Summary of Tritium Evolution from Various Experiments

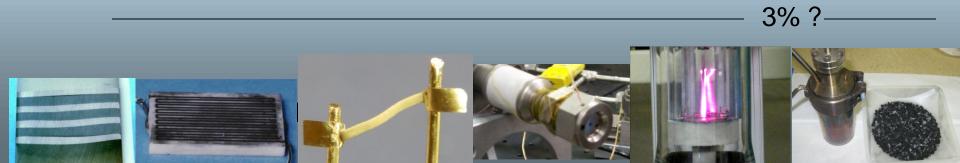
Thomas N. Claytor¹, Malcolm M. Fowler²,

¹ High Mesa Technology, Guest Scientist, Los Alamos, NM USA

² McFarland Instrumentation Services, Inc.

12th International Workshop on Anomalies in Hydrogen Loaded Metals

5-9 June 2017


Presentation fatigue

What we have done and where are we going.

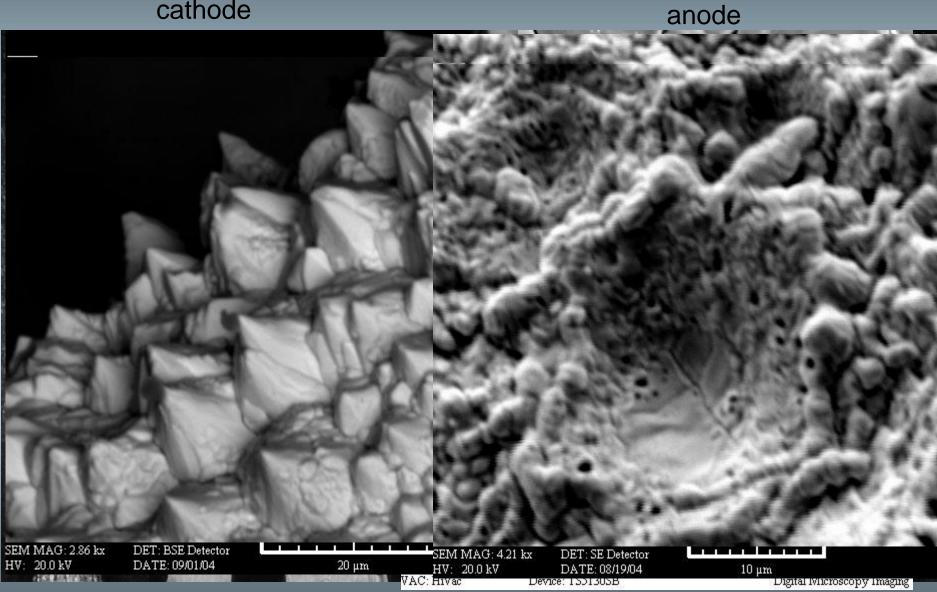
	Pd-Si powder solid state cells	Pd powder tracks	Pd wire cells	Pd diffusior disk	n Plasma cells	G75 cells
Pd load	20 g	2 g	250 mg	1.5 g	150mg	2 g
Tritium	Up to 50	to 30	to 44	200	to 530	15
pCi/hr-g Excitation	Fast, short	, high power	pulse	Heating	FSHPP	Heat
n/t ratio	3 x 10 ⁻⁸			discharge		

