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Abstract 

Metal hydrides are critical materials in numerous technologies including hydrogen storage, gas 

separation, and electrocatalysis. Here, using Pd-H as a model metal hydride, we perform 

electrochemical insertion studies of hydrogen via liquid and solid state electrolytes at 1 atm 

ambient pressure, and achieve H:Pd ratios near unity, the theoretical solubility limit. We show 

that the compositions achieved result from a dynamic balance between the rate of hydrogen 

insertion and evolution from the Pd lattice, the combined kinetics of which are sufficiently rapid 

that operando experiments are necessary to characterize instantaneous PdHx composition. We 

use simultaneous electrochemical insertion and X-ray diffraction measurements, combined with 

a new calibration of lattice parameter versus hydrogen concentration, to enable accurate 

quantification of the composition of electrochemically synthesized PdHx. Furthermore, we show 

that the achievable hydrogen concentration is severely limited by electrochemomechanical 

damage to the palladium and/or substrate. The understanding embodied in these results helps to 

establish new design rules for achieving high hydrogen concentrations in metal hydrides. 
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Introduction 

Hydrogen absorption in metals is critical to a number of technological applications including 

hydrogen storage,1-6 superconductivity,7-9 gas separation,10-13 and hydrogen embrittlement.14,15 In 

electrocatalysis, changing the binding energies of surface-adsorbed intermediates by straining or 

alloying materials is widely employed as a design strategy to improve reaction rates.16-18 Control 

of metal-hydrogen composition (e.g., x in MHx) influences adsorbate binding energies that 

modulate the activity and selectivity of important electrocatalytic reactions such as the hydrogen 

evolution reaction (HER) and CO2 reduction reaction. Understanding how and when 

electrochemistry can substitute for the high pressures previously used to create MHx with H:M 

ratios far exceeding the equilibrium values at ambient pressure is of fundamental and practical 

interest. Electrochemomechanical stresses analogous to those created by H insertion and 

extraction from the metal lattice are important as a material degradation mechanism in lithium 

ion batteries19-21 and solid oxide fuel cells.22 Hydrogen embrittlement is a well-known 

metallurgical failure mode23,24 that has found new significance in hydrogen-based energy 

systems, for example, as a process central to the longevity of hydrogen transportation pipelines.25  

Pd is widely used to study metal-hydrogen phenomena due to the large dynamic range of 

PdHx composition at accessible temperatures and pressures, the high H diffusion coefficient in 

Pd, and the facile dissociation of molecular H2 at the surface of Pd. These properties enable 

readily tunable bulk PdHx compositions with H:Pd ratio between 0 and 0.7. However, as we 

show, achieving higher H loading (H:Pd ratio > 0.7) in a controlled and reproducible manner, 

which is desirable for both basic studies and some of the above-mentioned applications, is not 

trivial. 
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The most widely studied means of forming PdHx from Pd are the physical application of 

H2 gas pressure, and the electrochemical insertion of hydrogen. The relationship between H2 gas 

pressure, β-PdHx composition, and temperature is well-documented,26-28 but for every 0.1 

increase in H:Pd ratio above 0.7 an increase of about 1.5 orders of magnitude of H2 pressure is 

needed, making highly loaded PdHx challenging to synthesize outside specialized laboratory 

facilities. Electrochemistry, on the other hand, can in theory achieve the same thermodynamic 

activities of hydrogen via the convenient and straightforward application of modest 

electrochemical potentials, and at ambient pressure and temperature. For example, achieving a 

H:Pd ratio of 1 at room temperature requires H2 pressures in the GPa range,29 but the equivalent 

thermodynamic Nernst potential is only ~100 mV at room temperature. When combined with 

kinetic overpotentials present in typical electrochemical cells, the total cell voltage remains on 

the order of 1-10 V, which is easily accessible in most experimental designs. 

However, electrochemical H insertion suffers from a gap in understanding of the 

quantitative relationship between current, potential, and hydrogen concentration. In our view this 

is largely due to the difficulty of accurately measuring PdHx composition during 

electrochemistry. A variety of measurement techniques have been employed to quantify this 

relationship, but each comes with its own limitations. One method for quantifying H:Pd ratio is 

to outgas the sample and measure the evolved gas after the electrochemical experiment is 

complete.27,28,30 However, this method correlates composition with the ensemble electrochemical 

profile, rather than the instantaneous potential or current, does not account for residual hydrogen 

left behind, and may not capture transients, given that the equilibrium pressure of a PdHx sample 

at high hydrogen composition (H:Pd > 0.7) is several thousand atmospheres.31 
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Operando measurements, in principle, can avoid such measurement errors and the poor 

time resolution of ex situ techniques. A number of previous studies have attempted operando 

measurements of the PdHx composition, but have encountered other sources of error. 

Electrochemical quartz crystal microbalance (EQCM) measurements32 require non-trivial 

corrections to frequency shifts caused by the H insertion-induced strain. Electrochemical 

oxidation (coulometry) of the absorbed H33 is subject to both (1) H:Pd ratio overestimation from 

oxidation of coevolved hydrogen gas remaining from the insertion process and (2) H:Pd ratio 

underestimation due to gas desorption during switching from reducing to oxidizing potentials. 

The widely-used resistance ratio method34 aims to take advantage of the dependence of Pd 

electrical resistivity on hydrogen concentration, which exhibits a maximum at x~0.7.35 However, 

this technique is complicated by the existence of two compositions that correspond to the same 

resistance ratio, any variations in temperature during measurement, irreversible resistivity 

changes due to stress-induced microstructure evolution in the Pd alloy, and electrical shunt 

pathways through the electrolyte. These and other complications of the resistivity method have 

been described in detail by Zhang et al.36 Amongst previously used methods, operando 

measurements of PdHx structure such as X-ray diffraction (XRD) or extended X-ray absorption 

fine structure (EXAFS) probably have the least uncertainty. Typically, synchrotron radiation has 

been used to measure the H:Pd ratio via XRD measurements of lattice parameter37-40 or EXAFS 

measurement of interatomic distances.41 Still, proper calibration of structure dimensions to H:Pd 

ratio is needed. 

