Online
Shane D. Moderator
  • Male
  • from Pensacola Beach, Fl.
  • Member since Jan 26th 2015

Posts by Shane D.

    off topic yet related study

    Honestly, the intent of this thread is a bit vague to me. Seems straight forward at first blush, but I could interpret some responses as an indirect attempt at providing answers to the authors questions, or not. So I will wait until Rob comes back on with more specifics about what he considers "off topic" before I move anymore posts.

    Good article written by an investor who attended all 4 days of the ICCF:


    How Hot is Cold Fusion? - Atomic Insights


    The 24th International Conference on Cold Fusion (ICCF24) was held at the lovely and spacious Computer History Museum in Mountain View, CA over four days in late July. As a venture investor looking at evaluating and investing in a wide range of advanced nuclear ventures, I was invited to participate and/or sponsor the event. While I wasn’t initially convinced that cold fusion was the best use of four days, the appeal of sharing my perspective on investing in next-gen nuclear as well as having the opportunity to talk wtih attendees about the work Rod and I are doing building advanced nuclear portfolios for investors with Nucleation Capital, our non-traditional venture fund, was more than I could resist.


    To our delight, ICCF24 was a surprisingly fun, well-organized and interesting event, hosted by the Anthropocene Institute. Four full days of expert sessions were capped with a hosted outdoor banquet with comic food-prep performance, gifts and dinner prepared by television celebrity Chef Martin Yan; the inspiring award of a lifetime-achievement gold medal; musical and multimedia entertainment with original rap performances about cold fusion derived from conference sessions by science impresario Baba Brinkman and much more. For those curious about where things stand with what is no longer being called “cold fusion,” I am pleased to share the following report.

    First, some background

    The concept of cold fusion was announced 1/3 century ago by Martin Fleischmann and Stanley Pons.1 Their sensational revelation? The release of excess heat in a lab setting explainable only as a type of nuclear event occurring in the presence of certain metals and gases. Their claims engendered tremendous scientific interest and initial fanfare but lack of replicability or an acceptable theory to explain the effect undermined confidence and the concept quickly went from hotly debated to thoroughly debunked.


    The onerous stigma of discredited science has since followed work on cold fusion yet a number of scientists had become intrigued and begun to explore the phenomenon. Researchers began to meet up periodically to discuss their work and results, forming the ICCF (International Conference on Cold Fusion) in 1990. Despite a serious lack of funding, many independent researchers and labs persisted in testing materials and produced yet more suggestive data using different combinations of metals, configurations, temperatures and pressure conditions.

    Fast forward

    In 2015, with the threat of climate change helping to convince Google to leave no energy stone unturned, a group of scientists, academics and technologists secured Google funding for a multi-year investigation into cold fusion. After three years and an investigation that tested dozens of approaches, the team published their findings in the journal Nature, acknowledging their failure to observe any transformative excess heat yet also an inability to either confirm or disprove cold fusion from their efforts. They found that better test techniques and measurement calorimetry would be helpful to go further and encouraged others to keep exploring. They concluded:

    A reasonable criticism of our effort may be ‘Why pursue cold fusion when it has not been proven to exist?’. One response is that evaluating cold fusion led our programme to study materials and phenomena that we otherwise might not have considered. We set out looking for cold fusion, and instead benefited contemporary research topics in unexpected ways.

    A more direct response to this question, and the underlying motivation of our effort, is that our society is in urgent need of a clean energy breakthrough. Finding breakthroughs requires risk taking, and we contend that revisiting cold fusion is a risk worth taking.

    We hope our journey will inspire others to produce and contribute data in this intriguing parameter space. This is not an all-or-nothing endeavour. Even if we do not find a transformative energy source, this exploration of matter far from equilibrium is likely to have a substantial impact on future energy technologies. It is our perspective that the search for a reference experiment for cold fusion remains a worthy pursuit because the quest to understand and control unusual states of matter is both interesting and important.Screen-Shot-2022-08-11-at-6.21.57-PM.png


    Back to the present

    The ICCF held its 24th session in northern California last week, following a three year hiatus. Those representing current ongoing research projects largely sported grey, white or no hair. The community engaged in lively debates on a whole range of issues, including what to call this type of energy. With “cold fusion” being tainted, “LENR” (Low Energy Nuclear Reactions) and “Solid-State Fusion Energy” were broadly used interchangeably, even as certain organizers urged caution about selecting any name before the underlying physics were actually fully understood.