Stated Alloy Composition	Highest Tritium Rate pCi/h	Alloy composition All rolled foil	Tritium rate pCi/h
PdRhCoB (5%,5%,0.045)	80	Hf	+10.0
PdRhCoB (5%,5%,0.18)	6.2		
PdCu (10%)	6.2	W	7.0
PdRhCoB (5%,5%,0.26)	5.1	Та	5.0
PdRh (0.1%)	4.8		
PdRhCoB (5%,1.1%,0.11)	4.5	Ti	5.0
PdHg (0.1%)	3.8	Pt	4.6
PdB (5%)	2.0	N N	2.5
PdCu (1%)	1.4	V	2.5
PdB (0.06%)	1.1	Ni alloy 1: Ni 79.3, Fe 15.6,Cr 3.0, Mn 0.94	2.1
PdAl (0.1%)	1.0	NU	1.0
PdFe (10%)	0.62	Ni	1.8
PdNi (4.6%)	0.53	Ni alloy 2: Ni 80.4, Fe 14.9, Mo 4.1, Mn 0.53	1.5
PdLi (0.3%)	0.45	Nb	0.0
PdW (0.1%)	0.28		0.0
PdCo (1.1%)	0.25	Zr	0.0
PdRhCrB(5%,5%, ?%)	0.21	Fe	0.0
PdB (0.03%)	0.10		0.0
PdRh (0.5%)	-0.17	Fe-Ni	0.0
PdCr (2.1%)	-0.52	Ag	0.0
PdRhB(10%,1.0)	-0.73		
PdNi (1.1%)	-2.3		
PdRhB(5%,0.49)	-2.4		
PdBe (0.4%)	-2.8		
PdBe (0.1%)	-5.4		
PdHf (0.1%)	-6.7		

Various Metal "Shielding" Factors (Raiola et al 2006)

Metal	s with Highest Uo		Metals show	wing little or no E	ffect
Pd	800ev	Transitio	n Metals	Lanthar	nides
Sb Pt	720ev 670ev	Ti Sc	<30 <30	Nd Sm	<30 <30
Co TI	640ev 550ev	Hf Zr	<30 <40	Ce	<30 <30
Ni Rh	380ev 230ev				

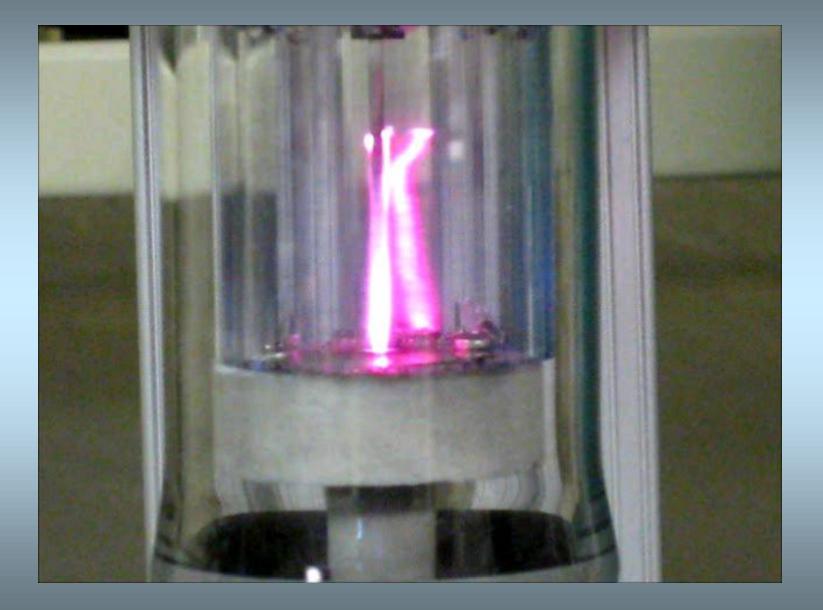
	1 1 H	1		Showing: Atomic weight														VIIIB 2 He
	1.0079	IIA											IIIB	IVB	YB	VIB	VIIB	4.00260
8	-	4											5	6	7	8	9	10
	11												в	C	N	0	F	Ne
	-												10.81	12.011	14.0067	15.9994	18.998403	20.17
	0												13	14	15	16	17	18
	Ne												AI	Si	P	S	CI	Ar
	22-36677		IIIA	IVA	VA	VIA	VIIA		VIIIA		IB	IIB	26.98154	28.0855	30.97376	32.06	35.453	39.948
	.11		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	10		Sc	Ti	¥	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	1981-0982		44.9559	47.90	50.9415	51.996	54.9380	55.847	59.9332	29.71	63.546	65.38	69.735	72.59	74,9216	78.96	79.904	83.80
	1974- 1974		39	40	41	42	43	44	45	+6	47	48	49	50	01	52	53	54
	: Bile		Y	Zr	Nb	Mo	Tc	Ru	Bh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
	105-447		88.9059	91.22	92.9064	95.94	98.9062	101.07	102.9055	106.4	107.868	112.41	114.82	118.69	121.75	127.60	126.9045	131.30
	56 i		57	72	73	74	75	76	77	2	79	80		82	83	84	85	86
	6.6 .		La	Hf	Та	¥	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Bn
	40-9084		138.9055	178.49	180.947	183.85	186.207	190.2	192.22	195.09	196.9665	200.59	204.37	207.2	208.9804	(209)	(210)	(222)
	12		89	104	105	106	107	108	109	110	 All during the set 	00000000		880,20808-0	000000000000	1250-500-55	and states	C10073073
	1.84		Ac	Unq	Unp	Unh	Uns	Uno	Une	Unn								
	12721		(227)	(261)	(262)	[263]	(262)	(265)	(266)	(272)								