In this study, we developed a novel methodology, and instrumentation, for 

electrochemically inserting hydrogen into Pd from both liquid and solid electrolytes. Using a 

three-electrode method, we report for the first time the dependence of the PdHx composition at 
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high H:Pd ratios (> 0.7) on the cathode potential alone (as opposed to the full cell voltage, which 

depends on the anode performance). For accurate quantification of composition, we designed an 

apparatus that enables operando structure measurements during H insertion via powder X-ray 

diffractometry. Higher experimental throughput is afforded than with a synchrotron-based 

apparatus, allowing reproducibility and sample-to-sample variations to be assessed. We identify 

calibration errors in prior work and develop an improved calibration of the dependence of β-

PdHx lattice parameter on H:Pd ratio with quantified uncertainty, thereby enabling both more 

accurate and more precise determination of the PdHx composition than in previous studies. 

In pursuit of high, controllable hydrogen loading levels, we investigated cell 

configurations that accommodate the use of three classes of electrolytes:  An aqueous electrolyte, 

a proton-conducting solid polymer electrolyte (Nafion™), and a proton-conducting ceramic solid 

electrolyte (yttria and ceria doped barium zirconate). Systematic study over a wide range of 

experimental conditions was conducted, with particular focus on effects of the type of electrode-

electrolyte interface, the cathode thickness, and temperature. Our results reveal that the use of 

thin cathodes, low temperatures (~25 °C), and electrode-electrolyte structures resistant to 

electrochemomechanical damage maximize the achievable H:Pd ratio. 

Experimental Section 

Sample Configurations 

Figure 1 A, D, and G show the experimental configuration for aqueous electrolyte cell tests. Pd 

cathodes of two types were used in the aqueous electrolyte cells. One consisted of free-standing 

25 μm thick Pd foils (Beantown Chemical), while the other consisted of 50 nm thick Pd thin 

films sputtered onto a 127 μm thick Kapton film substrate, with a Kapton shadow mask defining 

the electrode geometry. All thin films used in this work were sputtered using a Q300TD sputterer 
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(Quorum Technologies) at a deposition rate of approximately 10 nm/min. A 4 nm Cr adhesion 

layer was sputtered between the Kapton and the Pd film. Both cathodes had surface areas of 0.8 - 

1.2 cm2. The edges of each Pd foil and thin film cathode were taped down onto the Kapton 

substrate with Kapton adhesive to aid in positioning the foils and to protect the adhesion layer of 

the thin films. The anode was a 25 μm thick Pt foil (Beantown Chemical). The cell was 

assembled with a gap between the cathode and anode, that was subsequently flooded with 

aqueous electrolyte consisting of 0.05 M H2SO4 (Sigma-Aldrich) in ultrapure water (18.2 MΩ 

cm, VWR). The reference electrode was Ag/AgCl in saturated KCl (Radiometer Analytical). 

Hydrogen gas bubbles nucleate in the electrolyte-filled gap of this cell. 

The solid electrolyte cells have a different sample configuration from the liquid 

electrolyte cell, as shown in Figure 1, in that the Pd sample is attached directly to the solid 

electrolyte. The Nafion™-based electrochemical cells were fabricated using 2 cm diameter, 127 

μm thick disks of Nafion™ 117 electrolyte (Sigma-Aldrich). Figure 1 B, E, and H show the 

experimental configuration. Prior to use, the Nafion™ was pre-treated by boiling in 0.5 M H2SO4 

for at least 1 hr, then rinsed thoroughly in water and dried in air. Pd film cathodes of 50 nm 

thickness and 1.13 cm2 surface area were sputtered directly onto the electrolyte through a Kapton 

mask. A 10 - 15 nm thick Pt anode and reversible hydrogen electrode (RHE) reference electrode 

were sputtered onto the opposite side of each Nafion™ disk through a Kapton mask. No 

adhesion layer was used between the Nafion™ and cathode or anode. To make electrical contact 

to the external circuit, current collectors were cut from porous carbon paper into the shape of the 

anode, cathode, and reference electrode, and attached to the Pd and Pt electrodes, providing 

uniform electrical contact while still enabling gas access. These carbon current collectors are X-

ray transparent and do not interfere with the operando structure measurement.  
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The BaZr0.8Ce0.1Y0.1O3 (BZCY)-based electrochemical cells (Fig. 1 F and I) were 

fabricated using 2 cm diameter, 1 mm thick disks of BCZY (CoorsTek). Prior to use, the BZCY 

disks were polished on both sides to an RMS roughness of ~30 nm using an automatic polishing 

wheel (Allied Multiprep) using alumina and diamond slurries. Pd cathodes of 200 nm thickness 

and 1.13 cm2 surface area were sputtered directly onto the electrolyte through a Kapton mask. A 

Pt anode of 10 - 15 nm thickness and a Pt RHE reference electrode were sputtered onto the 

opposite side of each BZCY disk through a Kapton mask. A 4 nm Cr adhesion layer was 

sputtered onto the BZCY before the Pt was deposited. 

Electrochemical Cell Design 

Two custom apparatuses were designed and fabricated for use with aqueous and solid 

electrolytes, respectively, to enable XRD simultaneously with electrochemical measurements. 

