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In many-body nonlinear systems with sufficient anharmonicity, a special kind of lattice vibrations, namely, Localized An-
harmonic Vibrations (LAV) can be excited either thermally or by external triggering, in which the amplitude of atomic 
oscillations greatly exceeds that of harmonic oscillations (phonons) that determine the system temperature. Coherency and 
persistence of LAV may have drastic effect on chemical and nuclear reaction rates due to time-periodic modulation of reaction 
sites. One example is a strong acceleration of chemical reaction rates driven by thermally-activated ‘jumps’ over the reaction 
barrier due to the time-periodic modulation of the barrier height in the LAV vicinity. At sufficiently low temperatures, the 
reaction rate is controlled by quantum tunneling through the barrier rather than by classical jumping over it. A giant increase 
of sub-barrier transparency was demonstrated for a parabolic potential well with the time-periodic eigenfrequency, when the 
modulation frequency exceeds the eigenfrequency by a factor of ~2 (parametric regime). Such regime can be realized for a 
hydrogen or deuterium atom in metal hydrides/deuterides, such as NiH or PdD, in the vicinity of LAV. We present an ana-
lytical solution of the Schrödinger equation for a nonstationary harmonic oscillator, analyze the parametric regime in details 
and discuss its applications to the tunnel effect and to D-D fusion in PdD lattice. We obtain simple analytical expressions for 
the increase of amplitude and energy of zero-point oscillations (ZPO) induced by the parametric modulation. Based on that, 
we demonstrate a drastic increase of the D-D fusion rate with increasing number of modulation periods evaluated in the 
framework of Schwinger model, which takes into account suppression of the Coulomb barrier due to lattice vibrations. 
 
Keywords: localized anharmonic vibrations, correlation effects, zero-point energy, tunnel effect, low energy nuclear reac-
tions, nuclear active sites.  
 

1. Introduction 
Catalysis is at the heart of almost every chemical or nuclear 
transformation process, and a detailed understanding of the 
active species and their related reaction mechanism is of 
great interest [1-2]. There is no single theory of catalysis, but 
only a series of principles to interpret the underlying pro-
cesses. An important parameter of the reaction kinetics is the 
activation energy, i.e. the energy required to overcome the 
reaction barrier. The lower is the activation energy, the faster 
the reaction rate, and so a catalyst may be thought to reduce 
somehow the activation energy. Dubinko et al [3-8] have 
shown that in a crystalline matrix, the activation energy may 
be reduced at some sites due to a special class of localized 
anharmonic vibrations (LAV) of atoms, known also as dis-
crete breathers or intrinsic localized modes arising in regular 
crystals. LAV can be excited thermally [3, 4] or by irradia-
tion [3, 5], resulting in a drastic acceleration of chemical re-
action rates driven by thermally-activated ‘jumps’ over the 
reaction barrier due to the time-periodic modulation of the 
barrier height in the LAV vicinity. However, at sufficiently 
low temperatures, the reaction rate is controlled by quantum 
tunneling through the barrier rather than by classical jumping 
over it. The tunneling probability averaged over the Boltz-
mann distribution for the energy E is given by an integral [9] 

( )
0

1 exp EG E dE
kT kT

∞  Γ = − 
 ∫  (1) 

 
with the tunneling coefficient (TC) given by the Gamow fac-
tor 

( ) ( )( )
2

1

2exp 2
r

r

G E dr V r Eµ
  ≈ − − 
  

∫


, (2) 

where 2π is the Planck constant, ( )V r is the potential 
barrier µ  is the reduced mass, r1, r2 are the two classical 
turning points for the potential barrier.  

This approach assumes that dynamical behavior of the re-
actants does not affect the TC, which is fully described by 
their energies. However, tunnel effect is inherently related to 
the operation of the uncertainty principle for motion along 
one co-ordinate, which have been generalized with account 
of correlation effects by Schrödinger [10] and Robertson 
[11], resulting in the following uncertainty relation (UR): 

2 4x p efσ σ ≥  ,  
2

21 4 xp
ef

σ 
 ≡ × +
 
 

 



,  (3)  

( )2
x x xσ = − , ( )2

x p pσ = − , (4) 

ˆ ˆ ˆ ˆ 2xp xp px x pσ = + − , (5) 
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where xpσ  is the mutual dispersion between the coordinate, 

x, and momentum, p. At xpσ  = 0 (non-correlated state), and 

eq. (3) is reduced to the well-known Heisenberg UR, 
whereas at xpσ  > 0 one has ef > 

1, which increases the 

uncertainty of coordinate and momentum and hence the tun-
nel probability may increase as / efhG . Therefore, the ques-
tion arises about the conditions that could bring the reactant 
in a coherent correlated state (CCS) [13], which are the 
quantum states corresponding to the equality in the UR (3) 
and non-zero mutual dispersion.  
 Vysotskii et al [13] demonstrated that a CCS can be 
formed in a parabolic potential well with the time-periodic 
eigenfrequency. It appears that an optimal modulation fre-
quency Ω  that results in the most rapid increase of xpσ  is 

close to 02ω  (parametric frequency): 0 02 gω ωΩ− ≤ , 

where 0ω  is the mean eigenfrequency and g  is the modu-
lation amplitude.  

