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Abstract. Mutiple experimental results indicate the existence of cosmophysical effects which
influence parameters of nuclear decays and chemical reactions in lab. conditions. In particular,
variations of nucleus decay parameters are detected which amplitudes are of the order 10−3

and periods of one year, 24 hours or about one month. Similar influence of solar activity on
nuclear decays and chemical reactions also was reported. We argue that such deviations from
radioactive decay law and other similar effects can be described by novel quantum nonlocality
mechanism, different from standard EPR-Bohm nonlocality. Modified Doebner-Goldin model
applied for the description of dynamical nonlocal effects concerned with nuclear decays.

1. Introduction
In the last decades, ample bulk of experimental results provided evidence for the existence
of long-distance cosmophysical correlations, which presumably can’t be explained by standard
quantum physics. First observations of this kind were done in the forties by G. Piccardi, who
has shown that parameters of some chemical reactions, in particular, their rates correlate in time
with solar activity, in particular, with intense solar flares, observed parameter variations are of
the order 10−1 [1]. Later, similar correlations of chemical reaction parameters with solar activity
and other cosmophysical effects were reported by other groups [2, 3]. In the same vein, some
recent experiments have found the periodic modulations of nuclear α− and β−decay parameters
of the order of 10−3 and with typical periods of one year, one day or about one month [4-6].
Influence of solar activity on some nuclear decay parameters also was observed [5, 7]. These and
other related results reviewed below in more detail.

Until now theoretical discussion of these effects had quite restricted character. In particular,
oscillations of β-decay rate was hypothized as anomalous interaction of solar neutrino flux with
nuclei or seasonal variations of fundamental constants [5]. Yet, neither of these hypothesis can’t
explain α-decay parameter oscillations of the same order, because nucleus α-decay should be
insensitive to neutrino flux or other electro-weak processes. Really, α− and β-decays stipulated
by nucleon strong and weak interactions correspondingly. Therefore, observation of parameter
oscillations for both decay modes supposes that some universal mechanism independent of
particular type of nuclear interactions induces the decay parameter oscillations. Besides,
chemical reactions performed via electromagnetic interactions, so it gives, in fact, additional
arguments in favor of such hypothetical mechanism universality.

Nowadays, the acknowledged universal theory is quantum mechanics (QM), so it’s worth to
start from the analysis of its foundations. In this framework, it’s notable that QM axiomatics



PIRT 2021
Journal of Physics: Conference Series 2081 (2021) 012025

IOP Publishing
doi:10.1088/1742-6596/2081/1/012025

2

implicates the existence of notorious quantum-mechanical nonlocality. This phenomenon was
first formulated as famous EPR-Bohm paradox and later developed as Bell theorem [8, 9]. Now
such nonlocal effects confirmed experimentally and applied in quantum communication and
computing. In fact, this mechanism permits to realize specific form of nonlocal correlations (NC)
or ‘action at the distance’ between distant parts of quantum system S. Such NC effects obey
to strict constraints, in particular, it should not violate causality. NC realization in EPR-Bohm
variant demands that initially these S subsystems S1, . . . , Sn should interact with each other,
after such interaction seized and the subsytems departed, such NC conserve correlations of Si
uncertain parameters even at large distance between subsystems. Obviously, such conditions is
impossible to fulfill in cosmophysical situations. Meanwhile, it was argued for long that quantum
NC can be more general concept than standard QM formalism admits and, in principle, some
other NC effects, beyond EPR-Bohm mechanism, can exist [10-12]. In this paper, we develop
phenomenological NC model and discuss its possible application to cosmophysical correlation
description.

