Post ICCF24 thread.

  • Good article written by an investor who attended all 4 days of the ICCF:


    How Hot is Cold Fusion? - Atomic Insights


    The 24th International Conference on Cold Fusion (ICCF24) was held at the lovely and spacious Computer History Museum in Mountain View, CA over four days in late July. As a venture investor looking at evaluating and investing in a wide range of advanced nuclear ventures, I was invited to participate and/or sponsor the event. While I wasn’t initially convinced that cold fusion was the best use of four days, the appeal of sharing my perspective on investing in next-gen nuclear as well as having the opportunity to talk wtih attendees about the work Rod and I are doing building advanced nuclear portfolios for investors with Nucleation Capital, our non-traditional venture fund, was more than I could resist.


    To our delight, ICCF24 was a surprisingly fun, well-organized and interesting event, hosted by the Anthropocene Institute. Four full days of expert sessions were capped with a hosted outdoor banquet with comic food-prep performance, gifts and dinner prepared by television celebrity Chef Martin Yan; the inspiring award of a lifetime-achievement gold medal; musical and multimedia entertainment with original rap performances about cold fusion derived from conference sessions by science impresario Baba Brinkman and much more. For those curious about where things stand with what is no longer being called “cold fusion,” I am pleased to share the following report.

    First, some background

    The concept of cold fusion was announced 1/3 century ago by Martin Fleischmann and Stanley Pons.1 Their sensational revelation? The release of excess heat in a lab setting explainable only as a type of nuclear event occurring in the presence of certain metals and gases. Their claims engendered tremendous scientific interest and initial fanfare but lack of replicability or an acceptable theory to explain the effect undermined confidence and the concept quickly went from hotly debated to thoroughly debunked.


    The onerous stigma of discredited science has since followed work on cold fusion yet a number of scientists had become intrigued and begun to explore the phenomenon. Researchers began to meet up periodically to discuss their work and results, forming the ICCF (International Conference on Cold Fusion) in 1990. Despite a serious lack of funding, many independent researchers and labs persisted in testing materials and produced yet more suggestive data using different combinations of metals, configurations, temperatures and pressure conditions.

    Fast forward

    In 2015, with the threat of climate change helping to convince Google to leave no energy stone unturned, a group of scientists, academics and technologists secured Google funding for a multi-year investigation into cold fusion. After three years and an investigation that tested dozens of approaches, the team published their findings in the journal Nature, acknowledging their failure to observe any transformative excess heat yet also an inability to either confirm or disprove cold fusion from their efforts. They found that better test techniques and measurement calorimetry would be helpful to go further and encouraged others to keep exploring. They concluded:

    A reasonable criticism of our effort may be ‘Why pursue cold fusion when it has not been proven to exist?’. One response is that evaluating cold fusion led our programme to study materials and phenomena that we otherwise might not have considered. We set out looking for cold fusion, and instead benefited contemporary research topics in unexpected ways.

    A more direct response to this question, and the underlying motivation of our effort, is that our society is in urgent need of a clean energy breakthrough. Finding breakthroughs requires risk taking, and we contend that revisiting cold fusion is a risk worth taking.

    We hope our journey will inspire others to produce and contribute data in this intriguing parameter space. This is not an all-or-nothing endeavour. Even if we do not find a transformative energy source, this exploration of matter far from equilibrium is likely to have a substantial impact on future energy technologies. It is our perspective that the search for a reference experiment for cold fusion remains a worthy pursuit because the quest to understand and control unusual states of matter is both interesting and important.Screen-Shot-2022-08-11-at-6.21.57-PM.png


    Back to the present

    The ICCF held its 24th session in northern California last week, following a three year hiatus. Those representing current ongoing research projects largely sported grey, white or no hair. The community engaged in lively debates on a whole range of issues, including what to call this type of energy. With “cold fusion” being tainted, “LENR” (Low Energy Nuclear Reactions) and “Solid-State Fusion Energy” were broadly used interchangeably, even as certain organizers urged caution about selecting any name before the underlying physics were actually fully understood.


    Continued poor repeatability underpinned by the lack of a supportive predictive atomic theory that explained the heat generation effect was acknowledged. Nevertheless, there was definite progress being made in a range of areas, not least of which was a far broader appreciation of the complexity of the dynamics underlying the atomic transmutations, particularly with respect to the numbers of affected and active bodies. Unlike fusion and fission, which are nuclear events that happen as a result of direct interactions of two distinct bodies (such as between deuterium and tritium for fusion, and between uranium and a neutron in fission), research had shown that LENR involved complex mult-body interactions, which could occur with a variety of metals such as nickel, steel, or palladium in the presence of deuterium or tritium but which may also include quarks, photons, protons, neutrons or pomerons. To further complicate the matter, it is clear that those dynamics were impacted by conditions such as temperature and pressure affecting the energy of the bonds within the metallic lattices.