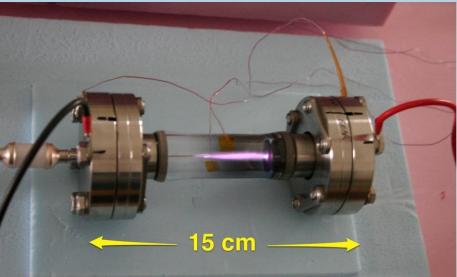

	58	59	60	61	62	63	64	65	66	67	68	69	70	21
Lanthanide Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Jelles	140.12	140.9077	144.24	(145)	150.4	151.96	157.25	158.9254	162.50	164.9304	167.26	168.9342	173.04	174.96
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinide Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Jelles	232.0381	231.0359	238.029	237.0482	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)

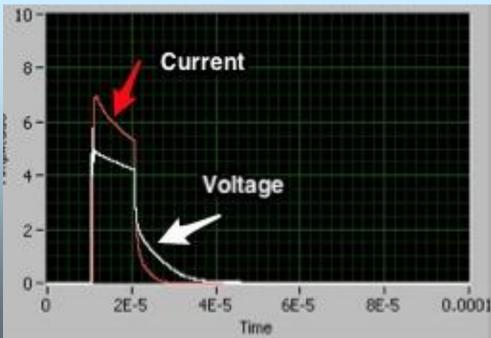
Rare Earths

Dy	<30
Tb	<30
Gd	<30

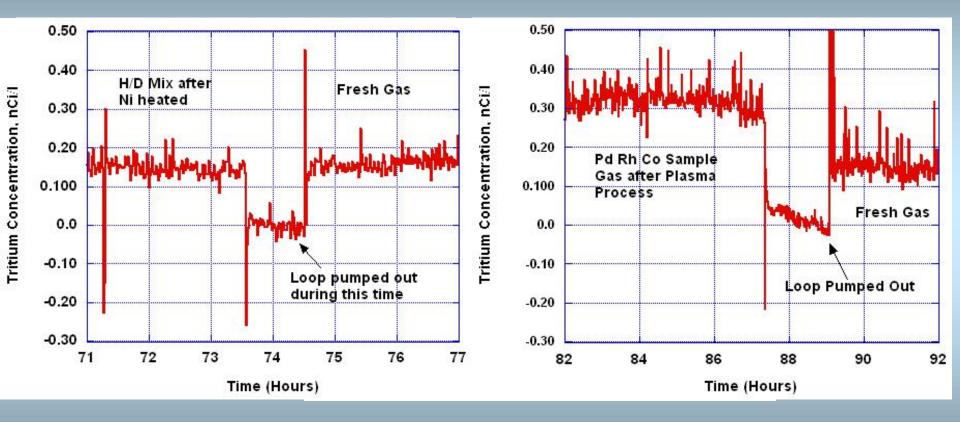
Some Samples of Interest:


