36Work function measurements of the Na/Mo systems prepared at either 293 K or 80 K (preannealing at 293 K) by both Fowler and photoemission threshold
methods yield nearly the same result of either 2.36 ± 0.02 or 2.45 ± 0.04 eV [3336].
37Similarly to the above cases (Footnote 36), the values of 𝜙e at 80 K (no annealing) are virtually the same (2.45 ± 0.05 eV and 2.40 ± 0.03 eV) between
the two methods of Fowler and threshold, respectively [3336].
38Work function is determined from AI (autoionization) electron spectra observed by 700 eV–Ne+ impact of both a clean reference surface of Al (𝜙e taken as
4.26 eV) and a sample surface of Na/Cr, which show the peak positions of Ne-II at the kinetic energies of 23.55 and 22.08 eV, respectively (see Fig. 1 and
Table 1 [1103]). Consequently, we have 𝜙e = 4.26− (23.55−22.08) = 2.79 eV for Na [1103,4027]. The reference value for Al is the same with ours (4.26 ± 0.03
eV), but the value for Na itself is slightly larger than ours (2.54 ± 0.03 eV) (see Table 2 herein). Similarly to another case [3789], 𝜙e = 2.80 and 3.80 eV
are estimable for Na and Mg, respectively, when 4.25 eV [3789] is taken for Al, while 2.70 eV for Na is so by taking 3.70 eV [3789] for Mg. Additionally,
1 keV–Ne+ is impinged on Cs/Pt and Na/Cs/Pt systems [3496], thereby determining 𝜙e = 2.1 and 2.62 eV for Cs and Na, respectively [3496].
39By taking 𝜙e = 5.2, 4.6 and 4.4 eV for the substrates of W(110), W(112) and W(111), respectively, Li is estimated to be 2.75 eV by FE [1974], which may
be improved to be 2.87, 2.93 and 2.80 eV if we take 5.32, 4.78 and 4.45 eV recommended for the respective substrates in Table 2. All of the latter values
become closer to our most probable value of 2.90 ± 0.03 eV for Li (Table 2). Later by the same group of workers, Li/W(112) is found to have 2.88 or 2.93
eV by CPD [380].
40By extension of n→∞ (cluster → bulk) for closed-shell Na clusters (n = 2–137), 𝜙e is experimentally determined to be 2.68 eV from a plot of n−1∕3 vs. the
ionization energy of each cluster, whilst 𝜙e = 2.56 eV is theoretically evaluated from the classical law [2171] (see Section 11.3).
41Bulk sodium work function is determined to be 2.75 eV [2860] by such a graphic method that a plot of 1∕𝑟 (inverse cluster radius) vs. 𝜙c −𝑊im (difference
between cluster’s work function and image force equal to 3𝑒2∕8𝑟) is extrapolated as 𝑟→∞, where 𝜙c is taken from the experimental data on ionization potential
[2383].
42Analysis of the photo-ionization yield observed for fine particles (3–5 nm radius, 2 × 103–3 ×104 atoms) of Li, Na and K reveals that the ionization threshold
energies for Fowler plots (2.93, 2.75 and 2.28 eV, respectively) [3482] are substantially equal or close to our respective values of 𝜙e = 2.90, 2.54 and 2.30 eV
(Table 2).
43The value of 2.8 eV calculated for the Na/Al(111) system at one monolayer is near to 2.9 eV done for Na(100) by five-layer slab model following the same
calculational scheme [2222].
44Sodium clusters having the atom number (n) up to 22 000 are employed to determine the bulk work function of Na (2.81 eV) by extrapolation of n→∞
(cluster → bulk) in a plot of n−1∕3 vs. the ionization energy of each cluster [2053].
45The sample cut from a pure Mg boule and mechanically polished is cleaned in vacuum by sputtering with 1 keV–Ne+ and then annealed to 500 K for 10 min,
thereby yielding 3.65 eV for Mg(0001) [3174].
46The work function of Mg(0001) free-standing thin films with the thickness of up to 30 ML is calculated by first-principles, thus yielding 3.75 ± 0.05* eV for
relaxed atomic geometry at 10–30 ML [2552].
47Each surface system consists of such a sandwich structure as sample metal/barium stearate-Al2O3/Al/glass, where the metal is Mg, Cr, Mn, Zn, Cd, Sn, Te,
Pb or Bi [2028]. Both preparation and properties of the systems are summarized in Ref. [3948].
48Each work function for an M/oxide/Si(100) system (M = Mg, Al, Ni or Au) is evaluated by other workers [3519] using the data on conduction band barrier
height at metal–dielectric interface [1442].
49The work function (3.78 eV) for the Mg/glass system [1368] is corrected to be 3.61 eV by other workers [13,349] taking the reference (𝜙e for Ba) as
2.35 ± 0.03 eV instead of 2.52 eV.
50A mirror-like surface of Mg/glass (𝜙e = 3.65 eV) [1368] is smaller in 𝜙e by 0.13 eV than a macrocrystalline (matte) one (3.78 eV) [1368].
51The sample systems of Mg, Al, Fe and Au layers on quartz prepared in a poor vacuum (∼10−5 Torr) are as thick as ∼100–110, ∼80–100, ∼40–50 and
∼30–40 nm, respectively [1973]. The work function determined for Al (3.47 eV, lower than the generally accepted value of ∼4.3 eV), for example, seems
unlikely to correspond to its clean surface. Such a low value is probably due to the adsorption of water vapor [725]. For further information about the
adsorption, see Footnote 59.
52The system of Al(100)/Ge(100) is theoretically constructed by a lattice-matched interface model using an ideal Ge(100) substrate and a 45◦-rotated Al(100)
film, thus resulting in 𝜙e = 3.94 eV [3949].
53Each monocrystalline surface is prepared by deposition of Al-vapor on each monocrystalline bulk substrate of aluminium at ∼300 K and annealed often at
473–573 K during the course of the deposition [612]. A linear relationship is found between surface atom density (𝐷s) and work function (𝜙e) among Al(111),
Al(100) and Al(110), as illustrated in Fig. 4 [612]. The values of both 𝐷s and 𝜙e for the surfaces [612] are listed in Table 8 [Here]. By intermittent repetition
of Ar+-impact and annealing (473–573 K), 𝜙e of Al(110) is decreased from 4.26 to 4.06 ± 0.03 eV [612].
54The work function of Al(111) ought to lie in 3.83–4.59 eV [1101], whose middle value may be calculated to be 4.21 eV, virtually equal to the most provable
value of 4.24 ± 0.04 eV estimated in the present article and also to other recommended ones (4.24–4.28 eV) listed in Table 2.
55By annealing at 623 K for 1 h, the Al-layer (0.15 nm thick) prepared on quartz at ∼300 K is decreased in 𝜙e from 4.31 to 4.29 eV as the degree (𝛿m) of
monocrystallization forming the (111) face is increased from 57 to 88% [3313].
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56Deposition of Al-vapor up to 4 monolayers on an Ag(111) surface at 150 or 300 K causes a work function decrease by up to 0.38 eV [2888], which accords
with the work function difference (0.40 ± 0.07 eV) between the most provable values of 4.64 ± 0.06 eV for Ag(111) and 4.24 ± 0.04 eV for Al(111), as
shown in Table 2 [Here]. This accordance may give an additional evidence to support the conclusion [2888] that the Al-layers have the same orientation as
the Ag(111) substrate.
57By consideration of the work function decrease by 1.17 eV after Al-deposition of 5 monolayers on Ru(0001) [301] and also by employment of the work
function values for Ru(0001) as 5.35 ± 0.06 eV [Here], 5.42 eV [2652] and 5.58 eV [3160], we find those values for Al(111)/Ru(0001) [301] to be 4.18 ± 0.06,
4.25 and 4.41 eV, respectively, the middle (or average = 4.28 ± 0.10 eV) of which is nearest to the most probable value of 4.24 ± 0.04 eV for Al(111) in
Table 2 [Here].
58Both experiment and theory indicate that Al-plates are decreased in 𝜙e from 4.3 to ∼4.1 eV by deformation due to tension or compression [2550]. Similarly,
a decrease (from 4.99 to ∼4.7 eV) is observed also for Cu-ones [2550].
59Fresh Al-film (𝜙e = 4.17 ± 0.07 eV) and oxygen pre-exposed one (4.08 ± 0.05 eV) on glass are reduced by up to ∼1 eV by admission of water vapor from
∼10−7 to 10−4 Torr min [2100] (see also Footnote 51).
60The ionization potential (IP) measurement of clusters (Al2000 and Al32000 at different charge states, 𝑍 = −1 up to +5) makes it possible to determine the bulk
work function (𝜙e(∞)) from Eq. (20). The value of 4.28 ± 0.03 eV thus determined [2199] is essentially the same with ours (4.26 ± 0.03 eV) recommended
for polycrystalline Al in Table 2 [Here] (see Section 11.3).
61The Al-surface (∼300–600 K) is scratched by irradiation with an increased light power, thereby decreasing in 𝜙e from 4.90 to 4.75 eV [1222].
62The work function of 4.41 eV for Si(100) at 300 K is evaluated from 𝜙e(𝑇 ) = 4.30 + 3.75 × 10−4 𝑇 found at ∼1300–1650 K [1225].
63A free energy model is employed to derive the work function (𝜙+) effective for positive ion emission from alkali (Li, Na or K) or Tl atom incident upon
Si(100)n and Si(111)n, thereby yielding nearly the same values (averages derived from free energies) of 𝜙+ = 4.80±0.05 eV for Si(100)n and 4.82 ± 0.05 eV for
Si(111)n, irrespective of the difference in four incident atom species [74]. On the other hand, the value of 𝜙+ ≈ 4.8 eV for Si(100)n and Si(111)n are different
from 𝜙e ≈ 4.5 eV for the two monocrystalline surfaces [74], affording 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e ≃ 0.3 eV ≠ 0. The authors [74] suggest that the discrepancy (𝛥𝜙∗ ≠ 0)
would be accounted by partial covering with graphitic carbon or SiC having lower work function (4.4–4.6 eV).
64Similarly as above in Footnote 63, another enthalpy model is adopted to determine 𝜙+ by PSI of four different samples on Si(100)n and Si(111)n, yielding
the averages of 𝜙+ = 4.67 ± 0.08 and 4.77 ± 0.05 eV for Si(100)n and Si(111)n, respectively [74]. Each of the values is nearly equal to that determined by the
free energy model (see Footnote 63).
65On the basis of 𝜙e = 4.30 + 5.6 × 10−4 𝑇 [2097], each 𝜙e of both Si(100) and Si(110) is evaluated to be 4.47, 4.86 or 5.14 eV for 300, 1000 or 1500 K.
The theoretical value of the temperature coefficient (5.6 × 10−4 eV/K) [2097] is close to the experimental one (3.75 × 10−4 eV/K) determined for the both
surfaces by another worker [1225].
66The value of 𝜙e for Si(111)p by TE is determined to be 4.84 ± 0.14 or 4.86 ± 0.10 eV at ∼1500 K by electron retarding method [73]. Each value is in
excellent agreement with 𝜙+ = 4.85 ± 0.08 and 4.88 ± 0.10 eV by PSI of Cs incident upon the same Si(111)p specimen at ∼1100–1600 K [73] and, hence,
𝛥𝜙∗ ≡ 𝜙+ − 𝜙e is essentially zero, quite similarly as found generally for monocrystalline metals (see Table 5). On the contrary, 𝜙e of the same specimen is
found to be as small as 4.07 ± 0.05 eV from Richardson plots at virtually the same temperature range (∼1300–1600 K) as above [73], where the apparent
Richardson constant is very small (𝐴r = 0.2–0.4 A/cm2 K2) [73]. Quite similarly, 𝜙e = 4.05 ± 0.04 eV and 𝐴r ≈ 0.2–2 A/cm2 K2 for another Si(111)p specimen
are determined by another group of workers [635]. The above results suggest that the internal reflection coefficient (𝑟e) of electron is very large, as may be
understandable from the inequality of 𝐴r ≡ 𝐴R(1 − 𝑟e) < 𝐴R = 120 A/cm2/K2 [2]. Therefore, it may be concluded for silicon surfaces that the true value of the
thermionic contrast (𝛥𝜙∗) can hardly be obtainable by direct comparison between 𝜙+ (by PSI) and 𝜙e (by TE using Richardson plots) without correcting 𝜙e by
a suitable method. It should be noted that 𝜙e = 4.07 eV [73] may be corrected to be 4.83 ± 0.04 eV by substitution of 𝐴r = 0.3 ± 0.1 A/cm2 K2 into Eq. (8)
(see Section 2.8.6), and hence that 𝛥𝜙∗ = 4.85 − 4.83 ≈ 0 eV instead of 4.85 − 4.07 ≈ 0.8 eV. In the same way, 𝜙e = 4.04 ± 0.05 eV for Si(111)n [72] is corrected
to be 4.80 ± 0.04 eV, which yields 𝛥𝜙∗ = 0.06 ± 0.08 eV, 0.07 ± 0.05 eV and 0.10 ± 0.11 eV since 𝜙+ = 4.86 ± 0.07, 4.87 ± 0.03 and 4.90 ± 0.10 eV by PSI of Li, Na
and In, respectively [72]. See the data with the superscript of d in Table 4.
67The samples of Si(111)n and Si(111)p are found to have the same value of 5.05 eV at ∼300 K, but to show a large difference of either 4.65 and 5.56 eV or
4.5 and 5.4 eV at 60 K for n- and p-types, respectively [2660,2893].
68The sample of Si(111)n freshly cleaved at ∼300 K is found to have the 2 × 1 super structure with 𝜙e = 4.83 eV, stable for a few hours at 𝑃r < 3 × 10−11 Torr.
But, it is changed to 4.56 and 4.74 eV by annealing at 550 and 800 K according to changes to the 1 × 1 and 7 × 7 structures, respectively [1228].
69The surfaces of Si(111)p heated to 1000 K after cleaving and done so after sputtering are little different in 𝜙e between the two [118].
70The Richardson constants (𝐴R) determined for Si(110)n having 𝜙e = 3.76 and 4.14 eV are 0.1 ± 0.03 and 3 ± 0.1 A/cm2 K2 at 1250–1400 and 1400–1625 K,
respectively, while those for Si(110)p having 3.17 and 4.12 eV are 0.03 ± 0.01 and 1 ± 0.3 A/cm2 K2 in the above respective temperature ranges [1500].
Regarding both n- and p-types of Si(112) and Si(541), nearly the same values are found to range from 0.04 ± 0.01 to 2 ± 0.8 A/cm2 K2 [1500], all of which
are very small similarly as in the cases [73,635] mentioned in Footnote 66. For further information, see Section 2.8.6.
71The nanowires of Si (20 nm in diameter) and Ge (17 nm) are found to have 𝜙e = 4.13 and 4.43 eV, respectively [2200], which are smaller than the respective
values of 4.65 ± 0.09 and 4.76 ± 0.06 eV (see Table 2) recommended for much larger sizes of usual specimens.
72The work function of the Si/Ba/W(110) system changes from 4.2 to 4.6 eV depending upon the Ba-thickness of ∼(1–9) × 1014 atoms/cm2 [2013]. The upper
value (4.6 eV) is close to our recommended one (4.65 ± 0.09 eV) as shown in Table 2.
73The surface of Si/Si(111) consists of vapor-quenched amorphous silicon films [2822].
74As the Si-coverage increases from 0 to 1 monolayer on W, the work function calculated theoretically for the Si/W system changes from about 4.5 to 4.7 eV
[913], the latter of which is in good agreement with the experimental value of 4.72 ± 0.02 eV [1231].
75The coverage of Si on Co/CoSi2(111) is 3 monolayers [2169], where 4.70 ± 0.05 eV is very close to ours recommended for Si (Table 2).
76At the Si-coverage of 𝜃 = 3–4 ML, the Si/W system prepared at 77 K is found to have 𝜙e = 4.78 and 4.6 eV after annealing at 460 (or 525) and 580 (or
640) K, respectively. Such a decrease by 0.2 eV as found around 600 K is due to the diffusion of Si into W. When annealing is done at 990 K, 𝜙e = 4.6 eV is
kept at 𝜃 = 2–3 ML, above which 𝜙e is sharply decreased down to 3.7 eV by alloying between Si and W [2248].
77The calculated values of 𝜙e = 4.98, 4.999 and 5.08 eV for the monolayer adsorption of S on Fe(110) correspond to the hollow, bridge and atop sites,
respectively [4313].
78The layer of S (𝜃 = 0.53 ML) on Fe(100) is formed by effusion of S included in Fe(100) after annealing at 970 K. Its work function increases from 5.21 to
5.26 eV as 𝜃 increases from 0.53 to 0.66 ML [565,3311].
79Incidence of S2 upon Pd(111) forms a bulk sulfide layer, three-dimensional sulfide crystallites and elemental bulk sulfur layer at ∼300, 550 and 100 (or
150) K, thereby decreasing the work function by ∼0.3, 0.35 and 0.24 (or 0.20) eV, respectively, at ∼6× 1015 S2 molecules/cm2 [2877]. By taking 𝜙e = 5.55 eV
[1351] for Pd(111), we have 5.25, 5.20 and 5.31 (or 5.35) eV at the respective temperatures.
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80At 273 K, K is deposited on KF(100) and NaCl(100) to form K(100) and K(110), respectively, and their work functions are measured, the respective values
of which are determined to be 2.33 and 2.41 eV after extrapolation to 0◦ K [2946].
81On the basis of 𝜙e = 5.85 eV for W(110), K/W(110) is determined to have 2.0 eV at 𝜃 = 1.1 ML by both theory and experiment [267,3818].
82The value of 𝜙e = 2.55 eV determined for K/W(110) according to 𝜙e = 5.80 eV for W(110) [373] may be revised to be 2.05 eV by taking the latter as 5.30 eV
(see Table 2).
83The work function of K/Ag/glass [1456] depends upon the K-coverage of 𝜃 = 2, 3 and 30 ML and holds 𝜙e = 2.16, 2.12 and 2.24 eV, respectively, thereby
affording 2.17 ± 0.05 eV as their average. However, it should be noted that the last (2.24 eV) is nearest to the values of 2.22–2.30 eV recommended by
several authors (see Table 2). This fact suggests that such layers as thick as 𝜃 = 30 ML have essentially the same property of a usual polycrystalline surface.
In other words, the bulk work function can hardly be determined correctly unless 𝜃 is much greater than several ML.
84The plot of 𝜙e vs. 𝜃 observed for a K/Ru(001) system at 130 K shows 𝜙e ≈ 2.2 eV at 𝜃 = 0.8 ML and 2.4 eV at much higher values of 𝜃, corresponding to
the bulk potassium [528].
85The substrate consists of microcrystallites having the same (0001) direction [2193] with 𝜙e = 4.7 eV [1725], resulting in about 2.5 eV for K/C(0001)
[1725,2193].
86The value of 3.3 eV observed for a system of K-encapsulated into single-walled carbon nanotubes [3229] is rather close to 3.6 eV calculated for a K-doped
(10, 10) tube bundle of K0.1C [767].
87The system of Ca/silica is found to have 𝜙e = 2.2, 2.55 and 2.98 eV for the layers of 5.5, 3 and 10 nm, respectively [1418].
88Each sample of Mg, Ca, Cu and Sr is deposited onto glass at 77 K to form a layer of 𝜃 = 2–3 ML, and their work functions at ∼300 K are measured to be
3.7, 3.0, 4.4 and 2.8 eV, respectively [1526].
89The systems of Ca/Mo consist of the Mo-foils implanted with 50- and 60-keV Ca+ ions in doses of 2 × and 1 × 1017 ions/cm2, showing the minimum work
functions of 3.13 and 3.26 eV, respectively, much lower than ∼4.5 for pure Mo [2211].
90The system of Sc(0001)/W(110) with 𝜙e = 3.8 eV is found at the surface concentration of 1.5 × 1015 Sc-atoms/cm2 at 300 K. Even at the same concentration,
however, 𝜙e shows different constant values of 4.0, 3.6 and 4.6 eV at 1050, 1200 and 1500 K, respectively [1982], suggesting that the Sc-layers have different
structures.
91The Sc/W systems have 𝜙e = 2.8 and 2.9 eV at 𝜃 = 1.0 and 2.0 ML, respectively [1811].
92The Sc-layers with 𝜙e = 3.3–3.4 eV are prepared from the alloys of Re–Sc (4–9%) after heating at 1700–1800 K for a long time [1979].
93The value of 4.10 eV is estimated for the (0001)-oriented titanium microcrystal grown on W(110) at 600–700 K [2196].
94The value of 5.0 eV corresponds to Ti(0001) formed as a main component of the titanium layers on glass, while the layers over the entire surface area are
found to have 4.76 eV as the mean value of Ti(poly) [2378].
95The work function values of 4.15 and 4.75 eV correspond to Ti(1010) and Ti(1011), respectively, formed as the major and minor components of titanium
layers on oxidized titanium (O=Ti), where they have 4.60 eV as the average over the entire surface area [2378].
96The surface layer structures of Ti grown on W(011) and both W(111) and W(001) are epitaxially oriented toward Ti{0001} and Ti<112̄0>, respectively
having 3.52, 3.50 and 3.75 eV, in contrast to 3.03 eV for Ti/W(016) and 3.95 eV for Ti/W(112) [3222].
97The systems (𝜃 ≳ 3 ML) of Ti/W(001) and Ti/Re(101̄0) with 𝜙e = 3.88 and 4.00 eV, respectively, have the same structure of 𝛼-hcp at 293 K [1404], but the
former undergoes allotropic transformation to 𝛽-bcc after annealing at 1300 K for 1 min, thereby changing in 𝜙e from 3.88 to 3.65 eV [1404,1405].
98Similarly as mentioned above in Footnote 97, Ti/W(111) shows the allotropic transformation from 𝛼- to 𝛽-Ti after heating at 1100 K, together with a decrease
in 𝜙e from 3.95 to 3.6 eV [2194].
99The same phenomenon as just above Footnotes (97 and 98) is found for Ti/W, changing 𝜙e from 3.95 to 3.65 eV according to transforming from 𝛼- to 𝛽-Ti,
respectively, after annealing at 1100 for 15 s [1522].
100The theoretical values of 4.61 and 4.19 ± 0.02 eV are obtained for the non-magnetic V(100) films consisting of 1 and 3–7 layers, respectively [3671].
101At 𝑇 = 4.2 and 15 K, the thin film system of V/quartz is measured to have 𝜙e = 3.1 ± 0.2 and 2.9 ± 0.2 eV by CPD, respectively, and 𝜙e seems to change
by 0.2 ± 0.3 eV at the superconducting transition temperature (𝑇S = 5.4 K), although 𝜙e = 3.1 and 2.9 eV are considerably smaller than 3.77 eV found for
bulk-V by FE at the same range of 4.2–15 K [1686]. About the quantitative relation between 𝜙e and T around 𝑇S, fine measurements at a meV level may be
necessary in general to determine accurately the minute change in 𝜙e according to the transition (see Section 9 and Table 14).
102At 4.2 and 5 K slightly above the superconducting transition temperature (1.2 K), Al/quartz and Al-bulk systems are observed to have 4.1 ± 0.2 and 4.20 eV
by CPD and FE, respectively [1686], where the disagreement between the two is smaller compared with the case of V mentioned just above (Footnote 101).
103Although the system of Cr(100)/Au(100) as well as Cr(011)/Au(010) satisfies the exceptionally close lattice match (0.02%), Cr forms fcc alloy with Au even
at room temperature, and Au diffuses to the Cr-surface. Consequently, 𝜙e of the surface even at 𝜃 ⋍ 60 ML shows a value (4.05 ± 0.1 eV) higher by ∼0.15 eV
compared with that (3.90 ± 0.1 eV) of pure bulk Cr(100) [2870,3951].
104 The system of Cr/Au/glass [3207] is prepared at room temperature by deposition of Cr (10 nm thick) on Au (250 nm thick) and determined to have
𝜙e = 4.6 eV for Cr by taking 𝜙e = 5.1 eV for Au [304], while the former is evaluated to be 4.8 eV if the latter is taken as 5.3 eV from Table 2 [Here]. However,
both of 4.6 and 4.8 eV are considerably higher than 4.38 ± 0.04 eV recommended in Table 2, thereby suggesting that the system is alloyed to some extent
by diffusion of Au (see Footnote 103).
105The work function of Cr/Au(100) [3557] is evaluated to be 4.87 eV for Cr by taking 5.47 eV for Au(100) [959,1045,1358], but the former is larger than
both 4.10 eV [2638] and 4.46 eV [3445,3446] for Cr(100) and also than both 4.5 eV [304,1045,1358] and 4.38 eV [Here, see Table 2] for Cr (poly). Such
discrepancies may suggest again the alloy formation between Cr and Au due to diffusion of Au, quite similarly as already mentioned above (see Footnotes 103
and 104).
106Mn atoms deposited onto Cu(111) at ∼300 K are incorporated into the first Cu layer, and they form compact alloy islands according to further deposition,
thereby decreasing 𝜙e by ∼1.0 eV for the Mn/Cu(111) system (3.9 eV) [3710]. Here, 𝜙e for Cu(111) is taken as 4.94 eV [953].
107The Mn/Cu(100) system at 𝜃 ⋍ 2.5 ML at 293 K is found to have 𝜙e = 4.2 ± 0.1 eV, which corresponds to bulk Mn [1554], in contrast to the above case
[3710] (see Footnote 106). It is generally 4.1 eV that is recommended for Mn (see Table 2).
108The system of Mn/ins/Al (see Footnote 47 for the sandwich structure) [2028] is determined to have 𝜙e = 3.60 eV by taking the reference work function as
3.43 eV for Al [2028], in contrast to 4.40 eV by doing as 4.23 eV recommended for Al (Table 2 [1351]).
109The values of 𝜙e = 3.7 and 3.9 eV calculated for the strained and unstrained Fe(100) crystals, respectively, are much smaller than 4.24 eV by experiment
[2901].
110The value of 𝜙e = 4.17 eV for Fe(100) [920,3044] is corrected to be 4.24 eV by another worker [13] taking not 4.49 eV [826] but 4.545 eV [828] for W
(see Footnote 303) as the reference for CPD measurements.
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111The ions of Na+ and K+ are due to the impurities (Na and K) occluded in the Fe filament employed [277], thereby making it possible to measure 𝜙+ = 3.6
and 3.8 (or 4.3) eV by PSI.
112Regarding the 𝛾- and 𝛽-phases of Fe [303], the differences of both 𝜙+ and 𝜙e between the two phases are estimated to be 𝛥𝜙+

𝛾𝛽 ≡ 𝜙+
𝛾 − 𝜙+

𝛽 = 4.55−4.49 = 0.06 eV
and 𝛥𝜙e

𝛾𝛽 ≡ 𝜙e
𝛾 − 𝜙e

𝛽 = 0.09 eV, respectively [303] (see Table 11).
113The Richardson plot for Fe has a break at ∼1170 K, below and above which both slopes are identical, thus yielding 4.77 eV for 𝛽- and 𝛾-Fe [3024].
114The films of Fe(100) and Fe grown epitaxially on Cu(100) are found to have metastable and ferromagnetic fcc-structure, whose Curie temperature (𝑇C)
changes depending upon the film thickness in contrast to the stable and ferromagnetic 𝛼-bcc-bulk iron with 𝑇C constant at 1042 K. For details, see Section 8.2.
115By temperature increase from 703 to 763 K, 𝛼-hcp-Co(0001) with 𝜙e = 5.264 eV is allotropically transformed to 𝛽-fcc-Co(111) with 5.266 eV [3192,3193].
116The Co sample cooled slowly from above 1120 K to ∼300 K is found to have the 𝛼-hcp structure with 𝜙e = 4.12 ± 0.04 eV, whilst that done so suddenly
retains the 𝛽-fcc one with 4.25 ± 0.08 eV [1631,1632].
117The systems of Co/substrate prepared by deposition of Co at 4.2 and 400 K consist of noncrystal and polycrystal Co-layers having 𝜙e = 4.4 ± 0.1 and
4.9 ± 0.1 eV, respectively [1506].
118The Co/Si(111) system at 𝜃 ⋍ 3–10 ML is found to have 𝜙e = 4.86 ± 0.05 eV at ∼300 K, but it forms Co- and Si-rich CoSi2 films with 4.94 ± 0.01 and
4.81 ± 0.01 eV depending upon the annealing temperatures at 610–690 and 760–870 K, respectively [2451].
119The values of 𝜙e = 4.960 and 4.923 eV are determined at 300 and 663 K, respectively, for 𝛼-hcp-Co, whereas 4.925 and 4.966 eV are found at 673 and 300 K
(extrapolated from ∼770 K passing through the allotropic transition temperature of 663–673 K) for 𝛽-fcc-Co, respectively [1148]. For further information, see
Section 7.1.
120 The specimen of 𝛽-Co is found to have 𝜙e = 4.6 ± 0.3 eV (ferromagnetic state) and 4.8 ± 0.3 eV (paramagnetic one) below (1340–1390 K) and above
(1390–1440 K) the Curie point (1390 K), respectively [3604].
121The Co films (1–9 ML) grown epitaxially on Cu(100) at 300–400 K are ferromagnetic and have the 𝛽-like fcc structure with 𝜙e = 5.0 ± 0.2 eV [2879,4377].
122The 𝛽-like fcc-Co films on Cu(100) is theoretically evaluated to have 5.34 eV, being ferromagnetic at temperatures up to the Curie point (∼1400 K) [3654].
123 The work function of Ni(100) after Ar+ impact is found to have 5.08 eV, which is increased to 5.12 and 5.22 eV by annealing at 623 and 1023 K for 4
and 30 min, respectively [903].
124The Ni films (>1000 Å thick) prepared on vacuum- and air-cleaved mica at 593 K consist mainly (85 and 92%) of Ni(100), respectively, both having
𝜙e = 5.12 ± 0.02 eV [314], which is very close to 5.19 ± 0.05 eV for bulk Ni(100) (Table 2).
125About 67% of the Ni film surface (prepared on glass at 77 K and annealed at 523 K) have 𝜙e = 5.17 ± 0.02 eV [314], yielding nearly the same 𝜙e as above
(see Footnote 124).
126Similarly as above (Footnotes 124 and 125), about 95 and 94% of the Ni film surfaces on glass at 573 and 523 K have 5.20 ± 0.02 eV [314,315] and
5.34 ± 0.02 eV [314], respectively, which are close to 5.19 ± 0.05 eV for Ni(100) and 5.32 ± 0.05 eV for Ni(111), respectively (Table 2).
127About 85–90% of the nickel layer surface on glass after annealing at 523 K have 𝜙e = 5.22 eV, corresponding virtually to Ni(100) [1513].
128 Identically as above (Footnote 126), 90% of the nickel surface have 𝜙e = 5.35 eV [315,1513], essentially the same as 5.32 ± 0.05 eV for Ni(111) (Table 2).
129Only 3% of the whole surface area of Ni deposited on glass at 273 K (without annealing) correspond to 𝜙e = 4.82 eV, with the remainders of 45 and 52%
correspondent to 5.00 and 5.16 eV, respectively [314].
130Regarding fine particles of Ni, the calculated values (∼2.9 eV) [2887] are found to be very discrepant from the experimental ones (∼4.2 eV) [2887]. Such
a discrepancy is found for Al, too; theory (∼3.2 eV) and experiment (∼3.7 eV) [2887].
131About 25 and 75% of the layer surface of Ni deposited on NaCl at 573 K correspond to 4.39 and 4.47 eV, respectively [314].
132The polycrystalline Ni is observed to have 𝜙e = 4.645 eV (extrapolated from ∼550 to 300 K), 4.660 eV (at 400 K), 4.690 eV (at 660 K, slightly above the Curie
point of 𝑇C = 631 K), or 4.700 eV (at 740 K) [503]. The ferromagnetic state at 400 K below 𝑇C has the difference of 𝛥𝜙e

PF ≡ 𝜙e
P − 𝜙e

F = 4.653 − 4.660 = −0.007
eV in comparison to the paramagnetic value extrapolated from 700 to 400 K [503]. The theoretical value of the difference is reported to be –135 meV [3673],
–50 meV [3954] or 9 meV [2358] in contrast to –7 meV mentioned above (see Table 13).
133About 2, 13 and 85% of the overall surface area of Ni deposited on vacuum-cleaved mica at 593 K are found to have 4.82, 4.93 and 5.12 eV, respectively
[314], the last of which is nearly the same with 𝜙e of Ni(100) (see Footnote 124).
134The Ni/W system is found to have 4.52 and 4.85 eV for the layers at 1 and 4–5 ML, respectively [2249].
135About 12, 35 and 53% of the layer surface area of Ni deposited on glass at 273 K have 4.9, 5.2 and 5.0 eV, respectively [315], the last of which is
substantially the same with our recommended value (4.96 eV) for Ni(110) (see Table 2).
136The surface of Ni having 5.21 eV [1403] is partially oxidized.
137The Cu/NaCl systems annealed at 473 and 423 K are found to have the Cu(100) and Cu(111) orientations with 𝜙e = 3.96 and 4.20 eV, respectively [3328].
After annealing at the same temperatures, Ag and Au on NaCl systems show the same orientations with 𝜙(100) = 4.30 eV and 𝜙(111) = 3.98 eV for Ag and
with 𝜙e(100) = 4.02 eV and 𝜙e(111) = 4.12 eV for Au [3328]. Any of the above values, however, has a large difference (𝛥𝜙) from ours recommended for each
surface in Table 2. Typically for Ag, 𝜙(100) and 𝜙(111) are smaller by 𝛥𝜙 = 0.16 and 0.66 eV than our respective values (Table 2), and 𝜙(100) > 𝜙(111) does
not follow the Smoluchowski rule of 𝜙(111) > 𝜙(100) > 𝜙(110) found generally for Ag and also for many fcc metals except Al (see Table 10 and Section 5.3).
138The Cu(100) surface is determined to have 4.07 and 4.43 eV, neither of which is representative of a truly clean surface [1183].
139The layers (5–6 ML) of Cu deposited on Ir(100) at 78 K and annealed at 380 K are observed to have 4.55 ± 0.02 eV [2189], very close to both 4.59 ± 0.03 eV
[953] and 4.58 ± 0.06 eV (Table 2) found for Cu(100).
140 The work functions of Cu(100), Cu(110) and Cu(111) are estimated to be 4.68, 4.48 and 4.85 eV, respectively, by the present author using 𝜙e = 4.34 eV
estimated for SnO (the reference for CPD measurements) from the data in Table II [959], the reference value of which is constant in the presence of O2 below
∼10−6 Torr [831].
141The growth of Cu layers (𝜃 > 3 ML) on W(110) at ∼300 K leads to recrystallization, thereby forming {111}-oriented patches with 𝜙e = 4.8 eV (near to
4.92 ± 0.05 eV recommended for Cu(111) in Table 2) in a predominantly lateral direction on further condensation [1519]. On the other hand, 𝜙e = 4.5 eV
(equal to 4.51 ± 0.04 eV for Cu(poly) in Table 2) is found by deposition at 800 K [1519].
142When 𝜙e of the reference (W) is taken as 4.55 eV [828,1056,2103], the Cu layers prepared on W(110) at ∼300 K [2598] are estimated to have 4.90 eV,
essentially equal to our recommended value of 4.92 ± 0.05 eV (Table 2) for bulk Cu(111), whereas those on W(poly) [2598] are done to have 4.6 eV, nearly
to 𝜙e = 4.51 ± 0.04 eV recommended for Cu(poly) (see Table 2). In a similar way, 𝜙e for W(110) [2598] is evaluated to be 4.55 + 0.73 = 5.28 eV, well agreeing
with our value (5.32 ± 0.02 eV in Table 2).
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143In contrast to the work function decrease (𝛥𝜙 = −0.32 eV) upon Cu-condensation on Ru(0001) [2876], the large increase (𝛥𝜙 = +0.40 eV) reported for
Cu/Ru(0001) [1683,1685] is due to an inadvertent error in the sign of 𝛥𝜙 measured with a Kelvin prove [3955], as stated in Ref. [2876]. In addition,
𝜙e = 4.5 eV for Ru(0001) cited in Ref. [1683] from Ref. [2348] is too low [2266] compared with 5.52 ± 0.1 eV [2266] and also with our recommended value
(5.35 ± 0.06 eV, see Table 2). Consequently, Cu/Ru(0001) [1683,1685] is estimated to have 𝜙e = 5.35 − 0.40 = 4.95 eV, which is substantially equal to our
value of 4.92 ± 0.05 eV for Cu(111). This result supports the conclusion [1683,1685] that Cu(111) is formed on Ru(0001).
144Around the melting point (𝑇m = 1356 K) of Cu, 𝜙e is found to be 4.4, 4.62 and 5.5 eV just below 𝑇m, at 𝑇m and above 𝑇m, respectively [1465].
145Cu is deposited onto Ni by electroplating and found to have 4.47 eV [2294], which is very close to 4.51 ± 0.04 eV recommended for Cu (Table 2).
146When the reference work function of Ag used for CPD is taken as 4.36 eV [1351] by the present author instead of 4.74 eV adopted by the corresponding
author [2087], the work function of Cu [2087] is corrected to be 4.48 eV instead of 4.86 eV [2087], the former of which is much closer to our recommended
one (4.51 ± 0.04 eV, see Table 2).
147Regarding Cu/W(110) [2831], 𝜙e may be evaluated to be 4.58 eV [Here] and 5.20 eV [2831] for Cu by taking 5.31 eV [Here] and 5.93 eV [2831] for
W(110) by the present and corresponding authors [2831], respectively, thereby yielding a more reasonable result (4.58 ≈ 4.51 ± 0.04 eV) from the former
similarly as above (Footnote 146).
148Preparation of Cu layers on glass with 103 and 114 Å thick at 273 and 77 K affords 𝜙e = 4.64 and 4.65 eV, respectively [3075].
149Fine particles (𝑟 ≈ 30 Å in radius) of four metals are produced from each metal vapor by passing through He steam evaporating from liquid He [3190]. They
are found to have 𝜙e(𝑟) = 4.80 eV (Cu), 5.45 eV (Pd), 4.50 eV (Ag) and 5.20 eV (Au) [3190], respective values of which are nearly equal to ours calculated
from Eq. (17′) by citing 𝜙e(∞) from Table 2 (see Section 11.1).
150The orientation of this single zinc crystal with 3.63 eV [2591,2601] is taken as (0001) in Ref. [475], although it is not clearly done so in Ref. [1312]. The
crystal is treated as a polycrystal in CRC handbooks [11,1358,1859,4191] (see Section 3.2).
151Concerning the Zn/glass system [1370], 𝜙e = 4.28 eV [1370] is corrected to be 4.11 eV [13,349] for Zn by other workers [13,349] taking 𝜙e = 2.35 eV
[13,349] instead of 2.52 eV [1370] as the reference work function for Ba used in CPD measurements.
152Employment of 𝜙e = 4.36 eV [1351] instead of 4.74 eV [2087] for Ag (reference for CPD) yields 4.27 eV [Here] instead of 4.65 eV [2087] for Zn under
study, the former of which is much closer to our recommended value (4.22 ± 0.11 eV for Zn in Table 2).
153Work function of the Ge(111) sample [2093] is measured to be 4.12 and 4.75 eV after cleavage in air and vacuum, respectively.
154The surface of Ge(111) cleaved in vacuum [2620] is found to have 4.9 eV, which changes to 4.5 and 4.7 eV after annealing at 370–470 and 570 K,
respectively [2620].
155By both PE and CPD, exactly the same value of 4.80 eV is measured for Ge(111) cleaved in vacuum [1971]. See Section 2.8.2 for comparison of work
function data obtained by different methods.
156Regarding K, Rb and Hg [2470], each of their work functions (2.29, 2.16 and 4.49 eV, respectively) does not undergo any substantial changes (less than
0.01 eV) during the transition through each melting point. See Table 12 for further information about the work function change due to liquefying.
157The layer (𝜃 = 1.3 or 1.5 ML) of Sr deposited onto W(110) at 77 K [2344] is measured to have 3.0 eV (by FE) or 3.2 eV (by CPD), the latter of which does
not change even after annealing at 300 K.
158The systems of Y/W with 𝜃 = 1 and 1.5–2.0 ML [1804] have 𝜙e = 2.6 and 2.7 eV, respectively.
159The layer of Y deposited onto W(100) at ∼300 K (𝜙e = 3.1 eV) is changed to that of Y(0001) (𝜙e =?) after annealing up to ∼1070 K [1985].
160The work functions of Sc, Y, Tc, In, Po, Fr and Pa are estimated to be 3.3, 3.3, 4.4, 4.0, 4.6, 1.5 and 3.3 eV, respectively, from the periodic trend of
published data on 𝜙e for several elements neighbor to each metal [1355]. These values for Po, Fr and Pa have a trend to be smaller than other theoretical
ones of 4.8–5.0, 1.8–2.14 and 3.3–3.73 eV, respectively. Of course, the three elements have no experimental data on 𝜙e available yet today.
161The smooth layers of Zr are formed by thermal processing of a Mo–Zr (5%) alloy heated to ∼1000 K [790]. The value of 2.94 eV [790] is smaller than
any other data on 𝜙e for 𝛼-Zr in this table.
162The specimen of Nb(100) with 68%-(100) orientation over the surface area [650,3414] is determined to have a ‘‘clean’’ cesiated work function of 4.1 eV
[3414], whilst its really clean one is theoretically calculated to be 4.02 ± 0.07 eV [803], nearly the same between the two. It should be noted that the specimen
is theoretically evaluated to have the thermionic contrast of 𝛥𝜙∗ = 𝜙+ − 𝜙e = 4.39 − 4.02 = 0.37 eV [803].
163By Ar+ impact on Nb(111), 𝜙e is decreased from 4.66 to 4.09 eV [780].
164At 4.2 K below the superconducting point (𝑇s = 9.2 K), the Nb/quartz system [1686] is found by CPD to have 𝜙e = 3.9±0.2 eV, which is not clearly different
from both 3.8 ± 0.2 and 3.9 ± 0.2 eV measured by CPD at 28 and 293 K above 𝑇s. However, the above Nb film (3.9 eV at 4.2 K) is much smaller in 𝜙e than
the bulk Nb (5.01 eV by FE) at 5 K below 𝑇s [1686] (see Table 14).
165With respect to the niobium work function, it is criticized in Section 3.1.4 [13] that 3.88–3.91 eV determined by combination of both PSI and NSI of several
alkali halides [120] is too low compared with 4.37 ± 0.03 eV by CPD [123]. The former [120] is also less than by ∼0.2 eV compared with our recommended
value (see Table 2). Such a discrepancy may be caused mainly by the implicit assumption [120] that the work functions (𝜙+ and 𝜙−) effective for positive
and negative ionic emissions are the same with each other without considering the thermionic contrast (𝛥𝜙∗ = 𝜙+ −𝜙− = 𝜙+ −𝜙e = 4.81 ± 0.05 – 4.11 ± 0.05
= 0.70 ± 0.07 eV (see Table 5 and Section 4.1). It should be noted that the relation of 𝜙+ = 𝜙− = 𝜙e holds exactly with a clean and smooth monocrystalline
surface alone, as already stated in Section 1.
166The layers of Nb, Mo, Ta and W on Si(111) (𝜙e = 4.53 eV) are as thick as ∼30 ML, showing 4.12, 4.76, 4.15 and 4.87 eV, respectively [1430].
167Each molybdenum surface [125,129,572,573] is assigned to the (100) plane arranged naturally by recrystallization of Mo through annealing for many hours
above 2200 K [573]. This assignment is supported by the result that 𝜙+ = 𝜙e = 4.28 ± 0.05 eV [573] and hence 𝛥𝜙∗ = 0.0 eV in contrast to ∼0.7 eV for Mo
(see Table 5). Such a work function change due to thermal monocrystallization is reported also for many other metals (see Section 4.5 in Ref. [1351]).
168The work function of Mo(100) is found to be 4.52 and 4.38 eV after heating at 1980 K by a.c. for initially 40 h and successively 50 h until giving constancy
in 𝜙e, respectively, while it is 4.37 and 4.33 eV after doing so by d.c. for firstly 25 h and additionally 235 h until so, respectively [729]. In both cases, 𝜙e

decreases gradually by the heating and finally becomes constant at 4.38 ± 0.03 and 4.33 ± 0.03 eV, both of which are essentially equal to our recommended
values of 𝜙e = 4.38 ± 0.03 eV, 𝜙+ = 4.38 ± 0.08 eV and 𝜙− = 4.34 ± 0.03 eV (see Table 2 and also Footnote 258).
169The theoretical values of 𝜙e for Mo(110) layers (1–4 ML) on W(110) and for Mo(110) bulk are 4.8 and 4.83 eV, respectively, well agreeing with each other
[2074].
170The work function (𝜙+) for each specimen is calculated by either the corresponding workers or the present author substituting each of workers’ data on
ionic and neutral desorption energies (𝐸+ and 𝐸0) [77,131,132,135,146,166,167,178,263,265,266,269,276,280,282,397,684,804,823,954,966,1049,3886] and
also literature value (ionization energy, I) into the Schottky equation (9) of 𝜙+ + 𝐸+ = 𝐸0 + 𝐼 , where 𝐸0 is cited in some cases (for details, see Section 4.1).
171The ‘‘clean’’ and ‘‘gassy’’ surfaces of Mo(111) are measured to have 𝜙e = 4.49 and 4.67 eV, respectively [3421].
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172About the Mo surface consisting of 70–72% (100), 20–22% (112), 5% (111) and less than 2% (110) [124,3414], 𝜙e is estimated to be 4.25 eV by another
worker [1254], while our theoretical evaluation yields 𝜙e = 4.38 ± eV and 𝜙+ = 4.51±0.03 eV [803], and hence 𝛥𝜙∗ = 0.13±0.03 eV in contrast to 𝛥𝜙∗ = 0.0 eV
for ∼100% Mo(100) (see Table 5). Experimentally on the other hand, 𝜙e is found to be temperature-dependent like as 4.32–4.17 and 4.18–4.01 eV at ∼1400
and 2000 K, respectively [124], or roughly 4.0–4.3 eV [124,3414].
173The Mo surface consists of the planes of mainly (116) and (331), and its 𝜙e is measured to be 4.33 eV by TE and 4.41 or 4.47 eV by PE [134].
174The work function at 0 K for each of the nine polycrystalline surfaces is evaluated from 𝜙0 = 𝑘𝑏0 = 𝜙𝑇 −(3∕2)𝑘𝑇 after determination of 𝑏0 by using published
data on thermionic emission from Ca, Y, Zr, Mo, Ce, Ta, W, Th or U at various temperatures [1747].
175By theory and experiment, 𝜙e for Ru(0001) is evaluated to be 5.3 and 5.4 eV, respectively [542], both of which are close to our recommended value of
5.35 ± 0.06 eV (see Table 2).
176The theoretical values of 5.36 and 5.57 eV correspond to the ferromagnetic and paramagnetic states of Rh(100), respectively [1258].
177 The work function (4.70 eV) for a roughened surface of Rh(110) is lower than that (4.80 eV) for a smooth one [853], just as expected generally (see
Section 4.2.5 in Ref. [1351]).
178The work function values of roughened surfaces of Rh(111) and Pt(111) are 4.95 and 5.53 eV, respectively [853], both of which are much smaller than the
respective ones of 5.40 and 5.84 eV recommended mainly for smooth surfaces (see Table 2), quite similarly as above (see Footnote 177).
179The value (5.1 eV) for Rh(111) is deduced by Feibelman [456,1011] from the photoemission data obtained by other workers [1544,1546].
180The Rh layers (2–3 ML) on Mo(110) are found to have 𝜙e = 5.36 eV [1035], very close to our value of 5.40 eV for Rh(111) (see Table 2).
181On the two species of insulator/semiconductor substrates, the Rh layers (>10 Å thick) are prepared from rhodium acetylacetonate at 423 K, resulting in
𝜙e = 5.25 or 5.43 eV [2908].
182The work function of a 6 × (100) stepped face of Pd is calculated to be 5.50 eV, which is smaller than 5.80 eV for a normal Pd(100) face [704,795].
Similarly to Pd(111), 5.53 eV for a 6 × (111) stepped face is lower than 5.86 eV for the normal one [704,795].
183This is a stepped surface of Pd(S)–[8(100) × 1(110)] having 5.55 eV [1129]. For this nomenclature, see Ref. [1130].
184The value of ∼5 eV for Pd(110) [610] is roughly equal to 5.20 ± <0.1 eV determined later by the same group [914].
185The work function of 5.5 eV for Pd(110) is determined for thick layers (10 ML) of Pd deposited onto Al(110) (𝜙e = 4.2 eV) at ∼300 K [3495].
186The substrate of Cu(111) is prepared on mica at 398 K, after which Pd(111) layers are formed on Cu(111), thereby yielding 𝜙e = 5.61 eV at ∼300 K [3364].
This is virtually the same with our recommended value (5.58 ± 0.05 eV, see Table 2).
187With respect to Pd(foil) and Pd layers (400–700 Å) on Ta, 𝜙e is determined to be 4.6 and 4.95 eV respectively [350], the latter being close to our value
(5.17 eV).
188The values of 4.61, 4.69 and 5.07 eV for Pd [1953] are based on the Ag reference ones of 4.28 eV [1355], 4.36 eV [1351] and 4.74 eV [2087] for Ag,
respectively, the last of which is too large compared with our recommended one of 4.39 eV for Ag (see Table 2).
189The work function of 4.2 eV is estimated by another worker [971] using the PE data for Ag(100) [2128], the topic of which is introduced in Ref. [1261].
190The value of 4.45 eV for 20%-vacant Ag(100) is much lower than 4.78 eV for normal one [2405].
191Preparation of an Ag-film on Ag(100) at ∼300 K or less makes 𝜙e lower by 0.1 eV than that of the clean substrate [2302], where the latter may be
estimated to have 4.50 eV according to the value recommended for Ag(100) in Ref. [1351]. By heating the system to 308–313 K, however, the difference of
0.1 eV is decreased to ∼0 eV [2302], thereby indicating that the film becomes equivalent to the substrate. In other words, a polycrystalline metal film on a
monocrystalline surface of the same metal species may be monocrystallized to have the same orientation by annealing at suitable temperatures.
192About the Ag(100)/NaCl system [1157], 𝜙e for Ag(100) is corrected to be 4.62 eV from 4.79 eV by other workers [349] taking 2.35 eV [13,349] instead
of 2.52 eV [2232] for Ba employed as the reference [1157], the topic of which is mentioned in Ref. [626].
193The system of Ag/Ag(100) annealed at 525 K is found to have the same work function (4.64 eV) with bulk Ag(100) [626], quite similarly as mentioned
already in Footnote 191.
194In the case of a low vacuum (≤3 × 10−8 Torr), both bulk Ag(100) and Ag film formed on the bulk at ∼300 K are found to have the same work function of
4.81 eV, which is decreased by 0.09 ± 0.03 eV after heating the film to red [1132]. The same decrease (from 4.75 to 4.66 eV) is observed also for the Ag
film on bulk Ag(111) [1132].
195The work function of Ag film on V(100) (4.56 eV) is calculated to be 5.72, 5.44 and 5.02 eV at 1, 2 and ≫2 ML, respectively. For larger coverage, 𝜙e

oscillates around the value (5.02 eV) for semi-infinite Ag(100) [1876].
196After annealing at 525 K, the Ag films formed on Ag(110) and on mica are found to have 𝜙e = 4.51 eV, which is essentially the same (4.52 eV) with Ag(110)
[626].
197A clean and smooth surface of Ag(111) is found to have 𝜙e = 4.46 ± 0.02 eV measured by PE [625,1693]. On the other hand, 𝜙e for a surface of Ag(111)
damaged by Ar+ impact is 4.18 eV done by PE, larger than 4.03 eV by CPD [1693]. This result does not follow the general trend of a normal surface that 𝜙e

by PE is smaller than 𝜙e by CPD, thereby indicating that application of PE to such a damaged surface is not suitable because any surface defect gives some
effect to the surface potential barrier and hence to photothreshold [1693]. For further information, see Section 2.8.2.
198By annealing at 773 K for 1 h, the Ag layer (1.7 nm thick) prepared on quartz at ∼300 K is increased in 𝜙e from 4.35 to 4.64 eV as the degree of
monocrystallization (𝛿m) forming the (111) face is increased from 54 to 86% by annealing at ∼773 K [3313]. Theoretically, 4.72 eV is evaluated for Ag(111)
[3313], close to 4.64 eV (Table 2).
199The thick Ag-film (above ∼20 ML) formed at ∼300 K on the H-terminated Si(111) 1 × 1 (𝜙e = 4.50 ± 0.04 eV) is found to have 𝜙e = 4.65 ± 0.15 eV [1198],
which is essentially the same with our recommended value of 4.64 ± 0.06 eV for Ag(111) (see Table 2). On the other hand, the thin film (below ∼5 ML)
prepared by annealing at ∼300 K after deposition at ∼210 K shows roughly 4.2 eV [1198], near to the selected value of 4.26 eV [1045] for polycrystalline
Ag (see Table 2).
200The Ag-film (10 ML) formed on Pt(111) at ∼300 K has 𝜙e = 4.4 eV, which is increased to 4.7 eV by annealing at 600 K, thereby changing the film structure
from polycrystalline Ag to Ag(111) [2182].
201The Ag-film prepared on bulk Ag at 58 K is highly porous with 𝜙e = 4.25 eV, which is increased to 4.72 eV after annealing at 330 K, corresponding to
Ag(111) [1422].
202The Ag-film annealed at 525 K after deposition on mica at 425 K shows 𝜙e = 4.72 ± 0.01 eV, well agreeing with 4.74 ± 0.02 eV measured for bulk Ag(111)
[626,1134].
203For the Ag-film (19 ML)/Ru(001) system annealed at 500 K after deposition at ∼60 K, 𝜙e is determined to be 4.90 ± 0.1 eV [2266], which does not well
agree with 4.76 ± 0.1 eV measured for bulk Ag(111) at 50–60 K [2266] and also with our value of 4.64 ± 0.06 eV for Ag(111) (Table 2).
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204The fine particles (50 ± 20 Å in radius) are produced by passing Ag-vapor through the He-gas boiling off from liquid He and found to have 𝜙e = 4.25±0.1 eV
[1562]. This is smaller than 4.39 ± 0.02 eV recommended for bulk Ag in Table 2. See Section 11.1.
205According to a patchy surface model of Ag [3720], work function is calculated to be 4.26 eV for a hypothetical polycrystalline surface of Ag [3280]. This
value, however, corresponds to neither 𝜙e nor 𝜙+ but to a simple average (𝜙a). It should be noted that 𝜙e < 𝜙a < 𝜙+ holds with any polycrystalline surfaces
(see Section 1). By substitution of the data included in the above model into Eqs. (2) and (1), 𝜙e and 𝜙+ are calculated to be 4.21 and 4.32 eV, respectively
[3956]. Here, the polycrystalline surface of Ag is considered to consist of the three main faces of Ag(100), Ag(110) and Ag(111), and their compositions of
(𝐹i, 𝜙i) are taken as (23%, 4.22 eV), (46%, 4.14 eV) and (31%, 4.46 eV), respectively [3720].
206The work function of fine particles of Ag is studied according to Eq. (17′), where the polycrystalline work function of 𝜙e (𝑟 = ∞) is estimated to be 4.37 eV
for Ag [3442]. It well agrees with 4.39 ± 0.02 eV for the planar Ag (Table 2). No value of 𝜙e (r), however, is determined there [3442]. Further information
about nanometer metal particles may be obtained from Section 11 and also from excellent reviews [3669,4138,4194,4261,4269,4301–4304].
207The heavy layer of Ag deposited onto Mo at ∼300 K is observed to have 𝜙e = 4.41 eV [1051], equivalent to our value (4.39 ± 0.02 eV). The former is
increased to 4.78 eV by annealing at a high temperature (red), but returns to 4.41 eV by subsequent deposition of Ag [1051]. On the other hand, the annealing
of the Ag layer (4.41 eV) at T ≤ 370 K increases 𝜙e by 0.1–0.2 eV [1051], thereby affording the estimated value of 4.55 ± 0.05 eV.
208The work functions of fine particles of Ag (20, 27 and 30 Å in radius) are determined to be 4.65, 4.57 and 4.55 eV, respectively, yielding the average
of 4.59 ± 0.05 eV [3127]. This is larger than 4.25 ± 0.1 eV for a larger particle of Ag (50 ± 20 Å in radius) [1562] (see Footnote 204), and also than
𝜙e(∞) = 4.39 ± 0.02 eV recommended for Ag(poly), just as expected from Eq. (17′).
209Compared with 4.6 eV for Ag [2729], much lower value of 4.06 ± 0.05 eV is found for air-oxidized Ag [2729], strongly suggesting that these Ag-surfaces
(𝜙e ⋍ 4.1 eV or less) studied in low vacua may be oxygenated partly or considerably.
210For Ag/W(110), 𝜙e is determined to be 4.5 and 4.6 eV at 𝜃 ⋍ 2 and 3 ML, corresponding to a minimum and nearly a flat saturation, respectively [1828].
The latter is very near to our value of 4.64 ± 0.06 eV for Ag(111) (Table 2), the nearness to which is found also in many other cases of Ag/W(110)
[2363,3472,3565], Ag/Pd(100) [1692], Ag/Ta(112) [878] and Ag/Nb(110) [2986], as may be seen in Table 1.
211The work function of Ag-layers (9 ML) on Re(1010) after annealing at 350–770 K is determined to be 5.30 ± 0.02 eV by FE [1421], which is too large
compared with any other experimental data on Ag listed in Table 1. This may be mainly because 𝜙e of the substrate is taken as 5.95 ± 0.15 eV by FE [730],
which is also extremely larger than any other data on Re(1010) in Table 1. If the latter is taken from our value of 5.12 ± 0.05 eV (see Table 2), then, 𝜙e of
the above system is evaluated to be 4.47 eV, becoming very near to our value of 4.46 eV recommended for Ag(100) (see Table 2).
212By taking 4.74 ± 0.03 eV [1135] and 4.36 ± 0.06 eV [1351] as the reference work function of Ag, 𝜙e of Cd is evaluated to be 4.43 ± 0.01 eV [1953]
and 4.05 ± 0.06 eV by the present author [Here], respectively, the latter of which is essentially the same with our value of 4.06 ± 0.05 eV recommended in
Table 2. All of the above experimental data, however, are obtained in low vacua (above ∼10−9 Torr), strongly suggesting that further work in ultrahigh vacua
is needed to obtain more reliable data for Cd.
213Quite similarly as above (Footnote 212), 𝜙e of Cd [2087] is corrected from 4.49 eV [2087] to 4.11 eV by the present author, the difference (0.38 eV) of
which corresponds to that (4.74–4.36 eV) for the reference work functions selected for Ag.
214About the Cd/Ta system [1380], 𝜙e is adjusted from 4.08 eV [1380] to 4.22 eV by others [13,349] taking the reference of 𝜙e = 2.66 eV [13,349] instead of
2.52 eV [3582] for Ba, thereby yielding such a negative result that deviation from our value (4.06 eV) recommended for Cd increases from 0.02 to 0.16 eV.
It should be noted that 2.52 eV [3582] is substantially the same with our value (2.50 ± 0.02 eV) recommended for Ba.
215Under the conditions without and with the magnetic field of 0.05 tesla, 𝜙e is measured to be 3.85 and 3.94 eV, respectively, for the In/quartz system
[1475].
216 About the specimen of Sn [2087], 4.63 ± 0.01 eV [2087] is corrected to be 4.26 ± 0.06 eV (close to our value, see Footnote 217) by the present author
taking our value of 4.36 ± 0.06 eV [1351] instead of 4.73 ± 0.07 eV [3391] as the reference work function of Ag.
217The work function of 4.51 ± 0.02 eV measured for Sn [1945–1947] is improved to be 4.39 eV by another worker [1135] after theoretical analysis of the
experimental data [1945–1947], thereby yielding the result that the latter [1135] approaches closely to our value (4.34 ± 0.06 eV) for 𝛽-Sn.
218Quite similarly as just above (Footnote 217), the work function values for 𝛾- and liquid-Sn are adjusted from 4.38 eV [1945–1947] to 4.28 eV [1135] and
from 4.22 eV [1945–1947] to 4.17 eV [1135], respectively.
219The Sb-films prepared on W(100) at ∼300 and 423 K are found to have 4.55 and 4.98 eV, respectively, the former being apparently amorphous [1995].
On the other hand, the Sb-film on W(110) at ∼300 K is concluded to form pseudocubic Sb(100) having 4.7 eV [1272].
220The systems of Te-layers (200 and 1000 Å thick) deposited onto glass at less than 5 × 10−6 Torr and 573 K are studied at ∼300 K in the flowing Ar-gas
(0.1 Torr), yielding 𝜙e = 4.62 and 4.76 eV, respectively [2246].
221About the systems of K and Cs on Si(111) [1823], the plots of work function change vs. alkali deposition time do not show a clear minimum, and a small
oxygen contamination is observed at 10−9 Torr, thereby yielding such a result that 𝜙e for the both systems is estimated to be 1.6 eV, smaller than 𝜙e usually
expected.
222The work function of a Cs/Re system is measured to be 1.64 eV [3582], smaller than usual, whilst that of Ba/Re is 2.52 eV [3582], in excellent agreement
with our value of 2.50 ± 0.02 eV for Ba (see Table 2).
223On the flat surface of Si(100) at ∼300 K, Cs is deposited until the work function decrease (𝛥𝜙) becomes independent of the Cs-deposition time (t), thereby
yielding 𝛥𝜙 = −2.95 eV = constant [2883]. This constancy, however, does not correspond to a saturation (𝜃 ≥ 1 ML) but does to 𝜃 ≤ 0.58 [2883]. If 𝜙e of the
substrate is taken as 4.82 eV from Table 2 [Here], 𝜙e of the Cs-film is estimated to be 1.87 eV. Such a constancy as above is observed also for the Cs-film
prepared on stepped and Ar+-sputtered surfaces of Si(100), showing 𝛥𝜙 = constant = −2.89 and −3.44 eV even at 𝜃 = 0.69 and 0.78 eV, respectively [2883].
These results suggest that the film thickness of 𝜃 ≥ 1 ML is not always guaranteed simply because 𝛥𝜙 is found to be constant independently of t.
224The work function of Cs on Ag(110) is estimated to be 1.8 eV at ∼300 K, where Cs as well as other alkali metals do not form multilayers [2144]. At lower
temperatures (e.g., 80 K), 𝜙e of Cs-multilayers tends to rise up to 2.1 eV correspondent to metallic Cs [2144].
225About the Cs/W(100) system at 𝜃 ⋍ 0.4–0.7 ML, 𝜙e is found to be 1.81 eV [3435], which is the same with that at 𝜃 = 1 [644,1480].
226By taking 𝜙e = 4.8 eV for Si(100) from Table 2 [Here], Cs/Si(100) at 𝜃 ≈ 1.5 ML is estimated to have 1.9 eV [3811], while the Cs/Se/Si(100) systems
at 𝜃 = 0.5 and 1.0 ML of Se are done to have the sandwiching values of 2.0 and 1.7 eV, respectively, owing to formation of such compounds as CsSe and
SixCsySez [3811].
227In the plot of 𝛥𝜙 vs. 𝜃, Na- and Cs-films on Cu(111) are found to have 𝜙 ≈ constant at 2.7 and 1.9 eV at 𝜃 ≥ 0.25 and 0.35 ML, respectively [2496], even
at less than 1 ML. It should be emphasized that the former and the latter are slightly larger and smaller than our recommended values of 2.54 and 2.05 eV
for Na and Cs, respectively (see Table 2).
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228About the relation between 𝜙e and 𝜃, some interesting information is added by other workers [2122] to the Cs/W system (1.80 ± 0.05 eV) [340] after
theoretical analysis of the data [340] from the viewpoints of Cs-flux and surface temperature [2122]. About a Cs/W system at 400 K, surface coverages are
evaluated to be ∼1.1 and 0.9 ML at the incident Cs-fluxes of ∼1017 and 1015 atoms/cm2 s [2122].
229Through the Cs+-impact with the energy (𝐸i) of 45 or 90 eV, 𝜙e of the Cs/Mo system at 𝜃 ≈ 1 ML is estimated to be 1.9 ± 0.1 eV, which increases to about
2.0 and 2.6 eV at 𝐸i = 150 and 450 eV according as 𝜃 decreases from ∼1 to ∼0.45 and 0.25 ML, respectively, at the same dosage of ∼1016 ions/cm2 [3283].
Here, 𝜙e of Mo is taken as 4.3 eV from our Table 2. For further information, see Footnote 232 below.
230From the experiments and data-analyses performed for 25 substrates (mainly pure metals) in Cs-vapor by TE and PSI, the minimum- and heavily-cesiated
work functions are estimated to have a range of 1.45 to 1.95 eV, which show no correlation with both the effective vacuum work function (𝜙e) and chemical
property of each substrate species [650,3412].
231About the Cs/O/W(100) systems with saturation Cs coverage prepared after oxygen exposure of 1 and 1.5 Langmuirs onto W(100), 𝜙e is measured to be
1.95 and 2.05 eV, respectively, in contrast to 1.78 eV for Cs/W(100) [361,1667].
232For the Cs/Be system prepared by Cs+-incidence up to the dosage of 1 × 1016 ions/cm2 (𝜃 = 1.0 ML), 𝜙e is measured by both PE and CPD, showing the same
value of 1.96 eV [3289] (see Section 2.8.2), in contrast to the case of Ar+-bombarded Ag(111) with difference in 𝜙e between PE and CPD [1693] mentioned
in Footnote 197. This value is independent of the Cs+-impact energy (𝐸i) of 8–900 eV because 𝜃 is kept at 1.0 ML independently of 𝐸i [3289]. For these
substrate systems of Mo (96 amu) and W(183 amu) much heavier than Be (9.0 amu), on the other hand, 𝜙e remains higher by up to ∼0.6 and ∼1.6 eV above
𝜙e at 45 eV, respectively, as 𝐸i increases from 45–50 up to 300 eV, where 𝜃 decreases from 1.0 down to 0.35 and to 0.15 ML, respectively [3289,3815]. At
𝐸i ≤ 50 eV alone, therefore, 𝜙e at 𝜃 = 1 is found to have 1.9 eV for Cs/Mo and Cs/W [3289,3815].
233About the systems of Cs/Cu(111) at 𝜃 = 1 and 2–4 ML, 𝜙e is theoretically evaluated to be 2.2 and 2.4 eV respectively [3697], both of which are in fair
agreement with the experimental results [2512] (see the next Footnote).
234About Cs/Cu(111) at 𝜃 = 1–2 and 3–4 ML at 200 K, 𝜙e is experimentally determined to be 2.2 and 2.3 eV, respectively [2512].
235By both theoretical and experimental studies made for a Cs/C(0001) system, the work function decrease is determined to be 2.19 eV [2782], from which
𝜙e of the system is evaluated to be 2.26 and 2.5 eV by taking 𝜙e = 4.45 eV [286,1174] and 4.7 eV [235,236,525] for C(0001), respectively.
236The work function is found to be 2.4 eV for the Cs-intercalated single-walled carbon nanotube bundles deposited on GaAs [291].
237The work function of Ba/Si(100) at 𝜃 = 4.0 ML is found to be 2.3 eV, which tends to increase gradually with increasing 𝜃, thereby getting close to 2.5 eV
for bulk Ba [2170].
238For the systems of Ba/glass [1157], Ba/W [1365] and Ba/Ag/Ta [1050], Anderson has assumed or measured the Ba-work function as 2.520 eV [2232],
2.39 ± 0.05 eV [1365] and 2.520 eV [2232], which are corrected to be 2.35 ± 0.03, 2.42 ± 0.05 and 2.66 ± 0.01 eV, respectively, by Rivière [13,349].
239About Ba/Si(100), 𝜙e is determined to be 2.7 eV [1732], which may be corrected to be 2.5 eV by taking 4.7 eV [1351] instead of 4.9 eV [1732] for Si(100),
thereby yielding a good agreement with our value (2.50 ± 0.02 eV) recommended for Ba in Table 2.
240Between Mg and Ba, the difference in 𝜙e is measured to be 1.08 eV [1367], which affords 𝜙e = 3.58 eV for Mg and 2.57 eV for Ba according to our citation
of 2.50 eV for Ba and 3.65 eV for Mg, respectively, from Table 2.
241By employment of Kelvin and retarding potential methods [2104], 𝜙e = 2.560 and 2.69 eV are determined for Ba/W(100), respectively, and also 2.955 and
3.10 eV are done for Ba/W(110), respectively, clearly showing a difference (∼0.14 eV) between the two methods [2104]. The difference can be explained
either in terms of two-patch model [2104].
242In contrast to the cases of Ba/W(100) and Ba/W(110) [2104] mentioned just above in Footnote 241, 𝜙e of Ba/Ag/Ta is found to be essentially the same
values of 2.52 and 2.53 eV by retarding and Kelvin methods, respectively [1050], while 𝜙e = 4.31 eV is determined for Ag/Ta [1050].
243At the residual gas pressure of 2 × 10−9 Torr, Ba/W is found to have 𝜙e = 2.6 eV, which increases to 2.7 eV at 3 × 10−7 Torr [3259].
244For the systems of Ca/W, Sr/W and Ba/W at ∼300 K, 𝜙e is determined to be 2.90, 2.73 and 2.65 eV, respectively, all of which decrease to 2.84, 2.64 and
2.46 eV, respectively, at ∼900 K, while Mg/W remains at 3.76 eV [3530].
245At 𝜃 = 10 ML, 𝜙e is determined to be 2.7 eV for both Ba/W(100) and Ba/Ir(100), in contrast to 1.8 and 1.5 eV for BaO/W(100) and BaO/Ir(100), respectively
[2149].
246Regarding La/Pt(111) at 𝜃 = 1.0–1.2 ML, work function at 77 K is found to be 2.86 eV, which is increased to 5.0 eV by alloy formation after annealing at
900 K [3009]. Here, 𝜙e for Pt(111) is taken as 5.86 eV from Ref. [1351].
247About Ce/W [3022], 𝜙e is evaluated to be 2.5 eV at ∼300 K according to the temperature dependence of 2.48 + 1.8 × 10−4 𝑇 determined at 1060–1450 K
[3022].
248For the systems of Ce/Pd/Ru(0001) at ∼300 K with the thickness of 2.8 Å Pd and 5.5 Å Ce and at 6.2 Å Pd and 5.1 Å Ce [3718], 𝜙e is evaluated to be
2.5 ± 0.1 and 2.8 ± 0.1 eV, respectively, by the present author taking 5.4 eV for Ru(0001) from Table 2.
249By citing 𝜙e = 5.19 and 5.55 eV for Pd(110) and Pd(111) from Ref. [1351] (see Table 2), the systems of Ce/Pd(110) with 4.8 and 2.1 Å thick [3306] are
estimated to have 𝜙e = 3.02 and 3.36 eV, respectively, while those of Ce/Pd(111) with 5.8 and 2.2 Å thick are done to have 3.10 and 3.55 eV, respectively.
Due to alloy formation at 970 K, 𝜙e = 4.54 eV is found for the former, while 5.05 or 5.25 eV for the latter [3306].
250By citation of 𝜙e = 5.3 eV for Ni(111) from Table 2, 𝜙e of Sm/Ni(111) at 293 K [3000] is estimated to be 2.8 eV, which is increased to 3.3 eV at 800 K
by formation of such a surface alloy as Ni17Sm2 [3000].
251The values of 3.67 and 3.84 eV correspond to the antiferromagnetic and ferromagnetic surfaces of Gd(0001), respectively [3462].
252About La/B/Mo(110) and La/Mo(110), 𝜙e is determined to be 2.8 and 3.4 eV, respectively [2700], while B/La/Mo(110) as well as B/Gd/Mo(110) and
B/Mo(110) are done to have the same value of 5.8 eV [2700].
253The work function for Gd/B/Mo(110) is 3.0 eV, which is different from 3.5 eV for Gd/Mo(110) [2700], similarly as the above cases mentioned for
La/B/Mo(110) and La/Mo(110) in Footnote 252.
254The ferromagnetic and paramagnetic surfaces of Gd are theoretically calculated to have 𝜙e = 3.76 and 3.77 eV, respectively [2358] (see Table 13), which
are larger than 3.1 eV [304,1045] and also our value of 3.09 eV recommended for Ga in Table 2.
255At 1150–1500 K, the temperature dependence is expressed by 𝜙e = 𝐴 + 𝐵 × 10−5 𝑇 , where (A, B) is (3.126, 8.0) for Sc, (2.954, 2.0) for Y and (2.975, 6.5)
for Er [3071]. Therefore, 3.23, 2.98 and 3.06 eV are evaluated for the respective polycrystals at 1300 K.
256The work function of Hf is reported to be 3.53 eV [3524,3527], which is claimed to hold only above 1900 K and also to be 3.20 eV below 1700 K [1756].
257For the layers of Hf on W, 𝜙e is measured to be 3.20 eV at 1100 K and 3.92 eV at 2000 K, the latter of which is gradually decreased to 3.70 ± 0.03 eV
by formation of Hf–W alloy [1479]. When HfI4 is deposited onto W at 500 K and decomposed at 1100 K, on the other hand, 𝜙e of the Hf/W system at 1900
K shows 4.00 ± 0.01 eV without forming the alloy [1479].
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258The work function of Ta(111) is observed to be 4.28 and 4.08 eV after heating at 2100 K by a.c. for firstly 40 h and additionally 50 h until reaching to
constancy in 𝜙e, respectively, while it is 4.14 and 4.46 eV after doing so by d.c. for initially 25 h and successively 235 h until so, respectively [729]. Similarly
to Mo(100) (see Footnote 168), very long aging of Ta(111) at a high temperature around ∼2000 K makes finally 𝜙e constant at 4.08 ± 0.03 or 4.46 ± 0.03
eV [729]. The former is close to 4.01 ± 0.04 eV recommended for Ta(111) (Table 2).
259With respect to Ta(130), 𝜙e is determined to be 3.96 eV without annealing, while 𝜙e is 4.57 eV with annealing up to 1670 K after argon ion impact at
200–2000 eV [680].
260At 4.2 K below the superconducting transition temperature (𝑇S = 4.4 K), 𝜙e for Ta-film on quartz is found to be 3.8 ± 0.2 eV, while it is 3.5 ± 0.2 and
3.8 ± 0.2 eV at 35 and 293 K, respectively [1686]. This result does not show clearly how 𝜙e alters at 𝑇S. In addition, any of the three values for the film by
CPD is smaller than 𝜙e = 4.16 eV at 4.2–35 K for bulk Ta by FE [1686]. In considering the temperature dependence of 𝜙e (∼10−5 eV/K for Ta, see Table 6 in
Ref. [1351]), it may be necessary to measure 𝜙e continuously at a meV level in order to determine precisely a probably very minute change (<0.1 eV) around
𝑇S (see Section 9 and Table 14).
261According to the Schottky equation (22) (see Section 8.1 in Ref. [1351]) of 𝜙− = 𝐸− −𝐸0 +𝐸 = 11−7.94+𝐸 [804], 𝜙− for Ta is determined to be 3.7 ± 0.4
and 3.9 ± 0.3 eV by taking the electron affinity (E) of 0.6 ± 0.4 eV [578] and 0.8 ± 0.3 eV [946], respectively. Here, 𝐸− and 𝐸0 are the desorption energies
of Ta− and Ta0, respectively. In the case of self-NSI, 𝐸− can hardly be determined correctly owing to the space-charge effect due to much stronger thermal
electron emission. For production of Ta+ by self-PSI [77,804,805,3083], see Footnote 271.
262By critical analysis of the experimental data about Mo by both TE (4.15 eV at ∼1400–2000 K) and PE (4.14 eV at 303 K and 4.16 eV at 940 K) [338],
Becker deduces 𝜙e = 4.18 eV from TE [3586], well agreeing with 4.16 eV based on PE (4.14 eV at 303 K and 4.16 eV at 940 K) [338] at the same temperature
of 940 K in spite of the difference in the two methods.
263By theoretical analysis of the experimental data on 4.73 and 4.56 eV obtained for Ag at 298 and 873 K, respectively [3391], Fowler finds 4.73 and 4.75
eV at 296 and 873 K, respectively [1135], the former agreeing excellently between experiment and theory, in contrast to the latter at the higher temperature.
264With respect to Pd at ∼1200–1400 K, the work function value (4.99 ± 0.04 eV) obtained by TE [1189] is theoretically analyzed by Becker to estimate
𝜙e = 4.997 and 4.966 eV at much lower temperatures (typically, 925 and 400 K) [3586], the respective values of which well agree with 4.98 and 4.97 eV
measured by PE [1189]. In other words, 𝜙e for Pd by TE may be extrapolated to be 4.985 ± 0.016 eV at 305–1078 K [3586].
265Similarly as above (Footnotes 217 and 218 for Sn and 263 for Ag), Fowler analyzes theoretically the experimental data on 4.12–4.13 eV at 293 K and
4.18–4.19 eV at 973 K observed for Ta by PE [1633,1636], and yields 4.10–4.13 eV and 4.14–4.18 eV at the respective temperatures [1135], fairly agreeing
with each other between the two methods.
266By theoretical analysis of the data (4.12 ± 0.04 eV) obtained for Ta at ∼1450–2050 K by TE [792], Becker yields 𝜙e = 4.07 + 6.0 × 10−5 𝑇 [3586], which
affords 4.09 and 4.13 eV at 293 and 973 K, respectively [3586]. The respective values thus extrapolated are in good agreement with the above values (4.10
and 4.14 eV, see Footnote 265) evaluated theoretically by Fowler [1135] from the experimental data achieved by PE [1633].
267About the Ta specimen consisting of 70%–(112) face [124], 𝜙e is calculated to be 4.15 eV [1254], which is smaller than the experimental value of 4.25 ± 0.05
eV determined by TE [124,650].
268With regard to the 82%–(112)-oriented Ta surface [3414], 𝜙e is determined experimentally to be 4.25 eV by TE [3414], whereas theoretical calculation
yields 𝜙e = 4.34 ± 0.03 eV and 𝜙+ = 4.49 ± 0.04 eV [803].
269The values of 𝜙− = 4.22, 4.23 and 4.28 eV are determined at 2125 K by simultaneous two–electron capture of the ions of Br+, I+ and Cl+ on Ta, respectively
[600,641], where the incident beam flux is correctly countable and, hence, the negative surface ionization efficiency (𝛽−) by NSI (see Eq. (6)) is more readily
determinable compared with the case of neutral halogen beam incidence. In fact, each of the above three values is very close to our recommended ones of
𝜙− = 4.17 ± 0.13 eV and also 𝜙e = 4.20 ± 0.03 eV (see Table 2).
270Instead of probing beam incidence upon Ta, W or W(110), the vacuum tube is filled with sodium vapor after evacuation below ∼10−9 Torr [81,85,87].
Typically, the vapor pressure is ∼2 × 10−5 Torr [81]. Thus, 𝜙+ = 4.64, 4.95 and 5.14 eV are determined for Ta [81], W [85] and W(110) [85,87], respectively.
About a Na/W(110) system, see Footnote 280.
271By production of Ta+ by self-PSI of Ta at very high temperatures (≥2000 K), the effective work function is estimated from Eq. (9). Namely, 𝜙+ = 𝐸0+𝐼−𝐸+ =
7.94 + 7.88 − 11.18 ± 0.1 = 4.64 ± 0.14 eV [804], where I is the ionization energy of tantalum atom. In the same way, 𝜙+ is determined to be 5.0 ± 0.5 eV for
Ta [77], while 𝜙+ = 5.02 ± 0.11 eV is evaluated from the data on Ta+ produced by self-PSI of Ta independently of Eq. (9) [805,3083]. For production of Ta−
by self-NSI [804], see Footnote 261.
272Similarly as above [804] in Footnote 271, 𝜙+ for Ta is evaluated from 𝐸0 + 𝐼 − 𝐸+ = 7.97 ± 0.03 + 7.88 − 10.0 ± 0.3 = 5.85 ± 0.3 eV, where 𝐸0 and I
are cited from literatures. However, 𝐸+ = 10.0 eV [137] is unreliable because positive ionic species is not assigned to be Ta+ alone by mass spectrometry.
273The work function of W(100) at 1900 K is found to decrease from 4.61 to 4.53 eV as the dislocation density increases from (4–5) × 106 to 1 × 108/cm2

[651].
274For the (100) surface of Re (y-atomic %)–W alloys at ∼1600–2300 K, two groups of workers [438,3086] and [353] find 𝜙e = 4.54 eV at y = 1% [3086],
4.56 eV at 2% [353], 4.52 eV at 5% after 40–50 h annealing at 2200 K [438] and 4.59 eV at 6% [353], all of which are nearly the same with 4.55 eV for
pure W(100) [353], with little dependence upon y = 1–6%.
275About the (100) face of 2% Ir–W alloy [3086], 𝜙e is observed to be 4.54 eV at ∼1800–2000 K, apparently correspondent to pure W(100). At ∼2000–2200
K, on the other hand, 𝜙e increases to 5.28–5.30 eV, showing the same property of Ir (5.28 ± 0.04 eV, see Table 2) and hence suggesting the entire surface
covering by Ir-spillover.
276Regarding the (100) surface of 1% Os–W alloy [3086], 𝜙e is measured to be 4.57 eV at ∼1700–2000 K, corresponding to pure W(100). On the other hand,
𝜙e becomes 5.12 eV at ∼2100–2300 K [3086], closing to 4.97 ± 0.17 eV for pure Os (see Table 2).
277With respect to the almost (100)-oriented W specimens [124,650,3414], 𝜙e is experimentally determined by TE to be 4.50 ± 0.07 eV [650] and 4.52 ± 0.07
eV (see Footnote 300) [124,3414]. On the other hand, 𝜙e is calculated to be 4.78 eV [1254]. The specimens are theoretically studied in detail by the present
author (see Footnotes 300–302, and also both W(F) and W(G) in Table 6).
278Similarly as in Footnote 271, Schottky equation (9) is employed to evaluate 𝜙+ of W(100) by PSI of Cs. Namely, 𝜙+ = 𝐸0 + I – 𝐸+ = 2.77 ± 0.05 + 3.89 −
2.05 ± 0.05 = 4.61 ± 0.07 eV, which well agrees with 𝜙e = 4.65 ± 0.02 eV [266,2314–2316]. By the same way, 𝜙+ is evaluated to be 4.72 eV from 2.83 + 3.89 −
2.00 eV by PSI of Cs on W(100) [265]. Similarly, 𝜙+ is estimated to be 2.61 ± 0.07 + 3.89 − 1.84 ± 0.09 = 4.66 ± 0.11 eV by PSI of Cs on W(100), well
agreeing with 𝜙e = 4.60 ± 0.06 eV for W(100) by TE [280].
279Both PSI and NSI of Na+ and Cl− from NaCl on W(110) yield 𝜙+ = 𝜙− = 4.609 ± 0.014 eV [89] and 4.66 ± 0.09 eV [3690], which are much smaller than
𝜙e = 5.18 ± 0.08 eV by TE [89]. The discrepancy (∼0.5 eV) between 𝜙+ and 𝜙e is mainly attributable to the fact that the ionization energy (𝐼 = 5.14 eV) of
Na is smaller than 𝜙+ = 𝜙e = 5.3 eV (generally expected) for clean W(110). It should be emphasized that the temperature dependence of ionization efficiency
(𝛽+) for Na is generally insensitive to the actual value of work function unless I > 𝜙+ (see pp. 76 and 77 in Ref. [1351]). In order to avoid such a systematic
error due to the insensitivity, not NaCl but TlCl, for example, should have been adopted, where 𝐼 = 6.11 eV for Tl is much larger than 𝜙+.
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280By PSI of Ba on W(110), 𝜙+ is found to be 4.82 eV [87], which is much smaller than 𝜙e = 5.04 or 5.30 eV [87]. The discrepancy (=0.2–0.5 eV) may be
principally because the ionization energy (𝐼 = 5.21 eV) for Ba is not larger than 𝜙+ (∼5.3 eV) and hence PSI is affected by the insensitivity mentioned just
above in Footnote 279. Quite similarly, 𝜙+ is underestimated to be 5.14 eV (=I for Na) by PSI of Na on W(110) [87].
281With respect to W(110) at ∼300 K by CPD, 𝜙e is measured to be 5.05 eV, which is increased to 5.15 eV by annealing at 2500 K for 20 h in O2 at ∼10−6

