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Prediction of high frequency intrinsic localized modes in Ni and Nb

M. Haas1, V. Hizhnyakov1, A. Shelkan,1 M. Klopov,2 and A. J. Sievers3
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(Dated: December 16, 2013)

It is found that in some metals an intrinsic localized mode may exist with frequency above the
top of the phonon spectrum. The necessary condition, requiring sufficiently high ratio of quartic to
cubic anharmonicity may be fulfilled because of screening of the interaction between ions by free
electrons. Starting from the known literature values of the pair potentials we have found that in Ni
and Nb the derived localized mode condition is fulfilled. MD simulations of the nonlinear dynamics
of Ni and Nb confirmed that high frequency ILMs may exist in these metals.

PACS numbers: 63.20.Pw, 63.20.Ry, 05.45.-a, 05.45.Yv

I. INTRODUCTION

The study of vibrational energy localization in highly
excited small molecules is well known and a number of re-
views have appeared [1-4]. The idea of localization in per-
fect anharmonic lattices was considered by Kosevich and
Kovalev [5] for the case of a monatomic chain with near-
est neighbor harmonic, cubic and quartic anharmonic
interactions. They showed that an envelop soliton-like
excitation with frequency above the top of the phonon
band could exist for sufficiently weak cubic interactions.
Somewhat later strongly localized vibrational modes in
anharmonic lattices were proposed in Refs. [6,7]. The
realization that this new excitation phenomenon only re-
quired nonlinearity plus discreteness expanded the topic
in different directions, ranging from analytical consider-
ations [6-9] to MD simulations [10-12]. The early re-
views of the resulting field focused on predicting differ-
ent processes [13-15]. These excitations, which are often
referred to as intrinsic localized modes (ILMs), discrete
breathers or discrete solitons, have now been identified
in different driven physical systems including electronic
and magnetic solids, Josephson junctions, micromechan-
ical arrays, optical waveguide arrays, and laser-induced
photonic crystals [16-18].

In numerical studies of ILMs in atomic lattices different
two-body potential models such as Lenard-Jones, Born-
Mayer-Coulomb, Toda, and Morse potentials as well as
their combinations have been used in the past. All of
these potentials show strong softening with increasing
vibrational amplitude and the ILMs, found in these sim-
ulations, always drop down from the optical band(s) into
the phonon gap, if there is one. (See Refs. [19-22],
where ILMs in alkali halide crystals have been calcu-
lated). Consequently, it has been assumed that the soft-
ening of atomic bonds with increasing vibrational ampli-
tude is a general property of crystals and therefore ILMs
with frequencies above the top phonon frequency cannot
occur. However recent inelastic neutron scattering inves-
tigation of the vibrational excitations in uranium (α-U)
in thermal equilibrium showed some degree of localiza-

tion near the top of the phonon spectrum at elevated
temperatures [23]. For this to occur the pair potentials
in this metal must be fundamentally different from those
describing alkali halide crystals. Because the electrons
at the Fermi surface provide an essential contribution to
the screening of the ion-ion interaction in metals there is
no apriori reason to expect the anharmonicities of these
two very different systems to be similar.
The purpose of this paper is to explore the ILM prop-

erties in nickel and niobium by starting from the embed-
ded atom model (EAM). This technique allows one to
find the potential energy of vibrations in metals, taking
the screening effects into account [24,25]. Our findings
show that ILMs may be expected to occur in both of
these metallic crystals. In the next section we illustrate
how the elastic springs of the atomic bonds are to be
renormalized to give the minimal condition for localized
mode production. In the small ILM amplitude limit two
additive contributions to the renormalization are identi-
fied: the positive one given by the quartic anharmonicity
and the negative one determined by the square of cubic
anharmonicity. The ILM appears above the phonon spec-
trum when the first contribution exceeds the second one.
For the monatomic chain with nearest neighbor interac-
tions this condition agrees with that found by Kosevich
and Kovalev [5] and it corresponds to a rather high ratio
of quartic to cubic anharmonicities but in 3D lattices a
smaller ratio is required. Our calculations demonstrate
that in Ni and Nb this ILM condition is fulfilled. The
molecular dynamics simulations for nickel and for nio-
bium confirming this result are described in Section 3
followed by some conclusions in Section 4.

