
Wear 504-505 (2022) 204435

Available online 2 July 2022
0043-1648/© 2022 Elsevier B.V. All rights reserved.

Hydrogen participates in cavitation erosion in water 
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A B S T R A C T   

Pure titanium and 18Mn18Cr0.6 N austenitic stainless steel were selected as model materials to capture 
hydrogen. Specimens were immersed or exposed to cavitation erosion in ultrapure water. The surface compo-
sitions of immersed and eroded specimens were studied using time-of-flight secondary ion mass spectrometry. 
Throughout the entire sputtering time, the yields of H− from the eroded specimens were significantly higher than 
those from the immersed specimens. The hydrogen concentration in eroded specimens had increased. Hydrogen 
participated in the process of cavitation erosion in water. Finally, the sources of this extra hydrogen, and how it 
entered the specimen, were discussed.   

1. Introduction 

Cavitation erosion (CE) is a frequent material degradation phe-
nomenon for components, such as pumps, ship propellers, valves, and 
pipes, which experience flowing liquid environments [1,2]. In the past 
few years, the CE mechanisms of titanium alloys [3,4], nickel alloy [5], 
stainless steels [6,7], low alloy steels [8,9], and coatings [10,11] have 
been investigated in some detail. There is consensus on the CE mecha-
nism: local pressure fluctuations induce cavity formation; when these 
tiny bubbles collapse, high-speed microjets and intense shock waves 
attack the component surface repeatedly and induce damage—including 
deformation, material removal, and even fracture [12,13]. In corrosive 
liquids, the CE mechanism is complex because there are interactions 
between erosion and corrosion. In distilled water, however, CE is 
believed to be an entirely mechanical effect [14]. Persistent slip bands 
and striations on the eroded surface of metals indicate that CE is a fa-
tigue process [15–19]. 

It is well known that fatigue is sensitive to the environment, espe-
cially to the presence of hydrogen [20]. However, hydrogen is rarely 
considered in the investigation of CE [21]. A recent report [22], found 
that, for ferritic stainless steel, all the cleavage planes on the eroded 
surface were {100}. For comparison, fatigue cracks grew along random 
planes in ferrite in air but along only {100} planes in a hydrogen at-
mosphere [23]. Taken together, these results suggest that hydrogen 
participates in CE in purified water [22]; however, strong evidence is 
still lacking. Water contains dissolved hydrogen; in addition, hydrogen 
may form through the decomposition of water during cavitation. If 

hydrogen participates in CE, this should be carefully considered when 
attempting to explain CE mechanisms and design material microstruc-
tures with enhanced CE resistance. 

In this study, pure Ti (close-packed-hexagonal crystal structure) and 
a high nitrogen austenitic stainless steel (face-centered-cubic crystal 
structure) were selected as model materials. High-nitrogen austenitic 
stainless steels possess excellent mechanical and chemical properties. 
They have found broad application in many fields where CE is a common 
materials-degradation phenomenon [19,24,25]. These materials were 
subjected to CE in ultrapure water and the eroded surfaces were 
examined. If hydrogen participates in CE, the eroded specimens will 
capture it, because pure Ti and austenitic stainless steel are able to 
dissolve a substantial amount of hydrogen. 

2. Experimental 

The test materials were commercial pure Ti (TA1) with an average 
grain size of ~25 μm and 18Mn18Cr0.6 N austenitic stainless steel 
(annealed at 1050 ◦C for 10 min) with an average grain size of ~31 μm. 
Specimens (Φ10 × 4 mm) were machined and ground with 4000 grit 
abrasive paper. No polishing was conducted after grinding to avoid any 
possible introduction of hydrogen. The CE tests were conducted on an 
XOQS-2500 machine in ultrapure water for 8 h. The test specimen (0.5 
mm away from the horn tip) was fixed on a specimen holder [5]. The 
water temperature, amplitude, and frequency were 298 K, 50 μm, and 
20 kHz, respectively [26]. Ground and eroded specimens were examined 
using a VEECO Contour GT-K1 optical profiler to characterize their 
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surface morphologies. 
For comparison, some ground specimens were immersed in ultrapure 

water at 298 K for 8 h without CE to give the “immersed” specimens. 
Secondary ion emissions from the immersed specimens and eroded 
specimens were examined by time-of-flight secondary ion mass spec-
trometry using a TOF-SIMS 5 instrument. The sputter ions were 1 keV 
Cs+, and the sputter area was 500 × 500 μm. Measurements were con-
ducted using 30 keV Bi+ ions and the analysis area was 200 × 200 μm. 
The negative-ion mode was used to give a higher yield of hydrogen ions 
[27]. 

