The outstanding work of Takaaki Matsumoto

  • I have been having a look at Takaaki Matsumoto’s paper ‘Experiments of Underwater Spark Discharges with Pinched Electrodes’ published Winter1996 in the Journal of New Energy. I believe this is one of his later papers.



    Matsumoto states that nickel (clearly identified by XS), calcium, titanium, sodium, aluminium, chlorine, cadmium and iodine were deposited on the palladium electrode. Such elements were not observed in a reference region of the wire, nor could they be assigned to impurities but rather suggested to be transmuted during the electrical discharges associated with the micro sparks.



    The paper is very thorough in the description of the experiments and the observed effects, but I would disagree about the provided explanations in terms of low energy fusion as defined by the Nattoh Model. I would suggest that the observed ENR effects could be due to low energy fission rather than low energy fusion, because, according to the STEM approach, all those elements can created by the release of embedded structures which would represent fission processes.



    From potassium (the electrolyte used was potassium carbonate): chlorine, phosphorus, carbon and aluminium atoms could result as shown below.


    K-39/18+1=4-3; 8-3 à Cl-35/16+1=4-2; 8-3 + He-4

                                     àP-31/14+1=4-1; 8-3 + He-4

                                     àAl-27/12+1=8-3 + He-4


    K-39/18+1=4-3; 8-1; 16-1 à Cl-35/16+1=4-2; 8-1; 16-1 + He-4

                                             àP-31/14+1=4-1; 8-1; 16-1 + He-4

                                             àAl-27/12+1=8-1; 16-1 + He-4


    K-39/18+1=4-3; 8-1; 16-1 à Al-27/12+1=8-1; 16-1 + C-12



    Any phosphorus could be expected to combust (possibly producing a slight glow). For the most part helium atoms would mix in with the emitted hydrogen generated by the electrolysis process, but some, caught up by the swirling plasmoidal energy plumes (itonic clusters and micro ball lightning), would be energised kinetically enough to pass through the thin glass of the beaker to create much diminished alpha radiation tracks in the film placed next to the beaker.



    From the palladium: nickel can be produced via the following fission reactions, producing 3 possible isotopes of sulphur. Matsumoto does not mention or detect sulphur creation (it would possibly end up as SO4-- in the solution), but its presence is mentioned in the current pinch experiments of Bogdanovich et al.


    Pd-100/46=4-1; 8-3; 16-2; 32-1 à Ni-64/28=8-3; 16-2 + S-32 + He-4


    Pd-102/46=4-1; 8-3; 16-2; 32-1 à Ni-64/28=8-3; 16-2 + S-34 + He-4


    Pd-104/46=4-1; 8-3; 16-2; 32-1 à Ni-64/28=8-3; 16-2 + S-36 + He-4




    Calcium, titanium and chromium can be produced from iron electrodes as follow:


    Fe-56/24+2=4-2; 8=1; 16-2 à Cr-52/22+2=4-1; 8=1; 16-2 + He-4

                                                à Ti-48/20+2=8-1; 16-2 + He-4


    Fe-56/22+4=4-3; 16-2 à Cr-52/20+4=4-2; 16-2 + He-4

                                        à Ti-48/18+4=4-1; 16-2 + He-4

                                        à Ca-44/16+4=16-2 + He-4


    Fe-56/22+4=4-3; 16-2 à Ca-44/16+4=16-2 + C-12



    But neither chromium nor titanium is detected: only calcium and carbon.



    Sodium can also be produced from copper electrodes as used in the Bogdanovich et al. experiments, as follows:


    Cu-63/28+1=4-2; 8-2; 16-2 à Na-23/10+1=4-1; 8-2 + S-36/16=16-1 + He-4





    According to the STEM approach, these fission products maintain the structure of the embedded forms, with the fission process only involving the breaking of bitron bonds rather than strong bonds of any of the nuclear structures. As the process of breaking bitron bonds is compatible with common ‘cold’ chemical reactions, there is no problem with it happening as a ‘cold’ fission process. I suspect that the fission processes at play here would far outweigh any parallel fusion processes.

