Fusione fredda Renzo Mondaini—trascrizione

  • Video riesumati e trascritti per futura consultazione.





    [00:05] Salve, il mio nome è Renzo Mondaini. Io vivo a Ravenna e lavoro come perito elettronico presso un'azienda di telecomunicazioni. Alla sera come hobby faccio lo scienziato "dilettante". Nell'ultimo anno mi sto dedicando ad esperimenti sulla fusione fredda elettrolitica.


    [00:24] La fusione fredda elettrolitica non è altro che una reazione nucleare a bassa energia, non radioattiva. Per realizzarla basta poco: basta un vaso di vetro, possibilmente in Pyrex, metterci all'interno dell'acqua con disciolta una sostanza per rendere conduttiva l'acqua, ci si immergono due elettrodi che andranno alimentati con una tensione continua superiore a 150V, magari regolabile.


    [00:57] Questi due elettrodi debbono essere asimmetrici, cioè: l'anodo molto immerso e il catodo meno immerso, con un rapporto circa 1:5–1:6. Per rendere conduttiva l'acqua basta una qualsiasi sostanza che si sciolga e generi degli ioni. Per esempio si può usare qualsiasi tipo di sale, qualsiasi tipo di acido e qualsiasi tipo di base.


    [01:27] Alcune sostanze non realizzano la fusione fredda elettrolitica perché non generano ioni in soluzione. Queste sostanze sono le sostanze organiche, per esempio. Per cui non funziona lo zucchero, non funziona l'acido acetico, perché essendo sostanze organiche quando si sciolgono in acqua non generano ioni utili alla conduzione dell'energia elettrica. Un'altra sostanza che non funziona per esempio, ho scoperto, è il bismuto carbonato. È un sale che, purtroppo, non si scioglie in acqua, per cui non può generare ioni, non può generare passaggio di corrente dentro a una cella elettrolitica.


    [02:10] Bene, a questo punto vi faccio vedere la fusione fredda elettrolitica come nessuno ve l'ha mai fatta vedere fin'ora.


    [Esperimento 1]


    [02:27] La fusione fredda elettrolitica può essere eseguita usando un becher in vetro Pyrex, in cui è stato messo dell'acqua con in soluzione un sale; nel nostro caso usiamo o bicarbonato di sodio da cucina o potassio carbonato. Se ne mettono circa 100 grammi al litro. E la fusione fredda elettrolitica si inizia da una semplice elettrolisi dell'acqua. Come vedete, a sinistra abbiamo l'anodo, un elettrodo a cui verrà data una tensione positiva; a destra il catodo, un elettrodo a cui viene data una tensione negativa.


    [03:08] Ora vi farò vedere più nel dettaglio… bene, farò vedere nel dettaglio l'elettrodo negativo… lo terrò nelle mani con un guanto dielettrico e applicherò una tensione di 150V continui. Come vedete si ha l'elettrolisi dell'acqua: idrogeno al catodo e ossigeno all'anodo. Ma succede una cosa strana se io sollevo il catodo.


    [03:55] Come vedete se io sollevo il catodo si ha una concentrazione di ioni positivi H+ idrogeno. Gli ioni H+ non sono altro che protoni; protoni che se superano una certa intensità di corrente innescano queste scintille. Se io invece abbasso l'elettrodo si spegne questa reazione e esegue solo l'elettrolisi dell'acqua.


    [04:37] Se io alzo ancora di più la tensione vado a 200V, si ha questa illuminazione, fino all'incandescenza dell'elettrodo. 300V… 350V… Questo è l'elettrodo di tungsteno.


    [Esperimento 2]


    [05:14] Ora vi mostro il comportamento di una soluzione di solfato di zinco. L'anodo a sinistra, catodo a destra. Aumento la tensione… porto a 100V… 150V e vedete che si deposita lo zinco sul catodo; si ha l'elettrolisi dello zinco. Zinco sul catodo e solfato all'anodo. Ma se io aumento la tensione e la porto a 200, 300, 350V, ottengo la formazione di plasma.


    [06:10] Mentre se diminuisco a 300, 250, 200V… e ho, 150V… e ho l'elettrolisi dello zinco solfato, deposizione di zinco al catodo. Ma se aumento ancora a 200V, 250 e 350… ottengo di nuovo un plasma. Diminuisco: 300… 250… 200… 150… 100. Ottengo deposizione di zinco.


