
Proc. Natl. Acad. Sci. USA
Vol. 86, pp. 8614-8617, November 1989
Physics

Cold fusion in metals
(deuterons/palladium)

R. H. PARMENTERTt AND WILLIS E. LAMB, JR.t§
tDepartment of Physics, tArizona Research Laboratories, and §Optical Sciences Center, University of Arizona, Tucson, AZ 85721

Contributed by Willis E. Lamb, Jr., July 31, 1989

ABSTRACT A simple model of a metal containing deuter-
ons is considered. The example of palladium is treated in detail.
It is shown that the effect of screening of Coulomb fields by
conduction electrons is sufficient to allow deuteron pairs to fuse
at rates of 10-3° sec- , seven orders of magnitude smaller than
those reported by Jones et al. [Jones, S. E., Palmer, E. P.,
Czirr, J. B., Decker, D. L., Jensen, G. L., Thorne, J. M.,
Taylor, S. F. & Rafelski, J. (1989) Nature (London) 388, 737-
740].

It might be objected that 10 conduction electrons per atom
is too many, 2 or 4 might be more appropriate, these being the
two accepted valences of Pd. But with these smaller numbers,
we would obtain unreasonably large values of EF, especially
for a band built primarily out of d electrons. MacDonald et al.
(7) have calculated a 4d bandwidth in Pd of 6.26 eV.
The density of conduction electrons is

no = 4 x 10/(3.879 A)3 = 0.68533 A-3. [3]

The recent reports of cold fusion in metals, both at high levels
(1) and at much lower levels (2), have stimulated great
interest and considerable skepticism (3, 4). In this note, we
propose a simple model which suggests that cold fusion of
deuteron pairs occurs at a rate of 10-30 sec-1, 7 powers of 10
smaller than the lower level (2) but 17 orders of magnitude
larger than the upper limit of ref. 4. The model makes use of
the fact that screening of Coulomb fields in a metal, a
collective effect involving many conduction electrons, may
be much more effective than the screening of Coulomb fields
by valence electrons in a molecule.
We consider the possibility of cold fusion of deuterons in

palladium metal, which has a face-centered-cubic lattice with
cube edge L = 3.879 A. Any four nearest-neighbor Pd atoms
form the vertices of a regular tetrahedron whose edge length
is 1/2½ L (= 2.743 A). The center of the tetrahedron is ¼/12
f3L (= 0.5599 A) distant from any of its faces, and 1/43L
(= 1.6797 A) from any vertex. There are two such cages for
every Pd atom. In addition, there is a larger octahedral cage for
every Pd atom. We will first consider the possibility of
deuterons being trapped in such a cage.

In palladium metal, the outermost 10 4d electrons furnish
the metallic binding. We make the approximation of treating
all 10 such electrons per atom on the same footing, consid-
ering them to be conduction electrons with some effective
mass. According to the jellium model of a metal (5), the Fermi
energy EF is related to the longitudinal velocity of sound s by
the relation

EF = -'12MS , [1]

where M is the atomic mass per conduction electron. For s,
we take a weighted rms average of the velocities (6) associ-
ated with the three symmetry directions, making use of the
fact that there are three (100) directions, six (110) directions,
and four (111) directions. Thus

S = {p'1[c1j + '4/3(c12 + 2c44)]}1/2 = 7.0781 x 105 cm/sec,

where p = 11.40 g/cm3 is the mass density and the cij are the
elastic constants. We now have

In the free-electron model of a metal, EF = (P4/2m*), no =
(3r2) 1(PF/Ii)3, PF being the Fermi momentum and m* the
effective mass. We then have

(m*/m) = '/2(3T2)213(noao)2 3(EO/EF) = 3.3958. [4]

Here m is the electronic mass, ao is the Bohr radius, and the
Hartree energy Eo is

Eo= (h2/ma2) = (e2/ao) = 27.21 eV.

The Debye screening length in a metal, AD, obtained by
linearizing the Thomas-Fermi method (for a comprehensive
review of the Thomas-Fermi method, see ref. 8), is

AD = (EF/6lTnoe2)112 = 0.21183 A. [5]

A deuteron will experience a potential energy minimum at
the center of a trap. Assuming a uniform conduction electron
density no, the potential energy in the vicinity of the center
will be U1 = ½/2Kr2, where the effective spring constant

K = 41Ainoe2 = 2/9(EF/AD) = 41.441 eV/A2. [6]

The deuteron (mass md) will oscillate with a characteristic
frequency

WO = (K/md)1/2 = 4.4560 x 1014 sec1,
and the corresponding ground-state classical turning radius
will be

t = (hcWo/IK)"'2 = 0.08413 A.

We have been considering a bare deuteron in the trap.
What about a neutral deuterium atom? For an electron to bind
to the deuteron, it is necessary (9) that 2(AD,/at)) > 1.6799,
clearly not satisfied here, where (AD/at)) = 0.3998.
We are particularly interested in the situation where there

are two deuterons in a trap. The Hamiltonian for this problem
separates in terms of the center-of-mass coordinate R = l/X(r
+ r2) and the relative coordinate r = (rh - r2). We have

EF = 8.3473 eV.

