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Quantum 2.0 and Nuclear: Programmatic considerations

So what is coherence?

What can coherence do for us? An overview of quantum dynamics
The future of quantum dynamics simulations

How can weak couplings have large effects?

Building intuition on dynamics and transition rate changes
Quantum-coherent engineering

Quantum coherence at the nuclear level

Nuclear reactions and nuclear state transitions

What's next?

How to create quantum-coherent nuclear ensembles?

Reviewing relevant experiments

Proposed experiments (toward definitive confirmation and applications)
What does quantum-coherent nuclear engineering look like?
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Quantum 2.0 and Nuclear:
Programmatic considerations

What problems need solving?
What do we know that might help address them?

FORTHCOMING ARTICLE:
“Nuclear fusion rate enhancement in
solid-state environments”
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What new tools are emerging?
In what ways can they be applied?

PROPOSED ARTICLE:
“The Case for Quantum-Coherent
Nuclear Engineering”
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What problems need solving?
What do we know that might help address them?

FORTHCOMING ARTICLE:
“Nuclear fusion rate enhancement in
solid-state environments”

* Atomic physics
* Nuclear physics
* Quantum dynamics
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What new tools are emerging?
In what ways can they be applied?

PROPOSED ARTICLE:
“The Case for Quantum-Coherent
Nuclear Engineering”
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What problems need solving?
What do we know that might help address them?

FORTHCOMING ARTICLE:
“Nuclear fusion rate enhancement in
solid-state environments”

* Atomic physics
* Nuclear physics
* Quantum dynamics

What new tools are emerging?
In what ways can they be applied?

PROPOSED ARTICLE:
“The Case for Quantum-Coherent
Nuclear Engineering”

Quantum 2.0 Nuclear science
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“Quantum 2.0 refers to the development and use of many-body
quantum superposition, entanglement, and measurement to
advance science and technology. Examples are quantum computing
and simulation, quantum communications, and quantum sensing.

New resulting technologies will potentially go for beyond the
(quantum 1.0} capabilities offered by systems without the
conceptual need for large-scale superposition or entanglement,
examples of which are conventional semiconductor electronics,
loser-based communication systems and magnetic-resonance
medical imagers.”
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“From the transistor to the molecular switch, quantum mechanics is at the heart of nearly all
materials properties and chemical processes. Still, the subtleties of quantum behavior are often
hidden from view. As a result, only a small number of scientific techniques and technological
applications take advantage of the unique phenomena of quantum superposition and
entanglement. Harnessing these counterintuitive properties of matter promises to yield revolutionary
new approaches to computing, sensing, communication, and metrology. [..]

Quantum-coherent systems have been discovered that exhibit remarkable properties and ever
increasing coherence times. However, understanding of how these systems interact (for example,
the complexity of entanglement) is currently limited to a small number of systems. Advances in
tahis field require an understanding of the scaling of coherence lengths and times with system size
and complexity, and the identification of new signatures of quantum states in artificial quantum-
coherent systems.”
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“[Goals:] Discover novel approaches for quantum-to-quantum transduction: The coherent
transduction of information [and energy!] from one modality to another, at the single-particle or
quantum level, is at the core of quantum measurement and information processing. The
development of quantum science will also contribute to areas outside of computing. Control over
guantum-coherent states in artificial systems may lead to enhanced transduction for novel
electronics, efficient light harvesting and photovoltaics, new techniques for cosmology and nuclear
science, and sensing capabilities that are orders of magnitude beyond current standards.”
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“The light harvesting apparatus of plants and bacteria possesses remarkable capabilities of reaching
near unit efficiency for the conversion of an absorbed photon to an electron which goes on to initiate
the [..] chemical reactions of photosynthesis. [..] Recent ultrafast spectroscopy and theoretical work
have revealed insight into the quantum dynamics of the energy transfer and show how the excitonic
degrees of freedom interact cooperatively with phonons to ensure the optimality and robustness of
the transport in the presence of disorder. This approach can provide important insights for the
design of quantum-to-quantum transducers. [..]

