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ABSTRACT

An extended Lorentz invariant formulation of Maxwell's equations is
presented which both includes time dependent and steady-state solutions.
In this approach the charge and current densities are treated as intrinsic
properties of the electromagnetic field itself, in vacuo.

Two main results follow from such an approach. First, a longitudinal
electric wave is predicted to propagate in vacuo. Second, an axially
symmetric steady state can be outlined in which "self-confined" electro-
magnetic radiation circulates in closed orbits around the axis of symmetry.
For this state values are obtained of the charge, the spin, and the product
between magnetic moment and mass which are of the same order of magnitude
as those observed for some elementary particles such as the proton and
electron. Consequently, this may provide certain areas of conventional
elementary particle analysis with some complementary ideas. Whether the
predicted new phenomena also correspond to physical realities is so far
an open question which requires further investigation.



1. Introduction

The present paper has its origin in some unpublished ideas by the

author in the 1960's, in attempts to explain particles with a rest mass

as various eigenmodes of "self-confined" eiectromaanetic relation. These

ideas have some features in common with a theory on oscillating cavity

isc
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modes established by Jennison and Drinkwater and Jennison ' , as well
as with an analysis on the electron presented by Yadava

In this paper an extended Lorentz invariant formulation of Maxwell's

equations is presented in Section 2 which does not only include time

dependent phenomena but also steady-state solutions. In the approach to

be described here the charge and current densities are treated as intrinsic

properties of the electromagnetic field itself, in vacuo.

There are two main results deduced from this approach. First, a

longitudinal electric wave is predicted as shown in Section 3. Second,

an axially symmetric steady solution is presented in Section 4, giving a

number of relations between particle charge, mass, magnetic moment, and

spin. These lead to data being of the same order of magnitude as the data

observed for some particles such as the proton and electron.



2. Basic Eouations and their Extended Formulation

The present theory is based on Maxwell's equations

curlB/u = j + •-- 3E/3t (1)

curlE = - •B/3t (2)

divE = /-.,. (3)

where SI units are used throughout this paper, E and B are the electric and
magnetic fields, j is the current density, and a the electric charge density.
The divergence of eq. (1) leads to eq. (3) and the divergence of eq. (2) results
in divB = 0. Conventional interpretation of the densities o and j implies
that these quantities are due to electrically charged particles and their
motion. Such an interpretation implies that - and j_ vanish in vacuo where
there only remain transverse electromagnetic waves, propagating at the velocity
c = (l/.o 0 ) 1 / 2 of light.

Here the interpretation of J and j_ will be extended to include
intrinsic properties of the electromagnetic field in vacuo. Thus, eq. (3) is
now understood also to include a situation where the divergence of the electric
field by itself produces a space charge. Then, the motion of such a space charge
should generate an electric current density

(4)

where V is an equivalent so far unspecified velocity in three-space. To
preserve the Lorentz invariance of the system (l)-(4), the four-dinensional
current density J '- (j_, ice) = o(V, ic) has to becone a four-vector also in
this extended formulation, i.e. J has to transform like coordinate differences
(Ax,Ay,iz, icAt) in four-space. This results in the requirement that



j 2 - c2:2 = c2(V2-c2) = const. = 0 V2 = V2 = c2 (5)

wi.sro the physically relevant condition is imposed for which 2 = 0 when

• = 0. This condition is analogous to a choice of the origin in four-space
2 2 2

such as to make x +y +z = 0 when t=0. In this way eqs. (l)-(5) provide an

extended Lorentz invariant formulation of Maxwell's equations which includes

all earlier treated electromagnetic phenomena, but also contains a new class

of time dependent and steady solutions. The latter class will be illustrated

by some examples given in the following sections.

According to conventional electromagnetic theory, the present equations

result in

B = curl A (6)

E = -70 - ,,A/3t (7)

Poynting's theorem further yields the total electromagnetic field energy

Wf = do/2) fff (E2 + c2B2)dxdydz (8)



3. Plane Field Geometry

In plane geometry, where all quantities become functions of (x,t) in a

frame (x,y,z), the basic equations (l)-(4) reduce to Bx = 0 and

V (3Ev/3x) + 3Ey/3t = Q (9)

- c2(3Bz/3x) = Vy(3Ex/5x) + 3E /3t (10)

C2(3B /äx) = Vz(3Ex/5x) + ål^ht (11)

oBy/3t (12)

)Ev/äx = -3Bz/3t (13)

3.1. An Example on Steady Equilibrium

In their extended form eqs. (l)-(5) also allow for steady solutions.

A simple illustration is given by V_ = (0,± c, 0 ) , Ê  = (E, 0, 0) and

S = (0, 0, B) in a geometry where the fields £ and ]J are symmetric

or antisymmetric with respect to the plane x = 0. Then equations (9)-(13)

lead to

E(x) = ± cB(x) (14)

This solution can be interpreted as an equilibrium where the Lorentz force

j x B = r.n(divE)V x B balances the magnetic field "pressure aradient"

represented by (curlB) x B/uQ = -7(B /2u ).