II. THRESHOLD CONDITION FOR ILM

One can readily present an argument in favor of the lo-
calized mode possibility in metals. The point is that the
essential contribution to the screening of the atomic inter-
actions in metals comes from free electrons at the Fermi
surface. Due to their well-defined energy and the oscil-
lating character of the wave functions of these electrons

http://arxiv.org/abs/1311.3114v1
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(Friedel oscillations) the resulting pair-potentials may ac-
quire non-monotonic, or even oscillatory dependence on
the atomic distance [26]. One consequence is that the
ion-ion attractive force, at intermediate distances, may
be enhanced resulting in an amplification of even anhar-
monicities for the resulting two-body potentials. This
effect can counteract the underlying softening associated
with the bare potentials with moderate increase of vibra-
tional amplitudes to permit the existence of ILMs above
the top of the phonon spectrum.
Let the anharmonic potential describing the nearest

neighbor interactions for a 1-D monatomic chain be rep-
resented by

U =
∑

n

4
∑

p=2

Kp

p
(un+1 − un)

p (1)

where K2 is the harmonic force constant and K3, K4

are the anharmonic ones, un is the displacement of the
n-th atom from its equilibrium position. The condition
for the formation of an ILM with the frequency above
the top of the phonon spectrum, given in Ref. [5], is
κ = 3K2K4/4K

2
3 > 1.

To obtain the minimal condition more generally we use
the equation for renormalization of the elastic springs of
the atomic bonds by the ILM derived in Refs. [27, 28],
which is

δK2n = 2〈sin2 (ωLt) ∂
2V anh/∂r2n〉, (2)

where δK2n is the change produced in the harmonic
spring of the pair potential of bond number n. Here ωL is
the frequency of ILM, V anh is the anharmonic part of the
potential, the second derivative is taken for the distance
of the bond rn = r0n+ Ān cos(ωLt)+ ξ̄n, where r0n is the
length of the bond, Ān is the amplitude of vibration of
this bond,

ξ̄n =
∑

nl

ḡnnl

〈

∂V anh/∂rnl

〉

(3)

is the dc change (usually extension) of its length due
to the ILM, ḡnnl

= gnnl
− gn′nl

− gnn′

l
+ gn′n′

l
, n and

n′ are the indexes of two ends of the bond n, gnnl
=

− (MnMnl
)
−1/2 ∑

i enienliω
−2
i is the static limit of the

lattice Green’s function, eni is the polarization vector of
the phonon i for the bond n, ωi is the frequency of the
phonon, Mn is the mass of the atom n.
For a small amplitude ILM one need only consider cu-

bic and quartic anharmonicity. In this approximation
Eqs. (2) and (3) take the form

δK2n = 2K3ξ̄n +
3

4
K4Ā

2
n, (4)

ξ̄n =
1

2

∑

nl

ḡnnl
K3nl

Ā2
nl
. (5)

Usually the first term in Eq. (4) is negative while the
second term is positive. The bond will harden with in-
creasing amplitude of vibrations and an ILM will shift up
from the phonon band if the absolute value of the first
term is smaller than the second term. To fulfill this condi-
tion the value of the parameter κ needs to be sufficiently
large. This value depends not only on the pair potentials
but also on the type and dimension of the lattice.
We consider first δK2 in monatomic chain with nearest

neighbor interactions. In this case n′ = n + 1 and gnnl

depends on |n− nl|. Therefore ḡnnl
= 2gnnl

− gn+1nl
−

gn−1nl
. From the equations of motion one gets ω2

i ein =
(K2/M) (2ein − ein+1 − ein−1). Multiplying both sides
of this equation by ω−2

i einl
and summing up over i we get

δnnl
= −K2ḡnnl

. Consequently the dc lattice expansion
equals

ξ̄ = − (K3/2K2) Ā
2 (6)

(index n is now omitted). Therefore

δK2 =
(

3K4

/

4−K2
3

/

K2

)

Ā2. (7)

The bond will harden with increasing amplitude of vibra-
tions and an ILM will shift up from the phonon band if
κ = 3K2K4

/

4K2
3 > 1. This condition is identical to that

found in Ref. [5] for localized vibrations in the chain. A
detailed discussion of this condition also has been given
in Ref. [29]. (For arbitrary amplitude the ILM condition
for the potential described by Eq. (1) is given also in
Ref. [30].)
Let us apply now Eqs. (4) and (5) to 3-D lattices.

