The Production Of Helium In Cold Fusion Experiments: Research at NAWCWD, China Lake, California (A New Look At The Experimental Data)

Dr. Melvin H. Miles*

(Ph.D. Physical Chemistry, University of Utah)

email: mhmiles1937@gmail.com

2019 LANR/CF Colloquium At MIT

March 23-24, 2019

Massachusetts Institute of Technology

Cambridge, MA

*Adjunct Professor at University of LaVerne (LaVerne, California), Visiting Professor at Dixie State University (St. George, Utah)

Major Goals For This Presentation

- <u>Derive</u> Relationship between Experimental Excess Power and Cell Current and Theoretical Amounts of Helium-4 in Parts-per-billion (ppb).
- Present Theoretical Amounts of Helium-4 Expected Based on the Experimental Excess Power and Cell Current With the Assumption of the Fusion Reaction: $D + D \rightarrow He-4 + 23.8465 \text{ MeV}$ (Lattice).
- Prove That Atmospheric He-4 Diffusion Into the Glass Collection Flasks Was Not a Factor in the China Lake Experiments.
- <u>Confirm</u> The Calorimetric Excess Power Results By the Helium-4 Measurements.
- Show That Other Possible Fusion Reactions Do Not Fit as Well With the Experimental
- Data (Predict Higher He-4 Levels).
- <u>Establish</u> That Excess Power and Helium-4 Production in Cold Fusion Experiments Are Related Based on 3 Different Sets of China Lake Experiments.

China Lake Calorimetry (1989 - 1995)

- Cells A, B, C, D Nearly Identical
- Small Glass Test Tubes / 18.0 mL Electrolyte
- Heat Integrator / Outer Water Jacket
- Insulation ($K_C \approx 0.140 \text{ WK}^{-1}$)

Example For Calorimetric Measurements And Gas Collection Dates (J. Electroanal. Chem., Vol. 346, 1993, p. 104)

- Calorimetric Cells A and B
- $X = Power Out / Electrolysis Power = k \Delta T / (E E_H) I$
- (Two Thermistors Used in each Cell)

Fig. 3. Calorimetric measurements and effluent gas collection dates in $D_2O + LiOD$ for cell A (\bigcirc, \square) and cell B (\bullet, \square) .

Theoretical Calculations Of Expected Helium-4 Amounts (Based on Experimental Cell Current and Excess Power)

$$D + D \rightarrow He-4 + 23.85 \text{ MeV (Lattice)}$$

$$\Delta E = \Delta mc^2 = 23.846478 \text{ MeV}$$

$$[(23.85 \times 10^6 \text{ eV/He-4})(1.602 \times 10^{-19} \text{ J/eV})]^{-1} = 2.617 \times 10^{11} \text{ He-4/W.s}$$
He-4 Production (J = W.s)

Theoretical Rate of He-4 Production

$$R_1 = (2.617 \times 10^{11} \text{ He-4 / W.s}) [P_X \text{ in W}]$$

Theoretical Rate of D₂ + O₂ Molecules Produced By Electrolysis

$$R_2 = (0.75 \text{ I/F})N_A \qquad \text{(for I in Amps)}$$

Helium-4 Amount

Ratio =
$$R_1 / R_2 = (He-4 \text{ atoms } / (D_2 + O_2) \text{ molecules})$$

He-4 (ppb) =
$$R_1 / R_2 = 55.91 (P_X / I)$$
 in ppb

NOTE: He-4 = 0 ppb IF $P_X = 0$ (See CalTech and MIT publications).

China Lake Results In 1990 / Helium-4 Measured At University of Texas Excess Power and Helium-4

Theoretical He-4 (ppb) = $55.91 (P_X / I)$

Sample	$P_{x}(W)$	Theoretical He-4 (ppb) ^c	Measured He-4
12/14/90-A	0.52^{a}	44.1	Large Peak
10/21/90-B	0.46	48.7	Large Peak
12/17/90-A	0.40	42.4	Medium Peak
11/25/90-B	0.36	38.1	Large Peak
11/20/90-A	0.24	25.4	Medium Peak
11/27/90-A	0.22	23.3	Large Peak
10/30/90-B	0.17	18.0	Small Peak
10/30/90-A	0.14	14.8	Small Peak
10/17/90-A	0.07	7.4	No Peak
12/17//90-B	0.29^{b}	30.7 ^b	No Peak

 $^{^{}a}I = 0.660 \text{ A}$. For All Others I = 0.528 A.