The aqueous electrolyte test cell, shown in Figure 1A, was 3D printed using a Mojo 3D printer 

(Stratasys) from acrylonitrile butadiene styrene (ABS) plastic. The Kapton-Pd cathode assembly 

was adhered to the top of the apparatus using silicone adhesive, to create a liquid-tight electrolyte 

well. The cathode is centered above the electrolyte well, in the X-ray beam spot, and also 

extends beyond the silicone seal to provide a dry electrical lead. Kapton was chosen for its low 

X-ray attenuation and good chemical resistance to the electrolyte. Electrical connections were 

made to the Pd cathode leads outside of the electrolyte well using Cu tape. The Pt foil anode was 

attached with epoxy adhesive to a glass slide positioned at the bottom of the electrolyte well. The 

electrolyte well was filled with the aqueous electrolyte through the vent of the apparatus, 

following which the reference electrode was inserted into the vent. To maintain a flooded cell 

even during vigorous gas bubble generation, the top of the cell was designed such that the 

surface slopes upwards towards the vent tube (Fig. 1A).  
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The solid electrolyte test cell was designed for XRD concurrently with electrochemical 

operation in H2 gas environment at temperatures from room temperature up to 745 °C (Figure 

1B). This apparatus features a stainless steel housing, gas-tight seals, gas supply tubes, platinum 

electrical leads to the electrochemical cell, a heater for operation at elevated temperatures, an S-

type thermocouple temperature probe (Omega), Be foil X-ray windows for low X-ray 

attenuation, and a removable optically transparent quartz viewport on the top of the device. A 

Nafion™ or BZCY sample assembly was inserted into the device through the open top flange 

and secured onto the heater block with ceramic screws. Electrical connections were made to the 

cathode, anode, and reference electrode using Pt current collectors (Figure 1C). The entire cell 

chamber was then closed by sealing the quartz viewport onto the top CF flange with a Cu gasket. 

A detailed description of the apparatus appears elsewhere.42 

Operando XRD 

Both the aqueous and solid-electrolyte cells were designed to be mounted in a SmartLab 

multipurpose X-ray diffractometer (Rigaku) for operando XRD experiments. Except where 

otherwise specified, the diffractometer was fitted with parallel beam optics so that the diffraction 

spectra would not be sensitive to sample height displacement error. Electrical connections were 

made between the apparatus and a VSP potentiostat (Bio-Logic). In the case of the solid 

electrolyte apparatus, gas connections were made to provide humidified H2 or Ar gas, and for 

BZCY samples, the heater was connected to a temperature controller and power source. BZCY 

samples were heated in Ar until reaching ~200 °C, whereupon H2 was introduced. Both 

apparatuses for aqueous and solid-electrolyte cells were aligned such that the X-ray beam was 

incident on the center of the cathode. In the case of the solid electrolyte apparatus, the X-ray 
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beam entered and exited through the Be windows. For the aqueous apparatus, the X-ray beam 

passed through the Kapton film that held the Pd film or foil. 

Full scans from 15 to 90° were used to determine the baseline reflection positions prior to 

starting electrochemistry. Typically, shorter scans ranging between 36 to 42° were utilized to 

obtain a time resolution of 3 - 10 min per scan during electrochemistry. Either galvanostatic steps 

or galvanodynamic sweeps ranging from 0 to 300 mA/cm2 were applied to the electrochemical 

cells. Three-electrode electrochemical impedance spectroscopy was performed using a frequency 

range of 100 mHz to 500 kHz and an excitation amplitude of 100 μA. 

XRD data were analyzed using HighScore Plus (Panalytical) software. Reflection 

positions were acquired using Pawley or Rietveld fitting in HighScore Plus. The fits to a set of 

XRD spectra collected using a representative aqueous electrolyte cell are shown in Supporting 

Information Video S1. The fitted reflection positions were converted to a lattice parameter, and 

then to a H:Pd ratio using the calibration curve described in the “Calibration of Lattice Parameter 

vs H:Pd for PdHx” section below. 

Microstructural Characterization of Pd Cathodes 

Prior to and following experiments, Pd cathode surface morphology was examined using a 

scanning electron microscope (FEI Helios) operated with an accelerating voltage of 5 kV in 

secondary electron mode. This instrument was also used to perform energy dispersive X-ray 

spectroscopy (EDS) with an accelerating voltage of 15 kV. During the XRD measurements, 

cathodes were also optically monitored using a small USB camera mounted inside the 

diffractometer chamber.  
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Experiments Conducted 

Multiple experiments, under a range of electrodynamic conditions discussed below in the Results 

section, were conducted on each of the four different electrochemical cell types shown in Table 

1. These cell configurations allowed the effects of cathode thickness, electrolyte type, and 

temperature on the H:Pd ratio to be systematically explored. 

Table 1. Cathode design and experimental capabilities of electrochemical cell types used. 

Electrochemical Cell 
Type 

Cathode 
Format 

Cathode 
Thickness 

Electrolyte 
Composition 

Temperature 
Range 

Gas 
Atmosphere 

Aqueous electrolyte, 
Pd foil 

Pd foil 25 μm 0.05 M H2SO4 in 
ultrapure water 

23 to 27 °C 1 atm air 

Aqueous electrolyte, 
Pd film 

Sputtered 
thin film 

50 nm 0.05 M H2SO4 in 
ultrapure water 

23 to 27 °C 1 atm air 

Solid polymer 
electrolyte, Pd film 

Sputtered 
thin film 

50 nm Nafion™ 117 23 to 80°C 1 atm 
humidified H2 

Ceramic electrolyte, 
Pd film 

Sputtered 
thin film 

200 nm BaZr0.8Ce0.1Y0.1O3 
(BZCY)  

23 to 750°C 1 atm 
humidified H2 

 

Views of the experimental apparatuses, schematic designs, and samples appear in Figure 

1. Figure 1A is an external view of the cell used for aqueous electrolytes, and Figures 1B and 1C 

show external and internal views of the apparatus used with Nafion™ and BZCY solid 

electrolytes. In each case, XRD is conducted on the Pd cathode while the applied voltage and/or 

current are varied over time. The solid electrolyte cell allows introduction of a humidified H2 gas 

stream and temperature control over the range 25 - 750 °C. Figures 1D-F show schematic views 

of the experimental configurations, and Figures 1G-I show photographs of the Pd-electrolyte 

sample assemblies. In the aqueous electrolyte experiments (Figures 1D and 1G), XRD is 

conducted on the Pd foil or thin film cathode through the Kapton film to which it is attached, and 

the Pd cathode is separated from the Pt anode by a 1 cm gap filled with the aqueous electrolyte. 
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In the Nafion™ electrolyte experiments, (Figures 1E and 1H), the Pd cathode and Pt anode + 

reference electrode are separated by the 127 μm thick Nafion™ electrolyte. Similarly, in the 

BZCY electrolyte experiments (Figures 1F and 1I), the Pd cathode is separated from the Pt anode 

+ reference electrode by the BZCY electrolyte, which is 1 mm thick. 