(1 eV = 1.60 x 10-'9 J.)

[2] H = HR + Hr, HR = -(h2/4Md)VR + KR2,

Hr = -(h2/md)V + ¼/4Kr2 + Veff(r),

Abbreviations: EF, Fermi energy; no, conduction electron density;
at, Bohr radius; E0, Hartree energy; AD, Debye screening length; w(0,
characteristic frequency; TFM, Thomas-Fermi-Mott.
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where Veff(r) is the effective interaction between two deu-
terons in the presence of screening conduction electrons. The
major problem of this paper is to calculate Veff.

First we consider the additional potential resulting from the
presence of a single deuteron in the metal. To this end, we
make use of a modification of the Thomas-Fermi equation,
which Mott (10) used to treat the potential resulting from a
localized impurity in a metal.l This equation, which we refer
to as the TFM equation, is

V2V(r) = -41re2[n(r) - no]

n(r*) = (8i,7/3h3)(2m*)3/2[EF - V(r)]3/2 [9]

no = (8 7r/3h')(2m*EF)3/2.
Here h is the Planck constant, 6.63 x 10-M4 J-sec. In the case
we are considering, of spherical symmetry, it is convenient to
express distances and energies in Thomas-Fermi units, dis-
tance measured in units of

aF = 1/2(3/41r)2/3 (m/m*)ao = 0.88534(m/m*)ao

= 0.13797 A,

energy in units of

(ao/aF)Eo = 104.3671 eV.

We write

V(r) = -e2r-14(x), x (r/aF). [10]

Table 1. Parameters for the analytic representations of O and 4;
Z = 1 case
i a; Ai Ci Di
1 0.651324 0.6485306 0.3521383 0.1369708
2 1.261690 0.0924173 0.1542122 0.0053880
3 2.234930 0.2000000 0.3742368 0.0446986
4 5.602250 0.0459964 0.0933864 0.0059263
5 29.910950 0.0130557 0.0260263 0.0025492

that the one-electron potential associated with the pair is
simply the sum of the potentials associated with each deu-
teron by itself-i.e.,

V(r) = V1(r) + V16 -R),

V1('r) = -r-'4(r). [13]

(We are still measuring distance and energy in Thomas-Fermi
units.) Here we have one deuteron at r = 0, the other at
r= R. This approximation, if anything, will underestimate
the screening when the two deuterons are close. We will
return to this point later. The electrostatic interaction energy
of the two screened deuterons can be broken into three
pieces. The Coulomb interaction energy of the screening
electrons is

1' f {V(r) + r-1 + Ir-R1-1} {n(r) - no}d3r,

where

The TFM equation becomes

(d/dx)24) = X-112(, + DX)3-2 D312x, [11]

where D = 0.079980 is the Fermi energy expressed in these
new energy units.

Starting at x = 0 and subject to the boundary conditions
O(0) = 1, O'(0) = -m, this equation was integrated numer-
ically out to large values of x . The constant m was chosen
such that O(x) vanishes as x -* c. A variant of the Noumerov
method (11) for integrating linear second-order differential
equations was found to be quite efficient. At large distances,
O(x) becomes proportional to exp[-(aF/AD)xI. It is important
to point out that the proportionality factor is less than one. At
large distances, it appears that a charge smaller than unit
charge is being screened out by the conduction electrons.

It is convenient for what follows that we have an accurate
analytic approximation to O(x). With an error of less than
0.2%, we can approximate q6(x) by the expression

5

Oapp(X) = : Aie-ir,
i=l

[12]

where Ai and ai are listed in Table 1. This expression satisfies
boundary conditions at x = 0 and x -* oo.
Thus far, we have considered a single deuteron. Now

consider a pair of deuterons. We make the approximation

n(r) - no = -(4gr)

The factor of 1/2 is to correct for double counting. The
Coulomb interaction between deuteron nuclei and screening
electrons is

- f {r- + r -RI-'l} {n(r) - no}d3r.

The Coulomb interaction between the deuteron nuclei is
+R-1. Thus the total electrostatic interaction energy is

VE(R) = +R- Il - 2, [14]

where, after some algebra,

1, (4r)-l f r-2[1 + 0(r)]O"(r)d'r

=1 dr[1 + 4)(r)]4)"(r),

o

[15]

I2 (4iT)-' (rr')-'[1 + 0(r)],"(r')d r

(2R)-f dr[l + 0(r)][O'(r + R) - 0'(r - R)]. [16]

(We are using the notation r' r - R.) '1, being a constant
independent of R, may be dropped by redefining the zero

11t should be emphasized that the Thomas-Fermi approach is more
accurate for determining the screening of a deuteron in a metal,
where many electrons make partial contributions, than is the case
for an isolated neutral deuterium atom, where only one electron is
involved.
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of energy. Making use of the analytic expression for ¢(r), we
get

VE(R) = +R-1 - I2 = R-1+(R),

5

¢(R)-=I(Ci-DiR)e-i1
i=l

Ci Ai(l - V12Bi),

5

Bi = 2Aj(aj2 + a?)(aj2-a?)-',
jHi

Di= 1/2pa ,Al?.