Dubinko [7] has argued that such regime can be realized 
for a hydrogen or deuterium atom in metal hydrides/deuter-
ides, such as NiH or PdD, in the vicinity of so called gap 
breathers – a sub-class of LAV arising in the H/D sub-lattice. 
A large mass difference between the metal and H/D atoms 
provides a wide phonon gap, in which gap breathers exist. 
Based on the numerical calculations of ef  obtained in [13], 

it has been shown that the tunneling probability for the D-D 
fusion under electrolysis in heavy water may increase enor-
mously with increasing number of LAV cycles resulting in 
the fusion rates comparable with experimental data. 

In the present paper, we present an analytical solution of 
the Schrödinger equation for a nonstationary harmonic oscil-
lator, analyze the parametric regime 02ωΩ =  in details and 
discuss its applications to the tunnel effect. 

2. Solution of the Schrödinger equation for a 
nonstationary harmonic oscillator 

Consider a harmonic oscillator with time-dependent fre-
quency for a particle with the mass m obeying the nonsta-
tionary Schrödinger equation of the form 

( )22 2
2

22 2
m t

i x
t m x

ωψ ψ ψ∂ ∂
= − +

∂ ∂




.     (6) 

The solution of the equation (6) can be expressed using 
the Green`s function (or propagator):  

( ) ( ) ( )0 0 0 0 0, , ; , ,x t dx G x t x t x tψ ψ
+∞

−∞

= ∫    (7) 

The propagator ( )0 0, ; ,G x t x t satisfies the Schrödinger 
equation (6) and the following initial condition: 

1 Note that the definition of ef by eq. (3) is more straight-

forward than the one used in refs [12, 13], but both defini-
tions are mathematically equivalent. 

( ) ( )0 0 00
lim , ; ,

t
G x t x t x x

τ
δ

→ +
= −     (8) 

The expression for the propagator has the form [14]: 

( ) ( )0 0, ; , exp
2 G

mG x t x t
i Z

θ
π

=


,    (9) 

2 2
0 02

2G
im dZ x xx Yx

Z dt
θ  = − +  

,   (10) 

where the functions ( )Y Y t= , ( )Z Z t=  are defined 
by the following equations and initial conditions that can be 
derived from the condition (8): 

( )
2

2
2 0d Y t Y

dt
ω+ = ,       (11) 

( ) ( )0
00, 1

dY t
Y t

dt
= =     (12)) 

( )
2

2
2 0d Z t Z

dt
ω+ = ,       (13) 

( ) ( )0
01, 0

dZ t
Z t

dt
= =     (14) 

The functions ( ) ( ),Y t Z t satisfy the condition [14]: 

( ) ( ) ( ) ( ) 1
dZ t dY t

Y t Z t
dt dt

− = .    (15) 

Consider the initial wave function of the Gaussian form [15]: 

( )
2
0

0 0 224

1, 0 exp
2
xx tψ
ξπξ

 
= = − 

 
, (16) 

where the characteristic length is given by 

0mξ ω=  .         (17) 
Then the expression for the wave function for the arbitrary 
moment of time 0 0t t∀ > =  can be obtained from equa-
tions (7), (9), (10), (16): 

( ) ( )
24

0

exp1,x t
Y i Z

ψθψ
ωπξ

=
+

,    (18) 

2

2
0 0

1 1
2
x dZ

i Z dt Y i Zψθ ξ ω ω
 

= − − + 
 (19)

 

The probability density of finding the particle at (x, t) is 
given by the square of the wave function, while the x, p and 
x-p dispersions are given by the following expressions:
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( ) ( ) ( )
2

2 2
2, exp

B t xx t B tψ
ξξ π

 
= − 

 
,  (20) 

( )
( ) ( )2 2 2

0

1B t
Y t Z tω

=
+

.     (21) 

ˆ 0x = ,  ˆ 0p =          (22) 

( ) 2 2 2
0

02x t Y Z
m

σ ω
ω

 = + 


,    

 (23) 

( )
2 2

0

0

1
2p

m dY dZt
dt dt

ωσ
ω

     = +   
    



, (24) 

( ) 0
02xp

Y dY dZt Z
dt dt

σ ω
ω
 

= + 
 



,    (25) 

 
Consider special cases of interest. 
 
