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The time-dependent Hartree-Fock theory is applied to the large amplitude dynamics of slabs of spin and
isospin symmetric nuclear matter. The slabs are translationally invariant in two transverse dimensions, and
with the simplified effective interaction used in this work, the problem is reduced to a set of coupled nonlinear
equations for time-dependent functions of a single spatial variable. By specification of appropriate initial
conditions, large amplitude oscillations of a single slab, the scattering of a slab from an external potential
barrier, and collisions of two slabs have been investigated. The results evidence a wide variety of dynamic
phenomena, including fusion, compound nucleus formation, dissipation, strongly damped collisions, shock
wave propagation, and fragmentation. The microscopic aspects of the dynamics, the relation to fluid
mechanics, and the practical and conceptual problems arising from the theory are discussed in detail.
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I. INTRODUCTION

A fundamental understanding of the dynamics of
finite nuclei requires a suitable approximation to
the time-dependent quantal many-body wave
function. Given the two-body interaction and ap-
propriate initial conditions, this approximation
should allow the system itself to select the rele-
vant collective or single-particle degrees of free-
dom, without their being imposed by deliberate
ansatz. From such an approximation, one would
hope to obtain a unified microscopic description
of a wide range of dynamic phenomena, including
large amplitude collective oscillations, fission,
fusion, compound nucleus formation, dissipation,
shock wave propagation, and fragmentation. In
addition, it would enable one to assess the validity
of the adiabatic assumption frequently invoked in
studies of collective motion, and it could provide
substantial insight into the possible connection be-
tween the quantal wave function and the variables
of fluid dynamics.

This work discusses the implementation and ap-
plicability of such an approximation, the time-
dependent Hartree-Fock (TDHF) approximation.
First proposed by Dirac! in 1930, TDHF describes
the many-body wave function by a single Slater
determinant. This determinant is specified by the
criterion that at every time, the deviation between
it and the solution to the Schrddinger equation is
minimized, or equivalently, that (¥|(:%8/9¢ —H)|y)
is stationary when ¥ is restricted to the space of
single determinants. The single-particle wave
functions comprising ¥ provide an optimal time-
dependent basis for describing the full many-body
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wave function in the sense that all one-particle
one-hole admixtures are identically included, and
the first nonvanishing correction terms are two-
particle two-hole states. This basis is quite
distinct from the instantaneous static basis ob-
tained by filling the lowest available single-
particle states in the Hartree-Fock (HF) po-
tential generated by the density at any specific
time, and thus TDHF contains essential physics
which must be described in terms of very com-
plicated excitations in the instantaneous static
basis.

The choice of the TDHF approximation is moti-
vatived by several considerations. Two limiting
cases of TDHF, when used with appropriate effec-
tive interactions, provide excellent descriptions
of appropriate nuclear properties. The static HF
approximation accurately predicts energies and
charge density distributions in spherical and well-
deformed nuclei throughout the Periodic Table.?"%
In the small-amplitude limit, TDHF reduces to the
random phase approximation (RPA) which quanti-
tatively describes the excitation energies and
transition charge densities associated with appro-
priate low lying collective states.® In addition, the
mean-field aspect of TDHF is intuitively appealing
in the sense that the mean field is the obvious can-
didate to communicate collective information in
large amplitude dynamics. The time reversal
property of TDHF is another advantage of this
approximation. Although it allows the free ex-
change of excitation energy between collective and
intrinsic degrees of freedom, which is often de-
scribed in terms of viscosity or dissipation, the
theory is invariant under time reversal thus en-
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suring microreversibility of reactions. Finally,
such a time-dependent variational theory offers
the hope of beginning to develop a systematic ap-
proach to the general problem of the dynamics of
composite systems which, for example, should
ultimately be relevant to understanding the dy-
namics of hadrons.”

The organization of this paper is as follows. The
general TDHF formalism is reviewed in Sec. IIL
For the purposes of this present exploratory in-
vestigation, a greatly simplified effective interac-
tion has been developed which is described in Sec.
III. In order to limit the computational scope of
this work, we have restricted our attention to the
dynamics of slabs of spin and isospin symmetric
nuclear matter. Section IV describes the special-
ization to such slab geometry and presents the HF
results for static slabs. In Sec. V, we discuss
the specification of initial conditions and explore
the dynamics of a single slab. Our primary ap-
plication of TDHF has been to the collisions of
two slabs. The resulting collision phenomenology
is presented in Sec. VI and includes inelastic
scattering, compound nucleus formation, reso-
nance behavior, strongly damped collisions with
associated dissipation, mass transfer, fragmen-
tation, and shock propagation. In order to gain
insight into the underlying structure of the ap-
proximation, Sec. VII explores several micro-
scopic aspects, including the role of single-par-
ticle effects and the off-diagonal behavior of the
one-body density matrix. Finally, in Sec. VIII,
we emphasize some of the practical and concep-
tual problems arising from this investigation and
discuss possibilities for future work which appear
promising.

II. GENERAL FORMALISM

In this section, we briefly review the TDHF
equations and cast them into a form suitable for
numerical calculations. For the special case of
a Yukawa two-body force with density-dependent
terms in a spin-isospin saturated system, we give
explicit expressions for the HF potential.

TDHF equations

The full many-body wave function for A nucleons
¥ satisfies the time-dependent Schrodinger equa-
tion

iny = HY (2.1)
b

where the dot denotes time differentiation. The
Hamiltonian operator H is given by

i (2.2)

- |
H=Y"K;4 EZV.

i=1 i®j=1

where K is the one-body kinetic energy operator
and V the two-body potential.

The TDHF approximation consists of assuming
that the full wave function ¥ is a single time-de-
pendent Slater determinant®:

. FA) = é[wl(Fli t)d’z(fzy £)e- ‘\LA(FM ],

(2.3)

¥(F,T,,..

where the right-hand side is an antisymmetrized
product of A complex single-particle wave func-
tions ¢;. The coordinates T; include spin and iso-
spin labels. The y;’s are chosen orthonormal at
some initial time ¢,, which insures the normal-
ization of ¥. As shown below, they will retain
this property at all other times, i.e.,

fdfzpi*(f, 1, (F 1) =5, . 2.4)

The TDHF equations for the single-particle wave
functions are

ind,(F,t) fh(* 0y, ) dF 2.5)

The nonlocal HF Hamiltonian is given by
R(E T, t1)=KE,T')+ WE,T',t). (2.6)

The kinetic energy operator is defined as
- R _, - -
K, r’)=_§—ﬁv 8(r -1'), 2.7

where m is the nucleon mass. The HF potential
is given by

W, T t)—ZfV("’" T

X w,’.‘(('f d ("//1 t)d'flld'fll/ ,
(2.8)

where ¥ is the antisymmetrized two-body potential.
Equation (2.5) may be rewritten as

iy (%, t) = ——’E—-szp (T, t)

+ fw(?, 00, Hdr . 2.9)

This expression is a one-body Schrodinger equa-
tion for y; with a nonlocal potential Wdetermined
by the instantaneous wave functions of all the
other particles. The TDHF approximation thus
reduces the many-body problem [cf. Eq. (2.1)] to
a set of A coupled nonlinear integrodifferential
equations for the single-particle wave functions
Y;. Therefore, numerical solution of the TDHF
equations is no more difficult than the solution of
A coupled one-body equations.
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At this point, it is worthwhile to note that the
coupled set of Eqs. (2.9) is only a particular rep-
resentation of the TDHF equations. Indeed, TDHF
has often been expressed as®'®

ing=[r,p], (2.10)
where p is the one-body density matrix
p(T, T, t)= Z Ui (F, OYXE 1) (2.11)

A numerical solution of Eq. (2.10) would evolve

in time the density matrix defined at discrete val-
ues of both T and I'. On the other hand, the Egs.
(2.9) treat A functions {y;} of a single coordinate.
Insofar as the number of single-particle wave
functions is generally much smaller than the num-
ber of discrete values used for any single coordi-
nate, it is far more efficient to evolve the single-
particle wave functions through the Set (2.9). In
addition, if need be, the one-body density matrix
can always be constructed very easily from the
single-particle wave functions via Eq. (2.11),

Conservation laws

Several quantities are conserved by the TDHF
equations. As mentioned above, the scalar pro-
duct of two single-particle wave functions re-
mains constant in time. From Eq. (2.5), each y;
evolves in time with the same Hermitian effective
Hamiltonian z, so that

d -~ - -

- Jur@ by, di=0. (2.12)
Thus, the metric of the {y;} is time-independent.
From Eq. (2.10) it follows that the number of nu-
cleons, given by

A= ZA; f YX(F, )y (F, t) T

is also time-independent.
The second conserved quantity is the expectation
value of H, given by

@ =E- ):ffw*rth(“'t) SWE T, 0]

(2.14)

(2.13)

Xy, (¥, t) dFdF"

and may easily be shown to remain a constant in
time if the ¢;’s are evolved according to Eq. (2.9).

Single - particle field
Our present application deals with spin-saturated
isoscalar systems. In such cases, the HF poten-
tial is independent of both spin and isospin pro-
vided the two-body force conserves angular mo-
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mentum and isospin. The motivation for the choice
of the two-body interaction discussed below will

be treated in detail in Sec. III. Significant simpli-
fication arises from the use of an interaction
which yields a local HF potential

W, T)=W(@)o(F -T).
The force consists of constant and density-depen-
dent 5-function interactions and a direct Yukawa
potential. (Alternatively the density-dependent
component of the force may be interpreted as a

zero-range three-body interaction of strength ¢,).
The following form for W is then obtained:

W(E) =3, p(F) + 16 £, p*(F)

(2.15)

f ., e~ F=#l/a

+Vy [p(r’ )m dr’ . (2.16)
In this expression, the nucleon density p is given
by

1a
p(F =4 |Ua(E, 017, (2.17)
m=1

where the ¥, (T, t) are the time-dependent spatial
wave functions, each occupied by four nucleons in
different spin and isospin states. We have omitted
the Coulomb force, as a consistent treatment for
slab geometry would result in an infinite potential.

With W defined according to Eq. (2.16), the po-
tential energy of the system is given by

(V)= [0 31,0 + 1,07}

lf-i‘ | /a
+3V, ffp(rp(r) “F1/a drdy’,
(2.18)
while the kinetic energy is
ta . n? - s
(r)=43. / w,t(r><— 2—mv2) ) AF. (219

The four parameters ¢, {,, V,, and a appearing
in Egs. (2.16) and (2.18) are adjusted to reproduce
the bulk properties of nuclear matter and the sur-
face energy of finite systems. A detailed discus-
sion of their determination is given in the follow-
ing section.

III. TWO -BODY EFFECTIVE INTERACTION

In a discussion of the two-body effective inter-
action, it is important, at least initially, to dis-
tinguish between conceptual and practical difficul -
ties. Conceptually, the static Hartree-Fock prob-
lem may be understood in two essentially equiva-
lent ways. The effective interaction may be viewed
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TABLE I. Parameters, nuclear matter properties, and HF results in 0 and 4°Ca for the
Skyrme VI force, the Skyrme force with m*=m described in the text, and the finite range

Yukawa interaction defined by Eq. (3.2).

SKM VI SKM (m*=m) Yukawa (Expt)
t, (MeV fm®) -1101.81 -1089.0 -497.726
¢, (MeV fm?) 271.67 251.11 0
t, (MeV fm?) -138.33 -150.66 0
t3 (MeV fm®) 17 000 17270 17270
aV, (MeV{m) tee cee -166.9239
a (fm) e e 0.45979
€, (MeV) -15.77 -15.77 -15.717
kg (fm™1) 1.29 1.29 1.29
K (MeV) 362 368 368
E/A['%0] (MeV) 7.67 7.60 8.22 (7.98)
E/A[*Cal (MeV) 8.32 8.29 8.67 (8.55)
7en[180] (fm) 2.72 2.72 2.67 (2.73)
rep[40Cal (fm) 3.48 3.48 3.45 (3.48)

as a G-matrix summation to include the effects of
short range correlations.? Alternatively, the en-
tire problem may be viewed as a variation, sub-
ject to subsidiary conditions, of a truncated ex-
pression for the total energy obtained with a Jast-
row wave function.'® Both approaches give rise
to the same HF theory in which a G matrix, which
depends upon the nuclear density matrix, is cal-
culated directly from a realistic two-body force.
The nonlocal exchange terms play a significant
role in these theories. With modest adjustments
to account for higher order processes, such theo-
ries yield systematic agreement with the bulk
properties of finite nuclei.

For the time-dependent problem, we are not
aware of any corresponding treatment of the ef-
fective interaction. Undoubtedly, the diagram-
matic expansion could be formulated in the time-
dependent basis, with a suitable change in propa-
gators. At reasonably low velocities, the relevant
effective interaction should be very similar to the
static G matrix. Similarly, since TDHF is usually
formulated variationally, a time-dependent gen-
eralization'! of the Jastrow approach might also
be feasible and is likely to yield an effective inter-
action of the same structure.

Even if the conceptual problems were solved,
yielding something like a reaction matrix calcu-
lated from a realistic force, strong pragmatic
considerations suggest a drastic simplification of
the interaction for initial explorations. A wide
variety of results indicate that binding energies
and radii of finite nuclei may be reproduced with
phenomenological interactions of the Skyrme form,
which for spin and isospin saturated systems may
be written as'?