cathode


Modes of Operation: Arcing

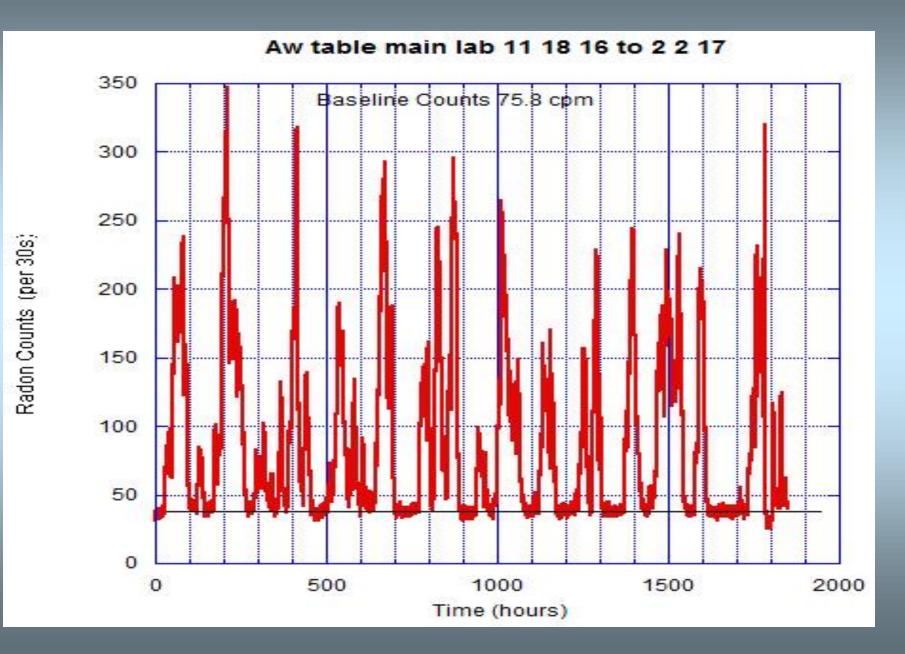

Modes of operation: ion channel and attachment

Plasma characteristics (Not a glow discharge)


- 150-450 torr
- 900-1300 volts, 5-12 amps
- 5-20 µs pulse @ 50-100 Hz
- Peak Power up to 15000 W
- Constant power operation
- Sample V &I @ 14-bit, 100 Msample/sec