2.1. Constant eigenfrequency: 

( ) 0t constω ω= =       (26) 

The wave function (18) for 0 0t t> =  takes the form: 

( )
2

0
224

1, exp
2 2
x i tx t ωψ
ξπξ

 
= − − 

 
,  (27) 

whence it follows that the x and p dispersions are constant 

0

0

,
2 2x p

m
m

ωσ σ
ω

= =
 

,    (28) 

as well as the mean kinetic, potential and total energy: 

0

2 4k p

E
E E ω

= = =


,     (29) 

while the mutual x-p dispersion is zero: 0xpσ =  

2.2. Time-periodic eigenfrequency 

Consider the Mathieu equation [16] that has the same 
form as eqs. (11) and (13): 

( )2
0 01 cos 2 0x g t xω ω + − =  ,    (30) 

which solution can be written explicitly in the first approxi-
mation to the small modulation amplitude 1g  : 

( ) ( ) ( )0cosx t a t t tω ϑ=  +   ,      (31) 
where 

( ) ( ) ( )2 2a t u t v t= + ,        (32) 

( ) ( )
( )

arctan
v t

t
u t

ϑ = ,                  (33) 

( ) 1 2e eu t С Сη η−= + ,        (34) 

( ) 1 2e ev t С Сη η−= − + , 0
4

g tω
η = .   (35) 

Then the approximate solutions of the Cauchy problems 
(11)-(14) are given by: 

( ) ( ) ( )

( ) ( ) ( )

0
0

0
0

1 sinh cos

1 cosh sin

Z t t

t O g

η ω
ω

η ω
ω

= +

+ +

,    (36)

( ) ( ) ( )
( ) ( ) ( )

0

0

cosh cos

sinh sin

Y t t

t O g

η ω

η ω

= +

+ +
      (37) 

Substituting eqs. (36), (37) in (23) - (25) one obtains the 
first approximations for dispersion of the coordinate and mo-
mentum: 

( )

( )

0

0

0
0

cosh
2 2

1 tanh sin 2
2

x
g tt

m

g t t

ωσ
ω

ω ω

 = × 
 

  × +     



   (38) 

( )

( )

0 0

0
0

cosh
2 2

1 tanh sin 2
2

p
m g tt

g t t

ω ωσ

ω ω

 = × 
 

  × −     



   (39) 

 
The first approximation of the mutual x-p dispersion is 

given by 

( ) ( )0
0sinh cos 2

2 2xp
g tt tωσ ω =  

 


 (40) 

Finally, the first approximation for the mean energy takes 
a simple form: 

( )2

0 0

1
2 2

cosh
2 2

p x
m t

E
m

g t

ω
σ σ

ω ω

= + =

=


   (41) 

The most evident result of the parametric modulation of 
a parabolic potential well is increase of the coordinate, mo-
mentum and mutual dispersion with increasing number of 
oscillation periods, N, which results in rapidly increasing 
probability to find the oscillating particle far beyond the 
characteristic length of the stationary well  ξ  (Fig. 1). It 

means that the amplitude of the oscillating factor ef   

grows with N, but the most intriguing new result is a rapid 
growth of the oscillator zero-point oscillation (ZPO) energy  
(eq. (41) and ZPO amplitude in x and p space, which de-
serves a special attention as argued bellow. 
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3. Zero-point oscillation amplification 

 
Fig. 1. Localization probability distribution vs. the number of 
oscillation periods 0 2N t t Tω π= = in the parametric 

regime 02ωΩ =  at 0.1g = . 
 

Continuous ZPO energy increase (Fig. 2) is different from 
the quantum energy increase to the higher oscillation levels:

( )0 1 2nE nω= + , when the probability density be-
comes concentrated at the classical "turning points". In con-
trast to that, we clearly deal with the ground (zero-point) state, 
in which the probability density is concentrated at the origin, 
which means the particle spends most of its time at the bottom 
of the potential well. However, the dispersion of its position 
and momentum increases along with its zero-point energy due 
to the parametric modulation. It is well known that zero-point 
energy can be derived from the uncertainty principle [17], and 
it is determined only by the eigenfrequency and the Plank 
constant: 0 0 2E ω=  . Let us define a ZPO amplification 
factor as the ratio of the zero-point energy (eq. (41)) to its 
stationary value: 

( )0

0
cosh cosh

2
N

N
E g tA g N
E

ω
π= = = ,    (42) 

which is shown in Fig. 2 along with the oscillating amplifica-
tion factors for kinetic and potential energies. In contrast to 
the latter, ZPO amplification factor grows adiabatically with 
time. It is known that tunnel effect is inherently related to the 
operation of the uncertainty principle similar to the ZPO en-
ergy, the difference being that for the tunnel effect the coor-
dinate is one in which the potential energy passes through a 
maximum, whereas for ZPO energy it passes through a mini-
mum [9].  