Torr [815].
282For the (2–4) overlayers of W(110) on Mo(110), 𝜙e is theoretically evaluated to be 5.10 ± 0.01 eV [2074], which is in good agreement with the theoretical
value of 5.10 eV for bulk W(110) [2073,2074]. But, they are lightly smaller by 0.10–0.22 eV than any values (5.20–5.32 eV) recommended for W(110) in
Table 2.
283The actual work function of W(110) is estimated to be 𝜙e = 5.2 eV instead of 5.1 eV [2774] by the authors [2773,3768] considering a slight underestimation
(by 0.1 eV) by a photoemission method [2774]. Consequently, 𝜙e = 5.2 eV agrees with 𝜙+ = 5.2 eV by PSI of fast Na atom (100 eV) incident on W(110)
[2773,2774], thereby yielding 𝛥𝜙∗ = 𝜙+ − 𝜙e = 0.0 eV just as expected by theory and experiment for clean monocrystalline surfaces (see Table 5). However,
the above estimation seems to admit a question (for the detail, see Section 2.8.2).
284By applying Schottky equation (9) to PSI of Cs on W(110), the author [2314] mentioned in Footnote 278 determines 𝜙+ = 3.28+3.89−2.06 = 5.11 eV, which
is smaller than our recommended value of 5.28 ± 0.11 eV (see Table 2). On the other hand, 𝜙e is observed to be 5.33 ± 0.04 eV [2314], equal to our value
of 5.32 ± 0.02 eV. The difference (𝛥𝜙∗ ≡ 𝜙+ − 𝜙e = −0.22 eV ≠ 0 eV) suggests that some systematic errors are accompanied for 𝐸+ and 𝐸0 included in the
equation. This result shows a large contrast to the case reported for PSI of Cs on W(100) by the same author who finds little difference between 𝜙+ = 4.61±0.07
eV and 𝜙e = 4.65 ± 0.02 eV [266,2314–2316], as already mentioned in Footnote 278.
285By incidence of hyperthermal Na atom (0.5–9 eV) on W(110), 𝜙+ is determined to be 5.17 ± 0.01 eV [154,260] or 5.19 ± 0.01 eV [3768] at 1180 K.
Similarly, 𝜙+ = 5.2 eV is measured by 100 eV–Na incidence at ∼300 K [2773,2774] (see Footnote 283).
286By production of W+ by self-PSI of W(110), 𝜙+ is evaluated from Schottky equation (9). Namely, 𝜙+ = 𝐸0 + 𝐼 −𝐸+ = 8.79+7.98−11.31±0.11 = 5.46±0.11 eV
[146]. Here, the desorption energy of tungsten atom is evaluated from the data compiled in JANAF Thermochemical Tables [26].
287By thermal-field emission from W(111), 𝜙e is determined to be 4.43 eV at 80–500 K, while 𝜙e is 4.38 eV at 800–1300 K, according to d𝜙∕d𝑇 < 10−5 eV/K
[3440].
288The work function data on W having various orientations are compared between Refs. [920] and [150], thereby concluding 𝜙e = 4.42 ± 0.05 eV for W(114)
[920]. Here, 4.17 eV is estimated as the reference work function of Fe(100) [920] (see also Footnote 110).
289Among the various single crystals grown in W-wire adopted for experimental study of thermionic emission from different planes, W(110) is estimated to
have 𝜙e = 5.26 eV by subtraction of spurious current to give 120 A/cm2 K2 just as the theoretical value of the Richardson constant (𝐴R) [150]. Both values are
quite different really from own experimental data of (𝜙e , 𝐴r ) = (4.58, 8.0) and (4.66, 12) [150]. Tentative substitution of the data into Eq. (8) in Section 2.8.6,
on the other hand, yields 5.0 eV, smaller than the value estimated above.
290For W(123) and W(235), 𝜙e is found to decrease from 4.90 to 4.50 eV and from 4.72 to 4.30 eV, respectively, by the increase from 80–400 K up to 1200 K
[2045]. Similarly for W(257), 𝜙e decreases from 5.00 to 4.80 eV according to the increase from 80–900 K to 1200 K [2045]. Each of the values at 1200 K
seems to be nearer to the most probable one for each surface. Typically for W(123), 4.50 eV [2045] is the same with our value of 4.50 ± 0.05 eV (see
Table 2).
291About the fine tungsten particles with the radius of ∼8 and ∼40–90 Å, 𝜙e is calculated to be 3.65 and 4.75 eV for real sphere, respectively, in contrast to
the respective values of 3.80 and 4.40 eV for cube [2973]. As shown typically as above, 𝜙e changes according to the size, structure and shape of the particles
[2973] (for detail, see Section 11.1).
292In the magnetic field of 10 kOe, the Fowler–Nordheim plots for W yield 𝜙e = 4.2 and 4.6 eV above and below the applied voltage of 6 kV, respectively
[1493]. In that of 15 kOe, the respective values are 4.25 and 4.35 eV, again different from 4.5 eV taken in absence of the field [1493].
293For the W/glass systems (50 Å thick) prepared at 77–90 K, 𝜙e is increased from 4.33 to 4.55 eV by annealing at 403 K [3049], and similarly from 4.36 to
4.63 eV at 438 K [2095], thus approaching to the bulk work function of 4.56 ± 0.03 eV (see Table 2).
294The work function of W is found to be 4.6 and 4.62 eV at 𝑃r = 2 × 10−7 Torr and P(Ar) = 12 Torr, respectively, while 𝜙e is decreased to 4.42 ± 0.02 eV
by ion impact in a high-current glow discharge in Ar [621].
295On the basis of such a patchy surface model that W consists of four faces of W(111), W(100), W(112) and W(110) having the local work function (𝜙i) = 4.35,
4.56, 4.69 and 5.35 eV, respectively, with the fractional area (𝐹i) = 25% for each face [3843], 𝜙+ is calculated to be 4.51 eV from the ionization efficiency
(𝛽+) = 0.954 for Cs at 2000 K, as shown in Fig. 1 [3843]. Under the same condition, on the other hand, 𝜙e and 𝜙+ are calculated to be 4.46 and 5.12 eV
from Eqs. (2) and (1) by the present author, respectively, while 𝜙a = 4.74 eV calculated from Eq. (4) is intermediate between 𝜙e and 𝜙+, just as predicted by
theory [3844].
296Similarly as in Footnote 286, 𝜙+ is determined from the data on self-PSI of W according to Schottky equation (9). Namely, 𝜙+ = 𝐸0 + 𝐼 − 𝐸+ =
8.44 + 7.98 − 11.93 ± 0.14 = 4.49 ± 0.14 eV [823], which is much smaller than our value of 𝜙+ = 5.17 ± 0.05 eV for W (see Table 2) but rather near to
ours of 4.62 ± 0.06 eV for W(100) (see Table 2). On the other hand, 𝜙e = 4.59 ± 0.04 eV [823] is essentially the same with our value of 𝜙e = 4.56 ± 0.03
eV for W and near to ours of 4.65 ± 0.02 eV for W(100) (see Table 2). Suppose that the W-specimen [823] is already changed mainly to W(100) by
re-crystallization due to aging at high temperatures up to ∼3000 K for a long time before the work function measurements, then, both of 𝜙+ and 𝜙e are
generally expected to be near to ∼4.6 eV (see Table 2). If so, both of the above values [823] may be accepted to be reasonable. If not so, on the other
hand, the above result (𝜙+ = 4.49 eV < 𝜙e = 4.59 eV) suggests that the measurements of 𝐸+ as well as 𝐸0 are accompanied with the systematic error
of up to ∼0.7 eV (≈𝜙+ − 𝜙e) mainly for 𝐸+. About such re-crystallization as mentioned above, further information may be obtainable from Section 4.5 in
Ref. [1351].
297The work function effective for negative ion emission by self-NSI of W is evaluated from the Schottky equation [966], thereby yielding 𝜙− = 𝐸− −𝐸0 +𝐸 =
12.6 − 8.9 + 0.8 = 4.5 eV. Here, the electron affinity (E) is cited by the present author from Refs. [972], [3957] and [3958], where 𝐸 = 0.815–0.816 eV for
W-atom is determined experimentally from negative ion photodetachment threshold. In addition, the data on self-PSI of W afford that 𝜙+ = 𝐸0 + 𝐼 − 𝐸+ =
8.9 + 7.98 − 12.1 ± 0.15 = 4.8 ± 0.2 eV [966], thereby yielding 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e = 𝜙+ − 𝜙− = 4.8 − 4.5 = 0.3 eV. This is smaller than our value of 0.6 eV for W
(see Table 5). The decrease from 0.6 to 0.3 eV suggests that a considerable part (𝛿m) of the tungsten surface is recrystallized to W(100) by high-temperature
heating up to ∼3000 K during measurements (see Fig. 1 for the relation between 𝛥𝜙∗ and 𝛿m).
298Both W and W2C are found to have almost the same work functions of 4.5 ± 0.07 and 4.58 ± 0.08 eV, respectively [3533].
299The same value of 𝜙e = 𝜙− = 4.51 eV (or 𝜙− = 4.49 eV for I-incidence) is determined for W [827], yielding 𝛥𝜙∗∗ ≡ 𝜙− − 𝜙e = 0 eV, just as predicted by
theory. Further information about the thermionic contrast (𝛥𝜙**) is obtainable from Table 7.
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300Each W-surface consisting of 95 or 96%-W(100) and of the remainder with almost W(111) is determined experimentally to have 𝜙e = 4.52 ± 0.07 eV [124].
The latter taken as 96%-(100) and 4%-(111) is theoretically calculated to have 𝜙e = 4.59 ± 0.04 eV [630,2453], which is very close to the above experimental
value [124]. However, both are smaller by 𝛥𝜙 = 0.13 or 0.06 eV than 𝜙e = 4.65 ± 0.02 eV recommended for 100%-W(100) (see Table 2). This smallness is
quite reasonable because 𝜙e = 4.45 ± 0.03 eV for W(111) (Table 2) is smaller by 0.20 eV than the above for W(100). In other words, only 4%-W(111) has a
considerable contribution to lowering the work function of the 96%-W(100) specimen by 𝛥𝜙 ≈ 0.1 eV. On the contrary, our theoretical value of 𝜙+ = 4.60±0.04
eV for the specimen [630,2453] is virtually the same with 4.62 ± 0.06 eV for 100%-(100) (Table 2). This result shows that 4%-W(111) with the work function
smaller by 0.20 eV compared with W(100) has little contribution to lowering 𝜙+. This is mainly because positive ion is emitted predominantly from the higher
work function face (100), in contrast to electron done so from the lower one (111) (see Section 1).
301For the W-surface consisting of 95%-(100), 1%-(110), <1%-(111) and 2%-(112) faces [3414], 𝜙e is theoretically evaluated to be 4.57 ± 0.00 eV [803] and
4.61 ± 0.04 eV [2453], the former of which is closer to 𝜙e = 4.52 eV determined experimentally for the surface [3414]. Both are smaller by 0.04–0.08 eV than
𝜙e = 4.65 ± 0.02 eV for 100%-W(100) recommended in Table 2. This result, however, is quite natural because the (110) and (112) faces have the respective
values of 𝜙e = 5.32 ± 0.02 eV and 4.78 ± 0.03 eV (Table 2), higher than 4.65 ± 0.02 eV for the (100) face. Consequently, both of the former have the smaller
contribution to electron emission compared with the latter. On the other hand, the work function (𝜙+) effective for positive ion emission from the 95%-W(100)
specimen is calculated to be 4.69 ± 0.05 eV [803] and 4.70 ± 0.04 eV [2453], both of which are slightly larger by 0.07–0.08 eV than 𝜙+ = 4.62 ± 0.06 eV for
100%-W(100) (Table 2), on the contrary to the above case where 𝜙e is smaller by 0.04–0.08 eV. Again, this is reasonable because the (110) and (112) faces
with larger work functions (𝜙+ = 5.28±0.11 and 4.70 ± 0.01 eV, see Table 2), compared with the (100) face (𝜙+ = 4.62±0.06 eV), have the larger contribution
to positive ion emission in comparison with the latter.
302About the W-specimen having the surface composition of 95%-(100), 2%-(112), 1%-(110) and <1%-(111) [3414], 𝜙e is experimentally determined to be
4.52 eV in vacuum (∼10−9 Torr) and 4.5 eV as the ‘‘clean’’ cesiated work function in Cs-vapor [3414]. Theoretical evaluation of both 𝜙e and 𝜙+ for the
specimen is summarized in Footnote 301. It should be noted that this 95%-(100) specimen [3414] is different from another 95%-(100) one with the remainder
consisting of almost (111) face [124], although the experimental value of 𝜙e = 4.52 eV is the same between the two. With respect to the theoretical values of
𝜙e and 𝜙+, see Footnotes 300 and 301 and also W(F) in Table 6.
303By critical analysis of work function data obtained for W by several methods by many groups of workers, 𝜙e = 4.545 eV for well-aged polycrystalline tungsten
is recommended as the reference for CPD at ∼300 K by Hopkins and Rivière [828].
304By PSI of In on W at ∼2300–2700 and 2350 K, 𝜙+ of W is determined to be 5.05 ± 0.05 and 5.10 eV from the slope of a semi-Saha–Langmuir plot (see
Section 4.2.1 in Ref. [1351]) and from the ionization efficiency (𝛽+) (see Eq. (6) in Ref. [1351]), respectively [94]. It should be emphasized that In has the
ionization energy of 𝐼 = 5.79 eV, larger than 𝜙+ = 5.10 eV mentioned above and also than our value of 5.17 ± 0.05 eV (Table 2), thereby making it reasonable
to employ the above plot. In addition, 𝜙e is measured to be 4.58 ± 0.05 eV by TE at 2300 K [94], consequently affording 𝛥𝜙∗ = 𝜙+ − 𝜙e = 0.47 ± 0.07 eV or
0.52 ± >0.05 eV (see Table 4).
305Regarding the W/Mo(100) system with 𝜃 = 0.6–1.0 ML, 𝜙e at 77 K is determined to be 4.6 eV, which is increased to 4.7 eV by annealing up to 1300 K
[2965].
306From the temperature dependence of Na+ and Ag+ currents originating from PSI of NaCl and Ag, 𝜙+ of W is determined to be 4.6 ± 0.1 and 5.16 ± 0.1 eV,
respectively [3113], which are much smaller than and substantially equal to, respectively, our recommended value of 𝜙+ = 5.17±0.05 eV (Table 2). In contrast
to Ag (ionization energy, 𝐼 = 7.54 eV), Na (5.14 eV) does not satisfy the prerequisite condition (𝐼 ≥ 𝜙+ + 0.3 ⋍ 5.5 eV) for semi-Saha–Langmuir plot (Section
4.2.1 in Ref. [1351]). This may be the main reason for the above result. It should be noted that the by-production of Na2Cl+ is as small as ∼1 × 10−4 in
comparison with Na+, consequently giving no effect to the above result.
307From the experimental data on W+ and W− produced by self-PSI and self-NSI, respectively [965], the present author estimates 𝜙+ = 4.65 ± 0.4 eV, where
he takes E = 0.6 ± 0.4 eV for electron affinity of W [578] and also does 𝜙− = 𝜙e = 4.55 eV instead of 𝜙− = 𝜙+ = 4.55 eV [965] because of 𝜙− ≠ 𝜙+ and of
𝜙e ≠ 𝜙+ for any polycrystalline specimen (see Tables 4, 5 and 7).
308About the W-layers prepared by chemical vapor deposition (CVD) of WF6 and WCl6 together with H2 onto Mo (or Nb, Ta or W), 𝜙e is measured to be 4.66
and 4.67 eV, respectively [1398], the former of which is increased slightly to 4.72 eV by electro-etching [1398]. This is close to 4.75 eV for bulk-W after the
etching, instead of 4.68 eV for the bulk before the etching [1398].
309The system of W/W(100) prepared by CVD of WF6 and H2 at ∼1850–2450 K is determined to have 𝜙e = 4.69 eV, which is changed to 4.71, 4.51, 4.59
and 4.98 eV by lightly electropolishing, both grinding and electropolishing, both grinding and 3h-heating at 2300 K, and chemically etching in NaOH-solution,
respectively. The surface with 4.51 eV consists mainly of sections of grains oriented close to (100) [1053]. Similarly, W/W(110) done by WCl6 and H2 is
found to have 4.66 eV, which changes to 4.47, 4.88 and 5.03 eV after electropolishing, both grinding and 3h-heating at 2600 K, and both grinding and
electropolishing, respectively [1053]. In addition, W is deposited onto ground W(100) and W(110), both of which are observed to have 5.16 eV [1053]. This
is very close to 5.13 and 5.15 eV observed for W(110) after both abrading and heating at 2800 K [1053], as outlined in Footnote 310 below.
310Under the same condition as above (Footnote 309), 𝜙e is measured to be 5.22 eV for W(110) after electropolishing or next heating at 2400 K for 16 h, and
also to be 5.13 or 5.15 eV after both abrading and heating at 2800 K for 3 h [1053]. In addition, 𝜙e is determined to be 5.06 eV for W/W(110) prepared by
W-deposition [1053]. This value is slightly lower than those for the above bulk surfaces subjected to several processing, but much larger than 4.54 eV found
for the electropolished W(100) and W(111) faces [1053].
311With respect to the W-surface consisting fractionally of 80%-(110), 14%-(100), 5%-(112) and 1%-(111) [162], 𝜙e is theoretically evaluated to be
4.90 ± 0.05 eV [630] and 4.87 ± 0.06 eV [2453], both of which are near to 5.0 ± 0.2 eV determined after outgassing at temperatures up to 2600 K
over 8 h [162] and also to 4.82 ± 0.02 eV done after heating at 2400 K for 17 h [162]. Theoretical evaluation of 𝜙+ yields 5.25 ± 0.02 eV [630] and
5.26 ± 0.02 eV [2453], thereby leading to 𝛥𝜙∗ = 𝜙+ −𝜙e = 0.35±0.07 eV [630] and 0.39 ± 0.07 eV [2453], respectively (see Table 4). For further information
about the surface, see W(E) in Table 6.
312By PSI of KCl, KBr or KI on W, 𝜙+ is determined to be 4.65 ± 0.05 eV [46], which is corrected to be 4.95 eV [3747] by theoretical analysis of the data
on PSI of KCl [46].
313From the experimental data on PSI of NaCl on W, 𝜙+ is evaluated to be 4.82 eV [47], which is corrected to be 5.05 eV [3747] by theoretical analysis of
the data [47]. The latter is closer to our recommended value of 𝜙+ = 5.17 ± 0.05 eV (see Table 2).
314By NSI of KI on W, 𝜙− is determined to be 4.95 ± 0.05 eV [183], which is much larger than 𝜙− = 4.46–4.58 eV [574,586,827,966] (see Table 7), and than
our value of 𝜙− = 4.51 ± 0.03 eV (Table 2), and also than 𝜙e (=𝜙− in general, see Table 7) = 4.56 ± 0.03 eV (Table 2). On the other hand, PSI of Cu and Ag
on W yields 𝜙+ = 5.25 ± 0.05 eV [183], fairly agreeing with our value of 𝜙+ = 5.17 ± 0.05 eV (Table 2).
315In the strong electric fields of 𝐹 ≈ 6 × 104 − 1 × 106 V/cm [155,156] and 3 × 103 − 2 × 106 V/cm [157], PSI of Li [155], NaCl and LiCl [156] and In and Tl
[157] is performed on W at ∼1600–2700 K, thereby yielding 𝜙+ = 4.82 and 5.12 eV [155], 4.83 and 5.11 eV [156], and 5.15 and 5.12 eV [157]. In these
cases, the slope of semi-Saha–Langmuir plot is given by 𝜙+ + 𝑒(𝑒𝐹 )1∕2 − 𝐼 [2], where I is the ionization energy of incident atom such as Li, In or Tl. In usual
PSI, the Schottky term can be neglected since e(eF )1∕2 is less than 0.012 eV for F < 1 kV/cm [2]. In self-NSI of metals (typically, W and Re [966]) at very high
temperatures, the term must be considered in general because F is usually applied so strongly as to overcome the space charge effect due to much stronger
electron emission current accompanied with the negative metal ion current under study.
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316Re is electroplated onto W in solution of KReO4 [666], thereby resulting in 4.74 eV.
317This is a capillary type ion source consisting of six Re-wires (𝜙+ = 4.9 or 5 eV) in a Ta-tube [2944].
318From the experimental data on Re− produced by self-NSI of Re at high temperatures [966], the present author evaluates 𝜙− = 𝐸− − 𝐸0 + 𝐸 =
12.55 ± 0.15 − 7.8 + 0.15 ± 0.10 ≈ 4.9 ± 0.2 eV, where the electron affinity (E) of Re is cited from Ref. [578]. Similarly for Re+ [966], 𝜙+ is estimated from
𝐸0 + 𝐼 − 𝐸+ = 7.8 + 7.87 − 10.72 ± 0.12 ≈ 5.0 ± 0.1 eV.
319With regard to Re/Mo prepared by CVD of ReCl3 and H2 on Mo, 𝜙e is determined to be 4.82 eV, which increases to 4.94 eV after electroetching [1398].
320 The Re-surface composed of various patchy faces [3414] is found to have 4.8 eV as the ‘‘clean’’ cesiated work function in Cs-vapor [3414], but 4.96 ± 0.05 eV
in vacuum [124,650,3414], exactly the same with our recommended value (Table 2).
321 This Re-surface is prepared by electrolytic coating on W with ∼1500 atomic layers [1850]. Its work function (5.0 eV) is virtually the same with ours
(Table 2).
322 To evaluate 𝜙− for Re [216], the electron affinity of CN is taken as 3.7 ± 0.2 eV from Ref. [930]. The result of 𝜙− = 5.06 ± 0.1 eV is essentially equal to
5.03 ± 0.1 eV by NSI of Cl and also to 𝜙e = 5.0 ± 0.1 eV for Re [99,216].
323The Re-film (2 nm thick) prepared on 6H-SiC(0001) (𝜙e = 4.5 ± 0.1 eV) at ∼300 K or annealed at ∼500 K is found to have 𝜙e = 5.2 ± 0.1 eV, and decreases
by ∼0.4 eV after further annealing at 700 K [3646].
324The Re-surface (𝜙e = 5.35 ± 0.05 eV) appears to be covered with oxygen at ∼0.5 ML [166,3730], thereby being larger than the generally accepted value of
about 5.0 eV (see Table 2).
325The work functions of 5.93 and 5.50 eV for Os and Ir, respectively [3322], are determined by another worker in the same laboratory [3536].
326For stepped faces of Ir(100), 𝜙e is determined by FE to be 5.2 and 5.4 eV [1810], which are lower than 5.70 ± 0.05 eV for a perfect face of Ir(100)
[1797,1802]. The latter is near to our value of 5.60 ± 0.06 eV (Table 2). According to increase in step density, 𝜙e decreases in general, as already outlined
in Section 4.2.5 [1351].
327The normal (1 × 1)Ir(100) with 𝜙e = 5.5 eV [1534,1553,2961] is changed to the reconstructed (1 × 5)Ir(100) with 5.4 eV by heating above 1200 K [2961].
328Regarding the Ir surface consisting of 81%-(111), 15%-(100) and <3%-(110) faces [650,3414], 𝜙e is theoretically evaluated to be 5.36 ± 0.07 eV [803],
which is slightly larger than the experimental value of 5.27 ± 0.05 eV [650,3414], but considerably smaller than ours (5.75 ± 0.06 eV for 100%-(111) face,
see Table 2). This may be mainly due to the co-existent (110) face having the smallest value of 5.23 ± 0.19 eV (Table 2) among the three faces. On the other
hand, the theoretical value of 𝜙+ = 5.73 ± 0.01 eV [803] for the above patchy surface [650,3414] is essentially the same with our value of 5.76 ± 0.04 eV for
100%-(111) surface (Table 2). Namely, the lower work function faces oriented with (110) and (100) have little contribution to 𝜙+ effective for positive ion
emission, on the contrary to the above 𝜙e effective for electron emission occurring predominantly from lower work function faces.
329 About the Ir-surface with 80%-(111) and 15%-(100) oriented [124], 𝜙e is calculated to be 4.68 eV [1254], which is smaller than 5.27 ± 0.05 eV determined
experimentally [124]. Regarding almost the same surface of Ir [650,3414], see Footnote 328 just above.
330The ‘‘clean’’ work function of Ir-surface with 81%-(111), 15%-(100) and <3%-(110) oriented at ∼1400–2200 K in Li-vapor (≤2.5 × 10−4 Torr) is measured
to be 𝜙e = 5.35 ± 0.05 eV [169], which is larger than 5.2 eV for the ‘‘clean’’ cesiated one [3414] and also than 5.27 eV found in vacuum [650,3414], but
which is essentially the same with our calculated value of 5.36 ± 0.07 eV [803]. For additional information, see Footnote 328. About PSI of Li, 𝜙+ = 5.4 eV
is evaluated from the data in Fig. 5 [169], from which 𝛽+ = 0.34 at ∼1100 K is selected by the present author.
331The work function of a 6 × (100) stepped surface of Pt is calculated to be 5.93 eV, which is smaller than 6.07 eV for a flat one [795]. Such a difference
is found for Pd(100), too (see Footnote 182). For further information about stepped surfaces, see Section 4.2.5 [1351].
332A rough surface of Pt(110) is determined to have 𝜙e = 5.24 eV, which is smaller than 5.35 eV for a smooth one [853]. Such a difference as ∼0.1 eV
depending upon surface roughness is observed for Rh(110), too [853] (see Footnote 177).
333With respect to the unreconstructed (1 × 1) and reconstructed (1 × 2) Pt(110) surfaces, 𝜙e is theoretically evaluated to be 5.52 and 5.71 eV, respectively
[2543], the former of which is the same with our value of 5.54 ± 0.07 eV (Table 2).
334By three different experimental methods of ionic emission, atomic desorption and mean residence time of Li-atom incident upon Ir(111) at ∼1100–1400 K,
𝜙+ is determined to be 5.68 ± 0.01, 5.69 ± 0.03 and 5.72 ± 0.03 eV, respectively, which yield the average of 5.70 ± 0.02 eV [167], well agreeing with our
recommended value of 𝜙+ = 5.76±0.04 eV for Ir(111) (see Table 2). Similarly, the respective methods applied to Pt(111) at ∼1200–1500 K afford 5.80 ± 0.02,
5.76 ± 0.02 and 5.75 ± 0.02 eV and, hence, yield the mean of 5.77 ± 0.02 eV [167,319]. Again, this is in good agreement with our value of 𝜙+ = 5.80 ± 0.06
eV (Table 2).
335Onto the Pt(111) surface determined to have 5.84 ± 0.05 eV [421–423,773], Pt is deposited at 130 K, forming a highly disordered and complex surface
(𝜙e = 5.64 eV) dominated probably by clusters. At 250 K, 𝜙e continues to decrease according to 𝜃1∕2-dependence down to about 5.7 eV at 𝜃 = 1 ML because
Pt-adatoms are organized in islands [421]. At 400 K, on the other hand, 𝜙e is kept virtually constant at 5.84 eV = 𝜙e (111) in the covered range of 𝜃 = 0–1.25 ML,
indicating that Pt-adatoms are incorporated rapidly at existing steps and hence 𝜙e remains unchanged [421].
336Regarding the Pt-surface estimated roughly to consist of 80%-(210), ∼10%-(100) and 10%-(111) faces [179], 𝜙e is determined to be 5.79 ± 0.09 eV [179,650],
while the ‘‘clean’’ cesiated work function is done to be 5.0 eV [650] or 5.1 eV [3413,3414].
337The Pt-surface [429] is experimentally determined to have 𝜙e = 5.77 eV, which is very close to the theoretical values of 5.74 and 5.76 eV for Pt(221) [1293].
338 The Pt-surface [50] seems to be not clean but considerably contaminated with carbon because its 𝜙+ = 4.40–4.49 eV is much smaller than 𝜙+ = 5.58 ± 0.11
eV of our value recommended for a clean Pt surface (Table 2), but rather very close to 𝜙+ = 4.50 ± 0.04 eV of ours done for a C-film on metals (see Table 2).
About the physico-chemical properties of the film, see Section 4.2.4 [1351]. Consideration of the above results and of the film properties outlined in the above
section may suggest that many of the Pt-surfaces having 𝜙e ≈ 4.3–4.7 eV found in Table 1 may probably be heavily or considerably covered with graphitic
films.
339The experimental data on Pt yields the empirical equation of log10 𝐴 = −6.85 + 1.87𝜙e, affording 𝜙e = 4.72 eV for 𝐴 = 92.8 A/cm2 K2 [2299,2300].
340The work function of Pt measured by PE is found to be 𝜙e = 5.27 ± 0.1 eV [3055], well agreeing with our recommended value of 5.30 ± 0.07 eV (Table 2).
However, 𝜙+ = 4.94 ± 0.23 eV by PSI of K [3055] is not larger than the above 𝜙e and it is smaller than ours of 𝜙+ = 5.58 ± 0.11 eV. This is probably because
the ionization energy (I) of K (4.34 eV) does not satisfy the prerequisite condition of 𝐼 ≥ 𝜙+ + 0.3 eV (see Section 4.2.3 in Ref. [1351]). In other words, not
K but Ca or Tl, for instance, should have been adopted because the latter satisfies 𝐼 = 6.1 > 5.3 + 0.3 eV.
341By PSI of Cs and K on Pt, 𝜙+ = 5.43 eV [282] is determined from Saha–Langmuir equation (5) of 𝑘+∕𝑘0 = 𝛼+ = 0.5 exp[(𝜙+ − 𝐼)∕𝑘𝑇 ]. In addition, 𝜙+ is
determined from Schottky equation (9) of 𝜙+ = 𝐸0 + 𝐼 − 𝐸+ = 3.27 ± 0.04 + 3.89 − 1.80 ± 0.05 = 5.36 ± 0.06 eV according to the data on Cs and also from
that of 𝜙+ = 3.65 ± 0.03 + 4.34 − 2.47 ± 0.04 = 5.52 ± 0.05 eV according to those on K [282], only the latter of which is larger than 𝜙e = 5.41 ± 0.05 eV
determined from a Richardson plot [282]. In the above equations, 𝑘+∕𝑘0 is the ionic to atomic desorption rate constant ratio [98,282,397], whilst 𝐸+, 𝐸0 and
I are the ionic and atomic desorption energies and ionization energy, respectively (see Section 4.1). The above values [282] do not well accord to ours of
𝜙+ = 5.58 ± 0.11 > 𝜙e = 5.30 ± 0.07 eV and 𝛥𝜙∗ = 0.28 ± 0.13 eV for Pt (Tables 2 and 4).
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342The Pt-films prepared on glass at 78–80 K are found to have 𝜙e = 5.45 eV, which increases to 5.63 and 5.72 eV after annealing at about 300 and 600 K,
respectively [428,1497,2719], more deviating from our value of Pt (5.30 ± 0.07 eV, see Table 2) and much closing to ours of Pt(110) (5.54 ± 0.07 eV) or
Pt(100) (5.75 ± 0.06 eV) by the annealing at higher temperatures.
343By PSI of Cs on Pt [98], 𝜙+ = 5.5 eV is determined from the data on 𝛼+ = 𝑘+∕𝑘0, the method of which is outlined in Footnote 341.
344The Pt-specimen [434] is a considerably (111)-oriented wire prepared by aging at 1600 K for 150 h, thereby showing 𝜙e = 5.55 ± 0.1 eV [434]. This is
intermediate between 5.84 eV for Pt(111) and 5.30 eV for Pt in Table 2.
345By PSI of NaNO3 on Pt [178], 𝜙+ is determined to be 5.54 ± 0.07 and 5.56 eV from Schottky equation (9) and 𝛼+ = 20 in Saha–Langmuir equation (5),
respectively [178], both values of which are virtually the same with ours of 𝜙+ = 5.58 ± 0.11 eV for Pt (Table 2).
346By deposition of Pt (1–2 ML thick) onto W(110) at ∼300 or 800 K, 𝜙e increases from 5.35 to 6.05 eV [1137], the latter of which is near to 5.7–5.9 eV
recommended for Pt(111) in Table 2.
347Regarding the unreconstructed (1 × 1) and also reconstructed (1 × 2) and (1 × 3) Au(110) surfaces, 𝜙e is calculated to be 5.39, 5.38 and 5.32 eV, respectively
[2543], all of which are virtually the same with 5.33 ± 0.09 eV recommended for Au(110) in Table 2.
348After Au-films (𝜃 ≥ 3.5 ML) are prepared on W(112) at 78 and 540 K, 𝜙e is measured at 78 K to be 5.3 and 5.45 ± 0.03 eV, which correspond to Au and
Au(110), respectively [2256]. The former agrees well with our recommended value of 5.30 ± 0.04 eV for bulk Au, but the latter is slightly larger than ours
of 5.33 ± 0.09 eV for Au(110) (Table 2).
349The Au-films (𝜃 = 5 and 4 ML) formed on W(110) at 78 and 160 K are observed at 78 K to have 𝜙e = 5.3 and 5.4 eV, respectively [2256]. On the other
hand, Au-film (𝜃 ≥ 3.5 ML) done at 420 K is found at 78 K to have 5.32 ± 0.03 eV with an Au(111) structure [2256], slightly smaller than our value of
5.46 ± 0.07 eV for Au(111) (Table 2).
350By annealing at 623 K for 1 h, the Au-film (0.12 nm thick) prepared on quartz at ∼300 K is increased in 𝜙e from 5.38 to 5.42 eV as the degree (𝛿m)
of monocrystallization forming the (111) face is increased from 𝐹i = 61 to 91% [3313]. The latter is essentially the same with 5.46 ± 0.07 eV for Au(111)
(Table 2). For further information about 𝛿m and 𝐹i (fractional surface area), see Sections 4.2 and 4.3.
351The Au-film (𝜃 = 7 ML) formed on W(112) at ∼300 K is observed to have 𝜙e = 5.51 eV [2385], which is virtually the same with 5.55 eV for the bulk
Au(111) surface studied in a similar way [2385,2871].
352Regarding the fine Au-particles of ∼8 and 90 Å in radius, 𝜙e is calculated to be about 4.1 and 4.6 eV for real sphere, respectively, and also to be about
4.4 and 5.0 eV for octahedron, respectively [2973]. For further information, see Section 11.1.
353For an Au-ribbon at ∼300 K in an Hg-pumping system at the residual gas pressure less than ∼10−9 Torr (2 × 10−9 Torr as the partial pressure of Hg), 𝜙e is
found to be 4.64 or 4.89 ± 0.06 eV [1072]. However, it increases to 5.20 ± 0.05 eV when the measurement by CPD is done soon after flashing to remove
Hg-adatoms, all of which desorb at 1170 K [1072]. About the work function change due to amalgamation, see Point (6) in Section 3.2.
354With respect to a gold filament at 293 and 1013 K, 𝜙e is determined by PE to be 4.82 and 4.73 eV, respectively [2560], the theoretical analysis of which
yields 4.81 ± 0.02 eV [1760] and also 4.90 ± 0.03 or 4.93 ± 0.03 eV [1135] in the above temperature range.
355By theoretical analysis of the data on temperature dependence of work function for ordinary metals [3586], the thermionic work function of Au is estimated
to be 4.89 and 4.92 eV at 733 and 1013 K, respectively [3586]. They are in good agreement with 4.92 eV theoretically evaluated [1135] from the photoelectric
data (nearly the same values in Footnote 354) [2560] at the respective temperatures, but they are smaller than ours (see Table 2).
356In regard to an Au/Ta system, 𝜙e is determined to be 4.83 ± 0.02 eV [1162], which is corrected to be 4.97 ± 0.02 eV [349] by taking the reference work
function of Ba as 2.66 ± 0.01 eV [1050] (see Footnote 238) instead of 2.51 eV [2232] adopted by the author [1162]. However, both values are still much
smaller than ours (5.30 ± 0.04 eV, Table 2), probably because the above system is contaminated with Hg (see p. 77 in Ref. [1351]).
357For an Au-ribbon at ∼10−9 Torr evacuated by an Hg-pump [2473], 𝜙e is found to be 5.01 and 5.08 eV at ∼300 K after Ar+-impact (335 V), the values of
which increase to 5.13 and 5.18 eV, respectively, after annealing up to ∼1200 K. Similarly, 𝜙e = 5.27 and 5.31–5.33 eV at ∼300 K after the impact (85 and
635 eV by Ar+) become common at 5.27 eV after the annealing at ∼1100 K [2473], thus yielding the data affected little by Hg-contamination.
358About the Au-layers (10 and 5 ML thick) deposited onto Ta(112) at ∼300 K, 𝜙e is measured to be 5.04 and 5.08 eV at ∼300 K [878], while the layers
deposited at 1000 K have 4.76 eV, corresponding likely to a surface alloy with Ta [878].
359With regard to Au-layers (𝜃 ≈ 4–5 ML) prepared on Ir(100) at 78 K, 𝜙e is found to be 5.86 ± 0.02 and 5.80 eV after annealing at 482 and 520 K, respectively
[2189]. On the other hand, the Au-layers (𝜃 ≈ 2–3 ML) on Ir is observed to have the different values of 5.29 and 5.10 eV after annealing at 501 and 520 K,
respectively, indicating a change in overlayer structure in the above temperature range [2189].
360By deposition of Au onto bulk Au at ∼300 K, 𝜙e is decreased by 0.19 eV, which becomes zero by heating up to 723 K [3502]. Provided that the latter
corresponds to 5.31 eV [1351], the former may be estimated to be 5.12 eV.
361About the Au-films (∼30 ML thick) on W of (111), (112) and (100) faces at ∼300 K, 𝜙e is measured to be 5.17, 5.20 and 5.36 eV, the respective values of
which are decreased to 4.96, 5.08 and 5.14 eV by annealing at ∼1000 K [2647].
362Regarding the Au-clusters (Aun) on W systems at 77 K, 𝜙e is determined to be 5.2 ± 0.4 and 5.7 ± 0.5 (or 5.9 ± 0.6) eV for the incident cluster diameters
of 30 and 15 Å, respectively [1713]. Supposing that 𝑟 = 15 and 7.5 Å are kept unchanged on W, 𝜙e ≈ 5.7 and 6.0 eV for Aun/W, respectively, may be estimated
from Eq. (17′), where 𝜙e(∞) is taken as 5.3 eV. The latter seems to be consistent with the experimental data.
363The layers (250–500 Å thick) of Ru, Pt and Au deposited on glass at ∼78 K are found to have 𝜙e = 4.52, 5.46 and 5.22 eV, respectively, which are increased
to the stable values of 5.10, 5.72 and 5.38 eV by annealing at the temperatures (𝑇a) above ∼800, ∼500 and ∼400 K, respectively [436]. These results indicate
that 𝑇a should be selected to satisfy the condition of roughly 𝑇a ≥ 𝑇m∕3 in order to make the layers equilibrated fully on glass [436]. Here, 𝑇m is the melting
points of 2723, 2047 and 1336 K for the respective metals (see Section 2.5).
364The Au-layers formed on Mo(111) at ∼300 and 1000 K are found to have 𝜙e = 5.08 and 5.22 eV at ∼300 K, respectively [1842]. The latter is nearer to the
recommended value of 5.30 ± 0.04 eV (Table 2), just as expected from the annealing condition mentioned in Footnote 363.
365The work function of Au/glass at ∼300 K is measured to be 5.22 ± 0.05 eV, which is decreased to 4.77 eV by intentional admission of Hg [1071]. The
latter corresponds to ∼4.7–4.8 eV found for Au in Hg-pumping systems [typically, 133,1160–1162,1893], where the surface reaction (amalgamation) is ready
to occur between Au and Hg (see Point (6) in Section 3.2). For related subject, see Footnote 368.
366The Au-layers (𝜃 > 2 ML) formed on W(110) at 78 K in an Hg-pumping system is found to have 𝜙e = 4.89 eV at ∼300 K, but 𝜙e increases to 5.25 eV after
heating at 750 K [1670,1673]. The heating is effective for removing Hg from the Au-layers.
367Similarly as above (Footnote 366), 𝜙e of an Au/glass system is found to increase from 4.7 to 5.3 eV after heating at 520 K [1893], which is also effective
for making an Ag/glass surface substantially free from Hg.
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368By using an ion-pumping system in order to escape from Hg-contamination, 𝜙e for Au/Ru is measured to be 5.28 eV [1073], which is much higher than
4.68 and 4.71 eV determined previously for Au/glass and Au/W, respectively, by the same author [133,1161] using an Hg-pumping system. In brief discussion,
the Hg-contamination data on 4.68–4.97 eV for Au on glass, W and Ta [133,1160–1162] are compared with the Hg-free ones on 5.22–5.45 eV for Au/glass
[945,1071,1073]. For related subject, see Footnote 365.
369For metal films (7–12 nm thick) made on glass at 77 K, 𝜙e is found to increase from m to n eV by annealing (smoothing) at 323 K (or 373 K for Au alone).
Namely, metal (𝑚 → 𝑛 in eV) results in 𝛼-Fe (4.10 → 4.40); Co (4.44 → 4.91); Ni (4.55 → 4.88); Cu (4.40 → 4.64); Pt (5.50 → 5.71); and Au (4.96 → 5.40)
[2133]. Typically, 𝛼-Fe and Ni are made to approach their work function values to ours (4.55 and 5.06 eV, respectively, in Table 2) by the annealing.
370The work function of Hg is found to be 4.49 ± 0.01 eV at 273 K, and no measurable change around the melting point of 234 K can be observed [1669].
371The W covered ‘‘fully’’ with Hg at 300 K is found to have 𝜙e = 4.9 eV [3726]. This value, however, corresponds not to 𝜃 ≥ 1 ML but to ∼0.4 ML [3074]
according to the data on Hg/W at the equilibration temperature of 370 K [3074]. At about 240 K, the Hg/W system is found to have ∼4.6 eV at 𝜃 ≈ 1 ML
[3074].
372About Hg/Ni(111) at 𝜃 = 0.75 ML and T = 240–310 K, 𝜙e is determined to be 4.90 eV [3166]. This value is much larger than ours (4.50 eV in Table 2),
similarly as in the case [3726] in Footnote 371.
373With respect to Pb/glass at ∼300 K, 𝜙e is determined to be 4.00 eV [1381], which is corrected to be 3.83 eV [349] by taking the reference work function
of Ba as 2.35 eV [13,349] instead of 2.52 eV [1380,1381]. As shown in Table 2, our values for Pb and Ba are 4.07 ± 0.05 and 2.50 ± 0.02 eV, respectively,
to which the former (4.00 and 2.52 eV) [1381] is nearer than the latter (3.83 and 2.35 eV) [349]. It should be noted that 𝜙e = 2.52 eV employed as the
reference work function of Ba is cited from the original value (2.520 eV at ∼300 K) in Ref. [2232]. See also Ref. [1157] in Footnote 238.
374The work function of Pb at ∼300 K is found to be 3.95 ± 0.05 eV, which does not change at the melting point (601 K) [3437] (see Table 12).
375The work function of a Bi/Au(111) system is found to decrease by 1.52 eV as 𝜃 increases to 1 ML, and 𝜙e remains constant up to at least 4 ML. Here, Bi
forms a monolayer followed by the growth of a Bi–Au compound beneath the former consisting of Bi alone [3678]. The system is estimated to have 𝜙e = 3.94 eV
provided that 𝜙e is 5.46 eV for Au(111) (Table 2).
376Regarding the Bi-layers deposited on glass at 90 K and also annealed at 293 K, 𝜙e is determined to be 4.245 and 4.370 eV, corresponding to an emission
from the conduction and valence bands, respectively [3038]. Theoretical analysis of the respective data yields 4.25 and 4.6 eV [1403].
377The work function of Bi at ∼300 K is measured to be 4.25 ± 0.05 eV, which does not change even at ∼640 K much above the melting point (544 K) [3437]
(see Table 12).
378From the experimental data on the work function difference (−0.020 eV) between Bi(sol) and Bi(liq) and also that (0.350 eV) between Bi(sol) and Cu(sol)
[1755], 𝜙e = 4.86 and 4.88 eV are estimated for Bi(sol) and Bi(liq), respectively, by taking 𝜙e = 4.51 eV for Cu(sol) from Table 2 (see Table 12).
379From the empirical equation (7) of 𝜙e = 2.27𝑋 +0.34 [1955], 𝜙e for Ra is evaluated to be 2.2 and 2.4 eV by taking the electronegativity (in Pauling unit) of
𝑋 = 0.8 [Here] and 0.9 [1955], respectively. Similarly for Pm, Po, Fr and Ac, any of which has no experimental data available still today, 𝜙e is evaluated to be
3.0, 4.8, 1.8 and 2.7 eV, respectively, from the above equation. Also for Sc, Y and In, 𝜙e is calculated to be 3.2, 3.0 (corrected from 2.0) and 3.6, respectively
[1955], but they are not in good agreement with our values (almost by experiment) of 3.33 ± 0.04, 3.16 ± 0.06 and 4.05 ± 0.06 eV (Table 2), respectively.
380With respect to the Th-monatomic layer prepared by activation of thoriated W (1.8%-ThO2 contained) at temperatures up to 2200 K, 𝜙e is determined to
be 2.63 eV [1749,1750]. Similarly, 𝜙e is measured to be 2.64 eV for W–ThO2 (1%) activated at 1920 K [3667,3668].
381The work function of Th-foil is measured initially to be 2.988 ± 0.008 eV, which increases to 3.728 ± 0.010 eV after electron impact at 1900 K [2932].
On the other hand, Th/W is found to have 3.455 ± 0.012 eV [2932], nearer to our value (3.37 ± 0.04 eV, see Table 2).
382Experimentally, the work function of Th is determined to be 3.45 ± 0.01 eV [3524,3525], by critical analysis of whose data 𝜙e is theoretically evaluated
to be 3.41 or 3.44 eV [2932] and 3.35 eV [1759]. The last is essentially the same with our value (3.37 ± 0.04) recommended in Table 2.
383For the Th-films which are prepared by coating ThO2 on W or Pt by a molecular gun and then activated at 1300–1650 K in vacuum, 𝜙e at 1260 K is
determined to be 3.55 eV for Th/W (3 ML of the coating) and Th/Pt (4–8 ML) [872]. When W and Mo are employed as the substrate, reduction of ThO2
to Th becomes insufficient at the coating thickness above 3 ML, thereby yielding 𝜙e ≈ 2.4 and 2.6 eV, respectively [872]. By critical analysis of the data on
Richardson constant, the above value (3.55 eV) is corrected to 3.61 eV [2932]. Similarly, 3.44 eV is theoretically evaluated [2932] from the experimental data
(3.3–3.4 eV) on Th/Mo and Th/Pt systems [3035].
384About the 𝛾-U/W systems (𝜃 = 1 and 10–200 ML), 𝜙e is determined to be 3.0 and 3.47 ± 0.03 eV, respectively [232], which are corrected to be 3.38 and
3.48 ± 0.03 eV [1484] by substituting 𝐴r = 5 and 114 ± 12 A/cm2 K2 and 𝑇 = 1400 K into Hensley’s equation (8); 𝜙e = 𝜙e

r + 𝑘𝑇 ln(120∕𝐴r ) [3623]. Here, 𝜙e
r

is the work function corresponding to 𝐴r ≠ 120 A/cm2 K2. Especially the former, as well as the latter, is well corrected to be essentially the same with our
value of 3.42 ± 0.05 eV for 𝛾-U (Table 2).
385A 𝛾-U/W system is found to have the relation of 𝜙e = 2.9 + 2.3 × 10−4 𝑇 [2098], from which 𝜙e is evaluated to be 3.2 eV at 1250 K. This is corrected to be
3.5 eV [Here] by substituting 𝐴r = 8 A/cm2 K2 and 𝑇 = 1250 K into Hensley’s equation (8) (see Footnote 384 and Section 2.8.6), thereby becoming very close
to our recommended value (3.42 ± 0.05 eV) for 𝛾-U (see Table 2).
386For the 𝛾-U/W systems (𝜃 = 1–2 and 10–20 ML) at ∼1000–1300 and ∼1000–1400 K, 𝜙e is found to be 3.14 ± 0.02 and 3.42 ± 0.04 eV, respectively [1484].
Again, the respective values are appropriately corrected to be 3.36 ± 0.04 and 3.45 ± 0.1 eV [1484] by substituting 𝐴r = 20±7 and 80±30 A/cm2 K2 and also
𝑇 = 1400 K into Hensley’s equation (8). Similarly for the 𝛾-U/W system (𝜃 = 50 ML) in H2 (≤10−5 Torr) at 1250–1400 K, 𝜙e = 3.46±0.02 eV under 𝐴r = 140±20
A/cm2 K2 [1484] is corrected to be 3.44 ± 0.03 eV [Here], becoming closer to our value for 𝛾-U (3.42 ± 0.05 eV). The more 𝐴r deviates from 120 A/cm2

K2, the more 𝜙e is effectively corrected as we may expect in general if 𝐴r itself is free from systematic errors.
387Theoretical analysis of thermionic emission data on U yields 𝜙e = 3.28 + (3∕2)𝑘𝑇 [1747], which yields 3.28 and 3.42 eV for 𝛾-U at 0 and 1100 K. The latter
accords exactly with our value (see Table 2).
388By correction of the thermionic emission data on 𝜙e = 2.9 + 2.3 × 10−4 𝑇 found for U/W [2098], 𝜙e is evaluated to be 3.45 eV for 𝛾-U [2467]. Similarly,
3.27 ± 0.05 eV for U (wire) [2085] is corrected to be 3.56 ± 0.05 eV for 𝛾-U [2467].
389By the theories of LDA and LECP models about Li-clusters (n = 2–68, 𝑍 = 1, 𝑟s = 3.25 bohr and 𝑑G = 1.31 bohr), 𝜙e(∞) is evaluated to be 2.25 and 3.21 eV
together with 𝐶p = 0.51 and 0.48 ≈ 1/2, respectively [4262] (see Section 11).
390About a Be/Al2O3/Al system, 𝜙e is determined to be 3.89 eV [3057], which is corrected to be 3.905 eV [13] and 4.04 eV [Here] by taking the reference
work function of Al as 4.095 eV [13] and 4.23 eV [1351], respectively, instead of 4.08 eV [3057], thereby approaching to our recommended value of 4.28 eV
for 𝛼-Be (Table 2).
391Each specimen consists of monocrystal of 𝛽-rhombohedral boron [1415,3100].
392The work function dependence upon 𝜃 of B on W is found to agree well between theory [913,4344] and experiment [3503] over the entire range of 𝜃 =
0–1 ML, showing 4.5 eV at monolayer [913,3503].
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393By incidence of C2H4 upon TaC(111) at 1570 and 1270 K, single- and double-layer graphite films are formed to have 𝜙e = 3.7 ± 0.1 and 4.2 ± 0.1 eV,
respectively [290], both of which are considerably lower than 4.6 ± 0.1 eV for graphitic crystal [290] and also than 4.47 ± 0.05 eV found for a graphitic
carbon film (see Table 2).
394For C60-layers of 𝜃 = 1 and 2–8 ML on freshly cleaved GeS(001), the films of C60(111) are found to have 𝜙e ≈ 4.7 and 4.8 eV, respectively [457,543].
395About the C60 films on clean metals (Cu, Ag and Au) at 5 and 500 nm in thickness, 𝜙e is found to range from 4.60 to 4.72 and from 4.39 to 4.47 eV,
yielding the average (𝜇) of 4.65 and 4.44 eV, respectively [2198]. Similarly, 𝜇 = 4.62 and 4.42 eV are observed, respectively, for the thin and thick C60 ones
formed on the metals exposed preliminarily to air [2198]. By deposition onto Cu at ∼300–600 nm thick, sublimation-purified C60 yields 𝜙e = 4.59 eV, larger
than 4.39 eV found for as-received C60 [2198].
396The work function is measured to be 5.4 eV for a C60/Ta(110) system at ∼300 K, where some fraction of the C60 film decomposes on the clean substrate,
leading to a thin film of carbon between the assembled film and the substrate [460]. Such a system [460] is discussed in comparison with other various ones
of monolayer-C60 (4.82–5.25 eV) [316,1007,2681,3002] on monocrystalline metals (Al, Ni, Cu, Rh and Au) by other workers [316].
397The C60-film formed on Pt(111) at 100 K and annealed at 900 K is estimated to have 𝜙e = 5.7 eV and found to be stable up to ∼1050 K, above which C60
decomposes to leave disordered graphitic multidomains [697]. On the other hand, an ordered C60 layer grown on Ni(110) at 700 K decomposes at 760 K and
forms a carbidic carbon layer, which transforms into graphitic carbon at higher temperatures [697]. In another case of a C60/Si(111) system prepared at ∼300
K, C60 decomposes on the substrate at ∼1100 K and reacts with the Si atoms to form SiC islands [3941]. See p. 80 [1351] for further information about the
work function and thermal stability of C60 on various substrates.
398For the Al/Ta(110) and Pd/Ta(110) systems at ∼300 K, 𝜙e is found to be 4.27 and 5.1 eV [2271], the respective values of which are substantially equal to
4.26 ± 0.03 and 5.17 ± 0.06 eV (Table 2). In addition, deposition of Al on Pd/Ta(110) decreases from initially 5.1 eV finally to a constant at 4.1 eV [2271],
roughly corresponding to bulk Al. By deposition of Pd on Al/Ta(110), on the contrary, 𝜙e increases slowly from 4.27 eV (𝜃 = 0 ML) to 4.38 eV (1 ML) and
up to 5.25 eV (5.0 ML), at which Pd forms surface alloys of both PdAl3 and PdAl intermetallic compounds at ∼300 K [2271].
399Allotropic transformation temperatures are listed for 13 rare earth metals other than Pm, Eu, Er and Lu [3966].
400According to the literature values summarized for U [3967], the allotropic transition temperature of 𝛽 to 𝛼 has a range of 918–948 K, while that of 𝛾 to 𝛽
has 1037–1053 K.
401Both synthesis and structure of graphene overlays on monocrystalline metals are reviewed together with their electronic structure and promising potential
[3968,4173]. Ir(111) films grown on Si(111) wafers with buffer layers are successfully applied to scalable synthesis of graphene, which has the quality
comparable to that grown on bulk Ir(111) [4007]. A review about graphene is focused on production, structure, reactivity, etc. from the viewpoint of chemistry
[4104]. Another review is focused on the experimental methods and conditions for preparing mono-, di- and multilayer graphene on various substrates by
chemical vapor deposition [4106].
402Field emission studies reported for carbon nanotubes during the first five years after 1995 are reviewed comprehensively about their structural and electronic
properties, fabrication of their field emitters, their emission characteristics, etc., containing some data on their work function [3969].
403About the C/Si(100)p system, 𝜙e ≈ 5 eV for cnt [3649] is reported to be 5.3 ± 0.2 eV in related studies [698,2425,3943].
404Regarding Ag-films on various substrates, much data on 𝜙e are listed together with each experimental method and condition [3280]. There, 𝜙e ranges from
4.0 to 4.46 eV and has the mean of 4.30 ± 0.13 eV, which is nearly equal to our value of 4.39 ± 0.02 eV recommended for polycrystalline Ag (Table 2).
405With respect to Ni at the ferromagnetic state, 𝜙e is determined to be 5.06 and 5.05 ± 0.05 eV at ∼300 and 623 K below the Curie point (631 K), respectively
[943]. At the paramagnetic state, 𝜙e is found to be 5.10, 5.17, 5.20 and 5.24 eV at 770, 975, 1108 K and above 1150 K, respectively [943]. See Table 13 for
the work function change due to magnetic transformation.
406With respect to the 𝛼-phase (T < 1042 K) of Fe, 𝜙e is measured to be 4.70 and 4.65 eV at ∼300 and 870 K, respectively [305]. For 𝛽 (1042–1179 K)
and 𝛾 (1179–1674 K), 𝜙e is found to be 4.62 and 4.68 eV at 1125 and 1243 K, respectively [305]. About the work function change due to the allotropic
transformation of several metals, see Table 11.
407As an interesting phenomenon, the metastable Fe-layers grown epitaxially on Cu(100) at ∼300 K are found to show a structural transition from m-fcc
Fe(100) to 𝛼-bcc Fe(110) when 𝜃 increases beyond ∼10 ML [3913]. Unfortunately to us, no data on work function are given there. About the features of such
metastable iron layers, see Sections 7.1 and 8.2.
408By application of Kelvin, photoelectric and electron beam retarding methods to the U-layers (𝜃 ≈ 2 ML) on W(100) at ∼300 K, 𝜙e is determined to be
3.73 ± 0.02, 3.73 ± 0.02 and 3.78 ± 0.03 eV, respectively, for 𝛼-U [2471] (see Section 2.8.2).
409From the position of a primary peak appearing in TCS (total current spectrum; d𝐽 (𝐸)∕d𝐸 vs. 𝐸 − 𝐸F, the difference between the incident energy and the
Fermi level), 𝜙e of 6 layers of Cu on ZnO(0001) is determined to be 4.5 eV [2679]. This is equal to our value of 4.51 ± 0.04 eV recommended for bulk Cu
(Table 2), but much smaller than 4.94 eV [953,2006] and 4.92 ± 0.05 eV (Table 2) done for bulk Cu(111). This is because the substrate is covered by Cu(111)
islands without its surface covered completely [2679].
410Regarding Si(111) [73], 𝜙e = 4.07 ± 0.05 eV may be corrected to be 4.83 ± 0.04 eV from Eq. (8), as described in Section 2.8.6. For further information
about related subject, see Footnote 66.
411With respect to a tungsten specimen consisting of these faces of (310), (111), (100), (112) and (110) having (𝜙i , 𝐹i) = (4.25 eV, 46.3%), (4.47, 5.4), (4.65,
14.0), (4.76, 15.5) and (5.25, 18.9), respectively [489], 𝜙a = 4.6 eV calculated from Eq. (4) is taken as 𝜙e and considered to agree well with 𝜙e = 4.8 eV
measured by FE [489]. However, both values are much larger than those estimated from the fact that the main face of (310) is lowest in 𝜙i and largest
in 𝐹i among the five faces. Namely, 𝜙e is naturally expected to be ∼4.3 eV or so corresponding to face (310). In fact, our calculation from Eq. (2) yields
𝜙e = 4.34 ± 0.05 eV [630] or 4.38 ± 0.05 eV [2453] (see Footnote (22) for W(D) in Table 6).
412The metastable 𝛽-like fcc-Co(100) film is grown by sublimation of Co onto Cu(100) at ∼300 K, thereby resulting in 𝜙e = 4.72 eV [2673]. Similarly, fcc-Fe(100)
is done so, yielding 4.62 or 4.67 eV [2673] (see Footnote 114). The former and latter values are much smaller than ours (Table 2) of 5.25 eV for normal
𝛽-fcc-Co(100) and 5.28 eV for 𝛾-fcc-Fe(100), rather near to 4.50 eV for 𝛽-fcc-Co(poly) and 4.54 eV for 𝛾-fcc-Fe(poly), respectively (see Section 8.2).
413Ni is found to have bivalued work functions of 4.5 and 5.0 eV by PE at ∼300 K [942], and 4.41 ± 0.02 eV (1170–1250 K) and 4.80 ± 0.02 eV (1440–1490 K)
by TE [179,650,3410,3413]. It is worthwhile to solve perfectly the interesting problem why this phenomenon occurs, especially at quite different temperature
ranges between the two cases.
414In regard to the system of the Ni-film (∼1500 Å thick) prepared on a monocrystalline Ni (𝑇C = 6.31 K), 𝜙e = 4.97 and 4.87 eV are measured by PE at
295 and 678 K, respectively [3971]. This difference by 0.10 ± 0.04 eV, however, does not originate from ferro- to paramagnetic transition alone but does
considerably from the thermal effect due to 𝛼 (∼–10−4 eV/K for Ni, see Table 6 in Ref. [1351]). For further information, see Section 8.1.
415From the data on 𝜙+(Re) − 𝜙+(C/Re) = 0.466 eV [3753], 𝜙+(C/Re) is estimated to be 4.94 eV by taking 𝜙+(Re) = 5.41 eV from Table 2.
416A comprehensive review on Re affords us general information about thermionic properties and chemico-physical characteristics of Re in comparison with
Mo, Ta and W [190].
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417High strength metallurgical graphene (𝜙e = 4.63–4.79, ±0.01 eV) is formed by chemical vapor deposition (CVD) of a mixture (C2H2, CH2CH2, H2) on a
72%Cu–28%Ni composite at ∼1500 K in Ar-atmosphere (750 Torr) [3996], while a commercially available CVD graphene grown on a Cu-foil is found to have
4.67–4.78, ±0.01 eV [3996].
418Graphene (𝜙e = 4.81 ± 0.06 eV) is formed on Si(100) covered with silicon oxide (300 nm thick) [3997], whilst another (4.92 ± 0.06 eV) is grown from CH4
(83 Torr) on a Cu-foil at 1308 K [3997].
419The Au-layers (200 nm thick) prepared on Si(111) have a dominant (111) orientation with 5.2 eV [3999,4000]. The Au-layers in these systems of K/Au/Si(111)
and K/C12/Au/Si(111) are similarly predominant in the (111) plane, resulting in 2.0 and 2.66 eV, respectively, for K. Here, C12 is C12H25SH(1-dodecanethiol)
[3999].
420The film (200–300 nm thick) of Cu, Ag or Au is grown on mica (∼570 K), and it is sputtered by Ar+ (800–1500 eV) and also annealed at ∼520–620 K
for several hours, thereby forming a nearly defect-free (111) terrace with 4.8, 4.5 and 5.4 eV, respectively [4001]. Each of them is very near to ours (see
Section 2.5 and Table 2).
421The work function of Ge(111) is found to have 4.73 ± 0.05 eV immediately after vacuum cleavage, but to change to 5.45 ± 0.05 eV at the moment of the
2 × 1→1 × 1 structural transition [1991].
422The work function values of Li/Si(100)p and K/Si(100)p are determined to be 2.53 and 2.2 eV [4016] by citing two different values of 4.85 eV for
vacuum-cleaved Sin [613,1045] and 4.7 eV for Si(111)n [1228], respectively [4016]. By citing our best estimate of 4.82 eV for Si(100) (Table 2), for instance,
the latter becomes 2.3 eV, nearer to 2.29 eV recommended for K(poly) in Table 2.
423On the basis of the calculated values of 𝛥𝜙e = 1.1, 1.9 and 2.6 eV due to adsorption of S on the hollow, bridge and atop sites on Fe(100) [4019], 𝜙e for
S/Fe(100) is estimated to be 5.0, 5.8 and 6.5 eV, respectively, by the present author citing the theoretical value of 𝜙e = 3.94 eV for 𝛼-Fe(100) from Table 1
[4019].
424Regarding the B-doped Si(111)-specimens of p-type (0.002 and 260 Ω cm), 𝜙e is measured by PE to be 4.9 and 5.2 eV, respectively, while As-doped one
of n-type (0.002 Ω cm) is done to be 5.0 eV [1226].
425Similarly by the same authors above [1226], 𝜙e of Si(111) is found to vary from about 4.7 to 4.9 eV in going from extremely n- to p-types, being close to
4.83 eV throughout most of the doping range [117].
426The work function of Si(111) is observed to have a difference of 0.18 ± 0.02 eV between p- and n-types, which are estimated to have 4.97 and 4.79 eV,
respectively [1889].
427Regarding the adsorption of C, S and P on paramagnetic 𝛽-bcc-Fe(100), the work function changes are calculated to be 2.1, 1.3 and 0.9 eV, which yield
𝜙e = 6.3, 5.5 and 5.1 eV for the respective surface systems [4026] since 𝜙e for the substrate is calculated to be 4.2 eV [1104].
428A ‘‘missing’’ metastable phase of single-crystalline bcc-Co film is successfully synthesized on GaAs(110) by molecular beam epitaxial growth [4028]. A later
study, however, indicates that the bcc-Co film does not correspond to a true metastable state and suggests that the existing bcc-Co film is stabilized by the
presence of impurities or other defects [4205]. Interestingly, on the other hand, monocrystals of GaAs are usable as the substrates for preparing single-crystalline
films of Fe [4028,4095–4097] and of Al [4098]. A distorted bcc–Co phase can be stabilized on Au(001)–hex [4325].
429The values of 5.10 and 5.55 eV correspond to the paramagnetic five- and monolayer of metastable bcc-Co(100) slabs, respectively [4023].
430The data on 4.66, 4.75 and 5.20 eV are obtained theoretically for the spin-polarized five-, nine- and monolayer bcc-Co(100) films, respectively [4023].
431Compared with literature values such as 4.31 eV [1050] and 4.33 eV [690], 𝜙e = 2.04 eV determined for Ag by TE at ∼1150–1230 K [1466] is extremely
small, but it is corrected by the present author to be 4.25 eV by substitution of 𝜙e

r = 2.04 eV, 𝑇 = 1200 K and 𝐴r = 6.4 × 10−8 A/cm2 K2 into Eq. (8), thereby
coming close to our value of 4.39 ± 0.02 eV (Table 2).
432For Si(111) of p-type, 𝜙e

r and 𝐴r are measured to be 3.2 eV and 4 × 10−3 A/cm2 K2 at ∼1100–1150 K [3540], by substitution of which 𝜙e is calculated to
be 4.2 eV from Eq. (8). This value agrees exactly with 4.2 eV determined directly from a Richardson plot for the same specimen at ∼1150–1450 K, where 𝐴r
is found to be 130 A/cm2/K2 [3540]. This result suggests that the reflection coefficient of r e = 1 − 4 × 10−3 has a very high value of above 0.99 in the former
temperature range in contrast to ∼0.0% in the latter. However, 4.2 eV is much smaller than 4.6–4.8 eV recommended for Si(111) (Table 2).
433Formation of C60(111) is observed on various substrates as follows: GeS(001) at ∼400–500 K [457,543,4037], CaF2(111) at ∼500 K [4038], MoS2(0001) at
∼300 K [4039], Au(111)/Ag(111)/mica at ∼500 K [4040], Cu(111)/mica and Cu(111)/Ag(111)/mica at ∼400–500 K [4041]. Unlike graphite and diamond,
solid C60 is a molecular crystal, the structure of which is illustrated in Fig. 1 [3940].
434By PSI of Na (or K) on Si(110)p, 𝜙+ as well as 𝜙e is found to increase linearly from ∼3.3 to 4.3 eV as T increases from ∼1000 to 1300 K [1472]. At
∼1500–1600 K, on the other hand, 𝜙+ remains virtually constant at ∼4.4 eV and decreases gradually from ∼4.4 to 4.1 eV by incidence of weak and strong
sample beams, respectively, while 𝜙e gradually increases from ∼4.3 eV up to a constant of ∼4.7 eV at ∼1500–1600 K without the beam incidence [1472].
Consequently, the discrepancy between 𝜙+ and 𝜙e increases from ∼0 up to ∼0.6 eV, which suggests the chemical reaction of the beam with the substrate
[1472].
435Recently, anomalies in the temperature dependence of 𝜙e have been found for Ru(112̄2) and Ru(112̄5) having the three phases of 𝛼, 𝛽 and 𝛾, and the
respective values of 𝜙e at 𝛽 (1510–1540 K) are lower by 0.38 and 0.55 eV than those at both 𝛼 (<1510 K) and 𝛾 (>1560 K) [3686]. See Section 7.1 for
further information about the phase transitions in Ru.
436For the n- and p-types of Ge-samples (B and D) doped with As and In having 0.005 and 0.10 Ω cm, the work function difference of 𝜙(100)−𝜙(111) is found
to be 0.064 ± 0.005 and 0.045 ± 0.009 eV, respectively, while 𝜙(110) − 𝜙(111) is 0.013 ± 0.05 and 0.022 ± 0.009 eV, respectively, by CPD. Here, Ge(110)
is determined to have 𝜙(110) = 4.72 ± 0.3 eV equally for both types [1382]. Similarly for n- and p-types of Ge(110) doped with Sb and In having 0.058 and
0.39 Ω cm, the work function difference between the two is found to be as small as 0.002 ± 0.004 eV by CPD [3611].
437The surfaces of Au (4.20 eV) and both substrates (Au and Hg/Au to be adsorbed with iodine) are not clean, but heavily contaminated with air [2760] and
also with Hg.
438According to the temperature coefficient of 1.2 × 10−2 eV/K, work function of liquid indium increases from 3.88 to 4.13 eV with increasing temperature
from 470 to 670 K [2111].
439First-principles calculations of 𝜙e for graphene yield 4.5 eV, which increases up to 4.8 or 5.2 eV according to isotropic strains [4105].
440An Yb/Si(111) system at 𝜃 = 6.0 ML is determined to have 𝜙e = 3.00±0.03 and 3.95 eV at ∼300 and 800 K, respectively. The latter corresponds to ytterbium
silicide [4109].
441About doped silicon samples, 𝜙e is theoretically evaluated to be 5.03–5.10 eV for Sip (7.5–20 Ω cm) and 4.42–4.63 eV for Sin (0.071–14.5 Ω cm) [4119].
442The single- and double-layer graphene samples prepared by mechanical exfoliation on Si-wafers are found to have 𝜙e = 4.57 and 4.69 eV, respectively [4128].
443Regarding the two-dimensional graphite films on various metals, a compact review outlines their structure and physico-chemical properties [450].
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444A comprehensive review entitled ‘‘Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site-specific surface
chemistry, alloying and ionic bonding’’ [4118] contains both experimental data on work function changes and their analytical results achieved for various
substrates (Be, Al, Si, etc.) covered mainly with Cs.
445With respect to an Eu-film (𝜃 = 1.1 ML)/Si(111) system, 𝜙e is determined by CPD to be 2.8, 2.9 and 3.8 eV at ∼300, 500 and 900–1000 K, respectively,
the last case of which corresponds to europium silicide [4111].
446The work function of Gd is 3.55 ± 0.15 eV at the Curie temperature of 290.85 K [3899].
447At room temperature, Ag is found to have 4.26 ± 0.03 eV, which decreases to 4.15 ± 0.07 and 4.04 ± 0.08 eV at 530 and 780 K, respectively, thereby
affording 𝛼 = −4.58 × 10−4 eV/K [4114,4132].
448For the nickel particles (usually, 𝑟 = 60–100 Å in radius) produced by a spark discharge in He, 𝜙(𝑟) = 5.1 eV is determined by PE [2667]. This is in good
agreement with our value of 𝜙(𝑟) = 5.13 ± 0.06 eV calculated from Eq. (17′) by using both 𝜙(∞) ≡ 𝜙(poly) = 5.06 ± 0.06 eV (Table 2) and 𝑟 = 80 Å, although
it is 4.9 eV that is estimated as 𝜙(∞) for a flat nickel surface [2667] from these values of 4.90 eV [414] and of 4.5 and 5.0 eV [942] measured by PE at
∼300 K (see Section 11.1).
449The values of 4.36 ± 0.03 and 4.51 ± 0.03 eV are calculated from Eq. (17′) by the present author using the data on 𝑒2∕𝑅eff = 0.272 and 0.66 eV [2199],
which afford 52.9 and 22 Å as the effective values of radius (𝑅eff ≡ 𝑟c + 𝛿) in Eq. (20) for Al32000±150 and Al2000, respectively. Here, each value of 𝜙e(𝑟) = 4.36
or 4.51 eV is calculated from both 𝜙e(∞) = 4.26 ± 0.03 eV (Table 2) and 3𝑒2∕8(𝑟c + 𝛿) = 0.10 or 0.251 eV, while 𝜙e(∞) = 4.28 ± 0.03 eV is determined by
experiment [2199] (see Footnote 60 in Table 1 and also Results (1)–(2) in Section 11.1).
450According to the data in Fig. 1 [4146], where 𝜙e for Tb(0001) increases from 3.09 to 3.18 eV with decreasing temperature from ∼1440 to 1380 K [3920],
𝛼 is estimated to be −1.5 × 10−3 eV/K, which affords 4.8 eV at ∼300 K. Above ∼1450 K, on the other hand, 𝜙e retains a constant at 2.94 ± 0.05 eV, thereby
yielding 𝛥𝜙e

𝛽𝛼 = −0.15 ± 0.07 eV (see Table 11).
451According to the Burgers orientation relationship [4163], 𝛼-hcp-Zr(0001) transforms to 𝛽-bcc-Zr(110) at the allotropic transition temperature (1135 K) (see
Section 7.1).
452With respect to the ultra-thin films of graphite, their formation, structure and physical properties are outlined together with the work function data
(3.7–4.8 eV) for the films prepared on several metals and carbides [695].
453The nanowires (∼10–15 bohr in width) of Na and Al are found by a theoretical study to have 𝜙e = 2.55± 0.05 and 4.15 ± 0.05 eV, which are slightly lower
than 2.75 and 4.28 eV for respective semi-infinite metals [4178].
454Regarding the films prepared by simultaneous incidence of both a C60/C70 mixture (85:15 in weight) and Ni-acetate upon a Mo-tape, photoelectric
measurements reveal 𝜙e = 2.93 ± 0.1 eV (3% in weight of Ni-content), 2.65 ± 0.1 eV (∼5%) and 2.76 ± 0.1 eV (11.7%), the last of which decreases to
2.4 eV after cleaning by pulsed laser beam [4176]. It is very interesting that all of the above values are much lower than any of 4.47 ± 0.05 eV for graphite
film, 4.87 ± 0.06 eV for C60(poly) and 5.06 ± 0.06 eV for Ni(poly) (see Table 2).
455The work function for cnt with the armchair conformation is calculated to be ∼4.5 eV being close to 4.48 eV for graphene, while that for the zigzag and
chiral conformations increases drastically from ∼4.5 eV up to ∼5.9 eV as the diameter decreases from ∼7 to 3 Å [3240].
456The value of 4.32 eV for liquid Ag is obtained by substitution of 𝑇 = 1240 K, 𝜙e

r = 3.86 eV and 𝐴r = 1.6 A/cm2 K2 [1466] into Eq. (8). The value corrected
by the present author is equal to 4.32 eV determined experimentally for solid Ag at 𝑇m = 1234 K [1466], thereby indicating that work function change due to
liquefying is less than ±0.01 eV.
457All the values of 𝜙+ = 5.1–5.78 eV for Pt [74] are derived by the free energy model using the data on PSI of Li, Na, K or Tl.
458Each of 𝜙+ for Pt (≥5.1, 5.51, 5.54 or 5.71 eV) [74] is determined by the enthalpy model according to the PSI data on alkali or Tl.
459Theoretical evaluation of both ionization energy (I) and electron affinity (E) of Aln (n = 3–70 and 3–150) yields 𝜙e(∞) = 4.25 eV for Al(poly) [4194,4197],
which is strongly supported by the experimental data on I [4196] and E [4197] and also by 𝜙e = 4.26 ± 0.03 eV recommended in Table 2.
460See Section 11.1 about the details of 𝜙e(∞) determined from the data on IP for these fine particles (𝑟 ≈ 3–30 Å) of Na, K and Ag [4198].
461According to the experimental data (𝜙e

r = 2.57 eV, 𝐴r = 0.023 A/cm2 K2 and 𝑇 ≈ 1300–1500 K) for liquid Ge contained in a crucible (graphite or quartz
made) [1466], Eq. (8) yields 3.60 eV, which is near to the upper value of 3.5 eV for solid Ge around 𝑇m = 1232 K [1466]. The latter, however, is much smaller
than 4.76 eV [Here, [1354]] and 5.0 eV [1045,1358] recommended for Ge (see Table 2).
462A simple method by chemical vapor deposition of CH4 and H2 on melted Cu (1360 K) is reported for synthesizing large 200 μm single crystals of monolayer
graphene within a continuous film [4201].
463As the root-mean-square roughness of a Cu surface increases from ∼30 to 65 nm, 𝜙e is found experimentally to decrease from 4.76 to 4.52 eV, the result
of which accords well with the theoretical prediction [931,2547]. For further information about such a dependence, see Section 4.2.5 of the ‘‘Effect of local
surface irregularities’’ [1351].
464Theoretical study of the work function decrease due to adsorption of K on graphite yields 2.34 eV at 1.0 ML [4211], which affords 𝜙e = 2.36 and 2.29 eV
for K when 4.7 and 4.63 eV are taken for graphite from a book [4211] and Table 2 [Here], respectively. The latter value for K well agrees with ours of
2.29 ± 0.02 eV (Table 2).
465The work function of 4.85 eV measured for the fresh surface of Si cleaved at ∼5 × 10−11 Torr is very close to that for Si(100) (see Table 2) in contrast to
4.45 eV found after exposing it to the residual gases for ∼100 h [613].
466Regarding PSI on Ta(110) [279], L represents lanthanides (12 elements).
467Experimental and theoretical studies about conical carbon nanotubes seem to be scanty compared with single- and multi-walled ones, but further information
about the former may be obtained from several articles [4287–4295], which well outline its synthesis, structure, property, applicability, etc.
468In contrast to free-standing graphene (𝜙e = 4.48 eV), adsorbed graphene is calculated to have 3.66, 4.03 and 4.87 eV on the substrates of Ni(111), Pd(111)
and Pt(111) [4174,4284], the dependence of which may be supported by the experimental data of 3.9, 4.3 and 4.8 eV [695], respectively. Such a dependence
is caused by the formation of an interface dipole and the electron transfer between the metal and graphene levels driven by the work function difference, as
well as the chemical interaction between graphene and the substrate metal [4174,4284].
469A comprehensive review is focused on the work function data published for Li in 1916–2009, thereby concluding that 𝜙e for Li is recommended to be not
less than 2.64 eV [4298].
470Regarding multi-walled nanotubes heated directly at ∼1800–2200 K, Richardson plots are found to exhibit an upward bend deviating from linearity and
also a current density much higher than that usually expected from Richardson’s law, thereby concluding it necessary to devise new theoretical descriptions
of thermal electron emission from individual low-dimensional nanostructures [4307].
471A theoretical study of graphene yields that 𝜙e changes from ∼4.3 to 4.6 eV depending upon the size (length and width) and upon the shape (armchair or
zigzag) [4332].
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472The value (4.3 eV) for Zn [4329] is estimated by the present author by extrapolating the plot (I vs. n−1∕3) for Zn-clusters (n = 2–20) in Fig. 5 [4329] based
on classical CSD model [4101]. For general information about clusters, see Section 11.
473The original value of 4.21 eV for 𝛾-Fe [310] may be corrected to be 4.66 eV according to Eq. (8) (see Section 2.8.6).
474With respect to Co, the allotropic transition temperature (𝑇A) for hcp ↔ fcc is estimated to be 695 K [4336] in contrast to 720 K [364]. It should be noted
that supported cobalt crystallites with a small size (∼10–500 Å) have the fcc structure even below 𝑇A [4338].
475The specimen of W{46%(100)} [390,391,533–535,659,825] corresponds to W(C) [825] in Table 6, where our theoretical value of 𝜙+ = 5.00±0.05 eV [2453]
is much larger than 𝜙a = 4.72 eV [825,2453], in contrast to 𝜙+ = 4.61 ± 0.05 eV < 𝜙a = 4.72 eV [825]. For further information, see Table 6 and Section 4.
476For the Ag-films (∼1–50 nm thick) on two perylene derivatives (DiMe–PTCDI and PTCDA (10 nm thick)) prepared on S–GaAs(100), their work functions
are found to be constant at 4.37 ± 0.05 eV and to increase up to 4.61 ± 0.05 eV at 50 nm thick [4341], the respective values of which are substantially
equal to ours of 4.39 ± 0.02 and 4.64 ± 0.06 eV recommended for Ag(poly) and Ag(111) in Table 2. In fact, a stronger peak of Ag(111) is observed for the
latter system by X-ray analysis [4341].
477The films (∼5–50 nm thick) of In on DiMe–PTCDI and PTCDA (see Footnote 476 just above) are found to have 𝜙e = 4.10 ± 0.05 and 4.44 ± 0.05 eV,
respectively [4341], the former of which is nearly equal to 4.05 ± 0.06 eV recommended for In(poly) in Table 2. According to X-ray analysis, the latter
consists mainly of In(101) [4341], but its work function has not yet been reported probably by any other worker (see Tables 1 and 2).
478For Au-nanoparticles formed on a Si-wafer covered with a monolayer of alkyl chains providing a tunnel junction, 𝜙e is found to change from ∼3.5 to 3.8 eV
as the particle radius increases from ∼20 to 80 Å together with doing from −2 to −8 in charge state inside the particle [4368].
479Regarding the boron sheets of alpha, distorted hexagonal and buckled triangular types, 𝜙e is theoretically evaluated to be 4.09, 4.89 and 5.39 eV, respectively
[4359].
480With respect to heavily phosphorus-doped nano-crystalline diamond prepared by CVD of PH3, CH4 and H2 on Mo at ∼1200 K, 𝜙e is measured by TE
(∼600–800 K) to be 2.3 eV [4371], which is corrected to be ∼2.4 eV by substituting 𝐴r = 15 A/cm2 K2 into Eq. (8).
481A comprehensive review is focused on the theoretical problems connecting with both development and operation of carbon nanotube field emitters [4372].
482For the film (∼15 nm thick) of Pt deposited on n-type silicon, 𝜙e is found to be decreased from 5.5 to 5.3 eV by illumination (18 mW/cm2) [4375]. Similarly
for W and Au films, 𝜙e is done so from 4.8 and 5.2 eV to 4.7 and 5.1 eV, respectively [4375].
483Together with typical work function data, a concise review summarizes the first-principles density-functional study about graphene which is expected as a
potential device material for gas sensor applications [4403].
484The data on 𝜙(100) = 4.46 eV and 𝜙(110) = 4.85 eV measured according to the reference of 𝜙(111) = 4.80 eV by FE for Ge [3539] are taken erroneously for
Si [Ref. 2040 in [1354]].
485Both 𝜙(110) = 4.90 ± 0.05 eV and 𝜙(111) = 4.14 ± 0.05 eV determined by TE for Mo [1400] are taken erroneously for W [Ref. 39 in [1354]].
486The datum on 𝜙(poly) = 4.74 ± 0.02 eV measured by TE for Re [666] is taken not only for Re but also for Rh erroneously [Ref. 1522 in [1354]].
487Each of the work function values (3.27–3.46 eV) corresponds to these two-dimensional islands which are formed from Hf (0.05–0.2 ML) near (100) faces
of W heated up to 1100 K [501].
488A comprehensive review is focused on the alkali metal adsorption on various types of carbon by outlining the theoretical and experimental studies on the
surface structure, charge transfer, work function change, etc. [1860].
489Graphene films with a very high uniformity in work function are epitaxially grown by heating silicon carbides at ∼1300–1900 K in vacuum or argon
[4455–4457].
490Only a part of the very plentiful work function data included in the articles [4460,4461] is added to Table 1 because the present author found the articles
just before sending the final version of this article to the Editor.

.1. Column 1; Surface species

For each chemical element, the surface species of various monocrystals under study are listed according to the face of lower
rystallographic index, ahead of any polycrystalline surface of bulk and layers. The system of A/B means that A is the sample layer(s)
r film(s), and that B is the substrate (metal, insulator, etc.) for supporting A. The superscript of n (or p) in such a form typically as
i(100)n means the n-type silicon including typically antimony as a dopant [2059]. Similarly, Si(100)p is the p-type silicon doped
ypically with boron [1872]. With respect to C(100)B, the diamond specimen is doped with boron, for instance [224,1830,2751,
tc.]. The annex of (fp) to Ag, for example, indicates that the Ag sample (4.25 ± 0.1 eV) consists of fine particles having a radius
f 5 ± 2 nm [1562] (see Footnote 204 in Table 1 and also Section 11.1). The expression of W{46.3%(310)} [489] indicates that
he sample surface consists mainly (46.3% = 𝛿m) of the (310) plane. This sample corresponds to W(D) [489] in Table 6 to be shown
ater.

Other symbols included in this column are as follows; HOPG = highly oriented pyrolytic graphite [e.g., 284], cnt = carbon
anotube exemplified as Cs/cnt/GsAs [291] and Cs/cnt/Si [3225], ins = insulator such as Al2O3-barium-stearate layers in
g/ins/Al [2028], ITO = indium tin oxide, like as cnt of C/ITO [284,1441,3795], nw = nanowire, shown typically as diamond of
/Si(nw)/Si [3305], O=Ti = oxygenated titanium such as Ti/O=Ti [2378] (see Footnote 95 in Table 1), ss = stainless steel substrate
uch as Se/ss and Te/ss [3429], and d = diameter, like as cnt of C (d ≥ 1 nm) [1169].

The crystal structures (bcc, fcc, hcp, etc.) of various chemical elements are compactly summarized in tables and figures [4021],
nd the theoretically predicted structures of 3𝑑–5𝑑 transition metals are found to accord with the experimental ones with only one
xception (79Au) [4022].

.2. Column 2; Incident beam (or vapor) for either probing work function or forming sample layers on a substrate

In an A/B system, the surface material (A) to be studied is directed onto the substrate (B, generally foreign material) in the
orm of beam or vapor in order to prepare the sample film(s) or layer(s) of A. In stead of such a beam direction, the ‘‘spillover’’ is
tilized for preparing a Th-film by activation of thoriated tungsten (1–2% ThO contained) at ∼2000 K [1749,1750,3667,3668] (see
2
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Footnote 380 in Table 1 and also the typical data (1)–(4) in Section 2.8.6). In a similar way, the layers of Sc and Y are successfully
formed from the alloys of Re–Sc (4–9%) [1979] (see Footnote 92) and Re–Y (4%) [4240], respectively. Occasionally, A is formed
on B not in vacuum but in solution by electroplating, typically preparing the systems of Cu/Ni [2294] and Re/W [1850]. Usually,
A on B is annealed (equilibrated) at a temperature higher than that of sample deposition. Then, work function of the sample (A) is
measured by a usual method (e.g., CPD = contact potential difference method). For the film or layer (A) having the coverage (𝜃)
above 1 ML, 𝜙e is listed in Table 1 in order to estimate the bulk work function of the sample (A) under study.

In some cases, A is prepared by chemical vapor deposition (CVD), where a sample gas (e.g., C6H6) is impinged to form a layer
(e.g., graphitic carbon) on B (e.g., Pt(111), initially 𝜙e = 4.95 eV) heated tentatively to a moderate temperature (e.g., 1200 K), and
the work function of the graphitic film (C/Pt(111)) thus prepared on Pt(111) is measured to be 4.45 eV at a lower temperature
(e.g., ∼300 K) [527,857,889].

In the case of thermal ion emission (usually called the ‘‘surface ionization’’), on the other hand, a foreign beam (or vapor) of
alkali halide (MX), for example, is impinged as a probing gas to be changed into positive or negative ions (M+ or X− in Column 3)
on a heated sample surface (Column 1) in order to determine 𝜙+ or 𝜙− (Column 6) by PSI or NSI (see Column 8). Typically for
Mo(100) (see Footnote 167 in Table 1), 𝜙+ = 4.28 ± 0.05 eV by PSI of Li to Li+ [129,572,573] and 𝜙− = 4.29 ± 0.02N eV by NSI of
CsI to I− [572,573] are entered in the same column (6) but on the separate lines adjacent with each other. Here, ‘‘N’’ means that
he work function value originates from NSI, corresponding to 𝜙− instead of 𝜙+.

As known very well, 𝜙e of any A/B system changes largely depending upon the surface coverage (𝜃), reaching to a nearly constant
alue (saturation) usually at 𝜃 ≥ 1 ML after passing a minimum (𝜙e

𝜇). In Table 1, such a saturated value is adopted as 𝜙e of the
ample A (bulk) under study. For a variety of A/B systems, the quantitative relation between 𝜙e and 𝜃 or 𝜙e and 𝜙e

𝜇 has long
een investigated both experimentally and theoretically by great many workers. The Cs/metal systems, for instance, are deduced
mpirically to have the relation of 𝜙e

𝜇 = 1.94−0.09𝜙e or 𝜙e
𝜇−𝜙e = 1.09(1.78−𝜙e) [4362]. For estimating the relation, 𝜙e is cited from

he data reported for Ru, Rh, Hf, W, Os, Ir and Pt [2105]. Much further information about the work function dependence upon 𝜃 is
btainable from excellent reviews [1209,1312,3818,3901,4118, etc.].

.3. Column 3; Ionic species employed to measure the work function effective for positive or negative ion emission

This column shows the species of thermal positive or negative ion (e.g., K+ or Cl−) produced from a probing beam or vapor
e.g., KCl, see Column 2) incident upon a hot sample surface (e.g., Nb at 1853−2025 K) [120] listed in Column 1 (for further
nformation, see Footnote 165 in Table 1). From the data on thermal positive or negative ion current, the effective work function
𝜙+ or 𝜙−) is determined according to Saha–Langmuir’s equation applicable to PSI or NSI (see Eq. (5) or (6) herein and also Sections
.1 or 8.1 in Ref. [1351]).

In some special cases, the probing ion (M+ or M−) to be used for work function measurement by PSI or NSI is produced by
elf-surface ionization (SSI), where the ion is produced directly from the sample surface itself by heating to very high temperatures
usually, above 2000 K). The species of ion thus produced is given in the parentheses like as (M+) or (M−) in the 3rd column. Such
roduction is reported to be applicable to graphite (C−

1 –C−
8 ) [3872], nickel (Ni+) [3874–3876], niobium (Nb+) [120,121,946,3401,

874,3877,3878] and (Nb−) [946], molybdenum (Mo+) [77,131,132,946–954,961,3869–3871,3877,3879,3880,3884,3886,3891]
nd (Mo−) [946,961], rhodium (Rh+) [3874,3877,3879], tantalum (Ta+) [77,137,804,805,946,3083,3877–3881,3887,3888,3891]
nd (Ta−) [804,946], tungsten (W+) [3,77,146,805,924,946,965,966,3083,3869,3870,3877,3879,3880,3882,3885,3887–3891] and
W−) [946,965,966], and also rhenium (Re+) [77,805,946,966,3083,3882,3883] and (Re−) [946,966]. It should be noted that the
bove metals have both high melting point (∼2700–3800 K except Ni and Rh) and moderate values of effective work functions
𝜙+ ≈ 4.8–5.4 and 𝜙e ≈ 4.1–5.0 eV, see Table 2) and, hence, that production of both M+ and M− from the same metal by SSI
s strongly governed by 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e ≈ 0.4–0.7 eV for Nb, Mo, Ta, W and Re (see Table 5). Further information about the
etermination of 𝜙+ by positive SSI or usual PSI may be obtained from Footnote 170 in Table 1.

Especially, negative SSI is employed as a useful technique to produce negative ions directly from both refractory metals
nd graphite, and also it is applied successfully to the determination of electron affinity (E) of C1–C3 [3872,3873], Nb [946],
o [946,961], Ta [946], W [946,965,966] and Re [946,966], although it is not easy to measure accurately the temperature

ependence of the negative ion current according to Eq. (18) [1351] because the current is subject to the space charge effect
ue to much stronger electron current arising from TE simultaneously [946,965,966].

.4. Column 4; Pressure of residual gases around a sample surface

Since all of the work functions (𝜙+, 𝜙e and 𝜙−) are generally very sensitive to the pressure (𝑃r) of residual gases surrounding
he sample surface under study, it is very important to consider whether or not the sample surface in the vacuum system employed
s essentially free from any gas adsorption effect. Usually, 𝑃r in Column (4) is the background pressure during each measurement
f work function. Here and there, unfortunately, 𝑃r is marked with a question mark in the column although the present author has
ried to do best for finding its value.

In an A/B system, on the other hand, 𝑃r is somewhat higher than the value indicated therein during the periods while A is
eposited on B and also while A is annealed on B to prepare equilibrated (smoothed) layers. The value in parentheses, such as
<10−10) for a Li/W system [2711], is not the total gas pressure but the partial one of active (chemisorptive) gases such as oxygen
nd its compounds.

Here, the pressure units have the relation of 1 Torr = 133.3 Pa (or N/m2) = 1333 dyne/cm2 = 1.333 mbar = 1.316 matm.
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2.5. Column 5; Surface temperature or its range for measuring work function

This column indicates the surface temperature (or its range) at which each work function is measured. In ultrahigh vacuum
such as below ∼10−10 Torr, a contact potential difference (CPD) method, for example, is generally applicable safely to the surface
even much below ∼1000 K. Even in usual high vacuum around ∼10−8 Torr, thermal ionic and electronic emissions from refractory
metals (e.g., Ta and Re), on the other hand, may be applied normally to those surfaces kept at T > 1800 K [65,67,104]. Under such
onditions, the surfaces are usually expected to be substantially clean.

With respect to A/B systems, work function (usually, 𝜙e to be measured) of the sample layers (A) is very sensitive to the thermal
rocessing after deposition upon the substrate (B). Each figure in parentheses in Column 5 is the annealing temperature (T a) for

equilibrating (smoothing) the layers under study. For instance, the expression of ∼300 (∼900) for B/Mo(110) [2698] in Table 1
indicates that 𝜙e is measured at ∼300 K after the boron layers are annealed at ∼900 K or in the range of 600–1200 K.

In typical cases of the layers (250–590 Å) of Ru, Pt and Au deposited on quartz or glass at 85 or 78 K [436], T a should be
selected to be higher than roughly one-third (T a ≥ Tm/3 ≈ 900, 680 and 450 K, respectively) of melting point (Tm = 2723, 2047 and
1336 K, respectively) in order that each of the layers may be expected to have the work function corresponding to each bulk [436].
The respective values (𝜙e = 5.10, 5.72 and 5.38 eV measured after annealing above Tm/3) are much higher than those (4.52, 5.46
nd 5.22 eV) observed before the annealing [436] (see Footnote 363 in Table 1). In other words, any layers deposited much below
oom temperature are generally low in 𝜙e, and the bulk work function is hardly determinable for the sample (A) without moderate
nnealing.

According to Fig. 1 [3280] based on much data on Ag-films prepared on glass, mica, etc. [349,414,1893,1897, etc.], the annealing
bove ∼460 K > Tm/3 ≈ 410 K yields a constant value of 4.4 eV, which is considerably higher than both of 4.2 and 4.25 eV
ound at 78 and 300 K without annealing, respectively [3280], and also which is essentially the same with ours of 4.39 ± 0.02 eV
ecommended for bulk Ag, as will be shown in Table 2.