 

 

Figure 1. Electrochemical cells for operando X-ray diffraction (XRD) during electrochemical insertion of hydrogen 

into Pd foils and thin films. (A) Aqueous electrolyte apparatus and corresponding (D) schematic of experimental 

configuration and (G) photograph of sample in operating position. (B) Exterior and (C) interior views of the solid 

electrolyte apparatus. In (C), the experiment is operating at 700 °C. Schematics of the experimental configuration 

and corresponding photographs of the solid sample assembly are shown in (E, H) for Nafion™ and (F, I) for 

BaZr0.8Ce0.1Y0.1O3 (BZCY), respectively. 
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In the aqueous electrolyte experiments, the cathode thickness affects the Pd atom-

normalized H flux during electrochemical H insertion, which may influence the maximum H:Pd 

ratio that can be achieved. A liquid electrolyte is able to form conformal contact with the cathode 

except as impacted by gas bubble evolution. The use of a solid electrolyte for hydrogen insertion 

with a Pd-gas phase interface for hydrogen evolution avoids gas bubbles entirely, and is a “dry” 

experiment that exposes the Pd surface. This format is of interest for interrogation by other 

analytical methods not possible in a liquid cell. As we show, the extent of adhesion of the Pd to 

the solid electrolyte dramatically affects hydrogen insertion. Limited work on the use of solid 

electrolytes appears in the literature.39,40 It was of interest to us to explore temperature regimes 

well above those accessible by aqueous or Nafion™ electrolytes, firstly to explore the 

temperature dependence of hydrogen insertion per se, and secondly because a vacancy-rich PdHx 

phase with a H:Pd ratio greater than 1 has been reported at high temperatures (700-800 °C)  and 

hydrogen pressures (several GPa).29 Results presented below are primarily for a temperature of 

400 °C, at which there is sufficient proton conductivity to achieve a reasonable cell impedance. 

The Nafion™ electrolyte cell could also be operated over a temperature range commensurate 

with sample stability, although results for room temperature are presented here. The aqueous 

electrolyte experiments were conducted at room temperature.  

Results and Discussion 

Operando XRD of PdHx 

A typical example of XRD spectra collected during electrochemical H insertion is shown in 

Figure 2, here for a 50 nm thick Pd cathode in the aqueous electrolyte cell. As shown in Figure 

2A, a 15 - 90° scan of the Pd cathode prior to electrochemical H insertion contains four Pd 

reflections. The (111) reflection has the highest intensity, while the (200), (311), and (222) 
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reflections have lower relative intensity than expected for a randomly oriented polycrystalline 

film, indicating a <111> preferred orientation. Figure 2B shows 30 spectra collected between 36 

- 42° every 3 min before and during electrochemical H insertion. The first four scans at open 

circuit show the Pd (111) reflection at 40.10°, which corresponds to a Pd lattice parameter of 

3.892 A, closely matching the literature value of 3.889 A.28 Beginning with the fifth scan and 

ending with the final scan, the cathodic current density was continuously ramped at constant rate 

from 0 to -0.1 mA/cm2. During this current ramp, H was inserted into the cathode, resulting in 

the formation of the β-PdHx phase. This phase transformation resulted in a reflection shift to a 

final position of 38.34°, which corresponds to a lattice parameter of 4.063 A, a 4.4% increase 

over that of pure Pd. Similar examples of XRD spectra collected from electrochemical cells 

using Pd foil in aqueous electrolyte, the Nafion™-based solid electrolyte cell, and the BZCY-

based solid electrolyte cell, are shown in Supporting Information Figures S3, S4, and S5, 

respectively. 
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Figure 2. (A) XRD spectrum of a representative Pd thin film cathode mounted in the aqueous electrolyte cell prior 

to electrochemical H insertion. Both α-Pd and Kapton reflections were observed, as expected. A 2θ scan range 

between 15° and 90° was used to ascertain the proper alignment of the Pd cathode, as well as to search for impurity 

phases. (B) XRD spectra around the (111) reflection of PdHx during electrochemical insertion of H into a Pd thin 

film cathode in the aqueous electrolyte cell. The spectra are vertically offset for clarity. The leftward shift in the 

reflection position as current was continuously ramped from 0 to -0.1 mA/cm2 indicates an expansion in the lattice 

parameter. The discontinuity of the reflection shift, as well as temporary coexistence of two separate reflection, 

corresponds to a phase transition from α-Pd to β-PdHx. 
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Calibration of Lattice Parameter vs H:Pd for PdHx 

To determine the amount of H inserted into these Pd cathodes from the XRD spectra, we 

developed a new calibration of the lattice parameter vs H:Pd ratio in β-PdHx (Vegard’s 

relationship). Although previous correlations exist, they have been created from sparse data sets 

and were not rigorously corrected for the effects of thermal expansion and/or pressure 

compression.26,27,31,38 Furthermore, we discovered that one of the widely used calibration curves, 

from Manchester and coworkers31 (their eq 7) mistakenly uses data collected at -196 °C26 to 

obtain a room-temperature calibration curve. Studies using this correlation will overestimate the 

H:Pd ratio from β-PdHx lattice parameter measurements. 