Vsxm(T,T") = £,0(F = T')
+30 [0(F - F/)k'%+ k2B (F - T')]
+t2E-6(?—f’)E’+%tapﬁ(?—?). (3.1)

Here k'=(V, ~V,.)/2i acts to the right and kK=(V,
- V,)/2i acts to the left. Using the fact that one
combination of the Skyrme parameters, the range
of nonlocality or equivalently the effective mass
m*  is virtually undetermined by binding energies
and radii, one is free to choose a purely local ef-
fective interaction which results in significant
simplification of the slab problem. The force
Skyrme VI is very close to being local, with m*/
m =0.95 in nuclear matter.® A small readjustment
of the parameters yields a Skyrme force with the
same volume energy, saturation density, surface
energy, and with m*/m=1.0. Because the re-
maining combination of {, and ¢, simply describes
the finite range direct interaction, it is more
physical to replace this term by a finite range
Yukawa interaction with a realistic range and a
strength adjusted to reproduce the same surface
energy. Thus, we add the potential

-r/a

vy () = Voe—r75—P. (3.2)

Here V,=(3t, -5¢,)/647a° the operator P=¥+4P,
with P, the space exchange operator, restricts vyyx
to contribute only to the direct term, and the range
a=0.45979 fm is obtained by fitting to a realistic
direct interaction.'® In addition, such a Yukawa
offers the technical advantage that the integration
of the TDHF equations is much more stable with
a finite range force than with a gradient expansion.
The parameters, nuclear matter properties, and
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FIG. 1. Proton density distributions for 10 and °Ca
calculated with the local Skyrme (m* = m) and Yukawa
forces listed in Table I. For comparison, the proton
density given by the density~-dependent Hartree-Fock
calculation of Ref. 2 is also shown.

finite nucleus results for SKM VI, the Skyrme
force with m*/m =1, and our Yukawa force are
shown in Table I. Since our interaction is designed
for spin and isospin saturated systems, it is only
possible to test it in light mirror nuclei. From
the binding energies and radii in Table I, it is
evident that the gross structure of these nuclei is
reasonably well reproduced. The actual proton
density distributions are somewhat less accurately
represented, as shown in Fig. 1, where compari-
son is made with density-dependent HF distribu-
tions which fit elastic electron scattering.? The
origin of the discrepancy in *Ca appears to be the
fact that m */m=1 Skyrme and Yukawa parameters
were adjusted to reproduce the nuclear matter and
surface properties of SKM V1. The force SKM VI
itself does not reproduce the “Ca density very
accurately, yielding results visually indistinguish-
able from the long dashed lines in Fig. 1. Pre-
sumably by suitable readjustment of the nuclear
matter saturation density, a more reasonable *°Ca
density could be obtained, and there is no funda-
mental deficiency in the form of parametrization
selected.

In summary, the interaction we have used is ad-
mittedly schematic, and intended for exploratory
calculations only. Its most serious deficiency is

the assumption of m*/m =1, given that we know
that a realistic nuclear force yields significant
nonlocality in the self-consistent field.!* This is
particularly relevant to the time-dependent prob-
lem, because it is precisely the exchange term
which contains the contribution of the current to
the HF potential. This connection is especially
clear in the case of the Skyrme interaction, where
the general Hamiltonian density contains, in ad-
dition to the terms we have retained, the term?!s

L(3t, +51,)(pT -J?), (3.3)
where

@)=V Vp(F, F)]¢-7, (3.4)
and

J(E) =3i[(V =V ), F)]7-7 . (3.5)

For example, the exchange term is responsible
for the difference between the Thouless-Valatin
and cranking formulas for inertial parameters
and in the realistic case of m*/m =0.7 gives rise
to a 30% difference.!® Hence the exchange term
may play a significant role in nuclear dynamics
and certainly requires attention in subsequent in-
vestigations.

IV. SPECIALIZATION TO SLAB GEOMETRY

In principle, we would like to integrate ;1 A
coupled three-dimensional equations (2.9) with
some set of physically interesting initial condi-
tions. However, even three-dimensional hydro-
dynamic calculations which involve integrating
four coupled equations in a three-dimensional
space strain the present numerical capabilities.!”
Thus we must limit the dimensionality of our cal-
culation. This section discusses the specialization
of the three-dimensional TDHF equations (2.9) to
a situation of slab geometry. We first treat the
static HF problem, discussing the gross features
and static HF solutions of slabs. We then present
the specialized TDHF equations to be solved in this
geometry.

Gross features of static slabs

The type of systems we wish to consider are un-
charged slabs of nuclear matter. These slabs are
infinite and homogeneous in the two transverse di-
rections and finite in the z coordinate.

When the slab thickness is sufficiently large that
the surfaces are well separated, several features
are evident.

(i) Because of nuclear matter saturation, the
ground state density profile p(z) consists of a
large central region of almost constant density p,,.
On either side of this central region, there is a
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surface region in which the density falls from p,
to zero over a distance of ~2 fm. The shape of
this transition region should be independent of the
thickness of the slab. For thin slabs, these fea-
tures are modified because of the proximity of the
two surface regions and this is the reason why our
present discussion is limited to thick slabs.

(ii) Slabs have varying thickness L defined as
the distance between the half density points (3 p,)
in either surface. It will be useful to measure
this thickness by the number of nucleons per unit
area in the x-y plane, defined as

(1=fmp(z)dz. 4.1)

Because of saturation, we have
G~p,L. (4.2)

(iii) The slab binding energy may also be deter-
mined from macroscopic properties. Because the
slab is infinite in the transverse directions, the
relevant quantity is the energy per unit area. This
energy is given by a volume and a surface term

E/Q = Evol/Q + Esurf/Q’ ’ (4-3)

where @ is an infinite normalizing area in the x-y
plane. Since the energy per nucleon in nuclear
matter is €,, the (negative) volume energy per
unit area is

Evy/Q = Ge,. (4.4)

In finite nuclei, the (positive) surface energy per
unit area from the semiempirical mass formula
is ay /417 2, where a, is the surface energy coef-
ficient,'® and

=% =—. (4.5)

Thus, for a slab

Egur a,
Sslf - 2mr 2’ (4.6)

where the extra factor of 2 accounts for the two
surfaces of the slab. Therefore,

a
5=eo(t+2ﬂ;02 . (4.7)

In the limit of large @, the binding energy per
particle and average density of the slab referred
to above are determined directly from nuclear
matter quantities. Using the Yukawa interaction
introduced in Sec. III, the nuclear matter binding
energy per nucleon is

E 3 <3"2> 2/3 72

A7 10 0?4 (R 1o+ 21V )p + &ty 0%,

2
(4.8)

the saturation density p, is given by the relation

9
g(E/A)pzpfO, (4.9)
and the compression modulus is
9*(E/A)
K=9p,2 ——5—
po apz p=po
E(I)
5 9 ero -—1860. (4.10)

This latter quantity is crucial, since only com-
pressional modes are possible in our slab geo-
metry.

(iv) In analogy with real nuclei, one might ex-
pect slabs to exhibit shell effects in both binding
energies and density profiles. Quantum density
fluctuations in p(z) will occur because of the quan-
tization associated with the finite extent of the
slab in the z direction. Shell fluctuations in the
binding energies of real nuclei, however, are
associated with the existence of gaps in the single-
particle energy spectrum. For the case of slabs,
as elaborated below, translation invariance in the
transverse directions gives rise to a continuous
spectrum, so that no gaps and thus no energy fluc-
tuations arise.

Static Hartree-Fock

In this section we discuss the static HF equa-
tions, the solutions of which are used to construct
the initial conditions for physically interesting
problems.

Since the density is a function of z only, the HF
potential W defined by Eq. (2.16) will also depend
only upon z. After integration over transverse
coordinates, we obtain

W(z) =%top(2) +1%t3p2(z)
+Znazvofwdz'p(z')e"z‘”’ﬂ. (4.11)

With this potential, the time-independent Schrod-
inger equation

n? - -~
[-anrhw(z)} ¥ (T) = €;9;(T) (4.12)
is separable. Each spatial wave function y,;(F) is
then a product of a plane wave in the transverse

coordinates (r,) and a wave function in the z co-
ordinate

- - 1 r.r
U = v, () = 7z et TN (4.13)
The ¢’s are normalized to

f“ | $4F(2) |2dz=1. (4.14)
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The subscript ¢ labels both the z quantum number
n and the transverse wave vector EL. From Eq.
(4.12), the single-particle energy is given by

€, =¢€ =e,,+—”—lkl2 (4.15)

where e, is determined by the bound state Schrod-
inger equation
ﬁz HEF HF|
[ mazzt W(Z)] P5(2) = e, ¢ (2) . (4.16)
In order to construct a HF solution for a slab,
we have to self-consistently solve Eq. (4.12). The

ground state will correspond to the occupation of
all states y,, with energy €,, below the Fermi

energy €p:
h—z
E,.“=en+2—-mk¢2S€p (4.17)
or
Ik, |<[(@m/h2)(ep — €))%= Runa(n) . (4.18)

Therefore, each ¢, is associated with plane waves
of transverse momentum within a circle in the k,
plane of radius %,,(n). The Fermi energy (or
chemical potential) is given implicitly by the size
of the slab we want to construct.

With the orbitals occupied as described above,
the density is given by

p(2)=4 3 U, (D)2
n.ky
occupied

Emax(n) dzkl

=4E |¢*$F(Z)12fo' @n?

occrt'xpied
2

_ Z |¢11'P(Z)|2@;‘T_({L_) (4.19)

occ'\:pied

We may define

2 m -
a"= kma:r(n)= 2}[_2€Fn n R (4.20)
so that

p(2)=37 @,l¢H(2)|". (4.21)

0cc’l:pied

Thus, each orbital ¢lF carries an effective nor-
malization proportional to the difference between
its eigenvalue ¢, and the Fermi energy €,. For a
nonlocal HF potential (e.g., m*/m+#1), the trans-
verse plane waves are coupled to the longitudinal
wave functions, and one would have to solve for
¢,(&.,z). It is because of this substantial compli-
cation that we have restricted our attention to
purely local HF potentials (i.e., local exchange
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potential or m *=m) for which the transverse
plane waves affect the problem only through
weighting factors, as in Eq. (4.21). Thus, while
the structure of the resulting problem is no more
difficult computationally than a genuine one-di-
mensional problem, we may utilize a three-dimen-
sional interaction and three-dimensional phase
space.

According to Egs. (4.20) and (4.21), @ is given
by

N 2m

Q= i G = ;7(6,;—6 ) (4.22)
n=1

where N is the number of occupied bound orbitals

¢ ,(2). We must have

ey >€p, (4.23)

so that no gaps occur in the spectrum of occupied
single-particle levels.

For a given value of @, Egs. (4.22) and (4.23)
determine €;, given a set of eigenvalues ¢,. Thus
Egs. (4.11), (4.16), (4.20), (4.21), (4.22), and
(4.23) provide the set of HF equations to be solved
self-consistently for a given @.

Once a consistent solution has been obtained, the
energy per unit area is given by

E 72 ¢>HF

__.naz

3 =
+-§j:mtop2(z)dz+—3-f p3(2)d

+ ﬂanofmdzf dz’p(z)p(z')e'lz‘z'l /a,

(4.24)

The description of a slab of substantial thickness
requires a surprisingly small value of N. The last
occupied orbital ¢4F is bound in a slab with an in-
ternal momentum of ~k,, the Fermi momentum in
nuclear matter. For a slab of thickness L the
number of nodes in ¢fFwill be

keL

p- -1. (4.25)

Therefore, we may estimate N by

N~Eek (4.26)
For a slab of L =10 fm thickness which has @~ 1.5
fm~™% N is equal to 4. The four wave functions
represent the only accessible degrees of freedom,
since the transverse coordinates are decoupled
and thus effectively frozen.

The numerical solution of the static HF equa-
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MASS NUMBER : A
16

E (MeV)

5 10 5 20 25
NUCLEONS / fm? : 4

FIG. 2. The slab mass table. The solid lines show
the eigenvalues e, of Eq. (4.16) as a function of slab
thickness @. The dashed curve indicates the fermi en-
ergy €, with arrows giving the “magic” slabs. The
crosses show the calculated slab energy E/ in units
of MeV fm™2, which has been fitted to a straight line
over the region @=0.1 fm™ as per Eq. (4.7). The up-
per abscissa is labeled by the three-dimensional equiva-
lent mass number given by Eq. (4.27).

tions has been performed by iteration. The details
are described in Appendix A.

Static results

Figure 2 summarizes the slab mass table which
is obtained with the force parameters listed in
Table I. We plot various properties of the static
solutions as a function of @ The solid lines la-
beled by e, denote the eigenvalues of Eq. (4.16).
The dotted line is the Fermi energy €. “Magic”
slabs occur when a new eigenvalue dives below €.
These slabs are characterized by cusps both in €,
and in the e,’s at the values of @ indicated by ar-
rows. The “shell effects” are, of course, more
prominent for small @. As expected from the
Hugenholtz -Van Hove theorem, the Fermi energy
oscillates about ¢, for large G.

Figure 2 also summarizes the binding energy
per fm? (E/Q) as a function of @ (crosses). It is
smooth and well represented by a linear function
for @>0.3 fm™2, The solid line corresponds to a
least squares fit over the region @>0.1 fm™2 and
results in the values of volume and surface ener-
gies listed in Table I. The deviation from this
straight line for small & is due to the overlap of
the two surface regions, which invalidates Eq.
(4.7).

While the transcription of the one-dimensional
systems we are treating to realistic three-dimen-
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FIG. 3. Density profiles for static slabs of varying thickness. Shown for comparison is the density profile of 28Pb

calculated in Ref. 2.
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sional nuclei is ambiguous, the scale is set by the
diameter of a nucleus of mass A:

@~2r,A'3p,, 4.27)

A sequence of static slab profiles, p(z), is pre-
sented in Fig. 3 for increasing values of G. Be-
cause of reflection symmetry with respect to the
slab centers, only half of each distribution is
plotted. It is observed that the interior density
is systematically very close to the nuclear matter
value, p,=0.145 fm™® and that the thickness in-
creases linearly with @ as expected. The quantum
density fluctuations,'® however, are quite different
in structure from those observed in spherical fi-
nite nuclei, and this may be understood from Eq.
(4.21) for p(2). The weighting factors @, decrease
as e, approaches €z, so that the discontinuity in
wave function weighting at the Fermi surface is
much weaker for slabs than for spherical nuclei.
It is this discontinuity which gives rise to density
oscillations. The greatest discontinuity occurs
when the last nonzero @, has its maximum value,
which occurs when ey, is just slightly greater
than €. In these cases the density fluctuations
should be strongest. However, if €, is midway
between e, and e, ,, the discontinuity in wave
function weighting is much weaker and the density
fluctuations are expected to be correspondingly
diminished. These expectations are borne out in
Fig. 3. The fluctuations are significant for the
cases @=1.40, 1.75, 2.10, and 2.45 fm™?, which
from Fig. 2 correspond to the intersection of
eigenvalues n=5 through 8 with ¢;. However, for
the cases @=1.60, 1.95, and 2.30 fm™?, which
were selected such that €, was roughly midway
between eigenvalues, no fluctuations occur in the
central region.