We treat an even symmetry ILM in a monatomic fcc
or bcc lattice with the main motion directed along the
shortest bond. Note that the high-energy edge of the
phonon DOS in both these lattices corresponds to the
short-wavelength phonons. Therefore the initial ILM un-
der consideration, shifting up from the phonon band, re-
sembles a wave packet of the standing longitudinal plane
waves; it has a large spatial extent.
We assume that the anharmonic interactions are well

localized. This allows one to include in Eq. (5) only
contributions of the shortest bonds in the xy-direction
(fcc lattice) or in xyz-direction (bcc lattice). The factors
ḡnnl

in this equation tend to zero with increasing |n− nl|.
Therefore if the ILM is close to the threshold limit then
the corresponding amplitudes of vibrations of all these
bonds at the contributing nl sites in Eq. (5) are almost
the same and so the dc distortion

ξ̄ ≃ −2K3Ā
2

MN

∑

q

N−1
∑

n=0

1− cos(qr0)

ω2
q

e iqr0(n−N/2), (8)

where Nr0 is the distance between the border atoms
in the direction of the main vibration (r0 the equilib-
rium first-neighbor distance), ωq is the frequency of the
longitudinal waves, q is the wave number acquiring the
discrete values q = πk/r0N with k = −N/2,−N/2 +
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1, ... N/2− 1 (N is even). In the N → ∞ limit only the
term k = 0 contributes so

ξ̄ = −
(

K3

/

2K̃2

)

Ā2, (9)

where K̃2 = Mv2l
/

r20 is the mean elastic spring in the
bulk, vl is the longitudinal velocity of sound. Comparing
this equation for ξ̄ with Eq. (6) and considering that

K̃2 is larger than K2 we conclude that the expansion by
an ILM in a 3D lattice is hindered as compared to the
chain, - a physically intuitive result. Inserting Eq. (9) for
ξ̄ into Eq. (4) we get δK2. The hardening of the bonds
in 3D lattices takes place and an ILM shifts up from the
phonon band if

κ̃ = 3K̃2K4

/

4K2
3 > 1. (10)

This condition is easier to fulfill than the 1D condition
for κ > 1.

III. MD SIMULATIONS

A. ILMs in nickel

The potential energy of Ni developed in Ref. [31] has
the customary form for the embedded atom model [24,
25]

Etot =
1

2

∑

nn′

V (rnn′) +
∑

n

Fn (ρ̄n), (11)

where V (rnn′) is a pair potential as a function of the
distance rnn′ between atoms n and n′, Fn is the em-
bedding energy of atom n as a function of the electron
density ρ̄n =

∑

n′ 6=n ρ (rnn′ ) induced at atom n by all

other atoms in the system, ρ (rnn′) is the electron den-
sity at atom n due to atom n′ as a function of the distance
between them. The second term in Eq. (11) is volume
dependent. Its contribution is essential for determining
the equilibrium configuration of the lattice. Below we
use the effective pair format in which this term has only
quadratic and higher-order contributions with respect to
the displacement of atoms from their equilibrium posi-
tion in the lattice. For small displacements compared
to the lattice constant this term is usually small. In Ni
corresponding correction of the elastic springs is of the
order of 1%, and the correction of the anharmonic forces
is even smaller.
The pair potential V (r) of Ni found from the data

placed on the website [32] using the cubic spline ap-
proximation is presented in Fig. 1. In the same figure
the approximation by the fourth-order polynomial using
the least-square method in the interval 2.496 Å± 0.116 Å
is also presented. This interval corresponds to the ac-
tual values of coordinates of the ILM with the frequency
near the top of the phonon band (see Table I). In this

approximation K2 ≈ 2.32 eV/Å
2
, K3 ≈ −11 eV/Å

3
,

2.5 3 3.5
r (A)

-0.2

-0.1

0

0.1

V
(r

) 
 (

eV
)

2.4 2.5 2.6

-0.22

-0.2

-0.18

-0.16

FIG. 1: The pair potential V (r) of Ni (solid line) and its
approximation by the fourth-order polynomial (dashed line).
Insert shows an expanded view.