Let’s consider first the conditions to which such nonstandard NC mechanism should obey in
general. Plainly, beside causality demands, such NC should agree with all standard invariance
principles i.e. time, space shift and rotation symmetries. In addition, we’ll suppose that NC
by itself can’t transfer the energy, momentum or orbital momentum between distant objects,
such transfer can be performed by conventional fields only. Hence the system average energy,
momentum and orbital momentum should not change during such communications. Suppose
now that the states of two distant objects S1, S2 due to their conjugate NC influence, become
to differ from S1, S2 states expected after their independent evolution during fixed time interval
{t0, tf}. Then, from described assumptions it follows that according to QM rules the initial
S1, S2 states can’t be stationary and non-degenerate, because such states possess the minimal
possible energy and only some energy transfer can make them to evolve to another excited state.
Hence the only possibility is that S1, S2 are degenerate systems, i.e. they have several states
with the same energy and during time interval {t0, tf} evolve from one state to another one.
The simple example of such system is the particle with energy level E confined in symmetric
double well potential divided by potential wall U0 with E < U0 . Such S1 has two degenerate
orthogonal states g1, g2 in these wells with the same energy E, let’s suppose that at t0 it’s in
state g1 confined in one well. Thereon, due to under-barrier tunneling it would spread gradually
into other well [9], so that it will evolve with the time to some g1, g2 superposition. In this case,
hypothetic S2 NC influence on S1, in principle, can change this state parameters, in particular,
resulting g1, g2 probabilities at tf . Such state degeneration is typical for many chemical and
nuclear reactions, below we’ll consider them in more detail. In this paper, model of such NC
processes involving quantum tunneling will be considered. We’ll assume that such NC effects can
be described analogously to QM evolution equations and construct corresponding Hamiltonians.

2. Experimental motivations
Natural radioactivity law is one of most fundamental laws of modern physics, in accordance
with it, nuclear decay parameters are time-invariant and practically independent of environment
[13]. First results, indicating the deviations from exponential β-decay rate dependence, were
obtained during the precise measurement of 32Si isotope life-time by means of decay exponent
fit [4]. Sinusoidal annual oscillations with the amplitude 6 ∗ 10−4 relative to total decay rate
and maxima located at the end of February were found during 5 years of measurements. Since
then, the annual oscillations of β-decay rate for different heavy nuclei from Ba to Ra were
reported, for most of them the oscillation amplitude is of the order 5∗10−4 with its maximum on
the average at mid-February [5]. Some other β-decay experiments exclude any decay constant
modulations as large as reported ones [14]. Life-time of short-living α-decayed isotope 214Po
was measured directly, the annual and daily oscillations with amplitude of the order 9 ∗ 10−4,
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with annual maxima at mid-March and daily maxima around 6 a.m. were found during 4
years of measurements [6]. The similar dependence on astronomical cycles was found for some
biochemical reaction rates [3]. It was shown also that decay rates of 53Mn, 55Fe e-capture
and 60Co β-decay correlate with solar activity, in particular, with intense solar flare moments,
observed decay variations are of the order 10−3 [5, 7]. As was noticed already, the rates of some
chemical reactions demonstrate the similar dependence on solar activity [1, 3].

Individual nuclear decay acts normally are independent of each other [13]; such stochastic
processes are called Poissonian and described by Poisson probability distribution [15]. For this

distribution, at any time interval dT the dispersion of decay count number σ = N
1
2 , where N is

average count number per dT. However, some recent results show that under particular external
influence this relation can be violated, several experiments of this kind reviewed in [16]. In one
of them, α-particles from 239Pu decay detected by Geiger counter located at the distance 2 cm
from isotope. Glass volume with diameter 8 cm located at the distance of 10 cm from α-particle
beam. In this volume, reaction of C12H22O11 disaccharide (sucrose) hydrosolvation performed
by dissolving 100 g of sucrose in 400 g of water. Effective reaction time at room temperature
is about 15 minutes, during this period the observed dispersion of detector counting rate was
reduced by a factor 3, whereas average counting rate practically doesn’t change. It assumes that
the decay process becomes more regular or sub-Poissonian. In quantum physics, the collective
quantum states with sub-Poisson event distribution called squeezed states, they were obtained
for optical photon ensembles [17]. Of course, it looks quite surprising that chemical reactions
can somehow influence nucleus decay parameters, however, they both involve quantum systems
and QM universality, in principle, can provide such possibility via quantum nonlocality.

Experiments of other kind exploited some biochemical and organic-chemical reactions, the
example is reaction of ascorbic acid with dichlorphenolindophenol [2, 18]. Authors noticed first
that dispersion of these reaction rates can change dramatically from day to day, sometimes by one
order of value [19]. Further studies have shown connection of this effect with some cosmophysical
factors, like solar activity, solar wind and orbital magnetic field. In particular, reaction rate
dispersion becomes maximal during solar activity minima of 11 year solar cycle [2]. Shielding
of exploited chemical reactors from external electromagnetic field in steel and permalloy boxes
practically don’t change these effects, hence such cosmophysical influence can’t be transferred
by electromagnetic fields. It’s notable that such chemical reaction rate distributions aren’t
Poissonian but rather correspond to flicker-noise regime, for which the dispersion is, in general,
essentially larger. If to suppose that all described effects have the same mechanism, then
quantum NC seems most reliable candidate for their explanation.

