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Motivated by the high energy focusing found in rapidly collapsing bubbles that is relevant
to implosion processes that concentrate energy density, such as sonoluminescence, we
consider a calculation of an empty cavity collapse in a compressible Euler fluid. We review
and then use the method based on similarity theory that was previously used to compute
the power law exponent n for the collapse of an empty cavity in water during the late stage
of the collapse. We extend this calculation by considering different fluids surrounding
the cavity, all of which are parametrized by the Tait-Murnaghan equation of state through
parameter γ . As a result, we obtain the dependence of n on γ for a wide range of γ , and
indeed see that the collapse is sensitive to the equation of state of an outside fluid.

I. INTRODUCTION

Rayleigh1 calculated that the radius R of an empty cavity in an incompressible ideal fluid col-
lapsed to zero at a finite time t0 as:

R(t) = A(t0 − t)2/5, (1)

where A = (5/2)2/5(E/2πρ)1/5, ρ is the mass density of the fluid and E = (4π/3)p0R3
m is the

energy of the fluid, which is the energy to form the initial cavity of radius Rm in an otherwise
stationary fluid, where p0 is the ambient externally applied pressure. If there are N atoms inside the
cavity the collapse will arrest at a finite radius Rc and at this moment the energy per particle will be
E/N. A typical experiment2 reaches Rm = 50 µm with N = 1.2×1010. Due to the finite size of the
atoms the collapse arrests at Rc ≈ 0.5 µm and at this stagnation point the average energy delivered
to each particle is E/N ≈ 25 eV. As the emission of ultraviolet photons, with an energy of 6 eV,
can be observed from the interior of the collapsed bubble3, the Rayleigh bubble dynamics is widely
regarded as providing a zeroth order picture of sonoluminescence.

As the moment of the Rayleigh collapse is approached, from Eq. (1) the velocity of the cavity
wall approaches infinity as Ṙ(t) = (−2A/5)(t0 − t)−3/5. Consider again the situation where gas is
contained in the cavity. On the one hand it will arrest the collapse prior to reaching zero radius. On
the other hand the speed of the gas at the boundary of the cavity r = R(t) can become supersonic
relative to the medium in the bubble which, in contrast to the external fluid, is compressible2. If
the supersonic motion occurs well before arresting of the collapse then an imploding shock wave
can form. The shock can focus to the origin, r = 0, independent of the presence of matter. In
this case E/N ≈ 1000 eV has been theoretically predicted4. Realization of this handover in the
focusing of energy density would raise prospects for the use of acoustics to achieve thermal fusion5.
Ramsey6,7 has emphasized that a small compressibility of the surrounding fluid might slow down
the collapse and affect the attainment of a next stage in energy focusing. In particular, one notes
that in 1960 Hunter8 calculated that for water (which is the fluid of choice for most experiments)
near the moment of the collapse:

R(t) = An(t0 − t)n, (2)

where n = 0.5552 ≈ 5/9. Hunter used the Tait-Murnaghan9,10 form of the equation of state for the
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FIG. 1: Predicted values of n as a function of γ are denoted as dots, and the dashed line
corresponding to n = 0.4 is the value for the incompressible fluid. In (a), values of γ are those

close to the water that has γ = 7, and the solid line is the proposed fit of the form n = 0.4+aγ−b.
In (b), a larger range of γ is considered.

fluid’s pressure p:

p(ρ) = B
((

ρ

ρ0

)γ

−1
)
, (3)

where B = 3000 atm, γ = 7, ρ0 = 1000 kg/m3. The compressibility of water slows down the
collapse and preliminary analysis indicates that the handover to an imploding shock wave can be
suppressed11.

Even for ideal hydrodynamics the compressibility of the fluid has a strong influence on the extent
to which energy density is concentrated. Motivated by this perspective we present a calculation for
n(γ) for a wide range of γ . Key results are displayed in Fig. 1. These calculations might moti-
vate a search for candidate liquids to achieve greater levels of energy focusing. These calculations
also provide an asymptotic limit that can be used to evaluate accuracy of more general numerical
solutions, for example, simulations of all-Mach number bubble dynamics12.

II. THEORY

In this section, we give a summary of the methods used to perform the computations8.
We assume a spherically symmetric scenario in which a spherical empty cavity has its center

placed in the origin of the coordinate system and whose radius is described by a time dependent
function R(t). Outside of this radius, we assume an infinite ideal fluid which is described by mass
conservation law and Euler’s equation, where due to spherical symmetry fluid’s only nonzero com-
ponent of velocity is radial component u, and both radial velocity component and mass density ρ

are only functions of radial coordinate r and time t. We do not consider an equation for entropy as
we assume that the flow is homentropic. The following equations are considered for r > R(t).