^cUniversity of Texas Detection Limit was About 5 ppb He-4 based on Table.

Publications: J. Electroanal. Chem., Vol. 304, 1991, pp. 271-278

Proceedings of ICCF-2, 1991, pp. 363-372

J. Electroanal. Chem., Vol. 346, 1993, pp. 99-117

<u>Corrections:</u> Large / Medium / Small Peaks Differ By Factor of About Three for ppb He-4 University of Texas Detection Limit For He-4 Was About 5 ppb.

^bCalorimentric Error Due to Low D₂O Solution Level.

Rate of Atmospheric Helium-4 Diffusion Into The Glass Flasks (Effect of D₂ or H₂ Fill)

Conditions	Laboratorya	He-4 Atoms/Day	ppb/Day ^b
Theoretical	q=KxP/d	2.6×10^{12}	0.23
N ₂ Fill	HFO	2.6×10^{12}	0.23
N ₂ Fill	HFO	3.4×10^{12}	0.30
N ₂ Fill	RI	3.7×10^{12}	0.32
D ₂ +O ₂ Fill ^c	RI	$1.82\pm0.01 \times 10^{12}$	0.160
$\mathbf{D_2} + \mathbf{O_2} \ \mathbf{Fill^d}$	RI	$2.10\pm0.02 \times 10^{12}$	0.184
D ₂ +O ₂ Fill ^e	RI	$2.31\pm0.01 \times 10^{12}$	0.202
$\mathbf{H_2}\mathbf{Fill^f}$	RI	$1.51\pm0.11 \times 10^{12}$	0.132
V acuum ^f	RI	$2.09\pm0.04 \times 10^{12}$	0.183

<u>He-4 Diffusion Rate Slower When Flasks Contain D₂ or H₂</u>

(Outward Diffusion of D₂ Slows Inward Diffusion of He-4)

Flask Storage Time of 28 Days Required to Reach 5 ppb He-4 Detection Limit.

^aHFO (Helium Field Operations, Amarillo, Texas, ^bUsing 1.41x10²² $D_2 + O_2$ Molecules per Flask, ^cGlass Flask #5, ^dGlass Flask #3, ^eGlass Flask #4, ^fBoth Experiments Used Glass Flask #2.

Second Set of Excess Power and Helium-4 Measurements (He-4 Measurements By Rockwell International: Brian Oliver) Error Less Than \pm 0.1 ppb

- Effect of Atmospheric He-4 Diffusion Eliminated
- Double Blind Experiments
- Most Accurate He-4 Results (but P_x was small)

Table 3. Results for the Second Set of Experiments (1991-1992)

Sample	$P_{x}(W)$	Theoretical He-4 (ppb)	Experimental He-4 (ppb) ^c
12/30/91-B	0.100^{a}	10.65	11.74
12/30/91-A	0.050^{a}	5.32	9.20
01/03/92-B	0.020^{b}	2.24	8.50

aI = 0.525 A

 $^{^{}b}I = 0.500 A$

^cReported Rockwell error was equivalent to ±0.09 ppb

Second Set of Helium-4 Experiments Corrected For Background He-4 (-4.5 ppb)

<u>Table 4. Results For the Second Set of Experiments With Corrections For the Background Helium-4 (4.5 ppb)</u>

$P_{X}(W)$	Theoretical He-	Corrected He-4	He-4/sW ^c	MeV/He-4 ^d
	4 (ppb)	(ppb)		
0.100^{a}	10.65	7.24	1.8×10^{11}	35
0.050a	5.33	4.70	2.3×10^{11}	27
0.020 ^b (0.040)*	2.24 (4.47)*	4.00	4.7×10^{11} $(2.4 \times 10^{11})^*$	13 (25)*

 $^{a}I = 0.525 A$

 $^{b}I = 0.500 A$

^cTheoretical Value: 2.617 x 10¹¹ He-4/sW

^dTheoretical Value: 23.85 MeV/He-4

- Possible significant Error For $P_X = 0.020$ W.s based on He-4 Results.
- Using $P_X = 0.040$ W yields 2.4 x 10^{11} He-4 / W.s and 25 MeV / He-4*.