 By equating the average potential energy, 2 2
0 2mω Λ  

to half the ZPO energy 2NE  one obtains the mean square 
displacement from the equilibrium position  

2 2
02

00 2
N

N N N
E A A

mm ωω
Λ = = = Λ

 , 0
02mω

Λ =
 , (43) 

where 0Λ is the ZPO amplitude in a stationary state.  

Note that the amplitude of oscillating factor ef  de-

duced from the Schrödinger-Robertson UR (eq. (3)) with ac-
count of eq. (40) coincides with amplitude of amplification of 
kinetic and potential energy shown in Fig. 2. In the following 
section, Eqs. (42)-(43) will be used for the evaluation of the 
D-D fusion rate in the PdD lattice. 

 
Fig. 2. Ratio of the zero-point energy to its stationary value 
in the parametric regime at 0.1g = according to eq. (42). 

4. D-D fusion in PdD lattice 
According to Parmenter and Lamb (P&L) [18], the total 

effective potential for a deuteron pair in PdD lattice can be 
described by the Thomas-Fermi method, and it is given by 
the sum of two terms:     

( )
2 2

20 0

0
exp

2eff
D

m R reV r r
R r

ω
λ

 −
≈ + − −  

,  (44) 

 
where the first term is the harmonic potential well (HPW) 
formed by conduction electrons, in which a deuteron is 
trapped, and the second term is the Coulomb repulsion be-
tween the deuterons screened by the electrons; r is the dis-
placement from the equilibrium position, 0R  is the D-D 
equilibrium distance, m  is their mass, e  is the electron 
charge and Dλ  is the Debye screening length. At 

( )0 ~nuclR r r− → 53 10−× Å, the barrier effV → 0.44 
MeV is very high but finite and narrow. 

We will take the following potential parameters: the ei-
genfrequency 0ω = 50 THz is based on the neutron scatter-
ing analysis of DOS in PdD0.63 crystal by Rowe at al [19] 
used for the gap breather analysis in [7]. The screening 
length Dλ = 0.046 Å corresponds to the screening potential 
of 310 eV measured by the yields of protons or neutrons 
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emitted in the D(d, p)T or D(d, n)3He reactions induced by 
bombardment of D-implanted Pd [20].  

In addition to the electron screening considered by P&L, 
a substantial suppression of the Coulomb barrier may be pos-
sible at the expense of lattice vibrations, as was argued by 
the Nobel Laureate Julian Schwinger [21, 22], who was the 
first to point out at the bridge between the lattice vibrations 
and nuclear fusion. According to [21] the effective potential 
of the d+d and p+d interactions is modified due to averaging 

00
 related to their ZPO in adjacent harmonic potential 

wells, where 
00

symbolizes the phonon vacuum state.  
The resulting effective interaction potential is given by eq. 
(29) in [21]: 

( ) ( )
0

0 0

2
21

2
0

2

0

1 22
0

0

2 exp

:

2:

r

c
eV r dx x
r

er
r

er

π

π

Λ

= − ≈


>> Λ




  << Λ   Λ 

∫

   (45) 

 
Accordingly, the rate of fusion has been evaluated by 
Schwinger [22] as the rate of transition out of the phonon 
vacuum state, which is reciprocal of the mean lifetime T0 of 
the vacuum state:  

( ) ( )0 00

1 2 V H E V
T

π δ= − ,
2

20
2

mH r Vω
= + (46) 

where H is the system Hamiltonian, E  the energy, and V
is the anharmonic addition to the potential energy. 
 After a lengthy math, Schwinger derives a surprisingly 
simple estimation for the fusion rate given by  

3 2
19 10

0 0 0

1 1exp 10
2

nuclr R s
T

− −
     −   Λ Λ     

  ,   (47) 

at nuclr = 10-5 Å and 0Λ = 0.1 Å; 0R  =0.94 Å deduced from 
X-ray measurements on hydrided Pd, and 0R was the equi-
librium spacing of two deuterons placed in one site in a hy-
pothetical PdD2 lattice. Even at such separation, the resulting 
fusion rate was too low to explain the observed excess heat 
generated in Pd cathode under D2O electrolysis. 

