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Abstract 

Laser exposure of suspension of either gold or palladium nanoparticles in aqueous 

solutions of UO2Cl2 of natural isotope abundance was experimentally studied. Picosecond 

Nd:YAG lasers at peak power of 10
11

 -10
13

 W/cm
2
 at the wavelength of 1.06 – 0.355 m were 

used as well as a visible-range Cu vapor laser at peak power of 10
10

 W/cm
2
. The composition of 

colloidal solutions before and after laser exposure was analyzed using atomic absorption and 

gamma spectroscopy in 0.06 – 1 MeV range of photon energy. A real-time gamma-spectroscopy 

was used to characterize the kinetics of nuclear reactions during laser exposure. It was found that 

laser exposure initiated nuclear reactions involving both 
238

U and 
235

U nuclei via different 

channels in H2O and D2O. The influence of saturation of both the liquid and nanoparticles by 

gaseous H2 and D2 on the kinetics of nuclear transformations was found.  Possible mechanisms of 

observed processes are discussed. 
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Introduction 

 Modern lasers allow excitation of nuclear energy levels via generation of high-energy 

particles that appear during the interaction of laser radiation with plasma produced on a solid 

target. Successful excitation of nuclear levels has been reported for some isotopes of Hg and Ta 

under exposure of a target in vacuum to a femtosecond laser radiation. [1,2]. Emission of 

gamma-photons from a Ta target exposed in vacuum to peak intensity of 10
18

 W/cm
2
 in a 

femtosecond range of pulse duration results has been reported recently [3]. The average energy 

of these photons is about few MeV. Picosecond laser plasma is also a source of high-energy 

particles whose energy is sufficient for excitation of energy levels of nuclei in the exposed target 

[4]. 

 Another possibility for laser excitation of nuclear energy levels consists in laser exposure 

of nanoparticles suspended in a liquid (colloidal solution). This scheme allows laser initiation of 

nuclear reactions, e.g., transmutation of 
196

Hg into 
197

Au [5, 6] via laser exposure of Hg nano-

drops in heavy water D2O. It is believed that thermal neutrons needed for this transmutation are 

released from Deuterium though the mechanism of this release remained unknown. The 

possibility to induce nuclear reactions at relatively low peak intensity of laser radiation was 

attributed to the local field enhancement in the vicinity of metallic nanoparticles by a factor of 

10
4
-10

5
. This may provide effective peak intensity in the liquid of about 10

17
 W/cm

2
, which is 

already comparable with those used for exposure of solid targets in vacuum. 

 It is of interest to use the same approach for initiation of nuclear reactions in 

nanoparticles of unstable elements, such as 
238

U or 
232

Th. However, these elements are 

chemically reactive and would react with aqueous environment during the laser synthesis. The 

solution of this problem consists in using NPs of noble metals, e.g., Au, to provide the constant 

level of absorption in the liquid, while unstable elements can be presented in the solution as 

aqua-ions [7].  

 The aim of this work is the experimental study of possibility of laser initiation of nuclear 

reaction in aqueous solutions of a Uranium salt under absorption of laser radiation by Au 

nanoparticles. The most known Uranium isotopes are 
238

U and 
235

U. They undergo the sequence 

of - and -decays as follows:  

238
U → 

234
Th→ 

234
Pam→ 

234
Pa→ 

234
U→ etc 

235
U → 

231
Th→ 

231
Pa→ 

227
Ac→ etc 
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Raw Uranium contains 0.7% of another isotope 
235

U that originates from 
235

Np. Natural decay 

time of both Uranium isotopes is very long (4.5×10
9
 and 7×10

8
 years, respectively). One may 

expect that thermal neutrons generated through laser exposure of Au NPs in aqueous solutions 

should alter the equilibrium concentration of all elements that belong to U branching. 

Experimental 

Au nanoparticles (NPs) were synthesized by ablation of a bulk gold target either in H2O 

or D2O with the help of a Nd:YAG laser with pulse duration of 70 ns at wavelength of 1.06 m. 

The details of the synthesis can be found elsewhere [8, 9]. The resulting average size of Au NPs 

as determined by Transmission Electron Microscopy lies between 10 and 20 nm. The Uranium 

salt UO2Cl2 of natural isotope composition was then dissolved in the colloidal solution, and the 

solution was divided into two parts, one of them considered as the initial solution. The second 

part of the solution was exposed to laser radiation. The exposure was carried out either of the as-

obtained solution or under continuous purge of H2 or D2 for H2O and D2O, respectively. The 

gases were obtained by electrolysis of corresponding liquids, either H2O or D2O and were 

supplied to the solution at atmospheric pressure.  