    [Esperimento 3]


    [07:18] Ora vi mostro una soluzione di solfato di rame. Immergo I due elettrodi; anodo a sinistra, catodo a destra. Applico una tensione continua di 100V, 150V e vedete che si deposita il rame sul catodo: si ha l'elettrolisi del solfato di rame; rame al catodo e ossigeno all'anodo. Se aumento la tensione… sentite: si ha una vibrazione del vaso… e si ha l'innesco della fusione fredda elettrolitica.


    [08:10] Mentre se abbasso la tensione… 200V… 150V… 100V… vedete che c'è il passaggio di un fenomeno: dalla fusione fredda si ha l'elettrolisi: deposizione di rame al catodo e ossigeno all'anodo. Sono a 120V. Aumento: 200, 300, 350.


    [09:02] Diminuisco: 200… 150… 100, e a 100V si ha… ora aumento… si ha l'elettrolisi del solfato di rame.





    [00:00] […] ho un anodo positivo, 350V; immergo il catodo negativo, si forma la fusione fredda elettrolitica. Ma cosa succede se io immergo per primo il catodo e poi immergo l'anodo per secondo? Vedete che avviene una reazione insignificante. Però cosa succede se io tocco il vetro con l'anodo? Si forma una reazione, fino a fondere il vaso.


    [00:51] Vedete la reazione violentissima sul vetro. Il vetro che fonde. Il vetro addirittura che continua a bruciare.


    [Esperimento 2]


    [01:44] Ora vi farò vedere una soluzione di sodio nitrito in cui ho fatto spaccare il vetro che lo contiene, e vi faccio vedere che prende fuoco il vetro con il po' di liquido che cola attraverso le crepe. Si forma un plasma… che incendia il vetro. Un plasma che incendia il vetro.


    [Esperimento 3]


    [04:14] Ora vi mostro il comportamento di una soluzione di stagno cloruro. Anodo a sinistra e catodo a destra. Aumento la tensione. Aumento la tensione e ho la deposizione di stagno sul catodo; eseguo l'elettrolisi dello stagno cloruro. 100V… 150… 200… 300… 350. Si ha la formazione di plasma senza deposizione di stagno.


    [05:17] Ora diminuisco la tensione: 300V… 250… 200… 150… 100… e a 100V, aumento… 150… ho la deposizione dello stagno sul catodo.


    [Esperimento 4]


    [05:58] La fusione fredda elettrolitica si esegue partendo da una normale elettrolisi dell'acqua. Si inseriscono due elettrodi in una soluzione contenente un sale: in questo caso il bicarbonato di sodio. A sinistra avremo l'anodo positivo e a destra il catodo negativo. A questo punto si applica una tensione, crescente, e vediamo che si forma l'eletrolisi dell'acqua: ossigeno a sinistra all'anodo; idrogeno a destra al catodo.


    [06:35] Ma aumentando la tensione, portandola diciamo a 100V in questo momento, 150… avviene un fenomeno di innesco di un plasma. Portiamo la tensione a 170V… 180… vediamo che il plasma aumenta… 200V… si forma un plasma continuo. Sono a 200V, 250… 300… 300V, 350.


    [07:41] Ora abbasso: 200V… 150… 100V. A 100V si mantiene. 80V… 70… 60… 50V e si ha il ritorno all'elettrolisi dell'acqua.


    [Esperimento 5]


    [08:39] […] in grafite. Ora applico la tensione di 50V e vediamo che si forma ossigeno all'anodo e idrogeno al catodo. Aumento, arrivo a 80V, a 100V… a 100V inizia la reazione. 150V… 200V… 300V… 350V. Si è consumato l'elettrodo.


    [Esperimento 6]


    [09:38] Ecco ancora un catodo di grafite, con 350V.


    [Esperimento 7]


    [10:05] La stessa tensione come anodo.





    [00:05] Ora vediamo più da vicino l'innesco di questa reazione. Aumento la tensione, si ha la produzione di idrogeno al catodo, fino a che, superati I 150V, avvengono queste scintille, queste piccole esplosioni. Ecco, adesso calo la tensione a 100V, 120V… diminuisco… siamo a 100V, 80V.


    [00:58] Ecco la forte emissione… una forte emissione di raggi infrarossi che rendono sfocata l'immagine alla telecamera. Siamo a 150V, ora aumento a 200… 250… 300… 350V.


    [Esperimento 2]


    [01:42] […] mostrerò alcune cose, alcuni fenomeni anomali. In questa soluzione composta da zinco solfato ora immergerò due elettrodi. L'anodo positivo a sinistra; il catodo negativo a destra. Applico una tensione: 50V… 100V e vedete che si deposita dello zinco sul catodo: si forma l'elettrolisi del solfato di zinco. Ossigeno all'anodo e zinco al catodo.