Such data as exemplified above suggest that the lattice defects in deposited layers at start may largely be removed on
nnealing [3610]. As may be known well, 𝜙e decreases generally as the surface defects (e.g., step, kink, dislocation, vacancy) increase
n density. Typically for a W/W(110) system at ∼290–370 K, 𝜙e is found to decrease by up to 0.6 eV linearly as a function of the
quare root of coverage (𝜃) with increasing step atom density [1039,1093]. A similar phenomenon is observed for bulk-W(110),
oo, reducing from ∼5.2 to 4.9 eV as the step density increases from ∼0 to 7 × 106/cm [1037], as shown clearly in Fig. 19 [1037]

in Ref. [1351]. The local work function reductions at Au–Au and Cu–Cu monatomic steps are theoretically evaluated to be ∼0.8
and ∼1.3 eV, the respective values of which are in good agreement with those determined experimentally, as shown in Figs. 2 and
3 [1186]. For much further information about the effect of local surface irregularities upon work function, see Sections 3.3 [1313],
4.2 [1312] and 4.2.5 [1351].

In addition, a moderate annealing is very effective for promoting the monocrystallization of sample layers. Typically for
an Ag(111)/quartz system prepared at ∼300 K, its work function is increased by annealing at 773 K from 4.35 eV (54%)
to 4.64 eV (86%) [3313], the latter of which is equal to 4.64 ± 0.06 eV (∼100%) recommended for Ag(111) (see Table 2).
Here, each value in parentheses is the fractional surface area (F 111 = 𝛿m) largest among various ones (F i’s), and it mainly
governs 𝜙e for the ‘‘polycrystal’’ (𝛿m < 50% in general) and also for the ‘‘submonocrystal’’ (50 < 𝛿m < 100%), as will be
demonstrated typically for W(A)–W(D) (𝛿m = 33.6–46.3%) and also for W(E)–W(G) (𝛿m = 80–96%) in Section 4 and Table 6. For
further information about such an annealing effect for forming the ‘‘monocrystals’’ of Al(111), Ni(100), Ag(111) and Au(111),
see Footnotes 55, 125, 198 and 350 in Table 1, respectively. Of course, Table 1 includes a variety of monocrystal/substrate
systems such as Li(110)/Mo(111) [3361], Be(1010)/W(110) [3122], C60(111)/GeS(001) [457,543], Na(110)/Ni(110) [1417],
Al(100)/Ge(100) [3949], Si(100)/W(110) [3448], K(100)/KF(100) [2946], Sc(0001)/W(110) [1982], Ti(0001)/W(110) [4234],
Sb(100)/W(110) [1272], La(0001)/Mo(100) [640], Pt(111)/Ni(111) [773] and Au(110)/W(112) [2256]. Similarly, the plates
of mica, quartz, glass and so on are very useful as the substrate under a selected condition for preparing monocrystalline
samples such as (1) Be(0001) [2009], Ni(100) [314], Cu(111) [4001,4041,4379], Pd(111) [4379], Ag(110) [626,4001], Ag(111)
[626,1897,3276,4001,4040,4041,4378,4380–4382] and Au(111) [1202,1600,1897,4001,4380,4381] on mica, (2) Al(111) [612,
3313], Ag(111) [3313,4001], Pt(111) [2448] and Au(111) [3313] on quartz, and (3) Be(0001) [1782], K(110) [2476], Ti(0001)
[2378] and Ni(100) [314,315,1523], Ni(111) [314,315,1513,2934,3058] on glass, and also (4) Pt(111) on garnet or sapphire [2448].

Typically for growing Au(111) at ∼300–700 K, the substrates of mica and quartz make it possible to yield the results of
𝜙e = 5.3–5.47 eV [1202,1600,1897,4001] and 5.38–5.42 eV [3313] (Table 1), all of which are in fair or good agreement with our
values of 5.46 ± 0.07 eV and also with 5.31 eV [959] recommended for Au(111) in Refs. [1045,1358] (see Table 2). In addition,
various species of foreign metal substrates as well as those exemplified above are employed to grow a variety of metal monocrystals
and also to find their work function data to be acceptable today, as may be seen here and there in the first and 7th columns,
respectively, in Table 1.

When the sample deposition temperature (T d) is higher than the work function measurement one (T ), both of them are shown as
T{T d} in Table 1. For example, 78{540} [2256] means that Au is deposited onto W(112) at 540 K and, then, 𝜙e is measured at 78 K,
thereby yielding that Au(110)/W(112) has 𝜙e = 5.45 ± 0.03 eV without additional annealing. The value thus determined is close to
ours of 5.33 ± 0.09 eV recommended for bulk Au(110) in Table 2. On the other hand, 𝑇 = 𝑇d = 78 K yields 𝜙e = 5.3 eV [2256], which
corresponds not to Au(110) but to Au(poly) (see Table 1). Such an effect due to the difference between T and T d for gold/W(mono)
systems [2256] may be typically summarized below. Here, the first item is the sample layer/surface system whose layer structure
is assigned by the authors [2256] and also {A/B}, < C > and (D/E) show that 𝐴 = 𝑇 (K), 𝐵 = 𝑇d (K), C = 𝜃 (ML) and D = 𝜙e (eV)

e
measured experimentally [2256] and E = 𝜙 (eV) cited from Column 3 in Table 2.
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(1) Au/W(100) ∕∕ {78/78} < ≥3 > (5.20/5.30 ± 0.04).
(2) Au/W(100) ∕∕ {78/200} < ≥3 > (5.32/5.30 ± 0.04).
(3) Au/W(100) ∕∕ {78/500} < ≥3 > (5.55/5.30 ± 0.04).
(4) Au/W(110) ∕∕ {78/78} < 5 > (5.3/5.30 ± 0.04).
(5) Au/W(110) ∕∕ {78/160} < 4 > (5.4/5.30 ± 0.04).
(6) Au(111)/W(110) ∕∕ {78/420} < ≥3.5 > (5.32 ± 0.03/5.46 ± 0.07).
(7) Au/W(112) ∕∕ {78/78} < ≥3.5 > (5.3/5.30 ± 0.04).
(8) Au(110)/W(112) ∕∕ {78/540} < ≥3.5 > (5.45 ± 0.03/5.33 ± 0.09.

As may be seen above, the increase in T d has a tendency to increase 𝜙e for Au(poly), and that to form Au(mono) according to its
uitable selection. Further information about (4)–(6) and (7)–(8) is obtainable from Footnotes 349 and 348 in Table 1, respectively.

For depositing a sample onto a substrate successfully, it is very important to select T d properly. For instance, C60 forms the layers
(∼1500 Ǻ thick) on Si(111) at T d ≈ 300 K, but it does not appear to stick to the substrate at such a slightly high temperature as 393 K
3990]. It should be underlined that C60 on Mo(100) at ∼300 K remains intact in the adsorbed state up to 760 K [322]. Similarly,

C60/Rh(111) at ∼300 K is stable up to 750 K, above which it is decomposed into graphite like carbon [1007]. Interestingly, C60
decomposes on Ta(110) even at room temperature [316]. Formation of C60(111) is observed on various substrates at ∼300–500 K,
and its typical examples [457,543,4037–4041] are outlined in Footnote 433 in Table 1.

Instead of such a type of ribbon, wire or tip for supporting a sample to be investigated, another type of boat or box (typically,
quartz or ceramic made) is employed to prepare a binary system of metals with low melting point, and both temperature and
composition dependences of 𝜙e have long been investigated [2613,4144]. Typically for these systems of Na–Rb, Na–Cs, K–Rb and
K–Cs, each plot of work function vs. alloy component (𝛾c = 0–100% in mole fraction) is found to overlap well between theory [4150]
and experiment [2613, etc.]. Experimental results thus obtained at 𝛾c = 0 or 100% afford us work function data for a variety of pure
metals, too; such as Na [2612,2613], K [2470,2612–2614], Cu [2626,2634], Zn [2624], Rb [2470,2613,4150,4297], Cd [2626],
In [2624,2626], Sn [2624], Sb [2624,2626], Cs [2612,2613,4150,4297], Hg [2470,2613,2614] and Tl [2614] (for each data on 𝜙e,
see Table 1). In contrast to the other substrate systems (wire, ribbon and tip types) mentioned above, the boat or box system is
generally free from the physico-chemical effect of the supporting system upon the sample under study and, hence, it provides us
bulk work function data even after preheating the sample up to melting point or over.

The expression of 0E in Column 5 (e.g., Ca, Y, Zr, etc. [1747], see Footnote 174 in Table 1) means that the work function given
in Column 7 corresponds to 𝜙e

0 at 0 K after extrapolation of 𝜙e
T measured at higher temperature(s) according to 𝜙e

0 = 𝜙e
T − 𝛼𝑇 ,

where 𝛼 is taken as 3 k/2 = 1.29×10−4 eV/K [1747]. Strictly speaking, however, the temperature coefficient (𝛼) is not universal at
3 k/2, but dependent upon the surface species. It is reported to have a wide range between ∼± 10−4 and ±10−5 eV/K (see Table 6
in Ref. [1351]). Such a dependence makes it very difficult to determine exactly a minute work function change (usually, ∼10−2–
10−3 eV to be estimated as the net change due to each transition alone) initiated either by allotropic, magnetic or superconductive
transformation or by solid to liquid phase transition occurring at each critical temperature (e.g., Curie point), as will be outlined
later (see Tables 11–14 and Sections 7–10).

2.6. Column 6; Work function (𝜙+ or 𝜙−) effective for positive or negative ion emission

This column shows mainly the work function value (𝜙+) generally determined by positive surface ionization (PSI) from the data
on thermal positive ion current (i+) of M+ entered in Column 3, and 𝜙+ is listed according to an increase in value as exactly following
the increasing value of 𝜙e for each surface species. The figure in parentheses such as (4.44 ± 0.03) for Mo(100) [727,2210,3103] is
the value of 𝜙+ determined for the same specimen done for 𝜙e such as 4.40 ± 0.03 [727, etc.] entered on the identical line. Here,
all of the items in Columns 2–5 and 8 (TE) correspond to 𝜙e instead of 𝜙+. On the other hand, the items corresponding to 𝜙+ are
given on another line below by six lines (PSI), where 𝜙+ = 4.44 ± 0.03 eV and 𝜙e = (4.40 ± 0.03) eV are determined for the same
specimen in a separate experiment [727, etc.].

Experimentally, 𝜙+ is usually determined from the slope (𝜙+ − I) of a semi-Saha–Langmuir plot (ln i+ vs. 1/kT ) based on
Eq. (5) [2,1351].

𝛼+ = 𝛽+∕(1 − 𝛽+) = (𝑤+∕𝑤0) exp[(𝜙+ − 𝐼)∕𝑘𝑇 ]. (5)

Here, 𝛼+ is the ionization coefficient, 𝛽+ is the ionization efficiency of incident atom or molecule (e.g., M or MX), 𝑤+∕𝑤0 is the
statistical weight ratio of ion to atom (e.g., 1/2 for alkali metal), and I is the ionization energy of M. The ratio is equivalent to
exp [𝛥𝑆+/k], where 𝛥𝑆+ is the entropy change due to the ionization of M. Typically for alkali metals, the ratio is calculated to be
0.503−0.496 ≈ 1/2 at ∼1000−2000 K by using entropy data compiled in thermochemical tables [26–28].

The value of 𝜙− is measured usually by negative surface ionization (NSI) and evaluated from another Saha–Langmuir equation
[2,1351].

𝛼− = 𝛽−∕(1 − 𝛽−) = (𝑤−∕𝑤0) exp[(𝐸 − 𝜙−)∕𝑘𝑇 ]. (6)

Here, E is the electron affinity of the sample atom (X), and 𝑤−∕𝑤0 equivalent to exp [𝛥𝑆−/k] is the statistical weight ratio of X− to
X (e.g., 1/4 for halogen). The latter is calculable from the entropy change (𝛥𝑆−) by using thermochemical data [26–28]. Column 3
shows the species of X− produced by NSI of the beam (e.g., MX or X2 specified in Column 2) under the condition in Columns 4

− N N
and 5. The data on 𝜙 are given in Column 6, as in the form of either 5.4 for diamond of C(111) [3771] or (4.4 ) for a graphite
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film of C/Pt [675] in order to avoid the confusion with the data on 𝜙+. The latter example [675] shows that the surface of C/Pt
has the same value of 𝜙− = (4.4) eV and 𝜙e = 4.4 eV determined for the same specimen (see the same line in Column 7 for 𝜙e).
The condition and method employed for determining 𝜙e = (4.4) eV in Column 7 [675] are entered on the adjacent line just above,

here 𝜙− is shown as (4.4N) in Column 6 [675]. Quite similarly, 𝜙− = 4.36 ± 0.05N eV determined for Mo(100) by NSI of I2 [571]
is essentially equal to 𝜙e = (4.35 ± 0.05) eV listed on the same line. The latter is determined by thermal electron emission (TE) from
the same specimen in a separate experiment under substantially the same condition, as shown above by three lines including (4.36
± 0.05N) [571] (for further information, see Fig. 28 [571] in Ref. [1351]).

Each of the values with an asterisk, such as 𝜙+ = 4.66 ± 0.11* eV determined by PSI of Cs on W(100) [280] (see Footnote 278
in Table 1) and as 𝜙− = 4.49*N eV done by NSI of KCl on W [574], is evaluated by the present author using the respective data on
PSI and NSI reported therein [280,574] and also citing other factor(s) from other literatures. Typically, the latter [574] is evaluated
from the experimental data on the slope of a semi-Saha–Langmuir plot of 𝜙− −𝐸 = 0.87 eV found by NSI of KCl upon W [574] and
also from the literature value of 𝐸 = 3.62 eV as the electron affinity of Cl [577]. The feature of such a plot is outlined in Section
4.2.1 in Ref. [1351].

Interestingly, the thermal positive ion emission from the thick layers of a binary mixture (1:1 in mole ratio) of alkali halides
(e.g., LiI and NaI) deposited on a metal surface shows such a ‘‘suppression effect’’ that the integrated ion current of Li (𝐼 = 5.39 eV)
at 1080 K is reduced to 60% by the presence of NaI, although the ion emission of Na (5.14 eV) is little affected by the coexistent
LiI [1950]. This result is consistent with Eq. (5) predicting that the metal having a higher value of I is less ionizable by PSI. Similarly,
the thermal negative ion emission of I (𝐸 = 3.06 eV) from CsI is reduced by the coexistence (50% in mole fraction) of CsBr, in contrast
to little change in that of Br (3.36 eV) from CsBr [3626]. This result consists with Eq. (6) indicating the less efficiency in negative
ion emission by NSI in accordance with the smaller electron affinity.

Generally, there holds the relation of 1 eV = 0.07350 Ryd = 0.03675 hartree = 1.602 picoerg = 96.49 kJ/mol = 23.06 kcal/mol.
In a Fowler plot, 𝜙e (in eV) is determinable from 12336/𝜆0, where 𝜆0 is the threshold wave length in Å (10−8 cm).

2.7. Column 7; Work function (𝜙e) effective for electron emission

In this column, the work function (𝜙e) effective for electron emission is listed according to the order of increasing value for each
surface species. The value of 𝜙e in parentheses in Column 7 and that of 𝜙+ (or 𝜙−) in Column 6 on the same line are determined
separately for the same specimen in Column 1 under essentially the same condition specified in Columns 4 and 5. Typically, the
condition (5 × 10−9 Torr and ∼1200−2000 K) for 𝜙+ = 5.25±0.05 eV determined for W(110){>90% = 𝛿m} by PSI of Na is listed on the
same line [86,90,2094] together with 𝜙e = (5.25±0.05) eV, whilst that (5 × 10−9 Torr and ∼1500–1900 K) for 𝜙e = (5.25±0.05) eV by
TE is given on the adjacent line just above [86,90,2094] together with 𝜙+ = (5.25±0.05) eV. Such arrangement of either both 𝜙+ and
(𝜙e) or both (𝜙+) and 𝜙e listed on the same line makes it ready to recognize the thermionic contrast (𝛥𝜙∗ ≡ 𝜙+−𝜙e = 5.25−5.25 = 0.00
eV), the data of which will be summarized in Tables 4 and 5. Similarly on the adjacent lines, either both 𝜙− = (4.51∗N) eV and
𝜙e = 4.51 eV by TE [827] or both 𝜙− = 4.51∗N eV by NSI of I2 and 𝜙e = (4.51) eV for W [827] are listed each on the same line (see
Footnote 299 in Table 1). Therefore, this specific arrangement affords us directly the contrast (𝛥𝜙∗∗ ≡ 𝜙− − 𝜙e = 0.00 eV). Such a
result is compiled later together with many other data on 𝛥𝜙∗∗ for both mono- and polycrystals in Table 7.

When either 𝜙e and 𝜙+ or 𝜙e and 𝜙− are determined by either TE and PSI or TE and NSI during incidence of a sample such as
ither Yb on Ir(111) [104] or I2 on Mo(100) [571], of course, it is very important to select the working temperature to be high
either > 1800 K or > 1500 K) enough to avoid any sample adsorption effect on the measurements of either 𝜙e and 𝜙+ or 𝜙e and
− (see either Fig. 17 [104] or Fig. 28 [571] in Refs. [1351]).

.8. Column 8; Method employed for evaluating each work function

The symbols contained in this column are explained briefly below, and some of the typical methods are outlined together with
heir results and accuracy compared with those by other methods.

.8.1. General aspect
Each symbol listed as the method for evaluating the work function (𝜙+, 𝜙e or 𝜙−) is fully expressed below. An outline about the

rinciple, technique, feature, etc. for each method may be obtained from the references given at each end. A full detail for each
ethod is omitted in this article because it is outside the present scope, which is intended mainly to establish an up-to-date and

nriched database on work functions (𝜙e, 𝜙+ and 𝜙−) for almost all the chemical elements and also which is aimed to estimate the
ost probable values for various surface species as much as possible.

AI = autoionization [1103,3496,3789,4027] (see Footnote 38 in Table 1).
CPD = contact potential difference [12,13,1312,1354,3256,3894,3898,3902,3970].
CS = conductance spectroscopy [2993].
FE = field emission [12,13,1312,1354,3894,3906].
IP = ionization potential [2199,3208] (see Footnote 60 in Table 1).
NSI = negative surface ionization (thermal negative ion emission) [2,13,15,18,1351,3896].
PE = photoelectric effect [12,13,1312,1354,3894].
PSI = positive surface ionization (thermal positive ion emission) [12,13,15,18,1351,3896].
SP = stopping potential [2349,3922].
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TC = theoretical calculation [12,475,723,1312,1354,2427,3895,3901,3904,3905].
TCS = total current spectroscopy [2679,4050,4184] (see Footnote 409 in Table 1).
TE = thermal electron emission [1,12,13,1312,1351,1354,2129,3623,3724,3892–3894].

A brief discussion is made on the features of the absolute methods (FE, PE, PSI, TE) and the relative one (CPD), together with
omparison of the work function values obtained by different methods [13,358,654,890,1058,1693,2471,3586,3897]. Typically,
pplication of PE and CPD to Si(111)p yields 5.10 and 4.83 eV, respectively [1971], while that to Ge(111)p does the same value of

4.80 eV [1971] (see Footnote 155 in Table 1). For another example about several metals (Mo, Pd, Ag, Ta and Au), work function
values estimated at various temperatures (293–1078 K) are found to have little difference (0.00−0.09 eV) at each temperature
between the methods of PE and TE [3586]. Such a comparison among different methods will be discussed briefly in Section 2.8.2.

Regarding TC, many workers have tried to estimate 𝜙e using a variety of methods based on empirical or semi-empirical equations,
which correlate 𝜙e quantitatively with various chemico-physical properties such as (1) atomic sublimation energy (in 1928) [3926],
(2) atomic volume (1932–1936) [3927–3930] (see Section 2.8.4), (3) compressibility factor (1934) [3931] (see Section 2.8.4),
(4) specific surface energy (1947, 1969) [837,4049], (5) zero charge potential and atomic radius (1953–1956) [3932,3933], (6)
first ionization energy and either surface atomic density (1955) [1066] or covalent radius (1970) [4053], (7) electronegativity
(1956–1978) [706,1645,1955,3267,3512,3975] (see Section 2.8.3), (8) atomic radius (1958) [3318], (9) atomic weight, density
and the number of free electrons (1958) [3318], (10) both surface atom size and the sum of fractional bond numbers (1967–
1979) [1159,1980,2129,3067], (11) electronegativity and covalent radius of metal atom (1970) [1993], (12) surface energy of
monocrystal, lattice constant and number of valence electrons (1970) [4078] (see Section 5.5.2), (13) atomic sublimation entropy
(1979) [3925,4051], (14) melting point of monocrystal and atomic volume (1979) [1684] (see Section 5.5.4), (15) first ionization
energy and electron affinity (1982) [4136], and (16) atomic chemical potential (1999) [4270].

In contrast to the above classical theory, a modern theory about work function has been developed by many workers and,
nowadays, quantum theory is widely employed to calculate 𝜙e of various surface species, as will be outlined roughly for some of
the typical models in Section 2.8.5 and also discussed briefly in Section 6.

2.8.2. Comparison of work function data among different methods
A theoretical study of 𝜙e yields that 𝜙e

PE ≥ 𝜙e
TE ≥ 𝜙e

true and also 𝜙e
PE ≥ 𝜙e

FE ≥ 𝜙e
true for a given species [3897]. Here, 𝜙e

PE, 𝜙e
TE and

𝜙e
FE are the work functions to be measured by PE, TE and FE, respectively, and 𝜙e

true is the true work function. For monocrystals,
however, the above inequalities are not fully examined by experiment mainly because of the poverty in available experimental
data [3897]. For polycrystals, on the other hand, the data on 𝜙e

CPD measured for various metal films and bulk by CPD [349] are
taken as those on 𝜙e

true [3897], and the experimental data obtained by the three different methods for 14 metals reported by other
authors [488,1763, etc.] are compared among the above four species of 𝜙e’s [3897], thereby yielding several exceptions against the
above inequalities. In addition, the above relation of 𝜙e

PE ≥ 𝜙e
true ≡ 𝜙e

CPD is opposite to that of 𝜙e
PE < 𝜙e

CPD, as will be discussed later
in this section.

It should be noted that the above comparison of the data on 𝜙e
CPD, 𝜙e

PE, etc. reported for each metal species is made neither for
the same specimen nor under the identical conditions. We should always take it into consideration that 𝜙e for any surface species
is apt to change considerably from worker to worker or specimen to specimen, as may be seen in Table 1. Typically, 𝜙e for even
Ag-bulk (neither film nor layer) is found to have the wide ranges of 3.09–4.7 eV by TE, 3.64–4.90 eV by PE and 3.94–4.73 eV by
CPD, although these ranges are partly or considerably responsible for possible errors in measuring and/or processing.

In contrast to the above, let’s consider the application of both PE and CPD to the same specimen under common conditions
(𝑃r and T ). About the Cs/Be system prepared by Cs+ incidence up to 𝜃 = 1.0 ML, for instance, 𝜙e is measured by both PE and CPD,
thereby yielding the same value of 1.96 eV [3289]. By application of Kelvin, photoelectric and electron beam retarding methods to
the U-layers (𝜃 ≈ 2 ML) on W(100) at ∼300 K, 𝜙e is determined to be 3.73 ± 0.02, 3.73 ± 0.02 and 3.78 ± 0.03 eV, respectively,
for 𝛼-U [2471], thus showing essentially the same among the three.

In principle, the photoelectrically measured work function (𝜙e
PE) of a patchy surface is known to be weighted towards low values

(smaller local work functions), whereas the work function (𝜙e
CPD) measured by CPD yields the mean value (local work function

average) of the inhomogeneous surface under study [1693]. In practice, however, it is not so easy to confirm experimentally the
inequality of 𝜙e

PE < 𝜙e
CPD and also very difficult to evaluate accurately the difference between the two, because 𝜙e

CPD depends largely
upon the accuracy of the reference work function value to be employed. Typically for a Ba/W system [1365], 𝜙e

CPD = 2.39 ± 0.05
eV [1365] is corrected to be 2.42 ± 0.05 eV [349] by taking 4.55 ± 0.02 eV [349] instead of 4.52 eV [1365] as the reference work
function of W (see Footnote 238 in Table 1). Similarly to Ba/glass [1157], 2.52 eV [1157] may be corrected to be 2.35 ± 0.03
eV [349] by taking not 4.79 [1147] but 4.62 ± 0.03 eV [349] as the reference for Ag(100). Regarding Ba/Ag/Ta [1050],
𝜙e = 2.53 eV [1050] is corrected to be 2.66 ± 0.01 eV [349] by taking 4.44 ± 0.01 eV [349] instead of 4.31 ± 0.03 eV [1050]
as the reference work function of Ag. In another case where the reference work function of Au cited as 5.1 ± 0.1 eV [304] by
the authors [4159] is replaced with 5.30 ± 0.04 eV (Table 2, to be shown later), 𝜙e

CPD = 4.47 eV for Sn [4159] is corrected to be
4.27 ± 0.04 eV. These four examples indicate that 𝜙e

CPD is subject to change by up to ∼0.2 eV depending upon the choice of the
reference work function and hence upon its accuracy. The above change (0.03−0.20 eV) due to the selected reference work function
seems generally to be not negligibly small compared with the probably minute difference between 𝜙e

CPD and 𝜙e
PE.

Comparison of the data obtained for the same specimen in each measurement is summarized below as in the form of (𝜙e
PE/𝜙e

CPD)
in eV. Namely,
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(1) (3.82 ± 0.05/3.825 ± 0.01) for In [2814].
(2) (1.96/1.96) for Cs/Be [3289].
(3) (4.73 ± 0.07/4.73 ± 0.07) for Si(111)n [117,118].
(4) (3.73 ± 0.02/3.73 ± 0.02 or 3.78 ± 0.03) for 𝛼-U/W(100) [2471].
(5) (3.90 ± 0.03/3.90 ± 0.03 or 4.00 ± 0.04) for 𝛼-U/W(110) [2471].
(6) (3.66 ± 0.03/3.67 ± 0.03 or 3.73 ± 0.04) for 𝛼-U/W(113) [2471].
(7) (4.62 ± 0.06/4.97 ± 0.07 or 4.86 ± 0.10) for cnt/Si(111) [3246].
(8) (5.05 ± 0.06/5.19 ± 0.08 or 5.06 ± 0.04) for Pd/cnt/Si(111) [3246].
(9) (4.75 ± 0.06/4.84 ± 0.10 or 4.76 ± 0.09) for Ag/cnt/Si(111) [3246].

(10) (5.12 ± 0.06/5.46 ± 0.07 or 5.39 ± 0.08) for Pt/cnt/Si(111) [3246].
(11) (4.72 ± 0.06/4.92 ± 0.10 or 4.85 ± 0.11) for Au/cnt/Si(111) [3246].
(12) (5.38/5.45) for Au/glass [1074].
(13) (4.56/4.60) for Sb [1375].
(14) (4.26/4.34) for Bi [1375].
(15) (4.79/4.72) for As [1375].
(16) (4.14/4.27 ± 0.04) for Sn [4159].
(17) (3.91/3.97 ± 0.04) for Sn91–Zn9 [4159].
(18) (4.12/4.27 ± 0.04) for Sn96.5–Ag3.5 [4159].
(19) (4.28/4.38 ± 0.04) for Sn90–Au10 [4159].
(20) (4.59/4.64 ± 0.04) for Sn20–Au80 [4159].

Results (1), (2) (see Footnote 232 in Table 1) and (3) indicate that 𝛥𝜙e
C−P ≡ 𝜙e

CPD − 𝜙e
PE ≈ 0.0 eV. Those (4) (see Footnote 408

n Table 1), (5) and (6) yield 𝛥𝜙e
C−P = 0.00–0.01 and 0.05−0.10 eV by Kelvin and electron current retarding methods, respectively.

esults (7)–(11) (see Footnote 25 in Table 1) show 𝛥𝜙e
C−P = 0.09–0.35 and 0.01−0.27 eV before and after PE-measurements,

espectively. Those (13)–(15) afford that 𝛥𝜙e
C−P = 0.04 and 0.08 eV for Sb and Bi, respectively, in contrast to −0.07 eV for As.

hose (16)–(20) indicate that 𝛥𝜙e
C−P is as small as 0.05−0.15 eV for both Sn and its binary alloys. This is because the work function

f Au used as the reference for CPD [4159] is corrected from 5.1 ± 0.1 eV [304] to 5.30 ± 0.04 eV for Au (Table 2), as already
indicating above that 𝜙e = 4.27 eV corrected from 4.47 eV [4159] becomes nearer to our value of 4.34 eV recommended for
𝛽-Sn in Table 2. Here, the former (5.1 eV) [304] is included in Michaelson’s review [1045] (see Table 2) and in a CRC Handbook
(77th Ed., 1996–1997) [4137], but not done in any of the CRC handbooks (82nd−97th Eds., 2001−2017). It should be noted that
𝛥𝜙e

C−P = 0.05–0.15 eV for Results (16)–(20) becomes larger by 0.20 eV unless the reference work function is corrected. Provided
that each reference work function employed is free from a systematic error, then, many of the above results (1)–(20) except (15)
may be concluded to have a tendency of 𝜙e

CPD > 𝜙e
PE as an average of 𝛥𝜙e

C−P = 0.07±0.08 eV for various polycrystalline surfaces with
nhomogeneity in work function over the entire surface area, just as expected by consideration of each principle in work function
easurement. This conclusion is opposite to that of 𝜙e

PE ≥ 𝜙e
true ≡ 𝜙e

CPD [3897], as already mentioned above in this section.
For a monocrystalline sample of W(110) having the most probable values of 𝜙+ = 5.28 or 5.29 eV and 𝜙e = 5.32 or 5.31 eV

ecommended in Table 2 [Here or 1351], the actual work function is estimated to be 5.2 eV rather than 5.1 eV [2774] measured by
he authors [2773,3768] in considering a slight underestimation (by 0.1 eV) by a photoemission method [2774]. In consequence,
e = 5.2 eV thus estimated reaches an agreement with 𝜙+ = 5.2 eV determined by PSI of fast Na atom (100 eV) incident on
(110) [2773,2774], thereby affording 𝛥𝜙∗ ≡ 𝜙+ −𝜙e = 0.0 eV instead of 0.1 eV. However, it does not seem adequately acceptable

o consider such a large correction of 0.1 eV due to the underestimation by PE if the surface of W(110) is really homogeneous
𝛿m = 100% and hence 𝛥𝜙∗ = 0.00 eV) in work function over the entire surface area and also if the measurement itself is
ssentially free from any systematic errors. Suppose that the surface under study has 𝛿m ≈ 95% instead of 100% in the degree
f monocrystallization, for example, such a large correction as 0.1 eV may be acceptable when we consider such an actual example
hat 95%-W(100) has 𝛥𝜙∗ ≈ 0.1 eV, as exemplified for W(F) having 𝛥𝜙∗ = 0.09 ± 0.05 eV (see Table 6). It should be noted that the

difference (𝛥𝜙∗) between 𝜙+ and 𝜙e becomes larger from 0.0 up to ∼0.5 eV for W according as 𝛿m decrease from 100% to ∼50%
or less (see Section 4.3).

A clean and smooth surface of Ag(111) is found to have 𝜙e = 4.46 ± 0.02 eV measured by PE [625,1693]. On the other hand,
𝜙e for a surface of Ag(111) damaged by Ar+ impact (400 eV, 15 μA/cm2, 30 min) is 4.18 eV done by PE, slightly larger than 4.08
eV by CPD [1693]. This result indicates that application of PE to such a damaged surface is not suitable because any surface defect
gives some effect to the surface potential barrier and hence to photothreshold [1693].

In the case of 𝛽-Be (T ≈ 900–1200 K), a marked discrepancy (1.0 eV) of 𝜙e is found between 3.67 ± 0.01 eV measured by TE
for bulk (ribbon) by Wilson [179,650,3410,3413,3413] and 4.67 ± 0.10 eV done by CPD (electron beam retarding) for Be-films
on W(100) or W(110) by Zuber et al. [3550] (see Table 1). Further studies are desired to settle the question whether the above
discrepancy originates from the difference between the methods (TE and CPD) or/and that between the surface structures (bulk and
film).

2.8.3. Evaluation of work function from electronegativity
Regarding the quantitative relation between electronegativity and work function, the following equation [1955] is proposed first

by Gordy and Thomas (in 1956).

𝜙e = 2.27𝑋 + 0.34 (in eV) (7)
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Here, X is the electronegativity of each element in Pauling unit, and all of the work function values are cited from the review (first
edition) published by Michaelson in 1950 [1355] in order to establish this equation. The constant of 0.34 eV is the energy required
for electron to overcome the image force, identical for all metals [4047]. Much later (in 1973) by Miedema et al. [4048], Eq. (7)
is modified as 𝜙e = 2.6𝑋 + 0.3 (in eV), which is based on the work function data in Ref. [10] (Fomenko in 1966) and Ref. [304]
(Eastman in 1970), in addition to Ref. [1355] (Michaelson in 1950). Recently (2008), Zhou et al. have proposed other relations
such as 𝜙e = 1.92𝑋 + 0.99 and 1.06𝑋 + 2.51 (eV) for 𝑋 = 0.5–2.5 and 1.2–2.4 in Pauling unit, respectively [4203], where 𝜙e is based
n the review (second edition) published by Michaelson in 1977 [1045]. Consequently, we can not deny the possibility that the
bove coefficient and the constant may change considerably according to the reference data on both 𝜙e and X to be taken from
arious literatures for establishing the quantitative relation between the two. Nevertheless, such a relation as Eq. (7) is very useful
or estimating 𝜙e of some elements (e.g., Pm, Po and Ra), which have no experimental data still today (see Footnote 379 in Table 1).
his equation is successfully applied to many metals such as Sc (3.30/3.33 ± 0.04), Rb (2.13/2.17 ± 0.05), Ag (4.43/4.39 ± 0.02),
s (2.05/2.05 ± 0.05) and Hg (4.43/4.50 ± 0.02), where the numerator and denominator in each parentheses correspond to the
ork function values (in eV) calculated from Eq. (7) and to ours recommended in this article (see Table 2), respectively, clearly

howing a good agreement between the two in each parentheses.
About many other metals, however, the work function values based on Eq. (7) are found to be considerably different from ours

Table 2); typically, graphite (6.02/4.63 ± 0.06), Mg (3.07/3.65 ± 0.05), Ni (4.43/5.06 ± 0.06), and Ga (3.75/4.27 ± 0.06), where
he numerator and denominator originate from Eq. (7) and Table 2, respectively. Such a large difference or discrepancy found
etween the two values in each of the parentheses (Eq. (7)/Table 2) may originate probably from the uncertainty of X depending
pon the methods for estimating X and also from the incorrectness in 𝜙e [1355] taken as the reference to establish Eq. (7). It
hould be noted that the mean of work function estimated for each element by Michaelson [1355] is based on those literatures
ublished before 1950 and, hence, that many of the mean values therein are much different from ours (Table 2); typically, such as
e (4.72/5.27 ± 0.18), Ir (4.57/5.28 ± 0.04) and Au (4.58/5.30 ± 0.04). Here, (a/b) corresponds to (mean [1355]/ours (Table 2)). By
aking other data (published before 1970) compiled by Fomenko [10,12], the quantitative relation between 𝜙e and X are examined,
hereby reaching the conclusion that Eq. (7) is valid especially for some of the elements of low work functions [3975], in contrast
o those of high work functions. The concept of both electronegativity and Pauling unit may be thoroughly understandable from
he original paper [4006] and a comprehensive review [3974].

Gyftopoulos and Hatsopoulos show that the work function of a uniform surface equals the neutral orbital electronegativity of a
pin-orbital localized around a surface atom [2153].

.8.4. Evaluations of work function from atomic volume and from compressibility factor
As already mentioned in Section 2.8.1, work function studies have produced various ideas for expressing the quantitative relations

etween 𝜙e and physico-chemical properties. Among the sixteen ideas mentioned there, let’s examine here the two typical examples
f (2) atomic volume and (3) compressibility factor, which were published in an early stage (1930’s) of the historical progress in
ork function calculations. In this section, some of the calculated results alone will be summarized compactly below.

The atomic volume model (2) proposed by Rother and Bomke (in 1933) [3928] yields the typical results of B (4.8/4.50 ± 0.09),
i (3.5/3.87 ± 0.06), V (4.0/4.10 ± 0.05), Nb (3.9/4.11 ± 0.05), In (4.0/4.05 ± 0.06), La (3.2/3.27 ± 0.04), Hf (3.6/3.64 ± 0.06),
a (2.0/2.4 ± 0.3) and Ac (3.0/3.2 ± 0.3). Here, the numerator and denominator in parentheses correspond to the calculated
alue [3928] and ours (Table 2) in eV, respectively. Between the two, a good or fair agreement is found for each element. Especially,
he data on both Ra and Ac may be useful for supplementing several scanty data achieved to date by other theoretical models (see
able 1). It is worthy to underline that any experimental data are unavailable as yet today for the two as well as other radioactive
lements such as Po, At, Fr, etc. (see Table 1). On the other hand, the values calculated for Be, Mn, Ga, Zr and U [3928] have a
arge difference (∼0.6–1.5 eV) from ours in Table 2.

The model of compressibility factor (3) proposed by Chittum (in 1934) [3931] yields the data on nineteen elements, among which
numerator) a good agreement to our most probable value (denominator) is found for Ca (3.00/2.91 ± 0.03), Ag (4.33/4.39 ± 0.03)
nd Pt (5.34/5.30 ± 0.07) alone. The values calculated for the other sixteen elements (K, Co, Zn, Pd, W, etc.) result in a considerable
ifference (by ∼0.2–1.0 eV) from ours in Table 2.

Unluckily, almost all the empirical or semiempirical equations based on the models (1)–(16) mentioned in Section 2.8.1
re limited to evaluating 𝜙e for polycrystals alone. It is only three equations based on the model (10) proposed by Steiner
nd Gyftopoulos (in 1967, 1980) [1159,1980,3067], on (12) by Zadumkin et al. (in 1970) [4078] and on (14) by Chatterjee
in 1979) [1684] alone, that are applicable to evaluation of 𝜙e for monocrystals. At present, however, such classical models are
ade less important by an amazing progress in quantum theory applicable not only to polycrystals but also to monocrystals with

arious orientations, as will be exemplified briefly below.

.8.5. Evaluation of work function by quantum theory
Modern theory about work function is initiated by Wigner and Barden (in 1935), who apply the quantum calculation of 𝜙e

o alkali metals [3725], thus evaluating 𝜙e = 2.19, 2.15, 2.20, 2.20 and 2.15 eV for Li, Na, K, Rb and Cs, respectively, in addition
o 2.0 or 2.35 eV for Na by Bardeen (in 1936) [1458]. Such values either much deviate from or well agree with ours of 2.90,
.54, 2.29, 2.17 and 2.05 eV for respective alkali metals (see Table 2). In the next stage, Kohn has made a great contribution to
eveloping the better calculation of 𝜙e, the effectual framework for which originates from the density functional theory reported in
964–1966 by Kohn et al. [3638,4043,4044]. Further information about his brilliant achievements is obtainable from his Nobel
ecture entitled the ‘‘Electronic structure of matter — wave functions and density functionals’’ [1698] and also from several
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topics [4395–4397]. Hereafter, many workers have developed various models, the principle and feature of which are outlined in
excellent reviews [723,1312,2004,2427,3895,3982,4035]. Some of the models are exemplified together with the results calculated
for aluminum monocrystalline surfaces [1943]. For instance, the generalized gradient approximation with Perdew–Burke–Ernzerhof
(GGA/PBE) functional model applied to Al(111) yields 4.06 eV [482,1175] and 4.09 eV [1177], both slightly smaller than our
value of 4.24 ± 0.04 eV (see Table 2). On the other hand, the local density approximation with Coperly–Alder (LDA/CA) functional
model done so affords 4.19 eV [557], 4.21 eV [1179], 4.22 eV [1943] and 4.25 eV [721], entirely well agreeing with ours cited
just above. An outline about GGA etc. is given in each reference attached with the corresponding model. As brief supplements to
the comprehensive data book published in 1981 [1354], Fomenko compiles the theoretical work function data published for mono-
and polycrystals during the period of mainly ∼1980–1990 [485,4116], and also he summarizes theoretical and experimental data
reported for both Y and lanthanide monocrystals during 1976–1992 [4146].

In contrast to the above quite short and rough tracing about the development of quantum treatments of work function, much
further information is obtainable from the excellent reviews mentioned above [723, etc.]. In addition, a long and interesting history
of work function studies is compactly summarized as the ‘‘100 years of work function’’ by Halas in 2006 [4058] and as the ‘‘Electron
work function — past, present and future’’ in 2005 [4099] together with the ‘‘Fundamental physics of vacuum electron sources’’ in
2006 [2243] by Yamamoto. Interesting information may be obtained from the ‘‘Hundred years of anniversary of the oxide cathode
— A historical review’’ by Gaertner and den Engelsen in 2005 [1648] and also from the ‘‘Centennial Symposium on Electron’’ held
in 1997 [1419].

The work function dependence upon both surface and bulk properties is theoretically investigated by Lang and Kohn using the
uniform-positive-background model [475], a typical result of which will be outlined in Section 6.1, together with a brief comparison
with our most probable values listed in Table 2.

2.8.6. Correction of work function values measured from Richardson plots
The Richardson constant of 𝐴R in Richardson equation [1,2,1351] has seldom been measured exactly to be the theoretical value

of 120 A/cm2 K2 for any surface species (e.g., Be, Si, Ta and Pt) by many experimental attempts, as may be seen in handbooks
compiled by Fomenko [10,12,1354]. Typically, 𝐴R for Si is reported to be 0.2–38 A/cm2 K2 [10,12,1354], similarly for Si(110),
Si(111), Si(112) and Si (541) as to be 0.004–3 A/cm2 K2 with one exception of ∼130 A/cm2 K2 [1354]. Particularly for molten
Ag above 1234 K, 𝐴R is found to be extremely as small as 6.4 × 10−8 A/cm2 K2 [1466] (see Footnote 431 in Table 1). Such a
reduction in 𝐴R is mainly because a great part of the electrons has no energy enough to escape from the surface into vacuum and
also because such ‘‘internal reflection’’ is subject to dependence upon surface temperature and, hence, 𝜙e is generally measured to
be considerably smaller than the normal value, as will be demonstrated just below.

Typically, Si(111) is found to have 𝜙e ≈ ∼4.0–4.8 eV by TE [72–75, etc.], in contrast to ∼4.4–4.8 eV by PE [1181,3969, etc.]
and also to ∼4.6–4.9 eV by CPD [117,1959, etc.], as may be seen in Table 1. In addition, the former by TE is again smaller than
𝜙+ ≈ 4.6–5.2 eV [72–75] by PSI even in nearly the same temperature range. Consequently, Si(111) is often found to yield the results
of 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e ≠ 0 eV, although many other monocrystalline surfaces of Ta, W, etc. are usually determined to have 𝛥𝜙∗ = 0.0 eV
just as predicted by theory, as will be shown in Tables 4 and 5.

In order to avoid such a typical error due to the reduction in 𝐴R, Hensley proposes the simple method (in 1961) that the work
function to be measured directly by TE may be adequately corrected according [3623] to

𝜙e
H = 𝜙e

r + 𝑘𝑇 ln(120∕𝐴r ). (8)

Here, 𝜙e
r is the work function (𝜙e) measured directly together with 𝐴r ≠ AR = 120 A/cm2 K2 from a Richardson plot, where 𝐴r is

the apparent Richardson constant corresponding to (1 − re) AR and re is the internal reflection coefficient [2,12,13,1354]. Firstly
(in 1967) by Hopkins et al. [1484], Eq. (8) is applied to U/W systems (𝜃 = 1–50 ML), thereby yielding such a typical result that
𝜙e
r = 3.14±0.02 is corrected to be 𝜙e

H = 3.36±0.04 eV according to the data on 𝐴r = 20±7 A/cm2 K2. The latter is nearer to 3.42±0.05
eV for 𝛾-U(poly) recommended by us in Table 2.

Regarding a specimen of p-type Si(111)p measured to have 𝜙e
r = 3.2 eV and 𝐴r = 4 × 10−3 A/cm2 K2 at ∼1100–1150 K [3540],

for example, 𝜙e
H is calculated by the present author to be 4.2 eV from Eq. (8). This value agrees exactly with 𝜙e = 4.2 eV determined

directly with the same specimen at ∼1150–1450 K [3540], where 𝐴r is measured to be 130 A/cm2 K2 [3540]. Comparison of the
results between the two temperature ranges indicates that the probability of these electrons escaping to vacuum after overcoming
the surface barrier on Si(111) is extremely small in the lower temperature range and also suggests that the silicon specimen has re
> 0.99 (larger than 99%) in the lower temperature range in contrast to the higher one of re ≈ 0, if the above experimental data are
free from any systematic errors.

In another case of Si(111)p [73], 𝜙e
r = 4.07± 0.05 eV with 𝐴r = 0.2–0.4 A/cm2 K2 at ∼1300–1600 K by TE [73] may be corrected

to be 𝜙e
H = 4.83 ± 0.04 eV = 𝜙e, similarly above by the present author. This is essentially equal to 4.84 ± 0.14 and 4.86 ± 0.11 eV

determined not from a Richardson plot but from an electron retarding field one (Anderson method [1365]) at ∼1500 K [73]. In
addition, 𝜙e

H (=𝜙e) is in good agreement with 𝜙+ = 4.88 ± 0.10 and 4.85 ± 0.08 eV determined for the same specimen by a cesium
ion retarding method based on PSI at ∼1500 K [73], thereby yielding 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e = 0.02 ± 0.02 eV = 0.0 eV, just as predicted by
theory for a monocrystalline surface under the normal condition accepted in general (see Footnote 66 in Table 1).

In the same way as Si(111)p with 𝐴r = 0.2–0.4 A/cm2 K2 [73] exemplified just above, 𝜙e
r = 4.04 ± 0.05 eV measured for n-type

Si(111)n (𝐴r = 0.3 A/cm2 K2, estimated) by TE (1340–1600 K) [72] may be similarly corrected to be 4.80 ± 0.04 eV = 𝜙e
H, which

yields 𝛥𝜙∗ = 0.06 ± 0.08, 0.07 ± 0.05 and 0.10 ± 0.11 eV since 𝜙+ = 4.86 ± 0.07, 4.87 ± 0.03 and 4.90 ± 0.10 eV by PSI of Li, Na
∗ ∗
and In on the same way, respectively [72]. Again, 𝛥𝜙 ≈ 0.0 eV is obtained in contrast to 𝛥𝜙 = 0.82–0.86 ≠ 0 eV in the former
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(𝜙e = 4.04 eV) measured directly from a Richardson plot. These results may suggest that many couples of the data on 𝜙+ > 𝜙e, such
as 𝜙+ = 4.78 ± 0.05 eV > 𝜙e = 4.59 ± 0.05 eV determined for a specimen (A) of Si(111), as well as others (B–E) [75], are mainly
aused by underestimation of 𝜙e due to re > 0 mentioned above. Additional information on the above problem is obtainable from
ootnote 66 in Table 1.

In respect of 𝛾-U (flat strip) [3961], 𝜙e
r = 3.27±0.05 eV is corrected to be 𝜙e

H = 3.56±0.05 eV, slightly larger than ours (3.42 ± 0.05
V) in Table 2. This may be mainly because 𝐴r = 6 A/cm2 K2 is only roughly estimated [3961].

Another study of 𝛽- and 𝛾-Fe yields 𝜙e
r = 4.48 ± 0.06 eV with Ar = 26 A/cm2 K2 for 𝛽 and 𝜙e

r = 4.21 ± 0.05 eV and 1.5 A/cm2 K2

or 𝛾 [310], the respective work function values of which may be corrected to be 4.64 ± 0.06 and 4.66 ± 0.05 eV by Eq. (8) (see
able 1). Consequently, the allotropic work function change (𝛥𝜙e

𝛾𝛽 ≡ 𝜙e
𝛾 − 𝜙e

𝛽) is corrected from −0.27 ± 0.08 to 0.02 ± 0.08 eV,
only the latter of which is in fair agreement with any other five values of 𝛥𝜙e

𝛾𝛽 = 0.00–0.09 eV and also well agrees with their mean
value of 0.04 ± 0.03 eV, as will be shown in Table 11.

Regarding the two surface species of Th/ThO2-W and 𝛾-U/W, some of the typical data are summarized below as in the form of
(T ) in K, {Ar} in A/cm2 K2 and (𝜙e

r/𝜙
e
H) in eV, where 𝜙e

H with # is calculated by Hopkins et al. [1484] while the others are done by
the present author. In addition, our most probable value of 𝜙e (Table 2) is given together with Means of 𝜙e

r and 𝜙e
H. For Data (1)–(4)

below, the Th-films on W are prepared from a sintered cathode (67% thoria and 33% tungsten) by activation at 2040 K [3800],
which corresponds to the ‘‘spillover’’ method mentioned in Section 2.2.

(1) Th/ThO2-W (∼1100–1500) ∕∕ {69.1} (3.40/3.46) [3800].
(2) Th/ThO2-W (∼1100–1500) ∕∕ {61.6} (3.26/3.33) [3800].
(3) Th/ThO2-W (∼1100–1500) ∕∕ {10.6} (2.91/3.18) [3800].
(4) Th/ThO2-W (∼1100–1500) ∕∕ {9.6} (3.0/3.28) [3800].

(1)–(4) Means of 𝜙e
r = 3.14 ± 0.40 eV and 𝜙e

H = 3.31 ± 0.10 eV, while 𝜙e = 3.37 ± 0.04 eV (Table 2).
(5) 𝛾-U/W (1250–1400) ∕∕ {114 ± 12} (3.47 ± 0.03/3.48 ± 0.03#) [232].
(6) 𝛾-U/W (∼1000–1400) ∕∕ {80 ± 30} (3.42 ± 0.04/3.45 ± 0.1#) [1484].
(7) 𝛾-U/W (∼1000–1300) ∕∕ {20 ± 7} (3.14 ± 0.02/3.36 ± 0.04#) [1484].
(8) 𝛾-U/W (1250) ∕∕ {8} (3.2/3.5) [2098].
(9) 𝛾-U/W (1250–1400) ∕∕ {5} (3.0/3.38#) [232].

(5)–(9) Means of 𝜙e
r = 3.25 ± 0.18 eV and 𝜙e

H = 3.43 ± 0.06 eV, while 𝜙e = 3.42 ± 0.05 eV (Table 2).

As may be seen in Data (1)–(4) as well as those (5)–(9) above, with exceptions of (3) and (8), 𝜙e
r tends to decrease generally

with decreasing Ar , but each mean value of 𝜙e
H becomes nearer to ours of 𝜙e, just as expected in general. Additional information

about such a correction according to Eq. (8) may be obtained from Footnotes 384–386, 431 and 456 in Table 1.
As a quantitative relationship between 𝜙e

r and Ar , the equation of log10 Ar = −6.85 + 1.87𝜙e
r is determined experimentally for

Pt [2299,2300]. This is consistent with the above result that the more Ar becomes smaller, the more 𝜙e
r does so.

2.9. Column 9; References for each work function study

Plural references on the same line in the 9th column correspond to the same author(s) or group(s). References of [1]–[1350]
are contained also in the previous review [1351], and many of them afford us further information and data on the work functions
(𝜙+, 𝜙e and 𝜙−) for both chemical elements and compounds. But, work function data on the latter (e.g., SiC, LaB6 and ZrC) are not
included in Table 1 herein. Of course, all of the data on the three kinds of work functions for about 400 surface species of 18 kinds
of chemical elements (6C–79Au) covered previously [1351] are also included here together with newly cited ones (about 200 surface
species of 70 elements) for both mono- and polycrystals covering the total of about 600 surface species of 88 elements (1H–99Es)
on the bases of 4461 references published to date.

2.10. Footnotes for further information

Table 1 is attached with 490 footnotes, which afford additional information about the correlations of work function (𝜙e or 𝜙+)
with (1) its variation according to T, 𝑃r , 𝜃, etc. employed for the specimen under study, (2) its dependence on the size of either fine
particles, nanowires or clusters, (3) its revision or correction by the present or other authors, (4) its dependence upon the degree of
monocrystallization (𝛿m) estimated for film or bulk samples, (5) its coincidence between theory and experiment done for the same
specimen, (6) its changes at critical temperatures causing various physical transitions, (7) its increase by annealing (smoothing) the
layer surface under study, (8) its coincidence among different measuring methods, and so on.

3. Most probable values of effective work functions (𝝓+, 𝝓− and 𝝓𝐞)

This section outlines the method to estimate the most probable values of the three kinds of work functions for essentially clean
surfaces of both mono- and polycrystals after examining the reliability or acceptability for each of the great many data listed in
Table 1 and also summarizes the results in Table 2 together with literature values recommended previously for each surface species
independently by other several authors in order to examine the objective reliability or acceptability of our most probable value for

each species.
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Table 2
Effective work functions (𝜙e, 𝜙+ and 𝜙−) recommended as the most probable values [Here] by the present author using the data in Table 1, and the effective
one (𝜙e) selected as either typical or preferable value by other authors [1045,1358], and also that (𝜙e) recommended formerly by another author [12,1354]
and previously by the present author [1351] for essentially clean surfaces.

No. Surface 𝜙e (eV)
[Here]

𝜙+ (eV)
[Here]

𝜙− (eV)
[Here]

𝜙e (eV)
[1358]

𝜙e (eV)
[1045]

𝜙e (eV)
[12,1354]

𝜙e (eV)
[1351]

1 H(100)f (1) 3.7z(4) – – – – – –
1 H(110)f 3.8z – – – – – –
1 H(111)f 3.8z – – – – – –
1 H(poly)f 3.89 ± 0.09(3) – – – – – –

3 Li(100)b 3.12 ± 0.03(3) – – – – – –

3 Li(110)b 3.37 ± 0.05 – – – – – –

3 Li(111)b 3.04 ± 0.08 – – – – – –
3 Li(112)b 3.3z(4) – – – – – –
3 Li(poly)b 2.90 ± 0.03 – – 2.93 [363] 2.9 [363] 2.38 –

4 𝛼-Be(0001)hc 5.27 ± 0.11 – – – – – –
4 𝛼-Be(1010)hc 4.6 ± 0.1y(4) – – – – – –
4 𝛼-Be(0111)hc 5.1 ± 0.1x – – – – – –
4 𝛼-Be(0112)hc 4.9 ± 0.1x – – – – – –
4 𝛼-Be(0113)hc 4.6 ± 0.1x – – – – – –
4 𝛼-Be(1121)hc 4.7 ± 0.1x – – – – – –
4 𝛼-Be(1122)hc 4.9 ± 0.1x – – – – – –
4 𝛼-Be(1123)hc 4.3 ± 0.1x – – – – – –
4 𝛼-Be(1124)hc 5.7z – – – – – –
4 𝛼-Be(2130)hc 4.3 ± 0.1x – – – – – –
4 𝛼-Be(3140)hc 4.4 ± 0.2x – – – – – –
4 𝛼-Be(poly)hc 4.28 ± 0.13 – – 4.98

[2009](8)
4.98
[2009](8)

3.92 –

4 𝛽-Be(poly)h 4.2 ± 0.5 – – – – – –

5 B(poly) 4.50 ± 0.09 – – – – 4.5 –

6 C(100)d 5.0 ± 0.6 – – – – – –
6 C(111)d 5.4 ± 0.5 – – – – – –
6 C(112)d 5.2z – – – – – –
6 C(poly)d 4.6 ± 0.6 – – – – – –
6 C(0001)h 4.6 ± 0.3 – – – – – –
6 C(HOPG)h 4.66 ± 0.05 4.65 ± 0.12 – – – – –

6 C(film) 4.47 ± 0.05 4.50 ± 0.04 4.4 ± 0.1x – – – –

6 C(poly) 4.63 ± 0.06 4.45 ± 0.05x 4.6 ± 0.2z 5.0 [299] 5.0 [299] 4.7 4.6 ± 0.1
6 C(graphene) 4.67 ± 0.11 – – – – – –
6 C60(111) 4.76 ± 0.05y – – – – – –
6 C60(poly) 4.87 ± 0.06 – – – – – –
6 C(swnt) 4.78 ± 0.06 – – – – – –
6 C(mwnt) 4.63 ± 0.04 – – – – – –

6 C(conical) 4.3 ± 0.2y – – – – – –

11 Na(100)b 2.80 ± 0.04 – – – – – –

11 Na(110)b 3.05 ± 0.04 – – – – – –

11 Na(111)b 2.68 ± 0.06 – – – – – –
11 Na(112)b 3.1z – – – – – –
11 Na(poly)b 2.54 ± 0.03 – – 2.36

[3337](11)
2.75
[3424](11)

2.35(11) –

11 Na(liquid) 2.6 ± 0.2y – – – – – –

12 Mg(0001)hc 3.79 ± 0.07 – – – – – –
12 Mg(1010)hc 3.7 ± 0.1y – – – – – –
12 Mg(0111)hc 3.8 ± 0.1x – – – – – –
12 Mg(0112)hc 3.7 ± 0.1x – – – – – –
12 Mg(0113)hc 3.6 ± 0.1x – – – – – –
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Table 2 (continued)

No. Surface 𝜙e (eV)
[Here]

𝜙+ (eV)
[Here]

𝜙− (eV)
[Here]

𝜙e (eV)
[1358]

𝜙e (eV)
[1045]

𝜙e (eV)
[12,1354]

𝜙e (eV)
[1351]

12 Mg(1121)hc 3.6 ± 0.1x – – – – – –
12 Mg(1122)hc 3.7 ± 0.1x – – – – – –
12 Mg(1123)hc 3.6 ± 0.1x – – – – – –
12 Mg(2130)hc 3.6 ± 0.1x – – – – – –
12 Mg(3140)hc 3.6 ± 0.1x – – – – – –
12 Mg(poly)hc 3.65 ± 0.05 – – 3.66 [1968] 3.66 [1968] 3.64 –

13 Al(100)f 4.28 ± 0.05 – – 4.20 [612] 4.41 [241] – 4.36 ± 0.10

13 Al(110)f 4.05 ± 0.05 – – 4.06 [612] 4.06 [612] – 4.21 ± 0.09

13 Al(111)f 4.24 ± 0.04 – – 4.26 [612] 4.24 [241] – 4.28 ± 0.04

13 Al(poly)f 4.26 ± 0.03 4.9 ± 0.1x – – 4.28 [612] 4.25 4.23 ± 0.06

14 Si(100)d 4.82 ± 0.05 4.72 ± 0.10 – 4.91p [1225] 4.91p [1225] – 4.71 ± 0.16

14 Si(110)d 4.44 ± 0.24 4.36 ± 0.03 – – – – –

14 Si(111)d 4.86 ± 0.09 4.83 ± 0.07 – 4.60p [118] 4.60p [118] – 4.79 ± 0.07
14 Si(112)d 4.1 ± 0.2 – – – – – –
14 Si(541)d 4.0 ± 0.3y – – – – – –
14 Si(poly)d 4.65 ± 0.09 – – 4.85n [613] 4.85n [613] 4.8 4.6 ± 0.1

15 P(111) 1.4z – – – – – –
15 P(poly) 5.0 ± 0.1y – – – – – –

16 𝛼-S(poly)r 5.31 ± 0.08 – – – – – –

19 K(100)b 2.47 ± 0.04 – – – – – –

19 K(110)b 2.74 ± 0.04 – – – – – –

19 K(111)b 2.39 ± 0.02 – – – – – –

19 K(112)b 2.7z – – – – – –
19 K(poly)b 2.29 ± 0.02 – – 2.29 [ ? ] 2.30 [3337] 2.22 –

19 K(liquid) 2.28 ± 0.02y – – – – – –

20 𝛼-Ca(100)f 3.4 ± 0.4 – – – – – –
20 𝛼-Ca(110)f 3.3 ± 0.3 – – – – – –
20 𝛼-Ca(111)f 3.5 ± 0.2 – – – – – –
20 𝛾-Ca(100)b 3.5z – – – – – –
20 𝛾-Ca(110)b 3.5 ± 0.6x – – – – – –
20 𝛾-Ca(111)b 3.4z – – – – – –
20 𝛾-Ca(112)b 3.8z – – – – – –
20 𝛼-Ca(poly)f 2.91 ± 0.03 – – 2.87 [1997] 2.87 [1997] 2.80 –

21 𝛼-Sc(0001)hc 3.7 ± 0.1 – – – – – –
21 𝛼-Sc(1010)hc 3.5 ± 0.2y – – – – – –
21 𝛼-Sc(1124)hc 4.0z – – – – – –
21 𝛽-Sc(100)f 4.4z – – – – – –
21 𝛽-Sc(110)f 4.1z – – – – – –
21 𝛽-Sc(111)f 4.3 ± 0.4x – – – – – –
21 𝛼-Sc(poly)hc 3.33 ± 0.04 – – 3.5 [304] 3.5 [304] 3.3 –

21 𝛽-Sc(poly)f 3.4x – – – – – –

22 𝛼-Ti(0001)hc 4.53 ± 0.10 – – – – – –
22 𝛼-Ti(1010)hc 4.2 ± 0.4y – – – – – –
22 𝛼-Ti(1011)hc 4.8z – – – – – –
22 𝛼-Ti(1124)hc 4.2z – – – – – –
22 𝛽-Ti(100)b 3.9z – – – – – –
22 𝛽-Ti(110)b 4.6z – – – – – –
22 𝛽-Ti(111)b 3.8z – – – – – –
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No. Surface 𝜙e (eV)
[Here]

𝜙+ (eV)
[Here]

𝜙− (eV)
[Here]

𝜙e (eV)
[1358]

𝜙e (eV)
[1045]

𝜙e (eV)
[12,1354]

𝜙e (eV)
[1351]

22 𝛽-Ti(112)b 4.2z – – – – – –
22 𝛼-Ti(poly)hc 3.87 ± 0.05 – – 4.33 [304] 4.33 [304] 3.95 –

22 𝛽-Ti(poly)b 3.93 ± 0.16 – – – – – –

23 V(100)b 4.27 ± 0.05 – – – – – –

23 V(110)b 5.04 ± 0.07 – – – – – –
23 V(111)b 4.13 ± 0.04y – – – – – –
23 V(112)b 4.3 ± 0.3x – – – – – –
23 V(116)b 4.0 ± 0.1x – – – – – –
23 V(poly)b 4.10 ± 0.05 – – 4.3 [304] 4.3 [304] 4.12 –

24 Cr(100)b 4.43 ± 0.14 – – – – – –
24 Cr(110)b 4.99 ± 0.19 – – – – – –
24 Cr(111)b 3.8 ± 0.1y – – – – – –
24 Cr(112)b 4.1 ± 0.1x – – – – – –
24 Cr(116)b 3.8z – – – – – –
24 Cr(210)b 4.2z – – – – – –
24 Cr(poly)b 4.38 ± 0.04 – – 4.5 [304] 4.5 [304] 4.58 –

25 𝛾-Mn(100)f 5.2 ± 0.3y – – – – – –
25 𝛾-Mn(110)f 4.7z – – – – – –
25 𝛾-Mn(111)f 5.3 ± 0.1y – – – – – –
25 𝛿-Mn(100)b 4.8 ± 0.4y – – – – – –
25 𝛿-Mn(110)b 5.3 ± 0.3y – – – – – –
25 𝛿-Mn(111)b 4.1z – – – – – –
25 𝛿-Mn(112)b 4.6z – – – – – –
25 𝛼–𝛽-Mn(poly)c 4.08 ± 0.11 – – 4.1 [304] 4.1 [304] 3.83 –
25 𝛾-Mn(poly)f 4.3 ± 0.1x – – – – – –
25 𝛿-Mn(poly)b 3.8z – – – – – –

26 𝛼-Fe(100)b 4.64 ± 0.05 – – 4.67 [921] 4.67 [921] – 4.59 ± 0.13

26 𝛼-Fe(110)b 4.99 ± 0.04 – – – – – 5.19 ± 0.08

26 𝛼-Fe(111)b 4.4 ± 0.3 – – 4.81 [487] 4.81 [487] – –
26 𝛼-Fe(210)b 4.2 ± 0.1x – – – – – –
26 𝛼-Fe(211)b 4.4 ± 0.4y – – – – – –
26 𝛼-Fe(310)b 4.0 ± 0.1x – – – – – –
26 𝛼-Fe(321)b 4.3 ± 0.1x – – – – – –
26 𝛽-Fe(100)b 4.6 ± 0.4y – – – – – –
26 𝛽-Fe(110)b 5.8z – – – – – –
26 𝛽-Fe(111)b 4.8z – – – – – –
26 𝛾-Fe(100)f 5.28 ± 0.19 –. – – – – –
26 𝛾-Fe(110)f 5.0z – – – – – –
26 𝛾-Fe(111)f 5.6 ± 0.1x – – – – – –
26 m-Fe(100)f /Cu(100)(16) 5.38 ± 0.22 – – – – – –
26 𝛼-Fe(poly)b 4.55 ± 0.05 – – – 4.5 [304] 4.31 4.66 ± 0.08

26 𝛽-Fe(poly)b 4.52 ± 0.17 – – – 4.62 [305] – –
26 𝛾-Fe(poly)f 4.54 ± 0.05 – – – 4.68 [305] – –

26 𝛿-Fe(poly)b 4.76 ± 0.1x – – – – – –
26 m-Fef /Cu(100) 4.58 ± 0.10y – – – – – –

27 𝛼-Co(0001)hc 5.30 ± 0.18 – – – – – –
27 𝛼-Co(1010)hc 5.5z – – – – – –
27 𝛼-Co(1011)hc 5.3z – – – – – –
27 𝛼-Co(1120)hc 4.1z – – – – – –
27 𝛼-Co(1124)hc 4.8z – – – – – –
27 𝛽-Co(100)f 5.25 ± 0.17 – – – – – –
27 𝛽-Co(110)f 5.0z – – – – – –
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No. Surface 𝜙e (eV)
[Here]

𝜙+ (eV)
[Here]

𝜙− (eV)
[Here]

𝜙e (eV)
[1358]

𝜙e (eV)
[1045]

𝜙e (eV)
[12,1354]

𝜙e (eV)
[1351]

27 𝛽-Co(111)f 5.39 ± 0.23 – – – – – –
27 m-Co(100)b

/GaAs(110)(7)
5.0 ± 0.3y – – – – – –

27 m-Co(100)f
/Cu(100)(17)

4.7z – – – – – –

27 𝛼-Co(poly)hc 4.71 ± 0.03 – – 5.0 [304] 5.0 [304] 4.41 –

27 𝛽-Co(poly)f 4.50 ± 0.13 – – – – – –
27 m-Cof

/Cu(100)(17)
4.94 ± 0.30 – – – – – –

28 Ni(100)f 5.19 ± 0.05 5.2z – 5.22 [314] 5.22 [314] – 5.23 ± 0.10

28 Ni(110)f 4.96 ± 0.10 5.0z – 5.04 [314] 5.04 [314] – 4.64 ± 0.05
28 Ni(111)f 5.32 ± 0.05 5.3z – 5.35 [314] 5.35 [314] – 5.28 ± 0.05

28 Ni(113)f 4.5z – – – – – –
28 Ni(133)f 4.4z – – – – – –
28 Ni(poly)f 5.06 ± 0.06 5.19 ± 0.12y – – 5.15 [304] 4.50 4.87 ± 0.16

29 Cu(100)f 4.58 ± 0.06 – – 5.10
[358](15)

4.59 [953] – 4.57 ± 0.08

29 Cu(110)f 4.43 ± 0.04 – – 4.48 [953] 4.48 [953] – 4.48 ± 0.06

29 Cu(111)f 4.92 ± 0.05 – – 4.94 [953] 4.94 [953] – 4.91 ± 0.03

29 Cu(112)f 4.52 ± 0.03 – – 4.53 [953] 4.53 [953] – 4.50 ± 0.04

29 Cu(113)f 4.5 ± 0.2y – – – – – –
29 Cu(114)f 4.6z – – – – – –
29 Cu(119)f 4.6z – – – – – –
29 Cu(122)f 4.5 ± 0.1x – – – – – –
29 Cu(124)f 4.5z – – – – – –
29 Cu(210)f 4.3 ± 0.1x – – – – – –
29 Cu(233)f 4.5 ± 0.1x – – – – – –
29 Cu(234)f 4.5 ± 0.1x – – – – – –
29 Cu(236)f 4.4z – – – – – –
29 Cu(321)f 4.1z – – – – – –
29 Cu(345)f 4.5z – – – – – –
29 Cu(356)f 4.5z – – – – – –
29 Cu(413)f 4.0z – – – – – –
29 Cu(018)f 4.7z – – – – – –
29 Cu(poly)f 4.51 ± 0.04 – – – 4.65

[3319](10)
4.40 4.51 ± 0.07

29 Cu(liquid) 4.6 ± 0.1y – – – – – –

30 Zn(0001)hc 4.35 ± 0.28 – – – 4.9
[1508](14)

– –

30 Zn(1010)hc 5.8 ± 0.7x – – – – – –
30 Zn(1124)hc 5.8z – – – – – –
30 Zn(poly)hc 4.22 ± 0.11 – – 3.63

[2601](14)
4.33 [3052] 4.24 –

31 Ga(100)f 3.4z – – – – – –
31 Ga(110)f 4.1z – – – – – –
31 Ga(111)f 3.8z – – – – – –
31 Ga(poly)r 4.27 ± 0.06 – – 4.32 [2770] 4.2 [2767] 3.96 –
31 Ga(liquid) 4.33 ± 0.03 – – – – – –

32 Ge(100)d 4.68 ± 0.08 – – – – – –
32 Ge(110)d 4.79 ± 0.06 – – – – – –
32 Ge(111)d 4.60 ± 0.09 – – – 4.80p [1971] – –
32 Ge(112)d 4.8 ± 0.1x – – – – – –
32 Ge(113)d 4.9z – – – – – –
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No. Surface 𝜙e (eV)
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𝜙+ (eV)
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32 Ge(114)d 4.9z – – – – – –
32 Ge(122)d 4.9z – – – – – –
32 Ge(133)d 4.9z – – – – – –
32 Ge(155)d 4.8z – – – – – –
32 Ge(poly)d 4.76 ± 0.05 – – 5.0 [1520] 5.0 [1520] 4.76 –

33 As(111)rh 3.8z – – – 3.75 [2952] – –
33 As(poly)rh 4.85 ± 014 – – – – 5.11 –

34 Se(1010)h 5.9x – – – – – –
34 Se(poly)h 5.27 ± 0.18 – – 5.9 [3429] 5.9 [3429] 4.72 –

37 Rb(100)b 2.31 ± 0.08 – – – – – –
37 Rb(110)b 2.65 ± 0.05 – – – – – –

37 Rb(111)b 2.21 ± 0.09 – – – – – –
37 Rb(112)b 2.6z – – – – – –
37 Rb(poly)b 2.17 ± 0.05 – – 2.261 [2119] 2.16 [2470] 2.16 –

37 Rb(liquid) 2.15 ± 0.02 – – – – – –

38 𝛼-Sr(100)f 3.3 ± 0.4 – – – – – –
38 𝛼-Sr(110)f 3.1 ± 0.3 – – – – – –
38 𝛼-Sr(111)f 3.4 ± 0.3 – – – – – –
38 𝛽-Sr(0001)hc 4.2z – – – – – –
38 𝛽-Sr(1010)hc 4.0z – – – – – –
38 𝛽-Sr(1124)hc 3.5z – – – – – –
38 𝛾-Sr(100)b 3.0 ± 0.3x – – – – – –
38 𝛾-Sr(110)b 3.2 ± 0.6y – – – – – –
38 𝛾-Sr(111)b 3.0 ± 0.2x – – – – – –
38 𝛾-Sr(112)b 3.6z – – – – – –
38 𝛼-Sr(poly)f 2.71 ± 0.08 – – 2.59 [1401] 2.59 [1401] 2.35 –
38 𝛽-Sr(poly)hc 2.9 ± 0.2y – – – – – –
38 𝛾-Sr(poly)b 2.35 ± 0.05x – – – – – –

39 𝛼-Y(0001)hc 3.4 ± 0.2 – – – – – –
39 𝛼-Y(1010)hc 3.1x – – – – – –
39 𝛼-Y(1124)hc 3.3 ± 0.1y – – – – – –
39 𝛽-Y(100)b 3.7z – – – – – –
39 𝛽-Y(110)b 4.3z – – – – – –
39 𝛽-Y(111)b 3.5z – – – – – –
39 𝛽-Y(112)b 3.9z – – – – – –
39 𝛼-Y(poly)hc 3.16 ± 0.06 – – 3.1 [304] 3.1 [304] 3.3 –
39 𝛽-Y(poly)b 3.2z – – – – – –

40 𝛼-Zr(0001)hc 4.36 ± 0.09 – – – – – –
40 𝛼-Zr(1010)hc 4.1 ± 0.5y – – – – – –
40 𝛼-Zr(1124)hc 4.2z – – – – – –
40 𝛽-Zr(100)b 3.9z – – – – – –
40 𝛽-Zr(110)b 4.6z – – – – – –
40 𝛽-Zr(111)b 3.8z – – – – – –
40 𝛽-Zr(112)b 4.2z – – – – – –
40 𝛼-Zr(poly)hc 3.85 ± 0.06 – – 4.05 [304] 4.05 [304] 3.9 –
40 𝛽-Zr(poly)b 4.01 ± 0.05 – – – – – –

41 Nb(100)b 4.02 ± 0.05 4.0z – 4.02 [779] 4.02 [779] – 3.95 ± 0.05

41 Nb(110)b 4.77 ± 0.05 4.74 ± 0.10x – 4.87 [779] 4.87 [779] – 4.83 ± 0.05

41 Nb(111)b 3.95 ± 0.09 3.84 ± 0.06x – 4.36 [779] 4.36 [779] – 3.86 ± 0.03
41 Nb(112)b 4.33 ± 0.10 4.4z – 4.63 [779] 4.63 [779] – –
41 Nb(113)b 4.3z – – 4.29 [779] 4.29 [779] – –
(continued on next page)
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41 Nb(116)b 3.82 ± 0.12y – – 3.95 [779] 3.95 [779] – –
41 Nb(310)b 4.2z – – 4.18 [779] 4.18 [779] – –
41 Nb(335)b 4.6z – – – – – –
41 Nb(poly)b 4.11 ± 0.05 4.81 ± 0.05y – – 4.3 [304] 3.99 4.02 ± 0.05

42 Mo(100)b 4.38 ± 0.03 4.38 ± 0.08 4.34 ± 0.03y 4.53 [325] 4.53 [325] – 4.40 ± 0.03

42 Mo(110)b 4.98 ± 0.03 5.1z – 4.95 [325] 4.95 [325] – 4.96 ± 0.06

42 Mo(111)b 4.29 ± 0.03 4.17 ± 0.09y – 4.55 [325] 4.55 [325] – 4.09 ± 0.07

42 Mo(112)b 4.51 ± 0.03 4.6z – 4.36 [325] 4.36 [325] – 4.58 ± 0.05

42 Mo(114)b 4.33 ± 0.15 – – 4.50 [325] 4.50 [325] – –
42 Mo(116)b 4.23 ± 0.08 – – – – – –
42 Mo(310)b 4.15 ± 0.03y – – – – – –
42 Mo(321)b 4.16 ± 0.03y – – – – – –
42 Mo(331)b 4.37 ± 0.04x – – – – – –
42 Mo(332)b 4.3 ± 0.2y – – 4.55 [325] 4.55 [325] – –
42 Mo(431)b 4.2 ± 0.1x – – – – – –
42 Mo(poly)b 4.31 ± 0.02 5.03 ± 0.06 – – 4.6 [304] 4.3 4.34 ± 0.06

43 Tc(0001)hc 5.1 ± 0.2y – – – – – –
43 Tc(1010)hc 4.7 ± 0.2y – – – – – –
43 Tc(1011)hc 4.9 ± 0.2x – – – – – –
43 Tc(1012)hc 4.5 ± 0.2x – – – – – –
43 Tc(1013)hc 4.4 ± 0.2x – – – – – –
43 Tc(1121)hc 4.3 ± 0.2x – – – – – –
43 Tc(1122)hc 4.5 ± 0.2x – – – – – –
43 Tc(1123)hc 4.4 ± 0.2x – – – – – –
43 Tc(1124)hc 4.4z – – – – – –
43 Tc(2130)hc 4.4 ± 0.2x – – – – – –
43 Tc(2140)hc 4.5 ± 0.2x – – – – – –
43 Tc(poly)hc 4.67 ± 0.02 – – – – – –

44 Ru(0001)hc 5.35 ± 0.06 – – – – – –
44 Ru(1010)hc 4.9 ± 0.2 – – – – – –
44 Ru(1011)hc 5.1 ± 0.2x – – – – – –
44 Ru(1012)hc 4.7 ± 0.2x – – – – – –
44 Ru(1013)hc 4.6 ± 0.2x – – – – – –
44 Ru(1121)hc 4.6 ± 0.2x – – – – – –
44 Ru(1122)hc 4.3 ± 0.2y – – – – – –
44 Ru(1123)hc 4.6 ± 0.2x – – – – – –
44 Ru(1124)hc 4.5 ± 0.1x – – – – – –
44 Ru(1125)hc 4.5 ± 0.2y – – – – – –
44 Ru(2130)hc 4.7 ± 0.2x – – – – – –
44 Ru(3140)hc 4.7 ± 0.2x – – – – – –
44 Ru(poly)hc 4.71 ± 0.05 – – 4.71 [414] 4.71 [414] 4.60 4.75 ± 0.11

45 Rh(100)f 5.24 ± 0.07 – – – – – 5.29 ± 0.07
45 Rh(110)f 4.75 ± 0.06 – – – – – 4.77 ± 0.06
45 Rh(111)f 5.40 ± 0.08 – – – – – 5.50 ± 0.10
45 Rh(112)f 5.1z – – – – – –
45 Rh(113)f 5.0z – – – – – –
45 Rh(210)f 4.6z – – – – – –
45 Rh(310)f 4.8z – – – – – –
45 Rh(320)f 4.7z – – – – – –
45 Rh(321)f 4.8z – – – – – –
45 Rh(410)f 4.9z – – – – – –
45 Rh(430)f 4.7z – – – – – –
45 Rh(520)f 4.7z – – – – – –
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45 Rh(531)f 4.7z – – – – – –
45 Rh(poly)f 4.87 ± 0.07 – – 4.98 [414] 4.98 [414] 4.75 4.90 ± 0.08

46 Pd(100)f 5.48 ± 0.04 – – – – – 5.59 ± 0.05

46 Pd(110)f 5.12 ± 0.09 – – – – – 5.19 ± 0.04
46 Pd(111)f 5.58 ± 0.05 – – 5.6

[616,1799]
5.6
[616,1799]

– 5.55 ± 0.07

46 Pd(113)f 5.6z – – – – – –
46 Pd(poly)f 5.17 ± 0.06 – – 5.22 [1031] 5.12 [414] 4.8 5.24 ± 0.05

47 Ag(100)f 4.46 ± 0.05 – – 4.64 [626] 4.64 [626] – 4.50 ± 0.10

47 Ag(110)f 4.28 ± 0.08 – – 4.52 [626] 4.52 [626] – 4.16 ± 0.05
47 Ag(111)f 4.64 ± 0.06 – – 4.74 [1134] 4.74 [1134] – 4.56 ± 0.15
47 Ag(poly)f 4.39 ± 0.02 – – – 4.26 [626] 4.3 4.36 ± 0.06

47 Ag(liquid) 4.3z – – – – – –

48 Cd(0001)hc 4.9 ± 0.9y – – – – – –
48 Cd(1010)hc 5.5 ± 0.8x – – – – – –
48 Cd(1124)hc 5.5z – – – – – –
48 Cd(poly)hc 4.06 ± 0.05 – – 4.08 [1380] 4.22

[1380](9)
4.1 –

49 In(100)f 4.5 ± 0.2y – – – – – –
49 In(110)f 4.4z – – – – – –
49 In(111)f 4.1z – – – – – –
49 In(poly)f 4.05 ± 0.06 – – 4.09 [2770] 4.12 [3672] 3.8 –
49 In(liquid) 4.00 ± 0.08 – – – – – –

50 𝛼-Sn(100)b 4.5 ± 0.1y – – – – – –
50 𝛼-Sn(110)b 4.8z – – – – – –
50 𝛼-Sn(111)b 4.2 ± 02y – – – – – –
50 𝛼-Sn(112)b 4.5z – – – – – –
50 𝛼-Sn(poly)b 4.27 ± 0.06 – – – – – –
50 𝛽-Sn(poly)t 4.34 ± 0.06 – – 4.42 [3057] 4.42 [3057] 4.38 –
50 𝛾-Sn(poly)h 4.29 ± 0.06y – – – – – –
50 Sn(liquid) 4.20 ± 0.02y – – – – – –

51 Sb(100)p 4.7 ± 0.1x – – 4.7 [1272] 4.7 [1272] – –
51 Sb(111) 4.3z – – – – – –
51 Sb(poly)rh 4.45 ± 0.09 – – – – 4.08 –
51 Sb(amorphous) 4.5 ± 0.1y – – 4.55 [1995] 4.55 [1995] – –

52 Te(1010)h 4.80 ± 0.15x – – 4.95 [3429] 4.95 [3429] – –
52 Te(poly)h 4.86 ± 0.06 – – – – 4.73 –

53 Ir 2.8z – – – – – –
53 Im 5.4z – – – – – –
53 I(film) 5.1 ± 0.1 5.3x – – – – –
53 I(amorphous) 6.3 ± 0.4x – – – – – –

55 Cs(100)b 2.24 ± 0.06 – – – – – –
55 Cs(110)b 2.54 ± 0.07 – – – – – –
55 Cs(111)b 2.09 ± 0.08 – – – – – –
55 Cs(112)b 2.4z – – – – – –
55 Cs(poly)b 2.05 ± 0.05 – – 1.95 [2613] 2.14 [1489] 1.81 –

55 Cs(liquid) 2.00 ± 0.12y – – – – – –

56 Ba(100)b 3.07 ± 0.06 – – – – – –
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56 Ba(110)b 3.46 ± 0.14 – – – – – –
56 Ba(111)b 2.81 ± 0.06 – – – – – –
56 Ba(112)b 3.2z – – – – – –
56 Ba(poly)b 2.50 ± 0.02 – – 2.52 [379] 2.7 [330] 2.49 –

57 𝛼-La(0001)hc 3.09 ± 0.05y – – – – – –
57 𝛽-La(100)f 4.3 ± 0.5x – – – – – –
57 𝛽-La(110)f 4.2 ± 0.6x – – – – – –
57 𝛽-La(111)f 3.4 ± 0.5x – – – – – –
57 𝛾-La(100)b 4.0 ± 0.8x – – – – – –
57 𝛾-La(110)b 4.8 ± 1.1x – – – – – –
57 𝛾-La(111)b 3.1z – – – – – –
57 𝛾-La(112)b 3.4z – – – – – –
57 𝛼-La(poly)hc 3.27 ± 0.04 – – 3.5 [304] 3.5 [304] 3.3 –

57 𝛽-La(poly)f 2.98 ± 0.10 – – – – – –

58 𝛽-Ce(100)f 4.3 ± 0.3x – – – – – –
58 𝛽-Ce(110)f 4.4z – – – – – –
58 𝛽-Ce(111)f 4.1 ± 0.9x – – – – – –
58 𝛾-Ce(100)b 4.0z – – – – – –
58 𝛾-Ce(110)b 4.6z – – – – – –
58 𝛾-Ce(111)b 3.8z – – – – – –
58 𝛾-Ce(112)b 4.2z – – – – – –
58 𝛽-Ce(poly)f 2.89 ± 0.07 – – 2.9 [304] 2.9 [304] 2.7 –
58 𝛾-Ce(poly)b 3.1 ± 0.1y – – – – – –

59 𝛼-Pr(0001)hc 3.1z – – – – – –
59 𝛽-Pr(100)b 3.3z – – – – – –
59 𝛽-Pr(110)b 3.9z – – – – – –
59 𝛽-Pr(111)b 3.2z – – – – – –
59 𝛽-Pr(112)b 3.5z – – – – – –
59 𝛼-Pr(poly)f 2.83 ± 0.11 – – – – 2.7 –

60 𝛼-Nd(0001)hc 3.2 ± 0.1x – – – – – –
60 𝛽-Nd(100)b 3.6z – – – – – –
60 𝛽-Nd(110)b 4.2z – – – – – –
60 𝛽-Nd(111)b 3.5z – – – – – –
60 𝛽-Nd(112)b 3.9z – – – – – –
60 𝛼-Nd(poly)hc 3.14 ± 0.08 – – 3.2 [304] 3.2 [304] 3.2 –

61 𝛼-Pm(0001)hc 3.1z – – – – – –
61 𝛽-Pm(100)f 3.7z – – – – – –
61 𝛽-Pm(110)f 3.5z – – – – – –
61 𝛽-Pm(111)f 4.0z – – – – – –
61 𝛼-Pm(poly)hc 3.09 ± 0.08y – – – – – –

62 𝛽-Sm(100)b 3.2z – – – – – –
62 𝛽-Sm(110)b 3.8z – – – – – –
62 𝛽-Sm(111)b 3.1z – – – – – –
62 𝛽-Sm(112)b 3.4z – – – – – –
62 𝛼-Sm(poly)rh 2.81 ± 0.10 – – 2.7 [304] 2.7 [304] 2.7 –

63 Eu(100)b 3.3z – – – – – –
63 Eu(110)b 2.9 ± 0.6y – – – – – –
63 Eu(111)b 3.1z – – – – – –
63 Eu(112)b 3.5z – – – – – –
63 Eu(poly)b 2.74 ± 0.12 – – 2.5 [304] 2.5 [304] – –

64 𝛼-Gd(0001)hc 3.27 ± 0.03 – – – – – –
(continued on next page)
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64 𝛼-Gd(1010)hc 4.3z – – – – – –
64 𝛼-Gd(1124)hc 3.8z – – – – – –
64 𝛽-Gd(100)b 3.2 ± 0.3x – – – – – –
64 𝛽-Gd(110)b 4.1z – – – – – –
64 𝛽-Gd(111)b 3.4z – – – – – –
64 𝛽-Gd(112)b 3.8z – – – – – –
64 𝛼-Gd(poly)hc 3.09 ± 0.04 – – 2.90 [2943] 3.1 [304] 3.1 –

65 𝛼-Tb(0001)hc 4.4 ± 0.5y – – – – – –
65 𝛼-Tb(1010)hc 4.7z – – – – – –
65 𝛼-Tb(1124)hc 4.1z – – – – – –
65 𝛽-Tb(100)b 3.9z – – – – – –
65 𝛽-Tb(110)b 4.5z – – – – – –
65 𝛽-Tb(111)b 3.7z – – – – – –
65 𝛽-Tb(112)b 4.1z – – – – – –
65 𝛼-Tb(poly)hc 3.14 ± 0.09 – – 3.0 [2716] 3.0 [2716] 3.15 –

66 𝛼-Dy(0001)hc 4.2 ± 0.8x – – – – – –
66 𝛼-Dy(1010)hc 4.8z – – – – – –
66 𝛼-Dy(1124)hc 4.2z – – – – – –
66 𝛼-Dy(poly)hc 3.18 ± 0.08 – – – – 3.25 –

67 𝛼-Ho(0001)hc 3.9 ± 0.5x – – – – – –
67 𝛼-Ho(1010)hc 4.2z – – – – – –
67 𝛼-Ho(1124)hc 3.7z – – – – – –
67 Ho(poly)hc 3.05 ± 0.05 – – – – 3.22 –

68 Er(0001)hc 3.8 ± 04y – – – – – –
68 Er(1010)hc 4.3z – – – – – –
68 Er(1124)hc 3.8z – – – – – –
68 Er(poly)hc 3.14 ± 0.08 – – – – 3.25 –

69 𝛼-Tm(0001)hc 4.0 ± 0.5x – – – – – –
69 𝛼-Tm(1010)hc 4.3z – – – – – –
69 𝛼-Tm(1124)hc 3.8z – – – – – –
69 𝛼-Tm(poly)hc 3.12 ± 0.07 – – – – 3.10 –

70 𝛼-Yb(100)f 4.2z – – – – – –
70 𝛼-Yb(110)f 3.9z – – – – – –
70 𝛼-Yb(111)f 3.5 ± 1.0x – – – – – –
70 𝛽-Yb(100)b 3.6z – – – – – –
70 𝛽-Yb(110)b 3.3 ± 0.8x – – – – – –
70 𝛽-Yb(111)b 3.4z – – – – – –
70 𝛽-Yb(112)b 3.8z – – – – – –
70 𝛼-Yb(poly)f 2.91 ± 0.09 – – – – – –

71 𝛼-Lu(0001)hc 3.9 ± 0.4y – – – – – –
71 𝛼-Lu(1010)hc 4.3z – – – – – –
71 𝛼-Lu(1124)hc 3.8z – – – – – –
71 𝛽-Lu(100)b 3.5z – – – – – –
71 𝛽-Lu(110)b 4.1z – – – – – –
71 𝛽-Lu(111)b 3.4z – – – – – –
71 𝛽-Lu(112)b 3.8z – – – – – –
71 𝛼-Lu(poly)hc 3.17 ± 0.09 – – 3.3 [2603] 3.3 [2603] – –