K4 ≈ 70 eV/Å
4
. The root-mean-square deviation for the

polynomial approximation in the given interval is 10−5

eV, i.e. ∼ 1000 times less than the corresponding vibra-
tional energy of the bond.

The distance between the nearest atoms in Ni at room
temperature r0 = 2.49 Å and longitudinal sound velocity

vl = 5266 m/sec. These values give K̃2 = 2.75 eV/Å
2
,

(as expected K̃2 > K2) and κ̃ ≈ 1.2. The distance r0
increases with temperature (r0 = 2.51 Å at T = 800 K)
while vl decreases with temperature (vl = 5100 m/sec at
T = 800 K). The κ̃ value also decreases with temperature
remaining at T = 800 K somewhat larger than 1. Hence,
in Ni the conidition κ̃ > 1 is satisfied both at room and
at high temperatures.

A fortunate circumstance is that the phonon DOS in
Ni (and in other monatomic fcc lattices) has quite a
sharp high frequency peak corresponding to the short-
wave phonons (see Fig. 2) resulting in a straightforward
localization of the wave packet of these phonons. Con-
sequently one can expect that in Ni ILMs can exist with
the frequency above the top of the phonon spectrum and
that their amplitudes and hence corresponding energies
may be relatively small.

To verify this prediction we performed MD simula-
tions of vibrations of Ni clusters using the full two-body
potential without polynomial approximation. Since the
long-range interactions in metals are screened out the
cluster calculations should give reliable results assuming
that the size of the cluster is sufficiently large. In our
calculations we studied clusters up to 22056 atoms with
different boundary conditions: a) periodic, b) free ends,
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FIG. 2: Phonon density of states and three ILM spectral sig-
natures for Ni. Phonon spectrum (dashed line) and spectro-
graphs (solid line) of the different ILMs: The frequencies are
5.58, 5.86, 6.07 (1013 rad/sec) and the amplitudes of vibra-
tions of the central bond are 0.18 Å, 0.31 Å and 0.42 Å.

c) fixed ends. The results of these calculations agree well
with each other. Although the second (volume depen-
dent) term in Eq. (11) gives only small corrections to
forces, it was included in our MD simulations of clusters
with periodic boundary conditions.
For the boundary conditions with free and fixed ends

only the linear part of the second term in Eq. (11) was
considered. We have found that this approximation does
not noticeably change the results but allows one to sig-
nificantly shorten the calculation time. The resulting
phonon dispersion curves are in satisfactory agreement
with those in the literature [31].
Classical molecular dynamics of a Ni cluster was cal-

culated by means of the basic Verlet algorithm:

u(t+ dt) = u(t) + v(t)dt+
1

2
a(t)dt2, (12)

v(t+ dt) = v(t) +
1

2
(a(t) + a(t+ dt)) dt. (13)

Here t is time, u(t) is displacement of the atom from its
equilibrium position, v(t) and a(t) are the velocity and
acceleration of the atom. The latter were found from
Newton’s second law by calculating the gradients of Etot

with respect to the atom coordinates. For the case of
periodic boundary conditions the periodicity was a cube
with edge 52.8 Å, which includes 13500 atoms. A time-
step 2 fs was used; 7000 time steps have been calculated
which corresponds approximately to 200 periods of vibra-
tions of the ILM. The results of the calculations are given

11.0 12.0
t (psec)

-0.4

-0.2

0

0.2

0.4

u 
 (

t)
 (

A
)

n

FIG. 3: Time dependence ūn(t) = rn(t)− r0 of the vibration
of the central (n=0, solid line) and third (n=3, dashed line)
bonds in Ni at long times containing the ILM with the fre-
quency 6.07 · 1013 rad/sec. The corresponding values of the
dc distortion ξ̄n are given in Table I. The amplitude modula-
tion of the ILM is induced by its partner, the nearby linear
local mode.

in Figs. 2 and 3 and in Table I. For the case of free ends
the calculated cluster had 34 parallel 40r0 × 17r0 square
pallets; it includes 23120 atoms. A time-step of 0.01 fs
was used. A few million time steps were calculated, so
that the full calculated time would contain several hun-
dreds of periods of ILM.