3. Theoretical NC model
Let’s discuss possible NC properties for collective systems like the set of noninteracting nuclei or
molecules. Experimental results discussed in previous section suppose that NC influence makes
their evolution less chaotic and more regular. It’s notable that self-ordering is quite general
feature of quantum dynamics, examples are crystal lattices or atomic spins in ferromagnetic.
Then, it’s reasonable to suppose that any large system would gain via NC mechanism its own
self-ordering, in particular, making its own evolution more regular and ordered. Besides the
self-ordering corresponding to more regular time intervals between events, other forms of system
evolution symmetry, in principle, can be induced by NC effects. In particular, enlargement of
average time intervals between decay events can be also treated as the self-ordering corresponding
to the growth of evolution symmetry, because the event distribution becomes more homogeneous
in time. Experimental results reviewed above demonstrate both enlargement and reduction of
nucleus life-time induced by cosmophysical factors [1, 6]. Hence under their influence such
evolution symmetry can transform in both directions, below only life-time enlargement will be
studied.
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It’s natural to suppose that NC effect for any system of restricted size is proportional to the
number of system constituents Nc involved into reactions. For the case of two nearby systems
S1 evolution due to NC effects supposedly results in its own self-ordering and influences S2 in
the similar way and vice versa. It’s reasonable to suppose also that the scale of NC effects for
decays or chemical reactions will be proportional to the average system process rate. For the
case of two nearby systems of which one of them S1 is large and other one S2 is small, for
them NC effects supposedly realized in master regime, i.e. S1 can significantly influence S2 state
and make it evolution more ordered, whereas S2 practically doesn’t influence S1 state evolution.
This is characteristic for α-decay experiment described above: for considered set-up the chemical
reaction involves about 1023 molecules, whereas α-decay isotope contains about 1018 unstable
nuclei. It can be assumed also that in this case, S2 self-ordering NC effect is insignificant in
comparison with S1 NC influence. Then, resulting NC effect in S2 should depend on S1 evolution
properties and S1, S2 distance R12.

Here we’ll consider simple NC model for the set of N identical, unstable α-decay nucleus {Ai}.
In fact, the similar considerations are applicable to the evolution of arbitrary metastable system,
like atom or molecule, yet for nucleus α-decay its description is most simple. Gamow theory of
nucleus α-decay supposes that in initial nucleus state, free α-particle already exists inside the
nucleus, but its total energy E is smaller than maximal height of potential barrier constituted
by nuclear forces and Coulomb potential [20]. Hence α-particle can leave nucleus volume only
via quantum tunneling through this barrier. Therefore, alike for double well example, the state
energy is the same inside and outside nucleus, and corresponding inside-outside states ψ0,1 are
degenerate and orthogonal to each other. Hence such degeneration permits, in principle, for
some hypothetic NC mechanism to change nucleus decay rate without any energy transfer to
α-particle, but just changing the barrier transmission rate. α-particle Hamilton Ai operator

Hi =
P⃗ 2
i

2m
+ UN (ri), (1)

where m is α-particle mass, P⃗i is its momentum operator, UN is nucleus barrier potential, ri is
the distance from nucleus center [21]. If at t0 α-particle was in initial state ψ0, then the solution
for its state ψ(t) in WKB approximation gives for decay probability at given decay moment t
for nucleus Ai

pi(t) = λ exp[−λ(t− t0)]. (2)

Here pi is, in fact, the time derivative of total decay probability from t0 to t; resulting nucleus life-
time is proportional to λ−1 . Hence at t→ ∞ nucleus state evolves to final state ψ1 [20]. Typical
experimental accuracy of decay time measurement ∆t is several nanoseconds [13]. Formally, such
measurement described as the sequence of two consequent nucleus state measurements divided
at least by ∆t interval. If first one shows that nucleus is in ψ0 state, and next one that it’s
in the state ψ1, it means that nucleus decay occurred during this time interval [22]. In QM
formalism, a general state of quantum system S described by density matrix ρ, for pure states
ρ = |ψ >< ψ|. If A1, A2 nuclei are its components, the partial A1,2 density matrixes ρ1,2 can be
defined. For each Ai it turns out that if some other S components are also measured, then its
decay probability would differ from eq. (2) and becomes

γi(t) =
∂

∂t
Trρi(t)P

i
1, (3)

where P i
1 is projector on Ai final state [22].