72 𝛼-Hf(0001)hc 4.2 ± 0.1y – – – – – –
72 𝛼-Hf(1010)hc 4.4 ± 0.8x – – – – – –
72 𝛼-Hf(1124)hc 4.6z – – – – – –
72 𝛽-Hf(100)b 4.2 ± 0.1y – – – – – –
(continued on next page)
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72 𝛽-Hf(110)b 5.0z – – – – – –
72 𝛽-Hf(111)b 4.1z – – – – – –
72 𝛽-Hf(112)b 4.6z – – – – – –
72 𝛼-Hf(poly)hc 3.64 ± 0.06 – – 3.9 [304] 3.9 [304] 3.53 –

73 Ta(100)b 4.15 ± 0.05 4.2z – 4.15 [127] 4.15 [127] – 4.17 ± 0.09

73 Ta(110)b 4.82 ± 0.06 4.84 ± 0.02y 4.89 ± 0.03x 4.80 [127] 4.80 [127] – 4.81 ± 0.05
73 Ta(111)b 4.01 ± 0.04 4.00 ± 0.05x – 4.00 [127] 4.00 [127] – 4.00 ± 0.04

73 Ta(112)b 4.36 ± 0.04 – – – – – 4.37 ± 0.03

73 Ta(114)b 4.0z – – – – – –
73 Ta(116)b 3.92 ± 0.02y – – – – – –
73 Ta(123)b 4.0z – – – – – –
73 Ta(130)b 4.2 ± 0.2y – – – – – –
73 Ta(233)b 4.0z – – – – – –
74 Ta(poly)b 4.20 ± 0.03 4.95 ± 0.20 4.17 ± 0.13y 4.25 [124] 4.25 [124] 4.12 4.25 ± 0.05

74 W(100)b 4.65 ± 0.02 4.62 ± 0.05 4.54 ± 0.01x 4.63 [358] 4.63 [358] 4.65 ± 0.10#(2) 4.57 ± 0.03

74 W(110)b 5.32 ± 0.02 5.28 ± 0.11 – 5.22 [3802] 5.25 [358] 5.20 ± 0.10# 5.31 ± 0.05

74 W(111)b 4.45 ± 0.03 4.45 ± 0.04 – 4.45 [819] 4.47 [358] 4.40 ± 0.05# 4.38 ± 0.04

74 W(112)b 4.78 ± 0.03 4.70 ± 0.01y – – – 4.85 ± 0.10# 4.83 ± 0.20

74 W(113)b 4.43 ± 0.09 – – 4.46 [819] 4.18 [195] 4.50 ± 0.10# 4.55 ± 0.06
74 W(114)b 4.40 ± 0.03 – – – – – 4.40 ± 0.05

74 W(115)b 4.39 ± 0.06y – – – – – –
74 W(116)b 4.30 ± 0.04 – – 4.32 [819] 4.30 [372] 4.26 ± 0.10# 4.32 ± 0.20

74 W(119)b 4.6z – – – – – –
74 W(120)b 4.38 ± 0.05 – – – – – 4.38 ± 0.06

74 W(122)b 4.34 ± 0.05 – – – – – –

74 W(123)b 4.50 ± 0.05 – – – – – 4.49 ± 0.04

74 W(124)b 4.33 ± 0.03 – – – – – –

74 W(130)b 4.32 ± 0.04 – – – – 4.31 ± 0.10# 4.32 ± 0.04

74 W(133)b 4.7z – – – – – –
74 W(134)b 4.7z – – – – – –
74 W(144)b 5.2 ± 0.1x – – – – – –
74 W(150)b 4.4z – – – – – –
74 W(160)b 4.40 ± 0.06y – – – – – –
74 W(223)b 4.7z – – – – – –
74 W(227)b 4.4z – – – – – –
74 W(229)b 4.3z – – – – – –
74 W(230)b 4.33 ± 0.05 – – – – – –

74 W(233)b 4.38 ± 0.06 – – – – – –
74 W(235)b 4.5 ± 0.2x – – – – – –
74 W(250)b 4.6z – – – – – –
74 W(257)b 4.9 ± 0.1x – – – – – –
74 W(334)b 4.4 ± 0.2x – – – – – –
74 W(650)b 4.4 ± 0.1y – – – – – –
74 W(poly)b 4.56 ± 0.03 5.17 ± 0.05 4.51 ± 0.03 4.55 [828] 4.55 [828] 4.54 4.50# 4.55 ± 0.04

75 Re(0001)hc 5.30 ± 0.21 5.15 ± <0.34 – – – – 5.13 ± 0.16
75 Re(1010)hc 5.12 ± 0.05 – – – – – –
75 Re(1011)hc 5.26 ± 0.13 – – – 5.75 [363] – –
75 Re(1120)hc 4.95 ± 0.11 – – – – – –
75 Re(1121)hc 4.82 ± 0.14 – – – – – –
75 Re(1122)hc 5.03 ± 0.18 – – – – – –
75 Re(1123)hc 4.7 ± 0.2y – – – – – –
75 Re(1124)hc 4.8 ± 0.1x – – – – – –
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75 Re(1130)hc 4.6 ± 0.1x – – – – – –
75 Re(2130)hc 4.6 ± 0.1x – – – – – –
75 Re(3140)hc 4.7 ± 0.1x – – – – – –
75 Re(poly)hc 4.96 ± 0.05 5.41 ± 0.04 5.00 ± 0.06y 4.72 [832] 4.96 [124] 5.0 4.95 ± 0.03

76 Os(0001)hc 5.6 ± 0.2 – – – – – –
76 Os(1010)hc 5.3 ± 0.3y – – – – – –
76 Os(0111)hc 5.4 ± 0.1x – – – – – –
76 Os(0112)hc 5.0 ± 0.1x – – – – – –
76 Os(0113)hc 4.8 ± 0.1x – – – – – –
76 Os(1121)hc 4.8 ± 0.1x – – – – – –
76 Os(1122)hc 5.1 ± 0.1x – – – – – –
76 Os(1123)hc 4.9 ± 0.1x – – – – – –
76 Os(1124)hc 5.1z – – – – – –
76 Os(2130)hc 5.0 ± 0.1x – – – – – –
76 Os(3140)hc 4.9 ± 0.1x – – – – – –
76 Os(poly)hc 4.97 ± 0.17 – – 5.93 [3322] 4.83 [124] 4.7 4.84 ± 0.07

77 Ir(100)f 5.60 ± 0.06 – – 5.67
[414](12)

5.67 [414] – 5.72 ± 0.27

77 Ir(110)f 5.23 ± 0.19 – – 5.42
[358](12)

5.42 [358] – –

77 Ir(111)f 5.75 ± 0.06 5.76 ± 0.04 – 5.76
[358](12)

5.76 [358] – 5.77 ± 0.03

77 Ir(210)f 5.05 ± 0.05x – – 5.00
[414](12)

5.00 [414] – –

77 Ir(211)f 5.2 ± 0.1x – – – – – –
77 Ir(311)f 5.2x – – – – – –
77 Ir(321)f 5.2 ± 0.1x – – – – – –
77 Ir(331)f 5.3 ± 0.1x – – – – – –
77 Ir(731)f 4.9z – – – – – –
77 Ir(poly)f 5.28 ± 0.04 5.75 ± 0.04 – – 5.27 [124] 4.7 5.27 ± 0.02

78 Pt(100)f 5.75 ± 0.06 – – 5.84*
[428](5)

– – 5.82 ± 0.07

78 Pt(110)f 5.54 ± 0.07 – – – – – 5.61 ± 0.13
78 Pt(111)f 5.84 ± 0.05 5.80 ± 0.06 – 5.93 [428] 5.7**

[616](6)
– 5.86 ± 0.06

78 Pt(210)f 5.18 ± 0.04 – – – – – –

78 Pt(211)f 5.7 ± 0.1y – – – – – –
78 Pt(221)f 5.76 ± 0.01y – – – – – –
78 Pt(310)f 5.4 ± 0.1x – – – – – –
78 Pt(311)f 5.4 ± 0.1x – – – – – –
78 Pt(320)f 5.19 ± 0.03y – – 5.22 [428] – – –
78 Pt(321)f 5.3 ± 0.1x – – – – – –
78 Pt(331)f 5.4 ± 0.2y – – 5.12 [428] – – –
78 Pt(410)f 5.5z – – – – – –
78 Pt(430)f 5.2z – – – – – –
78 Pt(520)f 5.3z – – – – – –
78 Pt(533)f 5.9x – – – – – –
78 Pt(741)f 5.2z – – – – – –
78 Pt(997)f 5.8z – – – – – –
78 Pt(poly)f 5.30 ± 0.07 5.58 ± 0.11 – 5.64 [435] 5.65 [304] 5.32 5.27 ± 0.08

79 Au(100)f 5.39 ± 0.07 – – 5.47 [959] 5.47 [959] – 5.41 ± 0.12
79 Au(110)f 5.33 ± 0.09 – – 5.37 [959] 5.37 [959] – 5.31 ± 0.11
79 Au(111)f 5.46 ± 0.07 – – 5.31 [959] 5.31 [959] – 5.29 ± 0.02
79 Au(112)f 5.1z – – – – – –
79 Au(113)f 5.2z – – – – – –
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79 Au(210)f 5.0z – – – – – –
79 Au(532)f 5.0z – – – – – –
79 Au(poly)f 5.30 ± 0.04 5.7z – – 5.1 [304] 4.30 5.31 ± 0.07

80 Hg(liquid) 4.50 ± 0.02 – – 4.475 [2770] 4.49 [2470] 4.52 –

80 𝛼-Hg(poly)rh 4.52 ± 0.05 – – – – – –

81 𝛼-Tl(0001)hc 4.2 ± 0.3x – – – – – –
81 𝛼-Tl(1010)hc 4.1 ± 0.2x – – – – – –
81 𝛼-Tl(1124)hc 3.8z – – – – – –
81 𝛽-Tl(100)b 3.5z – – – – – –
81 𝛽-Tl(110)b 4.1z – – – – – –
81 𝛽-Tl(111)b 3.4z – – – – – –
81 𝛽-Tl(112)b 3.8z – – – – – –
81 𝛼-Tl(poly)hc 3.82 ± 0.05 – – 3.84 [2297] 3.84 [2297] 3.7 –

81 Tl(liquid) 3.7 ± 0.1x – – – – – –

82 Pb(100)f 3.96 ± 0.11 – – – – – –
82 Pb(110)f 3.84 ± 0.09 – – – – – –
82 Pb(111)f 4.14 ± 0.09 – – – – – –
82 Pb(poly)f 4.07 ± 0.05 – – 4.25 [613] 4.25 [613] 4.0 –

82 Pb(liquid) 4.00 ± 0.05x – – – – – –

83 Bi(0001)tr 4.5 ± 0.2y – – – – – –
83 Bi(1011)tr 4.3z – – – – – –
83 Bi(poly)tr 4.28 ± 0.05 – – 4.34

[2349](13)
4.22 [3052] 4.4 –

83 Bi(liquid) 4.34 ± 0.07y – – – – – –

84 𝛼-Po(poly)c 4.8 ± 0.2y – – – – – –

85 At 5.3z – – – – – –

87 Fr(111)b 2.1z – – – – – –
87 Fr(poly)b 2.0 ± 0.1 – – – – – –

88 Ra(110)b 2.3z – – – – – –
88 Ra(111)b 2.0z – – – – – –
88 Ra(poly)b 2.4 ± 0.3 – – – – – –

89 Ac(111)f 3.4z – – – – – –
89 Ac(poly)f 3.2 ± 0.3y – – – – – –

90 𝛼-Th(100)f 3.5 ± 0.1x – – – – – –
90 𝛼-Th(110)f 3.4z – – – – – –
90 𝛼-Th(111)f 3.6 ± 0.2x – – – – – –
90 𝛼-Th(poly)f 3.37 ± 0.04 3.4 ± 0.1x 3.5 ± 0.1y 3.4 [1854] 3.4 [1854] 3.30 –

91 Pa(111)c 3.8z – – – – – –
91 Pa(poly)c 3.4 ± 0.1y – – – – – –

92 𝛾-U(100)b 3.7 ± 0.1y – – – – – –
92 𝛾-U(110)b 4.1z – – – – – –
92 𝛾-U(111)b 3.3z – – – – – –
92 𝛾-U(112)b 3.7z – – – – – –
92 𝛼-U(poly)r 3.64 ± 0.04 – – 3.63 [2103] 3.63 [2103] 3.3 –

92 𝛽-U(poly)t 3.58 ± 0.04 – – – – – –

92 𝛾-U(poly)b 3.42 ± 0.05 – – – – – –
(continued on next page)
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Table 2 (continued)

No. Surface 𝜙e (eV)
[Here]

𝜙+ (eV)
[Here]

𝜙− (eV)
[Here]

𝜙e (eV)
[1358]

𝜙e (eV)
[1045]

𝜙e (eV)
[12,1354]

𝜙e (eV)
[1351]

93 Np(111)c 4.0z – – – – – –
93 Np(poly)c 3.4 ± 0.5x – – – – – –

94 𝛼-Pu(020)m 3.6 ± 0.1x – – – – – –
94 𝛿-Pu(100)f 3.3 ± 0.2 – – – – – –
94 𝛿-Pu(110)f 3.0z – – – – – –
94 𝛿-Pu(111)f 3.8 ± 0.3 – – – – – –
94 𝛼-Pu(poly)m 3.3z – – – – – –
94 𝛿-Pu(poly)f 3.6 ± 0.3y – – – – – –

95 𝛼-Am(0001)dhc 3.6 ± 0.7x – – – – – –
95 𝛼-Am(1010)dhc 4.2z – – – – – –
95 𝛼-Am(1124)dhc 3.7z – – – – – –
95 𝛽-Am(100)f 2.9z – – – – – –
95 𝛽-Am(110)f 2.9z – – – – – –
95 𝛽-Am(111)f 3.1z – – – – – –
95 𝛼-Am(poly)hc 3.4 ± 0.1y – – – – – –

96 Cm(poly)hc 3.5 ± 0.2y – – – – – –

97 Bk(poly)hc 3.5 ± 0.2y – – – – – –

98 Cf(poly)hc 3.5 ± 0.2y – – – – – –

99 Es(poly)hc 3.1 ± 0.2x – – – – – –

Total element species (Ne) 88 14 6 60 63 66 18
Total surface species (Ns) 609 39 9 103 114 66 72

(1) The superscripts (b–tr) in the 2nd column are the abbreviations indicating the crystal structures as follows.
b body-centered cubic
c cubic
d diamond
dhc double hexagonal closed packing
f face-centered cubic
h hexagonal
hc hexagonal closed packing
m monoclinic
p pseudocubic
r rhombic
rh rhombohedral
t tetragonal
tr trigonal
(2) The values with the superscript (#) for tungsten in the last 2nd column are estimated as the probable ones from many published data on tungsten by
Collins and Blott [1664,1665,3964] instead of Fomenko [12,1354].
(3) The values with double and single underlines in the 3rd–5th columns may be reliable to within the errors of ±0.05 and ±0.1 eV, respectively, whilst the
others in the columns may have a possible error of up to ∼0.1 eV or more.
(4) The superscripts (x and y) in the 3rd–5th columns indicate that the numbers of the work function data available for estimating these values with x and
y are 2 and 3–5, respectively, whilst the value with the superscript (z) originates from a single datum alone. Consequently, many of the values (x, y or z
attached) may probably be less reliable compared with those based on much abundant data (up to about 400 in total number, typically, for each of Cs and
W).
(5) Regarding the plane of Pt in the CRC handbooks [11,1358,1359], ‘‘(110)’’ should be read ‘‘(100)’’ partly because any of these references (1)–(3)
[13,1045,1312] cited in the handbooks does not include Pt(110) and mainly because 5.84 eV by FE corresponds exactly to Pt(100) [428] alone among
the four planes of Pt tabulated in Ref. (1) [1312] and also in the original data source [428]. This is the reason why 5.84* for Pt(100) in Column 6 here is
accompanied with an asterisk.
(6) The value of 𝜙e = 5.7** eV for Pt(111) [1045] in 7th column originates from Demuth’s paper [616] instead of his another [1799], because the latter cited
as reference 45 by Michaelson [1045] includes the datum of 5.6 eV for Pd(111) alone and does not 5.7 eV for Pt(111).
(7) The m-Co(100)b indicates the metastable bcc–phase–Co(100) on GaAs(110) [4023,4028]. For further information, see Footnotes 428–430 in Table 1.
(8) Among the many surface species listed herein, Columns (6) [1358] and (7) [1045] for each species are found to have the same value originating from a
common article selected by Michaelson [1045], while each value [1358] different from that [1045] comes from that done by Rivière [13] or Hölzl [1312]. In
any cases, all of the values in the columns, in addition to those recommended by Fomenko in Column (8), are based on those data published before ∼1980.
(9) The value of 4.22 eV for Cd(poly) [349] is reported by Hopkins and Rivière after correcting the original one of 4.08 eV [1380] (see Footnote 214 in
Table 1).
(10) Regarding 4.65 eV for Cu(poly), [3319] corresponding to Ref. 9 [1045] should be read [304] doing to Ref. 8 [1045] because the former [3319] includes
4.08 eV for In(poly) alone in contrast to the latter [304] including 4.65 eV for Cu(poly).
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(11) In respect of Na(poly), 2.75 eV (PE, 77 K, film on quartz) [3424] and both 2.36 eV (PE, 293 K, film on Mo) [3337] and 2.35 eV [1354] are considerably
larger and smaller than 2.54 eV [Here], respectively, thereby suggesting that the valid reason for such a large gap (∼0.2 eV) should be found by further
investigations.
(12) CRC Handbooks (78–98th Eds., 1997–2017) [1358, etc.] indicate that all of the data on Ir(100)–Ir(210) [[358] or [414]] are obtained by PE. But, PE
should be read FE, just as indicated in a CRC Handbook (77th Ed., 1996) [4137] and a review [1045].
(13) On the basis of Ref. 1 [1312], CRC Handbooks (78–98 Eds., 1997–2017) [1358, etc.] recommend 4.34 eV at 300 ◦C by PE [2349] for Bi(poly). But, it
should be read Bi(liq) measured at 573 K above 𝑇m [2349] (see Table 1), although the value may be acceptable because the work function difference (𝛥𝜙e

LS)
between the two phases is as small as 0.03 eV (see Table 12).
(14) The work function of 3.63 eV for Zn(mono) [2601] is recommended as that for Zn(poly) in CRC Handbooks (78–98 Eds., 1997–2017) [1358, etc.], while
it is taken as that for Zn(0001) [475] although not clearly done so [1312,2601]. On the other hand, 4.9 eV [1508] is recommended for Zn(0001) in a CRC
Handbook (77th Ed., 1996) [4137] and in a review [1045]. However, 3.63 and 4.9 eV are respectively much smaller and larger than our most probable values
of 4.22 and 4.35 eV recommended for Zn(poly) and Zn(0001) in Table 2 and also than many others listed in Table 1 for the respective surfaces, thereby
suggesting that any of the former values may be acceptable today as a reliable work function value for neither Zn(poly) nor Zn(0001).
(15) The value of 5.10 eV [358] recommended for Cu(100) in CRC Handbooks (78–98th Eds., 1997–2017) [1358, etc.] is extremely larger than any others
(4.57–4.59 eV) [Here, 1045,1351] recommended for Cu(100) herein and also considerably larger than those (4.91–4.94 eV) done for Cu(111) having the largest
among all of the copper monocrystals (see Tables 2 and 10). On the other hand, a CRC Handbook (77th Ed., 1996) [4137] as well as a review [1045] adopts
4.59 ± 0.03 eV [953,2006], which is the same with ours (4.58 ± 0.06 eV) for Cu(100).
(16) The m-Fe(100)f grown epitaxially on Cu(100) represents the metastable fcc-Fe(100) (see Footnote 114 in Table 1 and also Sections 7.1 and 8.2).
(17) Metastable fcc-films of Co and Co(100) grown epitaxially on Cu(100) are much different in physical property from the two allotropes of bulk cobalt (see
Section 8.2).

.1. Estimation of the most probable values

On the basis of the theoretical and experimental data compiled in Table 1, the most probable values of the effective work
unctions (𝜙+, 𝜙e and 𝜙−) for each of the essentially clean surface species will be estimated according to the fundamental aspects
nd policies as follows.

(1) In the case of thermal electron emission (TE) studied usually in relatively low vacuum conditions (𝑃r ≈ 10−7–10−9 Torr) as
may be found frequently in the 4th column in Table 1, we should not overlook the important point whether or not the temperature
or its range (Column 5) selected for work function measurements is high enough to keep the surface essentially clean. Typically, T
≥ 1800 K for Re [65] and Ir [104] and also above 1900 K for W [69] may be acceptable as the normal condition even in such a
low vacuum as mentioned above.

(2) Similarly in thermal positive (or negative) ion emission (PSI or NSI), T should be selected to be so high that the surface may
be kept substantially clean even during the probing beam (or vapor) incidence. How to select T is readily understandable from such
typical examples as Figs. 3 [58], 17 [104] and 28 [571] shown in Ref. [1351].

(3) Since other methods such as field emission (FE), photoelectric effect (PE) and contact potential difference (CPD) are usually
adopted at T ≤ 300 K, a very high vacuum below ∼10−10 Torr should be maintained in general to insure the surface cleanness. It
should be noted that adsorption lifetime of impinging residual gasses generally becomes longer with a decrease in T and hence that
the surface coverage of foreign atoms and molecules (degree of surface contamination) becomes larger with decreasing temperature.

(4) With respect to a sample layers/substrate system (A/B) usually investigated around room temperature, it should be examined
whether the layer(s) is adequately equilibrated (smoothed) by annealing at T a (or T d) ≥ Tm/3) so as to correspond to its bulk sample
(see Section 2.5 and Footnote 363 in Table 1) and also whether ultrahigh vacuum during work function measurements is maintained
so as to keep the layer(s) substantially free from any effect owing to residual gas adsorption.

(5) Strictly speaking, all of 𝜙+, 𝜙e and 𝜙− are dependent upon surface temperature with the coefficient (𝛼) of ∼± 10−4–10−5 eV/K
(see both Section 5 and Table 6 in Ref. [1351]), which yields the work function differences of about ±0.05−0.005 eV and of
±0.2−0.02 eV according to the temperature differences by ∼500 K (e.g., ∼100–600 K, usually adopted in FE, PE or CPD) and by
∼2000 K (∼2300–300 K, extrapolated to room temperature in TE, PSI or NSI), respectively. However, such differences are tentatively
disregarded here because of the reasons to be outlined as follows. (i) As may be seen in Table 1, the work function of any surface
species changes by up to ∼0.5 eV or much more from specimen to specimen or worker to worker, even in a common temperature
range. Typically, 𝜙+ and 𝜙e for W(100) by PSI and TE are scattered widely in the ranges of mainly ∼4.5–5.1 and ∼4.4–5.0 eV,
respectively, in a usual range (∼1800−2300 K) among different experimental workers. Much wider scattering (𝜙e ≈ 3.7–7.8 eV) is
found for W(100) among different theoretical ones (see Table 1). All of the scattering widths (0.6–4.1 eV) are much larger than
these differences (0.005−0.2 eV) due to the temperature difference mentioned just above. (ii) Such a fact as mentioned just above
(i) indicates that the work function data based on both theoretical and experimental methods available today are usually not so
convergent (or concentrated) enough to determine accurately the absolute value at a specified temperature (e.g., ∼300 K) for any
surface species to within the uncertainty of about ±0.1 eV or so and, hence, that the estimated range of work function change
(∼0.005−0.2 eV) due to the actual difference in temperature may be considered to be much more narrower than the range (∼0.6–
4.1 eV) owing to the difference among various specimens or workers. (iii) This is the main reason why the present author has
tried to estimate the most probable values of work function here without considering its temperature dependence, quite similarly
as many other authors do so in handbooks and reviews [10–13,1045,1352–1355,1358]. Of course, it is needless to say that work
function dependence upon surface temperature inherent in any crystal must be taken into consideration whenever the net work
function change due to physical transition alone at a critical temperature (e.g., Curie point) is to be determined accurately (see
Sections 7–10).

(6) In addition, all the data obtained for each surface species listed in Table 1 are critically analyzed from the viewpoints of
(i) the reproducibility of the data reported, (ii) the surface cleanness (subject to dependence upon 𝑃 and T ), (iii) the correctness
r
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of the reference work function adopted for CPD, etc., (iv) both method and condition selected for sample preparation, and (v) the
measurement procedure employed.

(7) As will be shown typically for W in Sections 4.2–4.4, (i) 𝜙e of the ‘‘polycrystals’’ having the largest fractional area (𝛿m) of less
han 0.5 (=50% in fraction) (e.g. W(A)–W(D)) is nearly constant at 4.52 ± 0.10 eV [2453] (see Footnote (25) in Table 6) with little
ependence upon the difference in both 𝛿m = 0.336–0.463 and 𝜙m = 5.35–4.25 eV belonging each to 𝛿m correspondent to the planes
f (110)–(310), but (ii) 𝜙e of the ‘‘submonocrystals’’ with 0.5 < 𝛿m < 1 (namely, 50 < 𝛿m < 100%), on the other hand, changes
onsiderably depending upon both 𝛿m and 𝜙m (see Sections 4.4 and 4.5) and, hence, (iii) the work function data for the latter (ii)
typically, 𝜙e = 4.87 eV for 𝛿m = 0.80 and 𝜙m = 5.3 eV of W(E) [2453], see Footnote (33) in Table 6) should be eliminated whenever
he most probable work function value for the usually called ‘‘polycrystal’’ alone is taken into consideration. In other words, any
‘submonocrystal’’ should be treated as another type (category) different from both poly- and monocrystals. This is entirely because
he former has generally such an anomaly that its work function depends principally upon 𝛿m without having a constant and unique
alue characteristic of the surface species (material) itself even under the normal condition accepted generally (see Section 4.5),
n contrast to the ‘‘polycrystal’’ (𝛿m < 0.5) having a unique work function value with little dependence upon 𝛿m (see Conclusions
4)–(7) in Section 4.4). Of course, each surface of monocrystal (𝛿m = 1) is generally expected to have a unique value of work function
haracteristic of the surface species itself when the surface is essentially clean and smooth.

According to the above aspects and policies (1)–(7), the present author has tried to examine critically the work function data for
ach surface species listed in Table 1. As a result, about 50% or more of the very abundant data listed for such popular surface species
s Cu, Mo, W, etc. are naturally eliminated in general because of (i) the poverty in surface condition, (ii) some errors in determination
nd/or (iii) the anomaly of 0.5 < 𝛿m < 1 corresponding to ‘‘submonocrystals’’ (see Sections 4.4 and 4.5). In consequence, such
limination leads to the result that both average and standard deviation for 𝜙e or 𝜙+ are calculated mainly from these data in the
iddle group (usually ∼30–40%) alone, without including those in lower and higher groups (usually 70–60%) for each surface

pecies. In this way, the statistical processing is applied to almost all the surface species included in Table 1, thereby yielding the
ost probable values of 𝜙e and 𝜙+ listed respectively in the 3rd and 4th columns in Table 2, together with 𝜙− in the 5th one. In

he last column are recorded the most probable values of 𝜙e recommended by the present author previously [1351] in the same
anner as above, although they are not so abundant (only 72 surface species) as the present ones (about 600 species) in the 9th

nd 3rd columns, respectively.
When the available data are extremely scanty in such a typical case as less-popular surface species and/or when they are much

cattered in value over a very wide range, on the other hand, it is generally very difficult to find the most probable value for each
pecies. This is the main reason why many of the surface species are not accompanied with the recommended values in the last line
or the corresponding species in Table 1. Regarding those surface species having relatively scanty and/or divergent data, however,
he present author dares to estimate tentatively the probable values and also to enter all of them in Column 3 of Table 2. Here,
he superscripts of x and y indicate that the total numbers of work function data listed in Table 1 are 2 and 3–5, respectively.
specially, even the value of 𝜙e based on a single datum alone is purposely added with a superscript of z in order to summarize
ompactly all of the surface species investigated here and also to compare 𝜙e readily among different surface species for each
lement. Therefore, these values with x, y or z superscripted may possibly be less reliable or accurate compared with the others
hat are generally based on much abundant data (by up to ∼400 data on each of Cs and W as typical cases) and hence that may be
onvincing in general. In other words, it may be safe to say that some of them (especially those with z attached) should be taken
s the values estimated roughly by the present author. For quite many surface species (x–z) other than the ten species of Nb(113)z,
b(116)y, Nb(310)z, Mo(332)y, Sb(100)x, Sb(amorphous)y, Te(1010)x, Ir(210)x, Pt(320)y and Pt(331)y, however, neither selected
or recommended values are found in Columns 6–8 in Table 2. Such an unfavorable situation at present suggests that much data
n these species (x–z) should be accumulated hereafter by both theoretical and experimental studies.

.2. Comparison with previously recommended values

In order to examine the important problem whether our most probable values estimated for 𝜙e as well as the previous ones [1351]
re rational from the standpoint of scientific objectivity, the typical values of 𝜙e selected formerly by other authors [1045,1358]
nd also those recommended by another [12,1354] are listed in the 6–8th columns in Table 2. As known very well, these
ublications [12,1045,1354,1358] together with others [13,1312,1352,1355] have long been consulted as reliable and convenient
ata sources by many workers still to date. Especially, many of the values selected by Michaelson [1045] are adopted in CRC
andbooks [11,1358,1359,4137, etc.], as may readily be understood from the fact that Columns 6 and 7 are often found to have the
ame value originating from the same reference selected for each surface species by the author [1045]. Typically, 𝜙e = 5.22, 5.04, and
.35 eV for Ni(100), Ni(110) and Ni(111) originating from Ref. [314], respectively, are found in both Columns 6 and 7, and all the
alues of which come from the selection by Michaelson [1045]. In addition, Ref. [1045] has long been widely cited to date by about
000 groups of workers, as already mentioned in Section 1. Similarly, a handbook compiled by Fomenko [1354] has constantly been
onsulted especially in Russian and previous USSR countries. However, the total numbers (Ne and Ns) of the species (element and
urface) covered by them [1045,1354,1358] in Table 2 are much smaller (Ne = 60, 63 and 66 species and Ns = 103, 114 and 66
pecies, respectively) compared with the present ones (Ne = 88 and Ns = 609 species, see the last two lines in Table 2). In addition,
ven CRC handbook (97th Ed.) [1358] published in 2016 is based entirely on the references [13,1045,1312], all of which were
ublished more than ∼40 years ago (1969–1979). Therefore, it may be necessary to examine the question whether all of the data
isted in the above publications are fully accurate or reliable enough to be still acceptable even today.

From the above point of view, let’s try to compare the recommended data [1045,1354,1358] with ours [Here] according to
he typical forty examples listed below, where the figures are given as in the form of (A), {B}, [C] and (D/E). Namely, A is our
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most probable value of 𝜙e (in eV) recommended in the 3rd column in Table 2, B is the experimental data on 𝜙e (in eV) which is
achieved originally by the corresponding author [C] and also which is recommended in the 6–8th columns by one or two of the
authors [1045,1354,1358], D is the difference (in eV) equal to 𝛥 ≡ B − A , and E is the percent of 𝛥/A. For the examinations (1)–(40)
below, our value (A) is tentatively employed as the reference to examine the degree of difference or discrepancy (E) between our
and other values (A and B) recommended in Table 2.

(1) 𝛼-Be(poly); (4.28 ± 0.13) ∕∕ {4.98 ± 0.10} [2009] ∕∕ (0.70 ± 0.16/16 ± 4)#.
(2) C(poly); (4.63 ± 0.06) ∕∕ {5.0 ± 0.1} [299] ∕∕ (0.37 ± 0.12/8 ± 3).
(3) Na(poly); (2.54 ± 0.03) ∕∕ {2.35 ± ?} [1354] ∕∕ (−0.19 ± 0.03/−7 ± 1).
(4) Na(poly); (2.54 ± 0.03) ∕∕ {2.36 ± 0.02} [3337] ∕∕ (−0.18 ± 0.04/−7 ± 2).
(5) Si(111); (4.86 ± 0.09) ∕∕ {4.60 ± 0.13} [118] ∕∕ (−0.26 ± 0.16/−5 ± 3).
(6) 𝛼-Ti(poly); (3.87 ± 0.05) ∕∕ {4.33 ± 0.1} [304] ∕∕ (0.46 ± 0.11/12 ± 3)#.
(7) 𝛼-Fe(poly); (4.55 ± 0.05) ∕∕ {4.31 ± ?} [1354] ∕∕ (−0.24 ± 0.05/−5 ± 1).
(8) 𝛼-Co(poly); (4.71 ± 0.03) ∕∕ {4.41 ± ?} [1354] ∕∕ (−0.30 ± 0.03/−6 ± 1).
(9) 𝛼-Co(poly); (4.71 ± 0.03) ∕∕ {5.0 ± 0.1} [304] ∕∕ (0.29 ± 0.1/6 ± 2).
(10) Cu(100); (4.58 ± 0.06) ∕∕ {5.10 ± 0.05} [358] ∕∕ (0.52 ± 0.08/11 ± 2)#.
(11) Zn(poly); (4.22 ± 0.11) ∕∕ {3.63 ± ?} [2601] ∕∕ (−0.59 ± 0.11/−14 ± 3)#.
(12) Ga(poly); (4.27 ± 0.06) ∕∕ {3.96 ± ?} [1354] ∕∕ (−0.31 ± 0.06/−7 ± 2).
(13) Ge(poly); (4.76 ± 0.05) ∕∕ {5.0 ± ?} [1520] ∕∕ (0.24 ± 0.05/5 ± 1).
(14) Se(poly); (5.27 ± 0.18) ∕∕ {4.72 ± ?} [1354] ∕∕ (−0.55 ± 0.18/−10 ± 4)#.
(15) Se(poly); (5.27 ± 0.18) ∕∕ {5.9 ± ?} [3429] ∕∕ (0.63 ± 0.18/12 ± 4)#.
(16) 𝛼-Sr(poly); (2.71 ± 0.08) ∕∕ {2.35 ± ?} [1354] ∕∕ (−0.36 ± 0.08/−13 ± 3)#.
(17) Nb(111); (3.95 ± 0.09) ∕∕ {4.36 ± 0.06} [779] ∕∕ (0.41 ± 0.11/10 ± 3)#.
(18) Nb(112); (4.33 ± 0.10) ∕∕ {4.63 ± 0.06} [779] ∕∕ (0.30 ± 0.12/7 ± 3).
(19) Mo(100); (4.38 ± 0.03) ∕∕ {4.53 ± 0.02} [325] ∕∕ (0.15 ± 0.04/3 ± 1).
(20) Mo(111); (4.29 ± 0.03) ∕∕ {4.55 ± 0.02} [325] ∕∕ (0.26 ± 0.04/6 ± 1).
(21) Mo(poly); (4.31 ± 0.02) ∕∕ {4.6 ± 0.15} [304] ∕∕ (0.29 ± 0.15/7 ± 3).
(22) Pd(poly); (5.17 ± 0.06) ∕∕ {4.8 ± ?} [1354] ∕∕ (−0.37 ± 0.06/−7 ± 1).
(23) In(poly); (4.05 ± 0.06) ∕∕ {3.8 ± ?} [1354] ∕∕ (−0.25 ± 0.06/−6 ± 2).
(24) Sb(poly); (4.45 ± 0.09) ∕∕ {4.08 ± ?} [1354] ∕∕ (−0.37 ± 0.09/−8 ± 3).
(25) Cs(poly); (2.05 ± 0.05) ∕∕ {1.81 ± ?} [1354] ∕∕ (−0.24 ± 0.05/−12 ± 2)#.
(26) 𝛼-La(poly); (3.27 ± 0.04) ∕∕ {3.5 ± 0.2} [304] ∕∕ (0.23 ± 0.20/7 ± 6).
(27) 𝛽-Ce(poly); (2.89 ± 0.07) ∕∕ {2.7 ± ?} [1354] ∕∕ (−0.19 ± 0.07/−7 ± 3).
(28) Eu(poly); (2.74 ± 0.12) ∕∕ {2.5 ± 0.3} [304] ∕∕ (−0.24 ± 0.32/−9 ± 11).
(29) 𝛼-Hf(poly); (3.64 ± 0.06) ∕∕ {3.9 ± 0.1} [304] ∕∕ (0.26 ± 0.12/7 ± 3).
(30) Re(1011); (5.26 ± 0.13) ∕∕ {5.75 ± ?} [363] ∕∕ (0.49 ± 0.13/9 ± 3).
(31) Re(poly); (4.96 ± 0.05) ∕∕ {4.72 ± ?} [832] ∕∕ (−0.24 ± 0.05/−5 ± 1).
(32) Os(poly); (4.97 ± 0.17) ∕∕ {4.7 ± ?} [1354] ∕∕ (−0.27 ± 0.17/−5 ± 4).
(33) Os(poly); (4.97 ± 0.17) ∕∕ {5.93 ± 0.05} [3322] ∕∕ (0.96 ± 0.18/19 ± 4)#.
(34) Ir(poly); (5.28 ± 0.04) ∕∕ {4.7 ± ?} [1354] ∕∕ (−0.58 ± 0.04/−11 ± 1)#.
(35) Pt(poly); (5.30 ± 0.07) ∕∕ {5.64 ± ?} [435] ∕∕ (0.34 ± 0.07/6 ± 2).
(36) Pt(poly); (5.30 ± 0.07) ∕∕ {5.65 ± ?} [304] ∕∕ (0.35 ± 0.07/7 ± 2).
(37) Au(poly); (5.30 ± 0.04) ∕∕ {4.30 ± ?} [1354] ∕∕ (−1.00 ± 0.04/−19 ± 1)#.
(38) Au(poly); (5.30 ± 0.04) ∕∕ {5.1 ± 0.1} [304] ∕∕ (−0.20 ± 0.11/−4 ± 2).
(39) Pb(poly); (4.07 ± 0.05) ∕∕ {4.25 ± 0.05} [613] ∕∕ (0.18 ± 0.07/4 ± 2).
(40) 𝛼-U(poly); (3.64 ± 0.04) ∕∕ {3.3 ± ?} [1354] ∕∕ (−0.34 ± 0.04/−9 ± 1).

As shown above, the difference of |𝐷| ≡ |𝐵 − 𝐴| ≡ |𝛥| has a wide range of 0.15–1.00 eV corresponding to |𝐸| ≡ |𝛥∕𝐴| = 3–19%. In a
typical case (11), we have 𝛥 = −0.59 eV and 𝛥∕𝐴 = −14% for Zn [2601]. The value of 3.63 eV [2601] is recommended for Zn(poly)
in the CRC Handbook [1358], but it is treated as Zn(0001) [475]. Even in the latter, however, 𝐵 = 3.63 eV for Zn(0001) yields
𝛥 = −0.72 ± 0.28 eV and 𝛥∕𝐴 = −17 ± 6% because our most probable value for Zn(0001) is 4.35 ± 0.28 eV (see Table 2). In another
case (17), 𝐵 = 4.36 ± 0.06 eV for Nb(111) [779] is much larger than 𝐴 = 3.95 ± 0.09 eV for Nb(111) [Here] and not smaller than
4.02 ± 0.06 eV for Nb(100) [779], thereby leading to such a result that the triple set [779] of 4.87, 4.02 and 4.36 eV (see Table 2)
does not perfectly follow the Smoluchowski rule of 𝜙e(110) > 𝜙e(100) > 𝜙e(111) to be expected generally for bcc-surfaces (for full
detail, see Section 5.2 and 41–Nb–[779] in Table 9 and also Conclusion (8) in Section 5.4). In other words, it may be concluded that
4.36 eV for Nb(111) should be replaced with another to be less than 4.02 eV for Nb(100), such a typical value as 3.84 eV [774],
3.88 eV [726,775,960] or 3.95 eV [Here] (see Table 1).

Among the typical examinations (1)–(40) listed above, particularly those with # attached show that each of the value (B)
recommended by one or two of the authors [1045,1354,1358] has a very large deviation (|𝛥| ≡ |𝐵 − 𝐴| > 0.2 eV and also |𝛥∕𝐴| >
10%) from ours (A). Namely, they correspond to the examples of (1), (6), (10), (11), (15), (17) and (33) in CRC [1358], those of (1),
(6), (15) and (17) in Michaelson [1045] and those of (14), (16), (25), (34) and (37) in Fomenko [1354]. The recommended values
(B) with # attached, together with many others (B) included in the above forty examples, have long been consulted widely by a
241
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great many workers. However, it does not seem to the present author that those with # may be very accurate or reliable enough to
be straight or undoubtedly acceptable today, although any of our most probable values (A) employed as the reference for estimating
the deviation or discrepancy (𝛥) is not yet insured generally to be fully acceptable at present.

In the next step, let’s examine the distribution of the work function difference (D ≡ B − A) for all of the recommended data (B)
including the above forty examples.

Among our 609 surface species having the data on 𝜙e listed in the 3rd column in Table 2, it is only 134 species that can be
compared with the other values of 𝜙e ≡ B (at least one or up to four values for each species) recommended previously in the
6−9th columns [1045,1351,1354,1358]. The difference (|𝛥|) between 𝜙e [Here] and each 𝜙e [1045,1354,1358] or [1351] has a
wide distribution from 0.00 to 1.00 eV, which may be divided into the eleven categories as shown in Table 3; (1) good agreement
of |𝛥| ≤ 0.05 eV, (2) fair agreement of |𝛥| = 0.06–0.10 eV, (3) less-fair agreement of |𝛥| = 0.11–0.20 eV, and so on up to (11) wide
gap of |𝛥| = 0.91–1.00 eV. The number (Nc) of those species contained in each category is different among the four references. The
percentage (Nc∕Nt) of the data corresponding to each category is also shown in Table 3, where Nt is the total number of the surface
species contained in each of the four references (see the last line in Table 3).

Table 3
Distribution of the work function difference (|𝛥|) of 𝜙e between the most probable value [Here] and each one recommended by others [12,1045,1351,1354,1358]
in Table 2. Here, Nt is the total number of 𝜙e–data listed in the last line and Nc is that corresponding to each category.

Category Difference |𝛥| (eV) Ref. [1358] Ref. [1045] Refs. [12,1354] Ref. [1351]

Nc Nc∕Nt (%) Nc Nc∕Nt (%) Nc Nc∕Nt (%) Nc Nc∕Nt (%)

1 ≤0.05 45 44 44 39 22 33 44 61
2 0.06–0.10 16 16 16 14 8 12 13 18
3 0.11–0.20 23 22 33 29 18 27 14 19
4 0.21–0.30 10 10 12 11 7 11 0 0
5 0.31–0.40 2 2 2 2 6 11 1 1
6 0.41–0.50 2 3 3 3 0 0 0 0
7 0.51–0.60 4 4 3 3 4 6 0 0
8 0.61–0.70 1 1 1 1 0 0 0 0
9 0.71–0.80 0 0 0 0 0 0 0 0
10 0.81–0.90 0 0 0 0 0 0 0 0
11 0.91–1.00 0 0 0 0 1 2 0 0
Nt – 103 – 114 – 66 – 72 –

The essential points of Table 3 in addition to Table 2 may be summarized as follows.
(1) In the first category, many of our most probable values of 𝜙e [Here] in the 3rd column in Table 2 show a good agreement

|𝛥| ≤ 0.05 eV) with about 44% (Nc = 45 species) of the values [1358], 39% (Nc = 44) of those [1045], 33% (Nc = 22) [12,1354] and
1% (Nc = 44) [1351] of the selected or recommended ones in the four references in the 6−9th columns in Table 2 (except those#
or tungsten inserted with sharp in Column 8), respectively. Regarding the above ‘‘good agreement’’, each of the four references has
he highest percentage (Nc/Nt = 44, 39, 33 or 61%) among the eleven categories. Especially, the following species satisfy the best
greement (|𝛥| ≤ 0.05 eV) between each of our present values (Column 3 in Table 2) and more than two values referred for the same
pecies in Columns 6−9 in Table 2. Namely, Li(poly); Mg(poly); Al(110), Al(111) and Al(poly); K(poly); 𝛼-Ca(poly); 𝛼−𝛽-Mn(poly);
-Fe(100); Ni(100) and Ni(111); Cu(100), Cu(110), Cu(111) and Cu(112); Rb(poly); Nb(100); Mo(110) and Mo(poly); Ru(poly);
d(111) and Pd(poly); Cd(poly); Ba(poly); 𝛽-Ce(poly); Gd(poly); Ta(100), Ta(110), Ta(111) and Ta(poly); W(100), W(111), W(116)
nd W(poly); Re(poly); Ir(111) and Ir(poly); Au(110); Hg(liquid); 𝛼-Tl(poly); 𝛼-Th(poly) and 𝛼-U(poly). The recommended value of
e [Here] for each surface species mentioned just above may be fitly concluded to have a higher reliability or accuracy in comparison
ith that for any other species having |𝛥| > 0.05 eV.

(2) In the 2nd category, rather small percentages (Nc/Nt = 12–18% of Nc = 8–16 species) of the values recommended in the four
eferences [1358, etc.] correspond to a fair agreement (|𝛥| = 0.06 − 0.10 eV) with our most probable value estimated for a common
urface species [Here]. Among the four references, usually more than two are found to satisfy a fair agreement with the following
pecies: Al(100); Si(100); Ni(110); Ga(poly); 𝛼-Y(poly); Nb(110); Ag(111); In(poly); 𝛽-Sn(poly); Cs(poly); 𝛼-Nd(poly); W(110) and
(113); Ir(100); Pt(100); Au(100) and Bi(poly). Our most probable values for the above species in Column 3 in Table 2 may probably

e accepted to be considerably reliable in contrast to the others with |𝛥| > 0.10 eV.
(3) In the 3rd category, a less-fair agreement (|𝛥| = 0.11 − 0.20 eV) between the present and other four values is not small

n percentage (Nc∕Nt = 22, 29, 27 and 19% for Nc = 23, 33, 18 and 14 species, respectively). The following species belong to this
ategory: Na(poly); Si(poly); 𝛼-Sc(poly); V(poly); Cr(poly); 𝛼-Fe(poly); Ni(poly); Cu(poly); Zn(poly); 𝛼-Sr(poly); 𝛼-Zr(poly); Nb(116)
nd Nb(poly); Mo(100), Mo(112) and Mo(114); Rh(poly); Ag(100) and Ag(poly); Sb(100) and Sb(amorphous); Te(1010); Sm(poly);
-Tb(poly); Lu(poly); Os(poly); Ir(110); Pt(111); Au(111) and Pb(poly). For each species, more than two values in Columns 6−9 in
able 2 correspond to |𝛥| = 0.11 − 0.20 eV. The present values [Here] as well as the others [1045,1351,1354,1358] for the above
pecies may possibly be needed to be examined after accumulating much more data of 𝜙e achieved by both experiment and theory.
mong the forty examinations listed above, these (3) and (4) Na(poly) [1354,3337], (19) Mo(100) [325], (27) 𝛽-Ce(poly) [1354]
nd (39) Pb(poly) [613] belong to the 3rd category, whilst the other thirty five ones (|𝛥| = 0.21 − 1.00 eV) do to those 4th–11th

nes.
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(4) In the 4th category, a considerable percentage of Nc/Nt ≈ 10% (Nc = 10, 12 and 7 corresponding to Refs. [1045,1358] and
1354], respectively), in contrast to Nc/Nt = 0% [1351], is still found to have |𝛥| = 0.21 − 0.30 eV, being little agreeable to 𝜙e in
he present and previous studies [Here, 1351]. The following surface species belong to this category; Si(111); 𝛼-Co(poly); Ge(poly);
b(112); Mo(111) and Mo(332); Ag(110); 𝛼-La(poly); and 𝛼-Hf(poly). Much further study about these nine species may probably
e needed to find the accurate or reliable value of 𝜙e so as to be convincing in general.

(5) In the 5–8th categories, a considerable discrepancy (|𝛥| = 0.31−0.70 eV) is found for the seven species of 𝛼-Be(poly); C(poly);
𝛼-Ti(poly); 𝛼-Fe(111); Se(poly); Nb(111); and Pt(poly). Typically, a marked discrepancy of |𝛥| = |5.27 − 5.9| ≈ 0.6 eV is observed for
e(poly) between Column 3 [Here] and Columns 6 and 7 [1045,1358] in Table 2. The value of 𝜙e = 5.9 eV by PE originating from
ef. [3429] is extraordinarily larger than any others except both 5.9 by TC [298] and 6.3 eV by FE [1677] listed in Table 1. In
ddition, 4.72 eV for Se(poly) [12,1354] corresponding to |𝛥| = 0.55 eV (Category 7) is exceedingly smaller than 4.8–5.8 eV (except
.42 and 4.62 eV and also 5.9 and 6.3 eV above) among about 30 data obtained by various methods in Table 1. Therefore, none of
he above values (5.9 and 4.72 eV) recommended for Se(poly) seems to be reliable enough to be acceptable today. With respect to
he above seven species, it may be necessary to accumulate much data reliable enough to settle the question which value of 𝜙e for
ach species is nearer to the true or most probable one among those recommended by present or other authors.

(6) In the 11th category for |𝛥| = 0.91–1.00 eV, a wide gap of |𝛥| = |5.30 − 4.30| = 1.00 eV for Au(poly) exists between the present
Here] and the other [10,12,1354]. The latter (4.30 eV) seems to be affected strongly by the data obtained by using mercury diffusion
ump systems which were very popular until ∼1970. Table 1 includes many data determined for Au to be 𝜙e < 4.8 eV, most of which
ere reported before ∼1980. It should be noted that Au is subject to surface reaction (amalgamation) with Hg [1071–1073] having
e = 4.475–4.52 eV (see Table 2). Typically, 𝜙e = 5.22 eV for Au is reduced by ∼0.45 eV by intentional admission of Hg-vapor [1071].
everal topics on Au may be added as follows: (i) Remove of Hg adsorbed on Au and Ag can be done readily by baking above 520
[1893]. Typically, 5.25 ± 0.01 eV is observed for Au/W(110) after annealing at 750 K at 𝑃r = 5 × 10−10 Torr attained by using a
ercury pumping system [1670,1673], and similarly 5.24–5.27 eV is found for an Au ribbon after baking around 1070 K [2473].

imilarly at 𝑃r < 10−9 Torr (2 × 10−10 Torr as the partial pressure of Hg), 𝜙e of an Au-ribbon is increased from 4.89 ± 0.06 eV
o 5.20 ± 0.05 eV by flashing at 1170 K [1072]. (ii) Further information about the mercury contamination of Au may be obtained
rom Section 4.2.3 in Ref. [1351]. (iii) Instead of 4.30 eV [10,12,1354], either 5.30 ± 0.04 eV [Here] or 5.31 ± 0.07 eV [1351] for
u may be recommended to be the most probable value of 𝜙e according to those data achieved in Hg-free systems. Employment of

he latter makes it possible to establish much better the linear relationship between 𝜙e and X (see Fig. 1 [1955] and Fig 4.1 [1312])
xpressed by Eq. (7). (iv) Regarding amorphous gold film on glass, on the other hand, 𝜙e is considered to be 4.7 eV [4113], which
s currently interpreted on the basis of plasmon-assisted multiphoton emission [4369,4370]. (v) According to another study about
u-nanoparticles grown on a Si-wafer covered with a monolayer of alkyl chain, 𝜙e is found to change from ∼3.5 to 3.8 eV as the
article radius increases from ∼20 to 80 Å [4368] (see Footnote 478 in Table 1). The above typical examples suggest that some of
he Au-layers having 𝜙e < 4.7 eV (see Table 1) measured in an Hg-free atmosphere may possibly consist of fine crystallites.

(7) In order to list up compactly all of the surface species studied for their work functions in this article and also to demonstrate
he present state how scanty the work function data are for a variety of less-common or unfamiliar surface species, the probable
alues of 𝜙e, 𝜙+ and 𝜙− with superscript (x, y or z) are also included in Table 2. Here, each of the values is estimated from the
canty data whose total numbers available in Table 1 are 2 and 3–5 for x and y, respectively, and only one for z. Consequently,
ny of them may possibly be less accurate or reliable than the others estimated from much abundant data (e.g., ∼400 in number
or each of Cs and W) listed in Table 1. With the eleven exceptions of As(111), Nb(113), Nb(116), Nb(310), Mo(332), Sb(100),
b(amorphous), Te(1010), Ir(210), Pt(320) and Pt(331), many (97%) of our data on 𝜙e with x, y or z (387 surface species in total)
n Column 3 (Table 2) can not be compared with any others in Columns 6–8 in Table 2.

(8) Accumulation of many new data on 𝜙e is generally expected particularly for the species attached with a superscript (x,
or z) as follows: 𝛼-Sc(1010); 𝛼-Ti(1010) and 𝛽-Ti(100)–(112); 𝛼-Co(1010)–(1124); Zn(1010); Ga(100)–(111); 𝛼-Y(1010) and

-Y(100)–(112); 𝛼-Zr(1010) and 𝛽-Zr(100)–(112); Cd(1010); In(100)–(111); Sb(111); 𝛽-La(100)–(112); 𝛽- and 𝛾-Ce(100)–(112);
-Pr(0001) and 𝛽-Pr(100)–(112); 𝛽-Nd(100)–(112); Sm(100)–(112); Eu(100)–(112); 𝛼-Gd(1010) and (1124) and also 𝛽-Gd(100)–
112); 𝛼-Tb(1010) and (1124) and also 𝛽-Tb(100)–(112); 𝛼-Dy(1010) and (1124); 𝛼-Ho(1010) and (1124); 𝛼-Er(1010) and (1024);
-Tm(0001), (1010) and (1124); 𝛼- and 𝛽-Yb(100)–(112); 𝛼-Lu(0001), (1010) and (1124) and also 𝛽-Lu(100)–(112); 𝛼-Hf(0001),
1010) and (1124) and also 𝛽-Hf(100)–(112); Os(1010)–(1124); Au(112); 𝛼-Tl(0001)–(1124); Bi(0001) and (1011); Th(100)–(111);
-U(100)–(112); and so on. Many of the above species may be interested in some workers active in the fields of pure and applied
hysics. Addition of new reliable data on the above species is strongly expected to fill out such great blanks as found in Columns
–8 in Table 2.

(9) The most probable values of 𝜙e without any of x–z attached are estimated for 213 surface species in the 3rd column in Table 2,
hilst their large part (36%, 77 species) is not covered in the 6–8th columns by any of the other authors [1045,1354,1358]. Namely,
ny of the 77 species has long been left without 𝜙e recommended in spite of the fact that a considerable number (≥6) of data on 𝜙e

ave already been published for each species. Of our all data (about 600 surface species including those with x–z attached), such
high percentage as ∼80% (about 480 surface species) is not covered in any data list compiled by other authors, as may readily

e understandable from the great blank in the three columns in Table 2. In other words, not only the best estimates but also even
referable ones of 𝜙e have not yet been reported for the latter 480 species by any other authors. Consequently, much further work
s needed to accumulate many reliable data on 𝜙e particularly for those less-common species with x–z attached.

(10) To the best of the present author’s knowledge, any other authors have not yet published the most probable values (or
ecommended data) of both 𝜙+ and 𝜙−, and hence of the thermionic contrasts (𝛥𝜙∗ and 𝛥𝜙∗∗) for any surface species (see Section 4).

(11) Our values of 𝜙e with double underlines in the 3rd column (93 kinds of surface species, only 15% of the total 609 ones
ncluding those with x–z attached) in Table 2 may probably be acceptable at present as the most reliable values of 𝜙e with a possible
243
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uncertainty of less than ±0.05 eV for each of the surface species. In addition, our data with a single underline (73 species, 12% of
the total ones) may be usable as considerably reliable values of 𝜙e with a possible uncertainty of less than ±0.1 eV.

(12) Citation of these data on 𝜙e having no underline (443 species, 73% of the total ones) may be accompanied with a possible
ncertainty of up to ∼0.1 eV or much more. Namely, more than half of the total 606 surface species surveyed comprehensively
rom 4461 literatures cannot yield us any convincing estimates of 𝜙e within possible uncertainty of less than ±0.1 eV, in contrast to
he above 166 species of underlined data mentioned in Point (11). This is mainly because the work function data available for the
pecies without any underline attached are very small in number less than 6 or partly because the data themselves are scattered in
alue in a wide range of up to 1 eV or more. Typically, the five data on 𝛼-Sc(0001) largely range from 2.1 to 4.81 eV (see Table 1).

(13) Disappointingly, no data are found for quite many surface species such as C60(100), Al(112), P(100), 𝛼-Ca(112), Zn(1011),
s(100), Sc(0001), 𝛼-Y(1011), 𝛼-Zr(1011), Pd(112), Ag(112), Cd(1011), In(112), Sb(110), Te(0001), 𝛼-La(1010), 𝛼-Pr(1010),
-Nd(1010), 𝛼-Gd(1011), 𝛼-Tb(1011), 𝛼-Dy(1011), 𝛼-Ho(1011), 𝛼-Tm(1011), 𝛼-Lu(1011), 𝛼-Hf(1011), 𝛼-Tl(1011), Pb(112) and
i(1010), although they may be interested in some of the workers active in various fields of physics and chemistry. As may be
een in Column 3 of Table 2, the work function data on high-Miller index surfaces are reported for several species alone (e.g., Cu,

and Pt). Such data are generally expected for many other metals and metalloids, too.
(14) The actual situation exemplified in Points (7)–(9) and (13) indubitably indicates that accumulation of work function data

or great many surface species is quite poor still to date and hence that much further survey or study is needed to establish more
eliable estimates of 𝜙e (within the uncertainty of ±0.1 eV) for quite many surface species mentioned partly in Points (3)–(5) in
ddition to those listed typically in Points (7), (8) and (13).

With respect to the ‘‘Electron Work Function of the Elements’’ in CRC handbooks (78th−98th Editions published in 1997−2017),
t seems to the present author that Pt(110) should be read Pt(100) because any of the references (1)–(3) [13,1045,1312] has no
atum on Pt(110), whilst 5.84 eV cited from Ref. [1312] in the handbooks originates from Ref. [428], accurately corresponding
ot to Pt(110) but to Pt(100) studied by FE (see also Footnote # in Table 2 in Ref. [1351]). Consequently, it may be reasonable to
uggest that ‘‘5.84 eV’’ cited by Logovoi et al. [2543] as 𝜙e for ‘‘Pt(110)’’ from the CRC Handbook (78th Ed.) [4318], for example,
hould be replaced with ‘‘5.54 ± 0.07 eV’’ recommended for Pt(110) by us (see Table 2). If so replaced, then, the theoretical value
f 5.52 eV [2543] as well as 5.54 eV [1931] calculated for Pt(110) (see Table II in Ref. [2543]) agrees exactly with ours cited just
bove without having the ‘‘unreasonable discrepancy of 0.32 eV’’ against the ‘‘literature value of 5.84 eV for Pt(110)’’.

. Peculiarity of polycrystalline work function

In contrast to monocrystals, polycrystals have generally the different work functions of 𝜙+ and 𝜙e, as already shown in Tables 1
nd 2. This peculiarity brings about the ‘‘thermionic contrast’’ of 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e > 0 and, hence, it poses very interesting problems
nd new information about work function. After analyzing the data on 𝛥𝜙∗, an exhaustive discussion is devoted to the peculiarity
f polycrystals (𝛿m < 0.5) and also to the anomaly of submonocrystals (0.5 < 𝛿m < l) in this section, where 𝛿m is focused as the key
actor governing both 𝜙+ and 𝜙e as well as 𝛥𝜙∗.

.1. Polycrystalline thermionic contrast (𝛥𝜙∗) between 𝜙+ and 𝜙e

Positive surface ionization (PSI), often called thermal positive ion emission, has long been utilized by great many workers in
variety of fields of both science and technology in order to (1) generate positive ion beams of various species of atoms (M)

aving relatively low ionization energy (I < 6 eV), (2) detect neutral beams (or vapor) of atoms (M) or molecules (MX), (3) analyze
microsize of materials including M or MX, (4) investigate both surface reactions and phenomena related with work function, its

hange and so on [2,5,15–22]. For these purposes, almost all the workers have employed polycrystals and, hence, they are inevitably
equired to employ reliable values of 𝜙+ instead of 𝜙e for either analyzing or predicting correctly the positive ion emission data to
e obtained in a given experiment under a specified experimental condition. In other words, the accuracy of the analyzed result to
e achieved is generally affected by that of the value of 𝜙+ or 𝜙e + 𝛥𝜙∗, strongly dependent upon the size of 𝛥𝜙∗.

Nevertheless, the thermionic contrast (𝛥𝜙∗ ≡ 𝜙+ − 𝜙e) has long been overlooked or disregarded often by many groups of
orkers in spite of the fact that 𝛥𝜙∗ = 0 holds for a clean and smooth monocrystalline surface alone, as already mentioned

n Section 1 and also explained in Section 4.4 in Ref. [1351]. In addition, these data on 𝜙+ and 𝛥𝜙∗ are hardly found in
any handbooks available today. The latter may be largely responsible for such a present status that the emission predomi-
ance peculiar to polycrystalline surfaces (𝜙+ > 𝜙a > 𝜙e = 𝜙− = 𝜙) has not yet fully been recognized to date. Without
onsidering or examining the surface homogeneity in work function of the various specimens (usually polycrystals) under
tudy, 𝜙e instead of 𝜙+ is employed to analyze these data on the positive ion emission from the specimens under study by
any groups of workers [3–9,14,16,17,20,98,99,120,132,137,160,228,232,323,416,490–494,522,611,804,823,924,932–934,946,
54,961,965,966,979,1003,1004,1252,1320–1350,3823–3829,3832,3834–3839,3849–3854,3869–3871,3884,3907]. Without being
ecognized or perceived by each of the corresponding workers themselves, of course, some of the above specimens may have possibly
een changed already from polycrystals into nearly monocrystals owing to previous or preliminary aging for a very long time at
igh temperatures. When the specimen under study is almost monocrystallized (𝛿m ≈ 1) by high temperature aging prior to work
unction measurements, of course, 𝜙e may generally be employable as the equivalence to 𝜙+ with safety.

Needless to say, even refractory metals are subject to recrystallization according to heating at high temperatures (usually above
2000 K) for very long hours, thereby generally leading to such a change as follows:
Polycrystal (𝛿m < 0.5) → ‘‘Submonocrystal’’ (0.5 < 𝛿m < 1) → Monocrystal (𝛿m = 1).
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According to the above change in surface structure, work function also changes considerably in general. The peculiarity of polycrystal
and the anomaly of submonocrystal will be outlined later in Sections 4.3–4.5.

In a typical case of W [3834], 𝜙+ and 𝜙e are determined to be 4.65 and 4.56 eV by PSI of Ba and by TE, respectively (see
Table 1), thereby yielding that 𝛥𝜙∗ = 4.65 − 4.56 = 0.09 eV is much smaller than the most probable value of 𝛥𝜙∗ = 0.61 ± 0.06
eV usually expected for polycrystalline tungsten specimens with 𝛿m < 0.5 (see Tables 4 and 5 to be shown later). This discrepancy
(0.09 vs. 0.61 eV) may be reasonably explained by considering that the specimen [3834] having subjected up to ∼2900 K prior
to measurements consists probably almost (𝛿m > 0.9) of the W(100) face developed after thermal recrystallization without being
sufficiently recognized by the worker [3834], like as the specimen of W(F) with 𝛿m = 0.95–(100) oriented [3414] having (43)
𝛥𝜙∗ = 4.70 ± 0.04 − 4.61 ± 0.04 = 0.09 ± 0.05 eV [2453] (to be shown later in Table 6). Both of the tungsten specimens [3414,3834]
are the typical examples of submonocrystal (0.5 < 𝛿m < 1 and 𝛥𝜙∗ > 0 eV).

Table 4
Thermionic contrast (𝛥𝜙∗ ≡ 𝜙+ − 𝜙e) determined for the same specimen under substantially the same condition in each study.

Surface 𝛿m (%) Beam Ion 𝜙+ (eV) 𝜙e (eV) 𝛥𝜙∗ (eV) Meths. Refs.

6. Highly Oriented Pyrolytic Graphite

C(HOPG) ? Cs Cs+ 4.51 ± 0.15 4.58 ± 0.02 −0.07 ± 0.15 PSI, TE [1049]
C(HOPG) ? Cs Cs+ 4.60 ± 0.11 4.58 ± 0.02 0.02 ± 0.11 PSI, TE [112,524,1049]
C(HOPG) ? Cs Cs+ 4.62 ± 0.17 4.58 ± 0.02 0.04 ± 0.17 PSI, TE [1049]
C(HOPG) ? Cs Cs+ 4.69 ± 0.19 4.58 ± 0.02 0.11 ± 0.19 PSI, TE [1049]
C(HOPG) ? Cs Cs+ 4.82 ± 0.14 4.58 ± 0.02 0.24 ± 0.14 PSI, TE [1049]
Mean – – – – – 0.07 ± 0.10 PSI, TE –
M.P.V. – – – 4.65 ± 0.12 4.66 ± 0.05 −0.01 ± 0.13 various Table 2

6. Graphitic Carbon Film

C/Ir ? Cs Cs+ 4.2 ± 0.1 4.5 ± 0.1 −0.3 ± 0.14 PSI, TE [1290]
C/Re(1010) ? Na Na+ 4.30 ± 0.05 4.30 ± 0.05 0.00 ± 0.07 PSI, TE [4458]
C/Ir(111) ? Ba Ba+ 4.5 4.5 0.0 PSI, TE [168]
C/Ir(111) ? In In+ 4.5 4.5 0.0 PSI, TE [168]
C/Pt–W(8%) ? K K+ 4.50 ± 0.05 4.50 ± 0.02 0.00 ± 0.05 PSI, TE [108]
C/Pt–W(8%) ? K K+ 4.55 ± 0.07 4.63 ± 0.06 −0.08 ± 0.09 PSI, TE [108]
C/Pt–W(8%) ? Na Na+ 4.58 ± 0.03 4.54 ± 0.06 0.04 ± 0.07 PSI, TE [676]
C/Ir ? K K+ 4.6 ± 0.1 4.4 0.2 ± 0.1 PSI, TE [107]
C/Ir(111) ? Cs Cs+ 4.8 4.8 0.0 PSI, TE [103]
C/Ir(111) ? In In+ 4.8 4.8 0.0 PSI, TE [103]
Mean – – – – – −0.02 ± 0.12 PSI, TE –
M.P.V. – – – 4.50 ± 0.04 4.47 ± 0.05 0.03 ± 0.06 various Table 2

13. Polycrystalline Aluminium

Al/Si(111) ? Cs, Li Cs+ 4.8a 4.23 ± 0.06b 0.6 ± >0.06 CPD, various [1342]
Al ? Cs Cs+ 4.96a 4.23 ± 0.06b 0.73 ± >0.06 CPD, various [611]
Mean – – – – – 0.66 ± >0.06 CPD, various –
M.P.V. – – – 4.9 ± 0.1 4.26 ± 0.03 0.6 ± 0.1 various Table 2

14. Monocrystalline Silicon

Si(100)n ∼100 K K+ 4.54 ± 0.2 4.53 ± 0.1 0.01 ± 0.2 PSI, TE [74]
Si(100)n ∼100 Li Li+ 4.60 ± 0.03 4.53 ± 0.1 0.07 ± 0.1 PSI, TE [74]
Si(100)n ∼100 Na Na+ 4.70 ± 0.02 4.53 ± 0.1 0.17 ± 0.1 PSI, TE [74]
Si(100)n ∼100 Li Li+ 4.74 ± 0.05 4.53 ± 0.1 0.21 ± 0.1 PSI, TE [74]
Si(100)n ∼100 Tl Tl+ 4.81 ± 0.03 4.53 ± 0.1 0.28 ± 0.1 PSI, TE [74]
Si(100)n ∼100 Tl Tl+ 4.81 ± 0.07 4.53 ± 0.1 0.28 ± 0.1 PSI, TE [74]
Si(100)n ∼100 Na Na+ 4.84 ± 0.03 4.53 ± 0.1 0.31 ± 0.1 PSI, TE [74]
Si(100)n ∼100 K K+ ≥4.84 4.53 ± 0.1 ≥0.31±0.1 PSI, TE [74]
Mean – – – – – 0.20 ± 0.10g PSI, TE –
M.P.V. – – – 4.72 ± 0.10 4.82 ± 0.10 −0.10 ± 0.14 various Table 2

Si(110)p ∼100 Na Na+ 3.32 3.40 −0.08 PSI, TE [1472]
Si(110)p ∼100 K K+ 3.32 3.40 −0.08 PSI, TE [1472]
Si(110)p ∼100 Na Na+ 4.31 4.31 0.00 PSI, TE [1472]
Si(110)p ∼100 K K+ 4.31 4.31 0.00 PSI, TE [1472]
Si(110)p ∼100 Na Na+ 4.38 ± 0.01 4.69 ± 0.01 −0.31 ± 0.01 PSI, TE [1472]
(continued on next page)

245



H. Kawano Progress in Surface Science 97 (2022) 100583
Table 4 (continued)

Surface 𝛿m (%) Beam Ion 𝜙+ (eV) 𝜙e (eV) 𝛥𝜙∗ (eV) Meths. Refs.

Si(110)p ∼100 K K+ 4.38 ± 0.01 4.69 ± 0.01 −0.31 ± 0.01 PSI, TE [1472]
Mean – – – – – −0.13 ± 0.13 PSI, TE –
Mean (revised)c – – – – – −0.04 ± 0.04 PSI, TE –
M.P.V. – – – 4.36 ± 0.03 4.44 ± 0.24 −0.08 ± 0.24 various Table 2

Si(111)n ∼100 K K+ 4.44 ± 0.1 4.55 ± 0.1 −0.11 ± 0.14 PSI, TE [74]
Si(111)n ∼100 Na Na+ 4.63 ± 0.05 4.59 ± 0.05 0.04 ± 0.07 PSI, TE [75]
Si(111)n ∼100 K K+ 4.69 ± 0.1 4.55 ± 0.1 0.14 ± 0.14 PSI, TE [74]
Si(111)n ∼100 Li Li+ 4.75 ± 0.03 4.55 ± 0.1 0.20 ± 0.10 PSI, TE [74]
Si(111)p ∼100 Na Na+ 4.76 ± 0.05 4.58 ± 0.05 0.18 ± 0.07 PSI, TE [75]
Si(111)n ∼100 Na Na+ 4.78 ± 0.05 4.59 ± 0.05 0.19 ± 0.07 PSI, TE [75]
Si(111)n ∼100 Tl Tl+ 4.79 ± 0.03 4.55 ± 0.1 0.24 ± 0.10 PSI, TE [74]
Si(111)p ∼100 K K+ 4.80 4.1 ± 0.1 0.7 ± >0.1 PSI, TE [272]
Si(111)n ∼100 Na Na+ 4.80 ± 0.04 4.55 ± 0.1 0.25 ± 0.11 PSI, TE [74]
Si(111)n ∼100 Na Na+ 4.81 ± 0.02 4.55 ± 0.1 0.26 ± 0.10 PSI, TE [74]
Si(111) ∼100 Na Na+ 4.81 ± 0.05 4.55 ± 0.05 0.26 ± 0.07 PSI, TE [75]
Si(111)n ∼100 Li Li+ 4.84 ± 0.03 4.55 ± 0.1 0.29 ± 0.10 PSI, TE [74]
Si(111)p ∼100 Cs Cs+ 4.85 ± 0.08 4.07 ± 0.05 0.78 ± 0.09 PSI, TE [73]
Si(111)p ∼100 Cs Cs+ 4.85 ± 0.08 4.83 ± 0.04d 0.02 ± 0.09 PSI, TE [73]
Si(111)p ∼100 Cs Cs+ 4.85 ± 0.08 4.86 ± 0.11 −0.01 ± 0.14 PSI, CPD [73]
Si(111)n ∼100 Li Li+ 4.86 ± 0.07 4.04 ± 0.05 0.82 ± 0.09 PSI, TE [72]
Si(111)n ∼100 Li Li+ 4.86 ± 0.07 4.80 ± 0.04d 0.06 ± 0.08 PSI, TE [72]
Si(111)n ∼100 Na Na+ 4.87 ± 0.03 4.04 ± 0.05 0.83 ± 0.06 PSI, TE [72]
Si(111)n ∼100 Na Na+ 4.87 ± 0.03 4.80 ± 0.04d 0.07 ± 0.05 PSI, TE [72]
Si(111)p ∼100 Cs Cs+ 4.88 ± 0.10 4.07 ± 0.05 0.81 ± 0.11 PSI, TE [73]
Si(111)p ∼100 Cs Cs+ 4.88 ± 0.10 4.83 ± 0.04d 0.05 ± 0.11 PSI, TE [73]
Si(111)p ∼100 Cs Cs+ 4.88 ± 0.10 4.84 ± 0.14 0.04 ± 0.17 PSI, CPD [73]
Si(111)n ∼100 In In+ 4.90 ± 0.10 4.04 ± 0.05 0.86 ± 0.11 PSI, TE [72]
Si(111)n ∼100 In In+ 4.90 ± 0.10 4.80 ± 0.04d 0.10 ± 0.11 PSI, TE [72]
Si(111)n ∼100 Tl Tl+ 4.99 ± 0.05 4.55 ± 0.1 0.44 ± 0.11 PSI, TE [74]
Si(111) ∼100 Na Na+ 5.00 ± 0.05 4.51 0.49 ± >0.05 PSI, TE [75]
Si(111)p ∼100 Na Na+ 5.05 4.1 ± 0.1 0.95 ± >0.1 PSI, TE [272]
Si(111)p ∼100 Na Na+ 5.06 4.1 ± 0.1 0.96 ± >0.1 PSI, TE [272]
Si(111) ∼100 Li Li+ 5.23 ± 0.05 4.51 ± 0.05 0.72 ± 0.07 PSI, TE [75]
Mean – – – – – 0.35 ± 0.33 PSI, SIE, TE –
Mean (revised)e – – – – – 0.05 ± 0.03 PSI, CPD, Eq. (8) –
M.P.V. – – – 4.83 ± 0.07 4.86 ± 0.09 −0.03 ± 0.11 various Table 2

14. Polycrystalline Silicon

Si ? Cs Cs+ 5.14a 4.6 ± 0.1b 0.5 ± >0.1 CPD, various [611]

41. Monocrystalline Niobium

Nb(100) ∼100 Cs Cs+ 4.04 3.90 0.14 PSI, TE [739]
M.P.V. – – – 4.04 4.02 ± 0.05 0.02 ± >0.05 various Table 2

Nb(110) ∼100 Cs Cs+ 4.64 4.80 −0.16 PSI, TE [739]
Nb(110) ∼100 Na Na+ 4.84 ± 0.05 4.80 0.04 ± >0.05 PSI, TE [726]
Mean – – – – – −0.06 ± 0.10 PSI, TE –
M.P.V. – – – 4.74 ± 0.10 4.77 ± 0.05 −0.03 ± 0.11 various Table 2

Nb(111) ∼100 Cs Cs+ 3.78 3.88 −0.10 PSI, TE [739]
Nb(111) ∼100 Na Na+ 3.90 3.88 0.02 PSI, TE [726]
Mean – – – – – −0.04 ± 0.06 PSI, TE –
M.P.V. – – – 3.84 ± 0.06 3.95 ± 0.09 −0.11 ± 0.11 various Table 2

Nb(112) ∼100 Cs Cs+ 4.44 4.45 ± 0.05 −0.01 ± >0.05 PSI, TE [739]
M.P.V. – – – 4.44 4.33 ± 0.10 0.11 ± >0.1 various Table 2

41. Polycrystalline Niobium

Nb–(100)f 68 – – 4.39 ± 0.08 4.02 ± 0.07 0.37 ± 0.11 TC [803]
Nb ? RbI Rb+ 4.76 ± 0.03 4.02 ± 0.05 0.74 ± 0.06 PSI, TE [23]
Nb ? RbBr Rb+ 4.87 ± 0.06 4.02 ± 0.05 0.85 ± 0.08 PSI, TE [23]
Nb ? RbCl Rb+ 4.88 ± 0.06 4.02 ± 0.05 0.86 ± 0.08 PSI, TE [23]
Mean – – – – – 0.70 ± 0.12 TC, PSI, TE –
M.P.V. – – – 4.81 ± 0.05 4.11 ± 0.05 0.70 ± 0.07 various Table 2

(continued on next page)
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Table 4 (continued)

Surface 𝛿m (%) Beam Ion 𝜙+ (eV) 𝜙e (eV) 𝛥𝜙∗ (eV) Meths. Refs.

42. Monocrystalline Molybdenum

Mo(100) ∼100 Na Na+ 4.44 ± 0.03 4.40 ± 0.03 0.04 ± 0.04 PSI, TE [727,3103]
Mo(100) ∼100 Na Na+ 4.45 4.45 0.00 PSI, TE [278]
Mo(100) ∼100 K K+ 4.45 4.45 0.00 PSI, TE [278]
Mean – – – – – 0.01 ± 0.01 PSI, TE –
M.P.V. – – – 4.38 ± 0.08 4.38 ± 0.03 0.00 ± 0.09 various Table 2

Mo(110) ∼100 Na Na+ 5.13 ± 0.03 5.10 ± 0.03 0.03 ± 0.04 PSI, TE [727]
M.P.V. – – – 5.1 4.98 ± 0.03 0.1 ± >0.03 various Table 2

Mo(111) ∼100 Li Li+ 4.10 ± 0.03 4.10 ± 0.03 0.00 ± 0.04 PSI, TE [786]
Mo(111) ∼100 Na Na+ 4.13 ± 0.03 4.10 ± 0.03 0.03 ± 0.04 PSI, TE [727,3103]
Mean – – – – – 0.02 ± 0.04 PSI, TE –
M.P.V. – – – 4.17 ± 0.09 4.29 ± 0.03 −0.12 ± 0.09 various Table 2

Mo(112) ∼100 Na Na+ 4.63 ± 0.03 4.60 ± 0.03 0.03 ± 0.04 PSI, TE [727,2210]
M.P.V. – – – 4.6 4.51 ± 0.03 0.1 ± >0.03 various Table 2

42. Polycrystalline Molybdenum

Mo(porous) ? Cs Cs+ 4.15 3.8 0.35 PSI, TE [3762]
Mo ? K K+ 4.23 ± 0.10 4.41 ± 0.01 −0.18 ± 0.10 PSI, TE [645]
Mo ? – Mo+ 4.3 ± 0.1 4.20 ± 0.02 0.1 ± 0.1 PSI, TE [132]
Mo ? – Mo+ 4.5 ± 0.1 4.19 ± 0.02 0.3 ± 0.1 PSI, TE [954]
Mo ? – Mo+ 4.50 4.17 0.33 PSI, TE [131]
Mo ? – Mo+ 4.6 ± 0.1 4.37 ± 0.02 0.2 ± 0.1 PSI, TE [132]
Mo ? – Mo+ 4.7 ± 0.1 4.19 ± 0.02 0.5 ± 0.1 PSI, TE [954]
Mo ? KBr K+ 4.90 ± 0.06 4.39 ± 0.05 0.51 ± 0.08 PSI, TE [23,39]
Mo ? Bi Bi+ 4.96 ± 0.01 4.41 ± 0.02 0.55 ± 0.02 PSI, TE [78]
Mo ? In In+ 5.02 ± 0.05 4.33 ± 0.07 0.69 ± 0.09 PSI, TE [76,77]
Mo ? – Mo+ 5.1 ± 0.1 4.20 ± 0.02 0.9 ± 0.1 PSI, TE [132]
Mo ? – Mo+ 5.1 ± 0.4 4.33 ± 0.07 0.8 ± 0.41 PSI, TE [77]
Mo ? KCl K+ 5.10 ± 0.07 4.39 ± 0.05 0.71 ± 0.09 PSI, TE [23,39]
Mo ? – Mo+ 5.4 ± 0.1 4.37 ± 0.02 1.0 ± 0.1 PSI, TE [132]
Mean – – – – – 0.48 ± 0.31 PSI, TE –
M.P.V. – – – 5.03 ± 0.06 4.31 ± 0.02 0.72 ± 0.06 various Table 2

73. Monocrystalline Tantalum

Ta(100) ∼100 Na Na+ 4.20 ± 0.04 4.17 ± 0.04 0.03 ± 0.06 PSI, TE [797]
M.P.V. – – – 4.2 4.15 ± 0.05 0.05 ± >0.05 various Table 2

Ta(110) ∼100 Li Li+ 4.8 4.80 ± 0.03 0.0 ± >0.03 PSI, TE [786]
Ta(110) ∼100 Na Na+ 4.84 ± 0.04 4.82 ± 0.04 0.02 ± 0.06 PSI, TE [797]
Ta(110) ∼100 Na Na+ 4.85 ± 0.05 4.81 0.04 ± >0.05 PSI, TE [726]
Ta(110) ∼100 Lh L+ 4.85 ± 0.06 4.85 0.00 ± >0.05 PSI, TE [279]
Mean – – – – – 0.02 ± 0.01 PSI, TE –
M.P.V. – – – 4.84 ± 0.02 4.82 ± 0.06 0.02 ± 0.06 various Table 2

Ta(111) ∼100 Na Na+ 4.00 ± 0.04 4.02 ± 0.04 −0.02 ± 0.06 PSI, TE [797]
Ta(111) ∼100 Na Na+ 4.00 ± 0.05 3.98 ± 0.05 0.02 ± 0.07 PSI, TE [726]
Mean – – – – – 0.00 ± 0.02 PSI, TE –
M.P.V. – – – 4.00 ± 0.05 4.01 ± 0.04 −0.01 ± 0.06 various Table 2

Ta(112) ∼100 K K+ 4.8 4.8 ± 0.05 0.0 ± >0.05 PSI, TE [79]

73. Polycrystalline Tantalum

Ta(porous) ? Cs Cs+ 4.2 4.1 0.1 PSI, TE [3762]
Ta–(112)i 82 – – 4.49 ± 0.04 4.34 ± 0.03 0.15 ± 0.05 TC [803]
Ta ? Na Na+ 4.64 ± 0.03 4.30 ± 0.02 0.34 ± 0.04 PSI, TE [81]
Ta ? In In+ 4.88 ± 0.05 4.33 ± 0.03 0.55 ± 0.06 PSI, TE [76,77]
Ta ? – Ta+ 5.0 ± 0.5 4.33 ± 0.03 0.7 ± 0.5 PSI, TE [77]
Ta ? KCl K+ 5.10 ± 0.01 4.27 ± 0.04 0.83 ± 0.04 PSI, TE [23,2422]

(continued on next page)
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Table 4 (continued)

Surface 𝛿m (%) Beam Ion 𝜙+ (eV) 𝜙e (eV) 𝛥𝜙∗ (eV) Meths. Refs.

Ta ? RbBr Rb+ 5.13 ± 0.03 4.27 ± 0.04 0.86 ± 0.05 PSI, TE [23,67]
Ta ? RbCl Rb+ 5.19 ± 0.03 4.27 ± 0.04 0.92 ± 0.05 PSI, TE [23,67]
Mean – – – – – 0.56 ± 0.30 TC, PSI, TE –
M.P.V. – – – 4.95 ± 0.20 4.20 ± 0.03 0.75 ± 0.20 various Table 2

74. Monocrystalline Tungsten

W(100) ∼100 K K+ 4.54 ± 0.02 4.59 ± 0.03 −0.05 ± 0.04 PSI, TE [82,261]
W(100) ∼100 Ba Ba+ 4.55 ± 0.03 4.52 ± 0.07 0.03 ± 0.08 PSI, TE [92]
W(100) ∼100 Sm Sm+ 4.6 4.6 0.0 PSI, TE [271]
W(100) ∼100 Ba Ba+ 4.6 ± 0.1 4.6 ± 0.1 0.0 ± 0.1 PSI, TE [15,649]
W(100) ∼100 K K+ 4.6 ± 0.1 4.6 ± 0.1 0.0 ± 0.1 PSI, TE [1659]
W(100) ∼100 In In+ 4.60 4.55 0.05 PSI, TE [83]
W(100) 96 – – 4.60 ± 0.04 4.59 ± 0.04 0.01 ± 0.06 TC [630]
W(100) ∼100 Cs Cs+ 4.61 ± 0.07 4.65 ± 0.02 −0.04 ± 0.07 PSI, TE [266]
W(100) ∼100 Bi Bi+ 4.62 ± 0.06 4.59 ± 0.05 0.03 ± 0.08 PSI, TE [84]
W(100) ∼100 Na Na+ 4.66 ± 0.03 4.60 ± 0.03 0.06 ± 0.04 PSI, TE [3103]
W(100) ∼100 Cs Cs+ 4.66 ± 0.11 4.60 ± 0.06 0.06 ± 0.13 PSI, TE [280]
W(100) 95 – – 4.69 ± 0.05 4.57 ± 0.00 0.12 ± 0.05 TC [803]
W(100) 95 – – 4.70 ± 0.04 4.61 ± 0.04 0.09 ± 0.06 TC [2453]
Mean – – – – – 0.03 ± 0.05 TC, PSI, TE –
M.P.V. – – – 4.62 ± 0.05 4.65 ± 0.02 −0.03 ± 0.05 various Table 2

W(110) ∼100 Ba Ba+ 4.82 ± 0.06 5.04 −0.22 ± >0.06 PSI, TE [87]
W(110) ∼100 Cs Cs+ 5.11 5.33 ± 0.04 −0.22 ± >0.04 PSI, TE [2314]
W(110) ∼100 Na Na+ 5.14 5.04 ± 0.06 0.10 ± >0.06 PSI, TE [87]
W(110) ∼100 Na Na+ 5.14 4.8 ± 0.1 0.34 ± >0.1 PSI, TE [85]
W(110) ∼100 Na Na+ 5.14 ± 0.03 5.30 ± 0.03 −0.16 ± 0.04 PSI, TE [3103]
W(110) ∼100 Na Na+ 5.2 5.2 0.0 PSI, TE [2773]
W(110) ∼100 Na Na+ 5.25 5.27 −0.02 PSI, TE [86,90]
W(110) 80 – – 5.25 ± 0.02 4.90 ± 0.05 0.35 ± 0.05 TC [630]
W(110) >90 Na Na+ 5.25 ± 0.05 5.25 ± 0.05 0.00 ± 0.07 PSI, TE [86,90]
W(110) ∼100 Li Li+ 5.28 ± 0.03 5.30 ± 0.03 −0.02 ± 0.04 PSI, TE [88]
W(110) ∼100 Li Li+ 5.30 ± 0.03 5.30 ± 0.03 0.00 ± 0.04 PSI, TE [814]
Mean – – – – – 0.01 ± 0.11 TC, PSI, TE –
M.P.V. – – – 5.28 ± 0.11 5.32 ± 0.02 −0.04 ± 0.11 various Table 2

W(111) ∼100 Na Na+ 4.42 ± 0.03 4.40 ± 0.03 0.02 ± 0.04 PSI, TE [3103]
W(111) ∼100 Na Na+ 4.44 ± 0.03 4.40 ± 0.03 0.04 ± 0.04 PSI, TE [817]
W(111) ∼100 Li Li+ 4.44 ± 0.03 4.40 ± 0.03 0.04 ± 0.04 PSI, TE [3103]
W(111) ∼100 Li Li+ 4.50 ± 0.03 4.40 ± 0.02 0.10 ± 0.04 PSI, TE [88]
Mean – – – – – 0.05 ± 0.03 PSI, TE –
M.P.V. – – – 4.45 ± 0.04 4.45 ± 0.03 0.00 ± 0.05 various Table 2

W(112) ∼100 Gd Gd+ 4.70 ± 0.02 4.85 ± 0.07 −0.15 ± 0.07 PSI, TE [91]
W(112) ∼100 Er Er+ 4.70 ± 0.02 4.85 ± 0.07 −0.15 ± 0.07 PSI, TE [91]
W(112) ∼100 Er Er+ 4.72 ± 0.06 4.85 ± 0.07 −0.13 ± 0.09 PSI, TE [91]
Mean – – – – – −0.15 ± 0.07 PSI, TE –
M.P.V. – – – 4.70 ± 0.01 4.78 ± 0.03 −0.08 ± 0.03 various Table 2

74. Polycrystalline Tungsten

W ? – W+ 4.8 ± 0.6 4.58 ± 0.03 0.2 ± 0.6 PSI, TE [77]
W ? Na Na+ 4.95 ± 0.05 4.61 0.34 ± >0.05 PSI, TE [85]
W–(310)f 46.3 – – 4.96 ± 0.03 4.34 ± 0.05 0.62 ± 0.06 TC [630]
W–(100) 46 – – 4.99 ± 0.05 4.56 ± 0.01 0.43 ± 0.05 TC [803]
W–(310) 46.3 – – 4.99 ± 0.06 4.38 ± 0.05 0.61 ± 0.08 TC [2453]
W–(100) 46 – – 5.00 ± 0.05 4.56 ± 0.01 0.44 ± 0.05 TC [2453]
W ? In In+ 5.05 ± 0.05 4.58 ± 0.05 0.47 ± 0.07 PSI, TE [94]
W ? KCl K+ 5.09 ± 0.02 4.42 ± 0.02 0.67 ± 0.03 PSI, TE [36]
W ? KCl K+ 5.09 ± 0.06 4.48 ± 0.06 0.61 ± 0.08 PSI, TE [23]
W–(110) <35 – – 5.09 ± 0.10 4.52 ± 0.12 0.57 ± 0.16 TC [283]
W ? In In+ 5.10 4.58 ± 0.05 0.52 ± >0.05 PSI, TE [94]
W–(110) 25 – – 5.12 4.46 0.66 TC [3844]
W ? KF K+ 5.12 ± 0.02 4.48 ± 0.06 0.64 ± 0.06 PSI, TE [23]
W–(112) 33.6 – – 5.13 ± 0.04 4.62 ± 0.02 0.51 ± 0.04 TC [630]
W ? In In+ 5.14 ± 0.03 4.58 ± 0.03 0.56 ± 0.04 PSI, TE [76,77]
W ? Bi Bi+ 5.14 ± 0.05 4.60 ± 0.04 0.54 ± 0.06 PSI, TE [84,93]
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Table 4 (continued)

Surface 𝛿m (%) Beam Ion 𝜙+ (eV) 𝜙e (eV) 𝛥𝜙∗ (eV) Meths. Refs.