Now consider evolution of the localization probability 
distribution in the HPW in parametric modulation regime 
with increasing N shown in Fig. 3. The ZPO amplitude in-
creases with N up to 2.5 Å at N=17 (for 0ω =50 THz) or 

N=25 (for 0ω =320 THz), as shown in Fig. 4, which defines 
the validity domain of the HPW approximation, beyond 
which the total potential at the classical turning point devi-
ates strongly from HPW. Note that the validity domain shifts 
upward with increasing N with account of Schwinger effect, 
while the maximum effective barrier height decreases, as 
shown in Fig. 5.  

At N=17, ZPO energy reach a level of several eV (Fig. 
6), which in itself is too low for any significant tunneling 

through the Coulomb barrier. However, taking into account 
the ZPO effect by Schwinger and ZPO amplification factor 
given by eq. (42), the fusion rate given by eq. (47) increases 
drastically with increasing N: 

3 2
01 1exp

2
nucl

N N N

r R
T

     −   Λ Λ     
 ,      (48) 

which is illustrated in Fig. 7.  

Fig.3. Localization probability distribution in the HPW 
shown by red (x) at different N in the parametric regime 

02ωΩ = =100 THz, 0.1g = .  

 
Fig.4. Zero-point energy increase in the HPW in the para-
metric regime 02ωΩ = =100, THz, 0.1g = . 

5. Discussion 
The parametric modulation of the HPW analyzed in the 

present paper was suggested to take place for a hydrogen or 
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deuterium atoms in metal hydrides/deuterides, such as NiH 
or PdD, in the vicinity of gap breathers in a regular lattice 
[7] or LAV arising in small clusters [4, 8]. Their existence 
and stability is of nonlinear origin, which poses an important 
question of the nonlinearity impact on the correlation effects 
found for a modulated HPW. 

Another important problem concerns the practical ways 
of LAV excitation in crystals and clusters.  Heating helps to 
excite LAV since it enhances thermal fluctuations of atoms 
from equilibrium positions [3], but the LAV lifetime (which 
determines the number of periods in the parametric regime) 
is expected to decrease with increasing temperature and 
hence, the catalytic efficiency of LAV may decrease drasti-
cally. Therefore, we need ways to excite LAV at sufficiently 
low temperatures, which can be done by applying gamma, 
electron or ion irradiation in the energy range suitable for 
displacement of H/D atoms sufficiently far away from their 
equilibrium positions to enter nonlinear vibration regime but 
not too far, in order to avoid formation of structural defects. 

 The work by Chernov et al [23] on the excitation of hy-
drogen subsystems in metals by external influence give a 
strong support to this view. They conclude that ‘under exter-
nal energy input (for instance by means of radiation) an ex-
citation of vibrations occurs in the hydrogen subsystem. The 
following facts point to this: intensive migration, diffusion 
and release of hydrogen isotopes from metals at low temper-
ature; super-linear dependence of H, D release from metals 
on the electron current density and H, D concentration; H 
and D release from the whole volume of samples during the 
irradiation process by focused electron beam; H and D re-
lease in both molecular and atomic forms’. 

Note that all the listed phenomena belong to the realm of 
chemical reactions, which accompany the ‘excess heat’ and 
nuclear products measured in these experiments. It shows 
that both nuclear and chemical reaction triggered by ‘exter-
nal influence’ have the same origin, and LAV is a good can-
didate to be the one. 

 
Fig.5. The maximum effective barrier height with account of 
ZPO effect by Schwinger. 

 
Fig.6. Zero-point energy increase in the HPW in the para-
metric regime at 0.1g = . 

  
Fig.7. D-D fusion rate vs. N, according to eq. (48) with ac-
count of eqs. (42) and (43). 

6. Conclusions and outlook 
Analytical solution of the Schrödinger equation for a pe-

riodically driven harmonic oscillator is derived.  
The oscillator zero-point energy, which is inherently related 
to the operation of the uncertainty principle, is shown to in-
crease in response to parametric modulation. Based on that, 
a drastic increase of the D-D fusion rate with increasing num-
ber of modulation periods was demonstrated in the frame-
work of Schwinger model, which takes into account suppres-
sion of the Coulomb barrier due to lattice vibrations. 

The present concept may provide a basis for the low en-
ergy nuclear reactions in solids as well as for the low temper-
ature chemical reactions controlled by the tunnel effect.  

Atomistic modeling of LAV of various types in metal hy-
drides/deuterides is an important outstanding problem since 
it may offer the ways of engineering the chemical and nu-
clear catalysts. 
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