    [02:18] Però se aumento la tensione e la porto a 200, 300V… non si ha più la deposizione dello zinco ma si ha una reazione violenta di fusione fredda. Mentre se io abbasso la tensione ho la deposizione dello zinco.


    [Spiegazione]


    [03:16] Mentre io eseguo la fusione fredda elettrolitica, mi accorgo che una radio a onde medie accesa a pochi metri di distanza riceve tantissimi disturbi elettromagnetici. Allora mi sono posto il problema: se io con un analizzatore di spettro riesco a vedere quali emissioni radio vengono emesse, io posso stabilire quale elemento è entrato in reazione in questo plasma che si forma attorno al catodo.


    [03:48] Naturalmente ho potuto avere in prestito un buon analizzatore di spettro che parte quasi da 0 MHz e arriva fino a 26.9 GHz, e con questo analizzatore di spettro ho potuto constatare che si sono delle emissioni particolari, di certe particolari frequenze. C'è un'emissione a 117 MHz molto potente e io ho potuto risalire che è dovuta alla molecola OH.


    [04:21] La molecola OH io mi accorgo che ce ne è in soluzione in eccesso, in quanto toccandola con le mani questa acqua, questo liquido, dopo avere eseguito la reazione di fusione fredda elettrolitica per diverse ore, mi accorgo che le mani bagnate fanno sapone. Il sapone è un sintomo di presenza di ioni OH in eccesso in soluzione. Questi ioni OH non possono essere prodotto dall'elettrolisi dell'acqua, perché l'elettrolisi dell'acqua avviene sempre in condizioni di pareggio fra un atomo di ossigeno emesso all'anodo e due atomi di idrogeno emessi al catodo.


    [05:06] Per cui, ogni volta che un atomo di ossigeno cede due elettroni all'anodo, parimenti due atomi di idrogeno acquistano due elettroni dal catodo. Per cui gli ioni OH non possono essere in eccesso in una normale elettrolisi dell'acqua.


    [05:36] Poi c'è una seconda emissione che è a 327 MHz. Questa emissione, secondo delle tabelle, risulta essere dell'atomo di deuterio. Il deuterio atomico a questo punto si tratta di stabilire come può essersi formato del deuterio nella soluzione elettrolitica, in quanto nell'acqua c'è una minuscola parte di deuterio: solo un atomo ogni 6400 di idrogeno.


    [06:12] Quindi, questa emissione forte a 327 MHz del deuterio può essere solo interpretata come la creazione in loco di deuterio. Come può essere creato il deuterio? Il deuterio è composto da un nucleo in cui vi è un protone e un neutrone. Il protone ce l'abbiamo già, ed è lo ione H+ dell'idrogeno, che va verso il catodo durante l'elettrolisi.


    [06:45] A questo punto si tratta di capire come viene generato il neutrone in questo nucleo. Il neutrone può essere generato con la cattura elettronica da parte di un protone. Un protone, avvicinandosi al catodo in una certa condizione può assorbire un elettrone e trasformarsi in un neutrone, e legarsi poi ad un protone lì vicino.


    [07:08] Naturalmente è una reazione che assorbe energia, quella della cattura elettronica, ma può essere fornita dal nostro generatore di corrente che usiamo. A questo punto questo deuterio può spiegare la sua formazione, può spiegare l'eccesso di ioni OH: perché quel protone che si è tramutato in un neutrone ha creato uno squilibrio nel rapporto idrogeno-ossigeno, per cui c'è un eccesso di ioni OH che io sento con le dita: sento il sapone strisciando le dita, e il sapone viene generato dagli ioni OH come nella soda caustica.


    [Pausa]


    [07:53] […] eseguire la reazione di fusione fredda elettrolitica si usano come elettrodi di solito degli elettrodi di tungsteno, perché è un metallo che ha il più alto punto di fusione: 3460 gradi centigradi. Ma comunque funziona con qualsiasi elettrodo, con qualsiasi metallo. Un metallo che fonde a una temperatura più bassa naturalmente fonderà immediatamente.


    [08:22] La reazione di fusione fredda elettrolitica funziona anche con elettrodi in grafite, con elettrodi in carbone, purché conducano elettricità. Usando elettrodi in alluminio ho constatato una cosa molto strana: che questo alluminio fonde, sembra quasi bruciare, fa una reazione che sembra quasi di combustione e I residui che io trovo sul fondo del vaso hanno una caratteristica di avere un aspetto vetroso.