One may also observe that the wavelength of
density fluctuation agrees with the expected value
of N/k, =1.43 fm and that the presence of a central
maximum or minimum is correctly specified by
the parity of the last occupied orbital. In the limit
of large @, the magnitude of the interior oscilla-
tions should diminish as 1/®@. Since the level den-
sity for e, approaches a continuum, in this limit
only the fluctuations near the surface remain.
These arise from the fact that @(e)=2m (e, —e)/
n#?2 approaches zero linearly at €g.

For comparison with real nuclei, the matter
distribution of 2°8Pb is also included in Fig. 3.

The distribution is taken from the calculation of
Ref. 2 for which the proton distribution agrees well
with elastic electron scattering data. The interior
density and surface thickness are quite compara-
ble with those obtained for slabs. We do not wish
to push the comparison too far, since the Coulomb
interaction, neutron excess, and surface tension

play significant roles in the structure of *2pb. In
view of the previous discussion of density fluctua-
tions, it should be noted that the reason for the
anomalously smooth density in *®Pb is the fact
that the substantial neutron and proton density
fluctuations happen to be completely out of phase
in this nucleus.

Dynamic equations

We now discuss the specialization of the general
equations [(2.5)~(2.9)] governing the time evolution
of the single-particle wave functions to the case
of slab symmetry with our particular effective in-
teraction. As expected, the static HF equations
[(4.11), (4.16), (4.21)] find simple dynamical gen-
eralizations.

Since the density has been constrained to depend
only upon z at all time, the HF potential Wgiven
by Eq. (4.11) also depends only upon this variable.
Therefore, the transverse plane wave component
of each single-particle wave function remains con-
stant in time. Indeed, from the Hamiltonian in
Eq. (4.12), the replacement of e; by i/9/8¢ shows
that the plane wave only contributes a physically
unimportant over-all phase to Ve, given by
exp(—ifk,2t/2m). All the important time-depen-
dence then resides in the ¢ ,(z,¢). Defining

ik, -r
by )=z 20 g (2), (4.28)

we obtain

2 2

ing,(z,t)= (.z_m 5"’? + W(z,t)) d.(z,t), (4.29)

i.e., a one-dimensional Schrodinger equation with
time-dependent potential W(z,¢). Note that be-
cause the transverse plane waves are invariant in
time the transverse occupations of the ¢ ,, speci-
fied by the weights @,, are constant in time. As
seen in the following section, the initial conditions
for our TDHF solutions are obtained from static
HF solutions, so that the @,’s are specified by the
initial conditions. The many-body wave function
thus has no freedom to adjust transverse occupa-
tion, so that the transverse coordinates are de-
coupled. This rather severe limitation, which
must be imposed for reasons of numerical tract-
ability, has strong implications regarding the
physical applicability of our calculations. These
are discussed in detail in Sec. VIII

In several of the calculations discussed below,
we have investigated the effect of a static, spin-
isospin-independent external potential. This has
been accomplished by the addition of the potential
Vext(2) to W(2) in Eq. (4.29), where the functional
form of Vex is discussed in Sec. V. This potential
entails the addition of a term
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el - [ viutao(21dz (4.30)

to Eq. (4.24) for the total energy E/S.

V. INITIAL CONDITIONS AND SINGLE SLAB DYNAMICS

This section and the following present solutions
of the TDHF equations in slab geometry for a
variety of increasingly complex situations. We
begin here with a discussion of initial conditions.
The small amplitude oscillations of a single slab
induced by an initially coherent velocity field are
then discussed. Finally, we treat the interaction
of a single slab with an external potential.

Initial conditions

Physically plausible initial conditions may be
generated for all situations by the application of a
coherent velocity field (the same for all wave func-
tions) to the static HF solutions. From the Galli-
lean invariance of the TDHF equations, it follows
that if the static HF wave functions for a slab of
thickness @ are all multiplied by the common
phase factor

b a(2,1=0) = pHF(2)e*** (5.1)

where % is an arbitrary wave number, the resul-
tant evolution of the system will be uniform trans-
lation with the velocity

1 2
oz D m Z@nlm(M—a‘%) (5.22)

=hk/m, (5.2b)

Note that Eq. (5.2a) defines the velocity field as
that which is associated with the quantum mechani-
cal probability current. By uniform translation

we mean, of course, translation of observables
such as the density and not translation of the wave
functions themselves, which will acquire inconse-
quential time-dependent phases. From Eq. (4.24)
the conserved energy of the system is then

E EWF 712R?

=—+

Q Q 2m ’

v(z,t)=

(5.3)

where EHF/Q is the static HF binding energy per
unit area. Thus, the initial conditions (5.1) result
in a solution corresponding to the uniform trans-
lation of a slab in its ground state.

The extension of Eq. (5.1) to the case of colliding
slabs is now straightforward. For a collision be-
tween two slabs of mass @, and @, with bombard-
ing energy E/A per nucleon in the center of mass
system, the static HF solutions are placed on a
mesh, far enough apart so that their overlap is
negligible (the inner products of ¢’s associated
with different slabs being <107%). The static wave

functions comprising the @, solution are then mul-
tiplied by the phase e*1% with

2m (E (i:]‘/z
= |22\ %
& [h’z(A>(il ’ (5.4)

while those of the @, solution are multiplied by
the phase e*2?;

Q 2m (E\@, /2
k= &ip =_[—(—>—x] . (5.5)
2 az 1 h—z A az

These initial conditions correspond to the required
situation, with the collision taking place in the
c.m. system frame.

The energy E/A is the center of mass bombard-
ing energy per particle, i.e., the total bombard-
ing energy divided by the total number of par-
ticles. For a collision @, + @,, the bombarding
energy per particle of the projectile in the labora-
tory system is given by

E _(a,+az)2(£
(Z ),a,,‘ Q,G, A)m‘ (5.6)

For symmetric collisions where @, =@,, we have

&), 45).

Hereafter we will always refer to the c.m. value
of E/A.

The generalization of Eq. (5.1) to arbitrary ve-
locity fields is straightforward.?® Indeed, the ini-
tial conditions

¢ n(2,=0) = iR 2)e!S( (5.8)

where S(z) is any real function of z, result in a
coherent velocity field at t=0 given by Eq. (5.2a)
as

d
v(z)=-Z—EE . (5.9)

%5}

Small amplitude dynamics

The small amplitude dynamics of slabs about the
static HF solutions provides a useful introduction
to the semiclassical behavior characteristic of the
TDHF equations, as well as illuminating concepts
useful in the analysis of more complicated situa-
tions. In order to investigate the oscillations of
a single slab, we have used the initial conditions
(5.8) with S(z) = @22, a being a constant. This
corresponds to the excitation of a mean-square
length breathing mode, the one-dimensional ana-
log of monopole vibrations. The initial velocity
field is then given by Eq. (5.9) as

v(z)=2akz/m . (5.10)

A convenient measure of the strength of excitation
is the excitation energy per nucleon
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FIG. 4. Root-mean-square lengths of @=1.6 fm™
slabs as a function of time. The initial conditions are
specified by Eq. (5.10) with the indicated values of c.

Ex_m =, _o % 2,2

== ﬁ[mv (2p(Ddz=2-—0 @*), (5.11)
where the mean-square length of the slab is

@?)= %f 2%0(2)dz (5.12a)

~L%/12=Q2%/12p 2. (5.12b)

The gross features of the dynamics of the cases
we have investigated are succinctly displayed by
the time dependence of the mean-square length
defined by Eq. (5.12a). Figure 4 shows (z3(¢))*/2
for excitations of a slab of thickness @=1.6 fm~
(N =5 from Fig. 2), with strengths «=0.01, 0.02,
0.04, and 0.06 fm~2 corresponding to the energies
E*/A tabulated in Table II.

The oscillations in (2)!/? correspond to the
classically expected “breathing mode” oscillations
of the slab. In the three cases of weakest excita-
tion (@=0.01, 0.02, and 0.04 fm~2), the mean-
square length oscillates about the ground state
value. However, these oscillations do not appear
to be associated with a single frequency but instead

2

TABLE II. Frequencies %w; and %w, of the oscillation
modes observed in Fig. 4 and the excitation energies
E*/A defined in Eq. (5.11) for the @=1.6 fm~2 system.

a (fm™?) E*/A (MeV) hw, (MeV) hw, (MeV)
0.01 0.08 11.08%0.07 15.95%0.07
0.02 0.34 10.54+0.09 16.06+0.09
0.04 1.35 9.1 +0.2 15.0 +0.2
0.06 3.03

may be interpreted in terms of a beating of fwo
modes. The energies associated with these modes
(Zw) are given in Table II for the various strengths
of excitation. As can be seen, the frequencies are
not constant but decrease with increasing ampli-
tude, indicating some degree of nonlinearity in the
response. For comparison, it should be noted that
a simple classical estimate of the lowest natural
frequency of the slab is given by

rm

h‘w~Tvo=15.3 MeV. (5.13)

Here v,=82.7 fm/10"* sec is the speed of zero
sound derived in Sec. VII, while L=11.03 fm is
the length of the @=1.6 fm™2 slab. The frequen-
cies of Table II are comparable with the estimate
(5.13).

For a=0.06 fm™2 the behavior of the system is
quite different, as can be seen from Fig. 4. The
initial expansion is of a much larger amplitude
than previously, while afterwards the mean-square
length fluctuates about a value considerably greater
than that of the ground state. These further fluc-
tuations do not present any well defined beating
pattern. For values of a larger than 0.06 fm™?2
(not shown), the excitation is too strong and the
slab splits into two pieces.

In order to determine if the observed beating
pattern is due to our very special choice of a lin-
ear velocity field [cf., Eq. (5.10)], we have also
investigated the response to a cubic velocity field
(S~z%). For the @=1.6 fm™2 slab at an excitation
energy corresponding to the @=0.01 fm™2 case
above, the same beating behavior of (z2) occurs,
with frequencies identical to those of the linear
velocity excitation.

Plots of the density distributions p(z, {) have not
been presented, since they are qualitatively simi-
lar to those arising in the collisions displayed in
Sec. VI. Qualitatively, they exhibit the expected
breathing mode behavior, although the details of
the density distribution are by no means periodic
in time.

Genuine damping of the slab oscillations is not
observed in the cases we have studied. The beat-
ing of two modes in the three lowest curves of Fig.
4 is a crude prototype of the damping one would
expect as the collective excitation energy is shared
between different modes, but with essentially only
two degrees of freedom coupled at these low exci-
tation energies and initial conditions, the Poincaré
cycle time is far too short. The relatively small
number of degrees of freedom accessible in the
slab geometry is thus crucial to the investigation
of dissipation, and this point will be persued fur-
ther in Sec. VIII below.
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Interaction with an external potential

As a final example of single slab dynamics, we
present results for the interaction of a slab with
a time-independent external potential barrier.
This problem is the simplest which can give rise
to the break up phenomena observed in slab-slab
reactions. It therefore represents an ideal op-
portunity for the isolation and study of this feature.
Of course, it is also interesting in its own right
as an aid in better understanding the behavior of
the TDHF solutions. In particular, it furnishes a
dramatic example of the collective nature of the
slab system.

In this brief presentation of typical results, we
use a slab of mass @=1.4 fm™2 (N =4, as shown
in Fig. 2). The potential barrier is chosen to be
a Gaussian centered about z=0:

Vot (2) = VQexp(-22/2a?) . (5.14)

Here, the width a is chosen to be 2 fm. At time
t=0, the slab is placed so that its interaction with
the barrier is negligible and is moving toward
z=0 with a speed corresponding to E/A =10 MeV
of kinetic energy per nucleon (v =43.8 fm/107%
sec). To study the penetration process, we may
vary the height of the barrier V9,

Figure 5 shows the time evolution of the density
p(z,t) for a 10 MeV barrier (i.e., a height equal
to the incident kinetic energy). The slab is trans-
mitted with negligible reflection (<1%). As can
be seen at time (=0.78 X1072! sec, when the slab
emerges from the barrier its density does not
resemble the ground state density at all. Instead,
it is in an excited state; the excitation manifesting
itself as the motion of density ripples through the
transmitted slab. Indeed, 36% of the incident ki-
netic energy is converted into such excitations.

E/n=10Mev  ------ Potential Barrier
t=0
;0'2 B —— 1t=0.31x10"% sec
'e —-— 1=0.78
— A TN =
N JARN 2 N'/ \ 2
& | \_// \ / 2
ol ] P \ / \ o=
h \ !’ N
AN \\ / \ <
I \ | )
foo ] \
c LA N I
-10 0 10 20
Z (fm)

FIG. 5. Density profiles p(z, t) at various times ¢ for
an @=1.4 fm™? slab with bombardment energy E /A =10
MeV interacting with an external potential. The poten-
tial barrier, denoted by the short-dashed curve, is re-
ferred to the scale at the right, and the scale for the
density is given at the left.

Comparison of Fig. 5 with the behavior of a
single-particle highlights the collective phenome-
non involved. For all practical purposes, we may
approximate the Gaussian external potential by an
inverted parabolic barrier for which the WKB
penetration integral may be done analytically. The
penetration of a single nucleon of kinetic energy
E/A is then given by

P={1+exp2n(VO-E/A)/fw|} T, (5.15)
with
Fw= (V&Ni?/ma?)* /2, (5.186)

For a kinetic energy equal to the barrier height,
Eq. (5.15) gives P=3, while Fig. 5 indicates that
the entire incident slab is transmitted. This is a
collective effect, as the attractive single-particle
potential created by other nucleons moving through
the barrier reduces the height of the effective sin-
gle-particle barrier.

For a higher barrier (V=20 MeV), the time
evolution is shown in Fig. 6. Note that here the
initial slab splits into slow moving reflected and
rapidly moving transmitted pieces, 29% of the
slab being transmitted and 71% reflected. Again,
the final state density fluctuations evidence inter-
nal excitation. For this system the collective
lowering of the barrier is even more dramatic,
for Egs. (5.15) and (5.16) give a single-particle
penetrability of 0.0126, far less than 0.29.