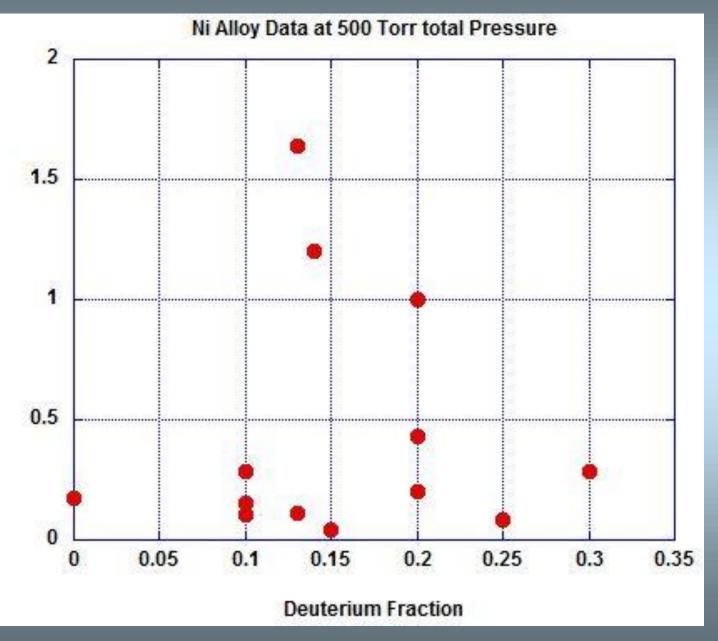
Femtotech Gas Analysis System

Tritium Femtotech Data

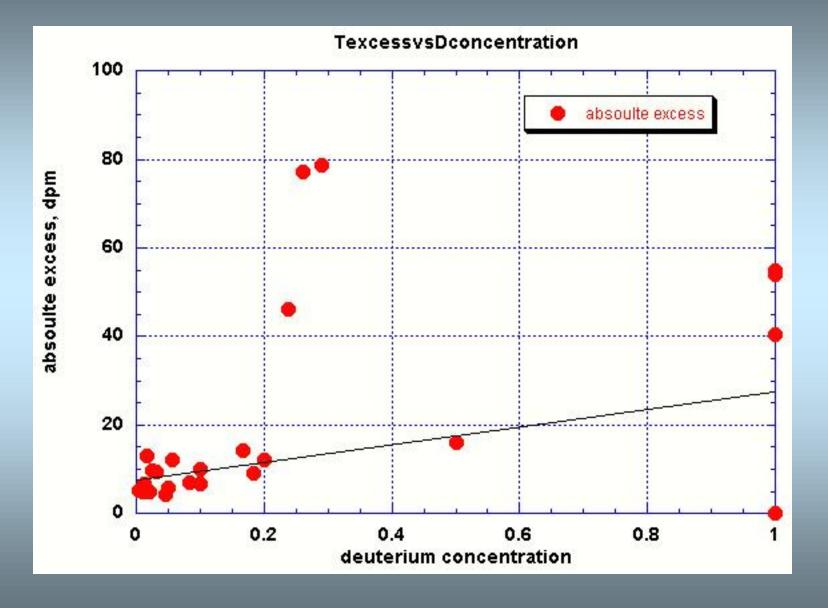


Beckman LSC 6500

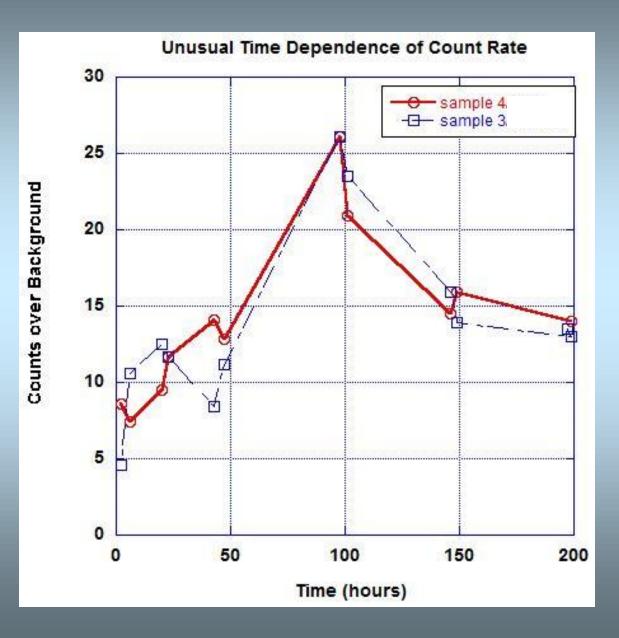
1cc water sample in 10cc Ultima Gold Fluid