Formal solution of QM evolution equation for system state prepared at t0

ψ(T ) =W (T )ψ(t0),
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where integral operator of evolution

W (T ) = exp[− i

h̄

T∫
t0

H(τ)dτ ]. (4)

Consider now the case N = 2, for the system of two independent nuclei A1, A2 its initial state
ψA = ψ1

0ψ
2
0 where formally ψ1,2

0 = ψ0. If their evolution is independent, then operator W (T )
will be just the product of two right side terms of eq. (4), but it can be also formally written as

W (T ) = Ct exp{−
i

h̄(T − t0)

T∫
t0

T∫
t0

[H1(t1) +H2(t2)]dt1dt2}, (5)

where H1,2 are A1,2 Gamow Hamiltonians with corresponding notations r1,2, Ct is time-ordering
(chronological) operator [23]. In a sense, here the second integration for each term is dummy
giving just multiplier T−t0, yet such ansatz is used here because below NC effects will be treated
via time-dependent Hamiltonians for which multiple time parameters is routine approach [23].
Note that here H1,2, in fact, don’t depend on time, their time parameter just indicates on which
of time parameters t1 or t2 H1,2 integration was truly performed.

4. Nonlinear QM formalism
As was supposed, NC effects should not change the system average energy, however, if the
corresponding evolution terms are linear operators, then for α-decay this condition can be
violated [24]. It will be shown here that some nonlinear operators satisfy much better to
this condition. Interest to nonlinear QM can be dated back to the early days of quantum
physics, but at that time it was applied in effective theories describing collective effects. Now
it’s acknowledged that nonlinear corrections to standard QM Hamiltonian can exist also at
fundamental level [25]. In nonlinear QM, particle evolution described by nonlinear Schroedinger
equation of the form

ih̄∂tψ = − h̄2

2m
▽2 ψ + U(r⃗, t)ψ + F (ψ, ψ̄)ψ, (6)

where m is particle mass, U is system potential, F is arbitrary functional of system state.
Currently, the most popular and elaborated nonlinear QM model is by Doebner and Goldin

(DG) [26, 27]. In its formalism, simple variant of nonlinear term is F = h̄2Γ
m Φ where

Φ = ▽2 +
| ▽ ψ|2

|ψ|2
(7)

is nonlinear operator, Γ is real or imaginary parameter which, in principle, can depend on time
or other external factors, here only real Γ will be exploited. With the notation

HL = − h̄2

2m
▽2 +U(r⃗, t) (8)

we abbreviate (6) to ih̄∂tψ = HLψ + Fψ where in our case, HL is Gamow Hamiltonian.
Main properties of eq. (6) were studied in [26, 28], for constant Γ they can be summarized as

follows: (a) The probability is conserved. (b) The equation is homogeneous. (c) The equation
is Euclidian- and time-translation invariant for U = 0. (d) Noninteracting particle subsystem

remain uncorrelated (separation property). (e) For U = 0, plane waves ψ = exp[i(k⃗0r⃗−ωt)] with
ω = Eh̄, |⃗k0|2 = 2mE/h̄ are solutions both for real and imaginary Γ. Writing< Q >=

∫
ψ̄Q̂ψd3x
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for operator expectation value, in particular, since
∫
ψ̄Fψd3x = 0, the energy functional

for solution of (6) is < ih̄∂t >=< HL >. Hence the average system energy would change
insignificantly if not at all if F added to initial Hamiltonian, therefore, it advocates DG ansatz
application in NC models.