From the above results, we can see that the
quantity relevant for transmission and reflection
is not the single-particle potential barrier, but
rather some appropriate collective potential. Such
a collective potential is usually considered in an
adiabatic limit. For example we may imagine per-
forming a constrained static HF (CHF) calculation®
in the presence of V,,, (although freezing the occu-
pations of the transverse wave functions, of

E/A = 10 MeVv

~ ~--- Potential Barrier
P 720

\\ —— 1t=0,25x10"2' sec
&
\Y

\\

P(2) (fm3)
o
V(Z) (MeV)

:/ Y 420

FIG. 6. Density profiles p(z, t) as in Fig. 5.
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course). The physically relevant constraint vari-
able might be (2), the position of the center of
mass of the slab. The energy of the CHF solution
as a function of this variable then defines a collec-
tive potential, and some prescription must be
adopted for the associated mass parameter. Be-
cause the slab has the freedom to minimize its
interaction with the external potential in a CHF
calculation, we expect the collective potential bar-
rier to be far weaker than the external potential.
Since the collective mass parameter should not be
drastically different from A times the single nu-
cleon mass, the collective penetrability is thus
expected to be considerably larger than the single-
particle value. This discussion is only intended to
be qualitative, however, since TDHF has the great
conceptual advantages that we never need to choose
an ansatz for the constraint parameter, impose an
adiabatic approximation, or pick a prescription for
inertial parameters.

The collision in Fig. 6, with V=20 MeV, raises
a fundamental question of interpretation which will
pervade all of the subsequent analysis of collision
dynamics. Namely, does all of the slab penetrate
the barrier 29% of the time, does the slab con-
sistently break into two separate slabs such that
the transmitted fragment has 29% of the mass, or
do we deal with a complicated superposition of dif-
ferent amplitudes for many different final states?
As we shall discuss at length in Sec. VIII, we be-
lieve the theory is most meaningful in cases for
which the final TDHF fragment represents one
single final state with very high probability, in
which case it is approximating the most likely
reaction channel. This question of interpretation
arises in its purest form in these interactions with
an external potential, and so this application pro-
vides a particularly useful laboratory for future
investigation.

In summary, we have briefly presented examples
of the interaction of a slab with an external poten-
tial barrier. Both total transmission and breakup
(transmission and reflection) have been demon-
strated. The quantitative details of these features
emphasize the collective nature of the TDHF prob-
lem.

VI. SLAB COLLISIONS

This chapter treats the possible reactions occur-
ring between colliding slabs. As will be seen be-
low, given the simplicity of our model, the range
of phenomena present is truly remarkable, un-
doubtedly an indication of the richness of results
to be expected in systems of higher dimensionality.
For consistency of presentation, we will primarily
deal with reactions leading to a compound slab of

mass @=2.8 fm™2, In the symmetric channel, this

corresponds to a collision between two @=1.4 fm™?2
slabs, each having N =4 occupied orbitals ¢. As
can be seen from Fig. 2, the G=1.4 fm~2 slab has
a thickness comparable to nuclei in the Ni region.
It is slightly lighter than the lightest slab of the

N =5 “shell” and therefore is almost magic.

Low energy collisions

Due to the large amount of information generated
in a TDHF calculation, it is useful to have only a
few macroscopic coordinates which succinctly
summarize the behavior of the system. For a
reaction initiated from a symmetric channel, sym-
metry considerations require that the TDHF den-
sity be reflection symmetric with respect to the
center of mass (chosen to be z2=0) at all times. A
useful set of macroscopic coordinates may then be
defined in the following way.?* The fragment sep-
aration d is taken to be

a0)=2 [“o(z, 0l 21dz, ©.1)

where @ is the total mass of the system defined by
Eq. (4.21). Note that for separated two fragment
shapes (e.g. before a reaction or after scission),
d is the distance between the centers of mass of
the two pieces. A second coordinate o, measur-
ing fragment elongation, is defined as

o=((2%)-5d?"2, (6.2)
with

(23(t))= (li.[ p(z,t)z%dz . (6.3)
This coordinate is the rms extent of each fragment
about its own center of mass. The behavior of the
system may then be summarized by the functions
d(t) and o(t), or by a trajectory in the d-o plane.
Such a trajectory is particularly useful as the
gross topography of the potential energy surface

in these coordinates is known,?® at least pheno-
menologically, for three-dimensional collisions.

It should be cautioned that while the d and o co-
ordinates reduce to the physically appropriate ones
for separated shapes, their meaning is somewhat
obscure for fused systems. Nonetheless, they

are well defined for these shapes and are useful
indicators of dynamics.

We begin with a discussion of reactions initiated
by a symmetric @ = @,=1.4 fm™2 channel using the
initial conditions discussed in Sec. V. The reaction
phenomenology will be presented in this section,
while a microscopic analysis in terms of the sin-
gle-particle wave functions is presented in the
following section.

To summarize the results, as the bombarding
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FIG. 7. Density profiles p(z, ¢) at various times ¢ for
the reaction @y =@,=1.4 fm™ at a center-of-mass bom-
barding energy of E/A =0.5 MeV.

energy per nucleon is increased, the phenomena
of fusion, resonances, deep inelastic scattering,
and fragmentation are observed.

Figure 7, which shows p(z,t) at different times
and curve (a) of Fig. 8, which shows d(¢), describe
a typical fusion reaction at E/A =0.5 MeV. Recall

n
O

Separation distance (fm)

Time (1072 sec)

FIG. 8. The fragment separation coordinate d(t) for
the @ =@,=1.4 fm™ reaction at various bombarding en-
ergies.

020F" T T T T T T T T T T

E/n=3.5 MeV

FIG. 9. Density profiles p(z, £) as in Fig. 7 for E/A
=3.5 MeV.

that a straight line on the latter figure corresponds
to motion of the fragments with a constant relative
velocity, as inthe initial part of all curves d(t)
before the fragments collide. After an initial fu-
sion and maximum compression, at ¢~0.4x107*
sec, the compound system continues to oscillate
without reaching a scission configuration. The
period of these oscillations, 0.57X 1072 sec, is
comparable with the simple classical estimate
T=2L/v,=0.47x 10" gsec, where L=19.31 fm

is the thickness of the compound slab and v,
=82.7 fm/10"* sec is the zero sound speed
derived in Sec. VII. These oscillations persist
for as long as we have integrated the TDHF
equations (~5 cycles or to t~3 X102 gsec). This
type of behavior is just what is to be expected of a
time -dependent description of a compound nucleus
in which the excitation energy, initially in the co-
herent form of uniform translation of the target
and projectile, has been degraded into internal ex-
citation of the fused system.?* As discussed in the
previous section, in a realistic system with more
degrees of freedom, the shape oscillations exhib-
ited by our calculation would be expected to damp
after several cycles because of further degrada-
tion of the energy. Of course, if the TDHF equa-
tions could be integrated for a time comparable
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with the Poincaré time of the system (21072 for

a real nucleus), we would eventually see the energy
focused back into a fragment separation mode, re-
sulting in scission.

We now turn to an intermediate energy collision
E/A =3.5 MeV illustrated by Fig. 9 and curve (e)
of Fig. 8. This reaction typifies a deep inelastic
process in which the system separates directly
after fusion. The scission dynamics appear to
proceed along the lines expected from fluid dy-
namics. After the initial compression, the sub-
sequent relaxation stretches the system to a more
or less uniform density ~5p, at time ¢=0.4x107%
sec. At this time, density oscillations appear and
grow until the scission. Note that the scission con-
figuration coincides with the bend in curve (e) at
t~0.5X10"2! sec indicating the comparative sud-
denness of the separation. After separation, the
fragments move apart with a constant relative
velocity [the final straight portion of curve (e)],
which is smaller than the initial velocity. Some of
the initial kinetic energy has been converted into
internal excitation of the fragments. One mani-
festation of this excitation is the density fluctua-
tions sloshing back and forth in the fragments
after time ¢~0.56X107% sec. In this particular
collision ~90% of the initial kinetic energy has
been lost to internal excitation.

It is interesting to note the beginning of a shock
phenomenon in the initial stages of this reaction,
at t~0.16 X107% gsec (see Fig. 9). Such a density
discontinuity must, of course, occur in the initial
stages of all our one-dimensional calculations, al-
though it is very weak at low bombarding energies
(E/A <3 MeV). A detailed discussion of the shock
phenomena occurring in our model is given below.

The reaction dynamics between E/A =0.5 and 3
MeV are summarized in Fig. 10 which shows the
percentage of kinetic energy remaining in relative
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FIG. 10. The coefficient of restitution ¢, defined by
Eq. (6.4) as a function of E /A for the 1.4 fm™ plus 1.4
fm™ system. Calculated points are denoted by a cross.
A value of zero denotes fusion.

motion after the collision (coefficient of restitu-
tion) given by

=§—,“¥=<M> (6.4)
i =\ " (r=0)

The final relative velocity d(t= +) is easily evalu-
ated from the asymptotic slope of the d(¢) curve in
Fig. 8. A value of zero for C, indicates fusion.

The two peaks at E/A~1.3 MeV and E/A~ 2.0
MeV indicate resonant processes in which the sys-
tem undergoes fission after one oscillation of the
compound system. Curves (b) and (c) of Fig. 8
and Fig. 11 indicate these processes. Note that
the second compression in these reactions [i.e.,
minimum in d(¢)] is either resonant or antireso-
nant with the oscillations of the fused system.
This phenomenon can be understood both in mac-
roscopic terms, which are adopted here, and
microscopic terms treated subsequently. The
resonance conditions are further illustrated by
Fig. 12, in which the trajectories in the d-o plane
are shown for various bombarding energies.

At low energies, in the resonance region, too
much energy is concentrated in the o and other
degrees of freedom for scission to take place at

T T T T T T T T T T T

B E/n=15MeV =0 |
O-IOM

P(Z) (fm-3)

1
-5 -2 -9 -6 -3 (¢] 3 6 9 12 I5
Z(fm)

FIG. 11. Density profiles p(z, t) as in Fig. 7.
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FIG. 12. Trajectories in the separation - elongation
(d-0) plane for the 1.4 fm™ plus 1.4 fm™ system at
various bombarding energies. Hash marks are at inter-
vals of 0.1x107% sec.

the first oscillation. Since a large value of o cor-
responds to a highly elongated fragment, this con-
figuration requires a significant amount of energy
because the density is consistently below satura-
tion density for the entire fragment. At higher
energy, such as E/A=3.5 MeV, enough energy
remains in the d degree of freedom for immediate
scission. In contrast, for E/A=1.5 or 2 MeV,
since insufficient energy is available in the d de-
gree of freedom, the system does not separate.
During subsequent oscillations, energy is trans-
ferred between o to d, so that scission conditions
may occur at a later time. Thus, the resonance
depends crucially upon the interplay of the frag-
ment elongation and fragment separation modes.
After scission, the fragments continue to oscillate
in the two-fragment “valley” of the potential ener-
gy surface as they move apart.?

On the basis of the calculations we have per-
formed, we can not rule out the presence of other,
“narrower” resonances in Fig. 10, at energies
E/A<2.5 MeV. Indeed, reference to curve (d) of
Fig. 8 shows that such peaks are expected. The
very slow relative motion at the maximum of the
first elongation (¢t ~0.5 - 0.8 X10™%! sec) indicates
that the relaxation of the first compression almost
succeeds in fission. However, the fragments stop
moving apart (f ~0.5 X 107! sec) and very slowly
begin to fall back toward one another, finally re-

sulting in the second compression. This recapture
time is the factor which determines resonance.
Thus, we might expect to see other resonances,
corresponding to the second compression occur-
ring after several oscillations of the fragments
with consequently longer recapture times. As the
recapture time must depend very sensitively upon
the configuration at the first elongation, these
peaks in C, are expected to be extremely narrow.
Indeed, the E/A =2 MeV peak is significantly nar-
rower than the 1.3 MeV peak, indicating the ex-
treme sensitivity of these processes to the initial
conditions.

Figure 13 shows a reaction leading to the same
compound system @=2.8 fm~2, initiated from the
asymmetric channel @ =1.9 fm 2+ @,=0.9 fm™?
at E/A=4 MeV. Note that when formed from the
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FIG. 13. Density profiles p(z, £) at various times ¢ for
the reaction @, =1.9 fm™2 + @,=0.9 fm™% at E/A =4 MeV.
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symmetric channel at this excitation energy, Fig.
10 indicates that the compound system fissions
into two fragments in a deep inelastic event, with
C,~11%. However, the asymmetric reaction re-
sults in fragmentation of both target and projectile,
the final state consisting of three distinct slabs in
various states of excitation. This fragmentation
is typical of the symmetric channel above £/A~6
MeV, and is discussed below.

High energy collision phenomenology

The two most salient features of high energy col-
lisions are fragmentation and propagation of shock
waves. Both features are evident in the sequence
of density distributions presented in Figs. 14(a)
and 14(b) for the case E/A =25 MeV. (Recall that
c.m. energies are always specified.) The evolution
of the reaction begins with an increase in central
density which propagates outward in a manner sug-
gestive of a shock wave. A distinct lump then ap-
pears at the nuclear surface and, unlike the simi-
lar lumps at lower energies (cf. Fig. 9 at {=0.32
X 1072 sec) actually separates off from the rest

(a)
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1

- m t-02
- mt - 022

of the system, traveling faster than the velocity of
the incident projectile. If we consider two hypo-
thetical markers originally aligned with the lead-
ing edges of the colliding slabs and moving with
the initial velocity, we observe that the remaining
matter is spread out between these two markers
at subsequent times. Initially the matter is rather
smoothly distributed between the two markers,
with a density considerably lower than the satura-
tion density p,=0.145 fm™%, As the final state
evolves, however, individual fragments condense
out of this low density region, beginning at the
exterior edges and continuing throughout the in-
terior region.

The systematics of fragmentation are indicated
in Fig. 15, which shows one-half of the final den-
sity distribution for four collisions ranging from
E/A =10 to 50 MeV. To make the final states
comparable, we have considered the position the
leading edge marker of the right slab would have
reached under free propagation at the original
velocity. The final states are selected at times
such that this marker is at approximately -25 fm.
At E/A =10 MeV the leading particle appears to
have insufficient energy to break off, whereas
E/A =16 MeV is a transition case. At higher en-

(b)

T
E

o.1F /A =25MeV -
ok NS N\ N o]

-30 -20 -10 O 10 20 30
Z (fm)

FIG. 14. (a), (b) Density profiles p(z, £) as in Fig. 7.
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FIG. 15. Final state density profiles for the @; =@,
=1.4 fm™? system at various bombarding energies. The
arrow at 2 =—25 fm indicates the position of the marker
used to define equivalent times, as discussed in the text.

ergies separation actually occurs. As theenergy
increases, the size of the region over which con-
densation into fragments occurs also increases.