3.2. Plane Waves

We next consider plane waves where all field quantities vary as

exp[i( vt + kx)]. Among the possible solutions of eqs. (9)-(13) the following

are used here as illustrations:

(i) When E = 0 , the set of eqs. (9)-(13) reduces to the conventional
X

equations for transverse electromagnetic waves in vacuo.

(ii) When E f 0, and we limit ourselves to the particular case \/ = (+c, 0, 0 ) ,

the set of eqs. (10)-(13) becomes decoupled from eq. (9). The former set

still describes the conventional transverse electromagnetic mode. In

addition to this, eq. (9) leads to the dispersion relation u = ±ck for a

purely longitudinal wave which only includes the electric field component

E and has no magnetic field components.That the phase velocity of this

wave is equal to the velocity c of light is consistent with the assumption

of Lorentz invariance made in Section 2. An attempt to understand this

type of wave can be based on physical arguments being analogous to those

which are often used to explain the origin of the transverse wave from

the acceleration of an electric point charge. First a homogeneous electric

field E = -d0 /dx = const, is assumed to be directed along x in a plane

static configuration. Then a sudden change of the potential 0(x) is assumed

to take place at some plane x = x,. This would result in a plane disturb-

ance of trie potential pattern, propagating at a finite velocity c along

x. Therefore there must arise a "kink" on this pattern, leading to
2 23 0/3x f 0 and to an electric space charge a at the wave front. In

this connection the changes in the potential at x, and the corresponding

redistribution of electric charge must take place in a way which does not

at the same time produce current components being able to generate a

transverse wave mode.



4. Axially Symmetric Steady State

Turning now to the axially symmetric steady state, a cylindrical

frame (r,tp, z) of reference is chosen which is at rest with respect to

the field configuration and has z along the axis of symmetry, with the

point (r=0, z=0) being chosen in the plane of symmetry. The analysis is

further restricted to poloidal electric and magnetic fields,

E = (E .O.EJ = -?0 and B = (B.O.Bj = curlA, where A = (0,A,0).

According to eqs.(l)-(5) we then have V̂  = (0,+c,0) and

D(rtf) + (0/r) = ±cD(rA) (15)

where

D = (32/3r2)-(l/r)O/3r) + (32/3z2) (16)

Eqs, (15) and (16) show that, for a given magnetic field configuration

determined by A(r,z), there is a corresponding electric field configuration

determined by the solution <t(r,z) of eq. (15), and vice versa. The relation

(14) is an example of this balance in plane geometry which can be considered

as a limiting case of vanishing curvature for which the operator (16)
2 2turns into the form 3 /3x .

In the configuration assumed here, the velocity V_ and the current

density j_ become directed along ip, and

j = i ca (17)

according to eqs. (4) and (5). This can be imagined as a kind of

"self-confined" electromagnetic radiation which circulates in closed

orbits around the axis of symmetry at the velocity of light.



In the same nodel it is further assumed that o and j_ decrease at
increasing large distance from the origin (r=0, 2=0). Thus, o and j_
should have a negligible influence on eqs. (l)-(3) at points being outside
of a closed surface S which surrounds the origin. The surface S is
defined in the frame of the steady configuration and is not rigid. Therefore
the definition of S does not contradict the Lorentz invariance. In the
region outside of S the basic equations (1) and (2) reduce to those
which determine the conventional electrostatic and magnetostatic fields.

We finally use eq. (16) in a crude estimate of the relative magnitude
2 2of E and B in the region inside of S. Thus, by replacing Ê and B_

(or 0 and A) by their maximum values inside of S, and by replacing the
derivatives by expressions including the corresponding characteristic lengths,
the result becomes

E2/c2B2 = kf (inside S) (18)

where k, is a dimensionless constant of order unity. This result is
analogous to that of eq. (14) in the plane case.

4.1. Application to Elemantary Particle Analysis

There is no ambition here to replace the conventional theory on
elementary particles by the present analysis. The purpose of the latter is
merely to provide some complementary ideas which could possibly apply to
certain areas of elementary particle physics. In terms of the present
analysis, a steady equilibrium should have the form of "self-confined
electromagnetic radiation" which bends its own paths of propagation into
closed orbits. The energy flux would then circulate around the axis of
symmetry. In a general case the equilibrium may include more complicated
field geometries than those considered here, as well as effects from
self-gravity and "centrifugal" forces due to the circulatory energy.

We now turn to first order estimates of some of the parameters of a
particle which would result from the steady state solution obtained here.