It’s notable that nonlinear term F in particle Hamiltonian can modify the particle tunneling
through the potential barrier effect. In particular, exact solution of this problem was obtained
for rectangular potential barrier, it was shown that the barrier transmission rate depends
exponentially on Γ [28]. To calculate corrections to Gamow model, WKB approximation for
nonlinear Hamiltonian of (6) can be used [28]. In this ansatz, 3-dimensional α-particle wave
function reduced to ψ = 1

r exp(iσ/h̄); function σ(r) can be decomposed in h̄ order σ = σ0+σ1+...
[9, 23]. Given α-particle with energy E, one can find the distances R0, R1 from nucleus centre
at which U(R0,1) = E. Then, for our nonlinear Hamiltonian the equation for σ0 is

(Λ− 1

2m
)(
∂σ0
∂r

)2 = E − U(r), (9)

where Λ = 2Γ
m for R0 ≤ r ≤ R1, Λ = 0 for r < R0, r > R1. Its solution for R0 ≤ r ≤ R1 can be

written as

ψ =
1

r
exp(iσ0/h̄) =

Cr

r
exp[−1

h̄

r∫
R0

q(ϵ)dϵ],

where Cr is normalization constant,

q(r) =
1

h̄
{2m[U(r)− E]

1− 4Γ
}

1
2 .

Account of higher order σ terms doesn’t change transmission coefficient which is equal to

D = exp[−2

h̄

R1∫
R0

q(ϵ)dϵ] = exp[− ϕ

(1− 4Γ)
1
2

] ≃ exp[−ϕ(1 + 2Γ)]. (10)

Here ϕ is constant, whereas Γ, in principle, can change in time, assuming that its time scale is
much larger than the barrier transition time. To calculate nucleus life-time, D multiplied by the
number of α-particle kicks into nucleus potential wall per second nd, so it gives λ = ndD [20],
for DG model nd doesn’t depend on F term presence [28].

As was noticed, the growth of average time intervals between events can be considered as the
growth of system evolution symmetry. For example, the event distribution of eq. (2) on time
half-axe {t0,∞} becomes maximally homogeneous for λ → 0, hence the evolution symmetry
rises in this limit. Consider two nucleus systems S1, S2 with the average distance between S1, S2
elements equal to R12. S1 is the set of N0 unstable nuclei {Al} prepared at t0 with decay
probability described by eq. (2). S2 includes just one unstable nuclide B prepared also at t0,
its evolution normally described by Gamow Hamiltonian HL ansatz of (8). Its decay constant
λb, in principle, can differ from λ of eq. (2) if for B U ̸= UN of eq. (4). In such set-up, the
system S1 of N0 nuclei presumably would induce NC effect in B evolution and also change its
own evolution as well. Suppose that all geometric factors of such NC influence on B for given
S1 described by real coefficient χ(R12) which absolute value grows with N0 and diminishes with
R12. Resulting corrections to HL are supposed to be small and so can be accounted only up to
first order of χ . Basing on assumptions discussed above, in particular, that resulting NC effect
proportional to S1 total decay rate, it follows that if no measurements of S1 states performed,
then corrected B Hamiltonian becomes

Hd(t) = HL +
h̄2

m
χ(R12)pi(t)Φ, (11)
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where pi is of eq. (2), Φ is nonlinear operator of (7) for B α-particle. It means that in this case,

Γ = h̄2

mχpi(t), substituting it in eq. (10), in WKB approximation, it gives B decay probability

p′(t) = Cb exp{−[(t− t0)ξ(t)]}. (12)

Here Cb is normalization constant

ξ(t) = exp{[1 + 2
h̄2

m
χ(R12)pi(t)] lnλb}. (13)

Hence for such ansatz, B Hamiltonian and consequently B life-time depends on S1 nuclei decay
probability at given time moment. Namely, under NC influence resulting B nucleus life-time for
χ > 0 becomes larger than initial one. Note that kinematic parameter nd practically doesn’t
change in this case. Assuming now that N > 1 i.e. S2 includes not one but many identical B
nuclei, on which proposed S1 NC effect influences independently, then average time intervals
between S2 decays would enlarge. Such S2 evolution modification can be interpreted as the
growth of S2 evolution symmetry such that resulting decay probability p′(t) becomes more
homogeneous in time in comparison with initial B decay probabilty pb(t).