In the case E/A =10 MeV condensation into distinct
fragments is complete by the time the marker is
at 25 fm. At E/A =25 MeV condensation in the in-
terior region is not yet complete, and at E/A =50
MeV the density within 20 fm of the origin is still
almost uniform.

These fragmentation results are particularly
tantalizing in view of the picture which is emerg-
ing from high energy hadron-nucleus scattering.
From recent experiments, it appears that hadrons
must be regarded as composite many-body sys-
tems. Furthermore, in collisions these composite
particles appear to require substantial times and
distances to form their final states.?® Therefore
we shall attempt to understand the microscopic
origin of our final states in Sec. VII and will criti-
cally examine the physical limitations of the one-
dimensional geometry in Sec. VIII.

In the context of conventional fluid dynamics, a
shock wave is an interface at which fluid variables
such as density and velocity change discontinuous-
ly. The propagation of this shock front is straight-
forwardly specified by conservation laws and the
equation of state of the fluid.?¢'2” On a microscopic
scale, of course, the interface is not discontinuous,
and the scale of the transition region is set by the
mean free path of the constituent particles. Sobel
et al.”®® indicate that the transition region is cer-
tainly larger than the longitudinal momentum de-
cay length of 3.5 fm, and Bertsch?®® argues that the
thickness should be of the order of 2.5 times the
mean free path, or roughly 8 fm.

High energy collisions of slabs exhibit similar
behavior which we loosely refer to as shock waves
in spite of the fact that we are not dealing with a
conventional fluid dynamics. To emphasize such
shock behavior, we have calculated collisions for
thick slabs with @, = @,=2.4 fm™2% A typical case,
for E/A =10 MeV, is shown in Fig. 16. As the
slabs interpenetrate, the central density first in-
creases and then stabilizes at some constant value.
The rather distinct interfaces between the interior
and exterior densities then propagate outward until
they reach the surface.

For the shock wave picture to be very meaning-
ful, the conditions of steady state flow must be
approximately satisfied. In steady state flow for
symmetric collisions, the mean velocity of the
interior nuclear matter should be zero and the
velocity of the exterior matter at density p, should
be the incident velocity. By symmetry, the center
of the slab is a stagnation point. One simple indi-
cation of the degree to which steady state is ob-
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FIG. 16. Density profiles p(z, t) at various times ¢
for the @ = @, =2.4 fm™ system at E/A -:10 MeV.
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tained is provided by the behavior of the central
density as a function of time which is shown in
Fig. 17. The times at which the shock is first
clearly evident at the center (¢,), the shock has
traveled halfway across the slab (t,) and the shock
has reached the edge of the slab (¢,) are indicated
in the figure. Although the central density is ap-
proximately constant at E/A =10 MeV, it changes
significantly during the transit time of the shock
at E/A=25 MeV.

Assuming that the interior density p and the ex-
terior density p, remain constant in time, the con-
tinuity equation yields the velocity s at which the
shock front propagates®”:

=Y .5
s (P/Po—l)’ (6 )

where v; is the initial velocity. Because of the
difficulty of uniquely defining the center of the
broad shock front, Eq. (6.5) is the only quantitative
definition we have found for the shock speed. Even
it is not unique, because the interior density p is
not exactly constant in space or time. Hence, we
have adopted the convention of defining s using the
central density at time ¢, in Eq. (6.5), which yields
the results shown in Table III. The shock speed s
is expected to be greater than or equal to the
zero sound speed, 82.7 fm/10"?! sec, derived

in Sec. VII. This is observed in Table II. In
addition, at very low energies (E/A <5 MeV) the
shock kinematics are in agreement with steady
state predictions.*® In the high energy limit, in
which the slabs essentially pass through each
other with relatively minor effects of interactions,
during the early stages of the collision the shock
wave description simply degenerates into the
superposition of two slabs moving at their initial
velocities. The interior density is then twice p,,
yielding a shock speed equal to the initial velocity
v;. The case E/A =50 MeV is already rather close
to this limit. To verify that nothing unexpected
occurs at very high energies, we have pushed the
nonrelativistic TDHF approximation well beyond
its region of validity to calculate a collision at
E/A=117.5 MeV. This case corresponds to a
relative velocity equal to the speed of light. The
central density at time ¢, is 1.98p, and the “shock”
thus propagates at the velocity of the initial slabs.
Therefore, at least in the context of the present
model, our simple interpretation holds at high
energy and no exotic high density states are
created by shock waves.

To display the structure of the transition region
in greater detail, Fig. 18 shows profiles of the
density p(z), and the velocity field v(z), defined
by Eq. (5.2a), plotted in a frame moving with the

shock speed s for the cases tabulated in Table IIL
The short-dashed, solid, and long-dashed curves
denote the profiles at time ¢, {,, and {,, respec-
tively. In all cases the initial slabs correspond to
@,=@,=2.4 fm 2 For the collisions at E/A =10
MeV, steady state flow is a good approximation
and the transition region maintains its shape with
a thickness of approximately 4 fm. At higher en-
ergy, however, steady state flow does not occur,
and the transition region degrades significantly.
The final thickness of the transition region at E/A
=50 MeV, for example, is roughly 7 fm.

Certainly application of these results to finite
nuclei requires great caution, because of the arti-
ficial features of slab geometry. Whereas these
one-dimensional collisions are an ideal theoretical
laboratory for investigating the relation between
TDHF and fluid dynamics, for systems as small
as the nuclei found in nature the ejection of matter
in the transverse direction is an essential element.
Thus such features as the continued increase in
density shown in Fig. 18 after the passage of the
shock are most probably irrelevant to finite nu-
clei. However, conclusions concerning the struc-
ture of the transition region and the high energy
behavior do appear to bear some relevance. It is
quite plausible that a two-dimensional application
will still give rise to transition regions of thick-
nesses of the order of 4 to 7 fm. If there is any
change in this transition region, we would expect
it to degrade further with the addition of transverse
degrees of freedom. Hence, the extreme fluid dy-
namic assumption of local equilibration giving rise
to discontinuous shock fronts may be exceedingly
misleading when the actual transition regions are
of the order of the radii of the nuclei involved.3!-3
Furthermore, the intuitively attractive notion of
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FIG. 17. Central density as a function of time for the
@, =@,=2.4 fm™ system at two energies. The origin of
the time scale has been shifted by an arbitrary constant
t, and the arrows denote the times ¢, f,, and ¢; de-
scribed in the text.
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TABLE III. Fractional increase in central density,
incident slab velocity v;, and shock velocity s defined
by Eq. (6.5) for the three cases displayed in Fig. 18.

f (MeV) ﬁ;—tﬁ v; (fm/107% sec) s (fm/107%! sec)
0

10 1.42 44 105
25 1.65 69 107
50 1.83 98 118

simple interpenetration at high energies appears
to be borne out by the present TDHF approxima-
tion and is in marked contrast to attainment of
densities much greater than 2 p, obtained with a
fluid dynamic ansatz. We must therefore conclude
that if reactions in this regime are amenable to a
fluid dynamic treatment at all, the rheology of this
fluid is very different than usually postulated.

VII. MICROSCOPIC ASPECTS OF TDHF DYNAMICS

One of the primary limitations of a theory such
as TDHF which requires the numerical solution of
a set of nonlinear equations is the problem of ob-
taining physical insight into the structure of the
resulting solutions. In this section, we shall ex-
amine some of the essential features of the results
for our one-dimensional model and attempt to as-
sess their physical origin and significance.

Special features of one - dimensional geometry

At the outset, before examining specific compu-
tational results, it is useful to isolate certain fea-
tures which are directly related to the specializa-
tion to one-dimensional geometry. We first con-
sider the effect of this geometry on two simple
sound modes: thermodynamic sound and zero
sound. Since the one-body density matrix contains
the complete information concerning our many-
body wave function, we shall be interested in ex-
amining its off-diagonal behavior in coordinate
space. Hence, we shall explore in this section the
effect of our geometry on the density matrix of an
infinite Fermi gas. Finally, for subsequent ex-
amination of single-particle effects, we shalldis-
cuss the special role of single-particle wave func-
tions in our slab geometry.

We first consider the sound modes. Ordinary
thermodynamic sound arises under conditions such
that three-dimensional local equilibration occurs,?
Thus, we may determine E/A assuming that plane
wave states are isotropically populated for all
k<ky,=(312p/2)"? and derive the speed of thermo-
dynamic sound from the relation:

2_gz_azE/A K ,

th T 8p? =9m (7.1)

Po

where K is defined in Eq. (4.10). For our interac-
tion described in Sec. III, v,, =62.6 fm/10"2! sec,

In slab geometry, however, due to the decoupling
of the transverse wave functions (1/vQ)eik+'TL
from the wave functions ¢,(z), equilibration be-
tween the z direction and the two transverse direc-
tions cannot occur. Therefore, each function ¢,(z)
is associated with the same transverse wave func-
tions, irrespective of the density, and the Fermi
sphere distorts in momentum space as the density
is varied instead of remaining spherical and simply
changing radius.

Consider, now, a large cubic box of side L with
periodic boundary conditions filled with plane wave
states in all three dimensions up to the equilibrium
Fermi momentum k9 corresponding to the satura-
tion density p,. If the transverse wave functions
are decoupled from the z wave functions and the
length of the box in the z direction is then varied,
the functions ¢,(z) become

p 1/2 Houz/ o)
t(pp2/ P,
¢k(z)=(ﬁ> et PrelPo) (7.2)
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FIG. 18. Slab density profiles and velocity fields for
the @; =@, =2.4 fm™ system in the shock frame defined
by Eq. (6.5). The short-dashed, solid, and long-dashed
lines correspond to the times ¢, {,, and {5 defined in
the text. The velocity scale is given on the left ordinate
and the density scale is given on the right. Note the ar-
rows denoting the positions 2z, and z; referred to in
Fig. 21.
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Note that this transformation corresponds to de-
forming the unperturbed Fermi sphere into an el-
lipsoid. Hence, instead of Eq. (4.8), the appro-
priate expression for E/A as a function of p with
the transverse wave functions frozen is

1 752 /312 2/3 2/3[ p 2
I_D-mz('z—) Po (p) +2]

+3(t, +2ma%V )p +kt0%. (7.3)

E

A

The speed of one-dimensional thermodynamic
sound is then given by

2_<£ff£/;4 )
1-0/pq

“\m %
=L<I£ Jféfﬁ)_
m\9 15m

1-D

(7.4)

This agrees with the long-wavelength limit of the
general expression derived by Koonin?” and yields
v,_p="15.3 fm /1072 sec.

The 1-dimensional thermodynamic sound dis-
cussed above assumes complete equilibration in
the z direction, which physically arises from two-
body collisions. The TDHF equations, however,
incorporate two-body collisions only to the extent
to which they contribute to the mean field. In the
long-wavelength limit the TDHF equation for the
density matrix is equivalent to a collisionless
Boltzmann equation, so the relevant sound mode is
not thermodynamic sound but rather zero sound.*
For the case of slab geometry zero sound propa-
gates along the z axis, corresponding to infinitesi-
mal axially symmetric distortions of Fermi sphere
which are not reflection symmetric with respect
to the x-y plane,.

J

0
p(R +§/2,R—S/2)=% f :exp[i(p/po)k,sz]

[} -kF 0

In the transverse direction, the range of nonlo-
cality is frozen at the value specified by k%:

37, (k%s.)

pl-D(SJ.)=p (k?:-SJ_) (7.8)

In the z direction, the off-diagonal density matrix
is given by

- 3.71[(p/P )kO sz]
pi-p(s)=p W . (7.9)

Thus, the range of nonlocality varies with p™ for
one-dimensional geometry, in contrast to the
three-dimensional variation with p“/a. This
anomalous density dependence will be evident in
our results.

/-[(k?,)z-k,z 2

The velocity of zero sound is most easily esti-
mated by noting that the interaction developed in
Sec. III is very similar to Skyrme VI and using
the tabulated Landau parameters from Ref. 36.
Since m*=m, F, =0 and the speed of zero sound
v, is determined from®

N r+1 _1
21’1n<—-—y_ 1) -1 T, (7.5)

where 7 =v,/v; and v is the Fermi velocity. Us-
ing the value F =0.74 for Skyrme VI yields 7
=1.020 and thus v,=82.7 fm/10~2 sec.

Since 7 derived from Eq. (7.5) is very insensi-
tive to F, and must be greater than 1, it is safe
to conclude that v, is a few percent larger than
v, =81.1 fm/10™% sec for our interaction.

The off-diagonal structure of the one-body densi-
ty matrix p(T,T’) is also significantly influenced
by the 1-dimensional geometry. For a three-di-
mensional Fermi gas, the density matrix is iso-
tropic in the relative coordinate S =7 —T':

p(R +5/2,R - 5/2) =p[pg, (kps)) (7.62)
where the Slater density is defined by
3, (k
poy (ps) = L1 kes) (7.6b)

kps

and j, is the usual spherical Bessel function.

Because the range of nonlocality scales with %,
it varies as p~!/3. In contrast, when the trans-
verse wave functions are frozen into the states ap-
propriate for p,, we must return to the case of a
box with a variable length in the z direction and
use the wave functions in Eq. (7.2). The general
expression is then

exp(ik, s, )k, dk dk, . (7.7)

For subsequent comparison, it would also be
useful to define Fermi gas density matrices at fi-
nite temperature for both three and one-dimen-
sional geometry.®” In three dimensions,

—£ sin(ks)
pr(s) TRpls f k 1 +expl(%2/2mkyT)(k? - )] a*

(7.10)

where £ is implicitly specified by the condition
pr(0)=(2/3m®)k3. For low temperatures and small
s, Eq. (7.10) may be expanded in the usual way?":

_ [8ji(kes) (kaT>2 ]
pT(s)~p[ hps +2kp4 e cos(kgs)|.

(7.11)
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Comparison of the correction term proportional to
cos(kps) with the zero temperature result indicates
that finite temperature slightly decreases the range
of nonlocality. This decrease will be evident in
the subsequent discussion of Fig. 21,

In the one-dimensional case, we have been un-
able to formulate an analogous thermal average for
frozen transverse wave functions. The basic prob-
lem is most obvious in a finite box, in which case
we begin with a finite set of wave functions ¢,(z)
each of which is associated with a particular set of
transverse wave functions. At finite temperature
the occupation should be fragmented over an in-
finite set of wave functions ¢,(z). However, we
have found no artifice analogous to our previous
variation of the z dimension of the box for mapping
the finite set of wave functions onto an infinite set.