  • I have been having a look at Takaaki Matsumoto’s paper ‘Experiments of Underwater Spark Discharges with Pinched Electrodes’ published Winter1996 in the Journal of New Energy. I believe this is one of his later papers. [...]

    "Experiments of Underwater Spark Discharges with Pinched Electrodes" from JNE1N4 (Winter 1996), attached.

  • Реакция электронного захвата - ключевая реакция в устройствах LENR - мы получаем нейтрон -


    1 р 1 + e + [эфир - масса которого равна 1.531m e ] → 0 n 1


    ∆E = (m 1 р 1 + me + 1.531 • me - m 0 n 1 ) c 2



    ∆E = (1,007276466879 + 0,0005485799 + 1,530987739 • 0,0005485799 - 1,008 664 915 88) а.е.м. • 1,661 • 10 -27 кг / а.е.м. • (3 • 10 8 м / с) 2 = 0,0 а.е.м. • 1,661 • 10 -27 кг / а.е.м. • 9 • 10 16 м 2 / с 2 = 0,0 • 10 -13 Дж = 0 МэВ



    Если мы получили нейтрон в результате реакции электронного захвата, то дальше мы можем получить дейтерий -


           1 р 1 + 0 n 11 Н 2 + γ(2,25МэВ)


    Дейтерий, в свою очередь, быстро взаимодействует с протоном, которого в избытке в результате разрушения воды -


    1 p 1 + 1 Н 22 He 3 + γ(6.02 МэВ)

    ∆E = (m 1 p 1 + m 1 Н 2 - m 2 He 3 ) c 2


    ∆E = (1,007276466879 + 2,0141017778 - 3,0149322468) а.е.м. • 1,661 • 10 -27 кг / а.е.м. • (3 • 10 8 м / с) 2 = 0,0064459997879 а.е.м. • 1,661 • 10 -27 кг / а.е.м. • 9 • 10 16 м 2 / с 2 = 9,636 • 10 -13 Дж = 6,02 МэВ



    Следующие реакции также возможны, когда у нас есть нейтроны:


    1 Н 2 + 0 n 11 Н 3 + γ (6 276 МэВ)

    E = ( m 1 d 2 + m N - m 1 T 3 ) c 2


    ∆E = (2,0141017778 + 1,00866491588 - 3,0160492777) а.е.м. • 1,661 • 10 -27 кг / а.е.м. • (3 • 10 8 м / с) 2 =


    0,00671741598 а.е.м. • 1,661 • 10 -27 кг / а.е.м. • 9 • 10 16 м 2 / с 2 = 10,04 • 10 -13 Дж = 6,276 МэВ


    Отрывок из моей статьи - «Разобрать файл» УРОК-21. ОТВЕТЫ НА ВОПРОСЫ ТРАНСМУТАЦИОННОГО ЭЛЕКТРОЛИЗА ВОДЫ »- работа Ф.М. Канарева, которая по результатам однозначно перекликается с результатами Вачаева -


    Когда Канарев пишет, что «Поскольку азот воздуха может участвовать в образовании ядер атомов углерода при открытом электролизере, то для проверки этой гипотезы необходимо было провести электролиз в закрытом электролизере. Было это сделано или нет? Это было сделано, и эксперимент подтвердил участие азота воздуха в трансмутационном процессе электролиза воды [7]. Тогда мне становится понятно появление в растворе натрия и алюминия. Кроме того, присутствие лития предполагает, что существовал еще один канал образования азота -


    1 H 2 + 0 n 11 H 3  


    1 H 3 + 2 He 43 Li 7   - стабильный изотоп лития ...


    3 Li 7 + 2 He 45 B 11   - стабильный изотоп бора ...


    5 B 11 + 2 He 47 N 15   - стабильный изотоп азота ...



    Дальше -


    7 N 15 + 2 He 49 F 19  


    9 F 19 + 2 He 411 N а 23  


    11 N а 23 + 2 He 413 Al 27   - стабильный изотоп алюминия ...


    13 Al 27 + 2 He 415 Р 31 - стабильный изотоп фосфора ...  


    15 Р 31 + 2 He 617 Cl 37   - стабильный изотоп хлора ...