    [08:50] Ora, il vetro è composto da ossido di silicio, per cui l'ossigeno può essere ricavato dall'aria durante la combustione. Ma il silicio non me lo riesco a spiegare, perché l'alluminio usato una una purezza del 99.5%.


    [09:03] Come potete vedere dalla tavola periodica degli elementi, l'alluminio ha un peso quasi di 27 unità atomiche, mentre il silicio viene subito dopo con 28 unità di peso atomico. Questo vuol dire che l'alluminio più un protone si trasforma, si può trasformare in un atomo di silicio.


    [Pausa]



    [09:28] Come potete vedere da questa foto, in cui è rappresentato lo schermo dell'analizzatore di spettro che ho usato nell'esperimento, vediamo che sulla sinistra vi è 0 MHz, sulla destra abbiamo 2000 MHz e si possono notare questi picchi: I due principali, il primo a sinistra centrato a 117 MHz esattamente; il secondo centrato esattamente a 327 MHz. Il primo a sinistra è dovuto alla molecola OH e il secondo è dovuto all'atomo di deuterio.


    [10:12] Come potete vedere, inoltre, sulla destra in corrispondenza di 1420 MHz, non vi è emissione radio tipica dell'atomo di idrogeno. Questo vuol dire che lo ione H+ non interviene nella formazione del plasma. Inoltre non è stata riscontrata neanche l'emissione a 21 GHz tipica della molecola dell'acqua.

  • can  


    Thanks for taking so much trouble over this, it certainly looks interesting. I must confess to be a little bit skeptical about the work, but only because some of Mondaini's videos were frankly not credible. But there may well be something in this.

  • Alan Smith

    I can transcribe text in real-time, so it didn't take much more than the time required to watch the video.


    I find that this looks similar to the Mizuno plasma electrolysis experiments, with the main difference of the observation of the partially immersed cathode and large anode area improving the observed reaction. It has been pointed out by Bob Greenyer that the patent application by Bazhutov et al. shows a similar electrode arrangement.


    Possibly the rectifying circuit may also have a role, in that the smoothing capacitor(s) could provide a relatively large energy reservoir for when electrical breakdown (probably an incorrect term as the electrolyte used seems fairly conductive) occurs with high-frequency sparking as a result. In old comments in the English- voiceover video Mondaini reported having used 2x 400uF 450V capacitors, with up to 350 VDC 10A, likely with a >3.5 kVA 0-250V variac (rectified DC voltage from AC should be sqrt(2) times higher).

  • Here's a hypothesis on the reaction observed.



    Circuit simulation on falstad.com


    The simulation assumes there's a small (inherent) inductance in the circuit. If the cathode is too much immersed (the resistor on the right/"Load"), the capacitors do not manage to charge to a voltage high enough to cause breakdown (?) and initiate a kind of resonant behavior that boosts voltage and sustains a high frequency plasma/spark discharge. If this is the case, the observation of discharges would be highly dependent on the electrical setup used and not as obvious to replicate as it seems from the video. This alone however does not immediately explain why the same reaction does not happen (to the same extent, at least) when the electrodes are swapped.


    You can try playing with DC peak voltage and "load" (which represents how much electrolysis is ongoing or how much the cathode is immersed).

  • I will be using a variac inputting to a microwave oven transformer, bridge rectifier, and capacitor filter, for high voltage.


    I'm deciding on buying one or two optical spectrometer$$$ to measure some predicted wavelengths.


    I will measure RF frequencies.


    I ordered some heavy water, which I expect to trigger the bursty plasma at lower voltages. However it may be too expensive to spare for this particular experiment. Maybe after a lot of practice with light water.


    Wouldn't it be interesting to add Borax to the solution? Ultra dense hydrogen could smuggle the proton into the Boron and release 8.7 MeV.

  • I think it could be interesting to measure with an oscilloscope the signal from the electrodes while the plasma reaction is occurring.


    An idea could also be filling the electrolyte with conductive nanoparticles as to form a colloidal solution and seeing if similar results are observed also without or with less dissolved salts in it.


    Ordinary ionizing emissions should probably not be expected, but at large power levels significant EMI could get produced and affect nearby measuring equipment (similarly to what Mondaini observed with a nearby transistor radio, by the way).


    Tomorrow I should get a ready-made, rather inexpensive DC-DC 70W boost converter that should be able to output up to +/- 390V @ 0.2A. Perhaps with a tiny cathode wire and a large anode I might be able to see small sparks if they're not the result of a circuit resonance as I speculated earlier.


    EDIT: I didn't receive the DC boost converter as quickly as I expected; I should likely have it by Monday.