The final salient effect of one-dimensional geo-
metry is the degree to which it limits the definition
of single-particle orbitals. In general, if one di-
agonalizes the density matrix, one is free to take
any independent linear combination of the eigen-
vectors as the single-particle basis, and no single
definition is physically preferred. In the one-di-
mensional case, however, since each ¢,(2) is ir-
revocably associated with a particular set of trans-
verse wave functions, it may only be transformed
among other wave functions with the same trans-
verse components. In the case of symmetric colli-
sions there are only two ¢,(z)’s for each set of
transverse wave functions, and for a general
asymmetric collision the ¢,(z) are, in fact,
unique. In discussing single-particle effects in
collisions, we will capitalize on the uniqueness
of the single-particle wave functions ¢,(z). How-
ever, it is important to bear in mind that this sim-
plification is peculiar to our restrictive one-di-
mensional geometry.

Single - particle effects

Density fluctuations play a significant role in the
phenomenology of slab collisions we have de-
scribed. At virtually all energies, a conspicuous
lump appears at the slab edge after the initial
compression (cf. Figs. 9 and 14(a) for example).
In low energy collisions, conspicuous sloshing
of the density is evident in the final states, and at
high energies fluctuations in the density precede
the condensation of individual reaction fragments.
It is important to consider, therefore, the origin
of such fluctuations. One possibility is that they
arise as Benard-like instabilities in a theory which
is dominated by fluid dynamics. An alternative
view is that they are essentially quantum mechani-
cal in origin and reflect single-particle degrees of
freedom in nuclear dynamics as fundamentally as

shell effects display single-particle behavior in
static properties. In the context of our one-dimen-
sional slab geometry, there is strong evidence
that the latter view is correct, and that single-par-
ticle effects play an essential role in the dynamics.

We will therefore view the dynamics in terms
of a set of single-particle wave functions evolving
in time in a common self-consistent field. Al-
though in symmetric collisions we could always
consider arbitrary linear combinations of the two
states originating from corresponding orbitals in
the two fragments, it will be useful for our pur-
poses to distinguish the orbitals which originated
on each side. We could, in any event, make the
distinction precise by introducing a slight asymme-
try in the thicknesses of the original slabs and thus
in the transverse wave function occupations.

The self-consistent potential is quite smooth,
since it includes the convolution of the instantan-
eous density with a Yukawa force. According to
the TDHF equation, each single-particle wave func-
tion moves independently in this smoothly varying
well. The Pauli principle has been built in from
the beginning and is satisfied at all times simply
because all the particles are moving in the same
potential. Hence, all our intuition concerning the
transmission, reflection, and spreading of wave
packets in simple smooth wells is directly appli-
cable to TDHF dynamics.

To display single-particle effects concretely,
the self-consistent potential and individual wave
functions are shown in Fig. 19 for the collision of
two slabs with @, =@,=1.4 fm~2 at E/A =3.5 MeV.
(The density profiles at the same time intervals
for this collision are displayed in Fig. 9.) Each
slab originally contains four orbitals. The contri-
butions to the total density @,| ¢,(z)|? from the or-
bitals originating from the first (most bound) and
third states of the left slab are followed in time.

In addition, at the latest time, the second and
fourth orbitals are also shown. By symmetry, the
contributions of the orbitals originating in the right
slab are just the mirror images of those in Fig, 19.

From the time of initial contact, {=0.08x10"2
sec, until scission begins, £=0.48%x10"% sec, the
single-particle well has an essentially constant
depth of —50 MeV. The single-particle wave func-
tions originating at the left may be decomposed in-
to Fourier components, the dominant velocities
being

_ ve
v, =0, {M} ,

o (7.12)

where v; is the initial velocity of the slab, ¢, is
the single particle eigenvalue of ¢, in the static
slab, and W is the well depth. In Fig. 19 it is
observed that ¢, quickly crosses the potential well,
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FIG. 19. Contributions of individual single-particle
orbitals to the density at various times for the @; = @,
=1.4 fm™2 system at E/A =3.5 MeV. In the seven upper
graphs, the solid and short-dashed lines denote the con-
tributions of the lowest and third lowest orbitals origi-
nating in the left-hand slab. The contributions of the
second and fourth orbitals originating in this left slab
are shown at £ =0.56 in the lowest graph. In all cases,
the long-dashed curves denote the one-body potential
Wz, t).

with most of its probability concentrated near the
right edge at time £=0.32X10"2! sec. This single
orbital accounts for the conspicuous lump in the
density at £ =0.32X10"2! sec shown in Fig. 9 and is
the primary reason the self-consistent potential
begins to move back toward the right. This same
behavior has been verified at other energies. A
priovi, we might have expected the highest orbital
¢, to perform the role of striking the right edge of
the slab first, creating a bulge in the density and
extending the single-particle potential back toward
the right. However, the transverse wave function
weighting @, is sufficiently small compared with
@,, that although ¢, does reach the edge first, it
is ineffective in producing significant observable
effects.

The time scale for the first oscillation observed
in Fig. 8 for low energy collisions is explained
quantitatively by the transit time of ¢,. The slab
thickness L =@/p, is 9.65 fm for @=1.4 fm™2,
From the data used to construct Fig. 8, the low
energy limit of the elapsed time while the separa-
tion distance is less than 9.65 fm during the first
oscillation is 0.18 X 102! gec. This yields a tran-
sit velocity of 53.5 fm/10™% sec, in excellent
agreement with the velocity v,=52.6 fm/107% sec
obtained from Eq. (7.12) with W=-50 MeV, e,
=-35.5 MeV, and v;=0. At higher energies, such
as the case E/A =3.5 MeV shown in Fig. 19, quan-
titative comparison is impossible because of the
complicated nonlinear process whereby ¢, changes
the shape of the right side of the self-consistent
well leading to the eventual stretching of the den-
sity. The qualitative importance of ¢,, however,
is still quite evident.

From the post-scission orbitals shown at {=0.56
X107? gec in Fig. 19, it is evident that most of the
wave functions originating in the left slab have
gone out in the right slab, with only a minor
amount of reflection. Thus, case (e) in Fig. 8
corresponds primarily to single-particle orbitals
passing through each other.

The situation is significantly different at lower
energy. As an example, we consider the case E/A
=1 MeV, curve (b) of Fig. 8, for which the post-
scission wave functions originating in the left slab
are shown in the upper portion of Fig. 20. In this
case the left slab wave functions first migrate to
the right well, as in the previous case. This yields
the first maximum of curve (b) in Fig. 8, but the
velocities are sufficiently dispersed that the den-
sity is rather constant and scission does not occur.
The bulk of the wave functions then are reflected
back toward the left well, giving rise to a second
minimum in the separation distance. Finally, with
most of the orbitals back in the left well, scission
occurs. It is interesting to note which orbitals
dominate the matter actually transmitted to the
right slab. The lowest orbital ¢, did not have suf-
ficient time to be completely reflected, so that a
significant fraction of it became trapped on the
right after scission. The highest orbital ¢,, which
contains the highest velocity components, actually
completed one full cycle of reflections from the
right and left edges before finally becoming trapped
in the right well on its second transit.

This low energy example suggests the microscop-
ic origin of the rich structure below E/A =2 MeV
portrayed in Figs. 9 and 10. Evidently, at low en-
ergy, there is significant dispersion in the veloci-
ties and thus in the positions of the individual or-
bitals after fusion. It is therefore a very delicate
question as to whether scission will occur after
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FIG. 20. Contributions of single-particle orbitals at
E/A=1MeV and E/A =25 MeV as in Fig. 19. The up-
per curve for each energy denotes the total density, and
the lower curves specify the contributions of each of the
four orbitals originating in the left slab.

any given oscillation. This depends in detail upon
the positions of the orbitals, ranging from the
slowest, which are undergoing their first reflec-
tion, to the fastest, which may be on their second
or subsequent cycle of reflections. Therefore,
minute changes in initial conditions may easily
result in qualitative changes in the nature of the
reaction.

The single-particle structure of a high energy
final state, with E/A =25 MeV, is shown in the
lower portion of Fig. 20. In this case, the outer-
most fragment originates from the familiar lump
at the edge of the density caused by ¢, reaching
the well edge. As observed in Fig. 20, this frag-
ment is dominated by ¢,, but as a result of the
nonlinear effects of the self-consistent potential,
portions of other single-particle wave functions
have also been trapped in the associated potential.
Analysis of the other fragments yields a similar
conclusion. In each case the fragment appears to
be dominated by one single-particle contribution,
with subsidiary components arising from all the
other states. Thus the following microscopic pic-
ture of fragmentation reactions seems to emerge.
The slabs pass through each other, with the single-
particle orbitals somewhat dispersed in velocity
but continuing predominantly in the forward direc-

tion. As the orbitals continue to spread out spa-
tially, density fluctuations begin to emerge when
an orbital becomes cdncentrated in a specific re-
gion. This orbital then catalyzes the formation of
a reaction fragment, acquiring contributions from
other single-particle wave functions via the action
of the self-consistent potential.

In the case of our one-dimensional slab geome-
try, we have presented strong evidence that single-
particle effects are playing an essential role in the
reaction dynamics. It remains to be seen whether
they remain equally important in more realistic
applications. Certainly, with the freedom to modi-
fy the definition of single-particle wave functions
by performing an arbitrary unitary transformation
among the occupied states, the isolation of single-
particle effects will be more difficult. In addition,
the question remains whether the addition of trans-
verse degrees of freedom will sufficiently random-
ize the density matrix that fluid dynamics behavior
will be strongly enhanced with a corresponding de-
emphasis of single-particle properties.?3®

Time - dependent one -body density matrix

Because our many-body wave function is re-
stricted to be a single Slater determinant at all
times, all observables are fully specified by the
one-body density matrix p(T, r’) given by Eq. (2.11).
The near diagonal region T~ T’ is particularly im-
portant since only values of T — ' within the range
of the two-body force contribute to the total energy
or HF potential [cf. Eqs. (2.8) and (2.14)]. Further-
more, for large values of r —T', the density ma-
trix goes to zero because of the random phases of
the single-particle wave functions. Because of the
importance of the density matrix in the descrip-
tion of the system, a valid approximation to the
near-diagonal behavior of this function is crucial
to the success of any fluid dynamical reduction of
the TDHF equations.®*® Hence, in this section we
briefly examine the density matrix in our TDHF
solutions.

Since all of the dynamics of our system pertains
to the z coordinate, we restrict our attention to
this dependence of p. It is convenient to remove
two trivial factors from the density matrix by de-
fining

Bz, s)=e ' As/M () (2 +5/2,2 —5/2),
(7.13)

where v(z), the velocity field, is defined by Eq.
(5.2a). The phase factor simply removes a depen-
dence associated with the mean velocity v(z), while
the second factor, p(z) '=p(z,z) ! normalizes p
to unity at s=0. Thus p is the normalized density
matrix as seen in a frame moving with the local
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mean fluid velocity v(z).

The reduced density matrix for the ground state
of a three-dimensional Fermi gas at finite tem-
perature may be calculated from Eq. (7.10). Fig-
ure 21(a) and 21(b) show the density matrix at
various temperatures at saturation density p, and
at 2p,. These curves indicate the qualitative ef-
fects of a finite temperature. In accord with Eq.
(7.6) the off-diagonal range of p decreases with
increasing density and decreases with increasing
temperature at a fixed density. Furthermore,
since thermal excitations are effective in a region
within 25T of the Fermi surface, for a given tem-
perature, the effect of heating is greater at lower
densities. Finally, in addition to the decrease of
the off-diagonal range, the negative fluctuation
for s~3 fm in Fig. 21(b) decreases with increas-
ing temperature, consistent with the expectation
that the quantal Pauli correlations between parti-
cles should diminish in a hot system.

With this background we now turn to the density
matrix for the @ =@,=2.4 fm™2 system at E/A
=25 MeV. Two positions, z, and z,, have been
selected in the frame of the shock wave as shown
in Fig. 18. The real and imaginary parts of p(z,s)
are shown in Fig. 21(c) at the 3 times displayed in
Fig. 18. In a steady state fluid dynamical behavior,
the system should be characterized by a time-in-
dependent density and temperature at these posi-
tions. This is indeed the case at z=z, (not shown),

FINITE TEMPERATURE FERMI GAS

—— kT = 10MeV

where the curves Rep(z,, s) at times ¢=0.08 X107 2%
and /=0.10x107% sec, are indistinguishable from
the curve p(k%s) and the imaginary parts are es-
sentially zero. That the density matrix in the in-
terior of a ground state slab agrees with the Slater
density (7.6) is, of course, expected from the be-
havior of the static HF solutions. However, the
additional information provided by the agreement
of p with g, at z=z, is that no significant distur-
bance of the density matrix has propagated ahead
of the transition region shown in Fig. 18.

In contrast to the simple behavior at z=z, in
front of the transition region, the behavior of p
at z=z, behind the shock shows a richer time de-
pendence. The most evident feature of this curve
at all times is the shrinking of the s scale with p~!
reflecting the one-dimensional geometry. For
comparison, Fig. 21(d) shows both the one- and
three-dimensional results at zero temperature
computed from Eqs. (7.9) and (7.6), respectively.
Figure 21(c) is in much better agreement with the
one-dimensional scale. Also note that while the
large s behavior of Rep changes significantly with
time, the small s behavior, in particular the curv-
ature at s=0 and the zero crossing at s~ 1.6 fm,
is remarkably time independent. With increasing
time the pronounced negative fluctuation damps
strongly and the range increases slightly, so that
by the time £=0.12X107% gec p agrees rather
well with the one-dimensional curve of Fig. 21(d).