 

 

Figure 3. Calibration of PdHx lattice parameter vs H:Pd ratio using data from references.26-29,43 All lattice parameter 

values were corrected to standard temperature and pressure (25 °C, 1 atm) using literature values for thermal 

expansion44,45 and bulk modulus.46 The solid line is a linear regression fit, while the dotted lines represent offsets of 

one standard deviation. 

 

We developed an improved calibration using data from five references in which the β-

PdHx lattice parameter was measured via XRD, and the H:Pd ratio of the same sample was 



 
Page 17 of 38 

independently determined via outgassing,26,27 weighing,28 or assuming a fixed composition β-

PdHx during a two phase transition.29,43 The first three sets of measurements26-28 were performed 

at liquid nitrogen temperatures of -196 °C and under pressures up to 4,000 atm. The other two 

measurements by Fukai29,43 were done at temperatures around 700-800 °C and extremely high 

pressures up to about 50,000 atm. We corrected the measured lattice parameters for thermal 

expansion/contraction and pressure compression back to 25 °C and 1 atm using published 

coefficients of thermal expansion44,45 and bulk modulus.46 Details of these corrections are 

described in Supporting Information Section S2. The resulting data are displayed in Figure 3, 

which shows that the β-PdHx lattice parameter corrected to 25 °C and 1 atm varies linearly with 

H:Pd ratio in β-PdHx. The solid line represents the following relationship between lattice 

parameter, a, and H:Pd ratio derived from a linear least squares regression fit to the data:  

a [ A ] = 3.9321 + 0.1719 × H:Pd    (1) 

The dashed lines represent ± σa = 0.0034 A, one standard deviation in the measured lattice 

parameter around the fit line, which corresponds to an uncertainty in the H:Pd ratio of ± σH:Pd =  

0.020.  

Hydrogen Insertion Results 

The results of representative H:Pd measurements from each sample type are shown as time-

series data in Figures 4 and 5. In each case the current density was varied over time in a stepwise 

manner, and the corresponding cathode potential and lattice parameter were simultaneously 

measured. The corresponding H:Pd ratio in the β-PdHx phase was then calculated from the lattice 

parameter using eq 1. These data reveal how cathode composition varies in each sample as a 

function of the current density, cathode potential, and time. 
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Figure 4. Representative results for aqueous electrochemical insertion of hydrogen into (A) Pd foil and (B) Pd thin 

film, at room temperature. The top two panels display applied current density (J) vs time, and the corresponding 

cathode potential (Ecat) vs. reversible hydrogen electrode potential (ERHE). The third panel from the top shows the 

PdHx lattice parameter vs time. The bottom panel shows the corresponding H:Pd ratio for the β-PdHx phase obtained 

using the calibration curve in Figure 3.  

 



 
Page 19 of 38 

 

Figure 5. Representative results for electrochemical insertion of hydrogen into Pd thin film cathodes on (A) 

Nafion™ and (B) BZCY solid electrolytes, at room temperature and 400 °C, respectively. A humidified H2 gas 

environment is used. The top two panels display applied current density (J) vs time, and the corresponding cathode 

potential (Ecat) vs. reversible hydrogen electrode potential (ERHE). The third panel from the top shows the PdHx 

lattice parameter vs time. For the Pd cathode on BZCY, the lattice parameter at 400 °C measured has been corrected 

to its room temperature values using thermal expansion data. The bottom left panel shows the H:Pd ratio for the β-

PdHx phase on Nafion™, derived from the calibration curve in Figure 3. The bottom right panel shows the H:Pd 

ratio for the Pd film on BZCY, obtained using a calibration for α-Pd at low H:Pd ratio from Eastman et al.47 
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The top two panels in Figures 4 and 5 show the instantaneous current density and cathode 

potential (relative to RHE) as lines, and the time-averaged current density and cathode potential 

during each 3 - 20 min XRD scan as points, plotted against time. The error bars for the data 

points in each instance represents one standard deviation of the measured values during the 3 - 

20 min XRD scan interval. Additional electrochemical data including the anode potential for 

each of these electrochemical cells is displayed in Supporting Information Figure S12. The third 

panel from the top in Figures 4 and 5 displays the α-Pd and/or β-PdHx lattice parameters, 

determined by fitting each of the XRD spectra as described in the Experimental Methods section 

against time. The lattice parameter measurement error is ± 0.00061 A, determined by calculating 

the standard deviation of fitted lattice parameters from 39 spectra of a single sample under 

identical open circuit conditions. Finally, the bottom panel in Figures 4 and 5 show the H:Pd 

ratio in the β-PdHx phase calculated from the lattice parameter using eq 1 for the aqueous foil, 

aqueous thin film, and Nafion™ thin film samples. The error bars are ± 0.020, corresponding to 

one standard deviation uncertainty from the H:Pd ratio/lattice parameter correlation in Figure 3. 

Uncertainty in the lattice parameter measurement is negligible compared to the uncertainty from 

the H:Pd ratio/lattice parameter correlation. Because the H:Pd ratio observed in the BZCY thin 

films was low enough to be in the α-Pd range, we used eq 1 from Eastman et al.47 to determine 

the H:Pd ratio for this sample. 
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Figure 6. PdHx composition as a function of cathode potential (relative to RHE) for three samples each in the four 

electrochemical cell configurations tested. The continuous curve represents the thermodynamic limit as determined 

by the Nernst equation (eqs S7-S9 in the Supporting Information). All results are measured at room temperature 

except for the BZCY-based cell, which is measured at 400°C. In the aqueous electrolyte cells (A, B), the cathode 

composition closely follows the thermodynamic limit at small negative cathode potentials, especially in the case of 

the thin film cathodes. At more negative cathode potentials, the H:Pd ratio plateaus at a value well below the 

thermodynamically predicted concentration. The thin film cathodes reached a higher maximum H:Pd ratio (0.96) 

than did the foil cathodes (0.83). (C) Nafion™ thin film cathodes reached a maximum H:Pd ratio of 0.81 at a 

cathode potential of approximately -1 V before dropping at more negative potentials. (D) BZCY thin film cathodes 

equilibrated at 400°C did not show any detectable electrochemical H insertion within the range of potentials tested. 