  • ...

    Tomorrow I should get a ready-made, rather inexpensive DC-DC 70W boost converter that should be able to output up to +/- 390V @ 0.2A. Perhaps with a tiny cathode wire and a large anode I might be able to see small sparks if they're not the result of a circuit resonance as I speculated earlier.


    Are you getting this one? https://www.ebay.com/itm/264407040034


    Apparently it is impossible to use a variac as input to a MOT to get variable output voltage. Looking into other options (either the above ebay link or a used high voltage supply). Lab high voltage supplies tend to have just a few milliamps max amperage. That $7 option can do a lot better supposedly.


    I tend to think the voltage is more important, and amps is less important. We can tune the current by tuning electrical conductivity through its known relationsip to electrolyte concentration: https://sites.chem.colostate.e…20aqueous%20solutions.pdf

  • Are you getting this one? https://www.ebay.com/itm/264407040034


    It looks almost exactly like that one, but I'm getting it from a different store. This one is more similar, it even has a fan output: https://www.amazon.com/Adjusta…Efficiency/dp/B0817QZ7DK/


    Apparently there's also a cost-down variation which outputs 0-390V instead of +/- 390V; it has one less 400V capacitor and two output terminals. The +/- 390V version might be more reliable as you might not want to use it too much at the maximum output voltage allowed. Since voltage tweaking is done via a 50 kOhm (I think) trimpot—components which often have a useful life of a couple hundreds of turning cycles at most—it is not intended for frequent adjustments, so for extensive testing (i.e. more than a few tries) that might have to be replaced with a suitable potentiometer.


    Of course I don't expect the high voltage output from this small device to be very clean compared to serious high voltage supplies (it might be more like a sawtooth wave), and forced air cooling might be required (fan not provided). This could mean that the plasma observed (if any) could have an even more impulsive nature than can be seen in Mondaini's videos, but that could be a good thing.


    Instead of using this tiny device directly with the electrolytic cell perhaps a better idea could be using it to charge a larger high-voltage capacitor and use that (with suitable control) to cause plasma discharges. However it would be more work to setup and I do not have the equipment and components to do that right away, and I basically only wanted to see if simply passing a high enough voltage through electrodes as set up by Mondaini can work to some extent.



    EDIT: here are some buyer comments: https://www.amazon.com/Qianson…-Capacitor/dp/B01IVMU2XI/


    Quote

    [...] The converter works well and outputs upto around 850V using the V- and V+ terminals. The main problem with this converter is due to its boost architecture which outputs an extremely ripply saw tooth output that with even a huge 470uF capacitor causes flickering in the nixie tubes (Refer to Oscilloscope pic.) [...]


    Quote

    This is better than the 45 to 390 version. This is using both phases of the transformer. From either leg to center tap its 45 to 390 volt. From V+ to V- its 85v to 804 volts. Unexpectedly, this is much better than what I thought I was getting. I thought I was going to have to charge caps in parallel and fire them off in series to make my voltage. I'm completely happy with this. Keep in mind there's no charge limiting resistor so if you're going to charge a large cap, put a 10k in series on it or something.


  • I was looking through regular/mainstream peer-reviewed papers on Google Scholar about "plasma electrolysis" and "plasma electrolytic oxidation" when I found by chance this one with Tadahiko Mizuno listed as a coauthor.


    Controlled formation of metallic nanoballs during plasma electrolysis

    https://doi.org/10.1063/1.2760042 (paywalled)


    The diagram they provide is interesting.



    Quote

    FIG. 1. Typical current-voltage relation curve and schematic diagram before and during plasma electrolysis. (a) Pictures of Ni electrode with a diameter of 1.5 mm during plasma electrolysis. (b) Current-voltage relation during plasma electrolysis with Ni electrode. (c) A schematic diagram of plasma electrolysis; a thin gas/vapor layer is formed at the metal/solution interface, where a high applied voltage induces the glow discharge



    From other papers on the subject from different authors, it seems it should be doable also from a current density of 50–100 mA/cm2, so the DC boost converter above might be able to show some results, at least visually.


    Also it is important that the solution is conductive, but high electrolyte concentrations cause significant gas evolution from electrolysis (which I'm guessing is wasted power).