    Continued poor repeatability underpinned by the lack of a supportive predictive atomic theory that explained the heat generation effect was acknowledged. Nevertheless, there was definite progress being made in a range of areas, not least of which was a far broader appreciation of the complexity of the dynamics underlying the atomic transmutations, particularly with respect to the numbers of affected and active bodies. Unlike fusion and fission, which are nuclear events that happen as a result of direct interactions of two distinct bodies (such as between deuterium and tritium for fusion, and between uranium and a neutron in fission), research had shown that LENR involved complex mult-body interactions, which could occur with a variety of metals such as nickel, steel, or palladium in the presence of deuterium or tritium but which may also include quarks, photons, protons, neutrons or pomerons. To further complicate the matter, it is clear that those dynamics were impacted by conditions such as temperature and pressure affecting the energy of the bonds within the metallic lattices.


    While the exact set of phenomena that unfold to release energy remains unclear, what was not debated at all was whether the potential to release heat was real. It clearly is, despite the extended difficulty scientists have had pinning down theory and practice. This issue seems entirely settled. Decades of work by hundreds of researchers reporting on their experiments and experiences of heat release “anomalies” have begun to provide a far more nuanced picture of the dynamics and the parametric guideposts that will eventually enable those studying them to narrow in on the controlling aspects.


    According to Dr. Florian Metzler of MIT, the revelation of data points around these phenomena closely mirrors the progression of reporting around anomalies for other deeply complex physical effects, such as the work that preceded the development of the transistor, the solid state amplifier or that which is continuing on superconductors. At some point, the data generated will provide sufficient guidance to enable patterns to emerge that may result in a profound shift in our understandings as well as tranformative technologies, just as Bell Labs did, despite widespread skepticism, to finally figure out how to make reliable transistors, which innovation revolutionized electronics.


    In the meantime, there are researchers pursuing the bigger picture on the theoretical side, and making strides towards creating a true “proof of principle” design, starting with known mechanisms which include a better understanding of how host lattice metals absorb energy, get excited and emit an alpha particle. Increasingly, those seeking to deploy LENR systems will move from uncontrolled behaviors to deliberately engineered systems that produce useful amounts of energy. Once that happens, LENR may well emerge as a readily deployable type of consumer-facing nuclear, where a wide range of low-cost materials could be combined at nearly any size or configuration to generate electrons or heat for use in homes, schools, stores, boats, planes and other places where both electricity and heat are used but in smaller amounts.

    Two Big Announcements

    $10 Million from ARPA-e. Though there were no technological breakthroughs announced, there were some very exciting funding announcements. During his presentation, ARPA-e fusion program director, Scott Hsu, announced a new $10 million funding solicitation round that will select a number of LENR project teams to fund. This funding decision came out of ARPA-e’s Low-Energy Nuclear Reactions Workshop, held in October of 2021, which solicited input from experts on the best approach for breaking the stalemate that has long existed between lack of funding and lack of results in cold fusion. In anticipation, most likely, of the urgency with which any breakthrough will need to be commercialized, this program requires that applicants form into full business teams that bring a variety and balance of skills, blending technical with marketing and finance.


    Eyeing a $100M XPrize. Although organizers were not ready to announce the competition or the specific requirements, work has begun to raise the capital necessary to offer a $100 million XPrize to the first team to produce a replicable, accepted, on-demand LENR system. Peter Diamandis, founder of the XPrize, addressed the assembled group and revealed info about the behind-the-scenes efforts, decisions and negotiations that must be completed in order for the XPrize organization to officially offer the prize and start the competition. The news and prospect of there being a very large XPrize that might be offered was very well received. It was also clear that, much like with other XPrizes, news of a prize being in the works can shake loose investment capital for promising ventures sooner rather than later. XPrize-Quote.png

    LENR Lessons and Learning

    According to the Anthropocene Institute, there may be 150 or more initiatives or ventures currently working on LENR research or development. ICCF24 organizers opted not to host a huge expo but instead invited the community to submit posters or abstracts for the conference. One had to become a sponsor in order to secure space to showcase one’s efforts at the event. As a result, only a few LENR ventures displayed LENR demos and, of those on display, only one actually demonstrated an effect. Nevertheless, there were a few ventures in attendance claiming to have working systems that generate excess energy and endeavoring to raise venture funding to get to the next stage.