The average radius R of the surface S is defined in the frame
where the configuration is at rest. This radius should not be interpreted
as a physical particle radius, but merely be considered as a mathematical
auxiliary tool of the analysis. The field configuration is namely continuous
in space and may even have a form for which the definition of a particle
radius does not make sense. This implies that only the final results obtained
later in this paper, in which the radius R has been eliminated, should
become suitable for physical interpretation and comparison with measured
data.

Introducing spherical polar coordinates (r,R,ip),the electric charge of

the particle becomes

'-r/ZcrSinedGdr (19)

and the magnetic moment

M = + -Z/car3(sin9)2d9dr (20)
0 oo

according to eq. (17). Consequently eqs. (19) and (20) combine to

(21)

where k,, is a dimensionless constant of order unity.

When estimating the particle rest mass m^, Einstein's relation
2k'f = ra c is further applied in combination with expression (8). Here the

fields E and B are estimated by means of eq. (18) in the region inside
2of S. In the region outside of S, there are static fields Er = q o/4^cr

Br = u o ' V
c o s ° ) / 2 7 T r 3 and B9 = VQMo(sin0)/4Tir

3. Taking the integral (8)
over entire space, eqs. (3) and (18) then yield
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in a f i r s t approximation, where k is a dimensionless constant of order

u n i t y .

The azitiuthally circulating energy flux corresponds to an angular

momentum (spin) which can be estimated in an analogous way to

( 2 3)

where k is a dimensionless constant of order unity.

On the self-confined circulating radiation we finally impose the

periodicity condition

2rk,R - nc/; (24)

where v is the frequency of the n-th state of an equivalent electromagne-

tic oscillator having the energy Ŵ . = nhv, h denotes the Planck constant,

and k is a dimensionless constant of order unity. Combination with
2the expression W, = m c yields

R = n2h/2TTkvmQc (25)

4.2. Comparison with Some Elementary Particle Data

The conceptual difficulties in defining R as a particle radius,and

the uncertainties in the experimental data of the measured particle radius

in certain cases such as that of the electron, suggest that the results of

eqs. (21)-(23) and (25) are rearranged in a way being independent of R.
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The result then becomes

q - nlh/2^ ek k ) l / 2 (26)
o o v m

(27)

= n2ksh/2-kv (28)

The proton and electron data given by -ermi and Schiff among others are
_pc o ~ —97

now taken as examples where M = 1 . 4 1 xlO Am and m = 1.67 x 10 kq
2 23 -> 23i

for the proton, M = 0.93 x 10 Am'" and m = 9.11 x 10 kg for the electron,

and s = h(3/16:-) 1 / 2 for both these particles. Putting n = 1, eqs. (26)-(28)

then yield (k k ) 1 / 2 -• 3.3 and k /k -il.6 for both particles, kM/k 0.8
'.; ni v s M v

for the proton, and k,,/k 0.5 for the electron. Consequently, the values

of q , lira and s given by eqs. (26)-(28) can be made to agree with the

measured data for coefficients kv, k , k,, and k which all turn out to be

rather close to unity, as assumed in the present theoretical model.

It has finally to be pointed out that the present system of eqs. (21)-(28)

is not fully determined, in the sense that the dimensionless coefficients

kM, k , k and k do not always have to be of order unity, e.g. in cases where

the fields E and B have strongly inhomogeneous profiles in space. As an

example, the values of q , M , m. and s can be kept close to those observed

for the electron, even when the "radius" R becomes very small. This is possible

by keeping (k k ), (k,/k ) and (kM/kv) constant and letting kx approach

values being much larger than unity.
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5. Discussion and Conclusions

The present Lorentz invariant extended formulation of Maxwell's equations

both includes earlier treated electromagnetic phenomena and leads to a new

class of time deoendent and steady-state phenomena. Here the following should

be especially mentioned:

(i) A longitudinal purely electric wave in vacuo is predicted to arise, in

addition to the transverse electromagnetic wave. The ways by which the

existence of the former wave could be verified are not straight-forward,

however, because there are non-trivial problems how to generate and detect

such a wave, and how to separate it from the transverse wave.

(ii) Steady states in vacuo are predicted to be formed, where the charge density

becomes an intrinsic property of the electric field itself. This makes

steady states possible in which electromagnetic radiation becomes subject

to a kind of self-confinement. Such states, if they exist, could provide

elementary particle analysis with sone complementary features. Thus, an

estimation of the field quantities in the steady states described in this

paper leads to values of the particle charge, of the product between the

particle magnetic moment and mass, and of the spin, being of the same order

of magnitude as those observed for some particles such as the proton and

electron.

At this stage is not clear whether or not the existence of one of the

predicted phenomena, (i) or (ii), depends on the existence of the other. Thus,

it cannot for certain be excluded that the extended formulation given by

eqs. (4) and (5) applies only to a steady state and not to plane waves, or

vice versa.

Stockholm, October 23, 1985
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