In the first runs to excite the lattice vibrations, 8
nearest central atoms located at

√
2r0[n/2, n/2, 0], n =

−4,−3, . . .3 (in the central chain) have been initially dis-
placed from their equilibrium position constituting an
even structure; the displacements un of the atoms from
their equilibrium position have been chosen as follows:
u0 = −u1 = u2 = −2u3. This displacement pattern
has the correct symmetry of the ILM but not the exact
shape. The values of u0 varied from 0.09 Å to 0.3 Å. After
the shake off of the phonons at short times the ILM was
recognized as undamped periodic motion at large times
(slowly modulated) at a frequency above the maximum
of the phonon band. As an example of the correspond-
ing time dependence of the vibration at long times, see
Fig. 3, where the calculated dependence on time of the
difference ūn(t) = rn(t)− r0 for two bonds n = 0 and n
= 3 is given.

The dependence of the vibration frequency on ampli-
tude of the central bonds is presented in Fig. 4; the
vibrational amplitudes Ān and the dc expansion ξ̄n of
several bonds in the (110) direction are given on Table
I. We also calculated several bonds in other directions;
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the values of corresponding Ān and ξ̄n appeared to be
somewhat smaller. As follows from the Table I all seven
ILMs presented are quite broad spatially, with the first
three essentially keeping the same localization, and the
other four ILMs broadening. Obviously this is a result
of the softening of the pair potential as the amplitude
of the ILMs increases. Still the amplitudes of all such
ILMs decrease rapidly in the periphery as seen from the
Ā6 column.
To control the numerical procedure, the full energy of

the cluster was calculated at every time step. The en-
ergy conservation law was found to be well fulfilled for
the entire calculated time interval. We have also cal-
culated the energy of the ILM; the contribution of 215

atoms situated in a prolate-ellipsoid shape was included
in calculations. It appears that ∼2/3 of the energy of
the initially displaced 8 central atoms remains localized,
while again 2/3 of it belongs to the atoms in the initially
excited chain and ∼ 1/3 goes to the nearest surrounding
atoms. We have found that an ILM in Ni may have a
rather small energy ∼ 0.2 eV (see the first line in the
Table I). The reason is the existence of the narrow peak
in the phonon DOS belonging to short-wave phonons,
which permit a rapid splitting of the ILM away from the
phonon band. On the other hand, for large Ā0 ≥ 0.314 Å
one observes a significant difference between the ILM fre-
quency and the top phonon frequency; thus we conclude
that the existence of ILMs in Ni is reliable.

Table I. Spatial properties of ILMs in nickel. The difference of the frequency ωL of the even ILM and the maximum
phonon frequency ωM = 5.4· 1013 rad/sec, amplitudes of the bonds Ān and the changes of their length ξ̄n for the

atoms located at
√
2r0[n/2, n/2, 0], with n = 0, 1, 2, 3, 6, and the resulting ILM energy E. The shifts of atoms of the

central chain satisfy the condition u−n = −un−1.

ωL − ωM

(1013 rad/sec )
Ā0

(Å)
Ā1/Ā0 Ā2/Ā0 Ā3/Ā0 Ā6/Ā0 ξ̄0

(Å)
ξ̄1/ξ̄0 ξ̄2/ξ̄0 ξ̄3/ξ̄0 ξ̄6/ξ̄0 E

(eV)