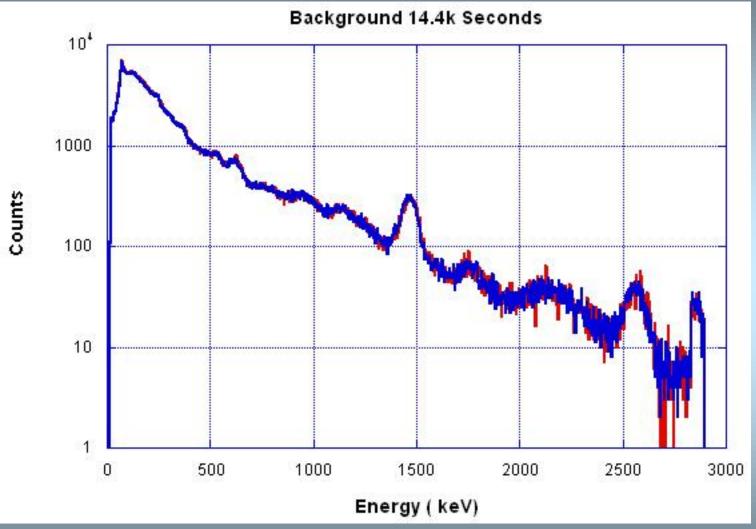


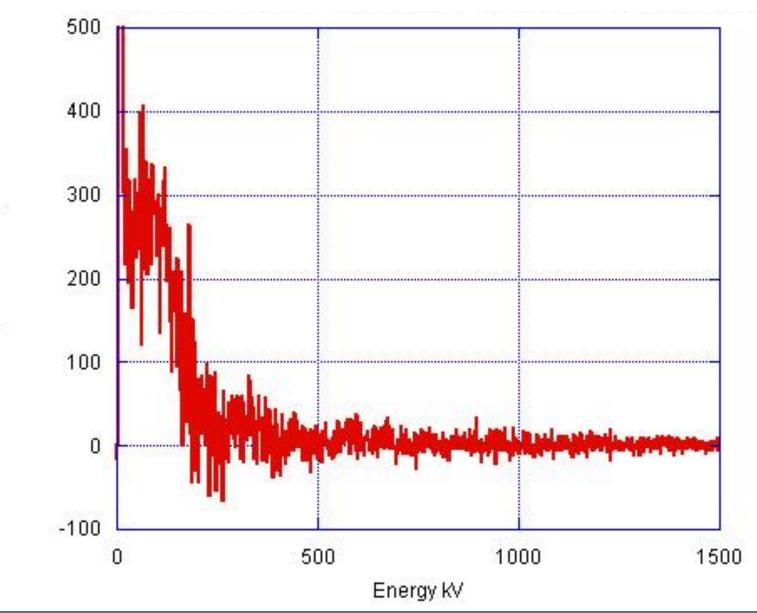
Radon and Daughters can be a Problem for the Beckman



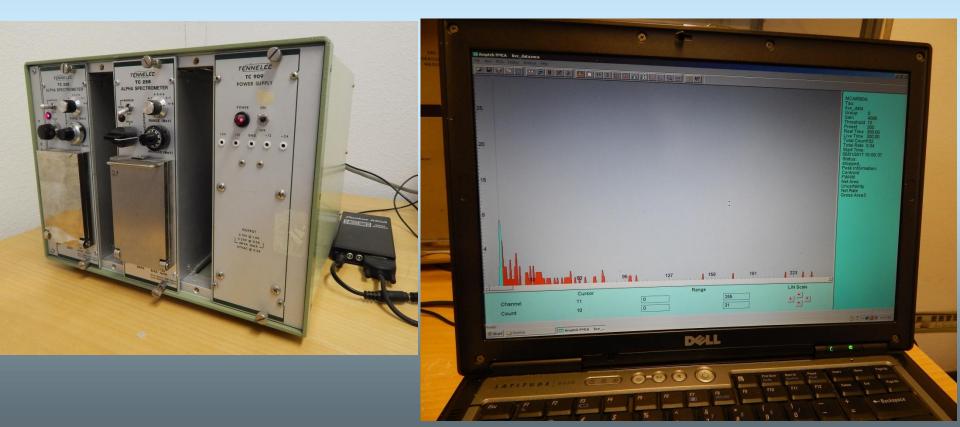
Tritium output as a function of D_2 in H_2


Tritium Output Rate (pCi/hr)


G75 tritium output as a function of D₂ fraction


Scintillation counting as a function of time:

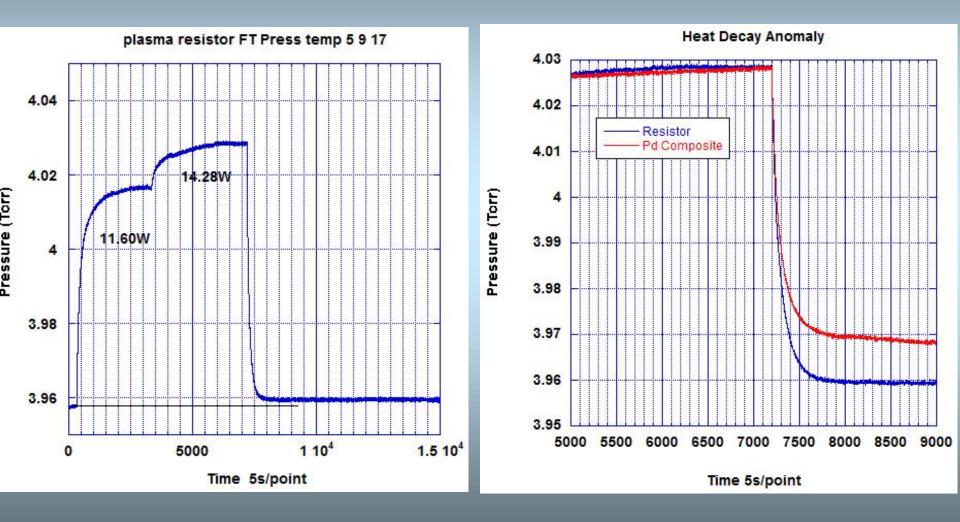
Nal Detector Data


Spectral Difference Between Cell Operation and Background

near peak-low output

SSD Detector for Post Run Activity


Highest rate over background 20kV-200kV is over twice background Immediately after removal from plasma cell.


Seebeck Calorimeter

Heat Comparison 6W power input

Pressure Rise/Decay Heat Comparison

Is there Helium?

Gas analysis of initial gas and post-process gas from NiC sample Finnigan 270 can easily separate ⁴He, ³He peaks from D₂, HD

	⁴ He	³ He	
Gas			
D ₂ from bottle (lanl)	90±50 ppb (<40ppb)	< 1ppb	Gettered
H ₂ bottle (lanl)	150ppb (<40 ppb)	ND	Gettered
Plasma run H/D 24/75	400±200 ppb	<200 ppb	Non Gettered
Plasma run New system	~ 200 ppb	NA	Activated carbon

New ⁴He detection system built and tested, more confidence in results and lower error. Numbers in red are new results

Conclusions

Ni Alloy is reproducible,

Tritium can be several sigma over background

Effect can be obtained in 1-2 days

Excess heat is small (~5%) but is it consistent with the Helium data?

If X-ray effect can be increased, then might serve as a quick demo

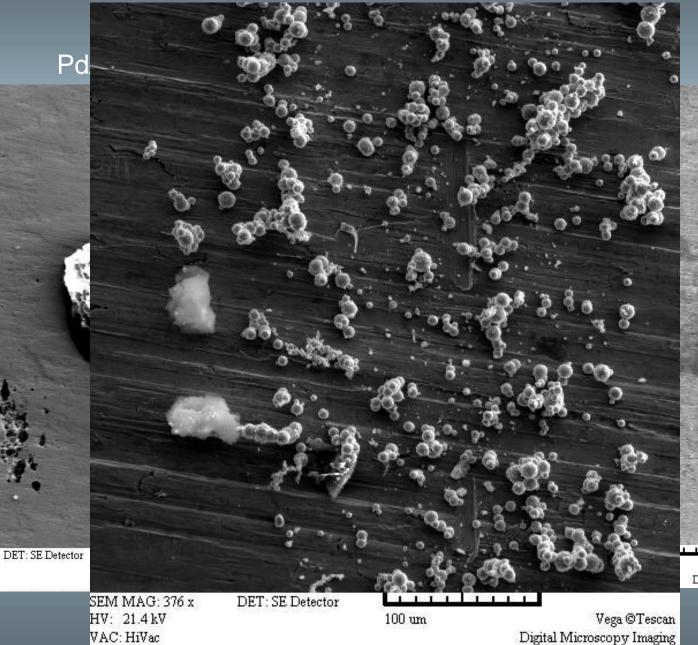
Pursue pressure indication for excess heat

Parameter space, effects of pressure, electrical driving conditions, temperature, etc. have only been partially explored.

All positive experiments have a common driver, can an engineered material be fabricated to take advantage of this basic understanding?

Acknowlegments

Industrial Heat, LLC Thomas Darden II J. T. Vaughn Dewey Weaver


Previous Support Provided by: Coolescence. LLC New Mexico Small Business Association LANL, LDRD Program

Anomalous Results from Sonofusion (with Rodger Stringham)

SEM MAG: 384 x

HV: 21.4 kV

VAC: HiVac

Vega ©Tescan Digital Microscopy Imaging