Theory of quantum state transfer: A key challenge in any quantum transduction scheme is to find a
quantum system that is flexible enough to couple strongly and coherently to a variety of distinct
systems and is thus capable of acting as a “quantum bus.” [..] A prime example is the use of
vibrational modes of a mechanical resonator as a quantum bus. [..]

Arrays of dopant atoms, or metal-organic sites, with specified arrangements can be introduced to
create highly tunable superlattices to enhance particular phonon, plasmon, or optical modes.”
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“The Second Quantum Revolution is unfolding now, exploiting the enormous
advancements in our ability to detect and manipulate single quantum
objects. The Quantum Flagship is driving this revolution in Europe.”

Quantum 2.0
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“The Second Quantum Revolution is unfolding now, exploiting the enormous
advancements in our ability to detect and manipulate single quantum
objects. The Quantum Flagship is driving this revolution in Europe.”
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Quantum 2.0

“The Second Quantum Revolution is unfolding now, exploiting the enormous
advancements in our ability to detect and manipulate single quantum

objects. The Quantum Flagship is driving this revolution in Europe.
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Nanostructured materials
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Anomalous heat + particles
Nuclear science

Quantum 2.0

Quantum dynamics

2000
2020




2021-2025:

Quantum dynamics Nuclear science Nanostructured materials

Engineered lattices with desired structure
and isotopes

2025-2030:

Phonon-nuclear
interaction

Quantum dynamics Nuclear science Nanostructured materials
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Nanostructured materials

Nuclear science

Quantum dynamics

| will show the gradual transition from quantum computing to

quantum-coherent nuclear engineering.
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Compare with classical electromagnetics:
«  Alow-energy electromagnetic wave constitutes a signal
« A high-energy electromagnetic wave constitutes energy transfer

Transition
energy

N

Accelerated nuclear reactions
{Nuclear RET¥*)

&
Chargeable nuclear batteries

® Nuclear qubits

N\
Photosynthesis S
{Atomic RET*) N Atomic qubits

Fidelity
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So what is coherence?
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A guantum system sufficiently stable so that it can maintain discrete
energy/information states, including superposition with coupled

subsystems (i.e. energy/information is held collectively by multiple
subsystems).

- allows for precise control of individual quantum states

The opposite is decoherence:

Irreversible dissipation of energy/information into the environment,
akin to heat losses in thermodynamics.

- allows only to work with statistical aggregates (Quantum 1.0)

To achieve this stability, need:
. Strong coupling internally (between discrete states)

Weak coupling to the environment (to infinite states/continuum)
- Phase synchronization (often follows from strong coupling)

Saveianis oy

SR i i i S
WROWRE A S A

3/7/2021

16



3/7/2021

is a degree of order in the system that allows for the occupation

of a few high-energy states vs

There

many lower-energy states.
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Energy is held collectively

Energy is completely Energy is stably held ina ti
distributed across single quantum system through a superposition of
environment quantum systems

Characteristics: strong coupling to outside weak coupling to outside weak coupling to outside
strong coupling within

Qubits BEC, photosynthesis

Nuclear decay

Examples: Quantum 1.0

aidar N \ : :

Previous belief:

Coherence is an exotic and extremely rare state, only possible under
exceptional circumstances (close to OK, very short lived).

Increasingly common realization:

Coherence shows up in all kinds of places, especially in nature. It often
can be stabilized by boundary conditions and can be surprisingly long-
lived.

3/7/2021
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What can coherence do for us?

ICS

An overview of quantum dynam
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Radiative decay:
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Nonradiative transfer:
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If you have multiple qubit gates, can have superposition of
many systems (less relevant for quantum computing but for
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This is the model for quantum-coherent nuclear
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How can weak couplings have large effects?
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Picture as disturbance of E-field
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1076 eV

Coherent control of nuclei

Sensing of earth magnetic field
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. So it’s all about deliberately moving energy/information around in
coupled systems.

Quantum coherence at the nuclear level
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