Three laser sources were used for exposure on Au NPs in the aqueous solutions of the 

Uranium salt. These were a Nd:YAG laser, pulse duration of 150 ps, wavelength of either 1.06 

or 0.355 m, energy per pulse of 100 at 1.06 and 20 mJ at 0.355 m, repetition rate of 10 Hz,  

peak power of 10
13

 W/cm
2
, a Nd:YAG laser, pulse duration of 350 ps, wavelength of 1.06 m, 

energy/pulse of 350 J, repetition rate of 300 Hz,  peak power of 10
11

 W/cm
2
, and a Cu vapor 

laser, pulse duration of 10 ns, wavelength of 510/578 nm, energy/pulse of 100 J, repetition rate 

of 15 kHz, peak power of 10
10

 W/cm
2
. 

Gamma-emission from samples before and after laser exposure was characterized using a 

semiconductor -spectrometer Ortec-65195-P. This provided the analysis of sample specific 

activity in -photons from 0.06 до 1.5 MeV in Becquerel per ml. Real-time acquisition of -

spectra of the solutions during laser exposure was achieved with the help of a portable 

scintillator -spectrometer. In the latter case the cell with the solution was fixed just on the 

spectrometer itself, which guaranteed the constant geometry of measurements under natural 

background of -radiation. The acquisition time was sufficiently long to provide the accuracy of 

measurements better than 3% in the channel with maximal number of counts indicated by the 

spectrometer. 
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Results and discussion  

Exposure of Au NPs in aqueous solutions of UO2Cl2 either in H2O or in D2O leads to 

significant modifications of the activity of all elements of U branching. The result of the laser 

exposure depends on the kind of water used in the experiment. Exposure in D2O results in the 

decrease of the activity of both Uranium isotopes at laser peak power of 10
10

-10
11

 W/cm
2
. 

Activity is linearly related to the quantity of the corresponding isotopes therefore, one may 

conclude that laser exposure of Au NPs in presence of aqua-ions of UO2
-2

 leads to the 

accelerated decay of 
238

U. 

In case of laser exposure of Au NPs in H2O with UO2Cl2 the result is the opposite. 
238

U is 

not gamma-active, and the modifications of its concentration can be inferred from the activity of 

its daughter nuclides, 
234

Th and 
234

Pa. The activity of 
234

Th and 
234

Pam, as well as 
234

Pa increases 

after laser exposure (see Fig. 1, a). Note that these elements are daughter ones for 
238

U. In Fig. 1, 

a  one can see that the activity (concentration) of 
231

Th also increases after laser exposure. The 

parent of this element is 
235

U, and the increase of 
231

Th signifies its accelerated decomposition. 

However, the concentration of 
235

U increases after laser exposure as it is shown in Fig. 1, b.  

It is pertinent to note that no measurable changes of the activity of nuclides of U 

branching were detected under exposure of the colloidal solutions of Au NPs in either H2O or 

D2O with UO2Cl2 with radiation of a femtosecond radiation of a Ti:sapphire laser at peak power 

of 10
13

 W/cm
2
 at wavelength of 800 nm. 

 

 

a 
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Fig. 1. Gamma-spectrum of the initial solution of UO2Cl2 in H2O with Au NPs (a). Gamma-spectrum of 

elements of 
238

U branching before (black) and after laser exposure (red) of the colloidal solution of Au 

NPs in H2O with UO2Cl2 (b). Gamma-spectrum of 
235

U before (black) and after (red) laser 

exposure of the colloidal solution of Au NPs in H2O with UO2Cl2 (c). Cu vapor laser 4 hours of 

exposure, peak power of 10
10

 W/cm
2
, repetition rate of 15 kHz.  

  

 Real-time -spectra of the samples are presented in the Fig. 2. 
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                                             a                                                                          b 

Fig. 2. Differential spectra of the samples of Au NPs exposed to 350 ps laser radiation in H2O 

with purged H2 (a) and in D2O with purged D2 (b). Initial spectra of the same sample are 

subtracted in each case. 

One can see that the samples are characterized by -emission of the nuclides belonging to 
238

U 

branching as well as by that of 
235

U. However, different peaks of these nuclides are active under 

laser exposure in H2O and D2O at otherwise equal conditions.  