3. Results 

Fig. 1 shows the surface three-dimensional (3D) morphologies of 
pure Ti and 18Mn18Cr0.6 N steel specimens. After 8 h CE, material 
removal was clearly apparent in both materials, and the scratches had 
been removed. The Ra values of immersed pure Ti and 18Mn18Cr0.6 N 
steel specimens were 0.968 μm and 0.498 μm, respectively. The 
roughness worsened due to CE. 

Fig. 2a and b shows 3D render overlays of H− , TiH− , and TiO2
− ions 

for the immersed and the eroded pure Ti specimens, respectively. The 
top surface of the hexahedron corresponds to the specimen surface, 
while the side surfaces show how the ion distribution changes with 
depth. The yield of H− in the eroded specimen is clearly higher than in 
the immersed specimen. The H− intensity is not uniform on the eroded 
surface; this is because when material is removed, the hydrogen dis-
solved in it will also be removed. The surface layer of Ti contains a small 
amount of water [28]. Although H2O contains hydrogen atoms, the 
secondary ions produced from H2O under the negative ion mode are 
largely OH− and O− ; with few other ions apparent [29]. Therefore, the 
H− ions detected in the present work are attributed to primary emission 
from hydrogen dissolved in the lattice. Of course, if the hydrogen con-
tent is beyond the solubility of hydrogen in pure Ti, extra hydrogen will 

form titanium hydrides, such as Ti2H and TiH. The yield of TiH− in the 
eroded specimen seems to be higher than in the immersed specimen. 
TiO2

− ions represent the titanium oxides. In contrast with the situation 
for the immersed specimen (Fig. 2a), the TiO2

− distribution is 
non-uniform in the eroded specimen (Fig. 2b). The distribution of TiO2

−

is opposite to that of H− , as indicated by the arrows at specific positions. 
In other words, the positions that give a high yield of H− are positions 
with low yields of TiO2

− . This phenomenon may be caused by the 
reducibility of hydrogen. 

The intensity of each secondary ion is plotted versus the sputter time 
in Fig. 2c− e. Increasing sputter time corresponds to greater distance 
from the sample surface. The H− yields for both specimens fluctuated 
during the first 50 s of sputtering, before becoming steady (Fig. 2c). 
Throughout the entire sputtering time, the yield of H− from the eroded 
specimen remained clearly higher than that from the immersed spec-
imen. During the initial ~20 s of sputtering, the yield of TiH− was higher 
ffig2or the immersed specimen than for the eroded specimen; after that, 
the yield of TiH− became lower for the immersed specimen (Fig. 2d). For 
TiO2

− ions, the yield was higher for the immersed specimen during the 
initial 300s of sputtering (Fig. 2e). 

Fig. 3a and b shows 3D render overlays of H− , FeO2
− , and CrO2

− ions 
for the immersed and the eroded 18Mn18Cr0.6 N steel specimens, 
respectively. Obviously, the yield of H− for the eroded specimen is 
higher than for the immersed specimen, which is similar to the situation 
in pure Ti. The 3D render overlays of FeO2

− and CrO2
− indicate that thin 

passive films are formed on both specimens. It can be found that the 
diffusion depth of hydrogen is greater than the thickness of passive film, 
especially in the eroded specimen. The distributions of FeO2

− and CrO2
−

ions on the surface of the immersed specimen were more uniform than 
those on the surface of eroded specimen. Throughout the entire sput-
tering time, the yield of H− for the eroded specimen is about three times 
higher than for the immersed specimen (Fig. 3c); the yield of FeO2

− from 
the eroded specimen remained lower than that from the immersed 

Fig. 1. 3D morphologies of specimens: (a) ground and (b) eroded pure Ti specimens; (c) ground and (d) eroded 18Mn18Cr0.6 N steel specimens.  
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specimen (Fig. 3d), which may be caused by the higher hydrogen con-
centration in the eroded specimen. The yields of CrO2

− are similar for 
both specimens (Fig. 3e). 

