On the formation of tritium from deuterium in titanium powder. D.D. Afonichev, T.I. Nazarova.

  • Institute for Metals Superplasticity Problems RAS, 39 Khalturin St., Ufa, 450001, Russia

    The main proof of fusion reactions of deuterium nuclei is the presence of nuclear reaction products. When detecting tritium after saturation of titanium powders with deuterium reproducible results of its high concentration have been found. Titanium powders of two different batches have been used. According to metallographic studies, powder # 1 had an average particle size of d = 110 ± 5 μm; lazer diffraction analyzer of particle sizes registered one more maximum near the size of d = 0.2 μm. Powder # 2 was a sifted fraction with sizes in interval 80 < d < 150 μm. For powder # 1 the measured concentrations of tritium amounted about cT = (11 – 14) ∙ 103 dpm and for powder # 2 cT = (1.45 – 1.57) ∙ 103 dpm, a concentration typical for deuterium used. An effect of the dispersity of initial titanium powder on the proceeding of nuclear reactions has been demonstrated. Earlier, a mechanism of interaction of deuterons in a metallic matrix by means of a resonance transfer of a neutron from one deuteron to the other has been proposed. One of the products of such an interaction is a tritium nucleus. Such a process can run in elongated defects. The cross dimension of such defects was not known, however. From an analysis of measurements of titanium powder particle sizes one can conclude that the optimum size of pores must be about d1 = 3 ∙ 10–8 m. During all experiments the levels of neutrons (Nn = 30 ± 2 1 / 50 sec) and gamma quanta (Nγ = 700 ± 15 1 / 5 sec) did not exceed the values typical for the room where experiments were carried out.

  • For powder # 1 the measured concentrations of tritium amounted about cT = (11 – 14) ∙ 103 dpm and for powder # 2 cT = (1.45 – 1.57) ∙ 103 dpm, a concentration typical for deuterium used. An effect of the dispersity of initial titanium powder on the proceeding of nuclear reactions has been demonstrated.


    Deuterium contains normal Hydrogen too. Did they repeat the experiment with highly pure Deuterium and look whether tritium is related to the Hydrogen "contamination".

Subscribe to our newsletter

It's sent once a month, you can unsubscribe at anytime!

View archive of previous newsletters

* indicates required

Your email address will be used to send you email newsletters only. See our Privacy Policy for more information.

Our Partners

Supporting researchers for over 20 years
Want to Advertise or Sponsor LENR Forum?
CLICK HERE to contact us.