    17 Cl 37 + 2 He 419 К 41 - стабильный изотоп калия ...  


    19 К 41 + 2 He 421 Sc 45   - стабильный изотоп скандия ...


    21 Sc 45 + 2 He 623 V 51   - стабильный изотоп ванадия ...


    23 V 51 + 2 He 425 Mn 55   - стабильный изотоп марганца ...


    25 Mn 55 + 2 He 427 Со 59 - стабильный изотоп кобальта ...  



    27 Со 59 + 2 He 429 С u 63   - стабильный изотоп меди ...



    27 Со 59 + 2 He 629 С u 65   - стабильный изотоп меди ... »


    Вот эта цепочка, которая привела к образованию 58% меди - это нужно понять и осознать!


    «Забегая вперед, отмечу стабильность результата, на мой взгляд, его создавало магнитное поле электролизера ...


    8 О 16 + 2 He 410 Ne 20   - стабильный изотоп неона ...


    10 Ne 20 + 2 He 412 Mg 24   - стабильный изотоп магния ...


    12 Mg 24 + 2 He 414 Si 28   - стабильный изотоп кремния ...


    14 Si 28 + 2 He 416 S 32 - стабильный изотоп серы ...


    16 S 32 + 2 He 418 Ar 36   - стабильный изотоп аргона ...


    Конечно, был аргон, но он либо испарился, либо участвовал в его превращении в кальций - для этого нужны газоанализаторы ...


    18 Ar 36 + 2 He 420 Ca 40   - стабильный изотоп кальция ...


    Другой канал -


    14 Si 28 + 2 He 616 S 34 - стабильный изотоп серы ...


    16 S 34 + 2 He 418 Ar 38   - стабильный изотоп аргона ...


    или


    16 S 32 + 2 He 6  → 18 Ar 38 - стабильный изотоп аргона ...


    Дальше -


    18 Ar 38 + 2 He 420 Ca 42   - - стабильный изотоп кальция ...


    20 Ca 42 + 2 He 422 Ti 46   - стабильный изотоп титана ...


    22 Ti 46 + 2 He 424 Cr 50 - стабильный изотоп хрома ...


    24 Cr 50 + 2 He 426 Fe 54   - стабильный изотоп железа ...


    26Fe54 + 2He428Ni58  - is a stable isotope of nickel ...


    Another channel -


    20Ca42 + 2He622Ti48  - is a stable titanium isotope ...


    22Ti48 + 2He424Cr52  - is a stable isotope of chromium ...


    24Cr52 + 2He426Fe56  - is a stable isotope of iron ...


    Another channel -


    24Cr50 + 2He6 26Fe56  - is a stable isotope of iron ...


    26Fe56 + 2He428Ni60  - is a stable isotope of nickel ...


    28Ni60 + 2He430Zn64 - is a stable zinc isotope ...


    Another channel -


    22Ti48 + 2He6 24Cr54  - is a stable isotope of chromium ...


    24Cr54 + 2He426Fe58  - is a stable isotope of iron ...


    26Fe58 + 2He428Ni62  - is a stable isotope of nickel ...


    28Ni62 + 2He430Zn66  - is a stable zinc isotope ...


    30Zn66 + 2He432Ge70  - is a stable isotope of germanium ...


    32Ge70 + 2He634Se76  - is a stable isotope of selenium ...


    34Se76 + 2He436Kr80  - is a stable isotope of krypton ...


    36Kr80 + 2He638Sr86  - is a stable strontium isotope ...