W–(110) 35.2 – – 5.15 ± 0.03 4.63 ± 0.01 0.52 ± 0.03 TC [281]
W ? LiI Li+ 5.16 ± 0.05 4.61 ± 0.03 0.55 ± 0.06 PSI, TE [281]
W ? LiCl Li+ 5.18 ± 0.03 4.57 ± 0.04 0.61 ± 0.05 PSI, TE [281]
W–(110) 35 – – 5.18 ± 0.03 4.61 ± 0.03 0.57 ± 0.04 PSI, TE [630]
W ? LiCl Li+ 5.19 ± 0.03 4.48 ± 0.06 0.71 ± 0.07 PSI, TE [23]
W ? LiF Li+ 5.19 ± 0.05 4.60 ± 0.05 0.59 ± 0.07 PSI, TE [281]
W ? NaBr Na+ 5.20 ± 0.02 4.48 ± 0.06 0.72 ± 0.06 PSI, TE [23]
W ? LiCl Li+ 5.20 ± 0.02 4.47 ± 0.04 0.73 ± 0.04 PSI, TE [37]
W ? LiBr Li+ 5.20 ± 0.04 4.60 ± 0.05 0.60 ± 0.06 PSI, TE [281]
W ? NaCl Na+ 5.21 ± 0.02 4.48 ± 0.06 0.73 ± 0.06 PSI, TE [23]
W ? RbCl Rb+ 5.21 ± 0.06 4.48 ± 0.06 0.73 ± 0.08 PSI, TE [23]
W ? NaCl Na+ 5.22 ± 0.02 4.47 ± 0.04 0.75 ± 0.04 PSI, TE [37]
W ? LiF Li+ 5.22 ± 0.07 4.48 ± 0.06 0.74 ± 0.09 PSI, TE [23]
W ? NaCl Na+ 5.23 ± 0.01 4.42 ± 0.02 0.81 ± 0.02 PSI, TE [36]
W ? NaI Na+ 5.23 ± 0.02 4.48 ± 0.06 0.75 ± 0.06 PSI, TE [23]
W ? LiBr Li+ 5.23 ± 0.02 4.48 ± 0.06 0.75 ± 0.06 PSI, TE [23,37]
W–(110) 80 – – 5.25 ± 0.02 4.90 ± 0.05 0.35 ± 0.05 TC [630]
W–(110) 80 – – 5.26 ± 0.02 4.87 ± 0.06 0.39 ± 0.06 TC [2453]
W ? LiI Li+ 5.26 ± 0.02 4.48 ± 0.06 0.78 ± 0.06 PSI, TE [23]
W ? LiI Li+ 5.27 ± 0.01 4.47 ± 0.04 0.80 ± 0.04 PSI, TE [37]
Mean – – – – – 0.60 ± 0.13 TC, PSI, TE –
M.P.V. – – – 5.17 ± 0.05 4.56 ± 0.03 0.61 ± 0.06 various Table 2

75. Monocrystalline Rhenium

Re(0001) ∼100 La La+ 5.15 ± 0.21 5.15 ± 0.10 0.00 ± 0.23 PSI, TE [96]
Re(0001) ∼100 Ce Ce+ 5.15 ± 0.21 5.15 ± 0.10 0.00 ± 0.23 PSI, TE [96]
Re(0001) ∼100 Er Er+ 5.15 ± 0.21 5.15 ± 0.10 0.00 ± 0.23 PSI, TE [96]
Re(0001) ∼100 Gd Gd+ 5.15 ± 0.34 5.15 ± 0.10 0.00 ± 0.35 PSI, TE [96]
Re(0001) ∼100 Tm Tm+ 5.15 ± 0.34 5.15 ± 0.10 0.00 ± 0.35 PSI, TE [96]
Mean – – – – – 0.00 ± 0.28 PSI, TE –
M.P.V. – – – 5.15 ± <0.34 5.30 ± 0.21 −0.15 ± <0.40 various Table 2

75. Polycrystalline Rhenium

Re ? NaI Na+ 5.01 5.0 ± 0.1 0.0 ± >0.1 PSI, TE [99]
Re ? Na Na+ 5.06 5.0 ± 0.1 0.1 ± >0.1 PSI, TE [99]
Re ? NaCl Na+ 5.06 5.0 ± 0.1 0.1 ± >0.1 PSI, TE [99]
Re ? NaBr Na+ 5.11 5.0 ± 0.1 0.1 ± >0.1 PSI, TE [99]
Re ? Na Na+ 5.14 4.93 ± 0.04 0.21 ± >0.04 PSI, TE [53]
Re ? NaCl Na+ 5.14 4.93 ± 0.04 0.21 ± >0.04 PSI, TE [53]
Re ? Li Li+ 5.21 ± 0.01 4.98 ± 0.03 0.23 ± 0.03 PSI, TE [54]
Re ? In In+ 5.31 ± 0.03 4.93 ± 0.04 0.38 ± 0.05 PSI, TE [97]
Re ? Li Li+ 5.34 4.93 ± 0.04 0.41 ± >0.04 PSI, TE [53]
Re ? LiCl Li+ 5.34 4.93 ± 0.04 0.41 ± >0.04 PSI, TE [53]
Re ? Bi Bi+ 5.35 ± 0.05 4.85 ± 0.05 0.50 ± 0.07 PSI, TE [100]
Re ? In In+ 5.38 ± 0.03 4.93 ± 0.04 0.45 ± 0.05 PSI, TE [97]
Re ? Ca Ca+ 5.38 ± 0.03 4.93 ± 0.04 0.45 ± 0.05 PSI, TE [97]
Re ? In In+ 5.39 ± 0.05 4.99 ± 0.05 0.40 ± 0.07 PSI, TE [94]
Re ? – Re+ 5.4 ± 0.6 4.93 ± 0.04 0.5 ± 0.6 PSI, TE [77]
Re ? In In+ 5.40 4.99 ± 0.05 0.41 ± >0.05 PSI, TE [94]
Re ? Mg Mg+ 5.40 ± 0.05 4.93 ± 0.04 0.47 ± 0.06 PSI, TE [97]
Re ? NaI Na+ 5.41 ± 0.05 4.95 ± 0.05 0.46 ± 0.07 PSI, TE [23]
Re ? NaCl Na+ 5.42 4.93 0.49 PSI, TE [23]
Re ? NaCl Na+ 5.42 4.97 0.45 PSI, TE [23]
Re ? NaCl Na+ 5.42 ± 0.02 4.95 ± 0.05 0.47 ± 0.05 PSI, TE [23]
Re ? NaI Na+ 5.43 ± 0.01 4.93 ± 0.02 0.50 ± 0.02 PSI, TE [23]
Re ? NaI Na+ 5.43 ± 0.01 4.95 ± 0.01 0.48 ± 0.01 PSI, TE [23]
Re ? Ag Ag+ 5.43 ± 0.02 4.93 ± 0.04 0.50 ± 0.04 PSI, TE [97]
Re ? Ca Ca+ 5.43 ± 0.02 4.93 ± 0.04 0.50 ± 0.04 PSI, TE [76,77]
Re ? NaCl Na+ 5.43 ± 0.04 4.96 ± 0.05 0.47 ± 0.06 PSI, TE [23]
Re ? Ca Ca+ 5.44 ± 0.03 4.93 ± 0.04 0.51 ± 0.05 PSI, TE [97]
Re ? NaI Na+ 5.45 4.97 0.48 PSI, TE [23]
Re ? NaI Na+ 5.45 4.94 0.51 PSI, TE [23]
Re ? Ca Ca+ 5.46 ± 0.02 4.93 ± 0.04 0.53 ± 0.04 PSI, TE [97]
Re ? LiBr Li+ 5.48 ± 0.02 4.95 ± 0.05 0.53 ± 0.05 PSI, TE [23]
Re ? LiI Li+ 5.49 ± 0.02 4.95 ± 0.05 0.54 ± 0.05 PSI, TE [23,38]
Re ? LiCl Li+ 5.53 ± 0.02 4.95 ± 0.05 0.58 ± 0.05 PSI, TE [23]
Re ? LiI Li+ 5.53 ± 0.02 5.00 ± 0.01 0.53 ± 0.02 PSI, TE [101]

(continued on next page)
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Table 4 (continued)

Surface 𝛿m (%) Beam Ion 𝜙+ (eV) 𝜙e (eV) 𝛥𝜙∗ (eV) Meths. Refs.

Re ? NaCl Na+ 5.58 5.18 0.40 PSI, TE [23]
Re ? NaCl Na+ 5.70 5.36 0.34 PSI, TE [23]
Re ? NaI Na+ 5.76 5.37 0.39 PSI, TE [23]
Re ? NaI Na+ 5.81 5.41 0.40 PSI, TE [23]
Mean – – – – – 0.41 ± 0.14 PSI, TE –
M.P.V. – – – 5.41 ± 0.04 4.96 ± 0.05 0.45 ± 0.06 various Table 2

77. Monocrystalline Iridium

Ir(111) ∼100 Bi Bi+ 5.75 ± 0.05 5.75 ± 0.05 0.00 ± 0.07 PSI, TE [105,409]
Ir(111) ∼100 Yb Yb+ 5.75 ± 0.10 5.75 ± 0.10 0.00 ± 0.14 PSI, TE [104]
Ir(111) ∼100 Bi Bi+ 5.79 ± 0.03 5.74 ± 0.06 0.05 ± 0.07 PSI, TE [102,410]
Ir(111) ∼100 Tl Tl+ 5.79 ± 0.03 5.74 ± 0.06 0.05 ± 0.07 PSI, TE [102,410]
Ir(111) ∼100 K K+ 5.8 5.75 ± 0.05 0.05 ± >0.05 PSI, TE [252,411]
Ir(111) ∼100 Ba Ba+ 5.8 5.80 ± 0.05 0.0 ± >0.05 PSI, TE [649]
Ir(111) ∼100 In In+ 5.80 ± 0.03 5.80 ± 0.03 0.00 ± 0.04 PSI, TE [103]
Mean – – – – – 0.02 ± 0.02 PSI, TE –
M.P.V. – – – 5.76 ± 0.04 5.75 ± 0.06 0.01 ± 0.07 various Table 2

77. Polycrystalline Iridium

Ir ? NaBr Na+ 5.72 ± 0.03 5.15 ± 0.03 0.57 ± 0.04 PSI, TE [68]
Ir–(111) 81 – – 5.73 ± 0.01 5.36 ± 0.07 0.37 ± 0.07 TC [803]
Ir ? NaCl Na+ 5.73 ± 0.02 5.15 ± 0.03 0.58 ± 0.04 PSI, TE [68]
Ir ? Bi Bi+ 5.80 ± 0.05 5.40 ± 0.05 0.40 ± 0.07 PSI, TE [106,667]
Mean – – – – – 0.48 ± 0.10 TC, PSI, TE –
M.P.V. – – – 5.75 ± 0.04 5.28 ± 0.04 0.47 ± 0.06 various Table 2

78. Monocrystalline Platinum

Pt(111) ∼100 Li Li+ 5.75 ± 0.02 5.86 ± 0.06b −0.11 ± 0.06 PSI, various [167]
Pt(111) ∼100 Li Li+ 5.76 ± 0.02 5.86 ± 0.06b −0.10 ± 0.06 PSI, various [167]
Pt(111) ∼100 Li Li+ 5.77 ± 0.02 5.86 ± 0.06b −0.09 ± 0.06 PSI, various [167]
Pt(111) ∼100 Li Li+ 5.80 ± 0.02 5.86 ± 0.06b −0.06 ± 0.06 PSI, various [167]
Pt(111) ∼100 Li Li+ 5.91 ± 0.02 5.86 ± 0.06b 0.05 ± 0.06 PSI, various [167]
Mean – – – – – −0.06 ± 0.06 PSI, various –
M.P.V. – – – 5.80 ± 0.06 5.84 ± 0.05 −0.04 ± 0.08 various Table 2

78. Polycrystalline Platinum

Pt ? Na Na+ 5.44 5.27 ± 0.08b 0.17 ± >0.08 PSI, various [3336]
Pt ? Na Na+ 5.49 ± 0.01 5.27 ± 0.08b 0.22 ± 0.08 PSI, various [50]
Pt ? Cs Cs+ 5.5 5.45 ± 0.05 0.05 ± >0.05 PSI, TE [98]
Pt ? K K+ 5.52 ± 0.05 5.41 ± 0.05 0.11 ± >0.07 PSI, TE [282]
Pt ? NaNO3 Na+ 5.54 ± 0.07 5.27 ± 0.08b 0.27 ± 0.11 PSI, various [178]
Pt ? NaNO3 Na+ 5.56 5.27 ± 0.08b 0.29 ± >0.08 PSI, various [178]
Pt ? Na Na+ 5.6 ± 0.1 5.27 ± 0.08b 0.3 ± 0.13 PSI, various [75]
Pt ? NaBr Na+ 5.66 5.27 ± 0.08b 0.39 ± >0.08 PSI, various [58]
Pt ? Bi Bi+ 5.77 ± 0.05 5.13 ± 0.05 0.64 ± 0.07 PSI, TE [106,667]
Mean – – – – – 0.27 ± 0.16 PSI, various –
M.P.V. – – – 5.58 ± 0.11 5.30 ± 0.07 0.28 ± 0.13 various Table 2

79. Polycrystalline Gold

Au/Si(111) ? Cs, Li Cs+ 5.7a 5.31 ± 0.07b 0.4 ± >0.07 CPD, various [1342]
M.P.V. – – – 5.7 5.30 ± 0.04 0.4 ± >0.04 various Table 2

aEach of the values of 𝜙+ (e.g., 4.8 eV for Al and 5.7 eV for Au) is calculated by the present author using each of the data included in the corresponding
reference.
bEach value (𝜙e) is taken tentatively from the most probable value listed in Table 2 [1351] because each of the corresponding references [611,1342,1342,3336,
etc.] has no data on 𝜙e for the specimen itself (Al, Si, Pt or Au) under study.
cThe mean (revised) for Si(110)p is obtained after disregarding the last two data [1472], which correspond to the composite surface covered partially with the
reaction products between Na (or K) and Si (see Footnote 434 in Table 1).
dThe values of 𝜙e = 4.83 and 4.80 eV for Si(111)p [73] and Si(111)n [72] are corrected from those of 4.07 and 4.04 eV, respectively, by using Eq. (8) (see
Footnote 66 in Table 1). It should be noted that the former (4.83 ± 0.04 eV) is essentially equal to 4.86 ± 0.11 eV determined directly for the same specimen
by CPD [73]. For further information about the data on Si(100)–Si(111) [72–75, etc.], see Footnotes 63–70 in Table 1.
eThe mean (revised) for Si(111) is based on these data alone whose 𝜙e is determined by CPD or calculated from Eq. (8).
fThe expression such as W–(310) denotes that the surface consists mainly (𝛿m = 46.3%) of the (310) face of W [630]. For further information about the surface,
see W(D) [489] in Table 6. On the other hand, Nb–(100) consists mainly (68%) of the (100) plane (see Table 2 in Ref. [803]).
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gThe authors [74] suggest that the discrepancy of 𝜙+ − 𝜙e ≠ 0 eV would be accounted by surface contamination of Si(100)n (see Footnotes 63 and also 64 in
Table 1).
hL represents lanthanides for measuring 𝜙+ of Ta(110) by PSI [279] (see Footnote 466 in Table 1).
iTa–(112) designates that its surface consists mainly of the (112) face with 𝛿m = 82% [803], similarly as in other cases of Nb and W (see Footnote f).

Table 5
Summary of the thermionic contrast (𝛥𝜙*) determined by the two methods of the ‘‘mean’’ originating from each common pair of 𝜙+ and 𝜙e measured for the
same specimen under virtually the same condition and of the ‘‘most probable value’’ due to heterogeneous pairs measured separately for various specimens
under different conditions by a variety of workers (see Table 4 and also the values in Table 1).

No. Surface 𝛥𝜙* (eV) (mono) 𝛥𝜙* (eV) (poly)

Mean M.P.V. [1351] Mean M.P.V. [1351]

6 C(HOPG) 0.07 ± 0.10 −0.01 ± 0.13 – – – –
6 C(film)a −0.02 ± 0.12 0.03 ± 0.06 – – – –
13 Al(poly) – – – 0.66 ± >0.06 0.6 ± 0.1 0.6
14 Si(100) –b −0.10 ± 0.14 0.02 ± 0.19 – – –
14 Si(110) −0.04 ± 0.04 −0.08 ± 0.24 – – – –
14 Si(111) 0.05 ± 0.03 −0.03 ± 0.11 0.03 ± 0.12 – – –
14 Si(poly) – – – 0.5 ± >0.1 – –
41 Nb(100) 0.14c 0.02 ± >0.05 – – – –
41 Nb(110) −0.06 ± 0.10 −0.03 ± 0.11 0.04 ± 0.05 – – –
41 Nb(111) −0.04 ± 0.06 −0.11 ± 0.11 0.02 ± 0.05 – – –
41 Nb(112) −0.01 ± >0.05 0.11 ± >0.1 – – – –
41 Nb(poly) – – – 0.70 ± 0.12 0.70 ± 0.07 0.78 ± 0.11
42 Mo(100) 0.01 ± 0.01 0.00 ± 0.09 −0.03 ± 0.08 – – –
42 Mo(110) 0.03 ± 0.04 0.1 ± >0.03 0.03 ± 0.30 – – –
42 Mo(111) 0.02 ± 0.04 −0.12 ± 0.09 −0.02 ± 0.15 – – –
42 Mo(112) 0.03 ± 0.04 0.1 ± >0.03 0.03 ± 0.30 – – –
42 Mo(poly) – – – 0.48 ± 0.31 0.72 ± 0.06 0.66 ± 0.07
73 Ta(100) 0.03 ± 0.06 0.05 ± >0.05 0.03 ± 0.06 – – –
73 Ta(110) 0.02 ± 0.01 0.02 ± 0.06 0.04 ± 0.07 – – –
73 Ta(111) 0.00 ± 0.02 −0.01 ± 0.06 0.00 ± 0.06 – – –
73 Ta(poly) – – – 0.56 ± 0.30 0.75 ± 0.20 0.71 ± 0.23
74 W(100) 0.03 ± 0.05 −0.03 ± 0.05 0.03 ± 0.06 – – –
74 W(110) 0.01 ± 0.11 −0.04 ± 0.11 −0.02 ± 0.09 – – –
74 W(111) 0.05 ± 0.03 0.00 ± 0.05 0.07 ± 0.06 – – –
74 W(112) −0.15 ± 0.07 −0.08 ± 0.03 0.07 ± 0.32 – – –
74 W(poly) – – – 0.60 ± 0.13 0.61 ± 0.06 0.59 ± 0.06
75 Re(0001) 0.00 ± 0.28 −0.15 ± <0.40 0.02 ± 0.19 – – –
75 Re(poly) – – – 0.41 ± 0.14 0.45 ± 0.06 0.45 ± 0.05
77 Ir(111) 0.02 ± 0.02 0.01 ± 0.07 −0.01 ± 0.05 – – –
77 Ir(poly) – – – 0.48 ± 0.10 0.47 ± 0.06 0.48 ± 0.04
78 Pt(111) −0.06 ± 0.06 −0.04 ± 0.08 −0.06 ± 0.08 – – –
78 Pt(poly) – – – 0.27 ± 0.16 0.28 ± 0.13 0.34 ± 0.14
79 Au(poly) – – – 0.4 ± >0.07 0.4 ± >0.04 0.4

Averaged 0.00 ± 0.06 −0.02 ± 0.07 0.02 ± 0.03 – – –
Rangee – – – ∼0.3–0.7 ∼0.3–0.7 ∼0.3–0.8

aThe value of 𝛥𝜙∗ = −0.02 or 0.03 ≈ 0.0 eV for C(film) is substantially equal to that (0.07 or −0.01 ≈ 0.0 eV) for C(HOPG), thereby showing that the graphitic
film formed on a foreign substrate (typically, Mo, Re or Pt) has usually the same thermionic property with monocrystalline graphite. In other words, carbon is
subject to forming a two-dimensional film with the graphitic monocrystalline structure under some conditions such as ∼1700 K on Ir(111) (𝜙+ = 𝜙e = 4.5 eV)
[168] and ∼1500 K on Pt–W(8%) (𝜙+ = 𝜙e = 4.50 eV) [108]. For further information about the chemico-physical peculiarity of the graphitic film in contrast
to a carbidic one, see Section 4.2.4 in Ref. [1351].
bThe mean of 𝛥𝜙∗ = 0.20±0.10 eV evaluated for Si(100) from the data in Ref. [74] alone is disregarded because of the reason outlined in Footnote g in Table 4.
cThis value of 0.14 eV for Nb(100) may be disregarded in statistical examination of 𝛥𝜙* because it is based on a single datum alone.
dAs may be seen in the last 2 line, the overall average for monocrystalline surfaces has 𝛥𝜙∗ = 0.00, −0.02 or 0.02 ≈ 0.0 eV as a whole covering the 21, 23
or 18 surface species, just as predicted by theory.
eAs shown in the last line, on the other hand, 𝛥𝜙* for any polycrystalline surfaces studied here is much larger than 0.0 eV for any species, ranging from ∼0.3
to ∼0.8 eV, just as expected from Eqs. (1) and (2).

In addition, we may cite such an example that a Mo-specimen [125,129,572] is assigned later to have the (100) plane arranged
naturally by recrystallization of the Mo ribbon through thermal annealing for very long hours above ∼2200 K [573], where
𝜙+ = 4.28 ± 0.05 [129,572,573] or 4.38 ± 0.01 eV [125] (see Footnote 167 in Table 1) is in good agreement with our best estimates
of 𝜙+ = 4.38±0.08 eV and also 𝜙e = 4.38±0.03 eV for Mo(100) (see Table 2). Consequently, the annealed specimen may be assigned
to be Mo(100) (𝛿m = 1 and 𝛥𝜙∗ = 0 eV). A persuasive example may be added for a nanocrystalline Ni [4142]. Namely, 𝜙e is found
to increase from 3.92 ± 0.05 eV to 4.40 ± 0.05 eV as the specific grain boundary length (per grain size of 1 μm2) decreases from
∼12 to 0.3 μm according to the recrystallization due to annealing from ∼300 up to 773 K [4142]. About such a thermal instability
in surface crystal structure mentioned just above, further information may be obtained from Section 4.5 in Ref. [1351].
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As may be seen in the 6th column on many lines much below W(650) in Table 1, the data on 𝜙+ ≈ 4.5–4.7 eV ≈ 𝜙e (=4.5–4.6
V accepted today for W) are reported for many ‘‘polycrystalline’’ tungsten specimens, which have typically 𝜙+ = 4.49 and
e = 4.59 eV [823] (see Footnotes 170 and 296 in Table 1), 4.65 and 4.56 eV [3834] and 4.67 and 4.57 eV [3055]. They may
ossibly consist predominantly (𝛿m > 0.9) of W(100) without each worker’s recognition if the data on both 𝜙+ and 𝜙e are free from
ystematic errors. In consequence, such data may possibly afford to many workers the incorrect apprehension or conclusion that
𝜙∗ of W is always negligibly small to be less than ∼0.1 eV instead of ∼0.6 ± 0.1 eV (see Table 5) to be expected usually.

If the various specimens mentioned above [[3–9], etc., ranging to [3907]] consist of mainly (𝛿m > 0.9) monocrystalline surfaces
wing to thermal recrystallization, then, such analysis as taking 𝜙e instead of 𝜙+ may hardly yield unreasonable results from the
ata on positive ion emission from apparent polycrystals. If not or little so, on the other hand, any analytical results obtained by
mployment of 𝜙e may be affected by systematic errors according to the degree of inhomogeneity in work function and hence to
he size of 𝛥𝜙∗ up to ∼0.6 eV.

In a typical case [3863], the ionization efficiency (𝛽+) of Na emitted as Na+ from a Pt surface heated to 1200 or 1500 K is
heoretically calculated from Eq. (5) to be respectively 0.94 or 0.89 by taking 𝜙+ = 5.5 eV [98], which is nearly the same with the
ost probable value of 5.6 ± 0.1 eV [1351, Here]. Employment of 𝜙e = 5.3 eV [12,1351,1354, Here], on the other hand, would

ield 𝛽 + = 0.70 or 0.63, thereby decreasing by 26 or 29% in comparison with the former, according to 𝛥𝜙∗ = 0.2 eV. In another case
f Na+ from W (𝛥𝜙∗ = 0.61 eV, see Table 5) at the same temperatures just above, on the other hand, employment of 𝜙e = 4.56 eV
see the 3rd column for W(poly) in Table 2) would afford a very small value of 𝛽 + = 0.002 or 0.006, whilst that of 𝜙+ = 5.17 eV
see 4th column for W(poly) in Table 2) would yield such a much larger value as 𝛽 + = 0.40 or 0.39, thus demonstrating that the
eglect of 𝛥𝜙∗ is subject to committing a large systematic error to the analytical results of positive ion emission from polycrystals.

The importance of 𝛥𝜙∗ is concerned also with the Schottky equation [251]:

𝜙 + 𝐸+ = 𝐸0 + 𝐼, (9)

here E+ is the desorption energy of positive ion (M+), E0 is that of neutral atom (M), and I is the ionization energy of M (see Fig.
5 [256] in Ref. [1351]). Here, E+ and E0 are determinable from the data either on adsorption lifetimes (𝜏+ and 𝜏0) according to
renckel’s equation [14,15,86,178,260], on desorption rate constants (k+ and k0) [98,282,397] or on the slope of an Arrhenius plot
f ln i+ T n vs. 1/T [77]. Here, i+ is the ion current of M+, and n = 1∕2 [77]. Generally, E0 can be determined from a similar plot
n = 1) mentioned just above after converting M into M+ by electron impact of M [77]. In the case of self-surface ionization (SSI,
ee Section 2.3), E0 can be calculated from the data on the standard heat of formation in thermochemical tables [26–28]. Unless the
urface under study is substantially both clean and monocrystalline, 𝜙+ instead of 𝜙e should be employed as 𝜙 in Eq. (9). Otherwise,
he energy cycle of 𝛥𝐸∗ ≡ (𝜙e + 𝐸+) − (𝐸0 + 𝐼) yields −𝛥𝜙∗ ≠ 0 even if the other three terms are free from errors. Such failure in
losing the cycle (𝛥𝐸∗ ≠ 0) is reported by several authors [132,137,804,924,3869–3871], where SSI on polycrystalline metals (Mo,
a, W) is studied together with the emissions of neutral atom and electron, but where 𝜙+ itself (or 𝛥𝜙∗) is neither considered nor
easured. Typically, the data on Ta [137] yields 𝛥𝐸∗ ≡ (𝜙e+𝐸+)−(𝐸0+𝐼) = (4.19±0.02+10.0±0.3)−(7.97±0.03+7.3±0.3) = −1.1±0.4

eV, falling to close the cycle by 1.1 eV. There is still lacking −0.4 eV even for the limit values [137]. This is mainly because 𝜙e

is taken as 𝜙 in Eq. (9) and partly because the other values are not so accurate as 𝜙e. Here, 𝜙e = 4.19 ± 0.02 eV [137] is equal to
4.20 ± 0.03 eV (see Table 2) but much smaller than 𝜙+ = 4.95 ± 0.20 eV recommended for Ta (Table 2). Citation of the latter (𝜙+)
could reduce 𝛥𝐸∗ from −1.1 to about −0.3 eV, which covers amply the above limit (−0.4 eV). Similarly, the data on E+, E0 and 𝜙e

for Re [76,77] yield such an unreasonable result that 𝛥𝐸∗ = (4.93+ 10.2) − (7.7+ 7.87) = −0.44 eV ≠ 0 when 𝜙e = 4.93± 0.04 eV [77]
(see Table 1) is employed as 𝜙 in Eq. (9).

On the other hand, adoption of 𝜙+ = 5.43 eV (larger than 𝜙e = 4.93 eV by 𝛥𝜙∗ = 0.50 eV for Re) [76,77] (see Table 1) affords a
reasonable result of 𝛥𝐸∗ = 0.06 eV ≈ 0.0 eV. Similarly to Mo [76,77], employment of 𝜙+ = 5.02 ± 0.05 eV as 𝜙 yields 𝛥𝐸∗ = −0.08
eV ≈ 0.0 eV, in contrast to 𝛥𝐸∗ = −0.77 eV ≠ 0 owing to 𝜙e = 4.33 ± 0.07 eV. In the latter case, 𝛥𝐸∗ = −0.77 eV is nearly equal
o −𝛥𝜙∗ ≡ 𝜙e − 𝜙+ = −0.69 ± 0.09 eV, where the difference of −0.08 eV between −0.77 and −0.69 eV is mainly due to the errors
n E+ and/or E0 because 𝛥𝜙∗ = 0.69 ± 0.09 eV well accords with our most probable value (M.P.V.) of 0.72 ± 0.06 eV for Mo (see
able 5). These examples indicate that employment of 𝜙e instead of 𝜙+ falls to close the Schottky cycle by 𝛥𝜙∗ even if the other
ata (E+, E0 and I) themselves are essentially free from any error.

Let’s consider another case of PSI on a monocrystalline surface instead of the polycrystalline ones exemplified above. When Cs+
nd Cs are desorbed from a substantially clean surface of W(100) with 𝜙e = 4.65 ± 0.02 eV [266], we find 𝛥𝐸∗ = (4.65 ± 0.02 +
.05 ± 0.05) − (2.77 ± 0.05 + 3.89) = 0.04 ± 0.07 ≈ 0.0 eV, showing clearly that even adoption of 𝜙e affords the reasonable result
n a monocrystalline surface system. Of course, adoption of 𝜙+ = 4.61 ± 0.07 eV [266] yields 𝛥𝐸∗ = 0.00 ± 0.10 eV, just closed
xactly. This is because W(100) has the most probable values of 𝜙e = 4.65 ± 0.02 and 𝜙+ = 4.62 ± 0.06 eV (see Table 2), essentially
quivalent between the two within the error of 0.03 ± 0.06 eV. An interesting information about the dependence of E+ upon 𝜙+

ay be acquired from Table 9 and Section 7.1 in Ref. [1351].
As described above by citing some of the typical examples, consideration of 𝛥𝜙∗ ≠ 0 inherent in polycrystalline surfaces is always

ecessary to avoid systematic errors in quantitative analysis of experimental data on PSI on any polycrystals, which have long been
mployed widely as useful and convenient ionizing materials in many fields of both physics and chemistry.

In addition, both theoretical and experimental studies of 𝛥𝜙∗ afford us a clue to the very important problem how the effective
ork functions of 𝜙e and 𝜙+ for polycrystals depend upon the surface components (𝐹i and 𝜙i) and particularly upon both 𝛿m(≡Fm)
nd 𝜙m, as will be discussed next together with those of the ‘‘submonocrystals’’ in Sections 4.2–4.5.

From the viewpoint mentioned above, all of the data on 𝛥𝜙∗ surveyed by the present author are listed in Table 4, where each
f the data on 𝜙+ is achieved at the temperatures high enough to keep the ionizing surface essentially clean even during sample
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beam incidence (see Section 2.2 in Ref. [1351]). In the first column in Table 4, a typical example of W–(310) [630] means that the
polycrystalline surface of W consists mainly (𝛿m = 46.3% = 0.463 in fractional surface area) of the (310) plane.

Similarly as in Table 1, the ‘‘Beam’’ and ‘‘Ion’’ in the 3rd and 4th columns in Table 4, respectively, show the species of probing
atom (or molecule) impinging upon the surface under investigation and that of ion produced from the atom (or molecule) usually
by PSI. Thus, the value of 𝜙+ in the 5th column is either determined by experiment usually according to a semi-Saha–Langmuir plot
(see Section 4.2.1 in Ref. [1351]) or calculated by theory using Eq. (1).

Each value of 𝜙e in the 6th column is determined usually by TE according to the Richardson equation in a separate experiment,
where nearly the same surface condition during TE and PSI on the same specimen is maintained by selection of suitable experimental
conditions (namely, 𝑃r , T and incident beam intensity), irrespective of the beam incidence (see Section 4.1 in Ref. [1351]). Needless
to say, 𝜙e as well as 𝜙+ is determined in the temperature range high enough to avoid sample adsorption effect upon the surface
under study (see Fig. 17 [104] in Ref. [1351]). Theoretical calculation (TC) of both 𝜙+ and 𝜙e is made, of course, for the same
specimen by using the published data on F i’s and 𝜙i’s (see Section 4.2).

The values of 𝛥𝜙∗ (≡ 𝜙+ − 𝜙e) thus determined experimentally or theoretically for various surfaces by many workers are given
in the 7th column in Table 4. The 2nd line above the last for each surface species shows the mean value (Mean) of 𝛥𝜙∗ based on
the data (𝜙+ and 𝜙e) obtained for the same specimen listed therein. On the other hand, the last line for each species shows the
most probable value (M.P.V.) of 𝛥𝜙∗ evaluated from those data on both 𝜙e and 𝜙+ listed in the 3rd and 4th columns in Table 2. In
contrast to the former, the latter is based on those much more data which are based on a variety of distinct specimens by different
workers using various methods under a variety of conditions (see Table 1). Consequently, comparison between the two values of
𝛥𝜙∗ (Mean and M.P.V.) is helpful for examining the objective accuracy or reliability of each 𝛥𝜙∗. In Table 5, the two types of the
best estimates (Mean and M.P.V.) originating from the data in Table 4 are summarized compactly together with another estimate
achieved previously [1351] so that the values of 𝛥𝜙∗ may readily be compared between mono- and polycrystals and also among
different surface species investigated by the present author.

Speaking in general about the monocrystals in Table 5, almost all the means of 𝛥𝜙∗ are found to be Mean ≈ 0.0 eV, exactly
following to Eqs. (1) and (2). Regarding such an unreasonable result as M.P.V. = −0.15 eV against Mean = 0.00 eV for Re(0001),
further studies are needed to find a valid reason for the discrepancy between the two. On the contrary to the monocrystals, all of
the polycrystals have 𝛥𝜙∗ > 0, just as predicted by our theoretical model. Namely, 𝛥𝜙∗ has a range from ∼0.3 eV (Pt) to ∼0.7 eV
(Nb), which satisfies the fundamental condition of 𝛥𝜙∗ < 𝜙max − 𝜙min ≈ 0.8–1 eV (see Section 4.3 and Fig. 1). It is worthwhile to
note that C(film) has 𝛥𝜙∗ = −0.02 or 0.03 ≈ 0.0 eV, quite similarly to C(HOPG) with 0.07 or −0.01 ≈ 0.0 eV, as shown in Table 5.

Carbonaceous overlayers grown on transition metal surfaces generally consist of the two types of carbidic and graphitic
carbon [3939]. Compared with the latter, the former is usually stable at lower temperatures alone (T < 600 K), higher in work
function (𝜙e > 5 eV) and more active as a catalyst. On the contrary, the latter has a very anomalous insensitivity to PSI of incident
alkali halide molecules (MX), for example, because the degree of dissociation (MX → M + X) reduces to ∼10−3 ≈ 0 (and hence 𝛽+ ≈ 0
for producing M+ from MX) compared with a normal detection sensitivity (𝛽+ > 0) to alkali atoms (M) incident upon a graphitized
metal surface. Such a notable difference in detection sensitivity between the two surfaces affords us a very convenient technique
of the ‘‘differential surface ionization’’ [222,223,226,737], by which the currents of M+ originating from M alone and of M+ from
a mixture of M and MX are distinctively measurable without using mass spectrometry (for further information, see Sections 4.2.4
and 6.4 in Ref. [1351]).

Regarding graphitic film formation, a typical example is shown in Fig. 18 [103] in Ref. [1351], thus indicating that both 𝜙+

and 𝜙e of Ir(111) change from 5.8 to 4.8 eV according to graphitic film formation (𝜃 = 1 ML) at 1685 K [103] (see Table 1).
About carbonaceous overlayers, both preparation methods and conditions and also chemico-physical properties are comprehensively
reviewed by Gall’ et al. [450] and Oshima et al. [695] and also outlined in Section 4.2.4 in Ref. [1351].

The work function of C60/metal system (𝜃 = 1) is found experimentally to depend upon the metal species, showing that
𝜙e = 4.53, 5.06, 5.07 and 5.19 eV on the substrates of Au(111), Cu(100), Cu(111) and Ag(111), respectively [4449]. Such a substrate
dependence is reported also for other systems (Cu, Ag and Au) having a range of 4.39–4.72 eV [2198] (see Table 1).

In contrast to free-standing graphene (𝜙e = 4.48 eV) [4174,4284], adsorbed graphene is calculated to have 3.66, 4.03 and 4.87
eV on the substrates of Ni(111), Pd(111) and Pt(111) [4174,4284], the dependence of which may be supported by the experimental
data of 3.9, 4.3 and 4.8 eV [695], respectively. Such a substrate dependence is caused by the formation of an interface dipole
and the electron transfer between the metal and graphene levels driven by the work function difference, as well as the chemical
interaction between graphene and the substrate metal [4174,4282,4284]. Since many of the carbon film systems are not clearly
described for their surface structure, tentatively, Table 1 lists their work function data separately in the two groups of the ‘‘graphitic
carbon films’’ and ‘‘graphene’’. But, some of the former of graphite/metal systems (𝜙e = 3.32–6.3 eV) seem to belong probably to
the graphene/metal ones (4.03–4.96 eV). Such a large divergence in 𝜙e seems to support the above conclusion [4174,4284] that
the work function of adsorbed graphene depends upon the substrate species. Similar dependence by up to 0.15 eV is observed
[4435,4436].

Interestingly, highly ordered graphene films are epitaxially grown by thermal desorption of silicon from silicon carbide by high-
temperature annealing (∼1300–1900 K) in vacuum or under an argon atmosphere [4455–4457]. Typically, the variation in work
function is as small as 12 meV over the single layer surface [4455], and the difference is only 139 ± 9 meV between single and
bilayers thus prepared [4456].

The chief points of Tables 4 and 5 may be summarized as follows.
(1) As shown in Columns 3–5 in Table 5, the experimental determination for an essentially clean surface of W(100), for example,

indicates that 𝛥𝜙∗ = 0.03 or −0.03 eV ≈ 0.0 eV [Here, 1351], just as predicted by theory. On the other hand, a non-clean
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monocrystalline surface such as an oxygenated W(100) face is observed to have 𝜙+ = 6.50 ± 0.05 eV and 𝜙e ≈ 5.8 eV [84,833],
thereby giving 𝛥𝜙∗ ≈ 0.7 eV (see Table 1 in Ref. [1351]). This is near to 0.59−0.61 eV determined for many polycrystalline W
specimens (see Table 5), but considerably smaller than 𝛥𝜙∗ = 6.75 ± 0.01 − 5.75 ± 0.05 = 1.00 ± 0.05 eV found for an oxygenated
polycrystalline W face [84,93,824,833] (Table 1 in Ref. [1351]).

(2) With the two exceptions of 0.14 and −0.15 eV for Nb(100) and W(112), respectively, almost all the species show that Mean
is inside the range of −0.06 to 0.07 eV. Consideration of all the species affords Average = 0.00 ± 0.06 eV, as shown on the 2nd
line above the bottom in Table 5. In addition, quite many species have M.P.V. = −0.10–0.10 eV, but the average of all the species
yields M.P.V. = −0.02 ± 0.07 eV. In our previous study [1351], it is found to be 0.02 ± 0.03 eV. Consequently, essentially clean
monocrystalline surfaces may be concluded to have 𝛥𝜙∗ = 0.0 eV, just as expected by theory.

(3) Even when we try to analyze quantitatively these data on positive ionization and related phenomena on an essentially clean
monocrystalline surface, therefore, our employment of 𝜙e instead of 𝜙+ of the surface may be generally expected to be substantially
free from a systematic error.

(4) For any of the clean polycrystalline surfaces, on the other hand, 𝛥𝜙∗ is found to be considerably higher than 0.0 eV. Typically,
Ir has Mean = 0.48 ± 0.10 eV and M.P.V. = 0.47 ± 0.06 eV [Here], both of which are equal to 0.48 ± 0.04 eV estimated in the
previous review [1351] (see Table 5). Similarly, Nb has 0.70 ± 0.12 or 0.70 ± 0.07 eV [Here], nearly equal to 0.78 ± 0.11 eV [1351].
The last line in Table 5 indicates that 𝛥𝜙∗ has Range of ∼0.3−0.7 > 0.0 eV, largely depending upon the surface species.

(5) Consequently, employment of 𝜙e instead of 𝜙+ always results in a systematic error depending upon the size of 𝛥𝜙∗ (up to
∼0.7 eV) whenever we try to analyze these data on positive ionization phenomena on any polycrystalline surface. From this point
of view, such data on 𝛥𝜙∗ as listed in Tables 4 and 5 may be very useful for better understanding the thermionic peculiarity of
polycrystal (𝛥𝜙∗ ≥ 0.3 eV), in contrast to monocrystal (𝛥𝜙∗ = 0.0 eV).

(6) Regarding a typical case of W, the dependence of 𝛥𝜙∗ upon the surface compositions of both 𝐹i and 𝜙i is thoroughly studied for
not imaginary but actual specimens [2453]. For instance, it is clearly shown for W that the theoretical values of 𝛥𝜙∗ = 0.62 eV [630]
and 0.57 eV [283] for 𝛿m = 0.46 and 0.34, respectively, are in good agreement with these experimental data on 0.61 eV [23] and
0.56 eV [76,77]. The quantitative relation between 𝛿m and 𝛥𝜙∗ will be discussed for W in Section 4.3.

(7) It should be emphasized here that theoretical analysis of such data on 𝛥𝜙∗ as exemplified in Tables 4–6 affords us a promising
clue to the long-pending problem how the polycrystalline work function is decided by the surface components of 𝐹i and 𝜙i [4406],
as will be discussed in Sections 4.4 and 4.5.

Disappointedly, the present author can find neither the best estimates nor the most probable values recommended statistically
from abundant data on 𝛥𝜙∗ for any surface species by other authors in any literatures published to date. Consequently, any of our
values on 𝛥𝜙∗ in Table 5 cannot be examined objectively by comparison with those to be recommended possibly by others.

4.2. Theoretical evaluation of the contrast (𝛥𝜙∗)

Eqs. (1) and (2) indicate that 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e can be evaluated theoretically when the data on both 𝜙i and F i for a given
specimen are available from literatures. The present author has already published the values of 𝛥𝜙∗ calculated for actual specimens
of Ni [283,630], of Nb, Mo, Ta and Ir [803], and also of W [281,283,630,803,2453]. Typically for the seven specimens (A)–(G) of
W having different values of 𝛿m = 0.336–0.96, the data on 𝛥𝜙∗ evaluated from Eqs. (1) and (2) are summarized in Table 6, together
with experimental data available on 𝜙e to be compared with the theoretical ones for the same specimen under study. Typically, the
specimen of W(G) is found to have Footnote (59) 𝜙e = 4.59 ± 0.04 eV as Mean by theory [2453] and Footnote (60) 4.52 ± 0.07 eV
as the actual data on the same specimen by experiment [124,3414], both of which well agree with each other, thereby strongly
supporting the validity of the above equations symbolic of our theoretical model.

Table 6
Typical data on the fractional surface area (𝐹i), the local work function (𝜙i) reported for tungsten specimens (A–G, Q, R and U) having different values of the
degree of monocrystallization (𝛿m), and also the thermionic contrast (𝛥𝜙*) calculated from the data on both 𝐹i and 𝜙i listed herein, thereby yielding Fig. 1.

Specimen 𝛿m Footnote Fractional surface area, Local work function, and Thermionic contrast Refs.

W(A) 0.336 (1) Plane (111) (100) (112) (110) [488]
(2) 𝐹i 0.062 0.331 0.336 0.271 [488]
(3) 𝜙i (eV) 4.35 4.56 4.69 5.35 [488]
(4) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.13 ± 0.04 − 4.62 ± 0.02 = 0.52 ± 0.04 𝜙a (eV) = 4.80 [2453]

W(B) 0.352 (5) Plane (111) (100) (112) (110) [488]
(6) 𝐹i 0.089 0.254 0.343 0.352 [488]
(7) 𝜙i (eV) 4.35 4.56 4.69 5.35 [488]
(8) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.18 ± 0.03 − 4.61 ± 0.03 = 0.57 ± 0.04 𝜙a (eV) = 5.04 [2453]

W(C) 0.46 (9) Plane (011) (001) (112) (013) (222) (123) [825]
(10) 𝐹i 0.16 0.46 0.09 0.06 0.22 0.01 [825]
(11) 𝜙i (eV) 5.25 4.63 5.12 4.34 4.45 4.50 [825]
(continued on next page)
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Table 6 (continued)

Specimen 𝛿m Footnote Fractional surface area, Local work function, and Thermionic contrast Refs.

(12) 𝜙i (eV) 5.31 4.63 4.83 4.32 4.45 4.49 [825,1351]
(13) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.98 ± 0.05 − 4.56 ± 0.01 = 0.42 ± 0.05 𝜙a (eV) = 4.72 [2453]
(14) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.01 ± 0.05 − 4.56 ± 0.01 = 0.45 ± 0.05 𝜙a (eV) = 4.70 [2453]
(15) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.00 ± 0.05 − 4.56 ± 0.01 = 0.44 ± 0.05 (Mean of 13 and 14) [2453]

W(D) 0.463 (16) Plane (310) (111) (100) (112) (110) [489]
(17) 𝐹i 0.463 0.054 0.140 0.155 0.189 [489]
(18) 𝜙i (eV) 4.25 4.47 4.65 4.76 5.25 [489]
(19) 𝜙i (eV) 4.32 4.38 4.57 4.83 5.31 [1351]
(20) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.96 ± 0.03 − 4.37 ± 0.02 = 0.59 ± 0.04 𝜙a (eV) = 4.59 [489] [2453]
(21) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.02 ± 0.07 − 4.42 ± 0.01 = 0.60 ± 0.07 𝜙a (eV) = 4.63 [2453]
(22) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.99 ± 0.06 − 4.38 ± 0.05 = 0.61 ± 0.08 (Mean of 20 and 21) [2453]
(23) 𝜙e (eV) = 4.38 ± 0.05 (Mean by calculation) [2453]
(24) 𝜙e (eV) = 4.8 ± 0.05 (by experiment) [489]

W(A)–(D) <0.5 (25) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.05 ± 0.09 − 4.52 ± 0.10 = 0.53 ± 0.09 (Mean of 4, 8, 15 and 22) [2453]

W(P) <0.5 (26) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.14 ± 0.05 − 4.55 ± 0.04 = 0.59 ± 0.06 (M.P.V. by experiment) [1351]

W(E) 0.80 (27) Plane (110) (112) (100) (111) [162]
(28) 𝐹i 0.80 0.05 0.14 0.01 [162]
(29) 𝜙i (eV) 5.3 4.8 4.66 4.35 [162]
(30) 𝜙i (eV) 5.31 4.83 4.57 4.38 [1351]
(31) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.25 ± 0.02 − 4.90 ± 0.05 = 0.35 ± 0.05 𝜙a (eV) = 5.18 [2453]
(32) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.27 ± 0.01 − 4.85 ± 0.05 = 0.42 ± 0.05 𝜙a (eV) = 5.17 [2453]
(33) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.26 ± 0.02 − 4.87 ± 0.06 = 0.39 ± 0.06 (Mean of 31 and 32) [2453]

W(F) 0.95 (34) Plane (100) (110) (111) (112) (116) [3414]
(35) 𝐹i 0.95 0.01 <0.01 0.02 – [3414]
(36) 𝐹i 0.95 0.01 <0.01 0.02 0.01 [2453]
(37) 𝜙i (eV) 4.65 5.25 4.47 4.67 4.32 [489,1351]
(38) 𝜙i (eV) 4.57 5.31 4.38 4.83 4.32 [1351]
(39) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.70 ± 0.03 − 4.65 ± 0.00 = 0.05 ± 0.03 𝜙a (eV) = 4.61 [2453]
(40) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.70 ± 0.03 − 4.64 ± 0.00 = 0.06 ± 0.03 𝜙a (eV) = 4.65 [2453]
(41) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.69 ± 0.05 − 4.57 ± 0.00 = 0.12 ± 0.05 𝜙a (eV) = 4.54 [2453]
(42) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.69 ± 0.05 − 4.56 ± 0.01 = 0.12 ± 0.05 𝜙a (eV) = 4.58 [2453]
(43) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.70 ± 0.04 − 4.61 ± 0.04 = 0.09 ± 0.05 (Mean of 39–42) [2453]
(44) 𝜙e (eV) = 4.61 ± 0.04 (Mean by calculation) [2453]
(45) 𝜙e (eV) = 4.52 ± 0.07 (by experiment) [124,3414]

W(G) 0.96 (46) Plane (100) (111) [124]
(47) 𝐹i 0.96 0.04 [124]
(48) 𝜙i (eV) 4.65 4.47 [489]
(49) 𝜙i (eV) 4.66 4.35 [162]
(50) 𝜙i (eV) 4.60 4.40 [144]
(51) 𝜙i (eV) 4.55 4.42 [143]
(52) 𝜙i (eV) 4.57 4.38 [1351]
(53) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.64 ± 0.01 − 4.64 ± 0.00 = 0.00 ± 0.01 𝜙a (eV) = 4.64 [2453]
(54) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.65 ± 0.01 − 4.63 ± 0.01 = 0.02 ± 0.01 𝜙a (eV) = 4.65 [2453]
(55) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.59 ± 0.00 − 4.58 ± 0.00 = 0.01 ± 0.00 𝜙a (eV) = 4.59 [2453]
(56) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.54 ± 0.00 − 4.53 ± 0.00 = 0.01 ± 0.00 𝜙a (eV) = 4.54 [2453]
(57) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.56 ± 0.01 − 4.55 ± 0.01 = 0.01 ± 0.01 𝜙a (eV) = 4.56 [2453]
(58) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.60 ± 0.04 − 4.59 ± 0.04 = 0.01 ± 0.01 (Mean of 53–57) [2453]
(59) 𝜙e (eV) = 4.59 ± 0.04 (Mean by calculation) [2453]
(60) 𝜙e (eV) = 4.52 ± 0.07 (by experiment) [124,3414]

W(Q) 1.00 (61) Plane (100) [1351]
(62) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 4.60 ± 0.05 − 4.57 ± 0.03 = 0.03 ± 0.06 (M.P.V.) [1351]

W(R) 1.00 (63) Plane (110) [1351]
(64) 𝛥𝜙* (eV) ≡ 𝜙+ − 𝜙e = 5.29 ± 0.08 − 5.31 ± 0.05 = –0.02 ± 0.09 (M.P.V.) [1351]

W(U) – (65) 𝜙max − 𝜙min≃ 1.0–0.8 eV > 𝜙+ − 𝜙e ≡ 𝛥𝜙* ≃ 0.6–0.0 eV [2453]

(1)–(4) From the experimental data (1)–(3) [488], the values (4) are theoretically obtained from Eqs. (1), (2) and (4) [2453].
(5)–(8) Similarly as above, the data (5)–(7) [488] yield the theoretical values (8) [2453].
(9)–(15) By using the data of (11) 𝜙i and (12) 𝜙i together with (10) 𝐹i for the specimen of W(C) (9), we obtain the results of (13) 𝛥𝜙* and (14) 𝛥𝜙*,
respectively, thereby yielding the mean value of (15) 𝛥𝜙*.
(16)–(22) Similarly, the local work function sets (18) and (19) together with the set (17) afford the results (20) and (21), respectively, which give the mean
value (22).
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(23)–(24) The theoretical value (23) based on the mean (22) is found to be poor in agreement with the experimental one (24) determined with the specimen
of W(D) by the corresponding workers [489]. For this reason, see Chief point (4) in Section 4.2.
(25) The contrast (25) is the mean value for the four specimens of (A)–(D) having the values of 𝛿m < 0.5.
(26) The contrast (26) is the most probable value determined from quite many specimens of polycrystalline tungsten (see Table 2 in Ref. [1351]).
(27)–(33) The sets (29) and (30) together with the set (28) afford the contrasts (31) and (32), respectively, which give the mean of (33) 𝛥𝜙*.
(34)–(45) Combinations of (35)–(37), (35)–(38), (36)–(37) and (36)–(38) give the four values of (39)–(42), respectively, which yield Mean (43). The mean
of (44) 𝜙e = 4.61 ± 0.04 eV thus calculated is in fair agreement with (45) 𝜙e = 4.52 ± 0.07 eV determined experimentally for the specimen of W(F) by the
corresponding worker [124,3414].
(46)–(60) Employment of 𝜙i (48)–𝜙i (52) yields 𝛥𝜙* (53)–𝛥𝜙* (57), respectively, which afford the mean (58). Our calculated value of 𝜙e (59) = 4.59 ± 0.04
eV well agrees with the experimental data of 𝜙e (60) = 4.52 ± 0.07 eV determined with W(G) by the worker [124,3414].
(61)–(62) The contrast (62) is the most probable value determined from quite many specimens of W(100) (see Table 2 in Ref. [1351]).
(63)–(64) Similarly, the value (64) for W(110) is cited from Ref. [1351].
(65) The range (1.0–0.8 eV) is generally estimated for bcc metals such as W, Ta and Mo [2453]. Polycrystalline tungsten exemplified as W(U) consists generally
of various faces, among which W(110) and W(116) seem to have the largest and smallest values of 𝜙max ≈ 5.3 eV and 𝜙min ≈ 4.3 eV, respectively (see Table 2).
The range (0.6–0.0 eV) is determinable also from the data on (22) and (62) of 𝛥𝜙* = 0.61 and 0.0 eV, respectively, contained above [Here].

The main points of Table 6 may be summarized below, where the numbers of (1)–(65) regarding various items (e.g., plane, 𝐹i
nd 𝜙i) correspond to those of Footnote in Column 3.

(1) Regarding the specimen of W(A) consisting of the four planes (1) of (111)–(110) with 𝛿m = 𝐹 (112) = 0.336 [488], substitution
f both Footnote (2) F i = 0.062–0.271 and that (3) 𝜙i = 4.35–5.35 eV into Eqs. (1) and (2) yields the result (4) of 𝜙+ = 5.13±0.04 and
e = 4.62 ± 0.02 eV and, hence, 𝛥𝜙∗ = 0.52 ± 0.04 eV. Each of the three values is very close to that listed as the most probable value
M.P.V.) for the generally called ‘‘polycrystalline’’ tungsten (𝛿m < 0.5, usually considered) in Table 4, which shows 𝜙+ = 5.17 ± 0.05
V, 𝜙e = 4.56 ± 0.03 eV and 𝛥𝜙∗ = 0.61 ± 0.06 eV as M.P.V. for polycrystalline W. In addition, the result (4) [2453] shows that the
equence of 𝜙+ = 5.13 eV > 𝜙a = 4.80 eV > 𝜙e = 4.62 eV holds just as predicted by theory in Section 1 (see Eqs. (1), (2) and (4)).

(2) With regard to W(B) having 𝛿m = 𝐹 (110) = 0.352 [488], the data on (6) 𝐹i and (7) 𝜙i afford theoretically the result (8) of
+ = 5.18 ± 0.03 and 𝜙e = 4.61 ± 0.03 eV and, hence, 𝛥𝜙∗ = 0.57 ± 0.04 eV. With respect to W(A) and W(B), both (3) 𝜙i and (7) 𝜙i
re common for each of the planes (1) and (5), but (2) F i and (6) 𝐹i are different (by up to 0.081) with each other between the
wo. Each of 𝜙+, 𝜙e and 𝛥𝜙∗, however, is essentially the same (within 0.05 eV gapped) between the results of (4) and (8) [2453],
n spite of the fact that 𝜙a = 4.80 eV for W(A) is very different (by 0.24 eV) from 𝜙a = 5.04 eV for W(B). In addition, 𝜙a = 5.04 eV
s quite different from both 𝜙+ = 5.18 ± 0.03 and 𝜙e = 4.61 ± 0.03 eV for W(B). Such difference among the three is observed also
or W(C)–W(E) to be mentioned below. These results indicate that employment of 𝜙a as 𝜙e or 𝜙+ is not very reasonable for any
olycrystals, as already mentioned in Section 1.

(3) About W(C) with 𝛿m = 𝐹 (001) = 0.46 [825], adoption of the two sets (11) and (12) of 𝜙i’s gives the results (13) and (14),
espectively. Each of the three values of 𝜙+, 𝜙e and 𝛥𝜙∗ is essentially the same between the results of (13) and (14), irrespective of
he difference in 𝜙i by up to 0.29 eV between the two sets of (11) and (12) for 𝜙i. They lead to the mean (15). Again, 𝜙a = 4.71±0.01
V is different from both 𝜙+ = 5.00 ± 0.05 and 𝜙e = 4.56 ± 0.01 eV by 0.29 ± 0.05 and 0.15 ± 0.01 eV, respectively, showing again
+ > 𝜙a > 𝜙e. On the other hand, the authors [825] report that 𝜙a = 4.72 eV differs from 𝜙+ = 4.61 ± 0.05 eV determined by PSI of
i and Eu on W(C). The difference itself is quite natural, but the result of 𝜙+ = 4.61 eV < 𝜙a = 4.72 eV does not accord with ours of
+ = 5.00 eV > 𝜙a = 4.71 ± 0.01 eV.

(4) With respect to W(D) having 𝛿m ≡ 𝐹m = 𝐹 (310) = 0.463 [489], the two sets (18) and (19) of 𝜙i’s together with (17) 𝐹i afford
he two results of (20) and (21), respectively. Again, each of 𝜙+, 𝜙e and 𝛥𝜙∗ is almost the same (gap ≤ 0.06 eV) between the results
f (20) and (21), nearly independent of the considerable difference (by up to 0.09 eV) between the two 𝜙i sets of (18) and (19).
f course, each of 𝜙a = 4.59 and 4.63 eV is intermediate between 𝜙+ = 4.99 eV and 𝜙e = 4.38 eV, as shown in the mean (22)).
n the other hand, the corresponding workers [489] conclude that the data (24) of 𝜙e = 4.8 eV measured for W(D) by FE is in
ood agreement with the calculated value (20) of 𝜙a = 4.59 ≈ 4.6 eV. This conclusion, however, does not seem very reasonable,
ainly because 𝜙e = 𝜙a or 𝜙e > 𝜙a does not hold in principle for any polycrystalline surface and also because 𝜙e = 4.8 eV is much

arger than the most probable value (26) of 𝜙e = 4.55 ± 0.04 eV [1351] and also than such values of 4.56 ± 0.03 eV [Here], 4.55
V [1045,1358] and 4.54 eV [1354] as generally accepted today for the usually called ‘‘polycrystalline’’ tungsten (see Table 2).

(5) About the four specimens of W(A)–W(D) having 𝛿m < 0.5 [488,489,825], we obtain Mean (25) from the results (4), (8), (15)
nd (22). Namely, 𝜙+ = 5.05 ± 0.09, 𝜙e = 4.52 ± 0.10 eV and 𝛥𝜙∗ = 0.53 ± 0.09 eV, each of which is comparable with each of the
eans for W(A)–W(D) in spite of the fact that both 𝛿m and 𝜙a are considerably different by up to 0.127 and to 0.45 eV, respectively,

mong the four specimens.
(6) The result (26) for W(P) is achieved by various experimental methods (FE, PE, CPD, TE, PSI, etc.) for a variety of specimens

f the generally called ‘‘polycrystalline’’ tungsten (usually 𝛿m < 0.5). Namely, the data (26) 𝜙+ = 5.14 ± 0.05 (or 5.17 ± 0.05) eV,
e = 4.55 ± 0.04 (or 4.56 ± 0.03) eV and 𝛥𝜙∗ = 0.59 ± 0.06 (or 0.61 ± 0.06) eV are cited as the most probable values from Table
in Ref. [1351] or as those (given in each parentheses) from M.P.V. in Table 4. Comparison between the theoretical results (25)

nd the experimental ones (26) shows that each of the three values is in fair agreement between the two to within 0.09 eV gapped.
specially, 𝜙e is substantially the same (only 0.03 eV gapped) between theory and experiment, irrespective of the fact that 𝜙a has
wide gap (0.45 eV in the range of 4.59–5.04 eV) among the four specimens of W(A)–W(D). Again, this result indicates that 𝜙a is
uite different in both nature and value from both 𝜙e and 𝜙+ for polycrystalline surfaces, in contrast to the treatment (𝜙a ≈ 𝜙e) [489]
entioned in Point (4) above.

(7) Regarding W(E) with 𝛿m = F (110) = 0.80 [162], calculation using the two different sets (29) and (30) of 𝜙i’s [162,1351]

ogether with 𝐹i (28) [162] yields results (31) and (32), respectively, and also does their Mean (33). Compared with W(A)–W(D)
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having 𝛿m < 0.5, W(E) has a larger value of 𝛿m = 0.80 (submonocrystal), considerably near to ∼1 for the monocrystal (𝛥𝜙∗ = 0) of
W(110). In consequence, it is quite natural that 𝛥𝜙∗ decreases from 0.53 eV (25) to 0.39 eV (33), becoming nearer to zero.

(8) In the case of W(F) having 𝛿m = F (100) = 0.95 [3414], the two combinations of 𝐹i (35) and 𝜙i (37) and of 𝐹i (35) and 𝜙i
(38) afford the results (39) and (41), respectively, while those of 𝐹i (36) and 𝜙i (37) and of 𝐹i (36) and 𝜙i (38) yield the respective
results (40) and (42). These results indicate that each of 𝜙+, 𝜙e, 𝛥𝜙∗ and 𝜙a is nearly identical (within 0.09 eV gapped) in spite of
the difference in the sets of 𝐹i’s and 𝜙i’s among those (39)–(42). In addition, Mean (43) shows that 𝛥𝜙∗ = 0.09 ± 0.05 eV is much
smaller than Mean (33) of 𝛥𝜙∗ = 0.39 ± 0.06 eV for W(E) according as 𝛿m becomes larger from 0.80 to 0.95 and, hence, as it does
nearer to unity for the monocrystalline tungsten (𝛿m = 1) of W(100). Mean (44) of 𝜙e = 4.61 ± 0.04 eV by calculation [2453] is
in fair agreement with the experimental data (45) on 𝜙e = 4.52 ± 0.07 eV determined directly for W(F) itself by TE (Richardson
plots) [124,3414].

(9) With respect to W(G) having 𝛿m = F (100) = 0.96 [124], the five sets (48)–(52) of 𝜙i’s combined with the set (47) of 𝐹i
yield the results of (53)–(57), respectively, from which Mean (58) is obtained. Again, Mean (59) of 𝜙e = 4.59 ± 0.04 eV yielded
by theory [2453] well agrees with the data (60) of 𝜙e = 4.52 ± 0.07 eV done for W(G) by TE [124,3414]. The mean of the five
values (53)–(57) for 𝜙a = 4.59 ± 0.04 eV coincides exactly with Mean (59) of 𝜙e = 4.59 ± 0.04 eV. This is quite natural because
W(G) is essentially equivalent in electrophysical property to W(100) listed as (61) W(Q). Namely, each of the three averages (58)
of 𝜙+ = 4.60 ± 0.04 eV, 𝜙e = 4.59 ± 0.04 eV and 𝛥𝜙∗ = 0.01 ± 0.01 ≈ 0.00 eV is essentially the same (within 0.02 eV gapped) with
ach of the most probable values (62) of 𝜙+ = 4.60 ± 0.05 eV and 𝜙e = 4.57 ± 0.03 eV and 𝛥𝜙∗ = 0.03 ± 0.06 eV based on those data
chieved for W(100) by a great many workers (see Table 2 in Ref. [1351]). These results of 𝜙+ = 𝜙e = 𝜙a = 4.59 ± 0.04 eV and also
𝜙∗ = 0.0 eV indicate that W(G) with 𝛿m = F (100) = 0.96 is substantially equivalent in work function to W(100) with 𝛿m = 1. This
s one of the important outcomes that can be deduced theoretically by our simple model leading to Eqs. (1), (2) and (4).

(10) As partly mentioned above, each of the three values (58) calculated for W(G) are essentially equal to each of those (62)
etermined by using various experimental methods, thus giving an additional evidence to support the validity of our theoretical
odel.

(11) With respect to W(110) listed as (63) W(R), the most probable values (64) of 𝜙+ and 𝜙e are determined from a good many
ata listed in Table 1 [1351], giving 𝛥𝜙∗ = −0.02 ± 0.09 ≈ 0.0 eV (see Table 2 [1351] and Table 5 [Here]), just as predicted by
heory.

(12) Regarding the ‘‘polycrystalline’’ tungsten expressed as (65) W(U), its maximum and minimum local work function values
𝜙max and 𝜙min) seem to correspond to 𝜙e(110) ≈ 5.3 eV and 𝜙e(116) ≈ 4.3 eV (see Table 2), respectively. Compared with the

difference of 𝜙max − 𝜙min ≈ 1.0 eV, our value of 𝛥𝜙∗ ≈ 0.6 − 0.0 eV for W(A)–W(G) [2453] is reasonably smaller, just as expected on
principle.

(13) Quite similarly for W as exemplified in Points (6) and (10) above, a fair agreement of 𝜙e between theory and experiment
is observed also for Ni [283,630] and for Nb, Mo, Ta and Ir [803]. Typically, we have the results of (i) Nb(𝛿m = 0.68) as
(4.02 ± 0.07/4.1–4.19), (ii) Mo(0.72) as (4.38 ± 0.03/4.0–4.4), (iii) Ta(0.82) as (4.34 ± 0.03/4.25 ± 0.05) and (iv) Ir(0.81) as
(5.36 ± 0.07/5.27 ± 0.05 or 5.35 ± 0.05). Here, the figures of numerator and denominator in the second parentheses correspond to
the values of 𝜙e (in eV) calculated by the present author [803] and measured directly for each specimen by Wilson [124,169,3414],
respectively. These specimens (𝛿m = 0.68–0.82) correspond to the ‘‘submonocrystals’’, the anomaly of which is outlined in Sections 4.4
and 4.5.

(14) Such an agreement between theory and experiment is generally expected to hold for 𝜙−, too, because both 𝜙e and 𝜙− are
given theoretically by the same equations of Eqs. (2) and (3) (see Section 1), and also 𝛥𝜙∗∗ ≡ 𝜙−−𝜙e = 0.0 eV is found experimentally
for W together with other species of polycrystals such as C, Mo and Ta, too (see Table 7).

The results summarized in the above points (1)–(14) give an additional evidence to support that our theoretical model is very
reasonable and useful, although it is very simple and plain and also may seem crude and coarse apparently.

4.3. Quantitative relation between the contrast (𝛥𝜙∗) and the degree of monocrystallization (𝛿m)

As may be seen in Table 6, 𝛿m corresponds simply to the largest (Fm) among the fractional surface areas (F i’s) for each specimen.
Apparently, therefore, 𝛿m itself may seem to be neither chief nor basic (key) factor decisive actually of the work functions (𝜙+ and
𝜙e) of the specimen under study. The points (1)–(9) in Section 4.2, however, suggests it by 𝛿m that 𝛥𝜙∗ is governed substantially.
Such a suggestion leads to the idea that 𝛿m may be taken as an indicator representative of the two types of 𝛥𝜙∗. Namely, 𝛥𝜙∗ is
nearly constant with little dependence upon 𝛿m so long as 𝛿m is below 0.5. At 𝛿m > 0.5, on the contrary, 𝛥𝜙∗ decreases gradually with
increasing 𝛿m, generally converging to zero as 𝛿m → 1. To find the quantitative relation between the two, the data on 𝛥𝜙∗ in Table 6
are plotted against 𝛿m, as shown in Fig. 1 [2453]. Here, the solid circles of (A)–(G) correspond to the theoretical values of 𝛥𝜙∗ for
the seven specimens of W(A)–W(G) in Table 6, respectively, while the horizontal line crossed with a vertical arrow (A–D) shows
Mean (25) of 𝛥𝜙∗ = 0.53 ± 0.09 eV at 𝛿m < 0.5 for the four specimens of W(A)–W(D). Here, the number of (25) corresponds to that
of Footnote in Table 6, quite similarly as above in Section 4.2. The horizontal line with arrow (P) at 𝛿m < 0.5 corresponds to W(P)
of M.P.V. (26) having 𝛥𝜙∗ = 0.59 ± 0.06 eV [1351] based on the data achieved experimentally by a great many workers applying
different methods and processes to a variety of polycrystalline tungsten specimens under various conditions. The open circles of (Q)
and (R) at 𝛿m = 1.00 correspond to W(Q) and W(R), originating from the experimental data (𝛥𝜙∗ = 0.03 ± 0.06 and −0.02 ± 0.09
eV) [1351] on the monocrystals of W(100) and W(110), respectively (see M.P.V.’s (62) and (64) in Table 6). Consideration of both
Fig. 1 and the above points (1)–(9) in Section 4.2 leads to the conclusion that the quantitative relation between the two is given by
the empirical formulae [2453] as follows:

𝛥𝜙∗ = 𝑐 for 0 < 𝛿 < 0.5 (polycrystal). (10)
m

257



H. Kawano Progress in Surface Science 97 (2022) 100583

(

i
e
d
𝛥
e
s
t
d

r
T
r
g
𝜙
f
e
o
h
t
l
𝛥
𝜙
t
>

0
(
d
g
a
e
c

Fig. 1. Dependence of the thermionic contrast (𝛥𝜙∗) upon the degree of monocrystallization (𝛿m) of tungsten [2453]. Each of the data (A)–(G) as well as those
P)–(R) is cited from Table 6 [Here].

𝛥𝜙∗ = 4𝑐𝛿m(1 − 𝛿m) for 0.5 < 𝛿m < 1 (‘‘submonocrystal’’). (11)

𝛥𝜙∗ = 0 for 𝛿m = 1 (monocrystal). (12)

From the data on 𝛥𝜙∗ at 𝛿m < 0.5 for W, the constant of c is evaluated theoretically to be 0.53 ± 0.09 eV (Mean (25) [2453]
n Table 6), as shown by the horizontal line crossed with vertical arrow (A–D). This value is substantially equal to 0.59 ± 0.06
V (M.P.V. (26) [1351] in Table 6), which is shown by the horizontal line with the arrow (P) originating from the experimental
ata obtained by many workers (see Tables 1 and 2 in Ref. [1351]). At 𝛿m > 0.5, on the other hand, the theoretical values of
𝜙∗ = 0.39±0.06, 0.09 ± 0.05 and 0.01 ± 0.01 eV (Means (33), (43) and (58) evaluated respectively for (E)–(G) in Table 6) are well
xpressed by a parabolic curve according to Eq. (11), as may be seen in Fig. 1. These results indicate that the so-called ‘‘polycrystal’’
hould be divided into the two different categories of the usually called ‘‘polycrystal’’ (𝛿m < 0.5, corresponding to Eq. (10)) and the
entatively named ‘‘submonocrystal’’ (0.5 < 𝛿m < 1, doing to Eq. (11)) because the dependence of 𝜙+, 𝜙e and 𝛥𝜙∗ upon 𝛿m is quite
ifferent between the two, as will be discussed in Sections 4.4 and 4.5.

In the present case of W, 𝜙max and 𝜙min may be estimated to be 𝜙(110) ≈ 5.3 eV and 𝜙(116) ≈ 𝜙(013) ≈ 4.3 eV (see Table 2),
espectively, which are partly included as 𝜙i in the present calculation of 𝛥𝜙∗ for almost all the seven specimens of W(A)–W(G) in
able 6. At 𝛿m < 1, the sequence of 𝜙max > 𝜙+ > 𝜙a > 𝜙e > 𝜙min holds for tungsten polycrystals [1351] and, hence, we have the
elation of 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e < 𝜙max − 𝜙min ≈ 5.3 − 4.3 = 1.0 or ≈ 0.9 eV [3965]. In other words, the actual value of 𝛥𝜙∗ is strongly
overned by both 𝜙max and 𝜙min included in 𝜙i’s that are considered for either calculation or measurement of 𝛥𝜙∗. In respect of W(G),
max and 𝜙min correspond to 𝜙(100) ≈ 4.6 eV for 𝐹 (100) = 0.96 and to 𝜙(111) ≈ 4.4 eV for 𝐹 (111) = 0.04, respectively. Even in this case

or 𝛿m ≈ 1, of course, 𝛥𝜙∗ = 0.01 ± 0.01 eV (see Mean (58) in Table 6) fully satisfies the above condition of 𝛥𝜙∗ < 𝜙max − 𝜙min ≈ 1.0
V. In a typical case of bcc-metals (e.g., Nb, Mo, Ta and W), the difference of 𝜙max − 𝜙min is generally estimated to have a range
f ∼0.9–1.0 [127] or ∼0.8–1.0 eV [1351], the latter of which is inserted as dotted horizontal lines (U) in Fig. 1. Even at 𝛿m < 0.5
aving the largest values of 𝛥𝜙∗, the present value of 𝛥𝜙∗ = c is limited to 0.44−0.65 eV (see the probable ranges indicated with
wo arrows of (A–D) and (P) in Fig. 1) and, hence, our values of 𝛥𝜙∗ are always (at any value of 𝛿m) much smaller than the upper
imit of 0.8–1.0 eV mentioned just above. Consequently, the theoretical result about W satisfies perfectly the essential condition of
𝜙∗ ≤ c < 𝜙max −𝜙min for any value of 𝛿m. For additional examples of fcc-polycrystals, Ir and Pt are estimated from Table 2 to have
max −𝜙min ≈ 0.9 and 0.7 eV, respectively, which are much larger than 𝛥𝜙∗ ≈ 0.5 and 0.3 eV (see Table 5), respectively. For hcp-Re,

he former (∼0.7 eV) is also larger than the latter (∼0.4 eV), quite similarly for the bcc-metals mentioned just above (∼0.8–1.0 eV
∼0.6−0.7 eV, see Tables 2 and 5).
In the range of 𝛿m ≈ 0.5–1.0 for ‘‘submonocrystals’’, 𝛥𝜙∗ is given by Eq. (11), where c for W is theoretically evaluated to be

.53 ± 0.09 eV by the present author [2453] (Mean (25) in Table 6). This is in good agreement with 𝛥𝜙∗ = 0.59 ± 0.06 eV [1351]
M.P.V. (26) in Table 6) and also with both 0.60 ± 0.13 and 0.61 ± 0.06 eV (Mean and M.P.V., respectively, in Tables 4 and 5)
etermined by the present author according to the abundant data on both 𝜙+ and 𝜙e achieved for W mainly by experiment by a
reat many workers (see Table 1). Eq. (11) may be expected to be available to other metals, too. According to a preliminary study
bout Ir, for instance, the constant (c) may be estimated to be 0.60 ± 0.13 eV [2453], which is consistent with 𝛥𝜙∗ = 0.48 ± 0.10
V (Mean) and 0.47 ± 0.06 eV (M.P.V.) based on much data by experiment (see Table 5). However, it needs much further work to

onfirm the general applicability of Eq. (11) to any other metals.
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4.4. Effect of the degree of monocrystallization (𝛿m) upon both 𝜙e and 𝜙+ for polycrystal (𝛿m < 50%) and also submonocrystal (50 < 𝛿m
< 100%)

Considerations of the analytical results in Section 4.3 and of the data in Table 6 may lead to the conclusions as follows:
(1) Substitution of a probable combination of 𝐹i and 𝜙i into Eqs. (1) and (2) affords the theoretical values of 𝜙+ and 𝜙e and also

of 𝛥𝜙∗, each of which is usually expected to agree well or fairly with each value to be determined by experiment within the error
of ±0.1 eV. Namely, our model is useful for estimating theoretically the effective work functions (𝜙+ and 𝜙e) of any polycrystalline
surfaces probably within the uncertainty of less than ±0.1 eV if the reliable data on 𝐹i and 𝜙i are available for the surface under
study.

(2) Typically for the four specimens (W(A)–W(D)) of polycrystalline tungsten (𝛿m = 0.336–0.463 < 0.5) having a large difference
in surface components (𝐹i’s and 𝜙i’s), all of the theoretical values of 𝜙+, 𝜙e and 𝛥𝜙∗ are in good agreement with the respective ones
determined by experiment to within the discrepancy of ±0.09 eV, as may readily be understandable from the comparison between
the two data in Table 6. Typically, our theoretical value of (25) 𝜙e = 4.52 eV for the four actual specimens (𝛿m < 0.5) well agrees
with the experimental data on (26) 𝜙e = 4.55 eV [1351] and also with those on 4.50# eV [1665], 4.54 eV [1354] and 4.55 eV
[1045,1358] recommended for polycrystalline W by other authors in Table 2. This agreement suggests such new information that
the work function data on polycrystals listed in Table 2 may usually correspond to the surfaces of 𝛿m < 0.5.

(3) The above agreement between theory and experiment indicates that each of the three values (𝜙+, 𝜙e and 𝛥𝜙∗) is generally
common and nearly constant with little dependence upon the difference in specimen and hence in surface components (𝐹i’s and
𝜙i’s, changing considerably from specimen to specimen even of the same species) so long as 𝛿m < 0.5 corresponding to Eq. (10).

(4) The agreement and constancy found for W just above suggest that any species of the so called ‘‘polycrystals’’ may have
nearly constant value of 𝜙e among a variety of distinct specimens. This suggestion is strongly supported by the fact that every

olycrystal (𝛿m < 0.5 estimated in general) is found to have an essentially constant value characteristic of its surface species (see
olumn (3) in Table 2). In other wards, each polycrystal has the universal constancy in 𝜙e unique of the surface material (element)

itself so long as 𝛿m < 0.5, thus giving a definite answer to the long pending problem why every ‘‘polycrystal’’ as well as every
monocrystal is generally recognized to have a constant value of work function (𝜙e) characteristic of its species. Quite similarly to
𝜙e, such a universal constancy for any polycrystal may be concluded also for both 𝜙+ and 𝛥𝜙∗ from the theoretical result (25) in
Table 6. In addition, the constancy may be done also from the experimental data on 𝜙+ in Column (4) in Table 2 and from those
on 𝛥𝜙∗ in Columns (6)–(8) in Table 5.

(5) Thus, our model leading to Eqs. (1), (2) and (10) furnishes a new and sound basis for supporting theoretically the experimental
fact that every polycrystal (𝛿m < 0.5 in general) has a nearly constant value (with the uncertainty of less than about ±0.1 eV) of
work function under the normal condition accepted in general, irrespective of a considerable difference in surface components (𝐹i’s
and 𝜙i’s) among various specimens so long as 𝛿m ≡ Fm < 0.5. In other words, it may be reasonable to interpret that the so-called
‘‘polycrystal’’ appearing in many publications is implicitly recognized to correspond to 𝛿m < 0.5 alone, instead of 𝛿m < 1 including
the ‘‘submonocrystal’’. The above theoretical support may be considered a new contribution of our model to the work function
studies developed to date.

(6) As described in (1)–(5) above, 𝛿m has such a strong governance as to keep each of 𝜙+, 𝜙e and 𝛥𝜙∗ to be nearly constant
representatively of the surface species itself so long as 𝛿m < 0.5. On the contrary, 𝜙m belonging to 𝛿m does not possess such an
impartial effect upon all of the work functions. Typically for W(A) of mainly W(112) and W(B) of mainly W(110) with 𝛿m < 0.5, their
values of 𝜙m = 4.69 and 5.35 eV have a considerable effect upon the determination of 𝜙e = 4.62 eV and 𝜙+ = 5.18 eV, respectively,
but have little to do with 𝜙+ = 5.13 eV and 𝜙e = 4.61 eV, respectively (see Footnotes (1)–(8) in Table 6). This differential effect
originates in the emission predominance emphasized in Section 1. Namely, 𝜙m has less effect upon 𝜙e and 𝜙+ when 𝜙m is relatively
higher and lower among 𝜙i’s, respectively. In conclusion, it is not 𝜙m but 𝛿m that substantially governs all of 𝜙+, 𝜙e and 𝛥𝜙∗ under
the condition of 𝛿m < 0.5, as shown in Footnote (25) in Table 6. Here, each of the three values is found to be nearly constant
to within ±0.1 eV, irrespective of the large difference in 𝜙m ranging from 4.25 to 5.35 eV among the four different specimens of
W(A)–W(D). It should be emphasized here again that our theoretical results thus achieved (Footnote (25)) are strongly supported
by the experimental data shown in Footnote (26) in Table 6.

(7) In the case of the ‘‘submonocrystal’’ (0.5 < 𝛿m < 1) corresponding to Eq. (11), on the contrary to any polycrystal (𝛿m < 0.5)
mentioned just above, 𝜙e as well as 𝛥𝜙∗ depends upon 𝛿m. Typically, W(E) of mainly W(110) (𝛿m = 0.80) has 𝜙e = 4.87 ± 0.06 eV,
which is very different from 𝜙e = 4.61 ± 0.04 eV for W(F) of mainly W(100) (𝛿m = 0.95) (see Table 6). In addition, each of them is
considerably or somewhat different from 4.56 ± 0.03 eV for W(poly) (𝛿m < 0.5) and also largely or slightly different from 5.32 ± 0.02
eV for W(110) (𝛿m = 1.0) or 4.65 ± 0.02 eV for W(100) (𝛿m = 1.0) (see Column (3) in Table 2). Namely, any ‘‘submonocrystal’’ (0.5
< 𝛿m < 1) has such an anomaly that 𝜙e is not independent of 𝛿m, changing considerably according to the surface compositions
(𝐹i’s and 𝜙i’s) without having a universal constancy unique of the surface material itself. With regard to such a work function
dependence upon 𝛿m as certified theoretically for W-submonocrystals above, we can find many other examples here and there in
Table 1. Typically, 𝜙e = 4.80 eV for Ni(100) (𝛿m = 0.95) [283] and 4.68 eV for Ni(111) (0.89) [283] are radically different from any
of 5.06 eV for Ni(poly) (𝛿m < 0.5), 5.19 eV for Ni(100) (𝛿m = 1) and 5.32 eV for Ni(111) (𝛿m = 1) (see Table 2). About the work
function for any element, therefore, submonocrystal (0.5 < 𝛿m < 1) should be treated separately as another type (category) different
from both polycrystal (𝛿m < 0.5) and monocrystal (𝛿m = 1), as already pointed out in Aspect and Policy (7) in Section 3.1. For a
given specimen, of course, the work function value of any submonocrystal becomes nearer to the unique value characteristic of the
poly- or monocrystalline surface itself as 𝛿m approaches to 0.5 or 1. It should be emphasized here again that 𝛿m is the key factor
governing mainly the work function at a different mode between poly- and submonocrystal according to the conditions of 𝛿 < 0.5
m
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and 0.5 < 𝛿m < 1, respectively. Our new findings of both the ‘‘key factor’’ (𝛿m) and the anomaly of ‘‘submonocrystal’’ (0.5 < 𝛿m <
1) outlined above originate entirely from our simple model leading to Eqs. (1)–(3) and (10)–(12), and they may be considered as
an additional contribution to the work function studies developed to date [4406].

(8) Regarding submonocrystals, theoretical studies are made for other metals, too. Typically for Ir(111) (𝛿m = 0.81) [169], 𝜙e is
theoretically evaluated to be 5.36 eV [803], which is in good agreement with 5.35 eV [169] determined experimentally for the same
specimen. However, they are different from both 5.75 eV for Ir(111) (𝛿m = 1) and 5.28 eV for Ir(poly) (𝛿m < 0.5) (Table 2), thus
howing again the anomaly of submonocrystal. In addition, our theoretical value of 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e = 5.73 ± 0.01 − 5.36 ± 0.07 eV =
0.37±0.07 eV [803] is smaller than 𝛥𝜙∗ = 0.48 and 0.47 eV for Ir(poly) (see Columns 6–8 in Table 5). This difference is quite natural
because 𝛿m = 0.81 for Ir (submonocrystal) [3414] is larger than that (𝛿m < 0.5) of the generally called ‘‘polycrystal’’. Namely, the
former is near to the ‘‘monocrystal’’ (𝛿m = 1) having 𝛥𝜙∗ = 0.0 eV (see Average at the bottom of Table 5). The tendency of 𝛥𝜙∗ →
0 as 𝛿m → 1 is typically shown for W in Fig. 1.

(9) So long as 𝛿m < 1, therefore, distinction between 𝜙+ and 𝜙e is very important to avoid the systematic errors due to 𝛥𝜙∗,
although 𝛥𝜙∗ itself has long been overlooked or ignored by many workers without considering or examining the homogeneity of work
function over the surface under study. Such errors due to 𝛥𝜙∗ inherent in any polycrystals and submonocrystals are accompanied
typically with the evaluation of 𝛽+ from Eq. (5) and of E+ or E0 from Eq. (9), as already exemplified in Section 4.1.

(10) In a typical case of 𝛿m ≈ 1.0 such as W(G) with 𝛿m = 0.96 for the (100) plane, of course, all of 𝜙+, 𝜙a and 𝜙e have a
substantially common value (𝜙m ≈ 4.6 eV) characteristic of the main surface components (F (100) = 0.96 and 𝜙(100) = 4.60 eV), as

ay be seen in Footnote (58) in Table 6. Namely, our theoretical values of 𝜙+ = 4.60 eV and 𝜙e = 4.59 eV are essentially equal to
𝜙+ = 4.60 eV and 𝜙e = 4.57 eV [1351] (see Footnote (62)) and also to 𝜙+ = 4.62 eV and 𝜙e = 4.65 eV (Table 2) recommended for

(100) according mainly to the experimental data.
(11) Our model leads to the conclusion that the sequence of 𝜙+ > 𝜙a > 𝜙e holds always for 𝛿m < 1 independent of the species of

oth poly- and submonocrystal. For W(F) alone among W(A)–W(G), for example, it may seem to be the ‘‘exceptions’’ that Footnote
39) 𝜙a = 4.61 eV < 𝜙e = 4.65 eV and also that (41) 𝜙a = 4.54 eV < 𝜙e = 4.57 eV. Both of them, however, are concluded to be
ot real but only apparent, being entirely due to the disregard of F (116) = 0.01 in Footnote (35). This conclusion may readily be
nderstandable from the comparison with the results that (40) 𝜙a = 4.65 eV > 𝜙e = 4.64 eV and that (42) 𝜙a = 4.58 eV > 𝜙e = 4.56 eV.

For the calculated values of these (40) and (42), F (116) = 0.01 in Footnote (36) is tentatively taken into consideration by the present
author so that the total of ΣF (hkl) may be exactly equal to 1.00 in contrast to 0.99 due to the above disregard (35). Such a treatment
is entirely because it is for the four planes of (100)–(112) alone that the data on (35) F i = 0.95–0.02 are specified by the corresponding
author [3414].

(12) As 𝛿m increases from ∼0.5 up to ∼1, 𝛥𝜙∗ converges gradually to zero, closely approaching to the usually called
‘‘monocrystalline’’ surface (𝜙+ = 𝜙a = 𝜙e = 𝜙 and 𝛥𝜙∗ = 0), just as concluded by both theory and experiment (see Table 5).
Here, 𝜙 is the ‘‘work function’’ generally used without distinction among 𝜙+, 𝜙a and 𝜙e. Of course, any monocrystal with 𝛿m = 1
is generally expected to have the unique work function value characteristic of the surface species itself within the uncertainty of
about ±0.1 eV under the normal condition (see Table 2).

4.5. Anomaly of submonocrystal work functions (𝜙+ and 𝜙e)

The conclusions (7) and (8) described in Section 4.4 open a novel aspect as follows. In terms of work function, elemental crystals
should be classified into the three different types as follows.

(1) Polycrystal (𝛿m < 0.5) having a nearly constant value (within ±0.1 eV in fluctuation) of each 𝜙e and 𝜙+ (𝛥𝜙∗ > 0) characteristic
of its elemental species in spite of a considerable difference in the surface components (𝜙i and 𝐹i) among different specimens.

(2) Submonocrystal (0.5 < 𝛿m < 1) having such an anomaly that both 𝜙e and 𝜙+(𝛥𝜙∗ > 0) are strongly dependent upon 𝛿m and
hence any of them doesn’t possess the constant value unique of its elemental species.

(3) Monocrystal (𝛿m = 1) with 𝜙e = 𝜙+ = constant and 𝛥𝜙∗ = 0 characteristic of its surface species.