 



 
Page 22 of 38 

Figure 6 distills the time series data from Figures 4 and 5 into plots of H:Pd ratio vs 

cathode potential (relative to RHE). Each plot includes results for three samples of the same 

electrochemical cell construction. Also plotted in each instance is the equilibrium H:Pd ratio 

predicted by the Nernst equation (eqs S7-S9 in the Supporting Information). While these results 

also show a reproducible relationship when plotted as H:Pd ratio vs current density (see 

Supporting Information Figure S2), the behavioral trends are more clearly observed when plotted 

as in Figure 6, due to the stronger dependence of the H:Pd ratio on the cathode potential. 

Figures 4, 5, and 6 show that for the aqueous foil, aqueous thin film, and Nafion™ thin 

film cells, applying a current to the cathode causes significant electrochemical H insertion, 

leading to the formation of β-PdHx. In each instance, as the current density is stepwise increased, 

the corresponding H:Pd values also increase, but the specific behavior differs in each case. In no 

instance did we observe H:Pd ratios that reached the theoretical Nernstian value of 1.0 with 

increasing cathode potential; in some instances a maximum in H:Pd is reached, while further 

ramping of the current density caused a decrease in loading. The aqueous thin film samples 

showed the highest H:Pd ratios (Fig. 6B), and one sample reached H:Pd = 0.96, the highest value 

observed in this study. The Nafion™-based cells reached H:Pd = 0.81, which is still significantly 

above the room-temperature, 1 atm H2 equilibrated value of 0.68. In the BZCY-based cells, no H 

insertion above background was observed by XRD, even though the measured cathode potential 

implies a high H:Pd value. At the measurement temperature of 400°C for these cells, the 

equilibrium H:Pd at 1 atm H2 is <0.01.31  

Competing Reaction Mechanisms Determine Steady-State H:Pd Ratio 

In order to understand these results, competing mechanisms of hydrogen insertion and evolution 

must be taken into account, as shown schematically in Figure 7. In each of the four cell types, a 
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negative cathode potential provides the thermodynamic driving force for H insertion. The 

electron current flowing through the electrochemical cell contributes to two reactions, H 

insertion (Reaction 1), which increases H:Pd, and the hydrogen evolution reaction (HER, 

Reaction 2), which does not. In addition, the atomic H inserted into Pd can diffuse and 

eventually desorb from the lattice as H2 (Reaction 3), lowering H:Pd. This desorption process 

does not require charge-transfer and therefore does not contribute to current passing through the 

cell. The steady-state H:Pd ratio reached in the Pd depends on the relative rates of these three 

reactions. 

 

 

 

Figure 7. Hydrogen reaction processes occurring at the PdHx electrode/electrolyte interface during electrochemical 

H insertion or extraction. In the insertion process, H+ in the electrolyte can recombine with electrons to form either 

(1) H inserted in PdHx or (2) H2 gas directly. Additionally, (3) H inserted in PdHx can be released from the cathode 

to form H2 gas or vice versa, depending on the relative chemical potentials of H in PdHx and H in the surrounding H2 

gas. 
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Thin Film Pd Cathodes Yield Higher H:Pd Ratios 

The aqueous electrochemical cell results in Figure 6 show that the thin film Pd cathodes as a 

group reach higher H:Pd values than do the Pd foil cathodes. The maximum H:Pd ratio reached 

by a thin film cathode is 0.96 ± 0.02 compared to 0.83 ± 0.02 for the Pd foil cathode. In addition 

to the higher absolute value H:Pd ratio, the ramp rate to the steady-state concentration, at the 

same current density, is much faster for the thin films than the foils. This second effect is to be 

expected from the the comparative fluxes of hydrogen relative to palladium. However, the higher 

steady-state H:Pd ratio reached in the thin films may also result from a combination of surface 

orientation and electrochemomechanical effects, as discussed below. 

Because the H flux per Pd atom scales inversely with foil thickness at constant current 

density (here current density is assumed equivalent to electrochemical H insertion per unit area), 

this flux is a factor of 500 higher for the thin film than for the Pd foil. The results from the 

aqueous electrolyte cells show a clear correlation between this flux and the rate at which the 

H:Pd ratio approaches steady-state. Referring first to Figure 4A, during the time interval 6.8 hr to 

8.7 hr, the current density is held constant at -3 mA/cm2 for the foil sample. Over this segment of 

the experiment, the H:Pd ratio increases from 0.56 to 0.65. During the next segment from 8.7 hr 

to 10.6 hr, where the current density is held constant at a higher value of -10 mA/cm2. the H:Pd 

ratio rises to 0.74. These time scales are consistent with the following approximate distribution 

of the incoming current:  10% of the current directed towards the H insertion reaction (Figure 7, 

Reaction 1), 90% of the current directed towards HER (Figure 7, Reaction 2). Based on 

independent measurements of the H desorption rate (Figure 7, Reaction 3), we assume the rate of 

Reaction 3 to be negligible compared to the other two reactions. For this distribution of the total 

current, a current density of -3 mA/cm2 should increase the H:Pd ratio by 0.09 in 2.25h. This is 
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in reasonable agreement with the experimental results in Fig. 4A for the Pd foil. And, at higher 

current densities, the time to reach steady state in the foil sample is reduced, as expected. 