The tendency changes at higher peak power of the laser radiation. Namely, at the peak 

power of order of 10
13

 W/cm
2
 in 150 ps pulses the activity of both U isotopes increases after 

laser exposure of the colloidal solution of Au NPs in D2O. This is illustrated in Fig.3.  
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Fig. 3. Gamma-spectrum of the sample of UO2Cl2 in D2O exposed to the first harmonics of a 

Nd:YAG laser, pulse duration of 150 ps, 1 hour of exposure at 10 Hz.  
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The activity of both U isotopes increases after the laser exposure of Au NPs in D2O, as it can be 

concluded from the increase of activity of corresponding daughter nuclides. 

The kinetics of the nuclear transformations is also sensitive to the laser wavelength. The 

dependence of the activity of several nuclides of U branching on the concentration of UO2Cl2 is 

presented in the Fig. 4. 

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

0

200

400

600

800

1000

1200

1400

1600

C
o

u
n

ts
/1

0
3
 s

Concentration of UO
2
Cl

2
, mg/ml/25

234Th

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

0

500

1000

1500

2000

2500

C
o

u
n

ts
/1

0
4
s

Concentration of  UO
2
Cl

2
, mg/ml /25

234Pam

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

0

5000

10000

15000

20000

25000

C
o

u
n

ts
/1

0
3
 s

Concentration of UO
2
Cl

2
, mg/ ml/25

235U

 

Fig. 4. Dependence of activity of 
234

Th, 
234

Pam, and 
235

U of the same probes exposed to the 3
rd

 

harmonics (0.355 m) of a 150 ps Nd:YAG laser in H2O for 1 hour at 10 Hz repetition rate on 

the concentration of Uranium salt. Straight lines represent the activity of the same nuclides in the 

initial solution.   

In this case the laser action is characterized by high selectivity. Indeed, the decay of 
238

U 

is noticeably accelerated by laser exposure of Au NPs along the branch 
238

U → 
234

Th→ 
234

Pam→ 

234
Pa, and the activity of 

234
Th in the laser-exposed sample is twice higher than in the initial 

sample. On the contrary, the activity (and related to it concentration) of 
235

U remains almost 

constant in the same probes.  

Different reaction pathways observed under exposure in H2O and D2O imply different 

interaction of these compounds with Au NPs. This interaction is not related to chemical one 

since chemical properties of these two waters are the same. Indeed, NPs are molten during their 

synthesis by laser ablation and ionized during laser exposure. The emission of atomic Au has 

been detected under exposure of Au NPs in water at laser peak power of 10
11

 W/cm
2
 at 1.06 mm 

wavelength. The upper electronic level of this emission is 5 eV, which is comparable with the 

energy of dissociation of water molecules (13.6 eV) [9]. Accordingly, the water vapor around the 

NPs is partially dissociated. Molecular gases H2/D2 dissolve in the metal while the solubility of 

O is much lower than that of H/D due to larger size. This process is very efficient in view of high 

specific surface of Au NPs used in this work since their surface is as high as 10 m
2
 per 1 ml of 

colloidal solution.  Saturation of the liquid with H2/D2 increases the quantity of these gases in Au 

NPs. If the solidification rate of NPs is sufficiently high, then the dissolved gases remain inside 

the NPs. Saturation of the liquid with H2/D2 increases the quantity of these gases in Au NPs. If 

the solidification rate of NPs is sufficiently high, then the dissolved gases remain inside the NPs. 
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Each nanoparticle can be considered as a target that is ionized by the laser pulse. The expansion 

of the plasma around the nanoparticle is confined by surrounding liquid, so that sufficiently long 

laser pulse can still interact with these nano-sized plasma entities.     

 

Conclusion 

Further interpretation of the observed results on laser initiation of nuclear reactions 

cannot be performed on the basis of known phenomena. It seems that the gases dissolved in Au 

NPs provide the particles that further induce the nuclear reactions. The mechanism of the 

formation of these particles, most probably neutrons, remains unknown so far. However, the 

present results allow the conclusion that the energy spectrum of these neutrons depends on the 

number of experimental parameters, such as the nature of the aqueous environment, laser 

wavelength, peak power of laser radiation, etc. The mechanism of the initiation of nuclear 

reactions at relatively weak laser intensities of 10
13

 W/cm
2
 requires further multi-parametric 

studies.    
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