    EDIT: I eventually realized that the above paper is available on Mizuno's ResearchGate account here: https://www.researchgate.net/p…uring_plasma_electrolysis


    EDIT 2: in other papers on the subject Mizuno argued that there can also be excess (anomalous) gas production, so that might be a good thing after all?


    https://www.lenr-canr.org/acrobat/MizunoThydrogenev.pdf

    https://www.researchgate.net/p…ma_Electrolysis_in_Liquid


    Quote

    [...] The generation of hydrogen in amounts exceeding Faraday's law is continuously observed when the conditions such as temperature, current density, input voltage and electrode surface are suitable. Non-Faradic generation of hydrogen gas is sometimes 80 times higher than the gas from normal electrolysis. Excess hydrogen has proved difficult to replicate by other laboratories, although we are able to reproduce it regularly.

  • I finally got the high voltage DC-DC boost converter. It's tiny. I has 1x 35V 470µF and 2x 400V 10µF capacitors.




    Eventually I managed to obtain a visible plasma but I’m not sure if it’s the glow plasma that is supposed to be formed. I'm seeing what appear to be small sparks or arcing at times at a high rate. Voltage in the video below is 264V with the electrodes connected across the + and - terminals. The maximum current peak I saw was 0.22A (slightly over specifications) with a multimeter in series with the circuit, but it varied generally from 0.10A to 0.18A. I don't think the boost converter has enough juice to run the plasma reaction reliably, and I can obtain a more or less stable voltage only without load.



    Tweaking electrode height seems necessary. If the cathode is too immersed it will not work and a gas/steam sheath will not form around it. I believe I started obtaining a better reaction after I increased slightly the amount of electrolyte (currently 0.15g KOH in total in about 28 ml water; but some has evaporated or electrolyzed away), but for some reason I had better results after a pause for dinner even though I did not change anything in the crude setup (electrolyte color changed a bit however).


    Probably I should use a thinner cathode and anode geometry might be optimized but I wanted to try this quickly.

  • I made another test, this time turning off the lights. The electrolyte solution getting more concentrated and warmer probably contributed to making the reaction more easily observable and to have a more continuous nature, although it is still apparently impulsive. This mode of operation is probably more similar to what has been reported by Mizuno, Mondaini and others.


    Sometimes sparks or arcs could be observed too. I was continuously manually varying the cathode height below the water level to optimize the reaction.


    Also, an AM radio was put close to the cell. Just turning on the DC boost converter causes significant electromagnetic interference.



    I haven't fitted a fan to the DC boost converter yet, but it didn't get warm significantly during these tests. So the input power level, compared to most other plasma experiments reported especially in the LENR field, is rather low.

  • As I kept testing, a reaction very similar to what has been observed by others could eventually be produced. Just barely touching the water surface with the wire would immediately cause the cathode (in reality a repurposed paper clip) to become incandescent and producing a plasma. Water here was moderately warm.


    Interestingly current when this happened was only 0.11A. Immersing the cathode deeper would stop the reaction, making it revert to regular electroylsis and cause it to increase to 0.18A. This has also been reported by Mizuno and Mondaini.



    Very interesting, I didn't expect to actually observe this.



    EDIT: I just tried again after a pause, and it worked immediately for a while, but then the effect suddenly stopped. I wonder why.


    EDIT2: Same test as posted earlier, with the lights turned off. It is relatively bright, but not so much that it cannot be looked at directly.



    One thing I noticed after a further test with the lights on is that when the plasma has a more violet color, current draw is higher.


    The reaction apparently starts more easily if the cathode is hot. If it's cold it needs to be warmed up a bit first. Alternatively, it could be due to some other effect related to hydrogen ad/absorption. This could explain why the effect earlier appeared to stop after a few tries, after a pause.


    EDIT3: it does not seem to be temperature that causes the reaction to start right away.

  • Earlier I did a very crude calculation of how much heat could have gone into the jar using a food thermometer (range -45~230 °C), and from the temperature rise and the time elapsed in one test I came up with about 5 watts, in another 11 watts: so it can vary a lot; much heat seems unaccounted for. Stirring water would also rapidly lower temperatures.


    #

    Seconds

    T rise (°C)

    Water (g)

    Energy (J)

    Average Power (W)

    1

    109.11

    4.7

    28

    550.09

    5.04

    2

    149.71

    14.5

    28

    1697.08

    11.34


    I'm wondering how much power would be needed to immediately heat up a 1mm-thick steel wire to bright incandescence for about 5mm length under these conditions. Would 40W be enough?


    * * *


    EDIT: when the cathode gets hot (after using it for a while continuously) it tends to cause popping noises and small white globular (?) arcs, especially if kept just above the water level as I intentionally do in the video below.