Now this NC effect can be considered on more fundamental level beyond master regime. Let’s
suppose that for system S N0 = N = 1 and nuclei A1, B states described by wave functions
ψ1, ψb correspondently. Then for the same initial conditions as above, the system initial wave
function ψs = ψ1ψb, S Hamiltonian in first χ order

Hs(t) = HL +
h̄2

m
χ(R12)p1(t)Φ +H1 +

h̄2

m
χ(R12)pb(t)Φ1, (14)

where Φ1 is is nonlinear operator of (7) for A1. Solution of evolution equation for such
Hamiltonian would give probabilities for A1, B decays. Resulting A1, B states are correlated
but aren’t entangled, so that system state ψs = ψ1ψb at any time. Plainly, resulting NC effects
will be quite small. Exploited approach to Hamiltonian formulation is, in fact, analogue of
well-known Hartry-Fock approximation for electromagnetic interactions in atoms [23].

Now let’s consider NC model, which results in sub-Poissonian self-ordering symmetry growth.
Let’s take two systems S1, S2 of N0, N nuclei, correspondently, with N ≪ N0 and the average
distance between S1, S2 elements equal to R12. As was supposed, due to conjugal NC influence
between S1 elements, its evolution becomes more regular and self-ordered and it induces similar
NC influence on S2 evolution. Due to it, S2 evolution can differ from the case of independent
nuclei and would result in the temporary correlation between S2 decays. Modified S2 evolution
operator can be chosen from the analogy with squeezed photon production in atomic resonance
fluorescence [17]. In that case, the photon production rate is suppressed if the time interval
between two consequently produced photons is less than some fixed ∆T . Due to it, the resulting
photon registration becomes more regular, and their distribution is sub-Poissonian. Let’s start
from the simplest case N = 2 and A1, A2 nuclei prepared at t0. Let’s suppose that S1 NC
influence rate on S2 elements characterized by some scalar function k(R12), which absolute
value supposedly diminishes as R12 grows and enlarges as N0 grows. For the simplicity, we
assume that NC correlation of A1, A2 decay moments is such that their evolution ansatz can be
factorized into A1, A2 terms. For example, if no measurement of A1 state is done, then resulting
phenomenological A2 Hamiltonian supposedly becomes

Hc
2(T ) = H2 +

h̄2

m

T∫
t0

k(R12)φ(T − t)p1(t)dtΦ2 (15)
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with p1(t) is of eq. (2), Φ1,2 are A1,2 nonlinear operators of (7) with corresponding notations.
φ is causal Green function

φ(τ) = η(τ − ν)− η(τ)

its possible dependence on A1, A2 distance supposedly accounted in k(R12). Thus, corresponding
NC time dependence described as the difference of two step functions η(τ) = {0, τ < 0; 1, τ ≥ 0}
which is simplest variant of such ansatz [15]. ν > 0 is NC parameter, it corresponds to the time
range in which A1, A2 decay acts are correlated; ν supposed to be much larger than the barrier
transition time [21]. Hence A2 Hamiltonian Hc

2 is time-dependent, at given time moment T it
depends on A1 decay probability during time interval ν previous to T . Analogous modification
occurs for A1 Hamiltonian with corresponding index change. In general, such S1 NC influence
on A1, A2 Hamiltonians supposedly results in W (T ) nonlinear modification in comparison with
eq. (5)

W (T ) = Ctexp{−
i

h̄(T − t0)

T∫
t0

T∫
t0

[H1(t1) +H2(t2) + (T − t0)G(t1, t2)]dt1dt2}. (16)

Third term in this equality is NC dynamics term, its simple ansatz which supresses nucleus
decays at small time intervals between them can be taken as

G(t1, t2) =
h̄2

m
k(R12)[φ(t1 − t2)γ2(t2)Φ1 + φ(t2 − t1)γ1(t1)Φ2].

Note that the second right-side term corresponds to Hc
2 Hamiltonian of eq. (15), γi is of eq. (3).