For better understanding the anomaly of the submonocrystal work functions together with the key factor of 𝛿m, let’s consider
the work function change in two different solid systems. As may be known very well, every binary alloy changes in 𝜙e depending
upon its alloy component (𝛾c) [2626,2634,4251,4253]. Typically, the alloy of Ag–Yb shows that its 𝜙e decreases nonlinearly from
4.5 eV (Ag) to 2.7 eV (Yb) as 𝛾c of Yb increases from 0 to 1 in mole fraction [4251]. Typically, 𝜙e is found to be about 3.5 and
2.9 eV at 𝛾c (Yb) = 0.3 and 0.8, respectively. Namely, 𝜙e of the alloy is not constant but variable with a strong dependence upon
𝛾c in the range of between 0 and 1, while 𝛾c = 0 and 1 alone yield the constant values of 𝜙e unique of the surface species of
polycrystalline Ag and Yb, respectively. Comparison of the effect on the work function between the surface component (𝛿m) and the
alloy one (𝛾c) indicates that the dependence of 𝜙e on 𝛿m (>0.5, but ≠ 1) resembles strongly that on 𝛾c (≠0 and ≠1). The anomaly of
submonocrystal (cf. Conclusion (7) in Section 4.4) may readily be understood by consideration of the resemblance that 𝛿m (surface
component) corresponds closely to 𝛾c (alloy component) in terms of the governance of work function in the two different solid
systems [4406].

It should be emphasized here again that the work functions (𝜙e and 𝜙+) of polycrystal (𝛿m < 0.5) remain nearly constant (within
±0.1 eV in fluctuation) independently of the difference in both 𝜙i and 𝐹i among various specimens of the same species, but that
both 𝜙e and 𝜙+ of submonocrystal (0.5 < 𝛿m < 1) are governed differentially by the 𝜙i’s values lower and higher than the others
according to the principle of emission predominance (see Section 1). Namely, 𝛿m functions as the key factor having the critical point
of 0.5, above which any of 𝜙e, 𝜙+ and 𝛥𝜙∗ of submonocrystal has no longer the independency of 𝛿m (0.5 < 𝛿m < 1) and also the
constancy characteristic of its elemental species, quite similarly to the case of a binary alloy (0 < 𝛾 < 1) exemplified just above.
c

260



H. Kawano Progress in Surface Science 97 (2022) 100583
4.6. Contrast (𝛥𝜙∗∗) between 𝜙− and 𝜙e

Comparison between Eqs. (2) and (3) predicts that 𝛥𝜙∗∗ ≡ 𝜙− −𝜙e should be zero without depending upon the heterogeneity in
work function over the entire surface because both negative ions and electrons are emitted predominantly from lower work function
sites, on the contrary to positive ions to be done so from higher ones. To confirm the prediction of 𝛥𝜙∗∗ = 0 eV, the present author
has tried to find the experimental data on both 𝜙− and 𝜙e measured usually by NSI and TE, respectively, for the same specimen
under substantially the same condition. In NSI as well as PSI, the working temperatures are selected to be high enough to avoid the
surface contamination due to the incident sample beam or vapor, as already mentioned in Section 2.7.

Table 7
Thermionic contrast (𝛥𝜙∗∗ ≡ 𝜙− − 𝜙e) determined for the same surface specimen under substantially the same condition in each study.

No. Surface Beam Ion 𝜙− (eV) 𝜙e (eV) 𝛥𝜙∗∗ (eV) Meths. Refs.

A. Monocrystalline Surface

6 C(111) I2 I−2 5.4 5.4 ± 0.5d 0.0 ± >0.5 NSI, various [3771, Here]
42 Mo(100) CsI I− 4.29 ± 0.02 4.38 ± 0.03d −0.09 ± 0.04 NSI, various [572, Here]
42 Mo(100) I2 I− 4.36 ± 0.05 4.35 ± 0.05 0.01 ± 0.07 NSI, TE [571]
42 Mo(100) Br2 Br− 4.36 ± 0.06 4.35 ± 0.05 0.01 ± 0.08 NSI, TE [925]
73 Ta(110) F+ F− 4.86 ± 0.1 4.82 ± 0.06d 0.04 ± 0.12 NSI, various [604, Here]
73 Ta(110) Cl+ Cl− 4.92 ± 0.1 4.82 ± 0.06d 0.10 ± 0.12 NSI, various [604, Here]
74 W(100) Br2 Br− 4.53 ± 0.05 4.65 ± 0.02d −0.12 ± 0.05 NSI, various [1658, Here]
74 W(100) I2 I−2 4.55 ± 0.05 4.53 ± 0.05 0.02 ± 0.07 NSI, TE [571]
Mean – – – – – −0.04 ± 0.02e – –

B. Polycrystalline Surface

6 C/Pt UF6 UF−6 4.4 4.4 0.0 NSI, TE [675]
6 C/Pt–W(8%) UF6 UF−6 4.4 4.4 0.0 NSI, TF [675]
6 C(ribbon) N+

2 CN− 4.6 ± 0.2 4.63 ± 0.06d 0.0 ± 0.2 NSI, various [617, Here]
42 Mo Ag Ag− (1.38 ± 0.10)a (1.30)b 0.08 ± >0.10c NSI, TE [569,1351]
42 Mo Au Au− (2.34 ± 0.10)a (2.31)b 0.03 ± >0.10c NSI, TE [569,1351]
42 Mo KI I− (3.08 ± 0.07)a (3.06)b 0.02 ± >0.07c NSI, TE [569,1351]
73 Ta Br+ Br− 4.22 4.37 ± 0.1 −0.15 ± >0.1 NSI, TE [600,641]
73 Ta I+ I− 4.23 4.37 ± 0.1 −0.14 ± >0.1 NSI, TE [600,641]
73 Ta Cl+ Cl− 4.28 4.37 ± 0.1 −0.09 ± >0.1 NSI, TE [600,641]
74 W CsCl Cl− 4.46 4.56 ± 0.03d −0.10 ± >0.03 NSI, various [574, Here]
74 W KCl Cl− 4.49 4.56 ± 0.03d −0.07 ± >0.03 NSI, various [574, Here]
74 W KI I− 4.49 4.56 ± 0.03d −0.07 ± >0.03 NSI, various [574, Here]
74 W I I− 4.49 4.51 −0.02 NSI, TE [827]
74 W – W− 4.5 4.56 ± 0.03d −0.06 ± >0.03 NSI, various [966, Here]
74 W RbCl Cl− 4.51 4.56 ± 0.03d −0.05 ± >0.03 NSI, various [574, Here]
74 W I2 I− 4.51 4.51 0.00 NSI, TE [827]
74 W SF6 SF−6 4.54 4.56 ± 0.03d −0.02 ± >0.03 NSI, various [586, Here]
74 W KBr Br− 4.58 4.56 ± 0.03d 0.02 ± >0.03 NSI, various [574, Here]
74 W H2 H− (0.8 ± 0.1)a (0.75)b 0.05 ± >0.1c NSI, TE [587,1351]
74 W Cl2 Cl− (3.72 ± 0.04)a (3.62)b 0.10 ± >0.04c NSI, TE [588,1351]
74 W SnCl4 Cl− (3.72 ± 0.04)a (3.62)b 0.10 ± >0.04c NSI, TE [588,1351]
74 W Br2 Br− (3.49 ± 0.02)a (3.36)b 0.13 ± >0.02c NSI, TE [589,1351]
74 W KI I− (3.08 ± 0.07)a (3.06)b 0.02 ± >0.07c NSI, TE [569,1351]
74 W I2 I− (3.1)a (3.06)b 0.04c NSI, TE [591,1351]
74 W I2 I− (3.14 ± 0.07)a (3.06)b 0.08 ± >0.07c NSI, TE [590,1351]
74 W Ag Ag− (1.38 ± 0.10)a (1.30)b 0.08 ± >0.10c NSI, TE [569,1351]
74 W Au Au− (2.34 ± 0.10)a (2.31)b 0.03 ± >0.10c NSI, TE [569,1351]
90 Th I2 I− 3.58 3.46 0.12 NSI, TE [827]
90 Th I I− 3.60 3.46 0.14 NSI, TE [827]
Mean – – – – – 0.01 ± 0.07e – –

aEach value in parentheses is not 𝜙− but electron affinity (E) determined for a probing atom (Ag, Au, I, etc.) by the corresponding author(s).
bEach value in parentheses is not 𝜙e but the electron affinity (E*) accepted today as the most probable value [577,578,972,973].
cEach of the contrasts is estimated from the difference (𝛥𝜙∗∗ = 𝐸 − 𝐸∗) as the possible error due to the assumption that 𝜙− is equal to 𝜙e (see Table 12 in
Ref. [1351]).
dEach value (e.g., 𝜙e = 4.38 ± 0.03 eV for Mo(100)) is cited tentatively from the most probable value in Table 2 [Here] because each of the corresponding
references (e.g. [572]) has no data on 𝜙e characteristic of the surface specimen itself (e.g., Mo(100)) under study.
eJust as predicted theoretically by Eqs. (2) and (3), polycrystals as well as monocrystals are verified experimentally to have 𝛥𝜙∗∗ ≈ 0.0 eV in contrast to 𝛥𝜙∗

≈ 0.0 eV for clean and smooth monocrystals alone and also to 𝛥𝜙∗ > 0.0 eV for any polycrystals (see Table 5).

The results thus achieved for 𝛥𝜙∗∗ is summarized in Table 7. Here, the total data are much scanty, disappointingly, compared
with those on 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e summarized in Table 4. From the data in Table 7, however, we may draw the conclusions as follows.
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(1) Regarding several monocrystalline samples (C, Mo, Ta and W), the data on 𝛥𝜙∗∗ are scattered in a wide range from −0.12
to 0.10 eV, but their overall mean (Mean) indicates that 𝛥𝜙∗∗ = −004 ± 0.02 eV may be taken to be 0.0 eV, quite similarly as
𝛥𝜙∗ = 𝜙+ − 𝜙e ≈ 0.0 eV already confirmed for the essentially clean monocrystalline surfaces of many metals (e.g., Mo, Ta and W,
see Table 5).

(2) Similarly, 𝛥𝜙∗∗ for polycrystalline surfaces ranges widely from −0.15 to 0.14 eV, but the overall mean (Mean) of 𝛥𝜙∗∗ = 0.01
0.07 ≈ 0.0 eV may be enough to verify the validity of Eq. (3) together with Eq. (2).
(3) In contrast to the case of 𝛥𝜙∗ = 0.0 eV effective for a clean monocrystalline surface alone, 𝛥𝜙∗∗ = 0.0 eV always holds for any

surface species, independent of the heterogeneity in work function over the surface area. Namely for a given specimen, 𝜙− = 𝜙e = 𝜙
(<𝜙a for poly- and submonocrystals) is always applicable even to contaminated mono- and polycrystalline surfaces, too. Here, 𝜙 is
the generally called ‘‘work function’’ expressed usually in chemico-physical literatures (e.g., Refs. [1045,1312,1352,1358]) without
any distinction among 𝜙+, 𝜙e and 𝜙−.

5. Anisotropy dependent work function sequence for low-index surfaces

For the three low-Miller-index surfaces of mainly bcc- and fcc-metals, the anisotropic work function sequence of 𝜙(100)–𝜙(111)
is examined here from the viewpoint of the Smoluchowski rule [1040]. In addition, a brief discussion is given to the theoretical
evaluation of 𝜙(100)–𝜙(111) from other anisotropic sequences of both surface energy and melting point.

5.1. General aspect of the anisotropy dependent work function sequence

The anisotropy of 𝜙e depending upon crystallographic orientation has long been studied both experimentally and theoretically
for various surface species by a good many workers, as already shown in Table 1. Especially for the low-Miller-index surfaces of
(100)–(111), the work function (𝜙e) for any clean monocrystalline surface is usually expected to decrease with a reduction in packing
density of surface atoms exactly following the Smoluchowski rule [1040]. In other words, it decreases as the surface becomes more
open. Therefore, fcc-metals (e.g., Ni, Cu, Rh, Ag, Pt) are usually expected to have the anisotropic sequence of 𝜙e(111) > 𝜙e(100) >
𝜙e(110), in contrast to 𝜙e(110) > 𝜙e(100) > 𝜙e(111) for bcc-metals (e.g., Nb, Mo, Ta, W) [1351].

In this section, the anisotropy will be examined mainly for bcc- and fcc-metals having the above three crystallographic
orientations in order to solve correctly the problem whether 𝜙e(hkl) depends regularly upon the surface-atom density (Ds(hkl)) for
each triple set of various metals and also to answer immediately the question whether the three values in a reported or recommended
set are partly inaccurate or unreliable.

The correlation between Ds(hkl) and 𝜙e(hkl) is exemplified for several metal species in Table 8, where each triple set of the latter
is determined by the same worker(s) using one of the five different methods (PE, FE, CPD, TE and TC) under the same experimental
condition or theoretical model. But, the ‘‘various’’ [Here] alone is based on the five different methods adopted by many groups of
workers under a variety of distinct conditions, and all of the work function data correspond each to the most probable values listed
in Table 2.

Table 8
Correlation between the surface-atom density (𝐷s) and the work function (𝜙e) determined for the three principal planes of monocrystalline surfaces by different
methods.

Surface 𝐷s (atoms/
1014 cm2)

𝜙e

(eV)
𝜙e

(eV)
𝜙e

(eV)
𝜙e

(eV)
𝜙e

(eV)
𝜙e

(eV)

W. bcc

W(110) 14.1 5.11 ± 0.02 5.25 ± 0.02 5.25 ± 0.02 5.26 5.32 ± 0.02 5.35 ± 0.05
W(100) 10.0 4.65 ± 0.04 4.63 ± 0.02 – 4.56 4.65 ± 0.02 4.60 ± 0.05
W(111) 5.8 4.45 4.47 ± 0.02 – 4.44 4.45 ± 0.03 4.40 ± 0.02
Meth. – CPD FE PE TC various TE
Refs. [819,3813] [1055,1056] [358,3092] [1273] [1271] [Here]a [127,144]

Ni. fcc

Ni(111) 18.6 5.22 5.22 ± 0.03 5.27 ± 0.04 5.32 ± 0.05 5.35 ± 0.05 5.40 ± 0.15
Ni(100) 16.1 4.86 4.89 ± 0.03 – 5.19 ± 0.05 5.22 ± 0.05 5.2 ± 0.15
Ni(110) 11.4 4.69 4.64 ± 0.03 – 4.96 ± 0.10 5.04 ± 0.02 4.85 ± 0.15
Meth. – TC TE FE various PE CPD
Refs. [340] [3224] [312,837] [1898] [Here]a [314,315] [1791]

Al. fccc

Al(111) 14.0b 3.11 ± 0.10 4.24 ± 0.02 4.24 ± 0.04 4.26 ± 0.03 4.27 4.31 ± 0.03
Al(100) 12.4b 3.38 ± 0.07 4.41 ± 0.03 4.28 ± 0.05 4.20 ± 0.03 4.25 4.51 ± 0.03
Al(110) 8.5b 3.80 4.28 ± 0.02 4.05 ± 0.06 4.06 ± 0.03 4.02 4.32 ± 0.03
Meth. – PE PE various PE TC TC
Refs. [612] [239] [241,242] [Here]a [612] [556] [718]
(continued on next page)
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Table 8 (continued)

Surface 𝐷s (atoms/
1014 cm2)

𝜙e

(eV)
𝜙e

(eV)
𝜙e

(eV)
𝜙e

(eV)
𝜙e

(eV)
𝜙e

(eV)

Re. hcpd

Re(0001) 15.1 5.26 ± 0.05 5.30 ± 0.21 5.53 5.59 ± 0.05 – –
Re(1011) 14.3 – 5.26 ± 0.13 – 5.37 ± 0.03 5.55 ± 0.03 5.69 ± 0.06
Re(1010) 8.1 – 5.12 ± 0.05 5.20 5.15 ± 0.02 5.95 ± 0.15 5.52 ± 0.03
Meth. – CPD various TC TE FE PE
Refs. [340] [3378] [Here]a [1159,1980] [402,3416] [730] [403]

aThe data on 𝜙e [Here] are cited from the most probable values in Table 2.
bIts unit for Al is atoms/1018 cm2.
cRegarding the triple set investigated for Al by the same worker(s) under the common condition, the present author has not yet found any data by CPD, FE,
etc. other than PE and TC.
dTo the best of the present author’s knowledge, it is by TE alone that the complete set for Re is studied under the same condition and method.

As exemplified in Table 8, the data on W of the bcc-type show the normal trend that 𝜙e(hkl) decreases monotonically with
ecreasing Ds(hkl), irrespective of the difference in determination method, except PE having single datum alone [1273]. About the
cc-type of Ni, all the methods except FE [1898] affords the general trend well accordant to Ds(hkl). With respect to the hcp-type
f Re(hkil), a similar tendency may be expectable, although the available data are much scanty than those of W and Ni and also
hey include one exception by FE [730] against the above trend.

Regarding the listed data on Al of fcc-type, in contrast to Ni, only two examples [556,612] follow the sequence of 𝜙e(111) >
𝜙e(100) > 𝜙e(110) with a decrease in Ds(hkl), in contrast to the four other examples [239,241], Here, [718] determined mainly by
PE or TC. To the best of the present author’s knowledge, the triple set of 𝜙e(hkl) determined by the same worker(s) using CPD, FE
or TE has not yet been reported for Al. According to the examples shown in Table 8, the data on Al alone seem to be anomalous
frequently to the corresponding sequence, in contrast to the others to be so rather seldom.

The above result strongly suggests it very interesting to examine carefully the problem whether the sequences of 𝜙e(110) >
𝜙e(100) > 𝜙e(111) for bcc-metals and also of 𝜙e(111) > 𝜙e(100) > 𝜙e(110) for fcc-ones in accordance with the decrease in 𝐷s(hkl)
may hold surely for many metals listed in Table 1. Many results to be thus examined will be discussed below in Sections 5.2–
5.4. In addition, let’s examine other anisotropic sequences of surface energy (𝜀) and melting point (Tm) in Section 5.5, where the
quantitative relations between 𝜀 and 𝜙e and also between Tm and 𝜙e will be summarized briefly.

5.2. Examination of the anisotropic work function sequence for bcc-metals

From the above viewpoint, the present author has tried to examine the sequence of 𝜙e(110) > 𝜙e(100) > 𝜙e (111) for various bcc-
metals by citing many triple sets of work function data from Table 1, where each set is investigated by the same worker(s) employing
either the identical method under the same condition or the same theoretical model. The results thus obtained are summarized in
Table 9, which shows the examination of the sequence found for 32 species of bcc-metals ranging from Li to U. Here, ‘‘Yes’’ and
‘‘No’’ mean that the sequence of 𝜙e(110) > 𝜙e(100) > 𝜙e(111) holds exactly and never, respectively. Especially, each triple sequence
with double underlines for each metal species originates from the most probable values estimated by the present author using much
data achieved by many groups of workers adopting various methods (see Table 2), and the sequence with a single underline comes
from the data recommended previously in Table 2 in Ref. [1351]. Therefore, both of the two may be expected probably to be
more accurate or reliable than any of the others based on a single method (or model) employed by an individual group of workers,
although the data available for each metal in the latter [1351] are generally not so abundant as those in the former [Here].

Table 9
Examination of the work function sequence of 𝜙e(110) > 𝜙e(100) > 𝜙e(111) for the three principal planes of bcc metals.

No. Metal. 𝜙e(110) (eV) 𝜙e(100) (eV) 𝜙e(111) (eV) Seq. Meth. Refs.

3 Li 2.40 = 2.40 > 2.30 No TC [475]
3 Li 2.78 > 2.61 > 2.58 Yes TC [1980]
3 Li 3.00 = 3.00 > 2.90 No TC [1095]
3 Li 3.09 > 2.92 > 2.90 Yes TC [231]
3 Li 3.18 > 3.11 > 2.96 Yes TC [711]
3 Li 3.221 > 2.986 > 2.746 Yes TC [4091]
3 Li 3.27 > 3.03 > 2.93 Yes TC [553]
3 Li 3.31 > 3.25 > 3.12 Yes TC [476,711]
3 Li 3.31 > 3.26 > 3.12 Yes TC [711]
3 Li 3.32 > 3.04 > 2.94 Yes TC [3467]
3 Li 3.37 ± 0.05 > 3.12 ± 0.03 > 3.04 ± 0.08 Yes TC [Here]a

3 Li 3.40 > 3.36 < 3.44 No TC [637]
3 Li 3.43 > 3.03 < 3.12 No TC [637,2418]

(continued on next page)
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Table 9 (continued)

No. Metal. 𝜙e(110) (eV) 𝜙e(100) (eV) 𝜙e(111) (eV) Seq. Meth. Refs.

3 Li 3.43 > 3.28 > 3.15 Yes TC [3814]
3 Li 3.44 > 3.39 > 3.26 Yes TC [476]
3 Li 3.46 > 3.06 < 3.09 No TC [637,2418]
3 Li 3.5 > 3.4 > 3.2 Yes TC [1088]
3 Li 3.54 > 3.27 > 3.13 Yes TC [1237]
3 Li 3.55 > 3.30 > 3.25 Yes TC [475]
3 Li 3.55 > 3.32 > 3.13 Yes TC [556]
3 Li 3.58 > 3.30 > 3.16 Yes TC [1030]
3 Li 3.61 > 3.10 > 2.97 Yes TC [321]
3 Li 3.63 > 3.32 > 3.19 Yes TC [555]
3 Li 3.77 > 3.56 > 3.42 Yes TC [472]
3 Li 3.87 > 3.47 > 3.20 Yes TC [1030]

Conformity (Nyes/Ntotal)d – – 80% – –

11 Na 2.52 > 2.40 > 2.39 Yes TC [1159]
11 Na 2.75 > 2.58 > 2.54 Yes TC [231]
11 Na 2.76 > 2.60 > 2.57 Yes TC [3467]
11 Na 2.839 > 2.638 > 2.585 Yes TC [4091]
11 Na 2.86 > 2.69 > 2.63 Yes TC [4222]
11 Na 2.87 > 2.66 > 2.26 Yes TC [3477]
11 Na 2.88 > 2.66 > 2.59 Yes TC [553]
11 Na 2.9 > 2.7 > 2.6 Yes TC [2851]
11 Na 2.91 > 2.77 > 2.56 Yes TC [711]
11 Na 2.98 > 2.80 > 2.79 Yes TC [4398]
11 Na 2.99 > 2.80 > 2.77 Yes TC [4398]
11 Na 3.00 > 2.86 > 2.71 Yes TC [473]
11 Na 3.00 > 2.83 > 2.48 Yes TC [3477]
11 Na 3.00 > 2.80 > 2.79 Yes TC [721]
11 Na 3.04 > 2.89 > 2.72 Yes TC [3814]
11 Na 3.05 ± 0.04 > 2.80 ± 0.04 > 2.68 ± 0.06 Yes TC [Here]a

11 Na 3.06 > 2.93 > 2.73 Yes TC [476,711]
11 Na 3.08 > 2.88 > 2.75 Yes TC [1030]
11 Na 3.1 > 2.9 > 2.8 Yes TC [1088]
11 Na 3.10 > 2.75 > 2.65 Yes TC [475]
11 Na 3.11 > 2.88 > 2.76 Yes TC [555]
11 Na 3.13 > 2.84 > 2.76 Yes TC [556]
11 Na 3.16 > 3.04 > 2.85 Yes TC [476]
11 Na 3.22 > 3.03 > 2.82 Yes TC [472,554]
11 Na 3.3 > 3.0 > 2.7 Yes TC [1088]
11 Na 3.33 > 3.07 > 2.79 Yes TC [1030]
11 Na 3.44 > 2.95 > 2.83 Yes TC [321]
11 Na 3.62 > 3.27 > 3.17 Yes TC [1095]

Conformity (Nyes/Ntotal)d – – 100% – –

19 K 2.35 > 2.25 > 2.24 Yes TC [1159,3067]
19 K 2.37 > 2.21 > 2.17 Yes TC [231]
19 K 2.372 > 2.24 > 2.18 Yes TC [4091]
19 K 2.43 > 2.26 > 2.21 Yes TC [3467]
19 K 2.44 > 2.27 > 2.19 Yes TC [553]
19 K 2.58 > 2.43 > 2.21 Yes TC [711]
19 K 2.72 > 2.51 > 2.39 Yes TC [1030]
19 K 2.74 ± 0.04 > 2.47 ± 0.04 > 2.39 ± 0.02 Yes TC [Here]a

19 K 2.75 > 2.60 > 2.38 Yes TC [476,711]
19 K 2.75 > 2.40 > 2.35 Yes TC [475]
19 K 2.76 > 2.59 > 2.42 Yes TC [472]
19 K 2.82 > 2.68 > 2.48 Yes TC [476]
19 K 2.9 > 2.7 > 2.5 Yes TC [55,1088]
19 K 2.90 > 2.49 > 2.39 Yes TC [321]
19 K 2.96 > 2.55 > 2.40 Yes TC [3814]
19 K 3.01 > 2.71 > 2.45 Yes TC [1030]
19 K 3.15 > 2.80 > 2.75 Yes TC [1095]

Conformity (Nyes/Ntotal)d – – 100% – –

20 𝛾-Ca 4.09 > 3.52 > 3.37 Yes TC [321]

22 𝛽-Ti 4.57 > 3.94 > 3.76 Yes TC [321]
22 𝛽-Ti 𝑎0 + 0.3673 > 𝑎0 > 𝑎0 − 0.3982 Yes TC [4259]f

23 V 4.52 > 3.88 > 3.72 Yes TC [321]
(continued on next page)
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Table 9 (continued)

No. Metal. 𝜙e(110) (eV) 𝜙e(100) (eV) 𝜙e(111) (eV) Seq. Meth. Refs.

23 V 4.96 > 4.29 > 4.10 Yes TC [2548]
23 V 4.97 > 4.28 > 4.11 Yes TC [1980,3067]
23 V 5.00 > 4.46 > 4.19 Yes TE [3695]
23 V 5.04 ± 0.07 > 4.27 ± 0.05 > 4.13 ± 0.04 Yes various [Here]a

23 V 𝑏0 + 0.3735 > 𝑏0 > 𝑏0 − 0.4237 Yes TC [4259]f

Conformity (Nyes/Ntotal)d – – 100% – –

24 Cr 4.44 > 4.27 > 3.78 Yes TC [4034]
24 Cr 4.53 > 3.90 > 3.72 Yes TC [321]
24 Cr 4.70 > 3.88 = 3.88 No TC [2818]
24 Cr 4.99 ± 0.19 > 4.43 ± 0.14 > 3.8 ± 0.1 Yes various [Here]a

24 Cr 𝑐0 + 0.4143 > 𝑐0 > 𝑐0 − 0.4319 Yes TC [4259]f

Conformity (Nyes/Ntotal)d – – 80% – –

25 𝛿-Mn 4.97 > 4.27 > 4.09 Yes TC [321]
25 𝛿-Mn 5.3 ± 0.3 > 4.8 ± 0.4 > 4.1 Yes TC [Here]a

26 𝛼-Fe 4.75 > 3.87 < 3.89 No TC [1625]
26 𝛼-Fe 4.76 > 3.91 < 3.95 No TC [1625]
26 𝛼-Fe 4.81 > 3.86 < 3.90 No TC [1619]
26 𝛼-Fe 4.82 > 3.91 = 3.91 No TC [1619]
26 𝛼-Fe 4.99 ± 0.04 > 4.64 ± 0.05 > 4.4 ± 0.3 Yes various [Here]a

26 𝛼-Fe 5.07 ± 0.04 > 4.60 ± 0.33 < 4.81 ± 0.29 No various [4088]
26 𝛼-Fe 5.12 > 3.85 > 3.81 Yes TC [4222]
26 𝛼-Fe 5.30 > 4.55 > 4.35 Yes TC [321]

Conformity (Nyes/Ntotal)d – – 38% – –

37 Rb 2.20 > 2.10 > 2.05 Yes TC [475]
37 Rb 2.243 > 2.115 > 2.096 Yes TC [4091]
37 Rb 2.28 > 2.12 > 2.08 Yes TC [231]
37 Rb 2.33 > 2.15 > 2.09 Yes TC [3467]
37 Rb 2.33 > 2.17 > 2.12 Yes TC [553]
37 Rb 2.40 = 2.40 > 2.22 No TC [472]
37 Rb 2.46 > 2.28 > 2.06 Yes TC [711]
37 Rb 2.49 > 2.36 > 2.26 Yes TC [1030]
37 Rb 2.56 > 2.41 > 2.25 Yes TC [3814]
37 Rb 2.57 > 2.47 > 2.42 Yes TC [1095]
37 Rb 2.63 > 2.45 > 2.23 Yes TC [476,711]
37 Rb 2.65 > 2.35 > 2.30 Yes TC [475]
37 Rb 2.65 ± 0.05 > 2.31 ± 0.08 > 2.21 ± 0.09 Yes TC [Here]a

37 Rb 2.70 > 2.53 > 2.32 Yes TC [476]
37 Rb 2.72 > 2.54 > 2.28 Yes TC [1030,1089]
37 Rb 2.79 > 2.40 > 2.30 Yes TC [321]
37 Rb 2.9 > 2.6 > 2.3 Yes TC [1088]

Conformity (Nyes/Ntotal)d – – 94% – –

38 𝛾-Sr 2.63 < 2.71 < 2.80 No TC [1159]
38 𝛾-Sr 3.2 ± 0.6 > 3.0 ± 0.3 = 3.0 ± 0.2 No TC [Here]a

38 𝛾-Sr 3.81 > 3.27 > 3.13 Yes TC [321]

39 𝛽-Y 4.28 > 3.67 > 3.52 Yes TC [321]
39 𝛽-Y 𝑑0 + 0.303 > 𝑑0 > 𝑑0 − 0.355 Yes TC [4246]f

40 𝛽-Zr 4.57 > 3.94 > 3.76 Yes TC [321]
40 𝛽-Zr 𝑒0 + 0.367 > 𝑒0 > 𝑒0 − 0.407 Yes TC [4246]f

41 Nb 4.488 > 3.552 < 3.775 No TC [4091]
41 Nb 4.51 ± 0.02 > 3.97 ± 0.02 < 4.08 ± 0.02 No PE [336]
41 Nb 4.61 > 3.96 > 3.80 Yes TC [321]
41 Nb 4.63 ± 0.17 > 4.08 ± 0.17 < 4.37 ± 0.19 No various [4088]
41 Nb 4.64+e > 4.04+ > 3.78+ Yes PSI [739]
41 Nb 4.74 > 4.06 > 3.93 Yes TC [2548]
41 Nb 4.74 ± 0.10+ > 4.04+ > 3.84 ± 0.06+ Yes PSI [Here]a

41 Nb 4.75 > 4.07 > 3.94 Yes TC [1159]
41 Nb 4.77 ± 0.05 > 4.02 ± 0.05 > 3.95 ± 0.09 Yes various [Here]a

41 Nb 4.80 > 3.90 > 3.88 Yes TE [739]
41 Nb 4.80 ± 0.05 > 3.95 ± 0.03 > 3.88 ± 0.03 Yes TE [775,2811]
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Table 9 (continued)

No. Metal. 𝜙e(110) (eV) 𝜙e(100) (eV) 𝜙e(111) (eV) Seq. Meth. Refs.

41 Nb 4.83 ± 0.05 > 3.95 ± 0.05 > 3.86 ± 0.03 Yes various [1351]b

41 Nb 4.87 ± 0.07 > 4.02 ± 0.06 < 4.36 ± 0.06 No TE [779]
41 Nb 4.90 ± 0.05 > 3.86 ± 0.05 > 3.84 ± 0.05 Yes TE [774]
41 Nb 𝑓0 + 0.443 > 𝑓0 > 𝑓0 − 0.435 Yes TC [4246]f

41 Nb 𝑝0 + 0.56 > 𝑝0 > 𝑝0 − 0.07 Yes TC [4078]g

Conformity (Nyes/Ntotal)d – – 75% – –

42 Mo 4.32 ± 0.07 > 4.1 ± 0.1 < 4.33 ± 0.01 No TE [643]
42 Mo 4.510 > 3.842 < 3.940 No TC [4091]
42 Mo 4.59 > 4.01 > 4.00 Yes TC [4057]
42 Mo 4.64 > 4.06 > 3.86 Yes TC [4057]
42 Mo 4.7 ± 0.04 > 4.5 ± 0.04 < 4.8 ± 0.04 No TE [3344]
42 Mo 4.77 > 4.10 > 3.93 Yes TC [321]
42 Mo 4.81 ± 0.09 > 4.35 ± 0.02 > 4.00 ± 0.08 Yes FE [3691]
42 Mo 4.82 > 4.28 > 4.23 Yes TC [3224]
42 Mo 4.83 > 4.26 > 4.06 Yes FE [648]
42 Mo 4.84 > 4.28 < 4.30 No TC [1624]
42 Mo 4.85 > 4.20 < 4.27 No TC [639]
42 Mo 4.85 ± 0.05 > 4.40 ± 0.05 > 4.15 ± 0.05 Yes TE [323]
42 Mo 4.88 > 4.03 < 4.32 No TC [639]
42 Mo 4.90 ± 0.04 > 4.60 ± 0.04 > 4.35 ± 0.04 Yes TE [2244]
42 Mo 4.90 ± 0.05 > 4.43 ± 0.05 > 4.10 ± 0.05 Yes TE [781]
42 Mo 4.92 ± 0.05 > 4.46 ± 0.11 > 4.37 ± 0.24 Yes various [4088]
42 Mo 4.94 > 4.58 > 4.55 Yes TC [3224]
42 Mo 4.95 ± 0.02 > 4.53 ± 0.02 < 4.55 ± 0.02 No PE [325]
42 Mo 4.95 ± 0.05 > 4.43 ± 0.05 > 4.10 ± 0.05 Yes TE [739,1407]
42 Mo 4.96 ± 0.06 > 4.40 ± 0.03 > 4.09 ± 0.07 Yes various [1351]b

42 Mo 4.98 ± 0.03 > 4.38 ± 0.03 > 4.29 ± 0.03 Yes various [Here]a

42 Mo 5.00 > 4.45 > 4.20 Yes FE [1416]
42 Mo 5.00 ± 0.05 > 4.40 ± 0.02 > 4.10 ± 0.02 Yes TE [127,144]
42 Mo 5.1+ > 4.38 ± 0.08+ > 4.17 ± 0.09+ Yes PSI [Here]a

42 Mo 5.1 > 4.5 > 4.2 Yes TE [2339]
42 Mo 5.10 ± 0.03 > 4.40 ± 0.03 > 4.10 ± 0.03 Yes TE [727,3103]
42 Mo 5.10 ± 0.05 > 4.40 ± 0.05 > 4.15 ± 0.05 Yes TE [323]
42 Mo 5.10 ± 0.15 > 4.26 ± 0.03 > 3.94 ± 0.05 Yes FE [999]
42 Mo 5.11 ± 0.07 > 4.28 ± 0.01 > 3.99 ± 0.02 Yes FE [999,1668]
42 Mo 5.13 > 4.37 > 4.07 Yes TC [4034]
42 Mo 5.13 ± 0.03+ > 4.37 ± 0.07+ > 4.07 ± 0.13+ Yes PSI [1351]b

42 Mo 5.13 ± 0.03+e > 4.44 ± 0.03+ > 4.13 ± 0.03+ Yes PSI [727,3103]
42 Mo 5.23 > 4.43 > 4.25 Yes TC [2548]
42 Mo 5.23 > 4.44 > 4.27 Yes TC [1980]
42 Mo 5.4 ± 0.2 > 4.5 ± 0.1 > 4.3 ± 0.1 Yes TE [335,1650]
42 Mo 5.90 > 4.36 > 4.23 Yes TC [3224]
42 Mo 𝑞0 + 0.43 > 𝑞0 > 𝑞0 − 0.22 Yes TC [4078]g

42 Mo 𝑔0 + 0.470 > 𝑔0 > 𝑔0 − 0.453 Yes TC [4246]f

Conformity (Nyes/Ntotal)d – – 82% – –

50 𝛼-Sn 4.77 > 3.47 < 4.01 No TC [3211]

55 Cs 2.073 > 1.974 > 1.971 Yes TC [4091]
55 Cs 2.17 > 2.01 > 1.97 Yes TC [231]
55 Cs 2.19 > 2.04 > 2.01 Yes TC [553,2427]
55 Cs 2.21 > 2.03 > 1.98 Yes TC [3467]
55 Cs 2.23 > 2.14 = 2.14 No TC [1159]
55 Cs 2.25 > 1.90 > 1.80 Yes TC [475]
55 Cs 2.34 > 2.14 > 1.93 Yes TC [711]
55 Cs 2.35 > 2.23 > 2.14 Yes TC [1030]
55 Cs 2.44 > 2.28 > 2.14 Yes TC [3814]
55 Cs 2.51 > 2.31 > 2.10 Yes TC [476,711]
55 Cs 2.54 ± 0.07 > 2.24 ± 0.06 > 2.09 ± 0.08 Yes TC [Here]a

55 Cs 2.56 > 2.40 > 2.14 Yes TC [1030,1089]
55 Cs 2.57 > 2.39 > 2.19 Yes TC [476]
55 Cs 2.59 > 2.24 > 2.14 Yes TC [1095]
55 Cs 2.60 > 2.24 > 2.14 Yes TC [321]
55 Cs 2.60 > 2.30 > 2.20 Yes TC [475]
55 Cs 2.62 > 2.36 > 2.24 Yes TC [555]
55 Cs 2.8 > 2.3 > 2.2 Yes TC [1086,1088]

Conformity (Nyes/Ntotal)d – – 94% – –
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No. Metal. 𝜙e(110) (eV) 𝜙e(100) (eV) 𝜙e(111) (eV) Seq. Meth. Refs.

56 Ba 2.384 > 2.31 > 2.293 Yes TC [4091]
56 Ba 2.71 > 2.50 > 2.48 Yes TC [1159]
56 Ba 2.83 > 2.67 < 2.73 No TC [231]
56 Ba 2.88 > 2.68 < 2.72 No TC [3467]
56 Ba 3.21 > 3.15 > 2.85 Yes TC [476]
56 Ba 3.32 > 3.26 > 2.96 Yes TC [476]
56 Ba 3.46 ± 0.14 > 3.07 ± 0.06 > 2.81 ± 0.06 Yes TC [Here]a

56 Ba 3.49 > 3.00 > 2.87 Yes TC [321]
56 Ba 3.56 > 3.06 > 2.86 Yes TC [1030]
56 Ba 3.58 > 3.42 > 2.85 Yes TC [1030]

Conformity (Nyes/Ntotal)d – – 80% – –

57 𝛾-La 3.76 > 3.23 > 3.09 Yes TC [321]
57 𝛾-La ℎ0 + 0.281 > ℎ0 > ℎ0 − 0.334 Yes TC [4246]f

58 𝛾-Ce 4.63 > 3.98 > 3.81 Yes TC [321]

59 𝛽-Pr 3.86 > 3.32 > 3.17 Yes TC [321]

60 𝛽-Nd 4.23 > 3.63 > 3.48 Yes TC [321]

62 Sm 3.76 > 3.23 > 3.09 Yes TC [321]

63 Eu 3.80 > 3.26 > 3.12 Yes TC [321]

64 𝛽-Gd 4.13 > 3.55 > 3.40 Yes TC [321]

65 𝛽-Tb 4.52 > 3.88 > 3.72 Yes TC [321]

71 𝛽-Lu 4.13 > 3.54 > 3.39 Yes TC [321]

72 𝛽-Hf 5.03 > 4.32 > 4.13 Yes TC [321]
72 𝛽-Hf 4.31 > 3.30 < 3.35 No TC [4057]
72 𝛽-Hf 4.31 > 3.30 < 3.39 No TC [4057]
72 𝛽-Hf 𝑖0 + 0.358 > 𝑖0 > 𝑖0 − 0.4177 Yes TC [4246]f

73 Ta 4.74 > 4.07 > 3.93 Yes TC [2548]
73 Ta 4.74 ± 0.09 > 4.10 ± 0.25 > 3.50 ± 0.21 Yes various [4088]
73 Ta 4.75 > 4.08 > 3.94 Yes TC [1980]
73 Ta 4.77 > 3.83 < 3.93 No TC [1200]
73 Ta 4.78 > 3.83 < 3.96 No TC [1200]
73 Ta 4.80 ± 0.02 > 4.15 ± 0.02 > 4.00 ± 0.02 Yes TE [127,144]
73 Ta 4.81 ± 0.05 > 4.17 ± 0.09 > 4.00 ± 0.04 Yes various [1351]b

73 Ta 4.82 ± 0.06 > 4.15 ± 0.05 > 4.01 ± 0.04 Yes various [Here]a

73 Ta 4.83 ± 0.05 > 4.12 ± 0.05 > 3.98 ± 0.05 Yes TE [739,798]
73 Ta 4.84 ± 0.02+ > 4.20+ > 4.00 ± 0.05+ Yes PSI [Here]a

73 Ta 4.84 ± 0.04+ > 4.20 ± 0.04+ > 4.00 ± 0.04+ Yes PSI [797]
73 Ta 4.85 ± 0.05+ > 4.20 ± 0.04+ > 4.00 ± 0.05+ Yes PSI [1351]b

73 Ta 4.86 > 4.04 > 3.51 Yes TC [1200]
73 Ta 4.87 > 4.11 > 3.50 Yes CT [1200]
73 Ta 4.95 > 4.10 > 3.95 Yes FE [796]
73 Ta 4.964 > 4.096 < 4.201 No TC [4091]
73 Ta 5.16 > 4.44 > 4.25 Yes TC [321]
73 Ta 𝑟0 + 0.29 > 𝑟0 > 𝑟0 − 0.36 Yes TC [4078]g

73 Ta 𝑗0 + 0.499 > 𝑗0 > 𝑗0 − 0.491 Yes TC [4246]f

Conformity (Nyes/Ntotal)d – – 84% – –

74 W 4.58 > 4.52 > 4.38 Yes TE [150]
74 W 4.6 > 4.54 < 5.3 No FE [2714]
74 W 4.65 > 4.53 > 4.38 Yes TE [2706]
74 W 4.65 ± 0.02 > 4.56 ± 0.02 > 4.35 ± 0.02 Yes TE [149]
74 W 4.66 (4.58) > 4.52 > 4.38 ± 0.02 Yes TE [150]
74 W 4.67 ± 0.05 > 4.55 ± 0.05 > 4.26 ± 0.05 Yes TE [1663,2012]
74 W 4.758 > 4.090 < 4.240 No TC [4091]
74 W 4.9 > 4.6 > 4.4 Yes FE [1463]
74 W 4.92 > 4.48 > 4.45 Yes TE [352]
74 W 5.0 ± 0.2 > 4.6 ± 0.1 > 4.4 ± 0.1 Yes TE [335,1650]
74 W 5.02 ± 0.03 > 4.59 ± 0.02 > 4.49 ± 0.02 Yes FE [502]
74 W 5.025 > 4.37 < 4.381 No TC [4189]
(continued on next page)
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Table 9 (continued)

No. Metal. 𝜙e(110) (eV) 𝜙e(100) (eV) 𝜙e(111) (eV) Seq. Meth. Refs.

74 W 5.09 > 4.40 > 4.35 Yes TE [141]
74 W 5.11 > 4.46 > 4.41 Yes TC [3224]
74 W 5.11 ± 0.02 > 4.65 ± 0.04 > 4.45 Yes CPD [1056]
74 W 5.13 > 4.50 > 4.44 Yes TC [4405]
74 W 5.13 ± 0.02 > 4.65 ± 0.02 > 4.60 ± 0.02 Yes CPD [582]
74 W 5.14 ± 0.03+e > 4.66 ± 0.03+ > 4.42 ± 0.03+ Yes PSI [3103]
74 W 5.15 > 4.54 > 4.49 Yes TC [3224]
74 W 5.15 ± 0.02 > 4.65 ± 0.02 > 4.45 ± 0.02 Yes CPD [3088]
74 W 5.17 ± 0.01 > 4.54 ± 0.01 > 4.44 ± 0.02 Yes TE [3349]
74 W 5.18 > 4.64 > 4.61c Yes TE [212]
74 W 5.18 > 4.64 < 4.67c No TE [212]
74 W 5.18 > 4.58 < 4.60 No TC [531]
74 W 5.2 > 4.64 > 4.6 Yes TE [212]
74 W 5.2 > 4.6 > 4.2 Yes TE [1958]
74 W 5.20 > 4.963 > 4.562 Yes TC [365]
74 W 5.20 > 4.56 > 4.50 Yes TC [3224]
74 W 5.22 ± 0.01 > 4.54 ± 0.01 = 4.54 ± 0.01 No TE [1053]
74 W 5.24 ± 0.03 > 4.62 ± 0.03 > 4.59 ± 0.03 Yes TE [1793]
74 W 5.25 > 4.65 > 4.47 Yes FE [489]
74 W 5.25 ± 0.02 > 4.63 ± 0.02 > 4.47 ± 0.02 Yes FE [358,3092]
74 W 5.26 > 4.52 > 4.38 Yes TE [150]
74 W 5.26 > 4.56 > 4.44 Yes TC [1271]
74 W 5.26 > 4.69 > 4.43 Yes TE [2187,3664]
74 W 5.269 > 4.979 > 4.500 Yes TC [365]
74 W 5.28 ± 0.11+ > 4.62 ± 0.06+ > 4.45 ± 0.04+ Yes PSI [Here]a

74 W 5.29 ± 0.08+ > 4.60 ± 0.05+ > 4.45 ± 0.05+ Yes PSI [1351]b

74 W 5.3 > 4.5 > 4.4 Yes CPD [259]
74 W 5.3 > 4.60 > 4.40 Yes TE [3096]
74 W 5.30 > 4.60 > 4.45 Yes FE [3508]
74 W 5.30 ± 0.03 > 4.60 ± 0.03 > 4.40 ± 0.03 Yes TE [3103]
74 W 5.30 ± 0.05 > 4.61 ± 0.05 > 4.40 ± 0.05 Yes TE [2214,2217]
74 W 5.31 ± 0.05 > 4.57 ± 0.03 > 4.38 ± 0.04 Yes various [1351]b

74 W 5.32 > 4.59 > 4.51 Yes CPD [1274]
74 W 5.32 ± 0.02 > 4.65 ± 0.02 > 4.45 ± 0.03 Yes various [Here]a

74 W 5.32 ± 0.10 > 4.93 ± 0.06 > 4.45 ± 0.05 Yes FE [819]
74 W 5.33 ± 0.03 > 4.76 ± 0.05 > 4.40 ± 0.03 Yes TE [372,3064]
74 W 5.345 > 5.009 > 4.500 Yes TC [365]
74 W 5.35 ± 0.05 > 4.60 ± 0.05 > 4.40 ± 0.02 Yes TE [127]
74 W 5.40 ± 0.05 > 4.55 ± 0.05 > 4.42 ± 0.03 Yes TE [143]
74 W 5.44 > 4.63 > 4.55 Yes TC [357]
74 W 5.44 ± 0.14 > 4.70 ± 0.06 > 4.44 ± 0.03 Yes various [4088]
74 W 5.5 ± 0.2 > 4.6 ± 0.1 > 4.2 ± 0.1 Yes FE [3033]
74 W 5.50 > 4.65 > 4.46 Yes TC [2548]
74 W 5.50 > 4.66 > 4.47 Yes TC [1980]
74 W 5.54 > 4.60 > 4.54 Yes TE [2187,3664]
74 W 5.54 > 4.50 < 5.60 No TC [4117]
74 W 5.6 > 4.6 > 3.9 Yes FE [1964]
74 W 5.66 ± 0.03 > 4.83 ± 0.02 > 4.47 ± 0.03 Yes FE [999]
74 W 5.70 > 4.70 > 4.54 Yes FE [812]
74 W 5.73 > 4.67 > 4.59 Yes TC [3224]
74 W 5.75 > 4.49 > 4.38 Yes TC [4405]
74 W 5.75 ± 0.03 > 4.83 ± 0.02 > 4.47 ± 0.03 Yes FE [999]
74 W 5.75 ± 0.15 > 4.6 = 4.6 No FE [3079]
74 W 5.79 > 4.78 > 4.35 Yes FE [373]
74 W 5.79 > 4.47 < 4.49 No FE [378]
74 W 5.8 > 4.9 > 4.6 Yes FE [3438]
74 W 5.8 ± 0.3 > 4.93 ± 0.06 > 4.45 ± 0.05 Yes FE [819]
74 W 5.80 ± 0.05 > 4.90 ± 0.03 > 4.60 ± 0.05 Yes FE [813]
74 W 5.83 > 4.89 > 4.68 Yes FE [653]
74 W 5.85 > 4.82 > 4.41 Yes FE [267]
74 W 5.9 > 4.82 > 4.41 Yes FE [2324]
74 W 5.93 > 4.77 > 4.4 Yes FE [2766]
74 W 6.0 > 4.70 > 4.43 Yes FE [809]
74 W 6.00 > 4.65 > 4.40 Yes FE [1276]
74 W 6.28 ± 0.08 > 4.93 ± 0.06 > 4.45 ± 0.05 Yes FE [819]
74 W 6.35 > 4.98 > 4.57 Yes FE [1057]
74 W 6.5 > 4.54 < 5.3 No FE [2714]
74 W 𝑠0 + 0.52 > 𝑠0 > 𝑠0 − 0.31 Yes TC [4078]g

74 W 𝑘0 + 0.538 > 𝑘0 > 𝑘0 − 0.520 Yes TC [4246]f

(continued on next page)
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Table 9 (continued)

No. Metal. 𝜙e(110) (eV) 𝜙e(100) (eV) 𝜙e(111) (eV) Seq. Meth. Refs.

Conformity (Nyes/Ntotal)d – – 89% – –

81 𝛽-Tl 4.10 > 3.52 > 3.36 Yes TC [321]

92 𝛾-U 4.07 > 3.49 > 3.33 Yes TC [321]

aEach of the work function data with double underlines is cited from the most probable value listed in Table 2 [Here].

bSimilarly, each of the data with a single underline is cited from the value recommended in Table 2 in the previous review [1351].
cThe values of 𝜙e(111) = 4.61 and 4.67 eV for W(111) [212] are determined at 𝑃 (O2) = 5 × 10−10 Torr and 𝑇 = 1900 K and done at 5 × 10−8 Torr and 2200
K, respectively, thereby yielding the result that the sequence changes from Yes to No in accordance with the work function increase by 0.06 eV due to the
oxygen gas pressure increase. Both of the above values, however, are considerably larger than 4.45 eV recommended in Table 2, although 4.64 eV for W(100)
[212] well agrees with 4.65 eV [Here].
dIn the last line for each metal with Ntotal ≥ 5, the conformity (CY ≡ Nyes∕Ntotal) of the listed triple sets to the Smoluchowski rule is entered, where Nyes and
Ntotal are the number of the sequence corresponding to Yes and that including both Yes and No, respectively. As may be seen above, many of the metals have
very high values of CY≈ 80–100%.
eThese work function values such as 𝜙(110) = 4.64+ eV for Nb(110) [739], 5.13 ± 0.03+ eV for Mo(110) [727,3103] and 5.14 ± 0.03+ eV for W(110) [3103]
are not 𝜙e but 𝜙+ determined by positive surface ionization of Cs [739] or Na [727,3103].
fThe absolute values of 𝑎0–𝑐0 [4259] and 𝑑0–𝑘0 [4246] are not listed anywhere in the tables [4246,4259].
gNone of the absolute valves (𝑝0–𝑠0) is given in the table [4078].

On the last line for each metal, the conformity (𝐶Y ≡ Nyes/Ntotal) of the listed triple sets following the Smoluchowski rule [1040]
s entered, where Nyes and Ntotal are the numbers of the sequence corresponding to Yes and of that including both Yes and No,
espectively. However, 𝐶Y is omitted for any of the metals with Ntotal less than three.

In Table 9, ‘‘Yes’’ is found for all of the sequences (𝐶Y = 100%) listed for Na, K and V (Ntotal ≥ 6) and also for 𝛾-Ca, 𝛽-Ti, 𝛿-Mn,
𝛽-Y, 𝛽-Zr, 𝛾-La, 𝛾-Ce, 𝛽-Pr, 𝛽-Nd, Sm, Eu, 𝛽-Gd, 𝛽-Tb, 𝛽-Lu, 𝛽-Tl and 𝛾-U (Ntotal ≤ 2). In addition, very high percentages of ‘‘Yes’’ (𝐶Y

75–94%) are found for Li, Rb, Nb, Mo, Cs, Ba, Ta and W (Ntotal = 10–81) as well as Cr (𝐶Y = 80%, Nt = 5). Quite similarly in the
ormer cases (Na–V), all of our present sequences [Here] originating from the most probable values in Table 2 have ‘‘Yes’’, of course,
ogether with the latter cases (Li–W and Cr), too. On the other hand, 𝛼-Fe, 𝛾-Sr and 𝛽-Hf are found to have a very small value of
Y = 38, 33 and 50%, respectively, while 𝛼-Sn (Ntotal = 1) has 𝐶Y = 0% [3211]. These results are probably due to the poverty in
et size (Ntotal = 8, 3, 4 or 1 alone) and, hence, they may be less reliable than the others (𝐶Y = 75–100%) based on Ntotal = 10–78.
herefore, much further study is needed to answer definitely the question whether the above four species (𝛼-Fe, 𝛾-Sr, 𝛼-Sn and 𝛽-Hf)
o not obey inherently the Smoluchowski rule. Except the four species to be pendent, almost all the bcc-metals listed in Table 9 may
e concluded to follow faithfully the sequence of 𝜙e(110) > 𝜙e(100) > 𝜙e(111). Consequently, all of the examples (except the four
bove) having ‘‘No’’ may be considered to indicate that at least one of the three values for each triple set is inaccurate or incorrect.
ypically, all of 𝜙e(100) = 3.86, 3.87 and 3.91 eV by TC for 𝛼-Fe(100) [1619,1625] mentioned above to be pendent are extremely
maller than our most probable value of 4.64 ± 0.05 eV [Here] and also than the others of both 4.67 eV [1045,1358] and 4.59
V [1351] recommended in Table 2. This is probably the main reason why the conformity is reduced to 38% from 50% or more
hat might be expected from the other sequences alone [Here, 321,4088,4222] except the above four [1619,1625]. In other words,
he real value of 𝐶Y for 𝛼-Fe will be improved to be much larger than ∼50% by further investigations.

As additional examples for several bcc-metals, a theoretical study yields the anomalous sequence of 𝜙e(110) > 𝜙e(100) < 𝜙e(111)
or Nb, Mo, Ta and W [4091], whilst it gains the normal one of 𝜙e(110) > 𝜙e(100) > 𝜙e(111) for the five species of such alkali
etals and Ba [4091]. Similarly to fcc-metals to be discussed mainly in the next section, the study [4091] yields 𝜙e(111) > 𝜙e(100)
𝜙e(110) for fcc-metals (Ca and Sr), on the contrary to 𝜙e(111) > 𝜙e(100) > 𝜙e(110) for fcc-transition metals (typically, Ni, Cu, Rh,

d and Ag having 𝐶Y = 90–100%) to be shown in Table 10. These results against the above rule [1040] suggest that the theoretical
alculation should be examined by further investigation.

It should be pointedly emphasized that 𝜙+(110) > 𝜙+(100) > 𝜙+(111) based on PSI also holds for the bcc-metals of Nb [739,
ere], Mo [727,1351,3103, Here], Ta [797,1351, Here] and W [1351,3103, Here], quite similarly to each of their sequences of
e(hkl). The former is our new finding reported here first, and also it does support strongly our theoretical model that 𝜙+(hkl) is
quivalent to 𝜙e(hkl) for clean monocrystalline samples, just as concluded directly from Eqs. (1) and (2).

.3. Examination of the anisotropic work function sequence for fcc-metals

Quite similarly as above, many triple sets for fcc-metals are cited from Table 1 in order to examine the sequence of 𝜙e(111) >
𝜙e(100) > 𝜙e(110) corresponding to Ds(111) > Ds(100) > Ds(110). As shown in Table 10, ‘‘Yes’’ is found entirely (𝐶Y ≡ Nyes/Ntotal =
100%) for 𝛽-Sc, 𝛾-Mn, 𝛾-Fe, 𝛽-Co, Ni and Rh (Ntotal = 1–17), while ‘‘No’’ is done seldom (𝐼N ≡ Nno/Ntotal ≤ 10%) for Cu, Pd, and

g (Ntotal = 12–44). Here, 𝐼N is the inconformity, while Nno and Ntotal are the numbers of the sequence having ‘‘No’’ and of the
total one including both ‘‘No’’ and ‘‘Yes’’, respectively. Regarding the above eight species (𝛾-Mn to Rh and Cu to Ag, 𝐶Y ≥ 90%),
‘‘Yes’’ is observed also for all of our sequences [Here] based on the most probable values in Table 2. Quite similarly as in the cases

+ + +
of bcc-metals mentioned in Section 5.2, the sequence of 𝜙 (111) > 𝜙 (100) > 𝜙 (110) determined by PSI is found to hold for the
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fcc-metal of Ni, too [Here, 283,630]. Again, this is the interesting and important finding reported here first, as already mentioned
in Section 5.2 just above.

Table 10
Examination of the work function sequence of 𝜙e(111) > 𝜙e(100) > 𝜙e(110) for the three principal planes of fcc metals.

No. Metal 𝜙e(111) (eV) 𝜙e(100) (eV) 𝜙e(110) (eV) Seq. Meth. Refs.

13 Al 3.11 ± 0.10 < 3.38 ± 0.07 < 3.80 No PE [239]
13 Al 3.13 < 3.22 > 2.83 No TC [2697]
13 Al 3.47 < 4.16 > 3.95 No TC [1030,1089]
13 Al 3.48 < 3.83 < 4.10 No TC [476]
13 Al 3.72 > 3.62 < 3.81 No TC [231]
13 Al 3.73 < 4.06 < 4.28 No TC [476]
13 Al 3.73 > 3.63 < 3.82 No TC [3467]
13 Al 3.77 > 3.71 > 3.60 Yes TC [473]20

13 Al 3.86 < 3.87 < 3.88 No TC [3004]
13 Al 3.9 > 3.8 > 3.7 Yes TC [2982]
13 Al 3.92 < 4.30 > 3.89 No TC [1030]
13 Al 4.0 < 4.7 > 4.5 No TC [1088]
13 Al 4.02 < 4.30 > 4.09 No TC [4087,4410]
13 Al 4.05 < 4.20 > 3.65 No TC [475]
13 Al 4.05 < 4.27 > 4.06 No TC [4233]
13 Al 4.059 > 3.782 > 3.642 Yes TC [1626]
13 Al 4.06 < 4.24 > 4.07 No TC [1175]
13 Al 4.08 < 4.29 > 4.11 No TC [4233]
13 Al 4.09 > 3.77 > 3.59 Yes TC [553]20

13 Al 4.1 = 4.1 > 3.7 No TC [2851]
13 Al 4.1 > 3.9 > 3.8 Yes TC [1088]
13 Al 4.117 > 3.805 > 3.643 Yes TC [1626,2914]
13 Al 4.12 > 3.92 > 3.73 Yes TC [1159]
13 Al 4.17 < 4.36 > 4.19 No TC [1943]
13 Al 4.17 < 4.27 > 3.87 No TC [3004]
13 Al 4.18 < 4.27 > 3.88 No TC [555,715]
13 Al 4.18 < 4.38 > 4.20 No TC [1943]
13 Al 4.181 > 3.831 > 3.643 Yes TC [1626]
13 Al 4.19 < 4.41 > 4.20 No TC [557]
13 Al 4.19 < 4.30 > 3.85 No TC [1435]
13 Al 4.2 > 4.1 > 3.7 Yes TC [2851]
13 Al 4.21 = 4.21 = 4.21 No TC [2548]
13 Al 4.22 < 4.46 > 4.26 No TC [1943]
13 Al 4.23 < 4.42 > 4.29 No TC [482,721,4398]
13 Al 4.24 ± 0.02 < 4.41 ± 0.03 > 4.28 ± 0.02 No PE [241,242]
13 Al 4.24 ± 0.04 < 4.28 ± 0.05 > 4.05 ± 0.06 No various [Here]a

13 Al 4.25 < 4.38 > 4.30 No TC [561,721,4398]
13 Al 4.25 < 4.50 > 4.25 No TC [3203]
13 Al 4.25 < 4.30 > 4.17 No TC [723]19
13 Al 4.26 ± 0.03 > 4.20 ± 0.03 > 4.06 ± 0.03 Yes PE [612]
13 Al 4.27 > 4.25 > 4.02 Yes TC [556]
13 Al 4.28 ± 0.04 < 4.36 ± 0.10 > 4.21 ± 0.09 No various [1351]b

13 Al 4.3 < 4.4 > 4.2 No TC [2905]
13 Al 4.31 > 4.27 > 3.92 Yes TC [4401]
13 Al 4.31 ± 0.03 < 4.51 ± 0.03 > 4.32 ± 0.03 No TC [718]
13 Al 4.32 ± 0.06 > 4.31 ± 0.18 > 4.23 ± 0.13 Yes various [4088]
13 Al 4.32 > 4.00 > 3.76 Yes TC [321]
13 Al 4.32 < 4.56 > 4.36 No TC [1943]
13 Al 4.33 < 4.43 > 4.28 No TC [4117]
13 Al 4.60 < 4.69 > 4.30 No TC [2697]
13 Al 4.75 < 4.90 > 4.35 No TC [1095]
13 Al 4.77 < 4.86 > 4.47 No TC [2697]
13 Al 4.81 > 4.69 > 3.97 Yes TC [1563]
13 Al 4.99 > 4.85 > 4.44 Yes TC [3477]20

13 Al 5.35 > 5.24 > 4.91 Yes TC [3477]20

13 Al 𝜙(111) > 𝜙(100) > 𝜙(110) Yes TC [227]20
Conformity (Nyes/Ntotal)e – – 32% – –

20 Ca 2.916 > 2.758 < 2.813 No TC [4091]
20 Ca 2.98 > 2.87 > 2.83 Yes TC [4222]
20 Ca 3.10 > 2.94 > 2.92 Yes TC [231]
20 Ca 3.14 > 2.97 > 2.92 Yes TC [3467]
20 Ca 3.35 < 3.38 > 3.29 No TC [476]
20 Ca 3.49 < 3.52 > 3.41 No TC [476]

(continued on next page)
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Table 10 (continued)

No. Metal 𝜙e(111) (eV) 𝜙e(100) (eV) 𝜙e(110) (eV) Seq. Meth. Refs.

20 Ca 3.5 ± 0.2 > 3.4 ± 0.4 > 3.3 ± 0.3 Yes TC [Here]a

20 Ca 3.68 < 3.96 > 3.43 No TC [1030]
20 Ca 3.70 > 3.57 > 3.20 Yes TC [1030]
20 Ca 4.40 > 4.09 > 3.84 Yes TC [321]

Conformity (Nyes/Ntotal)e – – 60% – –

21 𝛽-Sc 4.73 > 4.39 > 4.13 Yes TC [321]

25 𝛾-Mn 5.36 > 4.97 > 4.67 Yes TC [321]
25 𝛾-Mn 5.3 ± 0.1 > 5.2 ± 0.3 > 4.7 Yes TC [Here]a

26 𝛾-Fe 5.70 > 5.28 > 4.97 Yes TC [321]
26 𝛾-Fe 5.6 ± 0.1 > 5.3 ± 0.2 > 5.0 Yes various [Here]a

27 𝛽-Co 5.68 > 5.25 > 4.95 Yes TC [321]
27 𝛽-Co 5.39 ± 0.23 > 5.25 ± 0.17 > 5.0 Yes various [Here]a

27 𝛽-Co 𝑎0 + 0.1574 > 𝑎0 > 𝑎0 − 0.3448 Yes TC [4259]h

28 Ni 5.11 > 4.97 > 4.6 Yes TC [311]
28 Ni 5.22 > 4.86 > 4.69 Yes TC [3224]
28 Ni 5.22 ± 0.03 > 4.89 ± 0.03 > 4.64 ± 0.03 Yes TE [312,837]
28 Ni 5.24 ± 0.07 > 5.17 ± 0.11 > 4.72 ± 0.13 Yes various [4088]
28 Ni 5.28 ± 0.05 > 5.23 ± 0.10 > 4.64 ± 0.05 Yes various [1351]b

28 Ni 5.3+ f > 5.2+ > 5.0+ Yes PSI [Here]a

28 Ni 5.3 ± 0.1 > 5.1 ± 0.1 > 4.7 ± 0.1 Yes CPD [1110]
28 Ni 5.32 ± 0.05 > 5.19 ± 0.05 > 4.96 ± 0.10 Yes various [Here]a

28 Ni 5.33 ± 0.01+ f > 5.21 ± 0.01+ > 5.03 ± 0.01+g Yes TC [283,630]
28 Ni 5.35 ± 0.05 > 5.22 ± 0.04 > 5.04 ± 0.02 Yes PE [314,315]
28 Ni 5.40 ± 0.15 > 5.2 ± 0.15 > 4.85 ± 0.15 Yes CPD [1791]
28 Ni 5.50 > 5.31 > 4.90 Yes TC [1237]
28 Ni 5.56 > 5.19 > 4.84 Yes TC [2548]
28 Ni 5.56 > 5.20 > 4.84 Yes TC [1980]
28 Ni 5.6 > 5.4 > 5.1 Yes TC [2905]
28 Ni 𝑏0 + 0.1651 > 𝑏0 > 𝑏0 − 0.3438 Yes TC [4259]h

28 Ni 𝑥0 + 0.21 > 𝑥0 > 𝑥0 − 0.38 Yes TC [4078]i

Conformity (Nyes/Ntotal)e – – 100% – –

29 Cu 3.90 > 3.80 > 3.55 Yes TC [475]
29 Cu 4.123 > 3.855 > 3.648 Yes TC [2914]
29 Cu 4.24 > 4.12 > 3.98 Yes TC [947]
29 Cu 4.381 < 4.412 > 4.408 No TC [1118]
29 Cu 4.50 > 4.27 > 4.23 Yes PE [1661]
29 Cu 4.58 > 4.30 > 4.27 Yes TC [4034]
29 Cu 4.632 ± 0.010 > 4.458 ± 0.010 > 4.400 ± 0.010 Yes CPD [948,2841]
29 Cu 4.714 > 4.506 > 4.272 Yes TC [4091]
29 Cu 4.79 > 4.67 > 4.33 Yes TC [3477]
29 Cu 4.8 > 4.5 > 4.4 Yes PE [1238,4210]
29 Cu 4.80 > 4.58 > 4.44 Yes TC [3304]
29 Cu 4.80 > 4.54 > 4.43 Yes TC [2917]
29 Cu 4.80 > 4.53 < 4.56 No TC [723]19
29 Cu 4.85 > 4.68 > 4.48 Yes CPD [959]
29 Cu 4.876 > 4.753 > 4.508 Yes TC [1119,2989]
29 Cu 4.90 ± 0.02 > 4.73 ± 0.10 > 4.56 ± 0.10 Yes various [4088]
29 Cu 4.91 > 4.58 > 4.25 Yes TC [3477]
29 Cu 4.91 > 4.81 > 4.53 Yes TC [3477]
29 Cu 4.91 ± 0.03 > 4.57 ± 0.08 > 4.48 ± 0.06 Yes various [1351]b

29 Cu 4.92 ± 0.05 > 4.58 ± 0.06 > 4.43 ± 0.04 Yes various [Here]a

29 Cu 4.93 ± 0.03 > 4.63 ± 0.03 > 4.48 ± 0.03 Yes PE [2903]
29 Cu 4.94 ± 0.03 > 4.59 ± 0.03 > 4.48 ± 0.03 Yes PE [953,2006]
29 Cu 4.95 > 4.56 > 4.40 Yes CPD [952]
29 Cu 4.95 > 4.76 > 4.40 Yes CPD [952]
29 Cu 4.958 > 4.71 > 4.625 Yes TC [4189]
29 Cu 4.99 > 4.89 > 4.61 Yes TC [3477]
29 Cu 5.10 > 4.85 > 4.67 Yes TC [480]
29 Cu 5.17 > 4.88 > 4.71 Yes TC [1237]
29 Cu 5.19 > 4.95 > 4.9 Yes TC [956]
29 Cu 5.25 ± 0.1 > 4.75 ± 0.1 > 4.7 ± 0.1 Yes CPD [1507]
29 Cu 5.30 > 5.26 > 4.48 Yes TC [229,334]
(continued on next page)
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Table 10 (continued)

No. Metal 𝜙e(111) (eV) 𝜙e(100) (eV) 𝜙e(110) (eV) Seq. Meth. Refs.

29 Cu 5.31 > 5.02 > 4.81 Yes TC [480,4398]
29 Cu 5.32 > 5.05 > 4.83 Yes TC [480,4398]
29 Cu 5.32 > 4.99 > 4.65 Yes TC [1980]
29 Cu 5.32 > 4.99 > 4.66 Yes TC [2548]
29 Cu 5.43 > 5.26 > 4.53 Yes TC [962]
29 Cu 5.44 > 5.31 > 4.98 Yes TC [962]
29 Cu 5.44 > 5.31 > 5.04 Yes TC [962]
29 Cu 5.54 ± 0.012 > 5.155 ± 0.054 > 4.92 ± 0.019 Yes CPD [963]
29 Cu 5.55 > 4.98 > 3.56 Yes TC [962]
29 Cu 5.55 > 5.13 > 4.94 Yes TC [3224]
29 Cu 5.56 > 5.03 > 4.10 Yes TC [962]
29 Cu 5.56 > 5.03 > 4.20 Yes TC [962]
29 Cu 5.57 > 5.16 > 3.85 Yes TC [321]

Conformity (Nyes/Ntotal)e – – 95% – –

31 Ga 3.79 > 3.35 < 4.08 No TC [3211]

38 𝛼-Sr 2.569 > 2.473 < 2.545 No TC [4091]
38 𝛼-Sr 2.94 > 2.79 > 2.75 Yes TC [231]
38 𝛼-Sr 3.21 > 2.95 > 2.76 Yes TC [3467]
38 𝛼-Sr 3.4 ± 0.3 > 3.3 ± 0.4 > 3.1 ± 0.3 Yes TC [Here]a

38 𝛼-Sr 3.57 < 3.82 > 3.31 No TC [1030]
38 𝛼-Sr 3.61 > 3.42 > 3.05 Yes TC [1030]
38 𝛼-Sr 4.10 > 3.81 > 3.57 Yes TC [321]

Conformity (Nyes/Ntotal)e – – 71% – –

45 Rh 5.105 > 5.087 > 4.615 Yes TC [2229,2447]
45 Rh 5.138 > 5.040 > 4.635 Yes TC [4091]
45 Rh 5.21 > 5.17 > 4.67 Yes TC [2912]
45 Rh 5.39 > 4.99 > 4.69 Yes TC [321]
45 Rh 5.40 ± 0.08 > 5.24 ± 0.07 > 4.75 ± 0.06 Yes various [Here]a

45 Rh 5.44 > 5.25 > 4.94 Yes TC [320,1178]
45 Rh 5.46 ± 0.09 > 5.30 ± 0.15 > 4.86 ± 0.21 Yes various [4088]
45 Rh 5.50 ± 0.10 > 5.29 ± 0.07 > 4.77 ± 0.06 Yes various [1351]b

45 Rh 5.56 > 5.46 > 5.07 Yes TC [4228]
45 Rh 5.59 > 5.45 > 5.07 Yes TC [4228]
45 Rh 5.66 ± 0.02 > 5.40 ± 0.02 > 5.12 ± 0.02 Yes ? [2832]
45 Rh 5.67 ± 0.01 > 5.41 ± 0.01 > 4.86 ± 0.01 Yes FE [1010]
645 Rh 𝑐0 + 0.196 > 𝑐0 > 𝑐0 − 0.371 Yes TC [4246]h

Conformity (Nyes/Ntotal)e – – 100% – –

46 Pd 5.18 > 5.14 > 4.90 Yes TC [602]
46 Pd 5.198 > 5.115 > 4.781 Yes TC [2229,2447]
46 Pd 5.23 > 5.080 > 4.860 Yes TC [4091]
46 Pd 5.25 > 5.11 > 4.87 Yes TC [4087,4410]
46 Pd 5.53 > 5.30 > 5.13 Yes TC [320,2534]
46 Pd 5.55 ± 0.07 < 5.59 ± 0.05 > 5.19 ± 0.04c No various [1351]b

46 Pd 5.58 ± 0.05 > 5.48 ± 0.04 > 5.12 ± 0.09 Yes various [Here]a

46 Pd 5.67 ± 0.12 > 5.48 ± 0.23 > 5.07 ± 0.20 Yes various [4088]
46 Pd 5.90 ± <0.1 > 5.65 ± <0.1 > 5.20 ± <0.1 Yes PE [672]
46 Pd 5.95 ± <0.1 > 5.65 ± <0.1 > 5.20 ± <0.1 Yes PE [914,1026,3449]
46 Pd 6.02 > 5.56 > 5.24 Yes TC [321]
46 Pd 𝑑0 + 0.179 > 𝑑0 > 𝑑0 − 0.340 Yes TC [4246]h

Conformity (Nyes/Ntotal)e – – 92% – –

47 Ag 3.70 > 3.55 > 3.35 Yes TC [475]
47 Ag 3.96 > 3.89 > 3.66 Yes TC [2516]
47 Ag 4.25 < 4.35 > 4.20 No TC [4117]
47 Ag 4.368 > 4.246 > 4.059 Yes TC [4091]
47 Ag 4.40 > 4.33 > 4.19 Yes TC [3280]
47 Ag 4.40 > 4.29 > 4.10 Yes TC [947]
47 Ag 4.45 ± 0.03 > 4.34 ± 0.03 > 4.25 ± 0.03 Yes PE [1192]
47 Ag 4.46 ± 0.02 > 4.22 ± 0.04 > 4.14 ± 0.05 Yes PE [625,1693]
47 Ag 4.53 ± 0.07 > 4.36 ± 0.05 > 4.10 ± 0.15 Yes various [4088]
47 Ag 4.56 ± 0.15 > 4.50 ± 0.10 > 4.16 ± 0.05 Yes various [1351]b

47 Ag 4.64 ± 0.06 > 4.46 ± 0.05 > 4.28 ± 0.08 Yes various [Here]a

(continued on next page)
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No. Metal 𝜙e(111) (eV) 𝜙e(100) (eV) 𝜙e(110) (eV) Seq. Meth. Refs.

47 Ag 4.65 > 4.33 > 4.30 Yes TC [1264]
47 Ag 4.67 > 4.43 > 4.23 Yes TC [320,1178]
47 Ag 4.74 > 4.45 > 4.17 Yes TC [1159]
47 Ag 4.74 ± 0.02 > 4.64 ± 0.02 > 4.52 ± 0.02 Yes PE [626,1134]
47 Ag 4.95 > 4.82 > 4.68 Yes TC [1237]
47 Ag 4.98 > 4.82 > 4.66 Yes TC [1264]
47 Ag 5.01 < 5.02 > 4.40 No TC [334,3179]
47 Ag 5.46 > 5.06 > 4.76 Yes TC [321]
47 Ag 𝑒0 + 0.151 > 𝑒0 > 𝑒0 − 0.293 Yes TC [4246]h

Conformity (Nyes/Ntotal)e – – 90% – –

57 𝛽-La 4.04 > 3.74 > 3.53 Yes TC [321]
57 𝛽-La 𝑓0 + 0.126 > 𝑓0 > 𝑓0 − 0.268 Yes TC [4246]h

58 𝛽-Ce 4.98 > 4.62 > 4.35 Yes TC [321]

61 Pm 4.03 > 3.73 > 3.52 Yes TC [321]

70 𝛼-Yb 4.47 > 4.15 > 3.90 Yes TC [321]

77 Ir 5.42 < 5.60 > 5.07 No TC [3243]
77 Ir 5.497 < 5.55 > 4.958 No TC [4091]
77 Ir 5.55 > 5.20 > 4.83 Yes TC [2548]
77 Ir 5.56 > 5.20 > 4.84 Yes TC [1980]
77 Ir 5.72 < 5.89 > 5.36 No TC [3243]
77 Ir 5.75 ± 0.06 > 5.60 ± 0.06 > 5.23 ± 0.19 Yes various [Here]a

77 Ir 5.77 ± 0.03 > 5.72 ± 0.27 > 5.31 ± 0.35d Yes various [1351]b

77 Ir 5.78 ± 0.04 < 5.95 (5.97) > 5.42 ± 0.32 No various [4088]
77 Ir 5.80 ± 0.05 > 5.70 ± 0.05 > 5.0 Yes FE [1797,1802]
77 Ir 5.86 > 5.52 > 5.37 Yes TC [3224]
77 Ir 5.92 = 5.92 > 5.45 No TC [1933]
77 Ir 6.51 > 6.03 > 5.67 Yes TC [321]
77 Ir 𝑔0 + 0.237 > 𝑔0 > 𝑔0 − 0.499 Yes TC [4246]h

Conformity (Nyes/Ntotal)e – – 62% – –

78 Pt 5.56 > 5.20 > 4.84 Yes TC [1980]
78 Pt 5.69 > 5.66 > 5.26 Yes TC [4087,4410]
78 Pt 5.702 > 5.625 > 5.223 Yes TC [4091]
78 Pt 5.747 > 5.711 > 5.297 Yes TC [3245]
78 Pt 5.817 < 5.840 > 5.441 No TC [2229]
78 Pt 5.84 ± 0.05 > 5.75 ± 0.06 > 5.54 ± 0.07 Yes various [Here]a

78 Pt 5.86 ± 0.06 > 5.82 ± 0.27 > 5.61 ± 0.13 Yes various [1351]b

78 Pt 5.91 ± 0.08 > 5.67 (5.75) > 5.53 ± 0.13 Yes various [4088]
78 Pt 5.94 > 5.86 > 5.72 Yes PE [429]
78 Pt 6.01 > 5.67 > 5.52 Yes TC [3224]
78 Pt 6.1 = 6.1 > 5.7 No TC [2905]
78 Pt 6.12 > 6.07 > 5.74 Yes TC [1237]
78 Pt 6.47 > 5.99 > 5.63 Yes TC [321]
78 Pt 6.53 > 6.52 > 6.19 Yes TC [1201]
78 Pt 6.60 < 6.86 > 6.10 No TC [3194]
78 Pt 6.67 < 6.93 > 6.15 No TC [3194]
78 Pt ℎ0 + 0.218 > ℎ0 > ℎ0 − 0.414 Yes TC [4246]h

Conformity (Nyes/Ntotal)e – – 76% – –

79 Au 3.478 > 3.318 > 3.148 Yes TC [2914]
79 Au 3.80 > 3.65 > 3.50 Yes TC [475]
79 Au 4.165 > 3.816 > 3.629 Yes TC [2914]
79 Au 5.1 > 5.05 > 4.93 Yes TC [4233]
79 Au 5.110 > 5.071 > 4.91 Yes TC [4091]
79 Au 5.13 > 5.04 > 4.98 Yes TC [4233]
79 Au 5.15 > 5.10 > 5.04 Yes TC [4087,4410]
79 Au 5.26 ± 0.04 > 5.22 ± 0.04 > 5.20 ± 0.04 Yes PE [1068]
79 Au 5.29 ± 0.02 < 5.41 ± 0.12 > 5.31 ± 0.11 No various [1351]b

79 Au 5.31 < 5.47 > 5.37 No CPD [959]
79 Au 5.32 > 4.99 > 4.65 Yes TC [1980]
79 Au 5.33 ± 0.06 > 5.22 ± 0.31 > 5.16 ± 0.22 Yes various [4088]
79 Au 5.46 ± 0.07 > 5.39 ± 0.07 > 5.33 ± 0.09 Yes various [Here]a
(continued on next page)
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No. Metal 𝜙e(111) (eV) 𝜙e(100) (eV) 𝜙e(110) (eV) Seq. Meth. Refs.

79 Au 5.63 > 5.53 > 5.41 Yes TC [480,4398]
79 Au 5.65 > 5.56 > 5.42 Yes TC [3317]
79 Au 6.01 < 6.16 > 5.40 No TC [334]
79 Au 6.08 < 6.23 > 5.85 No TC [3194]
79 Au 6.13 < 6.26 > 5.86 No TC [3194]
79 Au 6.65 > 6.16 > 5.80 Yes TC [321]
79 Au 𝑖0 + 0.190 > 𝑖0 > 𝑖0 − 0.363 Yes TC [4246]h

Conformity (Nyes/Ntotal)e – – 75% – –

82 Pb 3.16 > 3.04 > 2.99 Yes TC [1159]
82 Pb 3.31 < 3.45 < 3.82 No TC [476]
82 Pb 3.51 < 3.67 < 4.01 No TC [476]
82 Pb 3.59 > 3.50 < 3.77 No TC [231]
82 Pb 3.65 < 3.81 < 3.84 No TC [1030]
82 Pb 3.7 < 3.8 < 4.4 No TC [1088]
82 Pb 3.76 < 3.78 > 3.65 No TC1 [3521]
82 Pb 3.77 > 3.75 > 3.65 Yes TC2 [3521]
82 Pb 3.78 > 3.77 > 3.64 Yes TC3 [3521]
82 Pb 3.78 > 3.77 > 3.64 Yes TC4 [3521]
82 Pb 3.78 < 3.79 > 3.63 No TC5 [3521]
82 Pb 3.78 < 3.80 > 3.63 No TC6 [3521]
82 Pb 3.78 < 3.80 > 3.66 No TC7 [3521]
82 Pb 3.78 < 3.83 > 3.63 No TC8 [3521]
82 Pb 3.78 ± 0.01 < 3.79 ± 0.02 > 3.64 ± 0.01 No TC9 [3521]
82 Pb 3.79 = 3.79 < 3.80 No TC [3004]
82 Pb 3.85 < 3.95 > 3.80 No TC [475]
82 Pb 3.9 < 4.0 > 3.8 No TC [1088]
82 Pb 3.90 > 3.57 > 3.46 Yes TC [553]
82 Pb 4.07 > 4.06 > 3.92 Yes TC10 [3521]
82 Pb 4.07 > 4.06 > 3.93 Yes TC11 [3521]
82 Pb 4.07 = 4.07 > 3.92 No TC12 [3521]
82 Pb 4.07 = 4.07 > 3.92 No TC13 [3521]
82 Pb 4.08 > 4.07 > 3.92 Yes TC14 [3521]
82 Pb 4.08 > 4.07 > 3.93 Yes TC15 [3521]
82 Pb 4.09 > 4.07 > 3.92 Yes TC16 [3521]
82 Pb 4.09 > 4.07 > 3.93 Yes TC17 [3521]
82 Pb 4.08 ± 0.01 > 4.07 ± 0.01 > 3.92 ± 0.01 Yes TC18 [3521]
82 Pb 4.11 > 4.07 > 3.84 Yes TC [3004]
82 Pb 4.14 > 4.12 > 3.73 Yes TC [2516]
82 Pb 4.14 ± 0.09 > 3.96 ± 0.11 > 3.84 ± 0.09 Yes various [Here]a

82 Pb 4.15 < 4.50 > 3.80 No TC [475]
82 Pb 4.30 < 4.31 > 3.98 No TC [555]
82 Pb 4.34 > 3.76 > 3.51 Yes TC [3467]
82 Pb 4.55 < 4.65 > 4.50 No TC [1095]
82 Pb 4.79 > 3.48 < 3.89 No TC [3211]
82 Pb 5.23 > 3.88 < 4.08 No TC [1030]
82 Pb 5.35 > 4.95 > 4.66 Yes TC [321]

Conformity (Nyes/Ntotal)e – – 45% – –

90 Th 3.75 > 3.57 > 3.38 Yes TC [1980]

94 𝛿-Pu 3.4 > 3.11 > 2.99 Yes TC [2069]

95 𝛽-Am 3.06 > 2.93 > 2.86 Yes TC [2071,2076]
aEach of the work function data with double underlines is cited from the most probable value recommended in Table 2 [Here].

bSimilarly, each of the data with a single underline is cited from the value recommended in Table 2 in the previous review [1351].
cThis is obtained by correction of 5.08 ± 0.13 eV for Pd (110) in Table 2 [1351].
dThis is tentatively evaluated from the three data on Ir(110) listed in Table 1 [1351].
eThe conformity shows the percentage for each metal whose triple sets have ‘‘Yes’’ among the whole listed here (see Footnote d in Table 9).
fThese work function values such as 𝜙(111) = 5.3+ eV for Ni(111) [Here]a and 5.33 ± 0.01+ eV for Ni(111) [283,630] are not 𝜙e but 𝜙+ determined by PSI.
gThis triple set is tentatively listed to examine the conformity of 𝜙+(hkl) for Ni although 𝛿m for each surface is slightly less than unity [283,630].
hNo table includes the absolute values of 𝑎0–𝑏0 [4259] and 𝑐0–𝑖0 [4246].
iThe absolute value of 𝑥0 for Ni(100) is not given in the table [4078].
1−9By using different values for several parameters in a model of local density approximation for lead, the work function values calculated theoretically afford
the averages.9 Depending upon the parameters, the sequences1–8 change from Yes to No, and vice versa. For a full detail, see Ref. [3521].
10–18 The theoretical values for lead10–17 based on a generalized gradient approximation model yield the averages.18 Similarly as above1–8, the sequences10–17

vary also between Yes and No according to the parametric values employed for calculating 𝜙e (see Ref. [3521] for further information).
19 Each of the three values for Al or Cu is the average calculated by the authors [723] from published experimental data.
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20 Theoretical study of the face-dependent work function yields the conclusion that Smoluchowski rule holds with Al(111)–Al(110) without showing numerical
data [227]. Some typical data supporting the conclusion are found in their later publications [473,553,3477] as listed in this table.

On the contrary, the sequences of Al show ‘‘No’’ frequently (𝐼N = 68%) among the 56 examples reported by many authors, and
‘No’’ is found also for our present and previous ones [Here, 1351] listed with double and single underline, respectively, in Table 10.
n addition, Al is experimentally found to have the differences of 𝛥 ≡ 𝜙e(100)−𝜙e(111) = 0.220 ± 0.050 eV [4267] and 0.17 ± 0.04
V [241,1045]. Both correspond to ‘‘No’’, in contrast to 𝛥 = −0.06 eV [1358]. Interestingly, a theoretical investigation for Al yields
hat atomically flat surfaces follow exactly the Smoluchowski rule (4.31 > 4.27 > 3.92 eV) but that rough surfaces have the direct
pposite sequence (typically, 4.03 < 4.19 < 4.23 eV) [4401]. Here, both 𝜙e(111) and 𝜙e(100) decrease from 4.31 and 4.27 eV
o 4.03 and 4.19 eV, respectively, the result of which is consistent with the general tendency that 𝜙e reduces with an increase in
urface roughness (see Footnotes 177, 331 and 332 in Table 1 and also Section 4.2.5 in Ref. [1351]). On the contrary, 𝜙e(110)
lone increases irregularly from 3.92 to 4.23 eV with increasing roughness, the basic reason for which is naturally expected to be
scertained clearly.

Similarly to Al exemplified just above, Pb also indicates frequently ‘‘No’’ (𝐼N = 55% of Ntotal = 38), although our sequence [Here]
as ‘‘Yes’’. These inconformity percentages (𝐼N = 68 and 55%) for the two metals are much larger than those (e.g., 𝐼N = 38, 24 and
5% of Ntotal = 13, 17 and 20) for other fcc-metals (e.g., Ir, Pt and Au, respectively) and also extremely higher than those (typically,
N = 0, 0 and 5% of Ntotal = 17, 13 and 44) found for others (namely, Ni, Rh and Cu, respectively).

.4. Concluding remarks on the work function sequences

The data on work function sequences exemplified for many metals in Tables 9 and 10 and also the above consideration may
ead to the conclusions as follows.

(1) Following well the sequence of Ds(110) > Ds(100) > Ds(111), both of 𝜙e(110) > 𝜙e(100) > 𝜙e(111) and 𝜙+(110) > 𝜙+(100) >
+(111) hold generally for bcc-metals. Typically, the percentage of ‘‘Yes’’ for the sequence of 𝜙e is actually found to be 𝐶Y = 100%

for both Na and K and also 94% for both Rb and Cs according to the data obtained wholly by TC, while 89% for W, 82% for
Mo and 75% for Nb by various methods. The sequences with double underlines [Here] coming from our most probable values in
Table 2 show ‘‘Yes’’ for all the bcc-metals, with only one exception of 𝛾-Sr by TC. This exception, however, can hardly be frankly
acceptable, because each of the three values for 𝛾-Sr(hkl) with double underlines [Here] is estimated from only two or three data
sources [321,334,1159] (see Table 1) and also because any surface species with the same orientation has a very wide gap of 0.33–
1.42 eV among the two or three different groups of workers [321,334,1159]. For making the accurate determination of either ‘‘Yes’’
or ‘‘No’’, much further work is needed to accumulate abundant data on 𝛾-Sr(hkl).