    Operation acquires a more intermittent nature. It could also have to do with the electrolyte conductivity increasing since a slightly larger current is being passed on average than earlier on (0.15–0.18A instead of 0.11–0.15A). On their own these explosive events (H2-O2 recombination?) seem hotter than the mode of operation where an incandescent/thermal plasma forms, but the average power over time seems lower.

  • More observations, listed in chronological order.

    But I suspect I'm mostly talking to myself at this point.




    2019-12-10 morning testing

    • Tried again after a night-long pause with the same setup as yesterday. I could restart almost right away at 0.15A and 265V setting as before. Current seems slightly lower than yesterday evening.
    • Tested with a current clamp also (not really a precision instrument) and it roughly agrees with the multimeter on current draw. No AC current draw observed.
    • As the reaction becomes more impulsive, current draw decreases slightly
    • I then added a short carbon rod in contact with the anode and it made the reaction brighter and more popping without any real increase in current draw. However this could be mainly due to the increase effective anode surface area.

    • I tried separating the graphite rod from the anode and I’m not sure if there is any difference. The electrolyte is now darker from suspended carbon particles. Still no significant cathode wear observed.
    • Tried with a relatively thick piece of stranded oxidized copper wire and it made a green but somehow tamer plasma. This could indicate that the yellow plasma observed previously was mainly from Fe ions rather than incandescence. However the wire itself seems to get hot quickly.

    • After a short pause now the reaction does not happen immediately as before. Why? I think current draw is now excessive (0.22–0.23A) and the DC boost controller might be decreasing voltage to avoid an overloading condition. There’s a brief spark as soon as I immerse the copper wire cathode in the water, but then it reverts to electrolysis.
    • Eventually I managed to get conduction with the copper wire. Current is unusually low (0.10–0.12A) and the plasma looks green as it did earlier. The wire insulation about 3 cm away from the plasma zone is melting and burning. The jar is now noticeably warm, but not hot.
    • After another short pause, now the reaction is difficult to ignite again, possibly indirectly due to current draw getting to high and the boost converter decreasing voltage. Electrolysis occurs instead, at 0.22A
    • In any case, also when it worked, my impression is that the temperature at the tip of the cathode was higher and reached incandescence more easily with the steel wire. However it could be due to different size and electrical characteristics.
    • After changing the cathode into a flatter shape the reaction appeared to start quicker, but it eventually became hard again. So cathode geometry, together with the characteristics of the DC boost converter, is important. However this is probably mostly because under excessive load conditions the converter lowers voltage to a level that makes it difficult for the reaction to occur.
    • I made a measurement: the steel wire is almost exactly 1.00 mm thick, while the copper stranded wire is 1.15 mm thick.
    • It is possible, like Mondaini noticed, to obtain a plasma reaction through the wet walls of the jar above or away from the water level. I haven’t attempted melting it, but the power involved here is probably not high enough to do it quickly and besides I need this jar.
    • Another measurement: when a plasma fails to get initiated due to the DC boost converter decreasing voltage as previously suspected, voltage is about 50–75V (varies) while current is 0.22–0.25A.
    • I tried halving the number of finer wires composing the stranded copper wire, and now it seems slightly easier to start a reaction. However I think I also found that water adsorption on the fine wires by capillary action makes it more difficult to start.
  • I further thinned the copper wire to a diameter of 0.55 mm. The reaction now starts very easily but it’s also very noisy. It mostly emits a green-blue plasma when current draw is the lowest. Cathode wear still very limited.



    For some reason current draw has now the opposite sign from the cheap multimeter. If I further immerse the electrode in the electrolyte, inhibiting the reaction, the sign is as expected. The current clamp does not agree with this behavior, but it is reporting a strong AC component. It’s not clear how distorted the waveform is.

  • Yes can , you may be talking to yourself, but some of us are listening to your tinkering. This kind of hands on experiments is so deceptively simple on the surface and yet an exact knowledge of what is happening there is so scarce.

    I certainly Hope to see LENR helping humans to blossom, and I'm here to help it happen.

  • Here's some more:

    • I tried using a transistor radio connected to a PC as a sort of spectrum analyzer. It appears there is a noisy carrier signal from the plasma at roughly 700 Hz (depending on reaction conditions) that is best observed at 160 KHz on the AM range (upper limit of my radio. Spectrogram shown below) or in general in the higher end of this setting. It also spills to some extent into the FM range, but not strongly enough to clearly overcome the existing radio stations. However I haven’t tried optimizing the setup.