If no measurement of Ai state was performed for tf < T , then γi(ti) = pi(ti) of (2). Otherwise, if
such measurement was done at some tf and Ai was found to be in the final state, then for ta > tf
it follows that γi(ta) = 0. Thus, for i = 1, 2 the nucleus Ai NC term is supposedly proportional
to decay rate of neighbour nucleus A2−i of eq. (2). Under these conditions, kinematic factor nd
for α-particle motion inside nucleus changes insignificantly. Then, in WKB approximation for
our nonlinear evolution operator the joint A1,2 decay probability ps for k > 0 will differ from
independent case ps(t1, t2) = p1(t1)p2(t2) and is equal to

ps(t1, t2) = Cλ2+4θ exp[−g(t1, t2)(t1 + t2 − 2t0)],

where C is normalization constant, analogously to eq. (13)

g(t1, t2) = exp[(1 + 2θ) lnλ], (17)

where λ is from eq. (2)

θ =
h̄2

m
k(R12)[η(t1 − t2)φ(t1 − t2)γ2(t2) + η(t2 − t1)φ(t2 − t1)γ1(t1)].

Due to it, if the time interval between two decay acts is less than ν, the nucleus decay rate will be
suppressed, and resulting decay event distribution will become more regular. For independent
nucleus decays with N = 2 described by eq. (5) their joint decay probability corresponds to
Poissonian process, whereas NC dynamics term in eq. (16) would transform it to sub-Poissonan
one, resulting in less stochastic and more ordered event distribution. Note that in the considered
case, A1, A2 states are correlated, but aren’t entangled. For N > 2 the considered NC dynamics
term in W (T ) would change to G(t1, . . . , tN )dt1. . . dtN with corresponding integration over N
independent time parameters. As the result, for analogous G ansatz the joint decay probability
of two arbitrary consequent decays will be suppressed for small time intervals between them,
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and the decay time distribution of the event sequence will be sub-Poissonian. For all considered
effects it can be supposed that analogous metastable system description is applicable also to
chemical reactions and other atomic and molecular effects. It’s possible also that two considered
evolution symmetrization mechanisms, in principle, can coexist and act simultaneously for some
systems.

Proposed models exploits NC dynamics based on nonlinear α-decay Hamiltonian, which, in
fact, is used as effective Hamiltonian demonstrating how the decay rates can change under NC
influence. It was assumed above that NC doesn’t change any subsystem average energy, but in
our particular model, in fact, it can change slightly. However, it doesn’t exclude the possibility
that further model development would permit to avoid this difficulty.

5. Conclusion
Considered experimental results and theoretical analysis evidence that novel communication
mechanism between distant quantum systems can exist. It’s based on new form of QM
nonlocality, principally different from well-known EPR-Bohm mechanism. In this paper, such
NC effect was studied for the system of metastable states, in particular, unstable α-decay nuclei
described by Gamow model. Application of nonlinear Hamiltonian terms for NC description
permits to construct consistent dynamical model. Concerning with causality problem for NC
communications, at the moment it’s still possible to assume that such NC can spread between
systems with velocity of light. But even if this spread is instant, it’s notable that usually
superluminal signalling in QM discussed for one bit yes/no communications [29]. In our case,
to define the resulting change of some parameter expectation value or dispersion, one should
collect significant event statistics which makes causality violation quite doubtful possibility. In
addition, NC dependence on the distance between two systems can be so steep that it would
suppress effective superluminal signalling. Note that some nonlinear models by themselves
permit superluminal signalling, but that’s untrue for our ansatz [27].

Considered QM nonlocality has universal character, so beside nucleus decays, such temporary
variations of system parameters can be observed, in principle, for other systems in which
metastable states and tunneling play important role. In particular, it’s well known that
development and functioning of biological systems performed quite consistently even at relatively
large distances between their parts. For example, the kidney and liver cells, blood erythrocytes
identify and attract the proper partner cells and reject wrong ones at the distance of several
microns, which are much larger than the range of chemical forces [30]. Another notorious
example is morphogenesis problem, i.e. proportional and optimal growth of plants and
organisms. Up to now the mechanism which regulates spontaneous cell division in optimal
way at significant distances between them is poorly understood. It’s difficult to admit that such
long-distance effects can be achieved via chemical messengers only, so it was argued long ago that
some other physical mechanism can be responsible for that. Some authors proposed already that
such long-distance correlations can be induced by QM nonlocality [31, 32]. However, standard
EPR-Bohm mechanism can’t transfer signals effectively in dense and warm media, which is
characteristic for biological systems. It isn’t obvious how NC model considered here can be
extended on biological systems which are quite complex, yet there is no direct obstacles for that
as well, some possible options discussed in [24].
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