In comparison, for the thin film samples, a similar partitioning of the current should result 

in nearly instantaneous ramping to the steady state H:Pd value, due to the 500-fold lower sample 

mass. This also is consistent with the results, Figure 4B. (The cause of the decrease in H:Pd at 

the highest current densities is discussed later.)  The minimum current density required to form 

β-PdHx is also smaller in the thin film cathodes than in the foils. In both cases, the cathode starts 

as single-phase α-Pd and transitions to β-PdHx under application of current. In the Pd foil (Figure 

4A), β-PdHx is first observed at a current density of -3 mA/cm2. This first-order phase 

transformation has an associated mechanical deformation of the cathode due to the lattice 

expansion, which is clearly observed in Supporting Information Video S2. In contrast, the 

aqueous thin film cell in Figure 4B immediately and completely transforms to β-PdHx upon 

application of the lowest current density of -2 mA/cm2. Experiments at lower current density 

were conducted on the thin film cathodes as well, with results shown in Supporting Information 

Figure S1. Here, the onset of β-PdHx is first observed at -0.093 mA/cm2 with complete 

transformation to β-PdHx occuring by -0.290 mA/cm2. Thus, the critical current density for 

formation of the β-PdHx is approximately 30 times lower for the thin film than for the foil. 

We determined that H diffusion causing a redistribution of H in the β-PdHx cathodes is an 

unlikely alternative explanation for the lower H:Pd ratio observed in the Pd foil. In the aqueous 

electrolyte cells, X-rays illuminate the cathode from the top, while electrochemical H insertion 

primarily occurs through the electrode/electrolyte interface at the bottom. The X-ray attenuation 

length through the cathodes is approximately 4 μm (Supporting Information Section S1).48 

Therefore, the XRD spectra of the 50 nm thin Pd cathodes reflect the H:Pd ratio averaged over 
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the film thickness. In contrast, the XRD spectra of the 25 μm thick Pd cathode are obtained from 

the portion of the film farthest from the H insertion interface. However, based on the diffusion 

coefficient for H in β-PdHx of ~10-11 m2/s at room temperature,49,50 the variation in H:Pd ratio 

across the 25 μm Pd foil cathode is calculated to be <0.01 over the time duration of the 

experiment (details provided in Supporting Information Section S4). Therefore, the X-ray 

observed H:Pd ratio in the foils is expected to reflect a homogenized bulk value. 

Another factor that may influence the ramp rate and maximum value of H:Pd is the 

surface crystallographic orientation of the Pd. As shown in Figure 2A, the sputtered thin films 

have a <111> preferred orientation. In contrast, the surface texture of the Pd foils shows a slight 

<220> preferred orientation (Supporting Information Figure S3A). Li et al.51 recently 

demonstrated that the {100} facets of Pd have higher HER activity than the {111} facets. 

Additionally, Johnson et al.52 found that the phase transition of PdHx between β and α phases is 

slower for nanoparticles with a <111> surface orientation (i.e., octahedral morphology) than for 

those with <100> surface orientation (cubic morphology). Slower HER and/or gas phase H 

desorption kinetics at {111} facets could potentially account for the higher H:Pd ratios observed 

in the <111> oriented Pd thin films. However, since these processes share some fundamental 

mechanistic steps with electrochemical hydrogen insertion, the rates of this process are likely 

also affected by the crystallographic orientation, so further study will be necessary to 

conclusively determine the effect of crystallographic orientation on the achievable H:Pd ratio. 

Strain effects could also contribute to the higher H content observed in thin films by promoting 

the H insertion reaction, leading to a higher portion of the incoming current directed towards 

insertion over HER.51 
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Electrochemomechanical Damage Affects the Achievable H:Pd Ratio 

When the same 50 nm Pd cathode is used in the aqueous electrochemical cell (Figure 4B) and 

the Nafion™ cell (Figure 5A), the former reaches a higher H:Pd ratio (0.96 vs 0.81). One 

explanation for this effect is that the liquid electrolyte - solid Pd interface in the aqueous cell is 

obviously conformal, as well as being “self-repairing” if the PdHx morphology changes, due to 

good wetting by the liquid electrolyte. In contrast, the Nafion™ and BZCY cells have solid 

electrolyte - solid Pd interfaces which mechanically constrain the Pd film to varying degrees. 

Note that despite the conformal liquid-solid interface in the aqueous electrolyte cells, the greatest 

sample-to-sample variation in H:Pd ratio was observed in these cells. We traced this effect to the 

appearance of H2 gas bubbles in the aqueous electrolyte that block the interface to varying 

degrees. In contrast, the Nafion™ cells, which only have solid-solid and solid-gas interfaces, 

show a smaller H:Pd variability.  

Electrochemomechanical damage to the Pd cathodes is another important effect that is 

observed in some form in each of the cell configurations. In the aqueous electrolyte cell, 

macroscopic mechanical damage can be seen in real-time video of the Pd cathode during 

electrochemical H insertion (Supporting Information Video S3). As the magnitude of the current 

increases, the cathode cracks and delaminates from the Kapton window, eventually resulting in 

the cell failing catastrophically. As shown in Figure 4B, during scans 48 and 49 (15.2 and 15.5 

hr), cell failure causes the current density to drop from -40 to -0.01 mA/cm2 and the cathode 

potential to reach the potentiostat limit set at -11 V. Note that in Figures 4 and 5, for the aqueous 

electrolyte and Nafion™ cells respectively, as the current is increased beyond a certain point, the 

H:Pd ratio decreases. We attribute this decrease to cathode damage or delamination.  
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Figure 8. Scanning electron micrographs of cathode surface morphology before and after electrochemical H 

insertion for both foil and thin film cathodes used in aqueous, Nafion™, and BZCY electrolyte cells. After H 

insertion, nanometer-scale surface roughening was found in aqueous foil cathodes, while micron-scale cracking, 

spalling, and delamination were observed in thin films utilizing both aqueous and solid electrolytes. Electrochemical 

H insertion for each sample involved maximum current densities of (B) -300, (D) -40, (F) -105, and (H) -11 

mA/cm2.  