0.013 0.116 0.853 0.534 0.267 0.050 0.007 0.571 -0.143 -0.286 -0.0004 0.204

0.081 0.142 0.845 0.514 0.239 0.023 0.008 0.750 -0.250 -0.375 -0.0005 0.255

0.181 0.180 0.844 0.522 0.250 0.034 0.014 0.571 -0.143 -0.357 -0.0009 0.366

0.465 0.314 0.863 0.564 0.287 0.022 0.034 0.618 -0.059 -0.235 -0.003 1.080

0.672 0.420 0.905 0.655 0.365 0.026 0.048 0.729 0.146 -0.354 -0.006 2.197

0.742 0.474 0.945 0.770 0.508 0.068 0.040 0.975 0.525 -0.175 -0.011 3.474

0.779 0.500 0.966 0.852 0.640 0.094 0.030 1.100 1.000 0.267 -0.016 4.596

B. Slow modulation of ILM

Slow modulation of the ILM vibrational amplitude is
observed in Fig. 3. The modulation is also seen as a
satellite at the frequency ωLL = 5.6 · 1013 rad/sec in
the spectrum of vibrations of the bonds given in Fig.
5. The weak high-frequency satellite of the triple-peak
in Fig. 5 results from the nonlinear four wave mixing
2ωL − ωLL. This effect has been studied in some detail
for a monatomic 1-D lattice in Ref. [33] and has been
identified with linear local modes (LLMs) associated with
the lattice perturbation produced by ILM.

To address the question whether the modulation ob-
served for this 3-D system is connected with artificial size
effects or LLMs we repeated the calculation for a cluster
of twice larger size. No significant difference in the time
dependence of vibrations of the central atoms have been
observed. To perform an additional check on our inter-
pretation of the origin of the modulation a second series
of runs has been performed using as the initial conditions
the long time displacement patterns of the 36 atoms (8
atoms in the central chain and 7 atoms in every nearest 4

chains) more closely registered to the correct ILM shape.
Now the starting amplitudes of the central particles are
determined by averaging over a modulation period. The
time dependence of the vibration of the central (n=0) and
third (n=3) bonds calculated in this way are presented
in Fig. 6. Since the starting shapes more closely resem-
ble a pure ILM eigenvector the only significant difference
from the results shown in Fig. 3 is the reduction of the
amplitude of modulation. The periods of the ILM vibra-
tion and of the modulation remain unchanged, precisely
what is expected for an LLM of smaller amplitude. This
removes the possibility that the observed modulation is
associated with the reflection of phonon wave packets
from the cluster boundary.
This conclusion also agrees with our calculation of vi-

brations of atoms near the border. The amplitudes of
these border vibrations always remain less or of the order
of 5 · 10−3 Å, i.e. they are much smaller than the ampli-
tude of modulation of vibrations of the central atoms.

All of these signatures allow us to assign the observed
modulation to the linear local mode produced by the
ILM. Indeed, as expected for a LLM, its frequency in-
creases with increasing amplitude and frequency of the
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ILM. An enlargement of the modulation for the side
bonds shows, in agreement with Ref. [33], that the max-
imum amplitude of the LLM is situated in the periphery
of the ILM. An interesting property of the mode, which
causes the modulation, is the change of the sign of the fre-
quency difference ωL − ωLL with decreasing localization
of the ILM. For the ILM in the first line of the Table I
ωL−ωLL is negative (−0.14·1013 rad/sec), while for ILMs
in all other lines it is positive (0.17, 0.24, 0.42, 0.45, 0.38
and 0.35, respectively; all in 1013 rad/sec units). This
change of sign is also expected for the LLM: it results
from the different dependence of the ILM and LLM on
the even anharmonicities [33].
In order to verify the conclusion about the existence

of ILMs in Ni at elevated temperatures we repeated the
calculations presented in Fig. 6 for the lattice constant
corresponding to 800 K. We have found that the ILM
also exists at this temperature but with slightly enlarged
(∼ 3%) amplitude and reduced frequency ωL = 5.67·1013
rad/sec. Thermal fluctuations characteristic for non-zero
temperature in the initial state have been ignored; how-
ever thermal-like fluctuations appeared in our MD sim-
ulations in the latter stages of the time-evolution of the
system due to shaking-off of the phonons. These fluctu-
ations do not significantly affect the ILM.
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FIG. 4: The dependence of frequency ωL of the even ILM in
Ni on the amplitude of vibrations of the central bond.