[17]

[18]

[19]

[20]

[21]

Table 2. Parameters for the analytic representations of 4 and 4;
Z = 2 case
i ai Ai Ci Di
1 0.651324 0.5315000 0.2166725 0.0919970
2 1.547610 0.2470066 0.3481617 0.0472116
3 2.922640 0.1602994 0.3122658 0.0375500
4 7.906130 0.0546916 0.1099179 0.0118243
5 61.319420 0.0065024 0.0129821 0.0012%3

We have

27rrq = K f [U(x)-
K n

K= 2[(Mdlm)(aFla)]112 = 61.868, [26]

Note that Yi Ci = 1. The values of Ci and Di are listed in Table
1. It can be seen that C1 < Al, whereas Ci > Ai for i - 2. This
means that VE(r) is much more sharply peaked at the origin
than is Vl(r); i.e., the barrier of the former is narrower. VE(r)
is the desired Veff(r) of Eq. 8. It may be considered the
interaction between two identical composite particles, our
composite particle being a bare deuteron plus the associated
screening cloud of conduction electrons.
The total effective potential for a deuteron pair in a trap,

expressed in Thomas-Fermi units, is

U(x) = X'4(X) + K X2, [22]

where K'= 0.0018896. This has a minimum atx = 2.7331. The
characteristic frequency of zero-point oscillations about this
minimum is co = 1.1545 x 1015 sec', and the energy of this
state

ET = Umin + 1/2hwo = 0.018210.

The inner classical turning point of this state, xc, is close to
x = 2.27.
The probability per unit time that two deuterons in a trap

will fuse is given by (12)

A = AJq(R,)12, [23]

where qi(Rn) is deuteron-deuteron wave function at a sepa-
ration distance Rn equal to the range of the nuclear interac-
tion. We take Rn = 3.22 F, twice the experimentally observed
rms radius of the a particle. The constant A is

A = S(O)(7racc)-1 = 1.478 x 10-16 cm3/sec,

where a is the fine structure constant, c the velocity of light,
,4 the reduced mass, and S(0) = 106 keV-barn (13) is the low
energy limit of the nuclear S-factor for d-d fusion (1 barn =
10-28 M2). Using the quantum mechanical WKB (Wentzel-
Kramers-Brillouin) approximation,

|i4(Rn)I2 = Fe-2X71 [24]
where exp(-27rq) is the Gamow penetration factor and

F = (16 7r3/2) -1 (k2/k1)2(kRn)[1 - exp(-kRn)]2Rn 3. [25]

Here we are defining k1 and k2 such that (h2k2/21i) = U(R,),
(h2k2/2/i) = Ali2hw, so that

(kRn) = [(tL/m)(Rn/ao)1
(k2/kl) = [('/2h"1/Eo)(Rn/ao)]112

We have approximated U(x) by U(Rn) for x < Rn.

we find 27rn = 104.796, F = 2.269 x 1028 cm-3, so that

A = 1.0304 x 1033 sec 1. [27]

As already mentioned, the approximation embodied in Eq.
22 will tend to underestimate the screening when the two
deuterons are close. Electrons much farther away from the
origin than the two deuterons will find themselves in the
screened field of an impurity of charge Z = 2. This suggests
the alternative approach of letting V1(r) be one-half the
solution to the TFM equation for a single a particle, rather
than the solution for a single deuteron. Such an approxima-
tion, if anything, probably slightly overestimates the screen-
ing when the two deuterons are well separated. However, it
is the behavior when the deuterons are close together that
plays a crucial role in determining the size of the Gamow
factor.
We have solved Eq. 11 for the case Z = 2, and we have

analytically fitted one-half of the resultant +(x) in the same
manner as before. The various parameters are listed in Table
2. The resultant U(x) has a minimum at x = 2.5381, the
classical turning point is close to xc = 2.08, the characteristic
frequency is t0 = 1.1638 x 1015 sec', and the energy is ET =
0.016378. We find 27nT = 97.232, F = 2.287 x 1028 cm-3, so
that the pair fusion rate is

A = 2.003 x 10-30 sec'1. [281
This number is smaller by a factor of 107 than the observa-
tions of Jones et al. (2). It should be mentioned that they were
using titanium, not palladium. Eq. 28 is in agreement with the
calculations of Kondo (14), who determined the parameters
of his theory by a somewhat different procedure.

Leggett and Baym (4) claim that the maximum possible
value of A is 3 x 10-41 sec1. It may or may not be
coincidental that we calculate A = 1.27 x 10-47 sec1 by
disregarding any harmonic oscillator potential (i.e., setting K
= 0) and by keeping only the asymptotic screening at large
distances (i.e., by making the only nonvanishing A, be Al =
1).
We recognize that, rather than using either of the two

approximations involving Eq. 13, it would be preferable to
solve Eq. 9 directly for the case of two deuterons separated
by a distance R, and from the results calculate VE(R). The
numerical difficulties involved are considerable.
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