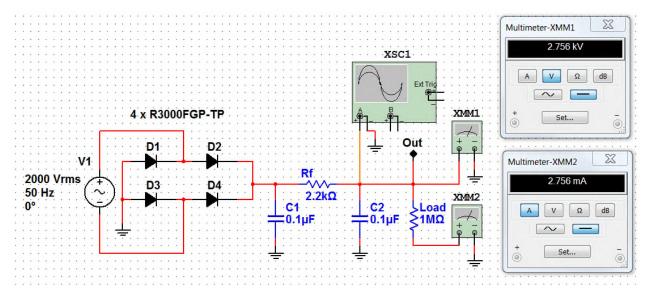
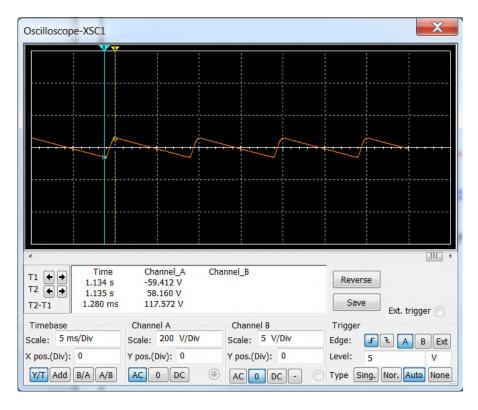

The following simulations was done with National Instruments Ni Multisim 11.0

With the circuit below that have a transformer that has an output of 2000 Volt RMS we will get a DC (average) output of 2714 Volts with a load of 1 Mega Ohm. The load current will be 2.714 mA.



The diodes used are R3000FGP-TP from Digikey, part number R3000FGP-TPMSCT-ND. Price 0.87 US \$.


The ripple will be as below; the ripple will be about 234 V peak to peak.

An alternative solution would be the circuit below. In this case we use both the 0.1 uF capacitators and have added a 2.2 KOhm resistor between them:

In this case the ripple will be about 120 Volt peak to peak as can be see below:

The voltage drop over Rf will look like below and is in the order of 40 Volt.

Oscilloscope-XSC2		2000 Vrms /	X
 T1 Time 916.531 ms 914.451 ms -2.080 ms 	41.476 V 38.393 V	Channel_B	Reverse Save Ext. trigger (
Timebase Scale: 10 ms/Div X pos.(Div): 0 Y/T Add B/A A/B	Channel A Scale: 20 V/Div Y pos.(Div): -0 AC 0 DC	Channel B Scale: 5 V/Div Y pos.(Div): 0 AC 0 DC -	Trigger Edge: J. A B Ext Level: 0 V Type Sing. Nor. Auto None

In any case the filtering of the circuit(s) will be pretty bad. Best case gives 120 / 2756 ~ 4.4 %

A better solution would be to use a High Voltage, low noise, DC/DC converter as can be found in by this link: <u>https://www.analog.com/media/en/technical-documentation/application-notes/an118fb.pdf</u>

Regards

/Bo, SM6FIE