    For those of us interested in the investment opportunities, ICCF24 provided ample opportunities for mingling with and meeting those gathered at ICCF24. People were happy to share their opinions on the state-of-the-art and these conversations provided a gauge on community sentiments. Not surprisingly, many were wary of existing energy production claims. Such caution is prudent for anyone prone to giving credence to any claim until repeatable energy production is demonstrated without question. This has yet to be achieved. But, to complicate matters, lack of demonstrable evidence but doesn’t fully refute claims either. There are, in fact, few good means of measuring small amounts of incremental heat produced in a system that is already hot or has another source of energy adding power. There are tabulation methods that have been proposed but lack of suitable measurement equipment or agreed upon verification methods is yet another challenge for the successful emergence of this technology. Thus, the race to the finish line for understanding and controlling these reactions continues both on the theoretical side as well as on the practical application side with no clear winner or timeline in sight, making early-stage investment decisions little more than a bet on a team and a dream.


    Whichever group manages to overcome these obstacles and develop a securely working system—whether or not they have figured out the underlying theoretic basis—would, however, have a significant strategic and financial advantage. Not only would they find capital resources, they would have a clear lead in getting a viable product to market in what would clearly be a huge market. Sadly, given cold fusion’s still lingering stigma, LENR developers face extra jeopardy in any overstatements that could reverberate to set back the entire field. For now, this makes fundraising a particular challenge for all developers, even among those investors quite aware that LENR may one day compete in the vast energy market.


    Given the potential value of this technology, it is no wonder that dozens of cash-strapped researchers and venture teams have soldiered on for decades. Now that ARPA-e has chosen to continue the work initiated by Google to identify a proof-of-concept design, there is new-found scientific integrity and rebranding to be done. There is also a greater awareness that what set cold fusion back and derailed early efforts was not scientific fraud but rather its far more complex sub-atomic transmutations, its multibody interactions combined with environmental factors such as temperature, pressure and light that varied by selection of component materials. These complexities still need to be sorted out but could potentially provide many viable options for sourcing and construction of systems and thus help to reduce manufacturing costs.


    Not surprising then, was the participation at ICCF24 of several of the most respected and active venture funders in the nuclear space, including Matt Trevithick, who recently left Google and joined the venture fund, DCVC; Carly Anderson from Prime Movers Lab; Kota Fuchigami from Mitsubishi; and Shally Shanker of Aiim Partners. How and where these firms choose to invest in LENR will not be known for some time. Still, if nothing else, this conference established that informed investors do recognize that LENR exists and they are watching its progress. If the work progresses as anticipated by the community, LENR will eventually become a ubiquitous source of safe, low-cost, readily-manufacturable, clean, popular and broadly applicable commercial nuclear energy that provides abundant energy. For those still pondering “how hot is cold fusion?,” there is discernable warming, so it may be time to start paying attention.

    As has been reported and discussed here on the forum for years, the US Navy has been involved in LENR for decades. In 2012 I believe, they shifted most of their SPAWAR work to NASA, where it continues to this day. 5 years ago, a new team of Navy researchers received DARPA funding to start their own LENR research program, and recently presented their work at ICCF24 (July 2022). Joining the Navy is another new entrant into the LENR field, and that is the US Army (Corp of Engineers). Here is the first presentation (others will follow as they are made available) given by Oliver Barham (US Navy Project Manager):


    External Content youtu.be
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.

    I had thought from the little evidence we had, that Robert Duncan's Texas Tech University, Bill Gates funded LENR research project (Seashore Research, LLC), had been unsuccessful and shut down. In this ICCF24 panel discussion hosted by Matt Trevithick, at 33:50 Robert Duncan talks briefly of his own experiments. In listening it does appear he is still in the game, but says: "that experiment has not reproduced". Good news. Please though don't limit yourself to just that small segment. Watch the whole video as Nagel, Schenkel, and Matt also have some good things to say:


    External Content youtu.be
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.

    External Content youtu.be
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.

    You have added He4 (correlating with heat) and Tritium. I do not remember the tritium evidence: I suspect - since I have been very interested in high quality evidence - that it is unclear, perhaps you should direct me to a thread here where we have discussed it.

    External Content youtu.be
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.

    Anthropocene's newsletter out today has this to say:


    ICCF24 Solid-State Energy Summit content release plan

    The ICCF24 Solid-State Energy Summit may be over but the future of S-SAFE (LENR/Cold Fusion) is just beginning. The Energy Summit has a glowing success with over 150 in-person attendees and similar numbers via the online Hop-in platform. Once the videos and presentations are edited and approved, we will post them iccf24.org, YouTube, and other social media platforms over the coming weeks.

    We’re proud of the work we have put into the conference and are thankful for everyone's support and contributions to the conference!