* At low P_X values, He-4 data is likely more accurate than calorimetric Data.

$$*(P_X = I (4.00) / 55.91 = 0.036 W)$$

Third Set of Helium-4 Measurements Using Metal Flasks (He-4 Measurements By U.S. Helium Field Operations Laboratory, Amarillo, Texas) Error About ±1.3 ppb

Small Excess Power Effects

Table 5. Helium-4 Measurements Using Metal Flasks

Flask/Cell	P_{X}	Theoretical He-4	Experimental He-4
(Date)	(W)	(ppb)	(ppb)
3/B (9/13/94)	0.120 ^a	13.4	9.4±1.8
2/A (9/13/94)	0.070^{a}	7.8	7.9±1.7
2/D 5/30/93)	0.060	8.4	6.7±1.1
3/A (5/31/93)	0.055	7.7	9.0±1.1
4/B (5/21/93)	0.040	5.6	9.7±1.1
1/C (5/30/93)	0.040	5.6	7.4±1.1
1/A (7/7/93)	0.030^{a}	3.4	5.4±1.5

 $^{^{}a}I = 0.500 \text{ A}$. For all others I = 0.400 A

Third Set of Helium-4 Experiments Corrected For Background He-4 (-4.5 ppb) Metal Collection Flasks Used For Gas Samples

P _X (W)	Corrected He-4 (ppb) ^a	Percent of Theoretical %	Electrode Volume (cm³)	Helium-4 S.W
0.120	4.9	37	0.57	1.0×10^{11}
0.070	3.4	43	0.63	1.1×10^{11}
0.060	2.2	26	0.04	0.7×10^{11}
0.055	4.5	59	0.51	1.5×10^{11}
0.040	5.2	93	0.02	2.4×10^{11}
0.040	2.9	52	0.01	1.4×10^{11}
0.030	0.9	27	0.29	0.7×10^{11}

^a4.5 ppb subtracted from reported He-4 measurements

Background Helium-4 Measurements Using Metal Flasks (No Excess Power)

• Main Source of Atmospheric He-4 Was Rubber Vacuum Tube Connectors (Not Glass Cell)

Electrode	Flask / Cell, (Date)	He-4, ppb	He-4 Atoms / 500 mL
Pd Rod ^a (0.4 x 1.6 cm)	1/C (2/24/93)	4.8 ± 1.1	5.5×10^{13}
Pd-Ag Rod ^a (0.4 x 1.6 cm)	2/D (2/24/93)	4.6 ± 1.1	5.2×10^{13}
Pd Rod ^a (0.4 x 1.6 cm)	3/C (2/28/93)	4.9 ± 1.1	5.6×10^{13}
Pd-Ag Rod ^a (0.4 x 1.6 cm)	4/D (2/28/93)	3.4 ± 1.1	3.9×10^{13}
Pd Rod ^b (0.1 x 1.5 cm)	3/C (7/7/93)	4.5 ± 1.5	5.1×10^{13}
Pd Rod ^c (0.41 x 1.9 cm)	3/D (3/30/94)	4.6 ± 1.4	5.2×10^{13}
(Mean)		(4.5 ± 0.5)	$(5.1 \times 0.6 \times 10^{13})$

Helium Analysis by U.S. Helium Field Operations Laboratories

$$^{a}D_{2}O + LiOD (I = 0.500 A)$$

$${}^{b}H_{2}O + LiOH (I = 0.500 A)$$

$$^{c}D_{2}O + LiOD (I = 0.600 A)$$

Additional Evidence For A Nuclear Process

(First Set of China Lake Experiments, 1990)

- Highest Excess Power Measured at China Lake
- High Count Rates With a Geiger-Mueller Detector
- Dental Film Exposure In Both Cell A and Cell B

- Tritium Increased 78% For Cell A and 63% For Cell B (Significant?)
- <u>H₂O + LiOH Control</u> No Excess Power, No Helium-4 Production, No High Radiation Count Rates, No Dental Film Exposure.

See: Correlation of Excess Power and Helium Production During D₂O and H₂O Electrolysis Using Palladium Cathodes", J. Electroanal. Chem., Vol. 346, 1993, pp. 99-117.

Experimental Errors in Excess Power and Helium-4 Measurements (I = 0.500 A)

He-4 (ppb) = 55.91 (
$$P_X / I$$
)

P_{X} (W)	He-4 (ppb)	He-4 Error (%) ^a	PX Error (%) ^b
0.020	2.24	44.6	100.0
0.050	5.59	17.4	40.0
0.100	11.18	8.9	20.0
0.200	22.36	4.4	10.0
0.500	55.91	1.8	4.0
1.000	111.82	0.9	2.0
5.000	559.10	0.2	0.4
10.000°	1118.20 ^c	0.1	0.2

 $^{^{}a}$ Assuming \pm 1.0 ppb He-4 error.