    • In another test I used headphones directly connected to the output of the radio. Signal weak at 108 Mhz (upper end of the FM range), but stronger between 102 and 100 MHz. Somewhat less intense at about 96 MHz, but peaks strongly just below 92 MHz. It's faint between this threshold and 88 MHz (lower end of the FM range). These are very crude and inaccurate measurements done by intermittently applying a plasma and gauging the difference between the on/off states while tuning the radio. I'm not sure if I'm listening to the PWM noise of the power supply (operating at 150 kHz) or the DC converter (supposedly operating at 75 kHz). (EDIT: I corrected a mistake)
    • A possible subjective graphical representation of the above could perhaps be as follows:

    • Then, I halved the number of strands (now 4) composing the copper wire. The tip now gets incandescent quicker than earlier and the bottom end is reaching the melting point of the material.

    • In this configuration intensive splashing of small droplets of electrolyte is occurring and the reaction is now even noisier than it previously was. Current draw from the cheap multimeter still positive during the plasma reaction. According to the T-RMS (4000 counts) current clamp, I’m getting up to 0.19A AC or about 0.17A in DC mode.
    • I might need earplugs.
  • 2019-12-10 afternoon testing


    • I increased the surface area of the anode, which I thought should give a stronger reaction. The previous anode was cleaned with 180 grit sandpaper.


    thtN5rg9zMt3lz8k3_w_mu_mNPJvhMk_XyE0bM_AAjmiX8-UHs4whWNIEeO4By5x63GSR-EGIYUhqYn-7S8ZjJIEm4r1CZzVEWa_3v_w-S4eLHCbyRfDAmglv4a0tEvAHexsG--H


    • I then replaced the electrolyte, using 0.49g K2CO3 in 28g tap water (0.13M concentration). The potassium carbonate granules dissolved slowly. KOH is definitely more convenient to use on this regard.
    • The first dip using 265V (as previously set) across both electrodes went well. It worked immediately and the reaction was vigorous, perhaps too much. Clamp meter says 0.25A AC and 0.13A DC. I made a video, here actually it had 25 ml of water.

    • After the first test I added 3 ml water, so now it’s truly 28 ml. As testing progresses, the plasma generated still looks green and the reaction is rather noisy and relatively intense.

    • Now trying with larger 0.55mm stranded wire tip again. The reaction seems slightly more controllable and less likely to engage in the noisy mode of operation that gives AC.
    • Reverted to previously used, 1 mm-thick soft steel tip. 0.17A DC normally, gives AC or reverse current when it starts popping. It emits a violet-red glow. The same reactions as before are observed, only apparently more easily. I made a video here too.

  • Monologue continues.





    2019-12-10 evening testing

    • It seems easier to cause the AC or reverse DC effect with a higher current density. This can be achieved with thinner, more conductive wires like for example the 0.55 mm copper cathode I used earlier, or by barely hovering the cathode on the electrolyte surface; the result is repetitive, loud operation. I think it should be an expected effect from the high-rate interrupted arcing, but possibly anomalous effects might be hidden under this phenomenon.
    • A short period of a few minutes of operation under this hearing loss-inducing mode (even with the 1 mm-thick soft steel wire I used) did not seem to cause any short-term increase in Geiger counts from a counter located in close proximity to it (enclosed in a plastic box to avoid air current-induced false readings). However electrical current to the cathode appeared to be more impulsive with the copper wire.
    • The role of electrical conductivity (and possibly magnetic properties) of the material used for the cathode might need some consideration. Copper is a highly conductive metal; mild steel will comparatively act almost like a resistor. Copper wire did not seem to become incandescent easily, but the plasma reaction seemed more intense and noisy with it, and closer to a highly intermittent high-current density glow plasma. However the unfavorable characteristics of my DC boost converter also have to be taken into account.
    • Tungsten welding rods of the width I need (preferably 0.5 mm or less) seem difficult to find and tungsten wire is relatively expensive. Possible alternatives could be titanium wire or graphite rods, but the latter might be too brittle at small sizes and close alternatives (e.g. graphite pencil leads) can explode with heat.
    • I tried looking for the electrical conductivity and melting point of various materials from Wikipedia. Tungsten has a very good conductivity and the highest melting point. Low-carbon steel might not be that bad. Some data from another source.


    Material

    Conductivity at 20°C (S/m)

    Melting point (°C)

    Copper

    5.96e7

    1085

    Tungsten

    1.79e7

    3422

    Nickel

    1.43e7

    1455

    Iron

    1.00e7

    1538

    Carbon steel (1010)

    6.99e6

    1425–1540

    Titanium

    2.38e6

    1668

    Stainless steel

    1.45e6

    1510

    Nichrome

    6.70e5

    1400