’

E/A = 2 5 MeV

---- p(2,,5), 12008 x 10" ' sec
—— 5(2,5),1=0.10x 10" % sec
—— 5(2,,5),1=0.12x1072' sec
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FIG. 21. Normalized one-body density matrices defined according to Eq. (4.13) as a function of relative coordinate s.
Graph (a) displays the density matrix of a three-dimensional Fermi gas at nuclear density o, at three temperatures.
Part (b) shows the analogous results at 20,. Graph (c) displays the real and imaginary parts of the density matrix for
the @ =Q,=2.4 fm™ system at the position 2, denoted in Fig. 18 for 3 times. For comparison, part (d) shows the zero
temperature Fermi gas results for nuclear density (solid curve), for the local density at 2, in the three-dimensional
case (dash-dot curve), and for the local density at 2 in the one-dimensional case (dash-dot-dot curve).
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This transient behavior appears to be a nonequili-
brium phenomena, so that finite temperature ap-
proximations to large s behavior of 5 become
questionable. Indeed, an equilibrium finite
temperature density matrix has a smaller neg-
ative fluctuation than the Slater result, whereas
the initial nonequilibrium result has a much
larger fluctuation. Furthermore, finite tem-
perature effects seen in Fig. 21(b) are much
smaller than the transients in Fig. 21(c). Part
of this is undoubtably due to the smaller phase
space available for excitation in the one-di-
mensional result, although the transients seem
too large to be due to this alone. One final com-
plication arises from the fact that p(z,, s) has a
significant imaginary component at all times ex-
cept £=0.08 X10"% sec when it must be real by
symmetry. The complexity of p indicates a veloc-
ity dispersion®® among the various wave functions
¢, and renders interpretation in terms of thermal-
ized density matrices difficult.

Figure 22 displays analogous results for a colli-
sion with E/A =2.5 MeV. In this case it is most
convenient to display the results at a fixed position
z, in the center of mass frame. The density dis-
tribution has been graphed to indicate the progress
of the reaction at each time. At each time
Rep(z,, s) is compared with the one-dimensional
zero-temperature Slater result. As in the E/A

E/A = 2.5 MeV
—— Re g (Z3,S)
—— Im 5 (Zs3,S)
o (675 22)

t=016x 1072 sec

s
Z(fm)

-0.2%-

FIG. 22. Normalized one-body density matrices as in
Fig. 21 for E/A=2.5 MeV. The left-hand plots present
the one-dimensional Fermi gas results (short-dashed
curves) and real and imaginary parts of the calculated
density matrices (solid and long-dashed curves) at the
position 2z; denoted on the density distributions graphed
on the right.

=25 MeV case, before the interaction region
reaches z,, these two functions agree. However,
at later times, the curvature of p at s=0 is greater
than that of ps; in qualitative agreement with the
higher energy case and with the expected behavior
at finite temperatures. Although the negative fluc-
tuation appears to be damped at intermediate
times (#=0.24 X 10"2! and 0.48 X10"%! gec), it

is strongly enhanced after scission (f=0.72
x107?! gec). Finally, the significant imaginary
components of p render comparison with equili-
brium finite temperature results difficult.

In conclusion, aside from the gross scale being
determined by the simple one-dimensional Fermi
gas result Eq. (7.9) and from the increasing curva-
ture at s=0 in excited regions, the detailed struc-
ture of the TDHF density matrix is rather compli-
cated. It does not appear to correspond to the
structure expected in a simple equilibrium thermo-
dynamic approximation which will probably make
the connection of TDHF and fluid dynamics a dif-
ficult task. However, since the near-diagonal be-
havior of the density matrix plays an essential
role, it certainly merits further detailed investi-
gation.

VIII. DISCUSSION

As we have seen, the TDHF approach provides
a unified description of a broad spectrum of dy-
namical phenomena encountered in large nuclear
systems. This range of phenomena described by
the theory is of particular significance, since the
evolution of the system is determined only by the
two-body interaction and the choice of initial con-
ditions. There is therefore no latitude for an ar-
bitrary selection of collective coordinates or ad
hoc parametrization of dynamical processes (e.g.,
dissipation). When viewed in this light, the re-
sults we have presented are indeed encouraging
and certainly motivate more realistic calculations.

In addition to the promise of future calculations,
several limitations of the TDHF approximation
have become evident during the course of this work
and therefore require discussion. Some of these
problems are specific to the one-dimensional geo-
metry we have considered and will disappear, or
at least be minimized, in calculations of higher
dimensionality. Others, however, are fundamen-
tal to the TDHF approximation and their considera-
tion is therefore relevant for more realistic calcu-
lations. Unfortunately, we offer no resolution of
these fundamental difficulties here, but simply
attempt to provide some insight into the limita-
tions of TDHF.

Those problems specific to one dimension arise
from the omission of significant degrees of free-
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dom in our slab geometry. The decoupling of
transverse degrees of freedom implicit in our cal-
culations has already been alluded to several
times. Recall that the dependence of the single-
particle wave functions upon the transverse co-
ordinates is time-independent, and so irrelevant
to the dynamical calculation. However, had these
degrees of freedom not been frozen in, the slab
symmetry might have broken down as a result of
instabilities associated with clustering in the
transverse directions. The infinite and homoge-
neous slab solution we have used must be, by sym-
metry, an energetically stationary configuration
of the system. Should transverse instabilities
exist, this configuration would represent an un-
stable equilibrium which could not be sustained in
the presence of fluctuations. In this case it follows
that our dynamical calculations have generated
mathematically correct though physically implaus-
ible solutions to the TDHF equations because of the
constraint to configurations of unstable equilibrium.

In addition to the problem of the existence of un-
stable solutions, the neglect of degrees of freedom
is also expected to have severe implications con-
cerning estimates of dissipation derived from our
TDHF calculations. For low energy excitations of
the physical system, for which there is sufficient
time for effective coupling between available
modes, energy will flow into the omitted modes,
leading to a dissipation higher than the TDHF re-
sult. This effect may be seen, for example, in
the persistence of oscillations in our calculations
of single slab dynamics in Sec. V (cf. Fig. 4). Here
the paucity of modes resulted in the apparent ex-
citation of only two or three modes, giving rise
to a Poincaré time so short that the results may
hardly be characterized as damped. On the other
hand, for high energy— short time collisions, the
energy loss to neglected degrees of freedom might
be expected to be smaller, and therefore the re-
sults of a restricted TDHF calculation in this re-
gime may be more valid. It is encouraging to note
that, as shown in Fig. 12, more than 90% of the
bombarding energy is dissipated in collisions of
a few MeV per nucleon, a phenomenon strongly
suggestive of the experimentally observed dissi-
pation in strongly damped collisions.%°

Finally, it is important to note that the one-di-
mensional geometry has eliminated all features as-
sociated with the finite transverse extent of real
nuclei. Since only compressional modes are pres-
ent in one dimension, our calculations have omitted
shape oscillations which comprise the dominant
collective behavior in low energy nuclear physics.
Similarly, in head-on collisions of real nuclei, the
buildup of density is significantly limited by the
possibility of matter splashing out in the transverse
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directions. Of course, the presence of elastic or
nearly elastic peripheral collisions is also ex-
cluded in one dimension, so that our calculations
do not include this essential feature of many heavy
ion reactions.

From the above discussion it is clear that the
solutions to the TDHF equations will undergo es-
sential qualitative changes when calculations are
extended to two dimensions, and that most of the
difficulties we have discussed so far will vanish.
In contrast, the extension from two to three di-
mensions appears to be much less crucial, as no
essential new qualitative effects are expected to
appear. It is therefore hoped that many quantita-
tive effects in real three-dimensional nuclei can
be mocked up in suitable axially symmetric two-
dimensional calculations.®® Indeed, considering
the magnitude of the numerical difficulties in-
volved, the realization of this hope is essential if
TDHF is to become a practical quantitative tool
for nuclear physics.

We now consider those problems which are in-
trinsic to the TDHF approximation, independent
of dimensionality. We have already seen an ex-
ample of the general property of symmetry con-
servation in the case of the slab solutions being
in unstable equilibrium with respect to transverse
perturbations. If the TDHF determinant initially
possesses a symmetry conserved by the resultant
HF Hamiltonian, such as translational invariance
in the transverse directions, then that symmetry
will be a property of the system at all later times.
This symmetry conservation is a phenomenon
familiar from static HF calculations and arises in
a variety of dynamical situations. For example,
it forbids final states involving mass transfer for
reactions initiated by identical target-projectile
combinations and prohibits triaxial excitations for
systems initially axially symmetric. One possible
way of circumventing the unphysical restrictions
imposed by symmetry conservation while still re-
taining a mean-field approximation is to treat the
residual two-body interaction in the BCS approxi-
mation, as discussed below.

Another fundamental point raised by our calcu-
lations concerns the interpretation of the final
states in TDHF. Under appropriate conditions
TDHF describes the approximate evolution of a
wave packet of solutions to the full many-body
problem.!' One might therefore hope to follow the
decomposition of the wave packet into asymptotic
channel states in the limit as ¢ - «, thereby ex-
tracting reaction amplitudes from TDHF. How-
ever, even if projection onto all the relevant re-
action channels were practical, the nonlinear na-
ture of the TDHF equations allows portions of the
initial wave packet in different final channels to
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interact with one another, even asymptotically,
so that the whole notion of a scatter ing amplitude
becomes questionable.

As an example of this problem, consider a case
in which the real quantal system has nonvanishing
reaction amplitudes in several distinct final chan-
nels, each having a different shape, mass distri-
bution, and relative velocity. In the TDHF ap-
proximation the components of the wave function
in these different channels may become trapped
in a common potential well freely interacting and
exchanging momentum, thereby giving rise to a
single fragment localized in coordinate space. One
plausible interpretation might be that each frag-
ment which emerges should be dominated by a
single Slater determinant, or equivalently, that
the matrix quantity p%-p be small for each frag-
ment considered separately. In the case of slab
geometry an equivalent statement is that the metric
in the space spanned by the ¢’s, L, be a projector
when each fragment is considered separately. This
was indeed the case for the E/A=3.5 MeV reac-
tion of the @, =@,=1.4 fm™ system, for which the
quantity Tr(L — L?)/TrL was 3.5% when evaluated
for each fragment. However, note that for the bar-
rier penetration reaction of Fig. 6, this quantity is
+17% for the transmitted fragment.

An alternative approach to the interpretation of
the TDHF final states is to insist that the TDHF
wave function be used only to specify average few-
body properties of the final state and that the
TDHF approximation itself is not designed to give
matrix elements of many-body operators like scat-
tering amplitudes correctly. This type of approach
is consistent with the one-body nature of the TDHF
approximation and has the intuitive appeal that a
Slater determinant which evolves so as to con-
tinually maximize its overlap with the true wave
function should at least be capable of describing
mean values of few-body operators. As an ex-
ample of the kind of information which may be ex-
tracted in this way, we briefly consider the case
of a symmetric collision. By virture of symmetry
conservation, symmetric reactions result in final
states for which the density p(z) is an even func-
tion of z for a coordinate system in which the cen-
ter of mass is at the origin. For initial conditions
leading to two-fragment final states, reactions in-
volving mass transfer are then apparently forbid-
den when the wave function is examined at the
superficial level of the one-body density. Recall-
ing that p(z) is an average property (expectation
value of a one-body operator) for the TDHF wave
function, this result is perfectly sensible, for re-
actions leading to asymmetric final states are al-
ways present with equal amounts of left and right
asymmetry, so that the average property is always

symmetric. (Note that in the cases we have con-
sidered, this symmetry is not unstable. Since our
numerical calculations did not enforce left-right
symmetry, perturbations due to numerical noise
would have resulted in asymmetric solutions had
the system been unstable.) However, an average
measure of the mass transfer present in the final
state may straightforwardly be obtained.*’ Let us
define a one-body operator 1\7&, which is the num-
ber operator for particles on the right-hand side
of the x-y plane:

NR =fe(z)¢*(?)w(f)dsr

sf&*(fwﬂ(f,F')J(E')dﬂrdﬂw, 8.1)

where §(T) (zﬂ*(f)) is the annihilation (creation)
operator for particles at the point r. Then, by de-
finition

NRFE T)=56(F-1")6(2). (8.2)
The quantity

2R5(<(IQR)2>_<1(]R>2)1/2//<AA]R>’ (8.3)

where the expectation value is to be taken in the
TDHF state at { -+ =, is a time-independent mea-
sure of the fractional mass dispersion in the re-
action. Using the fact that N(T, ¥’) is a projector,
Z® may be rewritten in terms of the density ma-
trix of the right fragment p* as

TR =[Trp® - Tr(p*)?]'/2/Trp® (8.4)
with

p’*(F,F'>=6(z>[ > wi(ﬂwi*(f-’)]e(z’w (8.5)

i occupied

The appearance of the quantity Tr[p® - (p%)?] in
Eq. (8.4) is not unexpected, for while the full ma-
trix p® — (p¥)? specifies the total departure from a
single determinant including admixtures of the
same as well as different particle number, the
diagonal elements of this matrix specify only the
dispersion in particle number. As {— -«  when
the total wave function may be decomposed into
two spatially separated determinants, Z¥ is zero,
corresponding to the definite (infinite in slab geo-
metry) number of nucleons on the right. At later
times, however, =% need not be zero. Unfortu-
nately, while ZF is a sensible quantity for finite
systems, for slabs Z¥~971/2 and so is always
zero. This result is reasonable because each
function ¢,(z,¢) is coupled to a number of plane
waves proportional to 2. The nucleons in these
plane waves all have the same (independent) prob-
ability for being found on the right, the precise
value depending upon the details of ¢,. Therefore,
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the resultant mass distribution is binomial and has
a fractional variance porportional to 71/2,

From the above discussion it is clear that it is
very difficult to extract anything other than the
most gross reaction information from the TDHF
solutions. However, one type of approach in which
the TDHF solutions would be used as the zeroth
order approximation in a more general theory
which would yield such information is as follows.
Let us consider a finite set of eigenfunctions of
the static HF potential at time /=0. Using the
same initial conditions for the unoccupied wave
functions as for the occupied ones, we may evolve
all wave functions according to Eq. (2.9), with the
HF potential determined only by the occupied or-
bitals. Such a calculation then generates a set of
time -dependent orbitals which can serve as a
basis for either a coupled channels or generator
coordinate calculation. The former has the attrac-
tive feature that the entrance channel is coupled
to other channels only via two-particle-two-hole
processes, while the latter has an advantage over
conventional generator -coordinate calculations in
that the collective variable is selected by the sys-
tem rather than by ansatz.