ρ

(
∂u
∂ t

+u
∂u
∂ r

)
=−∂ p

∂ r
(4)

∂ρ

∂ t
+u

∂ρ

∂ r
+ρ

(
2u
r
+

∂u
∂ r

)
= 0 (5)

To describe pressure p, we assume the Tait-Murnaghan equation of state, where s is the specific
entropy.

p(ρ,s) = B(s)
((

ρ

ρ0(s)

)γ

−1
)

(6)
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For simplicity, as the flow is homentropic, from now on we will not explicitly write dependence
of B,ρ0, or other entropy dependent variables on the specific entropy s.

We would like to enforce two boundary conditions for both radial velocity u and pressure p,
where one is at the interface between the empty cavity and fluid at r = R(t), and the other one is
far from the cavity as r → ∞. For radial velocity, we assume that the empty cavity is a free surface
and that far away from the cavity the fluid is at rest. For pressure, we assume that at the surface of
the cavity, pressure is zero as the cavity is empty, and far away it approaches some finite value p∞.
Boundary conditions are summarized next, where the dot represents the derivative with respect to
the time.

u(R(t), t) = Ṙ(t), lim
r→∞

u(r, t) = 0. (7)

p(R(t), t) = 0, lim
r→∞

p(r, t) = p∞. (8)

Using the assumed equation of state Eq. (6), it is possible to compute the speed of sound squared
c2 as a function of ρ , and change variables describing fluid from u,ρ to u,c2. This is convenient in
order to apply similarity theory for the later parts of the collapse when R(t)→ 0, as both variables
u and c2 can be directly compared to the velocity of cavity’s wall Ṙ(t).

c2 =
∂ p
∂ρ

=
Bγργ−1

ρ
γ

0
, ρ =

(
ρ

γ

0 c2

Bγ

)1/(γ−1)

. (9)

Using the expression for c2 in terms of density ρ as in Eq. (9), spherical Euler’s equation Eq. (4)
and mass conservation law Eq. (5) are rewritten in terms of variables u,c2 as follows.

∂u
∂ t

+u
∂u
∂ r

+
1

(γ −1)
∂c2

∂ r
= 0 (10)

∂c2

∂ t
+u

∂c2

∂ r
+ c2(γ −1)

(
2u
r
+

∂u
∂ r

)
= 0 (11)

Using Eqs. (6), (9), it is possible to compute boundary conditions for c2 given by constants c2
0,c

2
∞,

from the corresponding boundary conditions for pressure as in Eq. (8).

c2(R(t), t) =
Bγ

ρ0
= c2

0, lim
r→∞

c2(r, t) = c2
∞. (12)

Instead of solving the system of partial differential equations given by Eqs. (10), (11) which
would mean that we have to supply initial conditions, we consider similarity theory that is motivated
by numerical results8. As we approach the last phase of the collapse where R(t)→ 0, we assume
that the length scale of the problem is given by R(t) and the scale for velocities is given by Ṙ(t). So,
we seek solutions of the following form, where we are interested in finding functions f and g. The
goal is to reduce the problem to a system of ordinary differential equations for f and g.

u(r, t)
Ṙ(t)

= f
(

r
R(t)

)
,

c2(r, t)
Ṙ2(t)

= g
(

r
R(t)

)
. (13)

Motivated by the solution in the incompressible case1 and numerical results8, we additionally
assume the power law form R(t) = An(t0 − t)n, where t0 is a time at which collapse happens and
n is a power law exponent that we would like to compute. Using such power law assumption
and similarity approach for u,c2 as in Eq. (13), we can rewrite Eqs. (10), (11) as two coupled
ordinary differential equations for functions f and g, where we introduce variable x = r/R(t). Then,
differential equations have to be solved in the range x > 1.

f ′(x)( f (x)− x)+
(

1− 1
n

)
f (x)+

g′(x)
(γ −1)

= 0 (14)
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g′(x)( f (x)− x)+2
(

1− 1
n

)
g(x)+g(x)(γ −1)

(
2 f (x)

x
+ f ′(x)

)
= 0 (15)

As these equations are ordinary differential equations, we do not have to worry about what kind
of initial conditions to choose for u,c2, as functions f and g can be solved only by the boundary
conditions. To compute boundary conditions from those of u,c2 given in Eqs. (7), (12), we use
definitions of f ,g in terms of u,c2 as in Eq. (13). However, for the assumed form of c2 in Eq. (13),
boundary conditions cannot be satisfied. Instead, because Ṙ(t) → −∞ as R(t) → 0, to get finite
speeds of sounds at boundaries, we assume that g is zero at the boundaries if all we are interested in
is the late stage of the collapse.

f (1) = 1, lim
x→∞

f (x) = 0. (16)

g(1) = 0, lim
x→∞

g(x) = 0. (17)

The goal now is for each value of γ describing the equation of state of the fluid to find the value of
n so that differential equations given by Eqs. (14), (15) are satisfied with the appropriate boundary
conditions given by Eqs. (16), (17).