    There will be almost as many videos as presentations. I think there were 66 presentations. This thread will be swamped if people upload every one of them.

    Members can use their discretion to decide if something they watch or read is worthy of being posted here. Some videos/presentations may be better placed in other threads on that topic, or left on the ICCF24 site and only referenced here.


    I doubt everything published will make its way here, but if it does that is a good problem to have, and we can handle it. There are already 319 pages to this thread, and another couple hundred will be easy to swallow. If it gets too cluttered-up we will think up something.

    Hundreds of experienced researchers and experts in calorimetry have reported results, often at very high signal to noise ratios.

    I jotted down some comments from the USNavy HIVER PM Oliver at the ICCF. He said DARPA (who funded the project), set the threshold for success as 5 reproductions, at Sigma6 for XH, and Oliver said: "we did it".


    Looking forward to those videos coming out.

    Can anyone here point to a fundamental LENR theory or claim from the past 30 years that the community now sees as wrong?

    Not sure what you mean by fundamental theory, but the community often debates, both publicly and privately, whether such and such theory is wrong. I could go down the list starting with Storms NAE theory. Then there is Bill Collis who has pointed out the flaws in others pet theories and engaged them on it at conferences, and even at one time here on the forum. Of course, there is our very own Wytten who has never met another theory he likes except his own. :)


    And the community has never shied away from admitting they do not have that overarching, end-all/be-all theory that would guarantee 100% successful experiments and lead the field to a commercial product. Many do think they have a bit of the puzzle though, which is no different than in the 18-1900's where science was groping around with bits and pieces of the big picture before eventually putting it all together as the Standard Model.

    \

    Eventually, after enough fumbling around on theory, and experimentation, the two will meet, and then LENR will have it's own GUT.

    I do not get the sense they believe there is something there. I get the sense they are playing political games, but I cannot image what games, or what purpose they serve. Judging by the Nature editorial that was published with the paper, this was a crude hatchet job intended to make people think cold fusion does not exist. That seems like an expensive hatchet job, so I do not know why they would bother. They could have accomplished the same thing with the usual bullshit editorial in Nature.


    If they continue with the program the way they have done up to now, they will waste another $10 million (or however much it was), and accomplish nothing. They did the same experiment 400 times, with no hint of a positive result. Peter Hagelstein wondered what they learned between experiment 399 and 400. He had other unkind things to say about them.


    The Google paper in Nature was a masterpiece of obfuscation, misdirection, and confusion. I think I know what they did -- sort of -- because I asked them, and I heard through the grapevine.

    Rightfully so, Trevithick/Google took a beating from Hagelstein and others about doing the same Parkhomov experiment 400x's and failing each time. But IMO the good they have done for the field outweighs that. As mentioned, some of the new presenters at this ICCF expressed gratitude to Google for either spurring them on to do their own research, or giving them the cover they needed to start.


    Trevithick has stayed involved with the community even after the nature article. That tells me something. He attended the ICCF23 right after that Nature paper came out, and hosted a discussion panel (Nagel, Duncan, Schenkel) at this ICCF24. In his talk he proudly pointed out that some on Team Google (Project Charleston) decided to stay active in the field. Indeed, Schenkel was on the panel, and his results were the one bright spot in the Nature paper.


    That does not spell "I do not get the sense they believe there is something there) to me.

    I am concerned that DOE might like to discount all the past results of others, to start a "refreshingly new" ARPA-E LENR program, which would enable DOE managers then to conclude that this technology should not be supported.

    I doubt it after all that was reported at ICCF24. But if ARPA-E does eventually shut-off the new funding for private sector "teams" they will announce this month, it won't stop the government labs from continuing their work.


    NASA has been doing LENR research since 1989, USNavy since the 90's I believe. And now the US Army (Corp of Engineers) has jumped into the fray. During their presentations last week, all sounded very confident they are onto something, and gave the impression they are in this for the long haul.

    Infinite Energy has published an Interview with Ed Storms, who received the Toyoda Medal at ICCF24

    The interview is done with Ed, Marianne and Mike McKubre and Larry Forsley going over his theory in a bit more detail.



    > https://www.infinite-energy.co…ue161/MacyStormsIE161.pdf

    Got to give Storm credit. He answers to any tough question, and is willing to listen to and explore any alternative explanations. He also had this to say, which I found interesting:


    Fortunately NASA is set up with calorimeters that are based on my design. Larry is working

    very close with me to duplicate what I’ve done. NASA will eventually be in a very good position to replicate