4. Discussion 

The question arises: why are the hydrogen concentrations higher in 
the eroded specimens? In Fig. 3a, the H− intensity is high in the surface 
layer and decreases with increasing depth in the immersed 
18Mn18Cr0.6 N steel specimen. This phenomenon means that 
18Mn18Cr0.6 N steel absorbs hydrogen in water. In addition, the 
nonuniform distribution of H− ions on the surface of the immersed 
specimen indicates that roughness and strain affect the absorption rate 
of hydrogen (Fig. 3a). The possible answer to above question is that CE 
improves the hydrogen concentration in the water and enhances the 
hydrogen absorption rates of 18Mn18Cr0.6 N steel and pure Ti. 

The likely sources of the extra hydrogen, and the mechanisms by 
which it enters the specimen, are schematically shown in Fig. 4. The 
collapse of cavities is an intense process. Luminescence occurs and the 
instantaneous temperature is very high, between ~1500 and 30000 K 
[30,31]. The pressure can be up to several thousand bars [32]. In this 
intense process, plasma forms [30]. It is reasonable for the water to 
decompose to produce hydrogen in atomic, ionic, and molecular states. 
As a result, the hydrogen concentration becomes high around the 
collapsed bubble in the water. Microjets carry hydrogen and shoot to-
wards the solid surface at speeds of up to ~80–100 m/s [1,32]. This 
attack leads to deformation in the solid surface layer, with very high 
strain rates, ranging from ~1000 to 500000/s [32,33]. A high density of 

defects, such as vacancies, dislocations, and twins, forms [34,35], which 
provides more diffusion paths for hydrogen. In addition, the passive film 
is continuously destroyed during CE, which may also give contribution 
to the hydrogen absorption rate. Furthermore, cracks on the eroded 
surface are also considered pathways of rapid hydrogen movement. 
Therefore, the high content hydrogen in the eroded specimen results 
from the combined effect of the high hydrogen concentration in the 
water, the high-speed impact, the high density of diffusion paths in the 
solid, and the damaged passive film. 

In CE, the material-removal process is usually gradual, and involves 
spalling of tiny pieces (several microns in size) [19,22,35]. Cracks and 
their tips are also narrow and shallow. Thus, enrichment of hydrogen 
close to the surface can have a significant effect on this damage process. 
Hydrogen participation in CE can explain why all the cleavage fractures 
in CE of ferritic stainless steel are along {100} planes, as mentioned 
above [22,23]. Additionally, the finding of hydrogen enrichment can 
explain other phenomena in CE. For metals with a face-centered-cubic 
lattice, coherent twin boundaries are readily eroded in preference to 
the random high-angle grain boundaries (RHAGBs) [19]. Interestingly, 
the diffusion speed of hydrogen is much higher along coherent twin 
boundaries than it is along RHAGBs [36]. Furthermore, (001)-oriented 
grains show lower CE resistance than (111)-oriented grains do [37]. 
Coincidentally, the diffusion speed of hydrogen is higher in 
(001)-orientated grains than it is in (111)-oriented grains [38]. It is 
supposed that hydrogen diminishes the CE resistance of coherent twin 
boundaries and (001)-orientated grains. 

The results of this study imply that the effect of hydrogen on the CE 
resistance should be considered in material selection and 

Fig. 2. 3D render overlay of negative ions for (a) immersed pure Ti specimen and (b) eroded pure Ti specimen; ion distributions versus sputter time: (c) H− ; (d) TiH− ; 
(e) TiO2

− . 
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Fig. 3. 3D render overlay of negative ions for (a) immersed 18Mn18Cr0.6 N steel specimen and (b) eroded 18Mn18Cr0.6 N steel specimen; ion distributions versus 
sputter time: (c) H− ; (d) FeO2

− ; (e) CrO2
− . 

Fig. 4. Schematic illustration of hydrogen enrichment process in eroded specimen.  
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microstructural design. Reducing the hydrogen diffusion paths, 
increasing the concentration of hydrogen traps, and decreasing the 
hydrogen sensitivity of materials are all potential methods to improve 
the CE resistance. In addition, acidic solutions, salt solutions, and oils 
are hydrogen-containing substances. Hydrogen could be produced from 
the decomposition of water or oil under cavitation conditions, or from 
the hydrogen ions in acid solution. Consequently, the participation of 
hydrogen in CE should be taken into consideration for these liquid 
environments. 

5. Conclusions 

In summary, for both pure Ti and 18Mn18Cr0.6 N steel, the yields of 
H− from the eroded specimens were significantly higher than those from 
the immersed specimens throughout the entire sputtering time. This 
demonstrated that the hydrogen concentration in eroded specimens had 
increased. Hydrogen participated in the process of cavitation erosion in 
water. 
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