A final fundamental difficulty in the TDHF ap-
proximation is the neglect of the residual two-body
interaction. In addition to the new qualitative fea-
ture of breaking symmetry conservation, the re-
sidual force will certainly have an as yet unas-
sessed impact on dynamics. At high energies, for
example, one might ask to what extent the residual
interaction affects the velocity distribution in the
transition region of a shock wave. Certainly much
of the effect of the two-body force is included in
the scattering from the step in the mean field in-
duced by the density change at the interface. How-
ever, additional scattering from the residual in-
teraction also occurs in reality, and it remains a
quantitative question whether it plays a significant
role in determining the thickness and structure of
the shock transition region.

Although the coupled channels approach described
above treats the residual interaction exactly in
principle, it is sufficiently difficult in terms of
computation so as to make a more tractable ap-
proximation attractive. Such an approach, very
similar in spirit to TDHF, is the time-dependent
Hartree- Fock Bogoliubov (TDHFB) approximation.
Following the notation of Valatin,** the dynamical
equations may be expressed in terms of matrices
of twice the dimension of the density matrix. In
addition to the density matrix p and HF potential
W, the system is specified by the pairing field and
pairing potential matrices

XE ) =(PE)IE), (8.6a)

- - 1 A > >, > - ->, -> - -
U(I‘, rl):-z-ffv(r’ I"; I‘", r”’)x(r”, r"')dr"dr"’ .
(8.6b)

Of course, the expectation value in Eq. (8.6a) is
in a time-dependent BCS state of indefinite parti-
cle number. Defining the augmented matrices

p X
K= ’
—x*1-p*

[h—h U }
M=| _ux —=ny+)’

where the HF Hamiltonian % is given by Eq. (2.6)
and the chemical potential A specifies the particle
number, the equation of motion analogous to Eq.
(2.10) is

(8.7a)

(8.7b)

ink=[M,«]. (8.8)

Although k%=« (in analogy with p?=p for TDHF),
Trk is infinite, so that we cannot simply evolve a
finite number of eigenfunctions of x, as is the case
in TDHF. However, the numerical solution of the
matrix equations (8.8) may not be completely out
of the question, and would begin to introduce some
of the significant effects of the residual interaction
into the dynamical problem in the same way as
pairing theory introduces them into the static prob-
lem.

In conclusion, it is evident that substantive and
challenging problems remain in the application of
TDHF to physical situations. However, the modest
successes of the one-dimensional calculations we
have presented here certainly motivate continued
effort on both the computational and conceptual as-
pects of the theory. Hopefully the remaining prob-
lems will prove sufficiently tractable so that TDHF
will indeed fulfill the intended role of providing a
foundation for a microscopic theory of nuclear dy-
namics.
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APPENDIX A: NUMERICAL SOLUTION OF THE STATIC
HF EQUATIONS

Static iteration procedure

For a given number of particles @ per fm?, the
set of equations (4.11), (4.16), (4.20), (4.21),

(4.22), and (4.23) is solved self- cons1stent1y. By
symmetry, the eigenfunctions ¢ ,(2) are alternate-
ly even and odd functions, and therefore only re-
quire solution in one-half of the slab.

The Schrodinger equation (4.16) is solved direct-
ly in coordinate space, since expansion in an or-
thonormal basis such as harmonic oscillator func-
tions is ill-suited for the variety of slab shapes
encounted in the time-dependent problem. The
Numerov*® method is used with a mesh size of Az
=0.2 fm and the boundary conditions that ¢, or
¢, vanish at the origin and that ¢, ~exp[-z (2me, /
#2)1/2] at the mesh edge.

The iteration procedure is started from a Fermi
density distribution corresponding to a slab thick-
ness of G./po and surface thickness 2.1 fm, nor-
malized to the total mass @. Given a density p¥(z)
where i denotes the iteration number, the single-
particle field Wi(z) is calculated from Eq. (4.11)
using an integration algorithm for the Yukawa po-
tential described below. The eigenvalues, e!*!
and eigenfunction ¢!*!(z) are then calculated.

The number of occupied orbitals N*! and the
Fermi energy €.'! are determined by solving the
equation

Q}= §: t+1

Given €.'!, the weighting factors @ *! and the
new density p'*! are straightforwardly constructed.
The convergence of the iterative solution for the
density is improved by using the average of the

two most recent solutions

b

l+1 2m

)h‘z (ex't—ei™h).

(A1)

ﬁ“l=§lpi+p”‘],
to construct the HF potential Wi*!,
Twenty iterations provide adequate convergence
for the slabs under consideration. For the case
of @=1.4 fm™?, the precision is specified by

lp™(2) -p‘9(2)|>~5x10—4

p¥(2)

(A2)

s

and
() o
n=1 e"

Convolution of the force with the density

After integration of the Yukawa potential over

1255

transverse coordinates, the following integral
must be evaluated at the mesh points z;=jaz.

z)f

Because the mesh size Az=0.2 fm is not sufficient-
ly small relative to the range of the force, Simp-
son’s rule is inadequate. An alternative algorithm
suited to this exponential integral may be derived
by writing

v-% f

where p, is the second order finite difference ap-
proximation to p over the interval (z, -34z,2

1
+3A2):

“lei-eVep(2d g, (A3)

Zp+ Az

z~—z'/aA (Z )dZ (A4)

-%Az

- Y = ’_ pn+ ’pn—
Pa(z')=p,+(2 zn)<——1—LzAz >

(2'=2,)° Pn+1 = 2Py + Pu—;
2 (az)?

(A5)

Equation (A5) is written with the notation p, =p(z,).
Integrating Eq. (A4) and rearranging terms yields
the result

Uj=EXQ(pj+Q+pj-a)! (AG)
=0
where
X p=ae " (B,+e"B,+e¢¥B.),
X, = ae'Y(Bo+ e¥B,+e’¥B_ - (@ +B,)eY),
X,0=2a@+eYB_+1 —¢¥/?),
B, = <- 4 + E)smh + — cosh (A7)
0 Y22 2

The method of integration (A6) with X, defined by
(A7) is significantly superior to Simpson’s rule
which corresponds to

X,-,=0ze Y
Az

X 2z

a

b
a=0 =

Since the constants X, in Eq. (A6) need be calcu-
lated only once and then stored, this algorithm
requires no more computation than Simpson’s rule
both for the static and time-dependent problem.

’
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For our applications, truncation of the summation
in Eq. (A6) at ¢ =25 results in adequate precision.

APPENDIX B: NUMERICAL SOLUTION OF THE TDHF
EQUATIONS

Equation (4.29) presents the problem of solving
N coupled equations of the form

it 22,0 =hp()] 92, 0). (B1)

We define a mesh of step size Az in the z coordi-
nate and of step size At in the time coordinate.
The wave functions have value ¢} at the points
z;=jAz, t,=nAt. The spatial second derivative
appearing in 7z is approximated by the usual three-
point finite difference expression, while the time
derivative is approximated by a two-point formula,
so that Eq. (B1) becomes

; (P{Hl—qﬂ' n+1/2 gn+1/2
2 Sy = RGP (B2)
k

We define the Hamiltonian matrix h,'!/? as

h‘2

n /2 —
Wit —_W(Ojk+1+ 0jp—y —20;,) + W’f'“/zéiky

(B3)

where W"*!/2 is the value of the HF potential at
the point (j,7 + 3). Note that 2 is tridiagonal, the
only nonzero elements occurring on or adjacent
to the diagonal.

The right-hand side of Eq. (B2) requires knowl-
edge of h¢ at the half points in the time mesh. The
wave function at such times is unknown, so that
(h)"*!/2 must be approximated. For the moment
we ignore the time dependence of z and discuss the
implications of various approximations for ¢"*!/2,

The most naive approximation is to replace
¢"*1/2py ¢", so that, in an obvious matrix nota-
tion

. ¢n+1_¢n= n
i =he", (B4)
or, solving for ¢"*,
A
o (1_i7’h>¢". (B5)

Equation (B5) is explicit in the sense that the new
wave function ¢"*! is given directly in terms of

the old one ¢". However, while Eq. (B5) is con-
ceptually simple, it can be shown to lead to serious
numerical difficulties. In particular, as & is Her-
mitian, the eigenvalues of 1 —ih At/% have modulus
greater than or equal to 1. Therefore, time evo-
lution by continued application of Eq. (B5) results
in exponential amplification of that component of ¢

associated with the eigenvalue of largest modulus.
As the original Eq. (B1) was unitary, such ampli-
fication is unphysical and therefore undesirable.

The instability associated with the explicit
method may be eliminated by approximating ¢"*1/2
by the average of ¢" and ¢"*!, thus

n+tl __ 4n
i & < hio 4 9. (B6)

Equation (B6) is an implicit approximation to Eq.
(B1) in the sense that the set of simultaneous equa-
tions

chat n+1 _ flﬂ n
(1 +z—27l,->¢> -(l—Lzh. )43 (B7)
must be solved for the unknowns ¢ "*!. Note that
Eq. (B7) has the formal solution
1-inAt/2n
nvyp_ [ 2= hat/an n
¢ _(1+ihAt/2h)¢ ' (B8)

The time evolution operator in Eq. (B8) is mani-
festly unitary, leading to no unphysical amplifica-
tion as all its eigenvalues have unit modulus. In
addition, as can be verified by series expansion,
for a time-independent Hamiltonian the algorithm
defined by Eq. (B8) is accurate through O(A ¢?).
Indeed, Eq. (B8) is nothing but the [1, 1] Padé ap-
proximant to e 42 */" also known as the Crank-
Nicholson or Caley approximation.

In practice, the solution of Eq. (B7) requires the
inversion of the tridiagonal matrix 1 + ihAt/2F.
This inversion has been accomplished by a very
stable and efficient version of Gaussian elimina-
tion, which has often been described in the litera-
ture.** The boundary conditions imposed upon ¢
are that the wave function vanish at the ends of the
coordinate mesh, far outside the interaction re-
gion.

The above algorithm assumes the Hamiltonian 2
to be time-independent. In the case of the TDHF
equations, it is simply generalized to

1_ih"“’2At/2ﬁ>
n+1 _ n
(P —<1+ih"+l72At/2ﬁ ¢ . (Bg)

We have found the following scheme adequate for
approximating 2"*'/2. We first solve for the wave
functions ¢, defined by the approximation 2 "*!/2

~ N H
h", i.e.,

—_ (1 —ih"At/Zh’)(pn.

13" aL/2k (B10)

With the wave functions ¢, we construct the Hamil-
tonian Z. The approximation to #2"*}/2 used in Eq.
(B9) is then

rrtY/2~pn +R)/2. (B11)
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Thus, we must solve the system of simultaneous
equations twice for each step in time. However,
the extra effort is well justified as the approxima-
tion 2"*1/2~p" in Eq. (B9) results in a continual
decrease in the energy of the system, because of
the use of a somewhat retarded potential. The ap-
proximation 2 "*1/2~} correspondingly results in
an increasing energy, because of the use of an ad-
vanced potential. An alternative to (B11) is to
first calculate wave functions ¢ at the half-time
step n + 3 by replacing Af in Eq. (B10) by at/2
and then use the resulting 2"*! /2 constructed from
these wave functions in Eq. (B9). Although this
method requires the same computing time as the
use of Eq. (B11) and yields comparable accuracy
for the small time steps used in our calculations,
when the time step is doubled it yields an absolute
error in energy conservation which is roughly half
as large as with the former algorithm. In calcula-
tions with 2 or more dimensions, some effort
should be expended to find a way to approximate
R"*1/2 from the knowledge of & at the previous
time steps.

We have found a step in z, Az, of 0.2 fm ade-
quate for all calculations. A time step

. Az
AlS

" 40 (B12)

proves sufficient, where vn,, is the largest speed
involved in the initial conditions. Decreasing Az
and A{ results in no significant improvement. A
typical calculation involves between 150 and 300
points in z and 500 to 1000 steps in time.

Checks of the accuracy are provided by Gallilean
invariance and the conservation laws. A static HF
solution remains unchanged in time, apart from a
well defined time -dependent phase, and such a sys-
tem, if given an initial velocity, translates with
constant speed. For the collision problem the
metric is time-independent within +107° and the
total energy is conserved within +.05 MeV/fm?.
The time independence of the metric simply re-
flects the fact that Eq. (B7) is unitary, whereas
the energy conservation gives a direct indication
of the noise propagated by the integration algo-
rithm.

Another severe test is provided by the time-re-
versal invariance property of the equations. Inte-
grating from {, to {, +NA¢{, replacing all the ¢’s
by their complex conjugates and integrating again
for another N-time interval, the system should
return precisely to the state it occupied at time

t,. We performed such a test for the collision case
@, =@,=1.4 fm % at E/A=3.5 MeV integrating 400
time steps from f=0to {=1Xx10"2 sec and then
returning backward. The curve d(t) describing

the reverse process is virtually indistinguishable
from the direct process plotted in Fig. 6. Similar-
ly, the densities p(f,) and p(t, + 2NAt) agree to
within a few percent.

Two other integration methods were also investi-
gated and are briefly described here. One stable
alternative to the implicit algorithm (B7) is the
explicit three-point approximation

in e

n+1_ ’!'1 - ——
ZAt(" ¢5) 2mA 22

(@Fs,+ ¢5-)

Wi n? - .
(g )@ 0,
(B13)

Although this method suffers from the drawback
that it is not unitary, it offers the advantage that
¢! may be evaluated explicitly in terms of known
quantities without solving a system of simultaneous
equations. For comparable accuracy in collision
problems, Eq. (B13) requires a time step at least
8 times smaller than Eq. (B7). The explicit and
implicit computing times differ by a factor much
smaller than 8, however, since the explicit meth-
od does not require the intermediate calculation of
p"*1/2 or the solution of simultaneous equations
required by the implicit method. The real motiva-
tion for investigating the algorithm (B13) is the
eventual consideration of two-dimensional prob-
lems for which the solution of the simultaneous
equations for the implicit method is much more
cumbersome. From these 1-dimensional results,
it appears that such explicit methods merit serious
consideration in subsequent two-dimensional ap-
plications.

A second alternative is to use an unstable algo-
rithm but to maintain sufficient precision that the
noise level does not become significant before all
physically relevant information is obtained. This
can be achieved, for example, by increasing the
precision with which the time derivative is evalu-
ated. Using the Adams-Moulton predictor correc-
tor method with Zonnefeld’s starting formulas, - ¢
a five point formula having a precision through
terms in (Af)* was used to integrate Egs. (4.29)
with the approximation (B3) for #. However, sen-
sible results required so small a time step that
computation time became prohibitive.
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