    While the exact set of phenomena that unfold to release energy remains unclear, what was not debated at all was whether the potential to release heat was real. It clearly is, despite the extended difficulty scientists have had pinning down theory and practice. This issue seems entirely settled. Decades of work by hundreds of researchers reporting on their experiments and experiences of heat release “anomalies” have begun to provide a far more nuanced picture of the dynamics and the parametric guideposts that will eventually enable those studying them to narrow in on the controlling aspects.


    According to Dr. Florian Metzler of MIT, the revelation of data points around these phenomena closely mirrors the progression of reporting around anomalies for other deeply complex physical effects, such as the work that preceded the development of the transistor, the solid state amplifier or that which is continuing on superconductors. At some point, the data generated will provide sufficient guidance to enable patterns to emerge that may result in a profound shift in our understandings as well as tranformative technologies, just as Bell Labs did, despite widespread skepticism, to finally figure out how to make reliable transistors, which innovation revolutionized electronics.


    In the meantime, there are researchers pursuing the bigger picture on the theoretical side, and making strides towards creating a true “proof of principle” design, starting with known mechanisms which include a better understanding of how host lattice metals absorb energy, get excited and emit an alpha particle. Increasingly, those seeking to deploy LENR systems will move from uncontrolled behaviors to deliberately engineered systems that produce useful amounts of energy. Once that happens, LENR may well emerge as a readily deployable type of consumer-facing nuclear, where a wide range of low-cost materials could be combined at nearly any size or configuration to generate electrons or heat for use in homes, schools, stores, boats, planes and other places where both electricity and heat are used but in smaller amounts.

    Two Big Announcements

    $10 Million from ARPA-e. Though there were no technological breakthroughs announced, there were some very exciting funding announcements. During his presentation, ARPA-e fusion program director, Scott Hsu, announced a new $10 million funding solicitation round that will select a number of LENR project teams to fund. This funding decision came out of ARPA-e’s Low-Energy Nuclear Reactions Workshop, held in October of 2021, which solicited input from experts on the best approach for breaking the stalemate that has long existed between lack of funding and lack of results in cold fusion. In anticipation, most likely, of the urgency with which any breakthrough will need to be commercialized, this program requires that applicants form into full business teams that bring a variety and balance of skills, blending technical with marketing and finance.


    Eyeing a $100M XPrize. Although organizers were not ready to announce the competition or the specific requirements, work has begun to raise the capital necessary to offer a $100 million XPrize to the first team to produce a replicable, accepted, on-demand LENR system. Peter Diamandis, founder of the XPrize, addressed the assembled group and revealed info about the behind-the-scenes efforts, decisions and negotiations that must be completed in order for the XPrize organization to officially offer the prize and start the competition. The news and prospect of there being a very large XPrize that might be offered was very well received. It was also clear that, much like with other XPrizes, news of a prize being in the works can shake loose investment capital for promising ventures sooner rather than later. XPrize-Quote.png

    LENR Lessons and Learning

    According to the Anthropocene Institute, there may be 150 or more initiatives or ventures currently working on LENR research or development. ICCF24 organizers opted not to host a huge expo but instead invited the community to submit posters or abstracts for the conference. One had to become a sponsor in order to secure space to showcase one’s efforts at the event. As a result, only a few LENR ventures displayed LENR demos and, of those on display, only one actually demonstrated an effect. Nevertheless, there were a few ventures in attendance claiming to have working systems that generate excess energy and endeavoring to raise venture funding to get to the next stage.


    For those of us interested in the investment opportunities, ICCF24 provided ample opportunities for mingling with and meeting those gathered at ICCF24. People were happy to share their opinions on the state-of-the-art and these conversations provided a gauge on community sentiments. Not surprisingly, many were wary of existing energy production claims. Such caution is prudent for anyone prone to giving credence to any claim until repeatable energy production is demonstrated without question. This has yet to be achieved. But, to complicate matters, lack of demonstrable evidence but doesn’t fully refute claims either. There are, in fact, few good means of measuring small amounts of incremental heat produced in a system that is already hot or has another source of energy adding power. There are tabulation methods that have been proposed but lack of suitable measurement equipment or agreed upon verification methods is yet another challenge for the successful emergence of this technology. Thus, the race to the finish line for understanding and controlling these reactions continues both on the theoretical side as well as on the practical application side with no clear winner or timeline in sight, making early-stage investment decisions little more than a bet on a team and a dream.


    Whichever group manages to overcome these obstacles and develop a securely working system—whether or not they have figured out the underlying theoretic basis—would, however, have a significant strategic and financial advantage. Not only would they find capital resources, they would have a clear lead in getting a viable product to market in what would clearly be a huge market. Sadly, given cold fusion’s still lingering stigma, LENR developers face extra jeopardy in any overstatements that could reverberate to set back the entire field. For now, this makes fundraising a particular challenge for all developers, even among those investors quite aware that LENR may one day compete in the vast energy market.