III. RESULTS

It is convenient to rewrite differential equations given by Eqs. (14), (15) in the following way so
that each equation contains a derivative of only one of the functions. To do this, insert the expression
for g′(x) from Eq. (15) to Eq. (14), or insert the expression for f ′(x) from Eq. (14) to Eq. (15).

f ′(x)
(
( f (x)− x)2 −g(x)

)
=−

(
1− 1

n

)
f (x)( f (x)− x)

+2
(

1− 1
n

)
g(x)

(γ −1)
+

2 f (x)g(x)
x

(18)

g′(x)
(
( f (x)− x)2 −g(x)

)
=

(
1− 1

n

)
(γ −1) f (x)g(x)

−2
(

1− 1
n

)
g(x)( f (x)− x)+2(γ −1) f (x)g(x)

(x− f (x))
x

(19)

Notice that the Eqs. (18), (19) are singular at x = 1 with the boundary conditions chosen as
Eqs. (16), (17) as at x = 1 it is not possible to solve for f ′(1),g′(1) which then would be used to
numerically approximate values of f ,g for some x > 1. So, instead of solving equations numerically
from x = 1, we start from x = 1+ ε , where 0 < ε ≪ 1. To do that, we have to understand what are
the new boundary conditions at such a point. To compute them, we expand both functions in ε

around x = 1 as given next, where we use boundary conditions at x = 1 as in Eqs. (16), (17).

f (1+ ε) = f (1)+ f ′(1)ε +O(ε2) = 1+ f ′(1)ε +O(ε2),

f ′(1+ ε) = f ′(1)+ f ′′(1)ε +O(ε2).
(20)

g(1+ ε) = g(1)+g′(1)ε +O(ε2) = g′(1)ε +O(ε2),

g′(1+ ε) = g′(1)+g′′(1)ε +O(ε2).
(21)

Consider differential equations given by Eqs. (18), (19) up to first order in ε . As equations are
singular at x = 1, no information is obtained from the zeroth order in ε . However, from the first
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FIG. 2: Numerically obtained solutions for g(x) shown here from x = 1+ ε , where ε = 10−3, until
x = 2. In (a), the guessed value of n = 0.540699 is smaller than the predicted one. In (b), it is equal

to the predicted value n = 0.540799. In (c), the guessed value of n = 0.540899 is larger than the
predicted value.

order in ε , it is possible to compute values of f ′(1),g′(1) and to approximate boundary conditions
as follows.

f (1+ ε)≈ 1+
1
γ

(
3−2

(
1− 1

n

)
−2γ

)
ε (22)

g(1+ ε)≈
(

1− 1
n

)
(1− γ)ε (23)

For a given choice of γ , we search through values of n and for each guess of n we numerically
integrate Eqs. (18), (19) starting from x = 1+ ε , where boundary conditions given by Eqs. (22),
(23) are used, until x = 5. The maximum value of x is chosen from practical considerations as then
it is clear whether boundary conditions as x → ∞ given by Eqs. (16), (17) are satisfied or not. If
they are, we report this value of n as the predicted value for the power law exponent of the cavity
wall’s collapse. Value of ε used in numerical calculations is ε = 10−3. It was checked that if this
value is taken to be smaller then the results do not change significantly. For example, if γ = 8, then
predicted value for ε = 10−3 is n = 0.540799, and predicted value for ε = 10−5 is n = 0.540800.
As an example of a search of n for γ = 8, consider results in Fig. 2 which show how solutions of the
function g look like if n is smaller, equal, or greater than the predicted value of n = 0.540799.

First, we consider obtained results for n as a function of γ , where a range of γ is chosen to be
close to the value for water, γ = 7. We predict that the majority of materials have γ values close to
the one of water, so for this range, we propose the following fit that might be useful for practical
applications, n = 0.4+aγ−b, where a = 0.657424, b = 0.735226. For this range of γ , the results are
shown in Fig. 1(a). However, the described method can also be used to compute n for large values
of γ , results for which are given in Fig. 1(b). We see that as γ → ∞, values indeed approach the
incompressible limit n = 0.41.

IV. CONCLUSION

The collapse of a bubble has been shown to be sensitive to the equation of the state of an outside
fluid. We have solved for the power law exponent of the collapse n as a function of compressibility
described by γ for a wide range of γ values. From the obtained results, we see that in the late stages
of collapse, the collapse is faster if γ is larger. Therefore, the selection of materials with high γ will
facilitate the attainment of higher levels of focusing of energy density in a bubble.
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