    38Sr86 + 2He440Zr90  - is a stable isotope of zirconium ...


    40 Zr 90 + 2 He 442 Mo 94   - стабильный изотоп молибдена ...

  • Реакция электронного захвата - ключевая реакция в устройствах LENR - мы получаем нейтрон

    I don't understand Russian.


    What has been cut-and-pasted is a list of well known and addressed fusion equations.


    The response would seem to contain no sensible comment about the suggested low-energy 'cold' fission equations that can produce the same experimental by-product elements without having to first generate a lot of helium fuel from hydrogen for the fusion interpretation.


    Are not the provided fission equations balanced and feasible? And certainly with the STEM approach they require no more applied heat and pressure than the equivalent chemical reactions involving chemical bond breaking and reallocation.


    It would be useful to discus new approaches and the issues that surround them rather than to fire off about older interpretations re fusion which are well covered on this forum. I accept that you believe that these experiments represent cold fusion, but beliefs are not proof; and they certainly do not negate other feasible alternatives.

  • The e-capture reaction is the key reaction in the LENR devices - we get a neutron -


    1р1 + e + [ether - whose mass is equal to 1.531me] → 0n1


    ∆E = (m1р1 + me + 1.531 • me - m0n1) c2


    ∆E = (1.007276466879 + 0.0005485799 + 1.530987739 • 0.0005485799 - 1.008 664 915 88) amu • 1,661 • 10-27 kg / amu. • (3 • 108 m / s) 2 = 0.0 amu. • 1,661 • 10-27 kg / amu. • 9 • 1016 m2 / s2 = 0.0 • 10-13 J = 0 MeV


    If we got a neutron as a result of the e-capture reaction, then further we can get deuterium -

           1р1 + 0n11Н2 + γ (2.25 MeV)

    Deuterium, in turn, quickly interacts with a proton, which in excess as a result of the destruction of water -

    1p1 + 1Н22He3 + γ (6.02 MeV)

    ∆E = (m1p1 + m1Н2 – m2He3 )c2

    ∆E = (1.007276466879 + 2.0141017778 - 3.0149322468) amu • 1,661 • 10-27 kg / amu. • (3 • 108 m / s) 2 = 0.0064459997879 amu. • 1,661 • 10-27 kg / amu. • 9 • 1016 m2 / s2 = 9.636 • 10-13 J = 6.02 MeV


    The following reactions are also possible once we have neutrons -

    1Н2 + 0n11Н3 + γ (6,276 МэВ)

    E = (m1d2 + mNm1T3 )c2


    ∆E = (2.0141017778 + 1.00866491588 - 3.0160492777) amu • 1,661 • 10-27 kg / amu. • (3 • 108 m / s) 2 =

    0.00671741598 amu • 1,661 • 10-27 kg / amu. • 9 • 1016 m2 / s2 = 10.04 • 10-13 J = 6.276 MeV


    An excerpt from my article - "Parse the file" LESSON-21. ANSWERS TO QUESTIONS OF TRANSMUTATION ELECTROLYSIS OF WATER "- the work of FM Kanarev. , which, according to the results, unambiguously echoes the results of Vachaev -


    “When Kanarev writes that“ Since air nitrogen can participate in the formation of nuclei of carbon atoms with an open electrolyzer, then to test this hypothesis it was necessary to carry out electrolysis in a closed electrolyzer. Was it done or not? This was done, and the experiment confirmed the participation of nitrogen in the air in the transmutation process of electrolysis of water [7]. ”, Then it becomes clear to me the appearance of sodium and aluminum in the solution. In addition, the presence of lithium suggests that there was another channel for the formation of nitrogen -


    1H2 + 0n11H3  

    1H3 + 2He43Li7  is a stable isotope of lithium ...

    3Li7 + 2He45B11  - is a stable isotope of boron ...

    5B11 + 2He47N15  - is a stable nitrogen isotope ...