    Given the potential value of this technology, it is no wonder that dozens of cash-strapped researchers and venture teams have soldiered on for decades. Now that ARPA-e has chosen to continue the work initiated by Google to identify a proof-of-concept design, there is new-found scientific integrity and rebranding to be done. There is also a greater awareness that what set cold fusion back and derailed early efforts was not scientific fraud but rather its far more complex sub-atomic transmutations, its multibody interactions combined with environmental factors such as temperature, pressure and light that varied by selection of component materials. These complexities still need to be sorted out but could potentially provide many viable options for sourcing and construction of systems and thus help to reduce manufacturing costs.


    Not surprising then, was the participation at ICCF24 of several of the most respected and active venture funders in the nuclear space, including Matt Trevithick, who recently left Google and joined the venture fund, DCVC; Carly Anderson from Prime Movers Lab; Kota Fuchigami from Mitsubishi; and Shally Shanker of Aiim Partners. How and where these firms choose to invest in LENR will not be known for some time. Still, if nothing else, this conference established that informed investors do recognize that LENR exists and they are watching its progress. If the work progresses as anticipated by the community, LENR will eventually become a ubiquitous source of safe, low-cost, readily-manufacturable, clean, popular and broadly applicable commercial nuclear energy that provides abundant energy. For those still pondering “how hot is cold fusion?,” there is discernable warming, so it may be time to start paying attention.

  • It is interesting to see that Dr. Kim was thinking about Bose condensation way back in 2010. He was a true path breaker in LENR. I remember now how Dr. Kim's work inspired my interest is Bose condensation back in 2011.

  • EGO OUT

    Peter Gluck

    Thursday, June 6, 2013

    A VETERAN’S VOICE


    Interview with Professor YEONG E. KIM

    A VETERAN’S VOICE
    Interview with Professor YEONG E. KIM It is a self-assumed task of this blog(ger) to provide young LENR researchers with the best in...
    egooutpeters.blogspot.com

    It is a self-assumed task of this blog(ger) to provide young LENR researchers with the best information available regarding the field. Till now they have received mainly technological principles and managerial best practice due to my own limitations, but now I am appealing to a good friend- who is a world class specialist and authority in those branches of physics that are bound


    the very core of LENR, nuclear physics and solid state physics...


    Professor Yeong E. Kim from the Purdue University has generously accepted to help, first with the following interview.

  • Don't remember if Katinski was already shared ?


    External Content www.youtube.com
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.

  • External Content www.youtube.com
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.

  • External Content www.youtube.com
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.

  • External Content www.youtube.com
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.

  • nickec


    Apologies extended to you, my post needs editing for clarity. The Kim interview I reverence, from 2013, is from esteemed Peter Gluck.

    .. bound ________________ the very core of LENR ..." Please fill in the blank.

    Kim states that the very core of LENR is Nuclear Physics and Solid State Physics.


    Now I look to the related arts of science which fall under the Tree of Nuclear Physics and the Branch of Solid State Physics.


    Nano Fission and Fusion, Nuclear Batteries, Condensed Matter Physics, Metamaterials, Nano Physics and Fabrication, Terra Hertz Tech, Laser Tech, Plasmonics and Self Organizing Plasma Physics, Quantum Dot Emitters and Nano Sensors, and all other Arts relevant to Condensed Matter Nuclear Science.


    I also believe that LENR includes many aspects of hot fusion and even fission. To keep these separated slows progress.


    Advanced CMNS Solid State Atomic and Fusion Energy Technological Development Teams are multidisciplinary with broad sets of skills.


    I'm a layman with an "Abstract Education". I've read thousands of abstracts, papers and patents.

    first with the following interview." Where is this?

    Well... I hope Yeong Kim will have more to say on this. axil Thanks. Your note got me to reading all of Kim's research.

    The comments found in the Gluck Kim Interview are worth study as well.

  • 2010 or so... Frank Gordon "How Hot is Cold Fusion"

    Presented at the Natural Philosophy Alliance

    A 10 volume Playlist

    External Content youtube.com
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.

  • In most experiments after the Pd is charged it starts to discharge through the weakest places. For a cube, these are the corners for other geometries it would be cracks or other weak points in the lattice. What happens is that as the gas leaks out each crack sets up a Helmholtz oscillator that generates, after a while, weak coherent alpha-beta phase waves.

    Could you please describe the physical make up of these alpha-beta phase waves. Electrons are connecting the atoms in the lattice together, so does this term mean waves of electrons, in the same quantum mechanical phase, moving collectively in the lattice?