C. ILMs in niobium

In contrast with nickel, niobium is isotopically pure
and may provide a cleaner experimental signature for the
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FIG. 5: ILM with its satellite LLM (ωL = 6.07 ·1013 rad/sec).
Shown are the Fourier transforms of vibrations ū0(t) (solid
line) and ū3(t) (dashed line) given in Fig. 3.

observation of intrinsic localization. Using an analogous
algorithm we also performed molecular dynamic simula-
tions of ILMs in Nb. The peculiarity of this metal is the
rather slow screening of the interactions with increasing
distance between the ions. For a correct description of
the phonon DOS one needs to take into account the elas-
tic forces between at least six nearest neighboring atoms
[34].
The existing EAM theories of Nb do not describe suf-

ficiently well atomic forces for so large a spatial inter-
val. Therefore we did not use them in a description
of the linear dynamics. Instead, for this purpose the
force constants for 6 nearest neighbors given in Ref. [34]
were used. Thus, for Nb we did not use the single pair-
potential for MD simulations (as we did it for Ni). In-
stead we used 6 different potentials (more precisely, we
used 6 different forces) for every 6 nearest atom pairs.
The EAM potential of Ref. [35] was used only to find

the anharmonic forces, namely, the 3 nonlinear forces for
3 nearest atoms. Corresponding to this EAM pair po-
tential V (r) as well as its approximation by the fourth-
order polynomial are presented in Fig. 7 (corresponding

parameters equal K2 ≈ 1.5 eV/Å
2
, K3 ≈ −6.2 eV/Å

3
,

K4 ≈ 65.6 eV/Å
4
; the root-mean-square deviation for

the polynomial approximation in the interval between
2.82 and 2.97 Å is 10−5 eV). This V (r) equals to the
first term of EAM given by Eq. (3) in Ref. [35] plus the
linear at r0 part of the second term in this equation (r0
is the equilibrium distance of the nearest atoms at given
temperature). The anharmonic forces were found as fol-
lows: for each of 3 nearest atom pairs we deleted from the
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FIG. 6: The same time dependence ūn(t) = rn(t) − r0 of
the vibration of the central (n=0, solid line) and third (n=3,
dashed line) bonds in Ni at long times as shown in Fig. 3. The
initial shifts of the 36 central atoms (8 atoms in the central
chain and 7 atoms in every nearest 4 chains) more closely
described by the correct ILM shape. The starting values of
the shifts are obtained by averaging over a modulation period
in Fig. 3. Since the ILM shape is more closely approximated
the modulation amplitude is greatly reduced as compared to
Fig. 3.

given in Fig. 7 potential the linear and quadratic terms
at equilibrium distance. Then we added to each of these
nonlinear forces the corresponding linear force given by
Ref. [34].
The same source was used to obtain the remaining

three linear forces between the atom pairs at larger dis-
tances. The justification for this approximation is that
the relative change in distance of the fourth, fifth and
sixth atom-pairs for the ILMs with the maximum am-
plitude ∼ 0.1 Å is few percent. For such small relative
shifts and large distances the anharmonic forces are neg-
ligibly small. Therefore for a description of ILMs with
small amplitude, one may use the known elastic forces
for six nearest neighbors [34] and to take into account
the anharmonic forces only for three nearest neighbors.
Using the algorithm described above, we performed

MD simulations of ILMs in Nb for room temperature
293 K (equilibrium first neighbor distance r0=2.86 Å,
longitudinal velocity of sound vl =5380 m/sec) and high
temperature 1773 K (r0= 2.89 Å, vl = 5073 m/sec). For
both temperatures κ̃ > 1, i.e. the derived condition of an
ILM with frequency above the phonon spectrum is ful-
filled. The calculations at room temperature were made
for a cluster containing 2 x 40 x 40 x 40 moving atoms
(altogether 128000 atoms). The calculations at high tem-
perature were made for a cluster elongated in the [111]

2 2.5 3 3.5 4 4.5
r (A)

1.2

1.6

2

2.4

2.8

3.2

V
(r

) 
 (

eV
)

2.7 2.8 2.9 3 3.1

0.95

1

1.05

FIG. 7: The pair potential V (r) of Nb (solid line) and its
approximation by the fourth-order polynomial (dashed line).
Insert shows an expanded view.

direction with C3h symmetry (a hexagonal prism) con-
taining 18760 moving atoms. To minimize the calcula-
tion time, the positions and velocities of 1/6 of the atoms,
situated in one of the six identical segments of the prism
were calculated at every time step; the positions and ve-
locities of all other atoms were found from the symmetry
conditions.