(2) The sequence of 𝜙e(111) > 𝜙e(100) > 𝜙e(110) holds for many fcc-metals, and also 𝜙+(111) > 𝜙+(100) > 𝜙+(110) does so
or Ni [Here], as shown in Table 10. The percentages of ‘‘Yes’’ for the former (𝜙e) are found to be very high such as 𝐶Y = 100%
or both Ni and Rh, 95% for Cu, 92% for Pd, 90% for Ag and 71% for 𝛼-Sr, where Nt ranges from 7 up to 44. The sequences with
ouble underlines [Here] originating from Table 2 have ‘‘Yes’’ for almost all the fcc-metals including Pb (𝐼N = 55%), too, while our
equence [Here] for Al has ‘‘No’’ similarly together with many other sequences for Al (𝐼N = 68%).

(3) With the two exceptions of Al (𝐶Y = 32%) and Pb (45%), many of the bcc- and fcc-metals examined here have such sequences
s follow strictly the Smoluchowski rule [1040]. Namely, 𝜙e(hkl) decreases as Ds(hkl) reduces and hence as the surface becomes
ore open. In addition, both 𝜙e(hkl) and 𝜙+(hkl) have the same sequence in each case, thereby giving an additional evidence to

upport strongly our theoretical model that 𝜙+(hkl) is identically equivalent to 𝜙e(hkl) for essentially clean monocrystalline surfaces
𝛿m = 1.0 and 𝛥𝜙∗ = 0.0 eV).

(4) In both cases of bcc- and fcc-metals with the two exceptions (Al and Pb), each triple set with ‘‘Yes’’ indicates that the relative
alues among the three are generally reasonable, but does not insure that the absolute value of each in the set is always accurate
r correct enough to be acceptable today. Typically, the sequence of 5.12 > 3.85 > 3.81 eV for 𝛼-Fe [4222] has ‘‘Yes’’, but both
e(100) and 𝜙e(111) alone are much smaller than ours (4.99 > 4.64 > 4.4 eV), as may be seen in Table 9. The above indications
re quite natural because ‘‘Yes’’ exactly fulfills the necessary condition but does not always satisfy the sufficient one for insuring the
ccuracy or acceptability of each 𝜙e(hkl) among the three in the set under study.

(5) Except the cases of Al and Pb, each triple set with ‘‘No’’ generally indicates that at least one of the three values among
e(100)–𝜙e(111) is inaccurate either due to some errors in the experimental measurements and/or analyses performed, or due to

hose in the model itself and/or parameters selected for theoretical calculations for each set (see Footnotes 1−9 and 10–18 for Pb
n Table 10).

(6) Consequently, such an examination as ‘‘Yes’’ or ‘‘No’’ exemplified in Tables 9 and 10 is very useful for answering quickly the
uestion whether the three values in the set under study are partly inaccurate or unreliable. If ‘‘No’’, then, either the experimental
nd analytical procedures or the theoretical model and parameters employed should be improved until yielding ‘‘Yes’’, although
‘Yes’’ itself does not always insure that all of the improved values in the new set to be thus achieved are absolutely correct (see
onclusion (4) above).

(7) The triple set of Cu(100)–Cu(111) in 6th column [1358] (see Footnote (15) in Table 2) does not completely follow the
moluchowski rule [1040], in contrast to that in the 7th column [1045] where 𝜙e(111) = 4.94 eV > 𝜙e(100) = 4.59 eV > 𝜙e(110)

4.48 eV [953] holds similarly to the most (95%) of the 44 sequences [475–321] in Table 10. On the basis of Conclusion
e
6) above, therefore, it may be advised that 𝜙 (100) = 5.10 eV [358] adopted in CRC Handbooks (78−98th Eds., 1997−2017)

275



H. Kawano Progress in Surface Science 97 (2022) 100583

i
p
N

s
a
P
e
a
t

P
4
w
[
𝜙
4
r

[1358, etc.] should be returned to 4.59 eV [953] which was once selected in the 77th Ed. (1996) [4137]. If done so, the revised
triple set becomes reasonable similarly to those three sets in the 3rd, 7th and 9th columns for Cu(100)–Cu(111) in Table 2.

(8) Quite similarly to Conclusion (7) just above, the triple set of Nb(hkl) [779] recommended by both CRC and Michaelson
in Table 2 also does not follow the above rule. If 4.36 eV for Nb(111) [779] is replaced typically with 3.95 eV [Here], then, the
normal sequence of 4.87 eV [779] (or 4.77 eV [Here]) > 4.02 eV [779, Here] > 3.95 eV [Here] holds clearly, as already mentioned
in Section 3.2 (see Examination (17)).

(9) In addition, the set of 4.95 > 4.53 < 4.55 eV [325] recommended in Table 2 for bcc-Mo(hkl) by both CRC [1358] and
Michaelson [1045] also seems to be partly incorrect, although 𝜙(110) = 4.95 eV alone agrees well with ours (4.98 eV). Namely,
both of 𝜙(111) = 4.55 eV and 𝜙(100) = 4.53 eV [325] are considerably larger than ours of 4.29 and 4.38 eV, respectively, and also
than many others (see Table 1). Therefore, both seem to need a suitable correction (see Examinations (19) and (20) in Section 3.2).

(10) Interestingly, Al (fcc) is found to have an extremely high percentage (𝐼N = 68% among Ntotal = 56 sequences) of ‘‘No’’
ncluding also the two sequences of our most probable values [Here, 1351], in contrast to many other fcc-metals having very low
ercentages of the inconformity; such as Ni and Rh (𝐼N = 0%, both Ntotal ≥ 13), Cu (𝐼n = 5%, Ntotal = 44), and Ag (𝐼N = 10%,
total = 20).

(11) Several workers [227,241,721] have tried to examine the applicability of the Smoluchowski rule [1040] to the work function
equence of the three low-index planes of Al. Typically, it is stated to be difficult [227] to understand such anomalous behavior
s 𝜙e(111) = 4.24 < 𝜙e(100) = 4.41 > 𝜙e(110) = 4.28 eV observed for Al by PE [241,242] since other fcc-metals (e.g., Cu by
E [953,2006] and Ni by TE [312,837], see Table 10) behave correctly, regarding the above rule [1040]. On the other hand, Fall
t al. [721] arrive at the conclusion that the anomaly in the anisotropy of Al against the rule (such as 4.23 < 4.42 > 4.29 eV [482,721]
nd 4.25 < 4.38 > 4.30 eV [561,721] by TC) originates from the increased p-atomic-like character of the density of the states at
he Fermi energy, in comparison with most other fcc-metals.

(12) According to theoretical studies published recently (2017) by Perdew et al. [4312], all of the five different models (LDA,
BE, etc.) applied to Pd and Ag (both fcc) yields 𝜙e(111) > 𝜙e(100) > 𝜙e(110). Typically, 5.66 > 5.54 > 5.32 eV for Pd and 4.97 >
.64 > 4.61 eV for Ag (both calculated by LDA) are listed together with those data by other models in Table 3 [4312]. These results
ith 𝐶Y = 100% found by the five models are well accordant to many (𝐶Y ≥ 90%) of other examples of Pd and Ag in Table 10

Here], which does not include any of the ‘‘latest’’ data listed in Table 3 [4312]. On the contrary, all of the five models afford
e(111) < 𝜙e(100) > 𝜙e(110) for Al alone among the eight fcc-metals (Cu, Rh, Pt, Au, etc.) under study [4312]. Typically, 4.36 <
.41 > 4.08 eV by LDA and 4.2 < 4.27 > 3.96 eV by PBE are listed for Al in Table 3 [4312]. These anomalous results against the
ule support our result with very high inconformity (𝐼N = 68% of Ntotal = 56 sequences for Al, see Table 10).

(13) Quite similarly to Al mentioned above, Pb also has a high percentage (𝐼N = 55% of Ntotal = 38 sequences) of ‘‘No’’,
whilst the sequence of our most probable values based on various methods (see Table 2) is consistent with the Smoluchowski
rule. Unfortunately, the ‘‘latest’’ data on Pb are not included in Table 3 [4312]. The anomaly (21 examples) found for Pb by many
workers is probably first reported here comprehensively. However, it should be noted that no experimental data on Pb(100) and
Pb(110) are available today and also that even the four data on Pb(111) determined by PE [2228,2268] or CPD [1525,2002] are
scattered in a wide range of 4.05–4.70 eV (see Table 1). Not only by theory but also by experiment, much further investigation is
expected to be done in order to examine the above anomaly found almost by theoretical studies.

(14) Any of the sequences with ‘‘No’’ in Tables 9 and 10, tentatively with the exceptions of Al and Pb at present, may not be
employed without partial or entire corrections after consulting with the most probable values in Table 2. It should be emphasized
here again that many of our most probable values are generally established from much abundant database (Table 1) published to
date, and also that most of ours except those with x–z attached are generally expected to be more reliable or accurate at present,
compared with others recommended according to those articles published before ∼1980.

5.5. Other anisotropic dependence sequences

Concerning the three main planes of bcc- and fcc-monocrystals, similar anisotropic sequences are found to hold for other chemico-
physical properties such as surface energy (𝜀) and melting point (Tm). Some of their data available today will be outlined below,
together with the quantitative relations between 𝜙e(hkl) and 𝜀(hkl) and also between 𝜙e(hkl) and Tm(hkl).

5.5.1. Anisotropy of surface energy
A theoretical study of 𝜀 [320] on fcc-Pd, for example, yields the sequence of 𝜀(111) = 0.68 < 𝜀(100) = 0.89 < 𝜀(110) = 1.33 eV,

thus increasing as the surface-atom density (Ds, see Table 8) decreases and, hence, as the surface becomes more open. This sequence
is in diametric opposition to 𝜙e(111) = 5.53 > 𝜙e(100) = 5.30 > 𝜙e(110) = 5.13 eV for Pd by TC [320]. Such opposition is found
theoretically also for fcc-Rh and Ag [320,4061]. Another theoretical investigation yields the sequence of 𝜀(111) < 𝜀(100) < 𝜀(110)
for all of the six fcc-metals (Ni, Cu, Pd, Ag, Pt and Au) [4064]. Such a normal sequence of 𝜀 is theoretically found also for fcc-
Al [1175,4077] and Ir [3243], in contrast to an anomalous one of 𝜙e(111) < 𝜙e(100) > 𝜙e(110) for both Al [1175] and Ir [3243]
(see Table 10).

Regarding bcc-crystals, 𝛼-Fe [4124] and both Mo and 𝛽-Hf [4057] are theoretically found to have the sequence of 𝜀(111) >
𝜀(100) > 𝜀 (110)]. Again, this is directly opposite to that of 𝜙e(111) < 𝜙e(100) < 𝜙e(110) observed for the most (82%) of Mo
crystals in Table 9, although only 38 and 50% of 𝛼-Fe and 𝛽-Hf, respectively, satisfy the latter sequence of 𝜙e(hkl).

Another theoretical study on 14 kinds of metals reports that fcc-metals (Ca, 𝛼-Sr, Cu, Ag and Au) and bcc-ones (Li, Na, K, Rb and

Cs) have the sequences of 𝜀(111) < 𝜀(100) < 𝜀(110) and 𝜀(110) < 𝜀(100) < 𝜀(111), respectively [4085]. Both sequences are opposite
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to the respective ones of 𝜙e(hkl) (see Tables 10 and 9). Such opposite sequences of 𝜀(hkl) against 𝜙e(hkl) are derived theoretically
for the fcc-metals of Pd, Pt and Au, although Al alone is found to have the anomalous sequence of 𝜙e(111) = 4.02 eV < 𝜙e (100) =
4.30 eV > 𝜙e(110) = 4.09 eV [4087] (Table 10), contrary to the normal one of 𝜀(111) = 0.30 eV < 𝜀 (100) = 0.45 (or 0.44) eV <
𝜀(110) = 0.70 (or 0.68) eV for Al [4087].

On the other hand, other theoretical studies on fcc-metals (e.g., Ni, Cu, Ag) yield the anomalous result of 𝜀(111) > 𝜀(100) <
𝜀(110) [4070,4072], in contrast to 𝜀(111) < 𝜀(100) < 𝜀(110) for fcc-Al alone [4070]. Similarly, bcc-metals (e.g., Nb, Mo, W) are
observed theoretically to have 𝜀(111) < 𝜀(100) > 𝜀(110) [4071,4072], on the contrary to 𝜀(111) > 𝜀(100) > 𝜀(110) for bcc-Cr
alone [4071].

As exemplified above, the sequence of 𝜀(hkl) evaluated theoretically for a given species (e.g., Mo or Ag) is often found to be
different with each other depending upon theoretical models employed by different workers, quite similarly to those of 𝜙e(hkl) done
so especially for Al and Pb (see Table 10). Such a status suggests it desirable to promote much further studies on 𝜀(hkl) as well as
𝜙e(hkl).

According to the theoretical data on surface energy calculated for 60 kinds of chemical elements, on the other hand, all of the
fcc-metals (both Al and Pb included) and of bcc-ones under study are found to satisfy the normal sequences of 𝜀(111) < 𝜀(100)
< 𝜀(110) and 𝜀(110) < 𝜀(100) < 𝜀(111), respectively [4077], both of which are directly opposite to the respective sequences of
𝜙e(hkl). Unfortunately, no experimental datum on 𝜀(hkl) except fcc-In and Pb seems to be available today [4077], in contrast with
much data on 𝜀(poly) [4077]. Therefore, theoretical determination of 𝜀(hkl) is vitally important [4077]. For thirteen hcp-metals
(e.g., Be, Co, Zr, Re), a theoretical study is focused on the surface energy and its anisotropy [4342].

Recently (2014), another theoretical study has been made on both 𝜀(hkl) and 𝜙e(hkl) for many elements such as five alkali metals,
three alkali earth metals, four bcc-transition metals and also seven fcc-transition metals (see Tables 1–4 in Ref. [4091]), thereby
yielding that many of the metals have the inverse-proportional relation between the sequences of 𝜀(hkl) and 𝜙e(hkl) [4091].

5.5.2. Quantitative relation between surface energy and work function
After consideration of both theoretical values of 𝜀(hkl) and experimental data on 𝜙e(hkl) for fcc-Ni and for bcc-Nb, Mo, Ta and

W, Zadumkin et al. (in 1970) [4078] derive a quantitative relationship between the two on the basis of statistical–electronic theory.
Namely,

𝜙e(hkl) + (𝐵𝑎2∕𝑧)𝜀(hkl) = const. (13)

Here, a is the lattice constant, z is the number of valence electrons per atom, B is the constant depending only upon the type
of crystal structure. Typically for fcc-Ni, they [4078] yield the theoretical values of the differences such as 𝜙e(100) − 𝜙e(110) = 0.38
eV, as 𝜙e(100) − 𝜙e(111) = −0.21 eV (see Table 10) and as 𝜙e(110) − 𝜙e(111) = −0.55 eV. These differences calculated from Eq.
(13) are in good or fair agreement with the experimental ones of 0.25, −0.33 and −0.58 eV determined by TE [312,837] (see
Table 10), respectively. Namely, the gap (|𝛥𝜙|) between the theory [4078] and the experiment [312,837] is as small as 0.03−0.13
eV. Similarly for bcc-Nb, Mo, Ta and W, such an agreement as |𝛥𝜙| = 0.00 − 0.29 eV is found between the theory [4078] and the
experiment [144,775]. On the basis of these results, it is concluded that the facets with lower surface energy have higher work
function, and vice versa [4078]. In other words, any theoretical value of 𝜀(hkl) under study may readily be examined from Eq. (13)
by substituting some experimental data on 𝜙e(hkl) for the same surface species (hkl) according to such data as listed in Table 2
[Here].

From another equation (12) derived theoretically by Zadumkin et al. [4084], 𝜀(poly) is theoretically evaluated by using
experimental data on 𝜙e(poly) for both alkali and alkali-earth metals, thereby indicating that substitution of an accurate work
function value into the above equation (12) may yield a good agreement (within the gap of ∼5%) between theoretical and
experimental values of 𝜀(poly) for alkalis (Na–Cs). In other words, an accurate value of 𝜀 by experiment may be applied to examining
the accuracy of 𝜙e from a quite different viewpoint.

Using a modified Frenkel’–Gombas–Zadumkin theory correlating 𝜀 with 𝜙e, Shebzukhova and Aref’eva have recently calculated
the allotropic work function differences for several metals [4259]. Typically for fcc-Ni, 𝜙e(111) − 𝜙e(100) = 0.1651 eV and
𝜙e(100) − 𝜙e(110) = 0.3438 eV by theory [4259] are in fair agreement with 0.33 and 0.25 eV by experiment [312] and also with
0.21 and 0.38 eV by the previous theoretical model [4078], respectively. Both of the theoretical results for Ni follow the normal
sequence of 𝜙e(111) > 𝜙e(100) > 𝜙e(110), as shown in Table 10 (see Footnotes (h) and (i)). Others on bcc-metals (Nb, Mo, Ta
and W) [4078] are listed in Table 9 (see Footnote (g)), normally following 𝜙e(110) > 𝜙e (100) > 𝜙e(111).

A recent study by Shebzukhova et al. using Eq. (13) reports that the work function difference between theory and experiment
is estimated to range from ∼8 to 1% for Cd(0001), Zn(0001) and Hg(001) [4459].

By the theoretical studies on both 𝜙(hkl) and 𝜀(hkl) for six close-packed surfaces of 19 common fcc and bcc metals, Wang et al.
find a roughly inverse proportional relationship between the two [4091].

5.5.3. Anisotropy of melting point
The melting point (Tm) of fcc-Cu, for example, is theoretically calculated by Chatterjee, who uses a variety of known parameters

for both surface and bulk such as Debye temperature, atomic weight, mean-square amplitude of atomic vibration. Consequently, he
yields the sequence of Tm(111) = 866 K > Tm(100) = 836 K > Tm(110) = 809 K for Cu [1684,4062]. This sequence is identical
with that of 𝜙e(111) = 4.94 eV > 𝜙e(100) = 4.59 eV > 𝜙e(110) = 4.48 eV for Cu by PE [953] (see Table 10). Such an identity in
anisotropic sequence is found also for fcc-metals of Ni, Ag, Pt and Pb [4062]. Typically, Pt has Tm(111) = 2023 K > Tm(100) =
1851 K > Tm(110) = 1837 K, in harmony with 𝜙e(111) = 5.84 ± 0.05 eV > 𝜙e(100) = 5.75 ± 0.06 eV > 𝜙e(110) = 5.54 ± 0.07
V (see our most probable values in Table 2). Unfortunately, it seems to the present author that any data on Tm(hkl) have not yet

een reported for bcc-metals by any worker.
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5.5.4. Correlation between melting point and work function
By consideration of the above fact that the anisotropic sequence is identical between Tm(hkl) and 𝜙e(hkl), Chatterjee (in 1979)

yields the empirical equation as follows [1684].

log[𝜙e(hkl)] = log[𝑇m(hkl)1∕4∕𝑉 1∕6] − 2.87 ± 0.04. (14)

Here, V is the atomic volume.
Application of Eq. (14) to fcc-Ag yields 𝜙e(111) = 4.85 eV and 𝜙e(110) = 4.75 eV [1684]. The respective values, however, are

not well accordant to ours of 4.64 ± 0.06 and 4.28 ± 0.08 eV (Table 2), although the former [1684] also follows exactly the normal
sequence of 𝜙e(111) > 𝜙e(110), just as expected from the high conformity (𝐶Y = 90% among Nt = 20 examples) for Ag-sequence
in Table 10. Similarly for fcc-Pb, the calculated values of 3.39 and 3.26 eV [1684] are in poor agreement with ours of 4.14 ± 0.09
and 3.84 ± 0.09 eV (Table 2) for 𝜙e(111) and 𝜙e(110), respectively, although the sequence of 𝜙e(111) > 𝜙e(110) itself is identical
again between theory and experiment, following the Smoluchowski rule [1040].

It may be worthwhile to inspect the reason why the values of 𝜙e(hkl) calculated from Eq. (14) are not well accordant with ours.
In addition, it is fully expected to solve the problem whether the work function values to be calculated for bcc-metals from such an
empirical equation as Eq. (14) are well accordant to ours in Table 2 [Here].

6. Work function dependence upon the Wigner–Seitz radius

In this section, theoretical evaluation of work function by two typical quantum models will be outlined below together with
comparison between calculated values and experimental data.

6.1. Theoretical evaluation of work function by the Lang–Kohn model

The work function may be expressed fundamentally as a function of the external and internal components governed solely by
the surface and bulk properties of the solid, respectively. Namely,

𝜙 = 𝐷b − 𝐸F. (15)

Here, Db is the dipole barrier against electrons’ escape from the surface into vacuum, and EF is the Fermi energy or chemical
potential of electrons in the bulk.

Lang and Kohn calculate the work function (𝜙) of nine simple metals by using the uniform-positive-background model published
in 1971 [475], the result of which may be summarized below in comparison with our most probable values.

As the Wigner–Seitz radius (r s) increases from 2.0 to 6.0 bohr (1 bohr = 0.0529 nm), Db and EF decrease monotonically from
6.80 to 0.04 and 2.91 to −2.37 eV, respectively, thereby affording that 𝜙 decreases gradually from 3.89 to 2.41 eV (see Table I in
Ref. [475]). Such a dependence of Db, −EF and 𝜙 is shown as Curves (1)–(3), respectively, in Fig. 2. Consequently, the contribution
of Db to 𝜙 becomes smaller with increasing r s. Typically, the ratio (Db/𝜙) is (i) about 30% for Na (r s = 3.99 bohr) having 𝜙 = Db
− EF = 0.91 + 2.15 = 3.06 eV, (ii) about 13% for K (r s = 4.96 bohr) with 𝜙 = 0.36 + 2.38 = 2.74 eV, and (iii) only about 5% for Cs
(r s = 5.63 bohr) with 𝜙 = 0.12 + 2.37 = 2.49 eV. In other words, 𝜙 is governed more strongly (from ∼70% for Na, to 87% for K, and
further to 95% for Cs) by the bulk component (EF) as r s increases from 3.99 to 4.96 and moreover to 5.63 bohr, respectively.

The plot of Curve (3) for 𝜙 based on the theoretical values in Table II (e.g., 3.06, 2.74 and 2.49 eV for Na, K and Cs,
respectively) [475] does not well overlap with that of Curve (4) for our 𝜙e in Table 2 [Here] (e.g., 2.54, 2.29 and 2.05 eV for
Na, K and Cs, respectively), thus showing the mean discrepancy of |𝜙 − 𝜙e

| = 0.38 ± 0.15 eV for the nine metals (Al–Cs) entered in
Fig. 2. But, both plots have the same tendency, gradually lowering their positions with increasing r s. Regarding another curve to
be obtainable from the experimental values of work function (e.g., 𝜙exp = 2.7 eV for Na by CPD [1992], 2.39 ± 0.01 eV for K by
PE [1481] and 2.14 ± 0.02 eV for Cs by PE [1489], entirely published before 1970) cited in Table II [475], we shall find that the
supposed curve of 𝜙exp might attain the position nearer to Curve (3) within the mean difference (|𝜙 − 𝜙exp|) of 0.31 ± 0.14 eV. This
is slightly smaller than |𝜙 − 𝜙e

| = 0.38 ± 0.15 eV mentioned just above, but still showing a considerable difference between 𝜙 and
exp.

Another theoretical study [4089] evaluates EF for 19 species of metals, and it yields typically −2.0, −2.2 and −2.2 eV for Na, K
nd Cs [4089], which are different (by 0.15−0.18 eV) from −2.15, −2.38 and −2.37 eV in Table I [475], respectively. By substitution
f both the former values of EF [4089] and the literature ones of 𝜙exp cited in Table II [475] into Eq. (15), Db is calculated to be
.7, 0.2 and −0.06 eV [4089], which are similarly different (by 0.16−0.21 eV) from 0.91, 0.36 and 0.12 eV [475] for Na, K and
s, respectively. Such a difference may be quite natural because both of EF and work function (𝜙 or 𝜙exp) are different between the
wo studies [475,4089]. In other words, any theoretical evaluation of Db is usually subject to the uncertainty of ±0.1 eV or so.

For eleven polyvalent metals (r s < 3 bohr) of higher electron density, the theoretical study [4089] leads to the conclusion that 𝜙
is stabilized very efficiently around 4.1 ± 0.4 eV by Db, in spite of a considerable variation in EF. In fact, our most probable values
of 𝜙e for typical metals (e.g., Be, Al, Zn, Cd, In, 𝛼-Sn and Pb with r s ranging from 1.87−2.59 bohr) are found to have 4.17 ± 0.10
eV (see Table 2). Regarding monovalent metals such as alkalis (r s > 3 bohr), on the other hand, Db becomes less contributable to
𝜙 because EF becomes less variable with increasing r s, as may be readily understandable from Fig. 2.

Quantitative relation between Db and EF is investigated theoretically and summarized in Fig. 1 [4054], showing that Db tends
to decrease monotonically (non-linearly) with increasing −E [4054], quite similarly as above.
F
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Fig. 2. Wigner–Seitz radius dependence of (1) dipole barrier (Db), (2) Fermi energy (EF), (3) work function (𝜙) evaluated from Eq. (15) [475], and (4) the most
robable value of work function (𝜙e) cited from Table 2 [Here].

In the above study [475] summarized in Fig. 2, it is 𝜙 = 3.66 eV for Mg alone that agrees well (within 0.01 ± 0.02 eV) with
ur most probable value of 𝜙e = 3.65 ± 0.05 eV and also with other recommended values of 3.66, 3.66 and 3.64 eV in Refs. [1358],
1045] and [1354], respectively (see Table 2). Typically, another example of Na (𝜙 = 3.06 eV [475]) has the largest deviation

(0.52 ± 0.03 eV) from our value (𝜙e = 2.54 ± 0.03 eV in Table 2), and the former has a large discrepancy (0.31–0.71 eV) also
rom others (2.75–2.35 eV) recommended in Refs. [1045,1354,1358]. In other words, many of the theoretical values of 𝜙 calculated
y the original model [475] are not yet so well accordant even to the literature values of 𝜙exp [1992, etc.] available at that time
∼1970).

However, it should be noted that the original theory initiated in 1964 by Kohn and co-workers [475,3638,4044,4045] has made
hereafter a definite contribution to better calculations of work function. As briefly mentioned in Section 2.8.5, they have constructed
n epoch-making framework [1698,4395–4397], which has contributed greatly as the motive power to promote the amazing progress
n precise evaluation of work function for various surface species. Namely, a variety of theoretical models have been published
hereafter to evaluate 𝜙e for various mono- and polycrystalline surfaces, and many of them have achieved very accurate values
f 𝜙e. Typically for W(100) reported in 1982−2004, 𝜙e = 4.6 eV [382,1908], 4.63 eV [383,385], 4.63 eV [3452], 4.63 eV [357]
nd 4.65 eV [386] by quantum theory (see Table 1) agree exactly with our most probable value of 4.65 ± 0.02 eV based mainly
n experiment and also do well with other recommended values of 4.63 eV [1045,1358] and 4.65 ± 0.10 eV# [1664,1665,3964]
see Table 2) and again fairly with 4.70 ± 0.06 eV recommended recently (in 2015) [4088]. Such a good agreement between a
heoretical value and ours is found for many other surface species such as Al(hkl) [482,561], Cu(hkl) [3477] and Ag(hkl) [1264]
see Table 1). Regarding the comparison between theory and experiment about 𝜙e, further information is obtained from a compact
eview by Kiejna [2427,3901]. Recently, De Waele et al. have published the error estimates for density function theory of work
unction [4108], whose data are summarized in Appendices A and B added to Master’s dissertation [4460].

.2. Theoretical evaluation of work function by the Halas–Durakiewicz model

Recently (in 2010), Halas and Durakiewicz have discussed the problem whether work function is a surface or bulk property,
nd indicated that 𝜙 is derived solely from the bulk properties of both the Wigner–Seitz radius (r s) and the Fermi energy (EF).
amely [298,495,510,2205,3978],

𝜙 = 43.46∕𝑟3∕2s 𝐸1∕2
F , (16)

hich is applicable to work function changes from a clean surface to a gas-covered one and finally to gas-reacted compound
ne. Typically, Pd is calculated to have 5.25 eV [510,2205], which decreases gradually by hydrogen gas adsorption and finally
o 3.2 eV for PdH [510,2205]. Such a gradual decrease estimated by theory is well accordant to that found by experiment [3979].
he former value (5.25 eV) for Pd agrees fairly with 5.17 ± 0.06 eV [Here], 5.22 eV [1358], 5.12 eV [1045] and 5.24 ± 0.05
V [1351] (see Table 2). With respect to many other polycrystalline surfaces (59 species), Eq. (16) is successfully applied to the
alculation of 𝜙e-values [298], many of which are found to agree well or fairly with 𝜙e recommended in a CRC-handbook (77th Ed.
n 1996–1997) [4137]. There, all of the work function values are cited from those selected in 1977 by Michaelson [1045].
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7. Work function change due to phase transition

This section will summarize briefly the work function changes due to allotropic transition from 𝛼 to 𝛽 or 𝛽 to 𝛾 phase and also
due to the phase change from solid to liquid, together with their experimental data available today.

7.1. Work function change due to allotropic transition

As known well, many solid elements (typically, C, Ca, Ti, Mn, Fe, Co, Sr, Y, Zr, Sn, La, Ce, Pr, Nd, Tb, Dy, Tm, Hf, U, Pu and Am)
have several allotropes, each crystal structure of which changes usually at the allotropic transition temperature (TA) characteristic
of the solid species, thereby showing one of the different phases of 𝛼, 𝛽, 𝛾, etc. with somewhat different work function values of
𝜙e
𝛼 , 𝜙e

𝛽 , 𝜙e
𝛾 , etc. among them. The work function change due to allotropic transition may be generally expected to afford us some

interesting information about chemico-physical properties characteristic of the surface and bulk under study. The experimental
data reported for such a change are summarized in Table 11, where 𝛥𝜙e

𝛽𝛼 ≡ 𝜙e
𝛽 − 𝜙e

𝛼 and 𝛥𝜙e
𝛾𝛽 ≡ 𝜙e

𝛾 − 𝜙e
𝛽 are the work function

changes corresponding to the differences between the final and initial stages of 𝛽 ← 𝛼 and 𝛾 ← 𝛽, respectively. Of course, each of
the data on allotropic transition temperatures (TA) for any metal species entered therein is scattered in a wide range dependent
pon specimens or workers. Typically for Hf, nine groups of workers have reported that TA for 𝛼 ↔ 𝛽 is 1583, 1970, 1990−2003,

2007−2100, 2013 ± 20, 2028, 2033, 2050 ± 5 or 2236−2266 K [2967]. Similarly, Co also has a large scatter of TA ≈ 650–720 K.
According to Ref. [1148], TA = 670 K is tentatively adopted for Co in Table 11, although 695 K [4336] is employed in Table 1.

Table 11
Work function changes due to allotropic transformation.
𝛼-phase 𝛽-phase 𝛾-phase 𝜙e

𝛼 (eV) 𝛥𝜙e
𝛽𝛼 (eV)a 𝜙e

𝛽 (eV) 𝛥𝜙e
𝛾𝛽 (eV)a 𝜙e

𝛾 (eV) Meth. Refs.

𝟐𝟏. 𝐒𝐜 (𝜶 = 𝐡𝐜𝐩,𝑻 < 𝟏𝟔𝟔𝟎 𝐊; 𝜷 = 𝐟𝐜𝐜,𝑻 > 𝟏𝟔𝟔𝟎 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)

Sc Sc – 3.62 −0.16 3.46 – – TE [4356]

𝟐𝟐. 𝐓𝐢 (𝜶 = 𝐡𝐜𝐩,𝑻 < 1155 K; 𝜷 = 𝐛𝐜𝐜,𝑻 > 𝟏𝟏𝟓𝟓 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)

Ti/W(100) Ti/W(100) – 3.88 ± 0.09 −0.23 ± 0.10 3.65 ± 0.05 – – FE [1404]
Ti/W Ti/W – 3.95 −0.30 3.65 – – FE [1522]
Ti/W(111) Ti/W(111) – 3.95 −0.35 3.6 – – FE [2194]
Mean – – – −0.29 ± 0.05m – – – – –

Ti Ti – 3.76 0.00 3.76 – – TE [179]
Ti Ti – 4.26 −0.03 4.23 – – TE [179]
Ti Ti – 4.36 −0.04 4.32 – – TE [179]
Ti Ti – 3.87 ± 0.05 0.06 ± 0.17 3.93 ± 0.16 – – various [Here]b

Mean – – – 0.00 ± 0.03 – – – – –

𝟐𝟔. 𝐅𝐞 (𝜶 = 𝐛𝐜𝐜, 𝑻 < 𝟏𝟎𝟒𝟐 𝐊; 𝜷 = 𝐛𝐜𝐜; 𝜸 = 𝐟𝐜𝐜, 𝑻 = 𝟏𝟏𝟕𝟗–𝟏𝟔𝟕𝟒 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)g

– Fe Fe – – 4.48 ± 0.06 −0.27 ± 0.08k 4.21 ± 0.05 TE [310]
– Fe Fe – – 4.64 ± 0.06 0.02 ± 0.08 4.66 ± 0.05 TE [310]
Fe Fe – 4.53 −0.08 4.45 – – TC [3318]
Fe Fe – 4.65 ± 0.01 −0.03 ± 0.01 4.62 ± 0.01 – – PE [305]
Fe Fe Fe 4.63 ± 0.01 −0.01 ± 0.01l 4.62 ± 0.01 0.06 ± 0.01 4.68 ± 0.01 PE [305]
– Fe Fe – – ? 0.09 ? TE [303]
– Fe Fe – – 4.49+ 0.06 4.55+ PSI [303]c

– Fe Fe – – 4.77 0.00 4.77 TE [3024]
Fe Fe Fe 4.55 ± 0.05 −0.03 ± 0.18 4.52 ± 0.17 0.02 ± 0.18 4.54 ± 0.05 various [Here]b

Mean – – – −0.04 ± 0.03 – 0.04 ± 0.03 – – –

𝟐𝟕. 𝐂𝐨 (𝜶 = 𝐡𝐜𝐩, 𝑻 < 𝟔𝟕𝟎 𝐊; 𝜷 = 𝐟𝐜𝐜, 𝑻 > 𝟔𝟕𝟎 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)

Co(0001) Co(111) – 5.264 0.002 5.266 – – CPD [3192]

Co Co – 4.923n 0.002 4.925n – – CPD [1148]
Co Co – 4.923 0.043 4.966 – – CPD [1148]
Co Co – 4.960 −0.035 4.925 – – CPD [1148]
Co Co – 4.960n 0.006 4.966n – – CPD [1148]
Co Co – 4.97 −0.04 4.93 – – CPD [3153]
Co Co – 4.12 ± 0.04 0.13 ± 0.09 4.25 ± 0.08 – – PE [1632]
(continued on next page)
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Table 11 (continued)

𝛼-phase 𝛽-phase 𝛾-phase 𝜙e
𝛼 (eV) 𝛥𝜙e

𝛽𝛼 (eV)a 𝜙e
𝛽 (eV) 𝛥𝜙e

𝛾𝛽 (eV)a 𝜙e
𝛾 (eV) Meth. Refs.

Co Co – 4.71 ± 0.03 −0.21 ± 0.13 4.50 ± 0.13 – – various [Here]b

Mean – – – −0.02 ± 0.10 – – – – –

𝟑𝟗. 𝐘 (𝜶 = 𝐡𝐜𝐩, 𝑻 < 𝟏𝟓𝟒𝟎 𝐊; 𝜷 = 𝐛𝐜𝐜, 𝑻 > 𝟏𝟓𝟒𝟎 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)

Y Y – 3.62 −0.18 3.44 – – TE [4356]
Y Y – 3.27 −0.10 3.17 – – TE [4356]
Y Y – 3.16 ± 0.06 0.01 ± 0.06 3.17 – – various [Here]b

𝟓𝟎. 𝐒𝐧 (𝜶 = 𝐛𝐜𝐜, 𝑻 < 𝟐𝟗𝟏 𝐊; 𝜷 = 𝐭𝐞𝐭𝐫𝐚𝐠𝐨𝐧𝐚𝐥; 𝜸 = 𝐡𝐞𝐱𝐚𝐠𝐨𝐧𝐚𝐥, 𝑻 > 𝟒𝟕𝟑 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)

– Sn Sn – – 4.39 −0.11 4.28 PE [1135]
– Sn Sn – – 4.51 −0.13 4.38 PE [1945–1947]
Sn Sn Sn 4.27 ± 0.06 0.07 ± 0.08 4.34 ± 0.06 −0.05 ± 0.08 4.29 ± 0.06 various [Here]b

Mean – – – 0.07 ± 0.08 – −0.10 ± 0.03 – – –

𝟔𝟓. 𝐓𝐛 (𝜶 = 𝐡𝐜𝐩, 𝑻 < 𝟏𝟓𝟎𝟎 𝐊; 𝜷 = 𝐛𝐜𝐜, 𝑻 > 𝟏𝟓𝟎𝟎 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)

Tb(0001) Tb(???)h – 3.09 ± 0.05 −0.15 ± 0.07 2.94 ± 0.05 – – TE [3920]
Tb Tb – 3.19 −0.18 3.01 – – TE [4356]

𝟕𝟐. 𝐇𝐟 (𝜶 = 𝐡𝐜𝐩, 𝑻 < 𝟐𝟎𝟓𝟎 𝐊; 𝜷 = 𝐛𝐜𝐜, 𝑻 > 𝟐𝟎𝟓𝟎 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)i

Hf(0001) Hf(???)h – 4.10 ± 0.05 −0.20 ± 0.07 3.90 ± 0.05 – – TE [3921]
Hf(0001) Hf(???)h – 4.11 ± 0.05 −0.21 ± 0.07 3.90 ± 0.05 – – TE [2967]
Mean – – – −0.21 ± 0.07 – – – – –

𝟗𝟐. 𝐔 (𝜶 = 𝐫𝐡𝐨𝐦𝐛𝐢𝐜, 𝑻 < 𝟗𝟒𝟎 𝐊; 𝜷 = 𝐭𝐞𝐭𝐫𝐚𝐠𝐨𝐧𝐚𝐥; 𝜸 = 𝐛𝐜𝐜, 𝑻 > 𝟏𝟎𝟓𝟎 𝐊 𝐟𝐨𝐫 𝐛𝐮𝐥𝐤)f

U(foil) U U 3.47 ± 0.01 0.05 ± 0.01 3.52 ± 0.01 −0.13 ± 0.01 3.39 ± 0.01 PE [1884]
U/W U/W U/W 3.56 ± 0.05 −0.51 ± 0.06* 3.05 ± 0.03 0.35 ± 0.20** 3.4 ± 0.2 FE [1657]
U/W(116) – U/W(116) 3.57 ± 0.03 – – – 3.43 ± 0.03 FE [1664]
U/W(113) – U/W(113) 3.60 ± 0.03 – – – 3.53 ± 0.03 FE [1664]
U/W U/W U/W 3.60 ± 0.03 −0.07 ± 0.04 3.53 ± 0.03 −0.10 ± 0.04 3.43 ± 0.03 FE [1654]
U/W U/W U/W 3.63 ± 0.01 −0.05 ± 0.01 3.58 ± 0.01 −0.05 ± 0.01 3.53 ± 0.01 CPD [1484]
U/W(111) U/W(111) U/W(111) 3.64 ± 0.03 −0.28 ± 0.04* 3.36 ± 0.03 −0.05 ± 0.04 3.31 ± 0.03 FE [1664]
U/W U/W U/W 3.65 ± 0.01 −0.06 ± 0.01 3.59 ± 0.01 −0.14 ± 0.01 3.45 ± 0.01 PE [2467]
U/W(112) U/W(112) U/W(112) 3.70 ± 0.03 −0.06 ± 0.04 3.64 ± 0.03 −0.35 ± 0.04** 3.29 ± 0.03 FE [1664]
U/W(100) U/W(100) U/W(100) 3.88 ± 0.03 −0.27 ± 0.04* 3.61 ± 0.03 0.21 ± 0.04** 3.82 ± 0.03 FE [1664]
U/W(110) U/W(110) U/W(110) 4.04 ± 0.03 −0.05 ± 0.04 3.99 ± 0.03 0.01 ± 0.04 4.00 ± 0.03 FE [1664]
U U U 3.64 ± 0.04 −0.06 ± 0.06 3.58 ± 0.04 −0.16 ± 0.06 3.42 ± 0.05 various [Here]b

Mean – – – −0.04 ± 0.04d – −0.09 ± 0.06e – – –

Partial mean – – −0.03 ± 0.06j – −0.04 ± 0.08 – – –

aThe work function changes due to the 𝛼 → 𝛽 and 𝛽 → 𝛾 transformations are shown as 𝛥𝜙e
𝛽𝛼 ≡ 𝜙e

𝛽 − 𝜙e
𝛼 and 𝛥𝜙e

𝛾𝛽 ≡ 𝜙e
𝛾 − 𝜙e

𝛽 , respectively.
bThe work function data [Here] are cited from Table 2.
cThe value with the superscript (+) for Fe indicates 𝜙+ instead of 𝜙e (see Footnote 112 in Table 1).
dThis mean for U is evaluated after disregarding the three values* with an asterisk in the fifth column.
eSimilarly, this is estimated without including these data** in the seventh column for U.
fThe allotropic transition temperatures of U from 𝛽 to 𝛼 and 𝛾 to 𝛽 are found to range from 918 to 948 K and from 1037 to 1053 K, respectively [3967] (see
Footnote 400 in Table 1).
gEven at a constant temperature of ∼300 K, allotropic transformation from 𝛾-like fcc-Fe(100) to 𝛼-bcc-Fe(110) is found to occur when the Fe-layers on Cu(100)
increase beyond ∼10 ML [3913] (see Sections 7.1 and 8.2).
hRegarding 𝛽-Tb(???) and Hf(???), further investigation by both theory and experiment may be necessary to assign correctly their orientation, although both
Zr and Ti are already established to have the allotropic orientation relationship of 𝛼-hcp-{0001}∥ 𝛽-bcc-{110} (see Section 7.1).
iThe allotropic transition temperature of Hf is measured to be 2050 ± 5 K [2967], while 1997 ± 7, 2013 ± 20, 2028 and 2033 K are reported by other workers
[2967]. This spread may be caused by the difference in impurity concentration of Zr.
jThis is not overall but partial mean for 𝛥𝜙e

𝛽𝛼 , which is evaluated from the above data on Ti, Fe, Co, Sn and U alone because the five metals seem to be
somewhat different in 𝛥𝜙e

𝛽𝛼 from Y, Tb and Hf (see Section 7.1).
kThis may be corrected to be 𝛥𝜙e

𝛾𝛽 = 0.02±0.08 eV for Fe [310] by substitution of 𝜙e
𝛽 and 𝜙e

𝛾 into Eq. (8), as listed on the next line (for details, see Section 2.8.6).
lThis is estimated as the net change due to the transition alone, where both 𝜙e

𝛼 = 4.70 ± 0.01 eV (at 300 K) and 4.65 ± 0.01 eV (870 K) for 𝛼-Fe are corrected
to be 4.63 ± 0.01 eV (1125 K) by extrapolation of the linear relationship (its coefficient 𝛼 = −9 × 10−5 eV/K) between 𝜙e and T [305] (see Section 7.1). It
should be noted that the other values (−0.08 eV [3318] and −0.03 eV [305]) are not corrected by the effect due to 𝛼.
mThis value may be corrected to be 0.00 ± 0.16 eV by adoption of our most probable value (𝜙e

𝛽 = 3.93±0.16 eV for 𝛽-Ti in Table 2) instead of the experimental
data (3.65–3.6 eV [1404,1522,2194] in Table 11) (see Section 7.1).
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nThe values of 𝜙e
𝛼 = 4.923 and 4.960 eV for 𝛼-Co are measured at 663 and 300 K, respectively, while 𝜙e

𝛽 = 4.966 eV at 300 K is estimated from 4.925 eV at
673 K by extrapolation of the linear relation between 𝜙e and T [1148] (see Section 7.1 for further information).

As a typical example, bulk iron possesses the four allotropic phases of 𝛼–𝛿 having TA = 1042, 1179 and 1674 K corresponding to
he boundary temperatures between the respective adjacent phases (see Table 11). The work function change (𝛥𝜙e

𝛽𝛼) for bulk Fe is
valuated to be −0.08 eV by TC [3318]. An experimental study by the Fowler method [305] yields 𝜙e

𝛽 = 4.62 eV (1125 K) and also
e
𝛼 = 4.70 eV (300 K) or 4.65 eV (870 K). By extrapolation of 𝜙e

𝛼 from both 300 and 870 K to 1125 K according to 𝛼 = −0.05 eV/570
= −9 × 10−5 eV/K, however, 𝜙e

𝛼 is corrected by −0.07 and −0.02 eV at 1125 K (extrapolated temperature). Consequently, the
resent author estimates 𝛥𝜙e

𝛽𝛼 = 𝜙e
𝛽 (1125 K) − 𝜙e

𝛼 (1125 K) = 4.62 − 4.63 = −0.01 eV (see Footnote (l) in Table 11), which is
ifferent from 𝜙e

𝛽 (1125 K) − 𝜙e
𝛼 (870 K) = 4.62 − 4.65 = −0.03 eV [305] (see Table 11). The former is the net change due to the

transition alone without including the effect of the temperature coefficient of 𝛼. It should be noted that any of the other data on 𝛥𝜙e
𝛽𝛼

is not corrected by the temperature effect due to 𝛼. On the other hand, 𝛥𝜙e
𝛾𝛽 ≡ 𝜙e

𝛾 − 𝜙e
𝛽 for Fe is found to have the positive values

such as 0.06 eV by PE [305] and 0.02 eV by various methods [Here], in contrast to −0.27 eV by TE [310]. The latter, however,
may be corrected from −0.27 to 0.02 eV because substitution of 𝜙e

𝛽 = 4.48 eV and 𝜙e
𝛾 = 4.21 eV into Eq. (8) yields 4.64 and 4.66 eV,

respectively, as already explained in Section 2.8.6 and also in Footnote (k) in Table 11. By another study on Fe [303], the transition
(𝛽 → 𝛾) is observed to increase by 𝛥𝜙e

𝛾𝛽 = 0.09 eV, which is nearly equal to 𝛥𝜙+
𝛾𝛽 ≡ 𝜙+

𝛾 − 𝜙+
𝛽 = 4.55 − 4.49 = 0.06 eV determined by

PSI of K on Fe at 1183 K [303] (see Footnote 112 in Table 1). The result of 𝛥𝜙e
𝛾𝛽 ≈ 𝛥𝜙+

𝛾𝛽 is very interesting and also important as
the first report in this research field.

According to the fine measurements by CPD [1148], 𝛼-hcp-Co has 𝜙e
𝛼 = 4.923 and 4.960 eV at 663 and 300 K, respectively, in

contrast to 𝜙e
𝛽 = 4.925 eV for 𝛽-fcc-Co at 673 K. In consequence, 𝛥𝜙e

𝛽𝛼 may be calculated to be 0.002 or −0.035 eV if the thermal
effect due to the temperature coefficient (𝛼) is disregarded in the latter case having a larger difference in temperature (𝛥𝑇 = 373
K). On the other hand, the extrapolation from 673 to 300 K yields 𝜙e

𝛽 = 4.966 eV [1148], which affords 𝛥𝜙e
𝛽𝛼 = 0.006 eV as the net

change due to the phase transition alone because 𝜙e
𝛼 = 4.960 eV is measured at 300 K (𝛥𝑇 = 0 K).

In the case of the Ti-film on W (mono or poly), 𝛥𝜙e
𝛽𝛼 determined by FE [1404,1522,2194] has Mean = −0.29 ± 0.05 eV (see

Table 11), which is very different from Mean = 0.00 ± 0.03 eV for bulk Ti [179, Here]. The latter is near to Means of 𝛥𝜙e
𝛽𝛼

(−0.04, −0.02, 0.07 and −0.04 eV) found for bulk Fe, Co, Sn and U, respectively. According to the data on Ti/W(mono or poly)
by FE [1404,1522,2194], 𝜙e

𝛼 = 3.88–3.95 eV (mean = 3.93 ± 0.03 eV) is substantially the same with our most probable value of
𝜙e
𝛼 = 3.87 ± 0.05 eV (Table 2), but 𝜙e

𝛽 = 3.6–3.65 eV [1404,1522,2194] is smaller by 0.30 eV than ours of 3.93 eV (Table 2). This
difference is exactly corresponding to Mean = −0.29 eV mentioned just above. This fact suggests that 𝛥𝜙e

𝛽𝛼 may be corrected to be
(3.93 ± 0.16) – (3.93 ± 0.03) = 0.00 ± 0.16 eV. This is just equal to 0.00 ± 0.03 eV found for bulk Ti (see Table 11), although
the former has a very large uncertainty of ±0.16 eV. Much further work on 𝛥𝜙e

𝛽𝛼 for Ti, however, is needed to clarify the reasons
for the large difference (∼0.3 eV) between the film [1404,1522,2194] and the bulk [179]. For example, it may be worth while to
resolve the question whether the Ti-film on W is kept substantially unchanged in both surface thickness and smoothness over the
temperature range covering 𝛼–𝛽 phases without depending upon either the annealing at 1300 (or 1100) K or the heating to 1100 K
(see Footnotes 97−99 in Table 1).

Regarding both of the uranium bulk and film on tungsten, 𝛥𝜙e
𝛽𝛼 ≡ 𝜙e

𝛽 − 𝜙e
𝛼 is found to have Mean = −0.04 ± 0.04 eV, while

𝛥𝜙e
𝛾𝛽 ≡ 𝜙e

𝛾 − 𝜙e
𝛽 has Mean = −0.09 ± 0.06 eV. The former value for U (−0.04 ± 0.04 eV) is close to 𝛥𝜙e

𝛽𝛼 = 0.00 ± 0.03,−0.04 ± 0.03
and −0.02 ± 0.10 eV for the bulks of Ti, Fe and Co, respectively. The latter value for U (𝛥𝜙e

𝛾𝛽 = −0.09 ± 0.06 eV) is essentially
equal to 𝛥𝜙e

𝛾𝛽 = −0.10 ± 0.03 eV for bulk Sn. The above values for U are estimated tentatively by disregarding the three values
of −0.51*, −0.28* and −0.27* eV for 𝛥𝜙e

𝛽𝛼 (see Footnote (d) in Table 11) and also by doing those of 0.35**, −0.35** and 0.21**
eV for 𝛥𝜙e

𝛾𝛽 (see Footnote (e) in id.). The latter example of a wide divergence (−0.35 to 0.35 eV) suggests that both accurate and
abundant data around each transition temperature should be accumulated by further investigations. Typically, 𝜙e

𝛼 = 3.56 ± 0.05 eV
and 𝜙e

𝛾 = 3.4 ± 0.2 eV for the U/W system [1657] are nearly equal to our most probable values of 3.64 ± 0.04 and 3.42 ± 0.05 eV
(Table 2), respectively. On the contrary, 𝜙e

𝛽 = 3.05 ± 0.03 eV alone [1657] is much smaller by ∼0.5 eV than ours of 3.58 ± 0.04
eV (Table 2). This gap may be ascribed to the anomalous result that both of 𝛥𝜙e

𝛽𝛼 = −0.51 ± 0.06* eV and 𝛥𝜙e
𝛾𝛽 = 0.35 ± 0.20**

eV [1657] (see Table 11) are largely different from many other respective values such as −0.05 ± 0.04 and 0.01 ± 0.04 eV [1664]
and as −0.07 ± 0.04 and −0.10 ± 0.04 eV [1654]. Such a gap is the main reason why the asterisked values mentioned above
are tentatively disregarded from calculating any Mean about uranium. Of course, much further work is necessary to confirm the
acceptability of the above disregarding.

In general, it is very interesting to solve the problem how the monocrystal under study changes in surface orientation according to
the allotropic transition, typically from 𝛼 to 𝛽. An X-ray analysis indicates that 𝛼-hcp-Zr(0001) changes to 𝛽-bcc-Zr(110), which was
discovered in 1934 by Burgers [4163]. Such a ‘‘Burgers orientation relationship’’ between 𝛼 ↔ 𝛽 transition has long been investigated
to date for Zr [3908,3918,4170–4172], Ti [3745,3910,4164–4169], Sn [4363] and so on. Typically, the relationship of 𝛼-{0001}∥ 𝛽-
{110} and 𝛼-⟨1120⟩∥𝛽-⟨111⟩ is found to hold by experiment and theory for Ti, too [3910,4164–4169], as well as Zr [4170–4172]. In
another case of Hf, 𝛼-hcp-Hf(0001) [2967] is stated to transfer to 𝛽-bcc-Hf(210) according to the description [3908]. On the other
hand, 𝛼-hcp-Co(0001) is reported to transfer to 𝛽-bcc-Co(111) at TA = 720 ± 10 K [3192]. For 𝛼-hcp-{0001} metals such as Sc, Co,
Y, Gd, Tb, Hf, etc., it seems to the present author that the orientation relationship for the 𝛼 ↔ 𝛽 transition should be examined in
more detail and also that the work function change due to the transition should be investigated precisely by both experiment and
theory.
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With respect to Y, 𝛥𝜙e
𝛽𝛼 is extremely different between the data [4356] and [Here] and, hence, we can hardly estimate correctly

ts probable value without addition of much data. According to Figs. 1 and 3 for Tb(0001) [4146], 𝜙e decreases from 3.09 ± 0.05
V (at 1440 K) to 2.94 ± 0.05 eV (1450–1500 K) [3920], while Fig. 3 for Hf(0001) [2967] shows the decrease from 4.11 ± 0.05 eV
∼1800−2040 K) to 3.90 ± 0.05 eV (∼2050−2100 K) [2967]. Consequently, we have 𝛥𝜙e

𝛽𝛼 = −0.15±0.07 and −0.21±0.07 eV for Tb
and Hf, respectively, as shown in Table 11. Both of the net values are considerably different from the partial mean of −0.03 ± 0.06
estimated for Ti, Fe, Co, Sn and U (see Footnote (j) in Table 11). Strongly, it is desirable to ascertain the reason why 𝛥𝜙e

𝛽𝛼 (about
−0.15 and −0.21 eV) for Tb(0001) and Hf(0001) is much different from that (−0.03 eV) for the other five metals and to promote the
study about the general rule how the various species of monocrystals change in crystallographic orientation according the allotropic
transitions of 𝛼 to 𝛽 and 𝛽 to 𝛾, and also to determine the precise net values of 𝛥𝜙e

𝛽𝛼 and 𝛥𝜙e
𝛾𝛽 for many species of metals at the

level of 10 meV or less.
With respect to Ru(112̄2) and Ru(112̄5), anomalous work function change is observed to drop by 0.38 and 0.55 eV, respectively,

at 1510 ± 10 K, but to jump up at 1530 ± 10 K to the initial levels of 4.45 and 4.65 eV, respectively [3686]. These changes are
assumed to be caused by allotropic transformations, where 𝜙e

𝛼 = 𝜙e
𝛾 and 𝛥𝜙e

𝛽𝛼 = −𝛥𝜙e
𝛾𝛽 [3686]. Specific heat study about Ru suggests

that its crystal has four different types of 𝛼 (T < 1308 ± 5 K), 𝛽 (1308–1500 K), 𝛾 (1500–1800 K) and 𝛿 (T > 1800 K) [3980]. The
transition temperature corresponding to 𝛾 → 𝛽 phase for Ru is changed from 1530 to 1230 ± 10 K by repetition of 500 heating–
cooling cycles [3919]. The latent heat of transition at 1230 K is calculated to range from 3.9 to 5.2 kJ/mol [3919], corresponding
to as small as 0.040 and 0.054 eV, respectively. According to available literature data, however, the question on possible allotropic
modification in Ru is still open [3919].

We may obtain general information about the temperature-dependent allotropic structures of the elements [4382], the number
of allotropes of the elements [4383], both allotropic crystal transformation and transition temperatures of rare earth metals [4364,
4384] and those of many metals and several non-metals [4385].

Finally in this section, let’s enjoy such interesting topics on allotropy as follows.
(1) In the case of a bulk sample, the paramagnetic 𝛾-fcc-Fe (𝜙e = 4.54 ± 0.05 eV, Table 2) is generally retained at 1179–1674 K

alone, and it turns to ferromagnetic 𝛼-bcc-Fe (4.55 ± 0.05 eV) at room temperature [3980]. On the other hand, a thin layer system
(usually 𝜃 ≤ 10 ML) of ferromagnetic fcc-Fe/Cu(100) is found to exist at room temperature [2056,3911,3912] (see Footnote 114 in
Table 1). Such a metastable film system is found by PE to have 𝜙e = 4.59 eV by deposition at ∼300 K and 4.46 eV after annealing
at 400 K [2175]. The former value alone is close to 4.62 and 4.67 eV observed by PE for metastable fcc-Fe(100)/Cu(100) prepared
at ∼300 K [2673].

(2) Such an iron film formed on Cu(100) at ∼300 K is found to have the phase corresponding apparently to 𝛾-fcc-Fe(100)
at the iron thickness below the critical coverage of 𝜃c ≈ 10 ML [3913]. Above 𝜃c, on the other hand, the metastable 𝛾-like fcc-
Fe(100) (𝜙e = 4.59–4.67 eV) undergoes transition to 𝛼-bcc-Fe(110) (𝜙e = ? eV) [3913]. This discovery is quite interesting from the
viewpoint of solid state physics because the transition of 𝛾 → 𝛼 is undergone by crossing over 𝜃c alone at a constant temperature
(∼300 K), having nothing to do with the transition temperature (TA = 1179 K for 𝛾-phase usually found for bulk Fe). In addition,
the transition of 𝛾-like fcc-Fe(100)/Cu(100) to 𝛼-bcc-Fe(110)/Cu(100) is also very interesting from the stand point of allotropic
orientation relationship, as partly mentioned above. For the metastable films of such as Fe, Co and Ni grown epitaxially on Cu(100),
Cu(111) and so on, their peculiarity will be summarized briefly in Section 8.2 together with the data on work function and Curie
point having dependence upon film thickness.

(3) At TA = 670 K, 𝛼-hcp-Co(0001) with 5.264 eV by CPD [3192] transforms to 𝛽-fcc-Co(111) [3192,3914,3916,3917] with
5.266 eV [3192] (see Table 11), but repetition of the transformation changes it into polycrystalline Co (𝜙e = ?) [3915].

(4) When a 𝛽-fcc-cobalt strip with 𝜙e = 4.25 ± 0.08 eV at 1120 K is cooled slowly to room temperature, its phase and 𝜙e are
changed to 𝛼-hcp-Co and 4.12 ± 0.04 eV, respectively [1631,1632]. By sudden cooling, on the contrary, the former is retained
without change in both phase and 𝜙e. This finding is also very interesting as well as the above discoveries [3913,3915] together
with both of the 𝜃c-dependence of Fe [3913] and the polycrystallization of Co owing to repeated transformations [3915]. In addition,
it may be worth while to settle the question why the above value of 𝜙e

𝛼 = 4.12 eV for 𝛼-Co(poly) [1632] is much smaller than any of
the recommended values of 5.0 eV [1045,1358], 4.71 eV [Here] and 4.41 eV [1354], quite similarly to 𝜙e

𝛽 = 4.25 eV [1632] being
less than 4.50 eV [Here] (see Table 2).

(5) In contrast to Co-crystals existing generally in an 𝛼-hcp-phase below TA (≈ 650–720 K, already mentioned above), Co-fine
particles (crystallites, ∼10–500 Å) supported on a foreign substrate (e.g., SiO2, Al2O3 or C) have the phase of not hcp- but fcc-
tructure corresponding to 𝛽-phase even below TA [4338]. Such a phenomenon is observed also for Co/W(mono) systems [364]

(see Footnote 474 in Table 1).
(6) Regarding the thickness dependence of both surface structure and work function, it is reported for an Ag/H:Si(111)

system at room temperature that 𝜃 < 5 and > 20 ML afford ∼4.2 and 4.65 ± 0.15 eV, corresponding to Ag(poly) and Ag(111),
espectively [1198].

.2. Work function change due to liquefying

Among many solid elements, these of alkali metals, P, S, Ga, Se, Sn, I, In, Tl, Pb and Bi are well known to have relatively low
elting points (Tm ≈ 300–600 K). However, it is eight elements alone except Hg (234 K) that the work function data at the liquid

tate are surveyed by the present author.
The work functions evaluated from Fowler plots are 3.84 ± 0.05 eV for Tl, 3.95 ± 0.05 eV for Pb and 4.25 ± 0.05 eV for

i [3437]. No significant difference is detected for the three between the solid phase (∼300 K) and liquid one (T + 100 K) [3437].
m
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The values of 𝜙e for Na, K, Rb and Cs measured by PE are 2.38, 2.28, 2.16 and 1.95 eV, respectively [4208]. Each is the same
between the states of solid (298 K) and liquid (∼Tm) within the limit of experimental error [4208], which may be estimated to be
±0.03 eV from another article [2470].

With respect to Hg, 𝜙e is determined by PE to be 4.510 ± 0.016 and 4.486 ± 0.041 eV at ∼300 and 83−234 K, respectively [2920],
hus yielding 𝛥𝜙e

LS ≡ 𝜙e
L − 𝜙e

So = 0.024 ± 0.044 eV. Here, 𝜙e
So and 𝜙e

L are the work function values at the solid and liquid states,
espectively. A thick layer of Hg on FeO at 90 K is found by PE to have 𝜙e = 4.52 ± 0.02 eV, which does not change even when the
ercury is allowed to melt [2921].

Some experimental data on the work function change (𝛥𝜙e
LS) due to the phase transition from solid to liquid are summarized

or the thirteen elements in Table 12. All of the solid species except 𝛾-Sn show that each mean of 𝛥𝜙e
LS stays in the range of −0.05

to 0.03 eV, although the work function data available for each element are very scanty. On the other hand, the six data on 𝛾-Sn
[1135,1945–1947,3575,4139,4241, Here] are observed to range from −0.04 to −0.17 eV, resulting in the mean value of −0.10 ± 0.05
eV in contrast to any mean mentioned above. A considerable gap between 𝛾-Sn and the other metals should be examined by further
study of both theory and experiment.

Table 12
Work function change due to liquefying.

No. Solid Liquid 𝑇m (K) 𝜙e
So (eV) 𝛥𝜙e

LS (eV)a 𝜙e
L (eV) Meth. Refs.

11 Na Na 371 2.38 0.00 2.38 PE [4208]
11 Na Na 371 2.39 0.00 2.39 PE [4241]
11 Na Na 371 2.949 −0.025 2.924 TC [2419]
11 Na Na 371 2.54 ± 0.03 0.03 ± 0.26 2.57 ± 0.26 various [Here]b

Mean – – – – 0.00 ± 0.01 – – –

13 Al Al 933 4.259 −0.018 4.241 TC [2419]

19 K K 337 2.27 0.00 2.27 PE [4241]
19 K K 337 2.28 0.00 2.28 PE [4208]
19 K K 337 2.29 ± 0.015 0.01 ± 0.02 2.30 ± 0.015 PE [2476]
19 K K 337 2.29 ± 0.03 0.01 ± 0.04 2.30 ± 0.03 PE [2470]
19 K K 337 2.29 ± 0.02 −0.01 ± 0.03 2.28 ± 0.02 various [Here]b

Mean – – – – 0.00 ± 0.02 – – –

31 Ga Ga 303 4.31 0.06 4.37 PE [4139]
31 Ga Ga 303 4.35 ± 0.03 −0.05 ± 0.03 4.30 ± 0.01 PE [2770]
31 Ga Ga 303 4.36 ± 0.03 −0.06 ± 0.04 4.30 ± 0.02 PE [2026]
31 Ga Ga 303 4.27 ± 0.06 0.06 ± 0.07 4.33 ± 0.03 various [Here]b

Mean – – – – 0.00 ± 0.06 – – –

37 Rb Rb 312 1.85 −0.05 1.80 TC [4249]
37 Rb Rb 312 1.99 −0.06 1.93 PE [4139]
37 Rb Rb 312 2.15 0.00 2.15 PE [4241]
37 Rb Rb 312 2.16 0.00 2.16 PE [4208]
37 Rb Rb 312 2.16 0.00 2.16 PE [4297]
37 Rb Rb 312 2.16 ± 0.03 0.01 ± 0.04 2.17 ± 0.03 PE [2470]
37 Rb Rb 312 2.17 ± 0.02 −0.04 ± 0.03 2.13 ± 0.02 PE [4141]
37 Rb Rb 312 2.17 ± 0.05 −0.02 ± 0.05 2.15 ± 0.02 various [Here]b

Mean – – – – −0.02 ± 0.03 – – –

47 Ag Ag 1234 4.32 0.00 4.32d TE [1466]

49 In In 430 3.96 −0.03 3.93 PE [4139]
49 In In 430 4.00 −0.07 3.93 PE [4241]
49 In In 430 4.07 −0.04 4.03 PE [4328]
49 In In 430 4.09 ± 0.01 −0.03 ± 0.01 4.06 ± 0.01 PE [2770]
49 In In 430 4.05 ± 0.06 −0.05 ± 0.10 4.00 ± 0.08 various [Here]b

Mean – – – – −0.04 ± 0.02 – – –

50 𝛾-Sn Sn 505 4.22 −0.04 4.18 PE [4139]
50 𝛾-Sn Sn 505 4.23 −0.04 4.19 PE [4241]
50 𝛾-Sn Sn 505 4.28 −0.11 4.17 PE [1135]
50 𝛾-Sn Sn 505 4.38 ± 0.02 −0.16 ± 0.03 4.22 ± 0.02 PE [1945–1947]
50 𝛾-Sn Sn 505 ? −0.17 ? CPD [3575]
50 𝛾-Sn Sn 505 4.29 ± 0.06 −0.09 ± 0.06 4.20 ± 0.02 various [Here]b

Meanc – – – – −0.10 ± 0.05 – – –

55 Cs Cs 301 1.92 −0.01 1.91 PE [4297]
55 Cs Cs 301 1.94 0.00 1.94 PE [4241]
55 Cs Cs 301 1.95 0.00 1.95 PE [4208]
(continued on next page)
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Table 12 (continued)

No. Solid Liquid 𝑇m (K) 𝜙e
So (eV) 𝛥𝜙e

LS (eV)a 𝜙e
L (eV) Meth. Refs.

55 Cs Cs 301 2.241 −0.029 2.212 TC [2419]
55 Cs Cs 301 2.05 ± 0.05 −0.05 ± 0.13 2.00 ± 0.12 various [Here]b

Mean – – – – −0.02 ± 0.03 – – –

80 𝛼-Hg Hg 234 4.47 ± 0.03 0.00 ± 0.03 4.475 ± 0.01 PE [2770]
80 𝛼-Hg Hg 234 4.486 ± 0.041 0.024 ± 0.044 4.510 ± 0.016 PE [2920]
80 𝛼-Hg Hg 234 4.49 ± 0.01 0.00 ± 0.01 4.49 ± 0.01 PE [1669]
80 𝛼-Hg Hg 234 4.49 ± 0.05 0.00 ± 0.07 4.49 ± 0.05 PE [2470]
80 𝛼-Hg Hg 234 4.52 ± 0.05 −0.02 ± 0.05 4.50 ± 0.02 various [Here]b

Mean – – – – 0.00 ± 0.01 – – –

81 𝛼-Tl Tl 577 3.72 −0.08 3.64 PE [4139]
81 𝛼-Tl Tl 577 3.84 ± 0.05 0.00 ± 0.07 3.84 ± 0.05 PE [3437]
81 𝛼-Tl Tl 577 3.82 ± 0.05 −0.08 ± 0.11 3.74 ± 0.10 various [Here]b

Mean – – – – −0.05 ± 0.04 – – –

82 Pb Pb 601 3.95 ± 0.05 0.00 ± 0.07 3.95 ± 0.05 PE [3437]
82 Pb Pb 601 4.11 −0.07 4.04 PE [4139]
82 Pb Pb 601 4.07 ± 0.05 −0.07 ± 0.07 4.00 ± 0.05 various [Here]b

Mean – – – – −0.05 ± 0.03 – – –

83 Bi Bi 544 4.25 ± 0.05 0.00 ± 0.07 4.25 ± 0.05 PE [3437]
83 Bi Bi 544 4.39 0.03 4.42 PE [4139]
83 Bi Bi 544 4.86 0.02 4.88 CPD [1755]
83 Bi Bi 544 4.28 ± 0.05 0.06 ± 0.09 4.34 ± 0.07 various [Here]b

Mean – – – – 0.03 ± 0.02 – – –

Overall mean – – – −0.02 ± 0.03 – – –

aThe work function change due to liquefying is shown as 𝛥𝜙e
LS ≡ 𝜙e

L − 𝜙e
So, where 𝜙e

L and 𝜙e
So are the work functions at liquid and solid states, respectively.

bThe work function data [Here] are cited from Table 2.
cAll of the six data on 𝛥𝜙e

LS for 𝛾-Sn are found to have the mean value of −0.10 ± 0.05 eV. This is slightly different from any one (−0.05 up to 0.03 eV)
for the other twelve species listed herein. As a whole for the thirteen species, we have the overall mean of 𝛥𝜙e

LS = −0.02 ± 0.03 eV. If the data for 𝛾-Sn are
disregarded, we have −0.01 ± 0.02 eV. At any rate, the work function decrease due to the phase change from solid to liquid may be generally concluded to
be in the order of ∼10 meV or less. Much further work by both experiment and theory may be necessary to settle definitely the problem whether 𝛥𝜙e

LS ≈
0.00 eV in general.
dThis is the value corrected from 3.86 eV measured for molten Ag by TE [1466] by the present author (see Footnote 456 in Table 1).

At any rate, the overall means of 𝛥𝜙e
LS are estimated to be −0.02 ± 0.03 and −0.01 ± 0.02 with and without including the data

on 𝛾-Sn, respectively, thus suggesting that 𝛥𝜙e
LS may generally be in the order of ±10 meV or less. In order to determine a more

precise value of 𝛥𝜙e
LS for each element, however, work function measurements of both 𝜙e

S and 𝜙e
L should be done at the level of 10

meV or less in such a narrow temperature range (𝛥𝑇 ≈ 10 K) of about −5 and +5 K sandwiching Tm so as to minimize the thermal
effect due to 𝛼•𝛥𝑇 .

Alchagirov et al. have developed a two-frequency photoelectric method for continuously measuring the fast changes in 𝜙e owing
to adsorption, phase transition, modification of surface structure and so on, thereby showing such a typical result for In that 𝛥𝜙e

LS
can be measured more precisely compared with the Fowler method [4328].

8. Work function change due to magnetic transformation

This section summarizes the work function change due to magnetic transformation at the Curie temperature (TC) from ferro- to
paramagnetic state of both bulk metals and metastable metal films together with the dependence of TC upon film thickness.

8.1. Work function change of bulk metal at the Curie point

These metals of Fe, Co, Ni and Gd are well known to change from ferro- to paramagnetic state at the Curie points (TC) of typically
1042, 1390, 631 and 290 K [3980, etc.], respectively. Speaking in general, however, the experimental data on TC as well as TA
(see Section 7.1) fluctuate widely from literature to literature. For instance, the values reported for Co by the five groups of workers
have a range of TC = 1367–1404 K [4336]. In this section, let’s treat the problem how the work function changes at TC.

Typically, the 𝛼-bcc-Fe below TC = 1042 K is ferromagnetic, but the 𝛽-bcc-Fe at 1042–1179 is paramagnetic. The 𝛾-fcc-Fe
(1179–1674 K) and 𝛿-bcc-Fe (1674–1811 K) are paramagnetic, too [1916,2056,3980]. Work function change of 𝛥𝜙e

PF ≡ 𝜙e
P − 𝜙e

F
due to the magnetic transition from ferro- to paramagnetic state is equivalent to that of 𝛥𝜙e

𝛽𝛼 ≡ 𝜙e
𝛽 − 𝜙e

𝛼 since TC is equal to TA
for the 𝛼 → 𝛽 transition of Fe. As already shown in Section 7.1 and Table 11, the values of 𝜙e

𝛼 = 4.70 eV (300 K) and 4.65 eV
(870 K) [305] are corrected to be 4.63 eV (1125 K) by extrapolation according to 𝛼 = −9×10−5 eV/K and, hence, 𝛥𝜙e is concluded
𝛽𝛼
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to be 𝜙e
𝛽 − 𝜙e

𝛼 = 4.62 − 4.63 = −0.01 eV instead of 4.62 − 4.70 = −0.08 and of 4.62 − 4.65 = −0.03 eV [305] (see Footnote (l) in
Table 11).

In Table 13, all of the data available at present are summarized for Co, Ni and Gd in addition to Fe. Theoretical investigation
concludes that 𝛥𝜙e

PF = −0.135 eV in general [3673]. As shown in Table 13, the values of 𝛥𝜙e
PF for Ni have a range from −0.050 to

0.045 eV, thus yielding Mean = 0.01 ± 0.03 eV (see the last line for Ni). This value is very close to Mean = 0.00 ± 0.01 eV for Gd.

Table 13
Work function change due to magnetic transformationa.

No. Ferromag. Paramag. TC (K) 𝜙e
F (eV)c 𝛥𝜙e

PF (eV)b 𝜙e
P (eV)c Meth. Refs.

26 𝛼-bcc-Fe 𝛽-bcc-Fe 1042 4.63 (1125)1 −0.01 4.62 (1125) PE [305]
26 𝛼-bcc-Fe 𝛽-bcc-Fe 1042 4.65 (870) −0.03 4.62 (1125) PE [305]
26 𝛼-bcc-Fe 𝛽-bcc-Fe 1042 4.53 −0.08 4.45 TC [3318]
26 𝛼-bcc-Fe 𝛽-bcc-Fe 1042 4.55 ± 0.05 (∼300) −0.03 ± 0.18 4.52 ± 0.17 (∼1100) various [Here]d

Mean – – – – −0.04 ± 0.03 – – –

27 𝛽-fcc-Co 𝛽-fcc-Co 1390 4.65 ± 0.22 (∼1050) −0.05 ± 0.30 4.60 ± 0.19 (∼1500) various [Here]e

28 fcc-Ni fcc-Ni 631 4.645 (300) 0.045k 4.690 (660) CPDi [503]
28 fcc-Ni fcc-Ni 631 4.660 (400) 0.040k 4.700 (740) CPDi [503]
28 fcc-Ni fcc-Ni 631 4.660 (400) −0.007f 4.653 (400) CPDi [503]
28 fcc-Ni fcc-Ni 631 5.05 (623) 0.05 5.10 (770) PE [943]
28 fcc-Ni fcc-Ni 631 ? (?) −0.050g ? (?) TC [3954]
28 fcc-Ni fcc-Ni 631 ? (?) 0.009g ? (?) TC [2358]
28 fcc-Ni(100) fcc-Ni(100) 631 ? (∼600—631) 0.00 ? (631–700) CPDi [3924]
28 fcc-Ni(100) fcc-Ni(100) 631 ? (413) −0.004 ? (631) CPDi [496]
Mean – – – – 0.01 ± 0.03h – – –

64 hcp-Gd(0001) hcp-Gd(0001) 290 ? (220) −0.016 ? (220)j CPDi [3924]
64 hcp-Gd hcp-Gd 290 3.76 0.01 3.77 TC [2358]
Mean – – – – 0.00 ± 0.01 – – –

Overall meanm – – – −0.01 ± 0.04 – – –

aTheoretical study on the work function change due to para- to ferromagnetic transition yields 0.135 eV = −𝛥𝜙e
PF in general [3673].

bThe work function change due to ferromagnetic to paramagnetic transformation beyond the Curie point (𝑇C) is shown as 𝛥𝜙e
PF ≡ 𝜙e

P − 𝜙e
F.

cIn parentheses in the 5th or 7th column is given the temperature (in K) adopted for determining each work function value (𝜙e
F or 𝜙e

P) corresponding to the
ferro- or paramagnetic state (see Footnote 1 below).
dThe work function data [Here]d are cited from Table 2.
eThe values of 𝜙e

F and 𝜙e
P for 𝛽-Co [Here]e are estimated from these data obtained in the ranges of 720–1390 K [310,3153,3604] and of 1390–1600 K

[769,2304,3604], respectively (see Table 1).
fThe change (𝛥𝜙e

PF ≡ 𝜙e
P−𝜙e

F = −0.007f eV) for Ni is determined at the same temperature (400 K) for both 𝜙e
P and 𝜙e

F after extrapolating the former in the range
from 750–600 K to 400 K [503] (see also Footnote 132 in Table 1). This is the net change due to the magnetic transition alone. On the contrary, the others
(𝛥𝜙e

PF = 0.045k and 0.040k eV) are tentatively estimated by the present author taking the data on 𝜙e
F and 𝜙e

P determined at respectively different temperatures
(by ∼350 K gapped) indicated in the parentheses beside each 𝜙e

F and 𝜙e
P. In other words, the work function change (𝛥𝜙e

T ≈ −0.05 eV) due to the temperature
decrease by ∼350 K in the range covering 𝑇C is disregarded in the latter estimation. Such a fine measurement as excluding the effect due to 𝛥𝜙e

T is needed
for any samples, too, in order to determine precisely the net value of 𝛥𝜙e

PF itself in the order of 1 meV.
gBoth of the values for Ni are cited from Ref. [503].
hThis mean for Ni is obtained without including the datak (see Footnote k below).
iThe piezoelectric driven Kelvin probe improved by Saito et al. has an accuracy of ±1 meV in work function measurements at ∼100–1000 K [4065].
jThe linear relation between T and 𝜙e at the paramagnetic state above 𝑇C (∼460–300 K) for Gd is extrapolated down to 220 K, where 𝜙e is found to be lower
by 14 meV than 𝜙e at 𝑇C, while 𝜙e at the ferromagnetic state at 220 K is higher by 2 meV than 𝜙e at 𝑇C. Therefore, 𝛥𝜙e

PF ≡ 𝜙e
P − 𝜙e

F is estimated to be −16
meV at 220 K [3924].
kBoth of the values of 𝛥𝜙e

PF = 0.045 and 0.040 eV for Ni are estimated from 𝜙e
P and 𝜙e

F measured at different temperatures and, hence, any of them is not the
net value originating from the transition alone. Consideration of the temperature coefficient (𝛼) of 𝜙e (see Table 6 in Ref. [1351]) yields 𝛥𝜙e

PF = −0.007 eV
(see Footnote f above).
1 The value of 𝜙e

F = 4.63 eV (1125 K) for Fe is corrected from 4.70 eV (300 K) by consideration of the thermal change due to the temperature coefficient of
𝛼 = −9 × 10−5 eV/K (for detail, see Section 7.1 and Footnote 1 in Table 11).
mThe overall mean including all of the data on the above four metals affords 𝛥𝜙e

PF = −0.01 ± 0.04 eV. Consideration of the above fine measurement for Ni
[503], however, may lead to the conclusion that the work function change due to the magnetic transition is generally in the order of ∼10 meV or less.

Regarding the most probable value of 𝛥𝜙e
PF for Co, it is very difficult to estimate such a minute change probably as in order

of 10 meV or less because both 𝜙e
F and 𝜙e

P [Here] originating from various specimens and methods are very large in standard
deviation (±0.22 and ±0.19 eV, respectively) and also in temperature difference (∼450 K). For the same specimen at nearly the same
temperatures sandwiching TC, therefore, both 𝜙e

F and 𝜙e
P should be measured not intermittently and indirectly by TE (Richardson

plot) but continuously and directly by another method.
The work function of Ni(100) is found to change considerably with the temperature coefficient of 𝛼 = −1.83 ×10−4 eV/K in the

range from ∼760 to 631 K (T ) at paramagnetic state [496]. But, an upper deviation from the linearity starts at T , gradually
C C
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increasing 𝛥𝜙e
PF from 0 up to 4 meV in the range of 631 K down to 140 K at ferromagnetic state [496]. Namely, 𝛥𝜙e

PF for Ni(100)
is −0.004 eV [496]. According to a previous study by the same group of workers [503], 𝛥𝜙e

PF for Ni(poly) is evaluated to be
𝛥𝜙e

PF ≡ 𝜙e
P − 𝜙e

F = 4.653 − 4.660 = −0.007 eV at the same temperature (400 K) after extrapolation of 𝜙e
P from ∼700 to 400 K. This

s the net change due to the transition alone without including the thermal effect (𝛼•𝛥𝑇 ) upon the work function. On the other
hand, 𝛥𝜙e

PF = 0.045 eV is estimated from both 𝜙e
P = 4.690 eV at 660 K (above TC = 631 K) and 𝜙e

F = 4.645 eV at 300 K, thus
yielding a difference by 0.045 eV in comparison with the above (−0.007 eV). This difference estimated tentatively by the present
author is caused by disregarding the temperature dependence of 𝜙e inherent in any metal (see Table 6 in Ref. [1351]). Namely, the
comparison of 𝜙e

P and 𝜙e
F at different temperatures does never yield accurately the net value of 𝛥𝜙e

PF itself.
According to the fine measurement (at ∼1 meV level) made about 10 years later for Ni(100) by the same group using a CPD

method again, however, noticeable change (>1 meV at level) is not observed at TC [3924].
In respect of Gd(0001) [3924], 𝜙e at the paramagnetic state decreases almost linearly by ∼20 meV with decreasing temperature

from ∼400 K down to TC (∼290 K). Below TC at the ferromagnetic state, however, 𝜙e shows a minimum (shallow valley) at ∼280 K
nd does a maximum (small hump) at ∼250−230 K. Then, 𝜙e at ∼230−220 K remains nearly at a constant, which is higher by 2

meV than 𝜙e at TC [3924]. Regarding the paramagnetic state, on the other hand, 𝜙e at 220 K is found to have a value lower by 14
eV than that at TC after extrapolating the above linearity from TC down to 220 K according to the temperature dependence of
b (dipole barrier) [3924]. Consequently, the above transformation affords the work function change of 𝛥𝜙e

PF ≡ 𝜙e
P −𝜙e

F = −16 meV
t 220 K (about 70 K below TC).

The overall mean of the four bulk metals is estimated to be −0.01 ± 0.04 eV, as shown in Table 13. On the other hand, the
esults based on the fine measurements for the bulks of Ni(poly) [503], Ni(100) [496] and Gd(0001) [3924] studied by the same
roup of Saito et al. indicate that 𝛥𝜙e

PF is as small as −0.009 ± 0.005 eV. Therefore, such a minute value may be disregarded in a
sual treatment of 𝜙e accompanied with an error of ±0.05 eV or more in general (see Table 2). In other words, it is very difficult
o determine 𝛥𝜙e

PF precisely at the level of 1 meV by means of usual methods employed by many workers.
At present, 𝛥𝜙e

PF may be roughly estimated to be at the level of −0.01 eV or so in general, although the data themselves are very
scanty and also they are scattered in a rather wide range from −0.08 to +0.05 eV even among the four metal species (see Table 13).

8.2. Both work function and Curie point of metastable metal films

In addition to the four allotropes of bulk Fe mentioned in Section 7.1, the metastable film of Fe grown epitaxially on Cu(100)
has the peculiarity different from bulk Fe. Namely,

(1) 𝛼-bcc-Fe (TA = 1042 K, ferromag., TC = 1042 K, 𝜙e = 4.55 ± 0.05 eV).
(2) 𝛽-bcc-Fe (1042–1179 K, paramag., 𝜙e = 4.52 ± 0.17 eV).
(3) 𝛾-fcc-Fe (1179–1674 K, paramag., 𝜙e = 4.54 ± 0.05 eV).
(4) 𝛿-bcc-Fe (1674–1808 K, paramag., 𝜙e = 4.76 ± 0.1 eV).
(5) m-fcc-Fe (<1042 K, ferromag., TC = variable, 𝜙e = 4.58 ± 0.10 eV).
(6) m-fcc-Fe(100) (<1042 K, ferromag., TC = variable, 𝜙e = 5.38 ± 0.22 eV).

Here, ‘‘m’’ means the ‘‘metastable’’ and, TA and TC are cited from Ref. [3980], while each value of 𝜙e is done from the 3rd
column in Table 2.

Typically for the metastable 𝛾-like fcc-Fe(100)/Cu(100) system (6) above, already mentioned in Topics (1) and (2) in Section 7.1,
𝜙e is theoretically evaluated to be 4.95 or 5.00 eV [1914], 5.48 or 5.58 eV [1913,4386] and 5.6 eV [1916], some of which are
well accordant to some of the experimental data on 4.62 or 4.67 eV [2673], 4.95 eV [2650], and 5.4 or 5.5 eV [1916] determined
by PE at ∼300 K, although the wide divergence by up to ∼0.65 or 0.9 eV makes it very difficult to compare decisively the data
among different authors. The value of 𝜙e

F = 4.62 eV found for the ferromagnetic m-Fe(100) film grown at room temperature [2673]
is slightly different from 𝜙e

P = 4.67 eV for the paramagnetic one established after annealing above 500 K [2673], thereby resulting
in 𝛥𝜙e

PF = 0.05 eV. This value is somewhat different from −0.04 ± 0.03 eV for bulk Fe (see Table 13). The most provable value of
5.38 ± 0.22 eV (Table 2) for m-fcc-ferromagnetic film-Fe(100) (∼300 K) seems to be near to 5.28 ± 0.19 eV for 𝛾-fcc-paramagnetic
bulk of Fe (100) (1179–1674 K), although the gap of 0.1 eV between the two is accompanied with a large standard deviation of
±0.29 eV. On the contrary, the former is certainly different from 4.64 ± 0.05 eV recommended for 𝛼-bcc-ferromagnetic bulk-Fe(100)
(Table 2).

On the other hand, m-fcc-ferromagnetic film-Fe on Cu(100) listed above (5) is found to have 4.58 ± 0.10 eV (Table 2), which
is very near to 4.55 ± 0.05 eV for 𝛼-bcc-ferromagnetic bulk-Fe (Table 2). In contrast to the latter with TC kept constant at 1042
K, the former changes in TC from 230 to 390 K as 𝜃 increases from 1 to 3–5 ML having 𝜙e

F = 4.7 ± 0.1 eV [2878]. In another case,
the m-fcc-Fe-film is reported to have TC = 150 and 300 K at 𝜃 = 5 and 7 ML, respectively [4345]. Similarly, such an fcc-film is
observed to have TC ≈ 380 and 290 K at 𝜃 ≈ 3 and 6–10 ML, respectively, above which the film structure is changed to bcc [3912].
In contrast, the film formed at 463 K is found to have the ferromagnetism, which disappears after keeping for 1 h or cooling to
∼300 K [4386]. The film grown at ∼300 K is not ferromagnetic [4386]. Regarding the m-fcc-Fe film (𝜃Fe = 3 or 7 ML) prepared
on Cu-capped films (𝜃Cu = 0–5 ML) [4361], TC is found to depend on 𝜃Fe and also to have an oscillatory dependence upon 𝜃Cu,
showing nearly the same pattern between theory and experiment. As 𝜃Cu increases from 0 to 5 ML at 𝜃Fe = 3 ML, for example, TC
oscillates between ∼370 and 265 K (experiment) and ∼530 to 480 K (theory), all of which are much below 1042 K characteristic of
𝛼-bcc-bulk Fe. For such an interesting and complicated magnetic behavior, much further work is fully expected to be done by both

e
theory and experiment together with precise measurements of 𝜙 around each TC changing dependently upon 𝜃.
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The metastable film of Co grown epitaxially on Cu(100) has the property different from the two allotropes of bulk cobalt. Namely,

(1) 𝛼-hcp-Co (TA = 695 K, 𝜙e(0001) = 5.30 eV, 𝜙e = 4.71 eV).
(2) 𝛽-fcc-Co (695–1675 K, 𝜙e(100) = 5.25 eV, 𝜙e = 4.50 eV, 𝑇C = 1390 K).
(3) m-fcc-Co (<695 K, 𝜙e(100) = 4.72 eV, 𝜙e ≈ 4.8 eV, 𝑇C = variable).

The metastable fcc-phase of ferromagnetic Co(100) film grown epitaxially on Cu(100) is found by PE to have 𝜙e = 4.72 eV [2673],
hich is intermediate between our values of 5.25 ± 0.17 eV for 𝛽-fcc-Co(100) and 4.50 ± 0.13 eV for 𝛽-fcc-Co (Table 2). Similarly,

he metastable Co-films (1−9 ML) grown on Cu(100) at ∼300–400 K exhibits the 𝛽-like fcc-structure, and they are determined
y PE to have 𝜙e = 5.0 ± 0.2 eV [2879] (see Footnote 121 in Table 1) and evaluated by TC to have 5.34 eV [3654] (see
d. 122).

As shown for m-fcc-Co on Cu(100) or Cu(111) in Table 1, the average of 𝜙e = 4.94 ± 0.30 eV is calculated from the twelve data
chieved for the Co-films by PE or TC, while that of 𝜙e = 4.74 ± 0.23 eV done from six ones by PE alone. The average of 4.74 eV is
uite near to 4.72 eV for m-Co(100) [2673] mentioned above, thereby suggesting that the Co-films [950,968,2879,3475] listed in
able 1 consist mainly of the (100) face, although the former is accompanied with a very large standard deviation (±0.23 eV) and
he latter is due to a single datum alone [2673]. It may be strongly expected to accumulate much abundant data for the both films
y theory and experiment.