Observed microscopically, clear electrochemomechanical damage appeared in each of the 

sample types. Figure 8 shows scanning electron micrographs of a cathode in each of the four 

electrochemical cell configurations, before and after electrochemical H insertion. Additional 

images at a variety of magnifications are shown in Supporting Information Figures S6, S7, S8, 
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and S9. The Pd foil cathode surface is severely roughened and comminuted into particulates as a 

result of hydrogen insertion, Figs. 8 A and B. The thin film Pd cathodes are severely damaged 

after H insertion, regardless of electrolyte, as seen in Fig. 8 C-H. For the aqueous and Nafion™ 

electrolytes, the expansion-contraction stresses create widespread cracking leaving domains on 

the length scale of micrometers. In the BZCY cells, where the solid electrolyte is the least 

compliant of those studied, even more dramatic electrochemomechanical damage was observed. 

As Figs. 8 G and H show, after electrochemical insertion of hydrogen, entire grains of solid 

electrolyte in the sintered BZCY have been ejected, presumably due to the high pressures 

associated with hydrogen gas evolution. This form of damage was observed repeatedly in 

experiments on this cell configuration. 

H:Pd Ratio Decreases with Increasing Temperature 

In the BZCY cells, despite the clear evidence for a substantial hydrogen flux as seen by the 

electrochemomechanical damage, negligible H:Pd ratios are observed in the operando XRD 

experiments (Fig. 5 B and 6 D). The experiments shown are conducted at 400 °C in order to 

lower the BZCY electrolyte resistance. (Others, not shown, were carried out over a wide range of 

temperatures from 210 to 750 °C, with similar results.)  At this temperature, the equilibrium 

H:Pd ratio is nearly zero at 1 atm H2. We believe that the HER reaction (Figure 7, Reaction 2) 

and/or the gas phase H2 desorption reaction (Figure 7, Reaction 3) is simply too rapid at 400 °C 

to permit significant bulk hydrogen to be obtained.  

Finally, the results above emphasize why operando structural measurements are 

preferable over purely electrical or electrochemical techniques. The trends in the H:Pd ratio 

observed in our measurements could easily be misinterpreted if only the resistance ratio (R/R0) is 

used to characterize H:Pd ratio, as described in Supporting Information Section S6. In the BZCY 
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cells, we also attempted to use the open-circuit (Nernst) potential to measure the instantaneous 

H:Pd ratio. During the experiment shown in Figure 5B, the Nernst potential was measured for 1 

second every 5 minutes. As described in Supporting Information Section S3, these measurements 

indicated high H:Pd ratios in some experiments, but the XRD measurements show negligible 

hydrogen retention. 

We provide an extensive Supporting Information Section with additional details on many 

of the analyses discussed. In addition to material already referred to, Section S5 examines the use 

of the Nafion™-based solid electrolyte cells as a vehicle for investigating surface reaction 

kinetics. Pd and PdHx are potentially useful electrocatalysts for reactions including CO2 

reduction and the electrochemical hydrogen evolution reaction (HER). Electrochemical H 

insertion provides a potential strategy for modulating catalytic activity in this material system. 

The lattice expansion and composition change associated with increasing H:Pd ratio can affect 

the binding energy of surface-adsorbed catalytic intermediates, and therefore affect the reaction 

kinetics. At present, these effects are difficult to understand and control, because prior to this 

study, it has been challenging to accurately measure the lattice parameter and H:Pd ratio of β-

PdHx during electrochemistry. Amongst the cell types we developed, the Nafion™-based cells 

are advantageous for such studies due to low, uniform and well-characterized series resistance 

and the absence of interference from gas bubbles. In S5, we obtain preliminary results showing 

the dependence of HER kinetic parameters on overpotential and H:Pd ratio. 

Conclusions  

The electrochemical insertion of hydrogen into palladium via liquid and solid state electrolytes 

has been investigated. We show that the H:Pd ratio achieved is the result of a dynamic balance 

between the rate of hydrogen insertion and evolution from the Pd lattice, and use operando X-ray 
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diffraction to characterize this process. At room temperature and ambient pressure, H:Pd ratios 

as high as 0.96 ± 0.02 are obtained. Higher H:Pd ratios are observed in thin films than in thicker 

foils, at least in part due to a higher hydrogen flux per palladium. Higher H:Pd ratios are reached 

using liquid than solid electrolytes, due to their conformal, self-healing nature. In all electrolytes, 

electrochemomechanical damage resulting from the large volume change induced upon hydrogen 

insertion strongly affects the achievable H:Pd ratio. 

 The results highlight the difficulty of reaching stoichiometric limiting compositions such 

as PdH. At H:Pd ratios close to 1, a large overpotential is required to insert hydrogen rapidly 

enough to compensate for the enormous driving force for H2 desorption from the Pd lattice. 

Concurrently, HER is a facile competing reaction to H insertion which, even at modest applied 

potentials, diverts much of the applied current towards gas evolution. Simultaneously, 

electrochemomechanical damage to the palladium increases the available surface area for 

hydrogen evolution and decreases the extent of electrolyte-palladium contact. 

 Nonetheless, the understanding embodied in these results point to new design rules for 

achieving high hydrogen concentrations in metal hydrides, and suggest several possible 

pathways to overcoming the challenges. Reducing the electrochemical H2 evolution reaction rate 

through surface modifiers,53 or by optimizing for palladium surface orientation effects,51,52 could 

increase the achievable H:Pd ratio. Designing thin cathode structures that are resistant to 

electrochemomechanical damage is another route, including very thin foils or folding 

morphologies that allow volume expansion and contraction without mechanical failure. 
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