For both sets of lattice parameters we have found even
ILMs in the [111] direction of vibrations of the central
atoms with frequencies above the top of the phonon spec-
trum. These ILMs are fully stable: no decay of their
amplitude was observed over the last 500 periods of vi-
brations. A small periodic modulation of the amplitude,
analogous to Ni was also observed, presumably caused
by the appearance of a linear local mode. The spectra
of ILMs for two different amplitudes of vibrations of the
central bond are presented in Fig. 8 and 9 (together with
the phonon spectrum). As expected the frequency of the
ILM increases with amplitude.

To check the specificity of the above procedure we also
performed calculations of ILMs in Nb taking into account
the full potential given in Ref. [35] (including the volume-
dependent second term in Eq. (10)). At high tempera-
tures stable ILMs do exist for this model. In addition, we
found that the formation of ILMs in Nb is favored by the
expansion of the Nb lattice with increasing temperature.

On the other hand, based on the relations presented
here, we have found that at least in some other metals
(e.g. in Al and Cu) ILMs of the type described here
should not exist. Indeed the values of the parameter κ̃
in these metals at room temperature are found to be 0.3



8

0 2 4

0.2

0.4

0.6

do
s 

(a
rb

. u
ni

ts
)

T=293 K

ω (10  rad/sec)
13

FIG. 8: Phonon DOS and spectra of even ILMs in Nb at room
temperature 293 K for two amplitudes (0.25 Å and 0.3 Å) of
vibrations of the central bond. Solid lines: ILMs, dashed line:
phonon spectrum of Nb.

(Al) and 0.38 (Cu) (using the potentials given in Ref.
[32]). At 800 K these parameters correspondingly equal
0.1 and 0.42. All these values are much smaller than the
border value 1, which makes it unlikely that ILMs of the
type described here can appear in these metals.

IV. CONCLUSION

To sum up we performed an analytic and numerical
study of nonlinear dynamics of Ni and Nb and have found
that intrinsic localized modes may exist in these metals
with frequencies above the top of the phonon bands. The
physical reason for this is the relatively large value of
even anharmonicities as compared to odd ones produced
by the free electron screening of the atomic interactions.
As a result, in Ni and Nb (and, presumably in some other
metals), the ion-ion attractive force, at intermediate dis-
tances is enhanced resulting in the amplification of even
anharmonicities for the two-body potentials. This effect
counteracts the underlying softening associated with the
bare potentials with moderate increase of vibrational am-
plitudes to permit the existence of ILMs above the top
of the phonon spectrum. In our MD simulations of non-
linear dynamics of Ni and Nb we have clearly observed
ILM of this type. In addition we also observed the linear

local modes associated with an ILM; modes of this-type
have been recently predicted and observed numerically
for chains in Ref. [33]. According to our calculations an
intrinsic localized mode in Ni or in Nb may have a rather
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FIG. 9: Phonon DOS and spectra of even ILMs in Nb at a
high temperature (1773 K) for two amplitudes (0.085 Å and
0.12 Å) of vibrations of the central bond. Solid lines: ILMs,
dashed line: phonon spectrum of Nb.

small amplitude and hence a small energy of formation.
We expect that in these metals ILMs may be observed
as a high frequency features in the phonon spectrum at
high temperatures. Finally we note that the precision of
the existing EAM models of Nb is rather low [35, 36];
however, the EAM models of Ni are usually considered
to be quite precise [31]. Therefore the conclusions pre-
sented here about ILMs in Ni are expected to be more
reliable than those about ILMs in Nb.
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