NOTE: N. Lewis (CalTech) and D. Albagli (MIT) reported He-4 detection limit of 1 ppm (1000 ppb) in their 1989-1990 publications.

• He-4 detection limit of 1000 ppb would be useless for these experiments.

 $^{^{}b}$ Assuming ± 0.020 W Calorimetric error

^cMost Cells Would Boil before $P_x = 10 \text{ W}$

[•]Larger excess power results in smaller errors

What About Other Possible Fusion Reactions Producing He-4? (And No Neutrons)

• Possible Fusion Reactions

I.
$$D + D \rightarrow He-4 + 23.85 \text{ MeV}$$
 (2.617 x 10¹¹ He-4/W.s)
II. $D + Li-6 \rightarrow 2 \text{ He-4} + 22.4 \text{ MeV}$ (5.57 x 10¹¹ He-4/W.s)

III. $D + B-10 \rightarrow 3 \text{ He-4} + 17.9 \text{ MeV}$ (10.46 x 10¹¹ He-4/W.s)

• Compare Best Experimental Result

 $(P_X = 0.100 \text{ W}, I = 0.525 \text{ A}, Measured He-4 = 7.2 ppb)$

I. 10.65 ppb He-4 Predicted For 23.85 MeV/He-4 48% High

II. 22.67 ppb He-4 Predicted For 11.2 MeV/He-4 215% High

III. 42.57 ppb He-4 Predicted For 5.97 MeV/He-4 492% High

23.85 MeV/He-4 Agrees Best With Experimental He-4 Measurements

Statistical Analysis For All He-4 Experiments At China Lake (NAWCWD)

• Experiments With No Excess Power And No He-4 Production

(12 / 12 Experiments)

• Experiments With **Both** Excess Power And He-4 Production

(18 / 21 Experiments)

Three Exceptions: Calorimetric Error (1), Use of Pd-Ce Cathodes (2, 3)

• Probabilities For Random Disagreements (3 in 33 Experiments)

$$P_3 = (33! / 30!3!)(0.512)^{30} (0.488)^3 = 1.203 \times 10^{-6}$$

$$P_2 = 1.221 \times 10^{-7}$$

$$P_1 = 8.009 \times 10^{-9}$$

$$P_0 = 2.546 \times 10^{-10}$$

$$P = P_3 + P_2 + P_1 + P_0 = 1.333 \times 10^{-6} = 1 / 750,000$$

(See NAWCWPNS TP 8302, September 1996, Appendix C, p. 92)

Groups Reporting Helium-4 In Electrochemical Experiments

Miles / Bush 1990 / 1991

Bockris 1992

Gozzi 1993

Liaw / Liebert 1993

McKubre / Tanzella 2000

DeNinno / Del Giudice 2000

MORE (?)

See E. Storms, The Explanation of Low Energy Nuclear Reaction, Infinite Energy Press, 2014, pp. 30 – 40.

SUMMARYAssumption of $D + D \rightarrow He-4 + 23.85$ MeV (Lattice)

- <u>Derived</u> Relationship: <u>He-4 (ppb) = 55.91 (P_X / I)</u> for Theoretical Helium-4 Amount Expected for Experimental Excess Power and Cell Current.
- <u>Presented</u> Theoretical and Experimental Helium-4 Amounts (ppb) for Three Sets of China Lake Experiments.
- **Proved** by Various Measurements that Helium-4 Diffusion into the Glass Collection Flasks was not a Factor in the China Lake Experiments.
- <u>Confirmed</u> the Calorimetric Excess Power Results by the Helium-4 Measurements (Especially Useful for Small Excess Power Measurements)
- **Showed** That Other Possible Fusion Reactions do **not** Fit as Well with the Experimental Helium-4 Measurements
- **Established** That Excess Power and Helium-4 Production in Cold Fusion Experiments are Related using Statistical Analysis of the Data.
- \rightarrow Results Also Suggest That Any Power Carried Outside The Cell By γ -Radiation Is NOT Significant.

ACKNOWLEDGEMENTS

Private Donor Funding Through The Dixie Foundation

• Adjunct Professor At University of LaVerne (California)

• Visiting Professor At Dixie State University (Utah)

• U.S. Office of Naval Research (ONR) Funding 1992-1995