Regarding the metastable fcc-Co-film on Cu(100), its Curie point (TC) is reported to have a linear dependence upon Co-coverage
𝜃). Namely, TC increases from ∼100 to 500 K as 𝜃 increases from 1.5 to 2.5 ML, showing a bulk-like behavior (TC = 1390 K)
t 𝜃 ≈ 5–6 ML [3923]. This result suggests strongly that the thick film (𝜃 > 5 ML) is equivalent to bulk cobalt with respect to
he magnetic property. Such a dependence is observed also for a Co/Cu(111) system, where TC increases from 207 to 500 K with
ncreasing 𝜃 from 1.0 to 1.7 ML [4355]. Interestingly, TC is found to have the dependence upon the deposition temperature (T dep),
oo [4394]. Typically for 2 ML, TC increases from 170 to 325 K when T dep is changed from 340 to 275 K [4394].

Similarly for Ni/Cu(100) and Ni/Cu(111) with increasing in 𝜃 from ∼3 to 16 and ∼2 to 17 ML, TC increases from 210 to 540 K
nd 197 to 603 K, respectively [4355], both of which are lower than TC ≈ 630 K accepted generally for bulk nickel.

Experimental and theoretical studies [e.g., 3743,4345–4355,4387–4394] are made on the magnetism of metastable metal films
Fe, Co, Ni, Gd, etc.) grown epitaxially on monocrystalline metal substrates (Cu, Ag, W, Au, etc.). For these systems, additional
tudies are strongly expected to measure finely the work function values around TC as a function of 𝜃.

. Work function change due to superconductive transition

All the data available at present for the work function change due to superconductive transition are summarized in Table 14,
here T S and TM are the temperatures correspondent to the superconductive transition and the work function measurement,

espectively, while 𝜙e
C and 𝜙e

FE are the work functions determined for each metal film/quartz system by CPD and for each bulk
etal by FE, respectively. The 7th column shows Footnote numbers of 102, etc. (see Table 1), which may be helpful for obtaining

urther information about each experiment.

Table 14
Work function change due to superconductive transition.

Surface 𝑇S (K)a TM (K)b 𝜙e
C (eV)c 𝜙e

FE (eV)d 𝛥𝜙e
SN (eV)e Notef Ref.

Al 1.2 293 4.2 ± 0.2 – – 102 [1686]
135 4.2 ± 0.2 –
77 – 4.20
5 – 4.20
4.2 4.1 ± 0.2 –

V 5.4 293 3.0 ± 0.2 – 0.2 ± 0.3 101 [1686]
15 2.9 ± 0.2 –
4.2–15 – 3.77
4.2 3.1 ± 0.2 –

Nb 9.2 293 3.9 ± 0.2 – 0.1 ± 0.3 164 [1686]
28 3.8 ± 0.2 –
5 – 5.01
4.2 3.9 ± 0.2 –

Ta 4.4 293 3.8 ± 0.2 – 0.3 ± 0.3 260 [1686]
35 3.5 ± 0.2 –
4.2–35 – 4.16
4.2 3.8 ± 0.2 –

BSCCO 85 85 4.849 – 0.004 # [912]
50 4.851 –
50 (extrap.) 4.847g

a𝑇S is the superconductive transition temperature.
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b𝑇M is the temperature selected for measuring each work function.
c𝜙e

C is the work function determined by CPD for each metal film prepared on quartz (Al–Ta).
d𝜙e

FE is the work function measured by FE for each bulk metal (Al–Ta).
e𝛥𝜙e

SN ≡ 𝜙e
S − 𝜙e

N is the work function change due to the transition from the normal to superconductive state, where the change for each metal (V–Ta) is
estimated by the present author. Frankly speaking, it is impossible to determine 𝛥𝜙e

SN precisely at the level of ∼0.01 eV or less because a fine measurement
of 𝜙e for any of V–Ta is not made continuously around 𝑇C, in contrast to the below case [912] (see Footnote g below).
fEach of the four numbers shows the Footnote number in Table 1, whilst the mark (#) corresponds to a monocrystalline compound of Bi2Sr2CaCu2O8.
gFig. 3 [912] shows that 𝜙e has the temperature coefficient of d𝜙e/d𝑇 = 5.5× and −5.1 × 10−5 eV/K above and below 𝑇C = 85 K, respectively. Extrapolation
of the former from 85 K (4.849 eV) to 50 K yields 4.847 eV, which affords 𝛥𝜙e

SN = 0.004 eV because the latter is directly determined to have 4.851 eV at
50 K. Even at 0 K more below 𝑇C, the change is still small as 0.009 eV [912].

As may be seen in Column 4 in Table 14, each of the data (𝜙e
C) by CPD for the V–Ta films [1686] is accompanied with a large

tandard deviation of ±0.2 eV. Therefore, it is very difficult to estimate finely the work function change (𝛥𝜙e
SN ≡ 𝜙e

S − 𝜙e
N) due

o the transition between the two states, although Column 6 includes the values of 𝛥𝜙e
SN = 0.2 ± 0.3, 0.1 ± 0.3 and 0.3 ± 0.3 eV

stimated tentatively by the present author for the three metals of V, Nb and Ta, respectively. Here, 𝜙e
S and 𝜙e

N correspond to the
uperconductive and normal states, respectively. On the other hand, the data on 𝜙e

FE measured for each bulk by FE (see Column 5)
eem to be considerably different from those on 𝜙e

C by CPD for each film (except Al), thereby suggesting that the absolute values of
oth 𝜙e

S and 𝜙e
N around T S are also different between the film and bulk for each species. According to the description in text [1686],

he transition has no effect on the pattern of Fowler–Nordheim graphs. In other words, it may be considered that an appreciable
hange in 𝜙e is not detected around T S, thereby leading to the tentative estimation as follows. Namely, 𝛥𝜙e

SN is as small as ±0.01
V or less by consideration of the data that 𝜙e

F = 3.77 ± ? eV = constant in the range of 4.2–15 K sandwiching T S = 5.4 K for V and
lso that 𝜙e

F = 4.16 ± ? eV = constant at 4.2–35 K covering T S = 4.4 K for Ta. At any rate, such a fine measurement as the level of
10 meV or less may be necessary in general in order to measure a very minute change around T S. From this point of view, let’s
xamine the below data obtained for a chemical compound since no datum achieved by fine measurements of 𝛥𝜙e

SN for any metal
s yet found by the present author.

Regarding a monocrystalline specimen of Bi2Sr2CaCu2O8 [912], a plot of work function vs. temperature is found to have a
inimum (𝜙e = 4.849 eV) at the transition temperature (T S = 85 K), where the temperature coefficient (d𝜙e/dT ) changes from
.5 × 10−5 eV/K for the normal state to −5.1 × 10−5 eV/K for the superconductive one [912]. Therefore, the latter work function
𝜙e
S) increases up to 4.851 eV at 50 K, while the former one (𝜙e

N) extrapolated from T S to 50 K is estimated to be 4.847 eV. In
onsequence, the net change in work function (𝛥𝜙e

SN ≡ 𝜙e
S − 𝜙e

N) is determined to be 0.004 eV at 50 K or 0.009 eV at 0 K [912].
amely, 𝜙e increases only by less than 0.01 eV according to the transition from the normal to superconductive state.

For another sample of YBa2Cu3O7−x (T S ≈ 80−90 K) [4365], the work function is found to increase by 19 or 31 meV as T
ecreases from ∼80 or 89 to 30 K. Such an increase, however, is not equal to the net value of 𝛥𝜙e

SN itself because the former
ncludes the change of the thermal effect (𝛥𝜙e ≡ 𝛼•𝛥𝑇 ) coming from the temperature difference of 𝛥𝑇 ≈ 50 or 59 K (see Section 10).

0. Remark on work function measurements around critical temperatures

As already mentioned for the transition from ferro- to paramagnetic state in Section 8.1, the net change of 𝛥𝜙e
PF = 0.00 or −0.004

V is found for Ni(100) (see Table 13) by the same group of workers [496,3924] on the basis of very precise measurements at the
evel of ∼1 meV. Such a minute change as below 0.01 eV can hardly be observed accurately by usual work function measurements
ccompanied with uncertainty of about ±0.05 eV or more in general. In other words, the low level of ∼0.01 eV or less is usually
isregarded in the treatment of work function data in many fields of physics and chemistry. However, such fine measurements of
oth 𝛥𝜙e

PF ≡ 𝜙e
P −𝜙e

F and 𝛥𝜙e
SN ≡ 𝜙e

S −𝜙e
N owing to the magnetic and superconductive transformations [496,3924], respectively, are

ery interesting and important from the viewpoint of fundamental physics. In consequence, it is fully expected to investigate the
hanges much further by both theory and experiment, although they seem generally to be very minute (at the level of ∼0.01 eV
r less) comparably to such a thermal work function change (𝛥𝜙e ≈ 3 kT/2 ≈ 1.3 × 10−4 × 50 ≈ 0.006 eV) even in a narrow range

of less than ∼50 K at the intermediate temperatures sandwiching the magnetic or superconductive transition temperature (TC or
T S). In other words, the temperature dependence of 𝜙e inherent in any metals (see just below for typical examples) should be taken
into consideration whenever the net work function change due to the transition itself alone is to be measured precisely in some
temperature range covering the critical point (TC or T S) under study. Such a precise measurement is needed around TA and Tm,
too.

With respect to the temperature dependence of work function, theoretical and experimental studies are made by many workers
[495–502,3741,4122,4123, etc.], and much data on the temperature coefficient (𝛼) are summarized in Table 6 [1351]. Usually, 𝛼
is found to range largely from about ±10−4 to ±10−5 eV/K depending upon metal species and also to scatter widely from specimen
to specimen even for the same species. Typically for W(100) and W(110), 𝛼 changes in a wide range from <+1 × 10−4 eV/K [84]
to −1.09 × 10−4 eV/K [502] and from +(6.3 ± 0.6) × 10−5eV/K [194] to −3.7 × 10−4 eV/K [1084], respectively. Similarly for
Ni and Mo, it varies greatly from −(9.9 ± 1.7) × 10−6eV/K [499] to –1.0 × 10−3eV/K [179,650] and from +(7.86 ± 0.04) ×
10−5eV/K [909] to −2.21 × 10−4 eV/K [124], respectively, from worker to worker. Such situation generally makes it very difficult
to measure precisely a very minute change (probably much less than ±0.1 eV) in work function at the critical temperature of
allotropic, magnetic, superconductive or solid to liquid state transition, as already summarized in Sections 7–9 and Tables 11–14.

It should be emphasized here again that the work function change due to the above transitions should be measured precisely at the
level of ±1 meV (see Footnote (i) in Table 13). In other words, we should try to determine precisely (1) the temperature coefficient
289



H. Kawano Progress in Surface Science 97 (2022) 100583

m

(𝛼) in a suitable range covering the critical temperature (TA, TC, T S or Tm), (2) the work function values after extrapolating the
relationship (𝜙e vs. T ) to the temperatures lower or higher than the critical point under study, and (3) the net value of work function
change due to the transition alone without including the considerable effect due to 𝛼. Regarding the work function change due to
𝛼 = ±10−4 eV/K in a narrow range of 100 K, for instance, it is estimated to be ±0.01 eV, which is comparable to many of the values
found as the probable change (net value) owing to the transition alone under study (for further information, see Footnote (l) in
Table 11 and also Footnotes (k) and (l) in Table 13).

In conclusion, much further work is needed for any sample to determine accurately the minute value of work function change
due to transition alone at TA, TC, T S or Tm.

11. Work function dependence upon the size of fine particles

In this section, a classical theory of work function about fine particles will be summarized briefly together with the comparison
between the theoretical values and the experimental data on work function available for various metal particles. After outlining a
quantum theory about the energetics correlating either ionization energy or electron affinity of atom with work function of bulk
solid, photoelectron spectroscopic studies will be focused on a variety of metal clusters and also on the determination of bulk work
function from spectroscopic data.

11.1. Classical theory for fine particles

With respect to the fine particle having a small radius (r), a classical theory about its work function based on the image-potential
odel affords the following equation [3442].

𝜙e(𝑟) = 𝜙e(∞) + 𝐶p𝑒
2∕𝑟, (17)

= 𝜙e(∞) + 5.40∕𝑟 (Å) (for 𝐶p = 3∕8). (17′)

Here, 𝜙e(∞) is equivalent to 𝜙e(poly) for bulk corresponding to r → ∞, and e is the elementary electric charge. By taking the
coefficient of Cp = 3∕8, 𝜙e(∞) for bulk Ag is estimated from Eq. (17′) to be 4.37 eV [3442] as the best fit to the experimental data
on 𝜙e(𝑟) = 4.65, 4.57 and 4.55 eV for 𝑟 = 20, 27 and 30 Å, respectively [3127]. The value of 𝜙e(poly) = 𝜙e(r → ∞) = 4.37 eV thus
calculated [3442] is considerably different from the experimental value of 𝜙e(poly) = 4.90 eV determined directly by PE for the
macroscopic surface [3127] (see Footnote 208 in Table 1), but the former agrees exactly with ours of 4.39 ± 0.02 eV recommended
for polycrystalline Ag in Table 2.

Tentatively, the available data on both 𝜙e(∞) and r(Å) are substituted into Eq. (17′). Then, the values of 𝜙e(r) thus calculated by
the present author are compared with those determined experimentally by the corresponding author(s), thereby yielding the results
of (1)–(13) below. Here, the values in {A}, <B > and (C/D) indicate that A is the polycrystalline work function of 𝜙e(poly) (in eV)
cited as 𝜙e(∞) from Column 3 in Table 2, B is the radius of r (in Å) either reported by the corresponding author(s) or estimated
by the present author (see Section 11.3), C is the work function of 𝜙e(r) (in eV) calculated from Eq. (17′) by the present author
employing A ≡ 𝜙e(poly) and B ≡ r(Å), and D is 𝜙e(r) measured by the corresponding author(s) by means of photoelectric quantum
yield of each metal particle. In the last parentheses is given the footnote number in Table 1 so as to provide further information
about each data.

(1) Al {4.26 ± 0.03} ∕∕ < 22 > (4.51 ± 0.03/?) [2199] (449).
(2) Al {4.26 ± 0.03} ∕∕ < 52.9 > (4.36 ± 0.03/?) [2199] (449).
(3) Ni {5.06 ± 0.06} ∕∕ < 60–100 > (5.13 ± 0.02/5.1) [2667] (448).
(4) Cu {4.51 ± 0.04} ∕∕ < 30 > (4.69 ± 0.04/4.80 ± 0.1) [3190] (149).
(5) Pd {5.17 ± 0.06} ∕∕ < 30 > (5.35 ± 0.06/5.45 ± 0.1) [3190] (149).
(6) Ag {4.39 ± 0.02} ∕∕ < 20 > (4.66 ± 0.02/4.65) [3127] (208).
(7) Ag {4.39 ± 0.02} ∕∕ < 27 > (4.59 ± 0.02/4.57) [3127] (208).
(8) Ag {4.39 ± 0.02} ∕∕ < 30 > (4.57 ± 0.02/4.55) [3127] (208).
(9) Ag {4.39 ± 0.02} ∕∕ < 30 > (4.57 ± 0.02/4.50) [3190] (149).
(10) Ag {4.39 ± 0.02} ∕∕ < 50 ± 20 > (4.52 ± 0.05/4.25 ± 0.1) [1562] (204, 208).
(11) Ag {4.39 ± 0.02} ∕∕ < 50 ± 20 > (4.52 ± 0.05/4.65) [1562].
(12) Au {5.30 ± 0.04} ∕∕ < 30 > (5.49 ± 0.04/5.20 ± 0.1) [3190] (149).
(13) Au {5.30 ± 0.04} ∕∕ < 60 ± 30 > (5.42 ± 0.07/5.2 ± 0.1) [1562].

As may be seen for the results (3)–(13) with (10)–(13) excluded, each theoretical value of 𝐶 ≡ 𝜙e(r) is found to agree well or
fairly with each experimental data on 𝐷 ≡ 𝜙e(r). However, it should be emphasized that any value of 𝐶 ≡ 𝜙e(r) to be calculated
is strongly dependent upon 𝐴 ≡ 𝜙e(∞) to be cited from literatures. As typically shown in (6)–(8) for Ag [3127], the experimental
value of 𝜙e(r) increases from 𝐷 = 4.55 to 4.65 eV as r decreases from 30 to 20 Å, just as predicted by theory (𝐶 = 4.57 → 4.66 eV).
The results of (1) and (2) above are outlined in Section 11.3, but the experimental data on 𝜙e(r) are not described in Ref. [2199].

Fine particles of Ag (50 ± 20 Å) are formed by passing Ag-vapor through the He-gas boiling off from liquid-He, and 𝜙e(r) is
measured to be 4.25 ± 0.1 eV [1562]. This is smaller than our calculated value of 4.52 ± 0.05 eV (see Result (10) above). In

e
a separate experiment after purification of the particles by passing through a trap at ∼77 K, however, 𝜙 (r) is measured to be
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𝐷 = 4.65 eV [1562] (see Result (11)). This value for 𝑟 = 50 ± 20 Å is not smaller but larger (by 0.08−0.15 eV) than the others
(𝐷 = 4.57–4.50 eV) measured for these smaller particles of Ag for 27–30 Å [3127,3190] (see Results (7)–(9)). The former for a
larger particle (50 ± 20 Å) [1562] is as large as 𝐷 = 4.65 eV found for a smaller particle of Ag (20 Å) (see Result (6)) [3127],
thereby suggesting it necessary to examine the question whether the actual size of Ag-particle decreases from 50 ± 20 to mostly
∼20 Å after the above purification.

For another result of (3) Ni [2667], fine particles (r = 60–100 Å) are produced by a spark discharge between a nickel plane and
a nickel tip in He as a carrier gas, and 𝜙e(poly) = 4.9 eV is estimated from literature values (see Footnote 448 in Table 1) and also
etermined directly for a flat Ni surface by photothreshold [2667]. Substitution of both 𝜙e(∞) = 4.9 eV and 𝑟 = 80 ± 20 Å into Eq.

(17′) yields the result of 𝐶 ≡ 𝜙e(r) = 4.97 ± 0.02 eV < 𝐴 ≡ 𝜙e(poly) = 5.06 ± 0.06 eV (Table 2). On the other hand, substitution of
the latter (our value of 5.06 eV) yields 𝐶 ≡ 𝜙e(r) = 5.13 ± 0.07 eV, which is essentially equal to the experimental value of 𝐷 ≡ 𝜙e(r)
= 5.1 eV [2667], as shown in the result (3) above. On the contrary, substitution of 𝜙e(∞) = 4.9 eV and 𝜙e(r) = 5.1 eV into Eq.
(17′) yields 𝑟 = 27 Å [2667]. This is smaller than r = 60–100 Å mentioned just above, thereby suggesting it necessary to examine
the effective values of r and/or 𝜙e(∞) under study.

As demonstrated above for six metal species (1)–(13), substitution of our most probable value of 𝜙e(∞) into Eq. (17′) yields that
𝜙e(r) is in good or fair agreement between theory (C) and experiment (D). This result affords an additional evidence to support that
many of our most probable values of 𝜙e(poly) recommend in Table 2 are reasonably accurate and reliable.

In the next step, let’s examine the theoretical values of 𝜙e(r) calculated by Rudnitskiı̆ et al. [2973,4100] exemplified below.
Here, {A} and (B/C) indicate that A is the 𝜙e(poly) cited as 𝜙e(∞) from Table 2, B is 𝜙e(r) calculated from Eq. (17′) by the present
author, and C is 𝜙e(r) evaluated by the original theory considering both structure and shape of the small particles (typically, 𝑟 = 90
Å) under study [2973].

(1) W {4.56 ± 0.03} ∕∕ (4.62 ± 0.03/4.25), octahedron.
(2) W {4.56 ± 0.03} ∕∕ (4.62 ± 0.03/4.36), truncated octahedron.
(3) W {4.56 ± 0.03} ∕∕ (4.62 ± 0.03/4.40), cube.
(4) W {4.56 ± 0.03} ∕∕ (4.62 ± 0.03/4.42), cubic octahedron.
(5) W {4.56 ± 0.03} ∕∕ (4.62 ± 0.03/4.75), real sphere.
(6) W {4.56 ± 0.03} ∕∕ (4.62 ± 0.03/5.30), rhombododecahedron.
(7) Au {5.30 ± 0.04} ∕∕ (5.36 ± 0.04/4.44), rhombododecahedron.
(8) Au {5.30 ± 0.04} ∕∕ (5.36 ± 0.04/4.58), real sphere.
(9) Au {5.30 ± 0.04} ∕∕ (5.36 ± 0.04/4.72), cube.
(10) Au {5.30 ± 0.04} ∕∕ (5.36 ± 0.04/4.84), cubic octahedron.
(11) Au {5.30 ± 0.04} ∕∕ (5.36 ± 0.04/4.93), truncated octahedron.
(12) Au {5.30 ± 0.04} ∕∕ (5.36 ± 0.04/5.01), octahedron.

In the case of 𝑟 = 90 Å for both W and Au, both of the results (1)–(6) and (7)–(12) indicate that the respective six values of
≡ 𝜙e(r) owing to the original theory [2973] are different notably with each other among the six shapes and also that the values

C) differ considerably from those (B = 𝜙e(r) = 4.62 and 5.36 eV) calculated for W and Au, respectively, by the present author
sing Eq. (17′) based on the real sphere model. Among the respective six models, the smallest difference (0.13 eV) between B and C
s found for the real sphere model (5) for W, whilst that (0.35 eV) is done for the octahedron model (12) instead of the real sphere
ne (8) for Au.

Interestingly, Makov et al. [4198] as well as Peterson et al. [4322] point out that Schumacher and co-workers employ the
oefficient of Cp = 1/2 in their earlier paper (in 1978) [4200] but they replace it later (in 1984) by 3/8 [2383]. With a special
ttention added to this replacement, the present author adopts the compiled data [4198] in order to examine the relative correctness
f 1/2 and 3/8, thus yielding the following results.

(1) Na {2.54 ± 0.03} ∕∕ ⟨3.4–7.5⟩ (2.49/2.48) [4198].
(2) K {2.29 ± 0.02} ∕∕ ⟨4.1–7.4⟩ (2.40/2.50) [4198].
(3) Ag {4.39 ± 0.02} ∕∕ ⟨20–32⟩ (4.35/4.34) [4198].

Here, the values in {A} and ⟨𝐵⟩ indicate that A (in eV) is the work function of 𝜙e(poly) cited from Table 2 and B (in Å) is the
radius (r) of the particle under study. The dual values of 𝜙e(∞) (in eV) given as in the form of (C/D) are tentatively estimated by the
resent author using the experimental data [4148,4200] compiled as Figs. 3–5 (plots of I vs. 1/r) [4198], where C and D correspond
o Cp = 3∕8 and 1∕2 in Eq. (17), respectively, and I is the ionization energy of the particle under study. As shown by Results (1)
nd (3), the differences between C and D and between A and C are as small as 0.01 and 0.05 (or 0.04) eV, respectively, whilst
esult (2) indicates that each of the differences among A, C and D is too large as 0.10 eV or more to be taken into consideration

or the present purpose. These typical results suggest it not easy to solve experimentally the problem which coefficient of 3/8 or
/2 is more correct or reasonable.

With respect to Li-clusters (n = 2–68), the local exchange–correlation potential model yields 𝜙e(∞) = 2.25 eV and Cp = 0.51,
whilst the local density approximation model does 3.21 eV and 0.48, respectively [4262]. Namely, Cp is found to be very close to
1/2, but both of 𝜙e(∞) themselves are considerably different from 𝜙e(poly) = 2.90±0.03 eV [Here] and 2.93 eV [363] recommended
in Table 2.

According to Fig. 2 [4321], where the plot of 1/r vs. I – 𝜙e(∞) has the two straight lines corresponding to 3/8 r and 1/2 (r
+ 1.54), all of the values calculated theoretically for I are found to exist inside alone between the two lines, slightly nearer to the

former (3/8 r) [4321].
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By analysis of the experimental data on Kn (n = 30–101) [3552,4227], the coefficient (Cp) is determined to be 0.34 or 0.38,
the respective values of which afford 𝜙e(∞) = 2.30 and 2.29 eV for K(poly) [4244], identically equal to our most probable value
of 𝜙e(poly) = 2.29 ± 0.02 eV and also to 2.29 eV [?] and 2.30 eV [3337] recommended in Table 2. Interestingly, both of Cp’s are
considerably smaller than 1/2 and much nearer to 3/8, similarly exemplified just above [4321]. According to the conclusion [4198],
Cp = 1∕2 and 3∕8 account better for the experimental observations for relatively large and small clusters, respectively. Further
information about the coefficient may be obtainable from Refs. [4197,4302,4323].

11.2. Quantum theory about the energetics correlating either ionization energy or electron affinity with work function

On the basis of the quantum theory about the energetics correlating ionization energy (or electron affinity) of atom with work
function of bulk solid, Perdew [4101] yields,

𝐼(𝑟s) = 𝜙e(∞) + 𝑒2∕2(𝑟s + 𝑑G). (18)

𝐸(𝑟s) = 𝜙e(∞) − 𝑒2∕2(𝑟s + 𝑑G). (19)

Here, r s is the Wigner–Seitz radius, and dG is the microscopic distance from the infinite planer Gibbs surface to its image plane.
Typically for Na (r s = 3.93 bohr, dG(r s) = 1.24 bohr and 𝜙e(∞) = 𝜙e = 2.75 eV cited from Ref. [1045]), Eqs. (18) and (19) afford
I(r s) = 5.38 eV and E(r s) = 0.12 eV [4101]. On the contrary, our citation of 𝜙e = 2.54 eV (Table 2) yields 5.17 eV and E(r s) =
−0.09 eV, which are in better and worse agreements with 𝐼 = 5.14 eV and 𝐸 = 0.55 eV for Na–atom, respectively. Generally, the
agreement between E(r s) and E is not better than that between I(r s) and I for many of the eight elements listed in Table II [4101].

11.3. Photoelectron spectroscopy of clusters

The ionization energies of the different charge states of a spherical metal cluster are given [2199] by

𝐼(𝑍) = 𝜙e(∞) + (𝑍 + 𝜌)𝑒2∕(𝑟c + 𝛿). (20)

Here, rc is the effective radius of the spherical cluster as calculated from its density and weight, Z is its charge state, 𝜌 is the
quantum correction of bulk work function for spherical cluster, and 𝛿 is the correction of the cluster radius owing to the electron
spillover into vacuum. In the case of Al, 𝜌 = 0.49 ± 0.04 is determined by experiment [2199] and 𝛿 = 0.54–1.1 Å is estimated by
theory [553], in contrast to 0.42 < 𝜌 < 0.45 calculated by quantum theory [3208] and to 𝜌 = 0.50 and 𝛿 = 0 in the classical
theory [3208].

On the basis of the experimental data on the linear relationship between I(Z) and Z for Al2000 or Al32000±150 with Z = –1 up to
+5 and 𝜌 = 0.49, Fig. 2 [2199] affords 𝜙e(∞) = 4.28 ± 0.03 eV (see Footnote 60 in Table 1), where the clusters are produced by
sputtering through a magnetron discharge into a stream of liquid-nitrogen-cooled rare gas. The above value of 𝜙e(∞) is just equal to
𝜙e(poly) = 4.28 ± 0.01 eV determined by PE for the Al/quartz system [612,1045] and also essentially equal to ours of 4.26 ± 0.03
eV recommended for polycrystalline Al (see Table 2). By substitution of 𝜙e(∞) = 4.26 ± 0.03 eV and of rc = 22 and 52.9 Å into Eq.
(17′), 𝜙e(rc) = 4.51 ± 0.03 and 4.36 ± 0.03 eV are evaluated for the clusters of Al2000 and Al32000±150, respectively (see Footnote
449 in Table 1 and also Results (1) and (2) Al [2199] compiled together with many other examples (3)–(13) in Section 11.1).

In regard to neutral clusters (Mn, typically n = 4–34 for Kn) formed in adiabatic expansions of neutral vapor from a high
temperature oven [4148], photoionization mass spectrometry of Mn

+ makes it possible to measure the first ionization energy of
I(n) and, hence, to determine 𝜙e(∞) from the intercept (n → ∞) of a plot (I(n) vs. n−1∕3) according to Eq. (21) [2171].

𝐼(n) = 𝜙e(∞) + (3𝑒2∕8𝑟s)n−1∕3. (21)

Some of the typical results are summarized below together with the sample size (n) under study. Regarding {A}, (B) and ⟨𝐶⟩

below, A is our most probable value of 𝜙e(poly) (in eV) listed in Table 2, B is the experimental value of 𝜙e(∞) (in eV) determined
from the above plot for each cluster (Mn) by the corresponding worker(s), and C is the number (n) of the atom constituent of Mn
under study.

(1) Na; {2.54 ± 0.03} ∕∕ (2.52 ± 0.04) ⟨15–65⟩ [2383,4148].
(2) Na; {2.54 ± 0.03} ∕∕ (2.68) ⟨2–137⟩ [2171].
(3) Na; {2.54 ± 0.03} ∕∕ (2.71) ⟨3–150⟩ [4197].
(4) Al; {4.26 ± 0.03} ∕∕ (4.25) ⟨3–70⟩ [4197].
(5) Al; {4.26 ± 0.03} ∕∕ (4.338) ⟨32–95⟩ [4192].
(6) Al; {4.26 ± 0.03} ∕∕ (4.349) ⟨32–95⟩ [4192].
(7) K; {2.29 ± 0.02} ∕∕ (2.23 ± 0.04) ⟨4–34⟩ [4148].
(8) K; {2.29 ± 0.02} ∕∕ (2.28) ⟨19–200⟩ [4161].
(9) K; {2.29 ± 0.02} ∕∕ (2.28) ⟨70–300⟩ [4161].
(10) K; {2.29 ± 0.02} ∕∕ (2.29) ⟨30–101⟩ [4227].
(11) K; {2.29 ± 0.02} ∕∕ (2.30) ⟨3–110⟩ [4197].
(12) K; {2.29 ± 0.02} ∕∕ (2.52) ⟨30–101⟩ [4227].
(13) Fe; {4.55 ± 0.05} ∕∕ (3.81 ± 0.04) ⟨?⟩ [4148].
(14) Cu; {4.51 ± 0.04} ∕∕ (4.70 ± 0.04) ⟨3–500⟩ [4197].
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(15) Ag; {4.39 ± 0.02} ∕∕ (4.19) ⟨3–20⟩ [4197].
(16) In; {4.05 ± 0.06} ∕∕ (4.12) ⟨3–18⟩ [4197].
(17) Ce; {2.89 ± 0.07} ∕∕ (2.40) ⟨2–17⟩ [4263].
(18) Pr; {2.83 ± 0.11} ∕∕ (2.50) ⟨2–21⟩ [4263].
(19) Hg; {4.50 ± 0.02} ∕∕ (6.88 ± 0.05) ⟨≤12⟩ [4148].
(20) Hg; {4.50 ± 0.02} ∕∕ (?) ⟨1–70⟩ [4149].
(21) Hg; {4.50 ± 0.02} ∕∕ (?) ⟨2–35⟩ [4162].
(22) Tl; {3.82 ± 0.05} ∕∕ (3.89) ⟨3–20⟩ [4197].
(23) Pb; {4.07 ± 0.05} ∕∕ (4.00 ± 0.10) ⟨?⟩ [4148].

Regarding Result (2) for Na [2171] and that (4) for Al [4197] above, further information is obtainable from Footnotes 40 and
459 in Table 1, respectively. The experimental data on 𝐵 ≡ 𝜙e(∞) = 4.338 and 4.349 eV for Results (5) and (6) for Al [4192] are
obtained at 230 and 65 K, respectively, whilst 𝐵 = 2.29 and 2.52 eV in Results (10) and (12) for K [4227] are determined from the
data on both Fowler and linear plots according to Figs. 1 and 2 [4227], respectively. The value of 𝐵 = 2.28 eV for K in Results (8)
and (9) is calculated from the experimental data on Kn

2+ and Kn
3+, respectively, by using another equation [4161], in contrast to

the others (1)–(7) and (10)–(23) where B comes from the data on Mn
+.

As may be seen above, some of the metals are very poor in agreement between 𝐵 ≡ 𝜙e(∞) and 𝐴 ≡ 𝜙e(poly). Regarding Hg,
for example, it is for n > 70 alone that the extrapolation (n → ∞) of a plot (In vs. n−1∕3) converges linearly to 𝜙e(∞) = 4.49
eV [1669,4149] or equal to 4.475–4.52 eV for Hg recommended by several authors in Table 2.

Further information about clusters is obtainable from excellent reviews [3669,4138,4194,4261,4269,4301–4304], which sum-
marize concisely or comprehensively both experimental methods and theoretical analyses and also typical data on ionization energy
(I), electron affinity (E), bulk work function (𝜙e(∞)) and so on for various species of clusters.

12. Overall summary and conclusions

From the greatly abundant data summarized in Tables 1–14 and Figs. 1–2 and also from the above critical analysis and discussion
given in Sections 1–11, we may yield the essential points of the various contents as follows.

(1) The experimental and theoretical data mainly on 𝜙e, in addition to 𝜙+ and 𝜙−, for mono-, submono- and polycrystalline
surfaces are compiled in Table 1, which includes more than ten thousands of work function data for about 600 surface species
covering 88 kinds of the chemical elements. The data are based upon as much as 4461 references selected from about ten thousands
of articles surveyed during the last 20 years. However, even the former seems to be merely less than a half of the literatures published
for the elemental work function to date in the world. The probable lack of more than the half is mainly because it is practically
difficult to thoroughly cover almost all the related literatures by the single author himself alone. About the work function data on
the latter half to be properly included herein, both survey and compilation are confidently expected to be made by other authors
in the near future (cf. Section 1).

(2) Owing to the above difficulty, it is only about 200 surface species alone that are found to have more than five data on 𝜙e

for each surface species to be practicable for estimating its most probable value. At present, however, Table 1 may be usable as the
most abundant and latest database for 𝜙e, 𝜙+ and 𝜙−, each of which is accompanied with a note about the experimental condition
and measuring method and some of which are attached with 490 footnotes in total. In addition, Table 1 may also be very useful for
readily grasping the outline of work function studies accumulated to date for a variety of surface species under various conditions
(cf. Section 2).

(3) Many of the experimental data on 𝜙e, 𝜙+ and 𝜙− listed in Table 1 may be useful for examining the theoretical predictions
according to Eqs. (1)–(3). Namely, they make it possible to solve the problems whether (i) 𝜙+ = 𝜙e holds for a clean and smooth
monocrystalline surface alone, (ii) 𝜙+ > 𝜙e does for all of poly- and submonocrystalline surfaces and (iii) 𝜙− = 𝜙e applies to any
ones, although the data on 𝜙+ and 𝜙− tabulated therein are very scanty in surface species (less than 39) compared with those (about
600) on 𝜙e (cf. Section 4).

(4) Among the sample layer/substrate systems listed in Column 1 of Table 1, some of them are inhomogeneous (patchy, bumpy
and/or lattice-defective) in surface structure over the entire area and, hence, the work function for each layer is generally lower
than that for bulk. To prepare a smooth layer equivalent substantially to bulk, it is necessary in general to select either annealing or
deposition at a temperature (T a or T d) higher than the working temperature (T ) so as to satisfy the condition of T a (or T d) ≥ Tm/3,
as expressed in (T a) or {T d} at the back of T (e.g., ∼300) in Column 5 of Table 1 (cf. Section 2.5 and Footnote 363 in Table 1).

(5) Typically for Si, both work function and Richardson constant to be measured directly from Richardson plots are generally
subject to underestimation mainly because the internal reflection coefficient (re) of electron is not negligibly small compared with
unity. In such a case, we can estimate the correct value (𝜙e

H) from the measured one (𝜙e
r ) by using Eq. (8) proposed by Hensley,

where the measured value (Ar) corresponds to (1 − re) AR. Many attempts made by the present author using Eq. (8) yield very
reasonable results, thereby suggesting that it should be employed by many workers in various cases of thermionic emission studies
(cf. Section 2.8.6).

𝜙e
H = 𝜙e

r + 𝑘𝑇 ln(120∕𝐴r ). (8)

Table 1 includes many values of both 𝜙e
H and 𝜙e

r (cf. Footnotes 384–386, 431 and 456).
(6) The most probable values of 𝜙e estimated from the data in Table 1 are summarized in Column 3 in Table 2, and many of them

e
may probably be consultable as a more useful and reliable source on 𝜙 , compared with the others in Columns 6–8 [1045,1354,1358].
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This is mainly because the former is much abundant in surface species and also because it covers these newer data published after
∼1980, compared with the latter based entirely on those data published more than about forty years ago (cf. Section 3.2).

(7) Regarding about 200 surface species in Table 2, the most probable values of 𝜙e are estimated from relatively abundant data
larger than 5 in number). Among the work function values, especially those with double and single underline have much smaller
tandard deviations of ≤ ± 0.05 and ≤ ± 0.10 eV, respectively and, hence, both of them may probably be more reliable than the
thers with no underline. On the other hand, the values with the superscript (x, y or z) originate from a small number (2, 3–5 or 1)
f work function data in Table 1 and, hence, they may possibly be less reliable or accurate than the others based on much abundant
ata (up to the larger number of ∼400 for Cs and W). Consequently, the former is needed to be further investigated in order to
ccumulate much data worth while to be consultable with confidence (cf. Section 3).

(8) In spite of the fact that work function is one of the important chemico-physical properties of solid surfaces, its data are still
ery scanty in total number and rather doubtful in accuracy for some of the lanthanides and actinides, in contrast to many of the
lkali-, alkali earth- and transition-metals. The former species, as well as those having no data in the 6–8th columns in Table 2, are
xpected to be added with accurate data on 𝜙e by further investigation (cf. Section 3).

(9) In addition to 𝜙e, the most probable values of 𝜙+ and 𝜙− are listed in Columns 4 and 5 in Table 2, both of which cannot
e examined objectively by comparison with any others because none of the literatures [typically, 12,1045,1354,1358] has any
ecommended values of 𝜙+ and 𝜙−. However, the values of 𝜙+ in Table 2 may also be usable as a convenient source when we try to
nalyze these data on positive ion emission from polycrystalline surfaces, although the total number of surface species investigated
or 𝜙+ to date is very small (only 39 surface species) (cf. Section 3).

(10) Of the work function values (B) recommended for 66–114 surface species (see the last line in Table 2) by other
authors [1045,1354,1358], those for typical 40 species have a large discrepancy (|𝐵 − 𝐴| = 0.15–1.00 eV and (|𝐵 − 𝐴|)∕𝐴 = 3–19%)
ompared with each of our most probable values (A). This is probably because some of B are entirely based on these less-abundant
nd less-reliable data published more than ∼40 years ago (cf. Examinations (1)–(40) in Section 3.2).

(11) Particularly, each of the values (B) recommended by the other authors for 12 surface species among the above 40 ones has
very large discrepancy (|𝐵 − 𝐴| > 0.2 eV and also (|𝐵 − 𝐴|)∕𝐴 > 10%) from ours (A) (cf. Section 3.2); namely, (1) 4.98 eV for 𝛼-Be,

6) 4.33 eV for 𝛼-Ti, (10) 5.10 eV for Cu(100), (37) 4.30 eV for Au and so on with # attached (cf. Section 3.2).
(12) Both Michaelson and Fomenko have made a valuable contribution to compiling critically the work function data published

p to ∼1980, and all of the values recommended have long been widely consulted still to date by a great many workers in the
orld (cf. Section 3.2). About 20–30% of the values, however, have a large discrepancy ranging from ∼0.2 to 1.0 eV against ours,
s shown in Categories (4)–(11) in Table 3 and also in the list of Examinations (1)–(40) in Section 3.2. Namely, such discrepant
alues don’t seem to be accurate or reliable enough to be straight or undoubtedly acceptable today, as mentioned in Points (10) and
11) above. Therefore, it may be advised that at least those values with # attached in the above list should be revised tentatively
fter our most probable values estimated from much more abundant and reliable data published to date, although any of ours is
ot yet insured to be correct enough to be straight acceptable today (cf. Section 3.2).

(13) Among our 609 surface species listed for 88 elements in Table 2, about 480 surfaces of 21 elements don’t find any
alues of work function recommended by other authors. Especially, many of the monocrystalline work function values are newly
ecommended here for about 70 surface species of 42 elements (e.g., alkalis, alkali earths, V, Cr, Rh, Pb), many of which are based
enerally on the abundant source including more than five work function data published to date. This is one of the unique merits
f the present article exceeding the other publications (cf. Section 3.2).

(14) The work function values with x, y or z superscripted according to scanty data (only 2, 3–5 or 1 in total number) are
entatively added as a rough estimate for each of about 390 surface species (e.g. monocrystals of 𝛾-Ca, 𝛾- and 𝛿-Mn, Tc, Cd, In,
-Sn, Eu, 𝛼- and 𝛽-Tb, 𝛼- and 𝛽-Hf, etc., and also polycrystals of P, 𝛾- and 𝛿-Mn, 𝛿-Fe, 𝛽- and 𝛾-Sr, 𝛾-Sn, I, 𝛽-Tb, At, Ac, Cm, etc.)

in Table 2. Much data should be accumulated by further investigations so that each of the values may be insured or increased in
accuracy (cf. Section 3.2).

(15) Disappointedly, Table 2 does not include many important surface species such as C(110), C60(100), C60(110), Al(112),
𝛽- and 𝛾-Fe(112), Ni(112), Zn(1011), Ga(112), As(100), As(110), Se(0001), 𝛼-Sr(112), 𝛼-Y(1011), 𝛼-Zr(1011), Pd(112), Ag(112),
Cd(1011), In(112), Sb(110), Sb(112), Te(0001), 𝛽-Ce(112), Hf(1011), Tl(1011), Pb(112), Bi(1010) and so on, although they seem
to be interested by many workers as the fundamental species in surface science. Such a present situation indicates that further
investigations by both theory and experiment are needed to accumulate the reliable work function data for many surface species
covering not only the above but also many others such as exemplified in Point (14) just above (cf. Section 3.2).

(16) The effective work functions (𝜙+, 𝜙e and 𝜙−) for the emissions of positive ion, electron and negative ion by the mechanism
of thermal stimulation are generally given by Eqs. (1)–(3), respectively, and their values for any patchy surface are different from
𝜙a given by Eq. (4) (cf. Sections 1 and 4).

𝜙+ = 𝑘𝑇 ln[Σ𝐹i exp(𝜙i∕𝑘𝑇 )], (1)

𝜙e = −𝑘𝑇 ln[Σ𝐹i exp(−𝜙i∕𝑘𝑇 )], (2)

𝜙− = −𝑘𝑇 ln[Σ𝐹i exp(−𝜙i∕𝑘𝑇 )], (3)

𝜙a = Σ𝐹i𝜙i. (4)

(17) By using the literature values of 𝜙i and 𝐹i, the theoretical values of 𝜙+ and 𝜙e calculated for seven W-specimens from
Eqs. (1) and (2) are generally in fair agreement with the experimental data in a wide range of the degree of monocrystallization
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(𝛿m ≈ 0.34 − 0.96), which corresponds to the largest among the fractional surface areas (F i’s) for each specimen under study. Such
agreement is found for other metals (Ni, Nb, Mo, Ta and Ir), too, thus supporting again our equations (cf. Section 4.2 and Table 6).

(18) Consequently, it may be safe to conclude that each of the work function values to be thus calculated theoretically is generally
expected to agree well with the data to be obtained experimentally for the specimen under study. Here, the local work function (𝜙i)
may ready be citable from Table 1 or 2 according to the local face species corresponding to the area (𝐹i) to be cited from literatures.
Of course, each of the work function values to be calculated from Eqs. (1)–(3) based on PSI, TE and NSI, respectively, is generally
expected to be equivalent to that to be determined for the same species by any other methods such as FE and PE without depending
upon the emission mechanisms or processes (cf. Sections 1 and 4).

(19) For any polycrystalline surface consisting of patchy faces (1–i) with the fractional area (𝐹i) over the entire surface and
also with the local work function (𝜙i) ranging from the maximum (𝜙max) to the minimum (𝜙min), there holds the inequality of
𝜙max > 𝜙+ > 𝜙a > 𝜙e = 𝜙− > 𝜙min. This is because positive ions and electrons (negative ions, too) are emitted predominantly from
these faces having high and low work functions (𝜙i’s) near to 𝜙max and 𝜙min, respectively (cf. Sections 1 and 4).

(20) Therefore, each polycrystalline surface has the thermionic contrast of 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e > 0, which depends upon the surface
pecies ranging from ∼0.3 eV (Pt) to 0.7 eV (Nb) (cf. Tables 4 and 5). Whenever we try to analyze quantitatively the data (𝛽+ or E+)
n positive ion emission from polycrystals by using Eq. (5) or (9) to be shown below or in Point (22) later, we should employ 𝜙+

nstead of 𝜙e. Otherwise, the analyzed results may be accompanied with the systematic error corresponding to 𝛥𝜙∗ (cf. Section 2.6
r 4.1).

𝛼+ = 𝛽+∕(1 − 𝛽+) = {𝑤+∕𝑤0} exp[(𝜙+ − 𝐼)∕𝑘𝑇 ]. (5)

(21) On the other hand, each monocrystalline surface has the relation of 𝜙max = 𝜙+ = 𝜙a = 𝜙e = 𝜙− = 𝜙min and, hence, 𝛥𝜙∗ ≈ 0.0
eV holds generally so long as the surface is essentially clean and smooth (cf. Table 5). If not so, 𝛥𝜙∗ ≈ 0.0 eV does not hold. Typically,
oxygenated W(100) surface has 𝛥𝜙∗ = 0.7 eV in contrast to ∼0.0 eV for clean and smooth W(100) (cf. Section 4.1 and also the lines
for O=W(100) in Table 1 in Ref. [1351]).

(22) Similarly as mentioned in Points (20) and (21) just above, the employment of 𝜙e as 𝜙 in Eq. (9) is limited to PSI on
substantially clean and smooth monocrystalline surfaces alone. In the case of polycrystalline surfaces, 𝜙+ should be generally adopted
as 𝜙 instead of 𝜙e. Otherwise, the Schottky cycle does never close exactly. Namely, 𝛥𝐸∗ ≡ (𝜙 + 𝐸+) − (𝐸0 + 𝐼) = −𝛥𝜙∗ ≠ 0 (cf.
Section 4.1).

𝜙 + 𝐸+ = 𝐸0 + 𝐼. (9)

(23) Regarding the relationship between 𝛥𝜙∗ and 𝛿m, there hold the following equations derived empirically by the present
author.

𝛥𝜙∗ = 𝑐 for 0 < 𝛿m < 0.5 (polycrystal). (10)

𝛥𝜙∗ = 4𝑐𝛿m(1 − 𝛿m) for 0.5 < 𝛿m < 1 (‘‘submonocrystal’’). (11)

𝛥𝜙∗ = 0 for 𝛿m = 1 (monocrystal). (12)

Each of the values calculated from Eqs. (10)–(12) is in fair agreement with each of the experimental data on the several specimens
under study, as illustrated typically for tungsten in Fig. 1 (cf. Section 4.3).

(24) At 𝛿m < 0.5, 𝛥𝜙∗ is kept nearly constant at c, as shown for polycrystal by Eq. (10). Quite similarly, both 𝜙+ and 𝜙e are also
found by theory and experiment to be little dependent upon the difference in the surface components (𝜙i and 𝐹i) among various
specimens of the same species (cf. Table 6). This result may afford us the conclusion that each of the polycrystalline surface species,
like as each monocrystalline one, is usually expected to have a nearly constant (within ±0.1 eV in variation) and unique value
characteristic of the species itself under the normal condition (cf. Section 4.2). Although 𝜙m itself has the ‘‘differential effect’’ on
both 𝜙+ and 𝜙e of any patchy surface according to the ‘‘emission predominance’’ (cf. Section 1), each of 𝜙+, 𝜙e and 𝛥𝜙∗ remains
nearly constant independently of 𝛿m so long as 𝛿m < 0.5 (see Points (25) and (31) below).

(25) The above conclusion in Point (24) is strongly supported by the fact that the most probable value of 𝜙e for any polycrystalline
surface species (usually 𝛿m < 0.5) is substantially common or nearly identical among various specimens in spite of a considerable
difference in the surface components (𝜙i and 𝐹i). Typically for polycrystalline tungsten, our theoretical value (𝜙e = 4.52 eV, see
Footnote (25) in Table 6) is in good agreement with 4.54–4.56 eV [Here, 12,1045,1351,1354,1358] (cf. Section 3.2 and Table 2).
The latter is estimated from various values scattered in a wide range (e.g., 𝜙e ≈ 3.8–5.2 eV by experiment and 2.8–5.8 eV by theory
for W, see Table 1). In addition, both 𝜙+ and 𝛥𝜙∗ as well as 𝜙e show a good agreement (within ±0.1 eV in gap) between Footnotes
25) and (26), thus affording an additional evidence to support our theoretical model (cf. Table 6).

(26) The wide scattering mentioned for polycrystals just above is mainly due to the reasons of (i) the error in experimental
easurement or the incompletion in theoretical calculation, (ii) the difference in various surface conditions (e.g., contamination,

rregularity and heteroatom density) and/or, probably, (iii) the inclusion of these specimens of ‘‘submonocrystals’’ with 0.5 < 𝛿m <
(cf. Section 3.1).

(27) By natural elimination of these data corresponding to some of the above reasons of (i)–(iii) mentioned just above, 𝜙e may
naturally be converged to a very narrow range, which brings about the result mentioned in Point (24) above, thus yielding the most

probable value with the uncertainty of less than ±0.1 eV for many polycrystalline species (𝛿m < 0.5 in general) (cf. Section 4.4).
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(28) In contrast to the ‘‘polycrystal’’ (𝛿m < 0.5) mentioned just above, the ‘‘submonocrystal’’ (0.5 < 𝛿m < 1) has such an anomaly
as changes in 𝜙e as well as 𝜙+ and 𝛥𝜙∗ depending upon 𝛿m and, hence, the latter is neither constant nor unique in 𝜙e without having
the work function characteristic of the surface species itself. The above anomaly may readily be understood by consideration of the
analogy between the surface area component (𝛿m) and the binary alloy component (𝛾c), both of which are identical with each other
in terms of the governance of work function according to each fractional value (cf. Section 4.5). Such a work function dependence
on 𝛿m is observed for not only W but also done for other metals, too (cf. Section 4.2). Therefore, the ‘‘submonocrystal (0.5 < 𝛿m <
1)’’ should be treated as another species (category) different from the ‘‘generally called polycrystal (𝛿m < 0.5)’’ (cf. Section 4.4).

(29) As summarized in Points (24)–(27), Eqs. (1), (2) and (10) afford a sound basis for supporting theoretically the experimental
results (cf. Column 3 in Table 2) that every polycrystal (𝛿m < 0.5) is usually expected to be nearly constant within the variation of
±0.1 eV in 𝜙e with little dependence upon the difference in both 𝐹i and 𝜙i among various specimens and also that it has the unique
value of 𝜙e characteristic of its surface species so long as 𝛿m < 0.5 (cf. Sections 4.2 and 4.4).

(30) Consequently, the above theoretical support gives a definite answer to the long-pending problem why every ‘‘polycrystal’’
as well as every monocrystal is generally recognized to have a constant value of work function, irrespective of a large difference in
the surface components (𝐹i and 𝜙i) among polycrystal specimens. In other words, it may be reasonable to interpret that the so-called
‘‘polycrystal’’ appearing in many publications is implicitly recognized to correspond to 𝛿m < 0.5 alone instead of 𝛿m < 1 including
the ‘‘submonocrystal’’ (cf. Section 4.4).

(31) When 𝜙m belonging to 𝛿m has relatively higher and lower values among 𝜙i’s, 𝜙m gives the differential effect to 𝜙+ and 𝜙e,
respectively, mainly due to the emission predominance inherent in every patchy surface (cf. Section 1). For polycrystal (𝛿m < 0.5),
however, both 𝜙+ and 𝜙e remain nearly constant independently of both 𝛿m and 𝜙m, whilst submonocrystal (0.5 < 𝛿m < 1) changes
in both 𝜙+ and 𝜙e depending strongly upon 𝛿m and differentially upon 𝜙m, thus showing that both 𝛿m and 𝜙m have a complicate
overnance of the both work functions of any patchy surface (cf. Section 4.3).

(32) As mentioned in Points (23) and (28), Eqs. (1), (2) and (11) lead to the conclusion that the ‘‘submonocrystal’’ (0.5 < 𝛿m < 1)
hanges in work function depending upon the surface components (𝐹i and 𝜙i) without having a constant value, in contrast to both
oly- and monocrystalline surfaces having each a constant and unique value characteristic of the surface species itself. Interestingly,
m thus acts as the key factor governing strongly both 𝜙e and 𝜙+ at a different mode between poly- and submonocrystals according
o the conditions of 𝛿m < 0.5 and 0.5 < 𝛿m < 1, respectively. Namely, 𝛿m = 0.5 functions as the critical point governing differentially
he work functions between the two crystal species (cf. Sections 4.4 and 4.5).

(33) Our findings of (i) the sound basis marked for polycrystal (𝛿m < 0.5) in Point (29), (ii) the anomaly outlined for
ubmonocrystal (0.5 < 𝛿m < 1) in Point (28) and (iii) the key factor of 𝛿m governing both 𝜙e and 𝜙+ (Point (32)) may be considered
o add a new contribution to the work function studies developed to date, although our theoretical model is very simple and plain
nd also may seem crude and coarse apparently (cf. Section 4.4). Without our deep analysis made for 𝜙+, 𝜙e and 𝛥𝜙∗ on the
asis of Eqs. (1)–(3) and (10)–(12), any of the above new findings could not have been made successfully (cf. Table 6, Fig. 1 and
ections 4.2–4.5).

(34) Another thermionic contrast (𝛥𝜙∗∗ ≡ 𝜙−−𝜙e) for negative ion emission is experimentally confirmed to be substantially zero
for a given specimen of any surface species (poly-, submono- and monocrystals) under any condition, irrespective of their surface
contamination and/or surface irregularity (cf. Section 4.6 and Table 7). In other words, 𝜙e as well as 𝜙− is usable in safety for
analyzing the data on negative ion emission from any surfaces, as may readily be understandable from the theoretical prediction
that Eq. (2) is identically equivalent to Eq. (3) (cf. Section 1).

(35) Consequently, 𝜙e to be measured by TE is reasonably considered to be effective for NSI, too, on the same specimen under
virtually the same condition whenever we try to use Eq. (6) (cf. Section 2.6).

𝛼− = 𝛽−∕(1 − 𝛽−) = {𝑤−∕𝑤0} exp[(𝐸 − 𝜙−)∕𝑘𝑇 ]. (6)

(36) As a special case, the graphitic carbon film formed on a metal substrate has 𝛥𝜙∗ ≈ 0.0 eV, thermionically equivalent to
monocrystalline graphite like as C(HOPG) (cf. Table 5). Both of them have the same chemico-physical properties in contrast to
carbidic carbon films (cf. Section 4.1).

(37) In contrast to free-standing graphene (𝜙e ≈ 4.5 eV), adsorbed graphene is found by both theory and experiment to have a
strong dependence of its work function (by up to ∼1 eV) upon the substrate species (Ni(111), Pd(111), etc.) (cf. Section 4.1).

(38) Work function values of the three low-Miller-index surfaces have a tendency to decreasing as the surface atom density (Ds)
reduces. Typically for hcp-Re, our most probable values of 𝜙e in Table 2 show the sequence of 𝜙e(0001) > 𝜙e(1011) > 𝜙e(1010) in
good accordance with Ds(0001) > Ds(1011) > Ds(1010), strictly following the Smoluchowski rule (cf. Table 8). Namely, 𝜙e reduces
s the surface becomes more open (cf. Section 5.1).

(39) Regarding bcc-metals such as Na, Rb, Nb, Mo, Cs, Ba, Ta and W, most (∼75–100%) of the experimental and theoretical
ata on 𝜙e(hkl) for each metal are found to have the sequence of 𝜙e(110) > 𝜙e(100) > 𝜙e(111), just as expected from the above
ule. Quite similarly, all of the data obtained by PSI of Nb, Mo, Ta and W yield 𝜙+(110) > 𝜙+(100) > 𝜙+(111). The latter gives
n additional evidence to support strongly our theoretical model that 𝜙+(hkl) is fundamentally equivalent to 𝜙e(hkl) for essentially
lean and smooth monocrystalline surfaces (𝛿m = 1.00 and 𝛥𝜙∗ = 0.00 eV) (cf. Table 9 and Section 5.2).

(40) In the case of fcc-metals (e.g., Ni, Cu, Rh, Pd, Ag, Pt and Au), most (∼60–100%) of the work function data on 𝜙e(hkl) are
bserved to have 𝜙e(111) > 𝜙e(100) > 𝜙e(110), exactly following the above rule. In addition, 𝜙+(111) > 𝜙+(100) > 𝜙+(110) is
ound to hold for Ni, thereby supporting again the equivalence between 𝜙+(hkl) and 𝜙e(hkl) (cf. Table 10 and Section 5.3).

(41) In another case of fcc-Al, on the contrary, 68% of the 56 sets don’t obey the Smoluchowski rule, quite similarly to the result
hat our two sets of Al [Here] and [1351] also don’t so (see those with double and single underlines, respectively, in Table 10).
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Such an anomalous result against the rule is concluded by Fall et al. to originate from the increased p-atomic-like character of the
density of states at the Fermi energy, in comparison with most other fcc-metals (cf. Section 5.4).

(42) Of the 38 triple sets of fcc-Pb, 55% don’t follow the above rule, whilst our set [Here] (see that with double underlines
in Table 10) has the normal sequence proving the rule. Therefore, much further investigations by both theory and experiment are
necessary to find a valid reason for the above discrepancy between the former and the latter, in contrast the above case of Al (cf.
Section 5.4).

(43) Irrespective of the species of bcc- and fcc-metals (except Al and Pb), each triple set with ‘‘Yes’’ in Tables 9 and 10 indicates
that the relative values among the three are generally reasonable, but any set does not insure that all of the absolute values in the
et are always accurate or correct enough to be straight acceptable today. This is naturally because ‘‘Yes’’ does satisfy the necessary
ondition but does not the sufficient one for insuring the above acceptability of each 𝜙e(hkl) among the three in the set under study
cf. Section 5.4).

(44) Except the cases of Al and Pb, each triple set with ‘‘No’’ generally indicates that at least one of the three values among
e(100)–𝜙e(111) is inaccurate due to some errors either in the experimental determinations or in the theoretical calculations for
ach set under study (cf. Section 5.4).

(45) Therefore, such an examination as exemplified in Tables 9 and 10 is very useful for answering quickly the question whether
he three values in the set under study are partly inaccurate or incorrect. If ‘‘No’’, then, either the experimental methods and
onditions employed or the theoretical model and parameters adopted should be improved until yielding ‘‘Yes’’, although the new
et yielded to be so does not always insure its accuracy as already mentioned in Point (43) above (cf. Section 5.4).

(46) In regard to the anomalous set of 𝜙e(110) = 4.87 eV > 𝜙e(100) = 4.02 eV < 𝜙e(111) = 4.36 eV recommended for bcc-Nb (hkl)
y both CRC [1358] and Michaelson [1045] (cf. Table 2), our examination according to Point (44) suggests that 𝜙e(111) = 4.36 eV
1045,1358] should be replaced with 3.95 eV [Here], for instance, so as to follow the Smoluchowski rule. Similarly, appropriate
orrections should be made for the irregular sets of Cu and Mo recommended by Michaelson and/or CRC (cf. Examinations (10),
17), (19) and (20) in Section 3.2 and also Conclusions (7)–(9) in Section 5.4).

(47) Among many empirical formulae derived to evaluate 𝜙e for various polycrystals by using the data on a variety of chemico-
hysical properties, especially, Eq. (7) proposed first by Gordy and Thomas has a historically important contribution to the evaluation
f 𝜙e for various polycrystalline surface species including particularly these of Pm, Po and Ra, the latter of which has no experimental
ata still to date (cf. Section 2.8.3).

𝜙e = 2.27𝑋 + 0.34 (in eV). (7)

(48) Substitution of theoretical data on surface energy (𝜀) into Eq. (13) derived by Zadumkin et al. makes it possible to evaluate
e, the calculated value of which is found to be in fair or good agreement to the experimental data on 𝜙e for several metals such
s fcc-Ni and bcc-Nb (cf. Section 5.5.2).

𝜙e(hkl) + (𝐵𝑎2∕𝑧)𝜀(hkl) = const. (13)

(49) By the theoretical investigation of the quantitative relation between the melting point (Tm) and 𝜙e, Chatterjee yields
q. (14).

log[𝜙e(hkl)] = log[𝑇m(hkl)1∕4∕𝑉 1∕6] − 2.87 ± 0.04. (14)

isappointingly, any of the work function values thus calculated for fcc-monocrystalline surfaces of Ag and Pb does not well agree
ith ours listed in Table 2. The reason for the disagreement should be clarified by further investigation (cf. Section 5.5.4).

(50) As the Wigner–Seitz radius (r s) increases from ∼2 bohr (Al) to ∼6 bohr (Cs), the work function (𝜙) becomes less dependent
pon its surface property (Db) on the contrary to its bulk one (EF), exactly according to Eq. (15).

𝜙 = 𝐷b − 𝐸F. (15)

n consequence, 𝜙 becomes smaller from ∼4 to 2 eV with increasing r s. This tendency is identical to that of the experimental data
n 𝜙e (cf. Section 6.1 and Fig. 2). After Kohn and co-workers initiated the density functional theory in 1960’s, the theoretical studies
n work function have greatly progressed and, hence, a better agreement between theoretical values and experimental data on work
unction has been achieved today for a variety of monocrystalline surface species (cf. Sections 2.8.5 and 6.1).

(51) After inquiring the problem whether work function is a surface or bulk property, Eq. (16) is theoretically derived by Halas
nd Durakiewicz as a function of the Wigner–Seitz radius and the Fermi energy alone.

𝜙 = 43.46∕𝑟3∕2s 𝐸1∕2
F . (16)

his is successfully applied to calculating also the work function change due to surface reaction of hydrogen with Pd, thus yielding
uch a reasonable result as 𝜙 = 𝜙e = 5.25 eV (Pd) and 3.2 eV (PdH) (cf. Section 6.2).

(52) The work function changes due to allotropic transitions (𝛥𝜙e
𝛽𝛼 ≡ 𝜙e

𝛽 − 𝜙e
𝛼 and 𝛥𝜙e

𝛾𝛽 ≡ 𝜙e
𝛾 − 𝜙e

𝛽) are estimated to be −0.03 ±
.06 eV for Ti, Fe, Co, Sn and U and −0.04 ± 0.08 eV for Fe, Sn and U, respectively, while 𝛥𝜙e

𝛽𝛼 is found to range from −0.16 to
0.21 eV for Sc, Tb and Hf. Accumulation of much data on these metals and also on other metals, however, is desired to determine
ore finely the above changes at the level of 1 meV in a very narrow temperature range sandwiching each transition temperature
nd also to settle the problem how each change depends upon metal species (cf. Table 11 and Section 7.1).
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(53) As an interesting topic of allotropic transformation, 𝛽-fcc-Co with 𝜙e = 4.25 eV is changed to 𝛼-hcp-Co with 4.12 eV by
cooling slowly from ∼1100 K to 300 K, but the former is kept unchanged by sudden cooling to room temperature even after passing
the allotropic transition temperature (670 K) (cf. Section 7.1).

(54) Normally, 𝛼-hcp-Co(0001) with 𝜙e = 5.264 eV transfers at 670 K to 𝛽-fcc-Co(111) with 5.266 eV (cf. Table 11). However,
repetition of the transformation alters it to polycrystalline Co (cf. Section 7.1), whose work function is generally expected to have
4.71 and 4.50 eV for 𝛼- and 𝛽-Co, respectively (cf. Table 2).

(55) According to the Burgers orientation relationship between the two phases before and after allotropic transition, 𝛼-hcp-
Zr(0001) changes to 𝛽-bcc-Zr(110), the relationship of which is also the case for Ti. For many monocrystalline surfaces of such as
Sc, Y, Gd, Tb and Hf in addition to Ti, Co and Zr, much further studies by both theory and experiment are strongly expected to
accumulate the accurate data on both the work function change and the orientation relationship due to the allotropic transition (cf.
Table 11 and Section 7.1).

(56) The work function change (𝛥𝜙e
LS ≡ 𝜙e

L − 𝜙e
So) due to the phase transition between solid and liquid is found for thirteen

metals to range from −0.10 to 0.03 eV, which affords the average of −0.02 ± 0.03 eV. In order to determine more precisely such
a minute change, however, work function measurements are generally desired to be done at the level of 1 meV in such a narrow
temperature range (𝛥𝑇 ≈ 10 K) sandwiching Tm so as to minimize the thermal effect due to 𝛼•𝛥𝑇 (cf. Table 12 and Section 7.2).

(57) The work function change (𝛥𝜙e
PF ≡ 𝜙e

P − 𝜙e
F) due to the transition between ferro- and paramagnetic phases is found for Fe,

Co, Ni and Gd to range from −0.05 to 0.01 eV, which yields the mean of −0.01 ± 0.04 eV. Such a fine measurement (e.g., −0.007 eV
for Ni at 400 K after extrapolation) as excluding the thermal effect (𝛼•𝛥𝑇 ), however, is generally expected to be done for many other
metals, too, by further investigations (cf. Table 13 and Section 8.1).

(58) A metastable 𝛾-like fcc-ferromagnetic Fe-film grown epitaxially on a Cu(100) substrate has generally 𝜙e = 4.58 ± 0.10 eV,
which is very near to 4.55 ± 0.05 eV for 𝛼-bcc-ferromagnetic bulk-Fe (cf. Table 2). The former, however, changes in the Curie point
(TC) typically from 230 to 390 K as 𝜃 increases from 1 to 3–5 ML with 𝜙e = 4.7 ± 0.1 eV, in contrast to the latter having TC =
constant at 1040 K (cf. Section 8.2).

(59) A metastable fcc-Co-film on a Cu(100)-substrate is ferromagnetic below TC, which is found to increase linearly from ∼100
to 500 K as 𝜃 increases from ∼1.5 to 2.5 ML. At 𝜃 ≈ 5–6 ML, TC reaches to 1390 K, just corresponding to bulk cobalt. Much further
work is expected to be done for various metastable systems in order to elucidate the dependence of both 𝜙e and TC upon the film
thickness (cf. Section 8.2).

(60) On the basis of the experimental data for a chemical compound (Bi2Sr2CaCu2O8) in Table 14, the work function change
due to the transition between the normal and superconductive states may be concluded to be as small as 𝛥𝜙e

SN ≡ 𝜙e
S−𝜙e

N = 4 meV or
so. On the other hand, the possible change due to the transition studied for the film of metals (V, Nb and Ta) is accompanied with
so large a standard deviation (±0.3 eV) by CPD that the possible change can hardly be estimated accurately, while any appreciable
change at the level of 0.01 eV is not observed for any of the above three metals studied by FE. Further studies by both theory and
experiment are strongly expected to determine 𝛥𝜙e

SN for various metals on the level of 10 meV or less (cf. Table 14 and Section 9).
(61) For any species of metals, 𝜙e is well-known to change widely with the temperature coefficient of 𝛼 ≈ ±10−5– ± 10−4 eV/K

(cf. Table 6 in Ref. [1351]). Therefore, it is emphasized here again that the work function values at the two different states (phases)
should be compared at the common temperature (around the critical point such as TA, Tm, TC or T S) after extrapolation so as to
eliminate the thermal effect of 𝛼•𝛥𝑇 . Otherwise, the net change due to the transition alone can not be determined accurately at the
level of less than 10 meV (cf. Section 10).

(62) According to a classical theory, the work function of a fine particle is given by

𝜙e(𝑟) = 𝜙e(∞) + 𝐶p𝑒
2∕𝑟. (17)

The value of 𝜙e(r) calculated therefrom is generally found to agree either well or fairly with that determined by experiment when
the reliable data on 𝜙e(∞) ≡𝜙e(poly) cited typically from Table 2 and on r (particle radius reported in each article) are substituted
to the above equation. Here, Cp = 3∕8 instead of 1/2 is usually adopted like as shown by Eq. (17′) (cf. Section 11.1 and also Point
(65) below).

(63) Quantum theory about the energetics correlating atom with bulk solid yields:

𝐼(𝑟s) = 𝜙e(∞) + 𝑒2∕2(𝑟s + 𝑑G), (18)

𝐸(𝑟s) = 𝜙e(∞) − 𝑒2∕2(𝑟s + 𝑑G). (19)

Typically by adopting 𝜙e(∞) = 2.75 eV, I(r s) and E(r s) are evaluated to be 5.38 and 0.12 eV for Na–atom, respectively. But, our
adoption of 2.54 eV yields 5.17 and −0.09 eV, which are in better and worse agreements with 𝐼 = 5.14 and 𝐸 = 0.55 eV. Agreement
between E(r s) and E is not better than that between I(r s) and I for many of the elements studied (cf. Section 11.2).

(64) By measuring the ionization energies of such clusters (rc in radius) as Al2000 and Al32000±150 with several charges (Z = −1
up to +5), the work function of 𝜙e(∞) for bulk Al is determined from

𝐼(𝑍) = 𝜙e(∞) + (𝑍 + 𝜌)𝑒2∕(𝑟c + 𝛿). (20)

The value of 𝜙e(∞) = 4.28 ± 0.03 eV determined from the plot of I(Z) vs. Z with 𝜌 = 0.49 is essentially equal to our most probable
value of 4.26 ± 0.03 eV for polycrystalline Al (cf. Section 11.3).

(65) In regard to neutral clusters (Mn) to be investigated generally by mass spectrometry, we have

𝐼(n) = 𝜙e(∞) + (3𝑒2∕8𝑟 )n−1∕3. (21)
s
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i

Here, Cp = 3∕8 is replaced with 1/2 in some cases. From the plot of I(n) vs. n−1∕3 according to experimental data on the first
onization energy (I) and the number (n) of atoms constituting the cluster under study, we can determine 𝜙e(poly) = 𝜙e(∞) at the

intercept (n → ∞). Between the two, we can find a good agreement among many examples (cf. Section 11.3).
(66) Some of the experimental and theoretical studies indicate that Cp tends to be nearer to 3/8 rather than to 1/2, and

another study concludes that 1/2 and 3/8 account better for the experimental observations for relatively large and small clusters,
respectively. Since the linearity of the relationship between I and r−1 (or n−1∕3) is not so good generally as we may expect, it is
not easy to verify experimentally which coefficient of 1/2 or 3/8 is more accurate or reasonable in general for all of the sizes and
species of clusters (cf. Section 11.1).

(67) Finally as to be emphasized particularly, both experimental and theoretical studies on work function and related subjects
ought to be developed much more, typically for accumulating the accurate or reliable data on the work function characteristic of
each of the various surface species including minor or less-common ones in order to enrich the fundamental data important in
solid state physics, although such studies themselves may possibly be no longer greatly attractive and deeply interesting at present
compared with many other current topics prevailing today in surface science.

Afterword

The main purposes of this article are (1) to establish comprehensively an abundant and up-to-date database on 𝜙e as well as
𝜙+ and 𝜙− determined by theory and experiment for both mono- and polycrystalline surfaces of almost all the chemical elements
under specified conditions, (2) to estimate accurately the most probable values of the three kinds of work functions of essentially
clean surfaces for a variety of the both crystals, (3) to compare critically the recommended work function values between the
present and other authors for examining their objective reliability, (4) to summarize compactly the steady progress in theoretical and
experimental studies on work function, (5) to outline briefly the methods and techniques developed for work function measurements,
(6) to introduce concisely the interesting topics about work function and related subjects, (7) to indicate concretely the important
problems to be solved for work function by further investigations by theory and experiment, (8) to determine fully the validity of
𝜙max > 𝜙+ > 𝜙a > 𝜙e = 𝜙− > 𝜙min for various polycrystals studied by theory and experiment, (9) to establish firmly the universal
recognition of 𝛥𝜙∗ ≡ 𝜙+ − 𝜙e > 0 as the peculiarity characteristic of polycrystals, (10) to demonstrate amply the strong governance
of 𝜙+, 𝜙e and 𝛥𝜙∗ by 𝛿m working as the key factor with the critical point of 0.5 (50% in surface fraction), (11) to clarify theoretically
the differential effect of 𝜙m upon 𝜙+ and 𝜙e according to the emission predominance, (12) to afford well the theoretical ground to
the experimental fact that every polycrystal (𝛿m < 0.5) usually has a nearly constant value of 𝜙e under the normal condition in
spite of a large difference in both 𝜙i and 𝐹i among various specimens, (13) to explain exactly the fundamental difference in work
function between submono- and polycrystals and, finally, (14) to examine objectively a new contribution of our simple model to
the work function studies developed to date.

For the above purposes, the present author has tried to do best during the last ∼20 years after his retirement from Ehime
University in order to search thoroughly more than ten thousands of literatures published for work function and related subjects to
date in the fields of both pure and applied physics and chemistry. This trial for preparing the present article as well as the previous
one [1351] has long been very laborious to him, but the results thus achieved especially as Tables 1 and 2 may be useful and
convenient to many workers whenever they try to grasp easily the outline of both method and condition adopted for evaluating
each work function and also to refer quickly to the most probable value of elemental work function for the mono- or polycrystalline
surface under study.

This article is based on 4461 references which the present author has selected from the amazing number of literatures mentioned
just above. In consideration of the fact that more than 500 articles about work function and related subjects have long been published
every year [SciFinder, CAS Solution], however, the above references seem to be much less than a half of the literatures published
to date for reporting originally the theoretical or experimental data on work function (𝜙e, 𝜙+ and/or 𝜙−) of the chemical elements
and also for including both criticism and discussions about work function and related subjects. But, it is practically impossible to
cover the remnant half or more by a single author alone.

Unfortunately, the present author has little time and health enough (1) to enrich sufficiently both contents and explanation in
text, (2) to analyze fully the large amount of experimental and theoretical data listed in Table 1, (3) to integrate comprehensively
the progress and results achieved by theoretical studies about work function and related subjects, (4) to examine carefully the
possibility of overlooking very important articles on work function, (5) to survey adequately these literatures published especially
after ∼2013, (6) to check thoroughly his inadvertent errors and inattentive mistakes made probably in this article, and also (7) to
improve acceptably the readability of this article writing until convincing himself. This is mainly because he has long been much
suffered by disease and disorder due to advancing in age. In consequence, for example, he has little analyzed critically these work
function data achieved by quantum theory for various surface species by a good many workers and also hardly discussed quite many
other important subjects and problems. At least, however, Table 1 including more than ten thousands of work function data and
also 490 footnotes may be helpful to many readers for inspecting a variety of work function studies made to date under various
conditions and methods in many fields of both pure and applied physics and chemistry. In addition, Table 2 may be useful as
an up-to-date and reliable source for quickly finding the most probable values of 𝜙e, 𝜙+ and 𝜙− with regard to both mono- and
polycrystalline surfaces of most or several of the chemical elements.

In this article, a theoretical analysis is made deeply for the experimental data on thermionic contrasts (𝛥𝜙∗) for various mono-,
submono- and polycrystalline surfaces, thereby yielding the new findings that 𝛿m is the key factor mainly governing the effective

work functions of patchy surfaces (𝛿m < 1) and also that submonocrystal (0.5 < 𝛿m < 1) should be taken into consideration as
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another type (category) much different in work function characteristic from both polycrystal (𝛿m < 0.5) and monocrystal (𝛿m = 1).
Such a deep analysis, however, is little attempted here for the work function data achieved by quantum theory and also for the
work function changes around various critical temperatures, mainly because of his poverty in health.

As already exemplified in Footnotes 484–486 in Table 1 and also in those 5, 6, 10, 12 and 13 in Table 2, it is generally very
difficult for any authors to be perfectly free from inattentive errors in any publications. On account of the poverty in both time and
health mentioned above, particularly, the present author has the strong fear that both inadvertent errors and unconscious mistakes
have been made probably here and there in this article. He hopes that such probable failures and defects may be adequately corrected
and improved in the future by other authors.

Finally, he strongly desires and expects that the insufficient database and inadequate analysis as tentatively compiled in this
article should be much enriched and improved in both quantity and quality by next generation so as to respond adequately to a
continuous progress in the fields of work function and related subjects.
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Appendix. List of main symbols

a lattice constant (cf. Section 5.5.2 and Eq. (13))
2 2
AR Richardson constant = 120 A/cm K (cf. Section 2.8.6)
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Ar apparent Richardson constant = (1 − r e) AR (cf. Section 2.8.6 and Eq. (8))
AI autoionization (cf. Section 2.8.1 and Table 1)
cnt carbon nanotube (cf. Section 2.1 and Table 1)
Cp coefficient of 1/2 or 3/8 (cf. Eq. (17) and Section 11.1)
CPD contact potential difference (cf. Sections 2.8.1 and 2.8.2 and also Table 1)
CS conductive spectroscopy (cf. Section 2.8.1 and Table 1)
CVD chemical vapor deposition (cf. Table 1 and Section 2.2)
Db dipole barrier on a surface (cf. Eq. (15), Section 6.1 and Fig. 2)
Ds surface-atom density (cf. Table 8 and Section 5)
d diameter (cf. Section 2.1 and Table 1)
dG distance from Gibbs surface to the image surface (cf. Section 11.2 and Eqs. (18) and (19))
dhcp double hexagonal close-packed structure
e elementary electric charge (cf. Eqs. (17)–(21) and Section 11)
E electron affinity (cf. Eqs. (6) and (19) and also Sections 2.3, 2.6 and 11.2)
E+ desorption energy of positive ion (e.g., M+) (cf. Section 4.1 and Eq. (9))
E0 desorption energy of neutral atom (e.g., M) (cf. Section 4.1 and Eq. (9))
EF Fermi energy of bulk (cf. Eqs. (15) and (16), Sections 6.1 and 6.2 and also Fig. 2)
0E extrapolation of temperature down to 0 K in order to estimate 𝜙e

0 (cf. Section 2.5 and Table 1)
F i fractional surface area of the patchy face (i) (cf. Sections 1 and 4 and also Eqs. (1)–(4))
FE field emission (cf. Sections 2.8.1 and 9 and also Tables 1, 8–11 and 14)
Fm fractional surface area largest among F i ’s, corresponding to the degree of monocrystallization (𝛿m) and having 𝜙m (cf. Section 4)
fp fine particle (cf. Section 2.1 and Table 1)
HOPG highly oriented pyrolytic graphite (cf. Section 2.1 and Tables 1, 2, 4 and 5)
I ionization energy (cf. Eqs. (5), (9), (18), (20) and (21) and also Sections 2.6, 4.1, 11.2 and 11.3)
i+ positive ion current (cf. Sections 2.6 and 4.1)
ins insulator (cf. Section 2.1 and Table 1)
IP ionization potential (cf. Sections 2.8.1 and 11.3 and also Table 1)
ITO indium tin oxide (cf. Section 2.1 and Table 1)
k Boltzmann constant (8.617×10−5 eV K−1) (cf. Eqs. (1)–(3), (5), (6) and (8))
k0 neutral desorption rate constant having the relation of k0 = (const) × exp [−E0/kT] (cf. Section 4.1)
k+ ionic desorption rate constant correlated as k+ = (const) × exp [−E+/kT] and also done with the positive ionization coefficient (𝛼+) by

𝛼+ = k+/k0 (cf. Sections 2.6 and 4.1)
M neutral atom (e.g., alkali) (cf. Section 2.6)
M+ positive ion of M (cf. Sections 2.3 and 2.6)
M− negative ion of M (cf. Sections 2.3 and 2.6)
ML monolayer (cf. Sections 2.2, 7.1 and 8.2)
MX diatomic molecule (e.g., alkali halide) (cf. Section 2.6)
nw nanowire (cf. Section 2.1 and Table 1)
NSI negative surface ionization (thermal negative ion emission) (cf. Sections 2.6 and 2.8.1 and also Table 1)
O=Ti oxygenated titanium (cf. Section 2.1 and Table 1)
𝑃r residual gas pressure inside the vacuum vessel including a sample surface (cf. Section 2.4 and Table 1)
PE photoelectric effect (cf. Section 2.8.1 and Table 1)
PSI positive surface ionization (thermal positive ion emission) (cf. Sections 2.6, 2.8.1 and 4.1 and also Table 1)
r radius of a fine particle (cf. Eqs. (17) and (17′) and also Section 11.1)
r c effective radius of a spherical cluster as calculated from its density and weight (cf. Section 11.3 and Eq. (20))
r e internal reflection coefficient of electron, usually treated as in the form of (1 − r e) AR (cf. Section 2.8.6)
r s Wigner–Seitz radius (cf. Fig. 2, Eqs. (16), (18), (19) and (21) and also Sections 6.1, 6.2, 11.2 and 11.3)
𝛥S+ entropy change due to positive ion production of M+ from M (cf. Section 2.6)
𝛥S− entropy change due to negative ion production of X− from X (cf. Section 2.6)
SP stopping potential (cf. Section 2.8.1 and Table 1)
SSI self surface ionization (cf. Section 2.3)
T temperature of a sample surface adopted for work function measurement (cf. Section 2.5 and Tables 1 and 14)
T a annealing temperature, usually recommended to be above Tm/3 (cf. Section 2.5) and given in parentheses at the back of T like as ∼300

(∼900) in the 5th column in Table 1
TA allotropic transition temperature (cf. Section 7.1)
TC Curie temperature (cf. Section 8)
T d sample deposition temperature listed as in the form of {T d}, which is usually different from that (T ) selected for work function

measurements (cf. Table 1 and Section 2.5)
Tm melting point (cf. Sections 2.5, 5.5.3, 5.5.4 and 7.2 and also Eq. (14))
T S superconductive transition temperature (cf. Section 9)
TC theoretical calculation (cf. Sections 2.8.1, 2.8.3–2.8.5, 4.2, 5.5.2, 5.5.4, 6.1, 6.2 and 11 and also Tables 1, 6 and 9–13, in addition to

Eqs. (1)–(3), (7) and (13)–(21))
TCS total current spectroscopy (cf. Section 2.8.1 and Table 1)
TE thermal electron emission (cf. Section 2.8.1 and Table 1)
V atomic volume (cf. Section 5.5.4 and Eq. (14))
𝑤+∕𝑤0 statistical weight ratio of ion (M+) to atom (M), generally equivalent to exp [𝛥S+/k] (cf. Eq. (5) and Section 2.6)
𝑤−∕𝑤0 statistical weight ratio of ion (X−) to atom (X), generally equivalent to exp [𝛥S−/k] (cf. Eq. (6) and Section 2.6)
X neutral atom (e.g., halogen) (cf. Section 2.6)
X− negative ion of X (e.g., halogen) (cf. Section 2.6)
X electronegativity (cf. Eq. (7) and Section 2.8.3)
z number of valence electrons per atom (cf. Section 5.5.2 and Eq. (13))
Z charge state (cf. Section 11.3 and Eq. (20))
𝛼 temperature coefficient of the work function of a clean surface, usually treated as in the form of 𝜙e

T = 𝜙e
0 +𝛼𝑇 (cf. Sections 2.5 and 7–10)

𝛼+ positive ionization coefficient of sample atom (e.g., M) (cf. Eq. (5) and Section 2.6)
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𝛼− negative ionization coefficient of sample atom (e.g., X) (cf. Eq. (6) and Section 2.6)
𝛽+ positive ionization efficiency of sample atom or molecule (e.g. M or MX) (cf. Eq. (5) and Section 2.6)
𝛽− negative ionization efficiency of sample molecule (e.g., X2 or MX) (cf. Eq. (6) and Section 2.6)
𝛾c binary alloy component having the range of 0–1 = 0–100% in mole fraction (cf. Sections 2.5 and 4.5)
𝛿 correction of the spherical cluster radius according to the electron spillover into vacuum (cf. Section 11.3 and Eq. (20))
𝛿m degree of monocrystallization corresponding to the largest (Fm) among the fractional surface areas (𝐹i ’s) with the range of 0–1 =

0–100%, governing strongly 𝜙+, 𝜙e and 𝛥𝜙∗ in a different mode between polycrystal (𝛿m < 0.5) and submonocrystals (0.5 < 𝛿m < 1)
(cf. Section 4, Eqs. (10)–(12), Table 6 and Fig. 1)

𝜀 surface energy (cf. Sections 5.5.1 and 5.5.2 and also Eq. (13))
𝜌 quantum correction of bulk work function for spherical cluster (cf. Section 11.3 and Eq. (20))
𝛥 difference of 𝜙e between our most probable value and another recommended for each surface species by Ref. [1045,1358] or [1354] in

Table 2 (cf. Section 3.2 and Table 3)
𝛥𝜙∗ thermionic contrast between the effective work functions for positive-ionic and electronic emissions, equal to the difference (𝜙+ − 𝜙e > 0

for both poly- and submonocrystal surfaces) (cf. Tables 4–6, Sections 4.1–4.4 and Fig. 1)
𝛥𝜙∗∗ thermionic contrast between the effective work functions for negative-ionic and electronic emissions, equal to the difference (𝜙− −𝜙e = 0

for any surface species) (cf. Section 4.6 and Table 7)
𝜃 surface coverage of adsorbate (cf. Sections 2.2, 7.1 and 8.2)
𝜃c critical coverage at which the metastable film changes in both phase and Curie point (cf. Sections 7.1 and 8.2)
𝜙 so-called ‘‘work function’’ generally used without distinction among 𝜙e, 𝜙+ and 𝜙− (cf. Eqs. (9), (15) and (16) and also Sections 1, 4.1,

6.1 and 6.2)
𝜙i local work function corresponding to the patch face (i) of a poly- or submonocrystalline surface (cf. Eqs. (1)–(4), Table 6, and also

Sections 1 and 4)
𝜙a simply averaged work function of a poly- or submonocrystalline surface, generally intermediate between 𝜙+ and 𝜙e (cf. Eq. (4), Table 6,

and Sections 1 and 4)
𝜙e effective work function for electron emission, generally equal to 𝜙− for any surface, but different from both 𝜙+ and 𝜙a for any poly-

and submonocrystals (cf. Sections 1, 2 and 4, Eq. (2) and Tables 1–4 and 6–14)
𝜙e

0 work function at 0 K (cf. Section 2.5 and Table 1)
𝜙e
H work function to be evaluated from Eq. (8) (cf. Section 2.8.6)

𝜙− effective work function for negative ion emission, generally equal to 𝜙e for any surface species (cf. Eqs. (3) and (6), Tables 1 and 7 and
also Sections 1, 2.6, 3 and 4.5)

𝜙+ effective work function for positive ion emission, generally larger than 𝜙e for any poly- and submonocrystalline surfaces (cf. Eqs. (1)
and (5), Tables 1, 2, 4, 6, 9 and 10 and Sections 1, 2.6, 3, 4 and 5.2–5.4)

𝜙m local work function belonging to the largest surface area (Fm) and hence to the degree of monocrystallization (𝛿m) (cf. Section 4)
𝜙max maximum value among the local work functions (𝜙i ’s) of various patchy faces (1–i) of poly- or submonocrystalline surface, generally

having the sequence of 𝜙max > 𝜙+ > 𝜙a > 𝜙e > 𝜙min (cf. Fig. 1 and Section 4.3)
𝜙min minimum value among the local work functions (𝜙i ’s) of various patchy faces (1–i) of poly- or submonocrystalline surface (cf. Fig. 1

and Section 4.3)
𝜙𝜇 minimum value to be usually found for an A/B sample system at 𝜃 < 1 ML in a plot of 𝜙e vs. 𝜃 (cf. Section 2.2)
𝜙e
0 work function effective for electron emission at the temperature extrapolated to 0 K, corresponding to 0E (cf. Section 2.5 and Table 1)

𝜙e
r work function to be found experimentally together with Ar ≠ 120 A/cm2 K2 (cf. Section 2.8.6 and Eq. (8))

𝜙e(r) work function of a fine particle with a radius of r (cf. Section 11.1 and Eqs. (17) and (17′))
𝜙e
T work function effective for electron emission at T, usually having the relation of 𝜙e

T = 𝜙e
0 + 𝛼T (cf. Section 2.5)

𝜙e(∞) work function equivalent to 𝜙e(poly) of bulk (cf. Eqs. (17)–(21) and Section 11)
𝜏0 neutral atom adsorption lifetime correlated with Eo by Frenkel’s equation of 𝜏0 = (const) × exp [Eo/kT] (cf. Section 4.1)
𝜏+ positive ion adsorption lifetime correlated with E+ by Frenkel’s equation of 𝜏+ = (const) × exp [E+/kT] (cf. Section 4.1)
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[24] H. Kawano, T. Kenpō, Temperature dependence of thermal positive ion production from sodium bromide molecules incident upon a glowing rhenium

surface, J. Chem. Phys. 81 (1984) 1248–1250.
[25] H. Kawano, K. Funato, T. Maeda, Y. Zhu, Sticking probability of metal halide molecules incident upon refractory metal surfaces heated in high vacua,

Appl. Surf. Sci. 119 (1997) 341–345.
[26] D.R. Stull, H. Prophet, JANAF Thermochemical Tables, 2nd ed., National Bureau of Standards, Washington, 1971.
[27] I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, 1989, 1829 pp.
[28] V.P. Glushko (Ed.), Thermodynamic Properties of Individual Substances, Vols. 1–4, Nauka, Moscow, USSR, 1978–1982.
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