    Further -


    7N15 + 2He49F19  

    9F19 + 2He411Nа23  

    11Nа23 + 2He413Al27  - is a stable isotope of aluminum ...

    13Al27 + 2He415Р31  - is a stable isotope of phosphorus ...

    15Р31 + 2He617Cl37  - is a stable isotope of chlorine ...

    17Cl37 + 2He419К41  - is a stable isotope of potassium ...

    19К41 + 2He421Sc45  - is a stable isotope of scandium ...

    21Sc45 + 2He623V51  is a stable isotope of vanadium ...

    23V51 + 2He425Mn55  - is a stable isotope of manganese ...

    25Mn55 + 2He427Со59  - stable isotope of cobalt ...

    27Со59 + 2He429Сu63  - is a stable isotope of copper ...

    27Со59 + 2He629Сu65  - is a stable isotope of copper ... "


    Here it is this chain, which led to the formation of 58% copper - this must be understood and realized!


    “Looking ahead, I will note the stability of the result, in my opinion, it was created by the magnetic field of the electrolyzer ...


    8О16 + 2He410Ne20  - is a stable isotope of neon ...

    10Ne20 + 2He412Mg24  - is a stable isotope of magnesium ...

    12Mg24 + 2He414Si28  - is a stable silicon isotope ...

    14Si28 + 2He416S32 - stable sulfur isotope ...

    16S32 + 2He418Ar36  - is a stable isotope of argon ...

    Of course, there was argon, but it either evaporated or participated in its transformation into calcium - gas analyzers are needed to fix it ...


    18Ar36 + 2He420Ca40  - stable isotope of calcium ...

    Another channel -

    14Si28 + 2He616S34 - is a stable sulfur isotope ...

    16S34 + 2He418Ar38  - is a stable isotope of argon ...

    or

    16S32 + 2He4 + 2•0n118Ar38 - is a stable isotope of argon ...


    Further -

    18Ar38 + 2He420Ca42  - - stable isotope of calcium ...

    20Ca42 + 2He422Ti46  - is a stable isotope of titanium ...

    22Ti46 + 2He424Cr50 - is a stable isotope of chromium ...

    24Cr50 + 2He426Fe54  - is a stable isotope of iron ...

    26Fe54 + 2He428Ni58  - is a stable isotope of nickel ...

    Another channel -


    20Ca42 + 2He622Ti48  - is a stable titanium isotope ...

    22Ti48 + 2He424Cr52  - is a stable isotope of chromium ...

    24Cr52 + 2He426Fe56  - is a stable isotope of iron ...

    Another channel -

    24Cr50 + 2He6 26Fe56  - is a stable isotope of iron ...

    26Fe56 + 2He428Ni60  - is a stable isotope of nickel ...

    28Ni60 + 2He430Zn64 - is a stable zinc isotope ...

    Another channel -

    22Ti48 + 2He6 24Cr54  - is a stable isotope of chromium ...

    24Cr54 + 2He426Fe58  - is a stable isotope of iron ...

    26Fe58 + 2He428Ni62  - is a stable isotope of nickel ...

    28Ni62 + 2He430Zn66  - is a stable zinc isotope ...

    30Zn66 + 2He432Ge70  - is a stable isotope of germanium ...

    32Ge70 + 2He634Se76  - is a stable isotope of selenium ...

    34Se76 + 2He436Kr80  - is a stable isotope of krypton ...

    36Kr80 + 2He638Sr86  - is a stable strontium isotope ...

    38Sr86 + 2He440Zr90  - is a stable isotope of zirconium ...

    40Zr90 + 2He442Mo94  - is a stable isotope of molybdenum ...


    All these reactions are "energy positive" ... That is why I remind you of this .... They are the ones that give excess heat ...


    These reactions were implemented in the Vachaev installation, in the installation - an electrolytic cell, Kanarev, in the installation of Godin, Klimov and others ...